

Jet' Fw: Half Yearly EC Compliance Report Submission - APSEZ, Mundra - WFDP 2009 (Oct'19 to Mar'20)

Devendra Banthia < Devendra.Banthia@adani.com> Wed 5/20/2020 12:10 PM

To: Dilip Kumar Moolchandani <Dilip.Moolchandani@adani.com>

1 attachments (13 MB)

5. EC Compliance Report_WFDP-2009_Oct'19 to Mar'20.pdf;

From: Chiragsing Rajput <Chiragsing.Rajput@adani.com> Sent: Tuesday, May 19, 2020 5:21 PM

To: rowz.bpl-mef@nic.in <rowz.bpl-mef@nic.in>

Hind a stand and a strand a stran Cc: brnaidu.cpcb@nic.in <brnaidu.cpcb@nic.in>; westzonecpcb@yahoo.com <westzonecpcb@yahoo.com>; mefcc.ia3@gmail.com <mefcc.ia3@gmail.com>; monitoring-ec@nic.in <monitoring-ec@nic.in>; direnv@gujarat.gov.in <direnv@gujarat.gov.in>; ro-gpcbkute@gujarat.gov.in <ro-gpcb-kute@gujarat.gov.in>; ms-gpcb@gujarat.gov.in <ms-gpcb@gujarat.gov.in>; Shalin Shah <Shalinm.Shah@adani.com>; Azharuddin Kazi <Azharuddin.Kazi@adani.com>; Mahendra Kumar Ghritlahre <Mahendra.Ghritlahare@adani.com>; Ashvin Kumar Patni <AshvinKumar.Patni@adani.com>; Dhanesh Tank <Dhanesh.Tank@adani.com>; Devendra Banthia <Devendra.Banthia@adani.com>; Ranjan Chaudri <Ranjan.Chaudri@adani.com>; Kaushal Singh <Kaushal.Singh@adani.com>; muruganrmudaliyar <muruganr.mudaliyar@adani.in>

Subject: Half Yearly EC Compliance Report Submission - APSEZ, Mundra - WFDP 2009 (Oct'19 to Mar'20)

Ports and Logistics

APSEZL/EnvCell/2020-21/022

Date: 19.05.2020

To

Additional Principal Chief Conservator of Forests (C),

Ministry of Environment, Forest and Climate Change, Regional Office (WZ), E-5, Kendriya Paryavaran Bhawan, Arera Colony, Link Road No. - 3, Bhopal - 462 016. E-mail: rowz.bpl-mef@nic.in

Sub

.

- : Half yearly Compliance report for Environment and CRZ Clearance for "Water Front Development Project at Mundra, Dist. Kutch, Gujarat.
- : i) Environment and CRZ clearance granted to M/s Adani Ports & SEZ Limited vide letter Ref dated 12th January, 2009 and 19th January, 2009 bearing MoEF letter No. 10-47/2008-IA.III.

ii) Environment and CRZ clearance Extension order granted to Water Front Development Project at Mundra in Kutchh District (Gujarat) vide letter dated 7th October, 2015 bearing MoEF letter No. 10-47/2008- IA.III.

iii) Ministry's Order dated 18.09.2015

Dear Sir,

Please refer to the above cited reference for the said subject matter. In connection to the same, it is to state that copy of the compliance report for the Environmental and CRZ Clearance for the period of October - 2019 to March - 2020 is being submitted through soft copy (e-mail communication).

Kindly consider above submission and acknowledge.

Thank you, Yours Faithfully, For, M/s Adani Ports and Special Economic Zone Limited

Date: 19.05.2020

APSEZL/EnvCell/2020-21/022

То

Additional Principal Chief Conservator of Forests (C),

Ministry of Environment, Forest and Climate Change, Regional Office (WZ), E-5, Kendriya Paryavaran Bhawan, Arera Colony, Link Road No. – 3, Bhopal – 462 016. E-mail: <u>rowz.bpl-mef@nic.in</u>

Sub : Half yearly Compliance report for Environment and CRZ Clearance for "Water Front Development Project at Mundra, Dist. Kutch, Gujarat.

Ref : i) Environment and CRZ clearance granted to M/s Adani Ports & SEZ Limited vide letter dated 12th January, 2009 and 19th January, 2009 bearing MoEF letter No. 10-47/2008-IA.III.

ii) Environment and CRZ clearance Extension order granted to Water Front Development Project at Mundra in Kutchh District (Gujarat) vide letter dated 7th October, 2015 bearing MoEF letter No. 10-47/2008- IA.III.

iii) Ministry's Order dated 18.09.2015

Dear Sir,

Please refer to the above cited reference for the said subject matter. In connection to the same, it is to state that copy of the compliance report for the Environmental and CRZ Clearance for the period of October – 2019 to March – 2020 is being submitted through soft copy (e-mail communication).

Kindly consider above submission and acknowledge.

Thank you, Yours Faithfully, For, **M/s Adani Ports and Special Economic Zone Limited**

C

Avinash Rai Chief Executive Officer Mundra & Tuna Port

Encl: As above

Copy to:

- 1) The Director (IA Division), Ministry of Environment, Forests & Climate Change, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi-110003
- 2) Zonal Officer, Regional Office, CPCB Western Region, Parivesh Bhawan, Opp. VMC Ward Office No. 10, Subhanpura, Vadodara 390 023
- 3) Member Secretary, GPCB Head Office, Paryavaran Bhavan, Sector 10 A, Gandhi Nagar 382 010
- 4) The Director, Forests & Environment Department, Block 14, 8th floor, Sachivalaya, Gandhi Nagar 382 010
- 5) Regional Officer, Regional Office GPCB (Kutch-East), Gandhidham, 370201

Registered Office: Adani House, Nr Mithakhali Circle, Navrangpura, Ahmedabad 380 009, Gujarat, India

Environmental Clearance Compliance Report

Waterfront Development Project, Mundra, Dist. Kutch, Gujarat

Adani Ports and SEZ Limited

For the period of October-2019 to March-2020

ndex

	Page No.			
EC & CRZ Cleara	01			
Annexure – A	CRZ Recommendation Compliance Report of WFDP	27		
Annexure – B	Compliance Status of MoEF & CC Order dated 18.09.2015	31		
Annexure – 1	QRA Recommendation Implantation Report during Operation Phase	42		
Annexure – 2	Greenbelt Development & Mangrove Afforestation Details	47		
Annexure – 3	Details on CSR activities by Adani Foundation	49		
Annexure – 4	Environment Monitoring Summary Report	182		
Annexure – 5	Intimation regarding stoppage of environmental monitoring activities	291		
Annexure – 6				
Annexure – 7	Annexure – 7 Environment Protection Expenditure 297			
Annexure – 8	Valid PLI Policy copy	298		
Annexure – 9	Compliance report of EMP	306		
Annexure – 10	Oil Spill Contingency Response Plan	308		
Annexure – 11	Details of expenditure incurred for livelihood of fishermen	406		
Annexure – 12	Compliance Report of CIA Study Environment Management Plan	407		
Annexure – 13				

Compliance Report of Environmental and CRZ Clearance

Activities/facilities approved, major components completed and proposed future activities as per Environment and CRZ Clearance are as below:

Description (Type of Facility or Berth)	Approved Berths or Length as per Environmental & CRZ Clearance	So far Developed and In Operation
racinty or bertiny	Nos. of Berths or Length	Nos. of Berths
Multipurpose	4 (550 m + 2 Berths)	4
Container	16 (2680 m + 2000 m)	7 (2110 m)
Ro-Ro	2	-
Coal	6	4
Dry-Bulk Cargo	5	-
Liquid/POL	9*	-
LNG	2	Progressive towards commissioning (being developed by GSPC LNG Limited as per NOC given by APSEZ)
Light & Heavy Engineering	2	-
Port Craft	1 (330 m)	-
Shipyard	2	-

* Liquefied Petroleum Gas (LPG) Terminal has been developed under Waterfront Development Project of Adani Ports and SEZ Limited and LPG is being handled at existing Multipurpose Terminal APSEZ. LPG terminal has been developed by M/s. Mundra LPG Terminal Pvt. Ltd., which is 100% subsidiary of APSEZ.

In addition to above berths or facilities, following components were also approved.

- 1. Dredging Quantity: 210 Mm³. Overall dredging to the tune of 123 Mm³ is completed till date
- Back-up area, back-up facilities like railway line, rail slidings, rail truck loading, open paved areas, associated buildings, utilities, amenities, etc. and connectivity to rail and road corridor for each port were approved and majority of them are constructed and in operation. Remaining facilities will be developed based on future requirements.
- 3. Seawater intake channel and outfall channel for power plants, desalination plants (47 MLD is operational out of 300 MLD) and other industrial requirements approved and is already in operation.

Note:

- APSEZ has applied for EC & CRZ Clearance for expansion of Water Front Development Project vide dated 7th March, 2019.
- MoEF&CC has issued Terms of Reference (ToR) vide Ref. F. No. 10-24/2019-IA-III dated 17th May, 2019 and it is further amended on 27th Sep, 2019 & 10th April, 2020.

Half yearly Compliance report for Environment and CRZ Clearance for the project "Water Front Development Project (WFDP) at Mundra, Dist. Kachchh, Gujarat of M/s. Adani Ports and SEZ Limited"

Sr. No.	Condition as per clearance letter	Compliance Status as on 31-03-2020	
Spe	cific Conditions		
i	No existing mangroves shall be destroyed during construction / operation of the Project.	 Complied. Project is being developed as per permissions granted. Conservation of mangroves: In and around APSEZ, approx. 1800 ha. Mangrove area was identified by NIO in an EIA report prepared in the year 1998. Out of this 1800 ha area, 1254 ha area was further demarcated as potential mangrove conservation by NIO in the year 2008 (as part of the EIA report of WFDP). It may be noted that the entire area of 1254 ha is not covered with mangroves. Entire area is being conserved and there is no disturbance to the mangroves in this area. Measures such as restricted entry and regular surveillance have resulted in overall growth of mangroves within this area. As per MoEF&CC directive, APSEZ entrusted NCSCM to demarcate mangroves in and around APSEZ area. As per their study, presently, mangrove cover in and around APSEZ is over 2340 ha. The analysis of the comparison between 2011 and 2016-17 has shown an overall growth of 246 ha. NCSCM final report on comprehensive and integrated plan for preservation and conservation of mangrove areas is prepared by NCSCM and the same was submitted to GCZMA and MoEF&CC for their examination and recommendation. Presentation on the findings 	

Sr. No.	Condition as per clearance letter	Compliance Status as on 31-03-2020
		of the report was made to GCZMA committee on 4 th October 2019 and same has been approved vide MOM published by GCZMA.
		 Inline towards the compliance of the action plan "Monitoring of mangrove cover in Jan/Mar, 2020 using latest satellite images and validation with field observations", Work has already been assigned to NSCSM, for amount of INR. 23,56,000/- vide PO no 4800050718, dtd. 31st December 2019 and same is under progress.
ii	There shall be no filling up of the creek and reclamation of	Complied.
	the creeks.	Conservation of creeks:
		 The prominent creek system (main creeks and small branches of creeks) in and around APSEZ are: (1) Kotdi (2) Baradimata (3) Navinal (4) Bocha (5) Mundra (Oldest port (Juna Bandar) leading to Bhukhi river). All above creek mouths are open allowing free flow of
		 All above creek mouths are open allowing nee now of water in to the creeks and surrounding areas and there is no filling or reclamation of any creek area. This aspect is also confirmed from the recent study of NCSCM, which highlights the bathymetry data of the entire coast around APSEZ.
		 From the bathymetry data it can be concluded that there are sufficient depths at the creek mouths and all creek mouths are open allowing flushing of water. APSEZ has so far constructed 19 culverts having total length of approx. 1100 m with total cost of INR 20 Crores. Three RCC Bridges have also been constructed over Kotdi creek with total length of 230 m and cost of INR 10 Crores. Photographs showing the same were submitted along with half yearly compliance report for the period Apr'17 to Sep'17.
iii	The Project proponent shall comply with all the Orders/directions of the	Complied.
	Honorable High Court of Gujarat and Supreme Court in	There are three ongoing matters pending (Two pending at High Court and other pending at Supreme Court). Details of the same were submitted along with last half
	the matter.	yearly compliance report for the period Apr'19 to Sep'19. And there is no further change.

Sr. No.	Condition as per clearance letter	Compliance Status as on 31-03-2020
iv	Adequate safety measures for the offshore structure and ship	Complied.
	navigation shall be taken in view of the High Current in the area.	 The hydrodynamic study for the waterfront area has been carried out by HR Wallingford, a maritime design expert. As per the recommendations in their report, the following safety measures are implemented. 1. The alignment of the berth has been kept in line with the current flow in order to reduce the effect of current on vessels moored alongside. 2. The breasting dolphins have been designed in such a configuration so as to provide appropriate lead to the vessels mooring ropes. 3. The berth being in line with the current flow will facilitate Pilotage operation and provide better maneuverability of vessels. 4. The strength of the berth structure has been calculated to absorb the energy transferred to fenders while berthing of tanker vessels at the terminal. 5. Navigational buoys and lead lights marking the channel and clearing distance off the breakwater are installed. 6. The strength of the fenders at the berth and the SWL of the bollards / winches are sufficient to absorb the forces of vessels alongside keeping in mind the monsoon weather conditions. 7. Sufficient depths are maintained at all times to ensure 10% UKC at the time of berthing / unberthing. 8. The capstans / winches / bollards are of adequate strength with respect to the vessels being handled. 9. The berth has been designed at an appropriate distance from the existing berths at MMPT-1 in order to safely allow berthing / unberthing of vessels at the South Port tanker terminal. 10. Berths have been planned close to the breakwater are as there is a reduced strength of current along the
v	The shore line changes in the	coastline.
v	area shall be monitored	
	periodically and the report	Shore line change aspect has been studied in detail as part of following two studies;

Sr. No.	Condition as per clearance letter	Compliance Status as on 31-03-2020
	submitted every 6 months to Regional Office Bhopal.	 Bathymetry & Topography study, preparation of plan for protection of creeks/ mangrove area including buffer zone, mapping of co-ordinates, running length, HTL, CRZ boundary. A Regional Impact Assessment study to identify impacts of all the existing as well as proposed project activities in Mundra region. As per the outcome of these studies, no erosion is observed on the coast of the project area. As part of the Regional Impact Assessment study, the possible changes in shoreline that may occur due to the proposed developments in 10 km area on either side of the waterfront development project have been predicted. It has been inferred from the modelling study that the shift in the shoreline will be less than 0.5 m/year, which reconfirms that the APSEZ facility would pose insignificant impact on the Mundra shoreline. Accretion is observed at South port and at West port due to approved reclamation activities. Based on the study outcome, it is recommended to map the coastal morphology (shoreline change) at least once in three years. The said recommendation will be implemented and the next shoreline change assessment will be carried out during 2020-21.
vi	The recommendations of the risk assessment shall be implemented; any change in the design of the project shall come before the committee for seeking necessary approval.	 Please refer Annexure – B (Compliance of MoEF&CC Order dated 18th Sep, 2015) for further details regarding the mentioned studies. Complied. Risk Assessment was carried out at the time of preparation of the EIA report for the Liquid Berths and LNG terminal. However, it may be noted that liquid berths are not yet developed. Hence recommendations of Risk Assessment will be implemented once the liquid berths & pipelines are developed by APSEZ. The LNG terminal is being constructed by GSPC LNG Ltd. and a separate Environment and CRZ clearance is obtained by them. Please refer general condition no ix below for details regarding the same.

Sr. No.	Condition as per clearance letter	Compliance Status as on 31-03-2020
		LPG is being handled from the existing multipurpose terminal. A detailed risk assessment study as per MoEF&CC letter no. F. No. 10-47/2008-IA-III dated 31 st May, 2016 was carried out by iFluids Engineering for handling as well as storage activities. Recommendations of the risk assessment have been implemented as part of the construction activity and details of the same were submitted along with half yearly compliance report for the period Oct'18 to Mar'19. Reports of the same were submitted to MoEF & CC along with half yearly compliance report for the period Apr'17 to Sep'17.
		Implantation report of risk assessment study during operation phase is attached as Annexure – 1 .
		There are no other activities which attract requirement of Risk Assessment.
vii	Mangrove plantation of 200 ha	Complied.
	to be done in consultation with GEER / GEC of Forest Department, a detailed plan shall be submitted within six months from the date of receipt of this letter.	APSEZ has consulted Gujarat Institute of Desert Ecology (GUIDE) as they are one of the authorized agencies of Dept. of Forest & Env., Govt. of Gujarat for carrying out mangrove afforestation. GUIDE has completed mangrove plantation in an area of 200 ha at Jakhau, Gujarat during the year 2012-13. Copy of the mangrove plantation completion certificate was submitted along with EC compliance report for the period Apr'18 to Sep'18. Total expenditure for the said work was INR 40 lakh.
		It may be noted that to enhance the marine biodiversity, till date APSEZ has carried out mangrove afforestation in 2890 ha. area across the coast of Gujarat. Total expenditure for the same till date is INR 832 lakh. Please refer Annexure – 2 for green belt development and mangrove afforestation efforts done by APSEZ.
viii	It shall be ensured that during construction and post	Complied.
	construction and post construction of the proposed	During project proposal, APSEZ proposed to provide
	jetty the movement of	four (4) dedicated accesses at Juna Bandar, Luni, Bavdi
	fishermen vessel of the local	Bandar and Zarpara for the fishermen to approach the

Sr. No.	Condition as per clearance letter	Compliance Status as on 31-03-2020
	communities are not interfered with.	sea for fishing activity. However, during construction as well as operation, through fishermen consultative process, so far APSEZ has provided seven (7) access roads instead of four (4). Total length of all the approach roads is approx. 23 Kms and expenditure involved is Rs. 637 Lacs. There is no hindrance to the movement of fisherman boats.
		Further, APSEZ is actively working with local community (including fishermen community) around the project area and provides required support for their livelihood and other concerns through the CSR arm – Adani Foundation. Following activities have been carried out during the period FY 20 19-20.
		Area Activity Community Community Health – Mundra
		Health • 11 Rural Clinic-8 from Mundra & 3 from Anjar block treated; 25142 patients.
		 31 villages covered through Mobile healthcare unit 20399 patients benefited during the year.
		 The mobile health care unit cover 25 villages and 07 fishermen settlements. Around 90 types of general life saving medicines are available in these units.
		 During the year 2019-20, total 9860 transactions were done by 8672 card holders of 68 villages of Mundra Taluka. They received cash less medical services under the senior citizen project. In the year of 2019-20, Total 3137 people had been benefitted by various kind of camp and needy and screened patients are treated in Adani Hospital.
		Community Health – Bhuj
		• 5398 Patients taken Care and Coordination
		 609 Dead body referred by carry van 3557 Ayushman Gold Card facilitation through Enrollment camp and Mahiti Setu
		• 549 support for Implants and Needy Patients
		 9896 People helped through Mahiti Setu for various government schemes
		• 816 people benefitted in 6 health awareness camps
		 Adani Foundation organized 52 General Health Camps and Speciality Camps in various interior villages of Kutch in coordination with GKGH which created magical impact and benefitted 4779 patients. Adani Foundation Bhuj Health team has also organized more than six awareness camps.
		 Adani foundation, Adani Hospital and GAIMS have Jointly Celebrated "Arogya Saptah" 8th to 14th August & 20th to 26th January in Respect of Independence and Republic of our country. Celebration included multi-

Sr. No.	Condition as per clearance letter	Compliance Status as on 31-03-2020		
			specialty camps, Workshops, truckers health check- up, surgical camp on foundation day and adolescent fair at different part of district. Collector.	
		Sustainable Livelihood – Fisher folk	• Average 117.5 KL of water was supplied to 1085 households at 9 fisherman vasahat on a daily basis under Machhimar Shudhh Jal Yojana.	
			• Adani Foundation constructed 4 Balwadis for kids between the age group of 2.5 years to 5 years at different settlements under Vidya Deep Yojana. 140 children are benefiting from this scheme.	
			 28 Fisherman are engaged in various contract related jobs and 37 Fisherman are doing job after taken training from Adani Skill Development Center. 	
			• Scholarship Support - Provide 100% fees support to girls and 80% fees support to boys as a scholarship. This year total 78 students are being facilitated by Adani foundation.	
			• Book Support - 49 Fisherman Students from Higher Secondary Standard (9 to 12) has been benefitted from various of Juna Bandar, Zarpara, Navinal, Bhadreshwar.	
			• Cycle Support - Fishermen who are at fishermen hamlets are migrated with whole family for 8 month fishing season. During that time to continue higher education of their children at Mundra, Adani foundation provide cycle support every year to 9th standard students This year cycle support has been given to 7 students	
			• 28 fishermen has been facilitated by fishing materials under Machhimar Ajivika Uparjan Yojana	
			• The Foundation provided fishermen with employment equivalent to 6261 man-days . In addition to this, employment worth of 42048 man-days has been provided till date. The Foundation has also supported Pagadiya fishermen as painting laborers by providing them with employment and job in various field.	
		Education	• Under Project UTTHAN 25 primary government schools of Mundra and Nakhtrana Taluka of Kutch district have been adopted to take up various initiatives aimed at improving quality in these schools. 3417 children are benefiting from a meaningful education in these schools.	
			 One teacher-One school + Sports teacher + IT teacher 'IT on Wheel 'Van with 35 laptops and computer instructor make students more tech savvy and spreading the digital and technology knowledge amongst the younger generation. 	
			• Use of Reading Corner by students of Std. 3 to 8 of Utthan School Every Saturday Library activity with the Book issue were planned and executed in a meaningful manner. 7113 Book issued in academic year 20 19-20.	
			 With the intervene of our Sports teacher in all Utthan Schools successfully enrolled 500+ students in Khel Mahakumbh. 	

Sr. No.	Condition as per clearance letter	Compliance Status as on 31-03-2020		
			 Utthan Sahayak +1222 students from High school & Higher secondary of 6 villages celebrate Fifth International Yoga Day. 	
			• Adani Vidya Mandir: provide "cost-free" education to meritorious students coming from challenging economic background, who have priceless treasures but have been under achievers due to situation. In year 20 19-20 443 students are studying.	
			 568 institutes and 33,030 beneficiaries have made inspirational visit up to March 2020 under Project UDAAN. 	
		Rural	WORK COM PLETED	
		Infrastructur e	 Adani foundation carries out the construction of prayer shade name "PRATHNA SHADHNA" at AVMB. 	
			 Painting & Branding Old Strcture at Old Bandar and Luni Bandar 	
			 Upgradation of Balwadi at Zarpa 	
			 Waiting place for Pgadiya at Navinal 	
			 Garden Development work 	
			Road Side Beautification at Mundra.	
			• S & F Benches In Various Location in Various Village	
			 Construction of R.O. Plant Room at Primary School sadau Village 	
			 Construction of Shed at BRC Bhavan 	
			Renovation Balwadi at Bavdi Banadar	
			 Fixing of LED street light at Bhopawandh, Mundra & Bhorara) 	
			SUJLAM SUFLAM JAL ABHIYAN	
			 A large number of water harvesting structure (18 Nos. of check dams in coordination with salinity department) and 	
			 Ground recharge activities (pond deepening work for more than 52 ponds) individually and 26 ponds under Sujlam Suflam Jal Abhiyan were built leading to a significant increase in water table and higher returns to the farmers. 	
			 Roof Top Rain Water Harvesting 54 Nos. and Recharge Bore well 75 Nos. 	
			 Drip Irrigation 823 Farmers benefitted in coordination with Gujrat Green Revolution Company 	
			 Participatory Ground Water Management in ten villages with holistic approach for Kankavati Sandstone Aquifer Programme. 	
		Skill Development	• Adani Skill Development Centre (ASDC) is playing a pivotal role in implementing sustainable development in the state. The objective of this Centre is to impart different kinds of training to the students of 10 th , 12 th , college or ITI from surrounding areas.	
			 During this year Total 2664 people trained in various trainings to enhance socio economic development. In the year 2019-20, ASDC-Bhuj trained 1699 candidates. 	

Sr. No.	Condition as per clearance letter			iance St 31-03-20		on	
			 Technica n the ye andidates Soft skill 		943 Nos. 0,ASDC-N 52 Nos.	lundra trai	ned 965
		Please refer activities car Mundra regio 2019-20 is to Approx. INR 2019-20.	ried ou on. Bud the tun	ut by Ao get for le of INR	dani Fo CSR Act 2043 la	undation ivity for kh. Out c	in the the FY of which,
ix	Relocation of the fishermen	Not Applicabl	е				
	community if any shall be done strictly in accordance with the norms prescribed by the State Government.	The project w there are no proposal. Her communities	fisher	men set re is no	tlements	s in the	project
X	Marine ecology monitoring shall be done regularly during construction of breakwater and dredging /disposal operation.	Complied. Constructions ongoing activ out once in a agency name Summary of Mar'20 is mer Total Samplin (Frequency: C	vities. M month b ely M/s the sa ntioned g Locat	arine mo by NABL . Polluco me for o below. :i ons & f i	onitoring and MoE on Labo duration	is being F&CCac pratory F from C	g carried credited Pvt. Ltd. pct'19 to
				Surf	ace	Bot	tom
		Parameter	Unit	Мах	Min	Max	Min
		pH		8.34	8.02	8.28	7.88
		TSS	mg/L	364	124	381	127
		BOD (3 Days @27 °C)	mg/L	5.3	2.2	3.0	ND*
		DO	mg/L	8.8	5.5	6.2	5.2
		Salinity	ppt mg/l	37.5	34.1	38.2	34.2
		TDS	mg/L	38496	35602	38796 ND = Not [35112 Detectable
		Please refer A and accredita			detailed	d analysis	s reports

Sr.	Condition as per clearance	Compliance Status as on
No.	letter	31-03-2020
		spent for all environmental monitoring activities during the FY 20 19-20.
		The environmental monitoring within Adani Ports & SEZ Limited has been stopped since 23 rd March, 2020 considering COVID-19 Pandemic lockdown and the same has already been intimated to the regulatory authorities vide our e-mail dated 06.04.2020. Details of the same is attached as Annexure – 5 .
		Marine monitoring for west port area has been carried out by M/s. Adani Power Limited. Monitoring reports are also enclosed as Annexure – 4 .
		Summary of ecological parameters is given below: Plankton Diversity: A total of five stations were distributed throughout the sampling effort. Samples were collected during September 2017. A maximum 24 genera of Amphidinium, Amphora, Bacteriastrum, Cerataulina, Ceratium, Chaetoceros, Coscinodiscus, Cylindrotheca, Ditylum, Fragilaria, Gunardia, Hemialus, Lauderia, Melosira, Navicula, Odontella, Pleurosigma, Pseudonitzschia, Rhizosolenia, Scrippsiella, Skeletonema, Surirella, Thalassionema and Thalassiosira identified from station 3 during the period of investigation and a minimum 18 genera of phytoplankton Cerataulina, Chaetoceros, Coscinodiscus, Cylindrotheca, Ditylum, Dinophysis, Fragilaria, Leptocylindrus, Melosira, Meuneria, Navicula, Odontella, Pleurosigma, Protoperidinium, Rhizosolenia, Skeletonema, Thalassionema and Thalassiosira identified from station 2 & 4. The phytoplankton abundance in the study region was ranged from 10000 to 41952 cells L-1. Highest phytoplankton abundance was observed at the ST-3 Surface water. However, lowest phytoplankton abundance was observed at the ST-3 Surface water. However, lowest phytoplankton abundance was observed at the ST-3.
		Benthic Diversity: Benthic invertebrates in the present study area were distributed on the surface of bed forms i.e. sandy and Silty clay in nature. The abundance and diversity, species composition of benthic invertebrates

Sr. No.	Condition as per clearance letter		-	iance Stat 31-03-202		
xi	Regular Monitoring of air quality shall be done in the settlement areas around the Project site and appropriate safeguard measures shall be taken.	environmen and 3 inter the samplin December Bivalvia, F identified f investigatio Amphipoda the sub tio higher at abundance group coun groups at S (8.63mg. m Complied. Ambient Ai carried ou authorized Pvt. Ltd. Su to Mar'20 is	tal condit tidal trans ng effort. 2017. <u>Sub</u> Polychaeta from station and a Benthic f dal region ST-1 (57 was record t was ran ST-1&5. Hig -2) as com fr Quality t by NA agency n mmary of t s mentione	tions. A tot sect were of Samples <u>o tidal</u> : A a, Amphip on 1 & 5 a minimum auna recon macro be 75 no. m ded at ST-2 aged from gh biomass pared to o and Noise BL accre amely M/s the same for ed below.	tal 5 sub tid distributed were collect maximum 4 ooda, and during the n 2 Polyc rded from s nthos abun 2 (100 no. m 2 to 4, with s was record ther station monitoring dited and s. Pollucon or duration	e period of chaeta and station 2. In indance was eas lowest i-2). Benthic h maximum ded at ST-5 is. g are being MoEF&CC Laboratory from Oct'19 os. (twice a
		week) & No (once in a n	•	ing locatio	ns & freque	ency: 7 nos.
		Parameter	Unit	Мах	Min	Perm. Limit ^{\$}
		PM 10	µg/m³	96.23	50.22	100
		PM _{2.5}	µg/m³	58.30	18.22	60
		SO ₂	μg/m³	28.70	6.41	80
		NO ₂	µg/m³	45.56	13.50	80
		Noise	Unit	Мах	Min	Perm. Limit
		Day Time	dB(A)	74.3	58.3	75
		Night Time	dB(A)	69.8	50.2	70
			Values r			standards, 2009 lated standards.
		Approx. INF monitoring	R 21.74 La activities	kh is spen during the	t for all env e FY 2019-2	ysis reports vironmental 20. Ambient ges is being

Sr. No.	Condition as per clearance letter			ance Status as o 31-03-2020	on		
			carried out by M/s. Adani Power Limited, Mundra and monitoring reports of the same are also enclosed in Annexure – 4 .				
xii	xii Sewage arising in the Port area shall be disposed off after adequate treatment to conform to the standards	of dust emi Regular s Regular of Dry fog transfer Use of w Closed ty Regular s Covering Installati Developr storage y Mechani bulk carg Wagon lo Complied.	issions. sprinkling of cleaning of Dust Supp towers and ater mist c /pe convey sprinkling of other type on of wind ment of gre /ards/back zed handling obading and	on road and othe roads ression System conveyor belts anon or belts on coal heaps es of dry bulk car breaking wall eenbelt along the up area ng system for co <u>truck loading th</u> age generated is and treated se	(DSS) in hopper,		
	Pollution Control Board and shall be utilized / recycled for Gardening, Plantation and Irrigation.	Location	Capacity	Quantity of Treated water (Avg. Oct'19 to Mar'20)	Type of ETP / STP		
		LT	265 KLD	66 KLD	Activated Sludge		
		West port	55 KLD	12.5 KLD	FAB		
		going on i Dec'19. Du being sent Ltd. (MUPL horticulture	n ETP (LT ring this t to CETP c) for treatn e purpose v ly been in) for biological ime entire efflu operated by MPS nent and final dis within APSEZ pre	fication work is treatment from ent + sewage is SEZ Utilities Pvt. sposal on land for emises. The same state pollution		

Sr. No.	Condition as per clearance letter	Compliance Status as on 31-03-2020				
		Third party analys carried out once in twice in a month a accredited agency Pvt. Ltd. Summary o to Mar'20 is mentic	a month t West Po namely of the sar	n at Liqu ort by N M/s. Pe ne for d	uid Terr ABL an ollucon	minal (LT) & d MoEF&CC Laboratory
		Parameter	Unit	Max	Min	Perm. Limit ^{\$}
		Industrial Effluent /	Sewage			•
		рН		8.05	6.91	6.5 to 8.5
		TSS	mg/L	82	59	100
		TDS	mg/L	2034	1681	2100
		COD	mg/L	98	84	100
		BOD (3 Days @ 27ºC)	mg/L	26	23	30
		Domestic Sewage		n	n	
		рН		8.17	7.14	6.5 - 8.5
		TSS	mg/L	16.0	9.0	100
		BOD (3 Days @ 27 °C)	mg/L	13.0	8.0	30
		Residual Chlorine Fecal Coliform	ppm	0.8 350	0.5 110	Min 0.5 <1000
		Value Please refer Annex Approx. INR 21.74	ure – 4 fo Lakh is s	^s as p confirms to or detail pent fo	er CC&A go the stipu ed anal r all en	ranted by GPCB lated standards. ysis reports. vironmental
		monitoring activitie	es during	the FY	20 19 - 20).
xii i	Adequate Plantation shall be carried out along the roads of the Port premises and a green belt shall be developed.	Complied. APSEZ has develop which is taking mea as well as mangrov	asures/ st	epsfor		
		The species such Terminalia arjuna fillifera, Casurina s spp., Jatropha cur spp., Casia fistula, grown within APSE Within the port are	, Cocos pp., Azac acus, Fic Date Pa Zarea.	nucife lirachta cus ben alm and	era, W Indica, galensi Delon	/ashingtonia Eucalyptus s, Subabool ix regia are
		having 3,40,067 troper hectare is deve	ees with	the der	nsity of	2059 trees

Sr. No.	Condition as per clearance letter	Compliance Status as on 31-03-2020
		So, far APSEZ has developed 464 ha. area as greenbelt with plantation of more than 8.7 Lacs saplings within the APSEZ area
		Please refer Annexure – 2 for further details regarding greenbelt development, mangrove afforestation and updated green belt development plan. Total expenditures of the horticulture dept. during the FY 20 19-20 are INR 728 lakh.
xiv	There shall be no withdrawal of	Complied.
	Ground Water in CRZ area for this Project.	APSEZ does not draw any ground water for the water requirement. Present source of water for various project activities is desalination plant of APSEZ and/or Narmada water through Gujarat Water Infrastructure Limited. Average water consumption for entire APSEZ area is 4.1 MLD during the compliance period Oct'19 to Mar'20.
xv	Specific arrangements for rain water harvesting shall be made	Complied.
	in the Project design and the rain water so harvested shall be optimally utilized. Details in this regard shall be furnished	Groundwater recharge cannot be done at the project site since the entire project is in the intertidal / sub tidal areas. Rain water within project area is managed through storm water drainage.
	to this Ministry's Regional Office at Bhopal within 3 months.	We have installed Rain water recharge bore well (4 Nos.) within our township to recharge ground water. Details of the same were submitted along with half yearly EC compliance report for the period Apr'19 to Sep'19.
		We have also connected roof top rain water duct of operational building (Tug berth building within MPT) with u/g water tank for utilization of collected rain water for gardening / horticulture purpose. Details of the same were submitted along with EC Compliance report for the period Oct'18 to Mar'19.
		However, APSEZ has carried out rainwater harvesting activities in the nearby villages for benefit of the locals. Following measures are taken for the same during the year 2011 – 13 and the same have benefited to the local farmers.

Sr. No.	Condition as per clearance letter	Compliance Status as on 31-03-2020
		 Pond deepening activities at villages 18 check dams were constructed under the 'Sardar Patel Sahbhagi Jalsanchay Yojna'
		Total cost of these efforts was approx. INR 320 lakh.
		Sujlam Suflam project Water Conservation Work at the turn of millennium, the state watched with growing alarm the steady depletion of its ground water and launched massive drive to achieve water security in Mundra region.
		 A large number of water harvesting structure (18 Nos. of check dams in coordination with salinity department) and Ground recharge activities (pond deepening work for more than 52 ponds) individually and 26 ponds under Sujlam Suflam Jal Abhiyan were built leading to a significant increase in water table and higher returns to the farmers. Roof Top Rain Water Harvesting 54 Nos. and Recharge Bore well 75 Nos. Drip Irrigation 823 Farmers benefitted in coordination with Gujrat Green Revolution Company Participatory Ground Water Management in ten villages with holistic approach for Kankavati Sandstone Aquifer Programme.
		With the objective of to preserve the rain water to reduce the impact of salinity and recharge the ground water (the main source of water) to facilitate the Agricultural activities as well as for drinking water.
		Under UTHHAN MODEL VILLAGE PROJECT, Salinity ingress issue is well taken with pond deepening, recharge bore well technique and roof top rain water harvesting. Total ground water recharged due to this project 1878 ML.
		For Water conservation drive APSEZ having vision for next five years that ✓ Drinking Water Sustainable Villages by Roof Top Rain Water Harvesting – at least 5 villages

Sr. No.	Condition as per clearance letter	Compliance Status as on 31-03-2020
		 Agriculture water conservation by 100% Drip, Bore well Recharge Farm Bunding and Crop pattern Recycling Sewage water from STP Awareness for water conservation to community Please refer Annexure – 3 for full details of CSR activities carried out by Adani Foundation in the
		Mundra region. Budget for CSR Activity for the FY 2019-20 is to the tune of INR 2043 lakh. Out of which, Approx. INR 1813 lakh are spent during this year FY 2019-20.
xvi	Land Reclamation shall be carried out only to the extent that it is essential for this Project.	Complied. Out of approved reclamation area of 1138 ha for west port, 695 ha area is reclaimed and out of approved reclamation area of 700 ha for south port, 665 ha area is reclaimed. Details of the same were submitted along with last compliance report submission for the period Apr'17 to Sep'17 and there is no further change.
xvi i	No Product other than those permissible in the Coastal Regulation Zone Notification, 1991 shall be stored in the Coastal Regulation Zone area.	Complied. No products other than those permissible in the CRZ Notification 1991 are stored in the CRZ area.
Gen	eral Conditions	
i	Construction of Proposed structures, if any in the Coastal Regulation Zone area shall be undertaken meticulously confirming to the existing Central/local rules and regulations including Coastal Regulation Zone Notification 1991 and its amendments. All the construction designs/ drawings relating to the proposed construction activities must have approvals of the concerned State Government Departments/ Agencies.	 Complied. All construction activities are carried out confirming to the existing rules and regulation and as per the CRZ notification. Further, the requisite permissions from Gujarat Maritime Board (GMB), for carrying out construction activities are taken from time to time. Details of the same are mentioned below: Permission for starting construction work for South port vide letter no GMB/N/PVT/711/870 dated 26.02.2009

Sr. No.	Condition as per clearance letter	Compliance Status as on 31-03-2020				
		Permission for starting construction work for Wes port vide letter no GMB/N/PVT/711/871 date 26.02.2009				
		The copies of these letters were submitted as part of the compliance report submission for the period Apr'16 to Sep'16.				
		Estab	project has b blish (CtE) and PCB. The prese v.	d Consent to	Operate (Ct tE & CtO are	O) granted
		S. No.	Permission	Project	Ref. No. / Order No.	Valid till
		1	Ct O – Renewal	Mundra Port Terminal	AWH-83561	20.11.21
		2	Ct O – Renewal	West Port – WFDP	AWH-79241	23.06.21
		3	CtO - Amendment	Mundra Port Terminal	WH-88317	20.11.21
		4	Ct E – Fresh	LPG Terminal	CTE – 88079	04.07.22
		5	Ct O – Amendment	West Port – WFDP	AWH-91678	01.02.22
		6	Ct E – Amendment	LPG Terminal	PC/CCA- KUTCH- 1437/GPCB ID: 53331/4681 97	04.07.22
		7	Ct O - Amendment	Mundra Port Terminal	GPCB/CCA- Kutch - 39(5)/ ID- 17739/4735 75	20.11.21
		8	Ct E – Amendment	LPG Terminal	PC/CCA- KUTCH- 1437/PCB ID- 53331/4739 95	03.10.25
		9	CtO - Amendment	Mundra Port Terminal	H-98086	20.11.21
		10	Ct O - Amendment	Mundra Port Terminal	H-105708	20.11.21
			permissions (S the previous h			•

Sr. No.	Condition as per clearance letter	Compliance Status as on 31-03-2020
110.	ietter	copy of updated CtO-Amendment (Sr. No. 10) is
		attached as Annexure – 6 .
ii	Adequate provision for	Not applicable
	infrastructure facilities such as	
	water supply, fuel, sanitation	Most of the construction labours reside in the nearby
	etc. shall be ensured for	villages where all basic facilities are easily available.
	construction workers during	There are no housing requirements for labours inside
	the construction phase of the	the project area.
	project so as to avoid felling of	
	trees/mangroves and pollution	
iii	of water and the surroundings.	Complied.
111	The project authorities must make necessary arrangements	Complied.
	for disposal of solid wastes and for the treatment of effluents by providing a proper wastewater treatment plant outside the CRZ area. The quality of treated effluents, solid waste, and noise level etc. must conform to the standards laid down by the competent authorities including the	Monitoring of environmental attributes viz. Air, Water, Noise, Soil, etc. is being carried out on regular basis by NABL and MoEF&CC accredited agency namely M/s. Pollucon Laboratory Pvt. Ltd. Approx. INR 21.74 Lakh is spent for all environmental monitoring activities during the FY 2019-20. Please refer Specific Conditions no. x, xi & xii for further details regarding environmental monitoring. Liquid Effluent & Sewage – It is being treated at
	Central/ State Pollution Control Board and the Union Ministry of Environment and Forests under the Environment (Protection) Act, 1986, whichever are more stringent.	decentralized treatment plants and treated water confirming the stipulated norms is being utilized for horticulture purposes within APSEZ. Please refer specific condition no xii above for details regarding the same.
		Waste Management – APSEZ has adopted 5R concept for environmentally sound management of different types of solid & liquid wastes. Please refer below details about management of each type of waste.
		<u>Municipal Solid Waste</u> : A well-established system for segregation of dry & wet waste is in place. All wet waste (Organic waste) is being segregated & utilized for compost manufacturing and/or biogas generation for cooking purpose. The compost is further used by in house horticulture team for greenbelt development. Whereas dry recyclable waste is being sorted in various categories. Presently manual sorting is being done for sorting of different types of solid waste. Segregated

Sr. No.	Condition as per clearance letter	Compliance Status as on 31-03-2020
		recyclable materials such as Paper, Plastic, Cardboard, PET Bottles, Glass etc. are then sent to respective recycling units, whereas remaining non-recyclable waste is bailed and sent to cement plant (M/s. Sanghi Industries Ltd., Kutch and/or M/s. Ambuja Cement Ltd., Kodinar) for Co-processing as RDF (Refused Derived Fuel).
		 Hazardous Waste: E – Waste & Used Batteries are being sold to GPCB registered recyclers namely M/s. e-Processing House and Sabnam Enterprise respectively. Solid Hazardous Waste is being disposed through co-processing through common facility i.e. M/s. Saurshtra Enviro Projects Pvt. Ltd., Bhachau and/or cement industries of Sanghi Industries Ltd., Kutch and/or Ambuja Cement Ltd., Kodinar. Used/Waste Oil is being sold to GPCB authorized recyclers / reprocessors namely M/s. Western India Petrochem Industry, Bhavnagar. Solid hazardous waste i.e. Tank bottom sludge is being disposed through co-processing through common facility i.e. M/s. Saurshtra Enviro Projects Pvt. Ltd., Bhachau and/or cement industry, Bhavnagar. Solid hazardous waste i.e. Tank bottom sludge is being disposed through co-processing through common facility i.e. M/s. Saurshtra Enviro Projects Pvt. Ltd., Bhachau and/or cement industries of Ambuja Cement Ltd., Kodinar and/or being sold to authorized recycler namely M/s. Mundra Oil, Mundra. Downgrade chemicals generated from cleaning of storage tanks / pipelines are being sold to authorized solvent recovery facilities namely M/s. Acquire Chemicals, Ankleshwar however during the compliance period, there was no disposal of downgrade chemicals. Slop Oil received from vessels is treated to separate water and oil particles in Oil Water Separator system. Separated oil from the same is being sold to authorized recycler / reprocessor namely M/s. Western India Petrochem Industry, Bhavnagar and water is sent to ETP for further treatment. However during the compliance period, there was no disposal of Slope Oil.
		Details of permissions / agreements of hazardous waste authorized vendors were submitted along with

Sr. No.	Condition as per clearance letter	Compliance Status as on 31-03-2020				
		to Sep'18. The following	ort for the period Apr'18 nmarizes the waste Oct'19 to Mar'20) for PSE7			
		Type of Waste	Quantity in MT	Disposal method		
		Hazardous Waste				
		Pig Waste	4.715			
		Oily Cotton waste	71.585	Co-processing at cement industries		
		ETP Sludge	Nil	Industries		
		Tank Bottom Sludge	72.07	Co-processing at cement industries and/or Sell to registered recycler		
		Used / Spent Oil	64.994			
		Discarded Containers	8.436	Sell to registered recycler		
		Battery Waste	8.39			
		Bio Medical Waste	2.966	To approved CBWTF Site		
		Municipal Solid Waste				
		Recyclables	560.597	After recovery sent for recycling		
		Refuse Derived Fuel	177.1	Co-processing at Cement Industries		
		Wet Waste (Food waste + Organic waste)	447.255	Converted to Manure for Horticulture use / Biogas for cooking purpose		
iv	The Proponent shall obtain the requisite consents for discharge of effluents and emissions under the Water (Prevention and Control of pollution) Act, 1974 and the Air (Prevention and Control of pollution) Act, 1981 from the Gujarat Pollution Control Board before commissioning of the Project and copy of each of these shall be sent to this Ministry. The sand dunes, corals, and	the existing rules a notification. Please refer Gener granted from state the same.	and regulati ral conditio	arried out confirming to on and as per the CRZ n no. i for permission control board regarding		
v		Complied				
	mangroves, if any, on the site shall not be disturbed in any way.			orals at the project site. s potential mangrove		

Sr. No.	Condition as per clearance letter		Compliance State 31-03-202		
				ved and there is no	
		disturband	ce to the mangroves ir	n this area.	
		Please ref	er specific condition	no i above for details	
		regarding			
vi	A copy of the clearance letter	Complied.			
	will be marked to the concerned Panchayat / Local	Conv of	the clearance letter	was marked to the	
	NGO, if any from whom any			al proof of the same	
	suggestions /representations			nchayat on 21.03.2009	
	has been received while		nitted as a part c n for the period Apr'16	of compliance report	
vii	processing the proposal. The funds earmarked for	Complied.			
	environment protection				
	measures shall be maintained		•	vironment protection	
	in a separate account and there shall be no diversion of			ar. All environment and lered at corporate level	
	these funds for any other			e accordingly. All the	
	purpose. A year wise			ced accounting system	
	expenditure on environmental safeguards shall be reported to	of the org	anization.		
	this Ministry's Regional Office	Budget f	or environmental m	anagement measures	
	at Bhopal and the State	(including	horticulture) for the	FY 2019-20 is to the	
	Pollution Control Board.			nich, Approx. INR 1084 Detailed breakup of the	
			.	years is attached as	
		Annexure	- 7.	-	
		Details re	paarding the past s	ix compliance report	
			ns are mentioned belo		
		Sr. no.	Compliance period	Date of submission	
		1 2	Oct'16 to Mar'17 Apr'17 to Sep'17	30.05.2017 01.12.2017	
		3	Oct'17 to Mar'18	29.05.2018	
		4	Apr'18 to Sep'18 Oct'18 to Mar'19	30.11.2018	
		5	Apr'19 to Sep'19	31.05.2019 28.11.2019	
viii	Full support shall be extended	Complied			
	to the Officers of this	p			
	Ministry's Regional Office at			full support to the	
	Bhopal and the Officers of the Central and State Pollution	regulatory authorities during their visit to the project site. All necessary documents are submitted as per the			
	Control Boards by the Project		the visiting authoritie	•	

Sr. No.	Condition as per clearance letter	Compliance Status as on 31-03-2020
	Proponents during their inspection for monitoring purposes, by furnishing full details and action plans including the action taken reports in respect of mitigative measures and other environmental Protection activities.	Last visit of Regional Office, GPCB was done on 27.08.2019 for Main port. APSEZL has submitted the reply to the site visit report vide letter dated 30.08.2019 incorporating details of action taken in respect of the observations of the GPCB representative. Details of the same were submitted along with last half yearly compliance report for the period Apr'19 to Sep'19. There was no any inspection from SPCB during this compliance period i.e. Oct'19 to Mar'20.
		Inline to the compliance certification process of Environment Clearance condition of Waterfront Development Plan, RO, MoEF&CC Bhopal had visited the site on 27 th & 28 th January, 2020 for compliance verification. APSEZ provided all requisite information and documents required by the Regional Officer MoEF&CC). During the said compliance verification visit, there was no major non-compliance observed.
ix	In case of deviation or alteration in the Project including the implementing agency, a fresh reference shall be made to this Ministry for modification in the clearance conditions or imposition of new ones for ensuring environmental protection.	Complied. LNG terminal was initially approved under the Waterfront Development Project. However the same is now being developed by GSPC LNG Ltd. for which, separate EC and CRZ clearance has already been obtained from MoEF&CC by them. Copy of the same was submitted along with compliance report submission for the period Oct'16 to Mar'17.
		LPG terminal was initially approved under the Waterfront Development Project of Adani Ports and SEZ Limited and the same has been developed by M/s. Mundra LPG Terminal Pvt. Ltd., which is 100% subsidiary of APSEZ. Details of the same were submitted along with half yearly compliance report for the period Oct'17 to Mar'18.
×	The Ministry reserves the right to revoke this clearance, if any of the conditions stipulated are not complied with to the satisfaction of this Ministry.	Point noted and agreed.
xi	This Ministry or any other competent authority may	Complied

Sr. No.	Condition as per clearance letter	Compliance Status as on 31-03-2020
	stipulate any other additional conditions subsequently, if deemed necessary, for environmental protection which shall be complied with.	 As part of the directions given by MoEF&CC vide order dated 18th Sep, 2015, following studies were proposed. Bathymetry & Topography study, preparation of plan for protection of creeks/ mangrove area including buffer zone, mapping of co-ordinates, running length, HTL, CRZ boundary. A Regional Impact Assessment study to identify impacts of all the existing as well as proposed project activities in Mundra region. Please refer Annexure – B for further details regarding the mentioned studies.
xii	The project proponent shall advertise at least in two local newspapers widely circulated in the region around the Project, one of which shall be in the vernacular language of the locality concerned informing that the Project has been accorded Environmental Clearance and copies of clearance letters are available with the State Pollution Control Board and may also be seen at the website of the Ministry of Environment & Forest at http://www.envfornic.in. The advertisement shall be made within 7 days from the date of issue of the clearance letter and a copy of the same shall be forwarded to the Regional Office of this Ministry at Bhopal.	Complied. The original copy of the EC and CRZ clearance was obtained on 10.03.2009 and advertisement (containing informing that the EC and CRZ clearance is accorded to the proposed project and a copy of clearance letter is available with the SPCB and may also be seen at the website of MoEF&CC) was given in The Indian Express newspaper dated 18.03.2009. Copy of the same was submitted along with compliance report submission for the period Apr'16 to Sep'16.
xii i	The Project proponent shall inform the Regional Office at Bhopal as well as the Ministry the date of financial closure and final approval of the Project by the concerned authorities and the date of	Complied. APSEZ had informed the Regional Office of MoEF&CC at Bhopal as well as MoEF&CC, New Delhi regarding the date of financial closure and the date of start of land development work vide letter sent in August, 2009.

Sr. No.	letter	Compliance Status as on 31-03-2020
	start of land development work.	
xiv	Any appeal against this environmental clearance shall lie with the National Environment Appellate Authority, if preferred, within period of 30 days as prescribed under section 11 of the National Environment Appellate Act, 1997.	Point noted and agreed. This EC and CRZ clearance was challenged in National Environment Appellate Authority. In this matter, Order has also been passed in favour of APSEZ. Copy of the same was submitted along with compliance report submission for the period Oct'16 to Mar'17.
4.	The above mentioned stipulations will be enforced among others under the Water (Prevention & Control of Pollution) Act 1974, the Air (Prevention & Control of Pollution) Act 1981, the Environment (Protection) Act 1986, the Hazardous chemicals (Manufacture, Storage & Import) Rules 1989, the Coastal Regulation Zone Notification 1991 and its subsequent amendments and the Public Liability Insurance Act 1991 and the rules made there under from time to time. The project proponent shall ensure that the proposal complies with the provisions of the approved Coastal Zone Management Plan of Gujarat state and the supreme court's order dated 18 April, 1996 in the writ petition No. 664 of 1993 to the extent the same are applicable to this proposal.	Point noted and Agreed APSEZ is being complied all the conditions said rules and regulations mentioned in EC point no. 4. APSEZ has valid insurance policy under PIL act 1991 up to 31.03.2020. The copy of policy is attached as Annexure – 8.

ANNEXURE – A CRZ Recommendation Compliance Report of WFDP

Compliance Status of CRZ Recommendation given by GCZMA for the Waterfront Development Project

Sr. No.	Specific Conditions	Compliance Status as on 31-03-2020	
Spec	Specific Conditions		
1	The provisions of the CRZ notification of 1991 and subsequent amendments issued from time to time shall be strictly adhered to by the MPSEZL. No activity in contradiction to the provisions of the CRZ Notification shall be carried out by the MPSEZL.	Complied. All construction and operation activities are being carried out in line with the CRZ recommendation and permissions granted.	
2	All necessary permissions from different Government Departments/ agencies shall be obtained by the MPSEZL before commencing any activities.	Complied. Necessary permissions from competent authority have been obtained before commencing any the activities. Please refer condition no. i & iv of General Conditions of the EC & CRZ Clearance above.	
3	All major creeks shall be protected and no reclamation shall be done in these creeks and entire development along the creek shall be done after carrying out detailed engineering with an objective of environmental protection including protection of all major creeks to ensure adequate free flow of water and drainage of rain water during rainy seasons.	Complied. All major creeks within the APSEZ area are protected. Please refer specific condition no iii of the EC and CRZ clearance for details regarding this point.	
4	The project proponent shall conserve the 1254 ha. of area as committed and proposed in their master plan and shall carry out plantation of various mangrove species in the said area.	Mangrove conservation area of 1254 Ha is conserved as proposed in the master plan. Please refer specific condition no i of the EC and CRZ clearance for details regarding this point.	
5	Massive mangroves plantation activity in at least 300 ha. area shall be carried out within a time frame of 5 years as committed by the project proponent. This would be in	Complied. Mangrove plantation is already completed during the year 2012-13. Please refer specific condition no. vii of the EC and CRZ clearance for further details.	

Sr. No.	Specific Conditions	Compliance Status as on 31-03-2020
NO.	addition to the earlier commitment	31-03-2020
	for 1200 ha. of mangroves plantation.	
6	No effluent or sewage shall be discharged in to the CRZ area and it shall be treated to conform to the norms prescribed by the Gujarat Pollution Control Board and would	Complied. No effluent or sewage is discharged in to the CRZ area.
	be discharged to the point suggested by the NIO in consultation with the GPCB.	Please refer specific condition no xii of the EC and CRZ clearance for details regarding this point.
7	All the recommendations and suggestions given by NIO in their Environment Impact Assessment report for conservation / protection and betterment of environment shall be implemented strictly by MPSEZL.	Complied. Compliance report of environmental management plan and mitigation measures proposed as part of the EIA report is attached as Annexure – 9 .
8	The construction and operational activities as well as dredging and reclamation activities shall be carried out in such a way that there is no negative impact on mangroves and other coastal /marine habitat except the proposed approx. 63 ha of area for which the compensation (300 ha.) is proposed.	Complied. All construction and operation activities as well as dredging and reclamation activities are being carried out as per the approvals. 1254 ha area identified as mangrove conservation area is being conserved by APSEZ. Please refer specific condition no i of the EC and CRZ clearance for details regarding this point.
9	The construction activities and dredging shall be carried out under the supervision/monitoring of the NIO or any such institute of repute.	Complied. Construction activities are carried out as per EIA study carried out by NIO with all mitigative measures as suggested. Requisite permissions are taken from competent authorities such as GMB and GPCB. Site visits are being carried out by govt. officers from time to time to ensure compliance of the conditions stipulated in respective permissions. No capital dredging activities are carried out during the Oct'19 to Mar'20 period. Please refer condition no. i, iv & viii of General Conditions of the EC & CRZ Clearance above.

Sr. No.	Specific Conditions	Compliance Status as on 31-03-2020
10	The dredge material generated during capital dredging shall be used only for reclamation and that to be generated during maintenance dredging shall be disposed of at the place identified by NIO/CWPRS/WAPCOS through appropriate modeling and it shall be ensured that it does not create any negative impacts.	Complied. Entire quantity of dredged material is used for reclamation activities only; no disposal is carried out in the sea. No capital dredging activities are carried out during the Oct'19 to Mar'20 period.
11	Necessary measures including the shore protection activities shall be undertaken to ensure that there are no erosion in surrounding area due to the proposed activities.	Complied. All dredging and reclamation activities are carried out as per EC and CRZ Clearance and no erosion is observed. For further details regarding the shoreline change study for the Mundra region, please refer specific condition no v of the EC and CRZ clearance.
12	The alignment of the jetties/berths and other structures shall be done after conducting the detailed modeling to ensure that there are no erosion and accretion in the region due to proposed activities.	Complied. Detailed hydrodynamic modeling was carried out by NIO during preparation of the EIA report. All construction activities are being carried out as per the outcome/recommendations of the modeling report. However, a detailed shoreline change assessment study is also carried out. Please refer specific condition no v of the EC and CRZ clearance for further details.
13	The MPSEZL shall contribute financially for any common study or project that may be proposed by this department for environment management / conservation / improvement for the Gulf of Kutchh. The construction debris and /or any other type of waste shall not be	Complied. There are two studies prescribed by MoEF&CC. For further details regarding the same, please refer general condition no xi of the EC and CRZ clearance. Complied.
	disposed of into the sea, creek or in the CRZ areas. The construction is over and shall be disposed off in low lying areas in consultation with NIO, NEERI or any such institute of	All construction and operation activities as well as dredging and reclamation activities are being carried out as per the EIA report prepared by NIO. The construction debris, if any, is being used for area

Sr. No.	Specific Conditions	Compliance Status as on 31-03-2020
	repute.	development outside CRZ area. For details about management of other types of wastes, please refer general condition no. iii of the EC and CRZ clearance.
15	The construction camps shall be located outside the CRZ area and the construction labour shall be provided with the necessary amenities, including sanitation, water supply and fuel and it shall be ensured that the environmental conditions are not deteriorated by the construction labors.	Compiled. Please refer general condition no ii of the EC and CRZ clearance for further details.
16	The MPSEZL shall regularly update their Local Oil Spill Contingency and Disaster Management Plan in consonance with the National Oil Spill and Disaster Contingency Plan and shall submit the same to this Department after having it vetted through the Indian Coast Guard.	Compiled. Disaster Management Plan is updated regularly and the updated DMP was submitted as a part of compliance report for the period Apr'16 to Sep'16. Oil spill contingency plan is in place to handle Tier 1 level oil spills considering different accident scenarios, and the vulnerable areas are identified and mitigation plan is prepared. Plan is being updated regularly and updated is attached as Annexure – 10 .
17	The MPSEZL shall participate and contribute for the Vessel Traffic Management System to be developed for the Gulf of Kutchh being developed.	Complied. A VTS service for Gulf of Kutch is operated by Directorate General of Lighthouses and Lightships (DGLL), Govt. of India. APSEZ is practicing well defined traffic control procedure. Marine Control of APSEZ provides traffic update to vessels in Mundra Port Limit on VHF Channel- 77. Arrival and departure information in Gulf of Kutch is provided to VTS information cell through an agent or directly by sending an e-mail to vtsmanagergulfofkutch @ yahoo.com and vtsgok@yahoo.com.
18	The MPSEZL shall bear the cost of external agency that may be appointed by this Department for supervision/monitoring of proposed activities and the environmental impacts of the proposed activities.	Complied. There are two studies prescribed by MoEF&CC. For further details regarding the same, please refer general condition no xi of the EC and CRZ clearance.

Annexure – B Compliance Status of MoEF & CC Order dated 18.09.2015

Based on the report submitted by Sunita Narain committee, MoEF&CC issued a Show Cause Notice (SCN) to APSEZ vide their letter dated 30.09.2013. APSEZ replied to the SCN vide letter dated 14.10.2013. Further, an order (containing 10 directions) was issued by MoEF&CC vide their letter dated 18.09.2015. Compliance to these 10 directions is mentioned below.

Sr.	Oanditier		
No.	Condition	Compliance Status	
	The proposal of extension of the validity of environmental clearance granted to the North Port vide letter dated 12.01.2009 will be considered separately at later stage.	Complied After receipt of this order, so far APSEZ has not done any application to MoEF&CC for the proposed North port.	
ii iv	Bocha island, ecologically sensitive geomorphological features and areas in the island and creeks around the island will be declared as conservation zone action plan for its conservation must be prepared. M/s. APSEZ should provide necessary financial assistance for this purpose. A comprehensive and integrated study and protection of creeks/ mangrove area including buffer zone, mapping of co- ordinates, running length, HTL, CRZ boundary, will be put in place. The plan will take note of all the conditions of approvals granted to all the project proponents in this area e.g. the reported case of disappearance of	 Complied This reply covers condition no ii, iv and v. Based on the MoEF&CC directions, 1. APSEZ, vide letter dtd. 19th October 2015 had requested GCZMA, for consideration of project for finalization of ToR for NCSCM. 2. Project was considered on 28th GCZMA meeting, scheduled on 22nd April 2016, where ToR was discussed and agreed, upon. 3. APSEZ, vide its letter dtd. 25th April 2016, submitted the proposal to GCZMA along with Scope of work, as submitted by NCSCM. 4. Service Order was issued to NCSCM vide SO dtd. 29th Aug 2016. Cost of the study as per the NCSCM proposal was 315.5 Lakh and 90% of payment has already paid to NCSCM. 5. NCSCM has carried out number of site surveys during the period, February 2017 – April 2018 as per the defined scope 6. The study report was submitted to GCZMA (with a copy to MoEF&CC vide letter dated 04.06.2018) for their consideration and recommendation if any. 7. A reminder letter was submitted to GCZMA vide letter dated 4th Jan 2019. Details of above chronology were submitted along with last half yearly compliance report for the period Apr'19 to Sep'19. The site survey carried out by NCSCM includes: Bathymetry survey of creeks 	

Sr. No.	Condition	Compliance Status	
V	creek. The preservation of entire area to maintain the fragile ecological condition will be a part of the plan in relation to the creeks, mangrove conservation and conservation of bocha island up to baradimata and others. NCSCM will prepare the plan in consultation with NIOT, PP and GCZMA. In recognition of the fact that the existing legal provisions under the E(P) Act 1986 do not provide for any authority to impose ERF by the government, the plan will be financed by the PP. the implementation will be carried out by GCZMA. The monitoring of the implementation will be carried by NCSCM.	 close vicinity of the project area In addition to the site surveys, NCSCM has procured satellite images for analysis of mangrove cover. The data collected (through site surveys and analysis of satellite maps) was used as input for mathematical modelling. The modelling studies were carried out to understand the impacts of the development activities. Based on the outcome of the modelling studies the necessary conservation plan for protection of creeks and mangrove areas is prepared. Based on the final study report, outcome is summarized in to following points : There is no obstruction to any water stream (creeks / branches of creeks / rivers) Presently, mangrove cover in and around APSEZ is over 2340 ha. There is substantial growth in 	
		The NCSCM study report was submitted to GCZMA (with a copy to MoEF&CC vide letter dated 04.06.2018) for their consideration and recommendation if any. The action plan for conservation of creeks and mangrove areas is prepared by NCSCM and the same was submitted to GCZMA and MoEF&CC for their examination and recommendation. Presentation on the findings of the report was made to GCZMA committee on 4 th October 2019 and same has been approved vide MOM published by GCZMA. Inline towards the compliance of the action plan "Monitoring of mangrove cover in Jan/Mar, 2020 using latest satellite images and validation with field observations", Work has already been already been assigned to	

Sr. No.	Condition	Compliance Status	
		NSCSM, for amount of INR. 23,56,000/- vide PO no 4800050718, dtd. 31 st December 2019 and same is under progress.	
		For demarcation of HTL and CRZ areas, NCSCM is under process of finalizing CZMP for this area. Once the maps are finalized, NCSCM will issue the final maps for the project area of APSEZ. The said maps will then be submitted to GCZMA and MoEF&CC by APSEZ.	
iii	The violations of specific condition of all the ECs and CRZ clearances, if any, will be examined and proceeded with the	Complied Regional Officer, MoEF&CC, Bhopal visited APSEZ on 21-22 December'16 for monitoring the implementation of environmental safeguards.	
	provisions of EP Act, 1986 independently.	APSEZ was also visited by RO, MoEF&CC Bhopal on 3 rd May, 2018 for compliance verification. APSEZ provided all requisite information and documents required by the Regional Officer. During the said compliance verification visit, and as per the compliance certificate by Ro-MOEF&CC vide dated, 07 th June 2018, there was no major non-compliance observed.	
		Regional Office MoEF&CC, Bhopal, officer had visited the site on 3 rd & 4 th Sep, 2019 in compliance of the order of the Hon'ble HIGH COURT of Gujarat vide letter dated 22 nd Aug. 2019 w.r.t. compliance verification of MoEF&CC order dated 18 th Sep, 2015. APSEZ had provided all requisite information and documents required by the Officer.	
		Inline to the compliance certification process of Environment Clearance condition of Waterfront Development Plan, RO, MoEF&CC Bhopal had visited the site on 27 th & 28 th January, 2020 for compliance verification. APSEZ provided all requisite information and documents required by the Regional Officer MoEF&CC). During the said compliance verification visit, there was no major non-compliance observed.	
		It may also be noted that GPCB, Regional Office does regular site visit for various components. Last visit of Regional Office, GPCB was done on 27.08.2019 for Main port. APSEZL has submitted the reply to the site visit report vide letter dated 30.08.2019 incorporating details of action taken in respect of the observations of the GPCB representative. Details of the	

Sr. No.	Condition	Compliance Status	
		same were submitted along with last half yearly compliance report for the period Apr'19 to Sep'19. There was no any inspection from SPCB during this compliance period i.e. Oct'19 to Mar'20.	
vi	There will be no development in the area restricted by the High court of Gujarat. APSEZ shall abide by the outcome of the PIL 12 of 20 11 and other relevant cases.	h The order passed by Hon' ble high court in context of PIL 12 of 2011 vide dated 10 th Nov 2011. Subject PIL has been dispose off by Hon'ble High Court vide their order dated 17.04.2015 and now there is no restriction on development in the subject are	
		Considering the above status and in line to submission of compliance of all the directions under this order, this condition is closed.	
vii	APSEZ will submit specific action plan to protect the livelihood of fishermen along with budget.	Complied. Adani Foundation (AF) is the CSR arm of the Adani Group actively working for upliftment of the communities in the surroundings of various project sites of Adani Group. AF has prepared a specific action plan to protect livelihood of fishermen at Mundra.	
		Various initiatives, as stated below are discussed in detail in the report namely "Silent Transformation of Fisher folk at Mundra". Said report also includes the information related to the planned expenses to the tune of approx. 13.5 Cr. INR for various initiatives for the next five years (2016 – 2021) (Budget details provided in Page No. 68 of report). Copy of the same is already submitted to MoEF&CC vide our letter dated 10.09.2016.	
		Till, March 2020 approx. 8.13 Cr. INR, has already been invested. Further, details regarding the expenditure incurred against the commitment are attached as Annexure – 11 .	
		APSEZ is carrying out various initiatives specific to the Fisherfolk community which includes:	

Sr. No.	Condition	Compliance Status		
		 Distance Alarm Transmission System – DATS' project was introduced in order to promote safety of the fishermen. Forced to be at sea to earn their livelihood puts the lives of many fishermen at risk Machhimar Ajivika Uparjan Yojana Mangrove plantation in the area as means of alternate income generating activity for the fisher folk communityduring the non-fishing months. During the non-fishing months, the fishermen under usual circumstances were benefited by other alternate economic activity to sustain them. Bandar Svachhata Yojana Waste bins have been provided for proper collection and segregation of waste. 		
		Further, APSEZ is actively working with local community (including fishermen community) around the project area and provides required support for their livelihood and other concerns through the CSR arm – Adani Foundation. Brief information about activities in the main five persuasions is mentioned below.		
		Area Activity		
		Community HealthCommunity Health – Mundra• 11 Rural Clinic-8 from Mundra & 3 from Anjar block treated; 25142 patients.		
		• 31 villages covered through Mobile healthcare unit 20399 patients benefited during the year.		
		• The mobile health care unit cover 25 villages and 07 fishermen settlements. Around 90 types of general life saving medicines are available in these units.		
		• During the year 2019-20, total 9860 transactions were done by 8672 card holders of 68 villages of Mundra Taluka. They received cash less medical services under the senior citizen project.		
		 In the year of 2019-20, Total 3137 people had been benefitted by various kind of camp and needy and screened patients are treated in Adani Hospital. 		
		Community Health – Bhuj		
		• 5398 Patients taken Care and Coordination		
		609 Dead body referred by carry van		
		 3557 Ayushman Gold Card facilitation through Enrollment camp and Mahiti Setu 		
1		• 549 support for Implants and Needy Patients		
		 9896 People helped through Mahiti Setu for various government schemes 		
		• 816 people benefitted in 6 health awareness camps		
		 Adani Foundation organized 52 General Health Camps and Speciality Camps in various interior villages of Kutch in coordination with GKGH which created magical impact and benefitted 4779 patients. Adani Foundation Bhuj Health team 		
		has also organized more than six awareness camps.		
		 Adani foundation, Adani Hospital and GAIMS have Jointly Celebrated "Arogya Saptah" 8th to 14th August & 20th to 26th 		

Sr. No.	Condition	Compliance Status	
			January in Respect of Independence and Republic of our country. Celebration included multi-specialty camps, Workshops, truckers health check-up, surgical camp on foundation day and adolescent fair at different part of district. Collector.
		Sustainable Livelihood – Fisher folk	 Average 117.5 KL of water was supplied to 1085 households at 9 fisherman vasahat on a daily basis under Machhimar Shudhh Jal Yojana.
			• Adani Foundation constructed 4 Balwadis for kids between the age group of 2.5 years to 5 years at different settlements under Vidya Deep Yojana. 140 children are benefiting from this scheme.
			 28 Fisherman are engaged in various contract related jobs and 37 Fisherman are doing job after taken training from Adani Skill Development Center.
			• Scholarship Support - Provide 100% fees support to girls and 80% fees support to boys as a scholarship. This year total 78 students are being facilitated by Adani foundation.
			• Book Support - 49 Fisherman Students from Higher Secondary Standard (9 to 12) has been benefitted from various of Juna Bandar, Zarpara, Navinal, Bhadreshwar.
			• Cycle Support - Fishermen who are at fishermen hamlets are migrated with whole family for 8 month fishing season. During that time to continue higher education of their children at Mundra, Adani foundation provide cycle support every year to 9th standard students This year cycle support has been given to 7 students
			 28 fishermen has been facilitated by fishing materials under Machhimar Ajivika Uparjan Yojana
			• The Foundation provided fishermen with employment equivalent to 6261 man-days . In addition to this, employment worth of 42048 man-days has been provided till date. The Foundation has also supported Pagadiya fishermen as painting laborers by providing them with employment and job in various field.
		Education	 Under Project UTTHAN 25 primary government schools of Mundra and Nakhtrana Taluka of Kutch district have been adopted to take up various initiatives aimed at improving quality in these schools. 3417 children are benefiting from a meaningful education in these schools.
			 One teacher-One school + Sports teacher + IT teacher 'IT on Wheel 'Van with 35 laptops and computer instructor make students more tech savvy and spreading the digital and technology knowledge amongst the younger generation.
			• Use of Reading Corner by students of Std. 3 to 8 of Utthan School Every Saturday Library activity with the Book issue were planned and executed in a meaningful manner. 7113 Book issued in academic year 2019-20.
			 With the intervene of our Sports teacher in all Utthan Schools successfully enrolled 500+ students in Khel Mahakumbh.
			 Utthan Sahayak +1222 students from High school & Higher secondary of 6 villages celebrate Fifth International Yoga Day.
			 Adani Vidya Mandir: provide "cost-free" education to meritorious students coming from challenging economic background, who have priceless treasures but have been under

Sr. No.	Condition	Compliance Status	
			achievers due to situation. In year 2019-20 443 students are studying.
		Dural	• 568 institutes and 33,030 beneficiaries have made inspirational visit up to March 2020 under Project UDAAN.
		Rural Infrastructure	 WORK COM PLETED Adani foundation carries out the construction of prayer shade name "PRATHNA SHADHNA" at AVMB.
			 Painting & Branding Old Strcture at Old Bandar and Luni Bandar
			 Upgradation of Balwadi at Zarpa
			Waiting place for Pgadiya at Navinal
			Garden Development work
			• Road Side Beautification at Mundra.
			 S & F Benches In Various Location in Various Village
			 Construction of R.O. Plant Room at Primary School sadau Village
			 Construction of Shed at BRC Bhavan
			 Renovation Balwadi at Bavdi Banadar
			• Fixing of LED street light at Bhopawandh, Mundra & Bhorara)
			SUJLAM SUFLAM JAL ABHIYAN
			• A large number of water harvesting structure (18 Nos. of check dams in coordination with salinity department) and
			 Ground recharge activities (pond deepening work for more than 52 ponds) individually and 26 ponds under Sujlam Suflam Jal Abhiyan were built leading to a significant increase in water table and higher returns to the farmers.
			 Roof Top Rain Water Harvesting 54 Nos. and Recharge Bore well 75 Nos.
			 Drip Irrigation 823 Farmers benefitted in coordination with Gujrat Green Revolution Company
			 Participatory Ground Water Management in ten villages with holistic approach for Kankavati Sandstone Aquifer Programme.
		Skill Development	 Adani Skill Development Centre (ASDC) is playing a pivotal role in implementing sustainable development in the state. The objective of this Centre is to impart different kinds of training to the students of 10th, 12th, college or ITI from surrounding areas.
			 During this year Total 2664 people trained in various trainings to enhance socio economic development. In the year 2019-20, ASDC-Bhuj trained 1699 candidates.
			 Soft skill training – 756 Nos.
			 Technical Training – 943 Nos. In the year 2019-20, ASDC-Mundra trained 965 candidates.
			 Soft skill training – 552 Nos.
			• Technical Training – 413 Nos.
		carried out by	Annexure – 3 for full details of CSR activities Adani Foundation in the Mundra region. Budget ity for the FY 2019-20 is to the tune of INR 2043

Sr. No.	Condition	Compliance Status	
		lakh. Out of which, Approx. INR 1813 lakh are spent during this year FY 2019-20.	
viii	APSEZ will voluntarily return the grazing land, if any, in their possession.		
ix x.	A regional strategic impact assessment report with a special focus on Mundra region will also be prepared. The cost towards these studies will also be borne by PP. In the subject matter of thermal power plant, the proposed regional strategic Impact assessment analysis will take In to account salinity aspect along with Its potential environmental Impact to suggest future corrective actions as well as the guiding tool on extension and addition of the capacities.	 Complied This reply covers direction no ix and x. 1. APSEZ vide its letter dtd. 24th Feb 2014 has submitted draft ToR for preparation of CIA report to GCZMA for their approval. 2. GCZMA vide its letter dtd. 19th Dec 2014, has approved ToR for CIA. 3. Based on the ToR finalized by GCZMA (as per the instructions of MoEF&CC) for carrying out regional impact assessment study, APSEZ awarded the work to NABET accredited consultant M/s. Cholamandalam MS Risk Services Ltd. to carry out the studies, vide SO dtd 10th Feb 2016 as stated in these directions. 4. Primary baseline environmental monitoring data collection during March – June 2016 and published secondary data on various environmental attributes have been considered for the study. 5. The study has been concluded and the final report was submitted to GCZMA and MoEF&CC for their consideration vide our letter dated 30.04.2018. 6. Reminder letter has been submitted to GCZMA for their comments and consideration vide letter dated 4th Jan 2019. 	

Sr. No.	Condition	Compliance Status
		 Details of above chronology were submitted along with last half yearly compliance report for the period Apr'19 to Sep'19. Total cost of the study is approx. INR 1.3 cr. which is financed by APSEZ. 90% of the payment has already been made. The stated study was carried out in following 3 phases Baseline data collection and review of the past EIA reports and clearances issued to APSEZ. Mathematical modelling and other technical studies for identification of potential impacts (for the year 2030) of the approved and existing project activities. Development of macro level EMP for the phase wise implementation of actionable points.
		 As part of the study, following modelling exercises / technical studies have been carried out to study the impacts on all environmental attributes: Ambient air quality Marine (Hydrodynamic, Thermal & Salinity dispersion, Sediment transport) Noise level Traffic assessment Oil spill contingency plan Water resource and salinity ingress Land Use / Land Cover Socioeconomic, Regional infrastructure Waste management Ecology, Bio diversity and Fisheries Shoreline change assessment
		Preparation of these reports require extensive use of modelling software and study of the available information / research reports to assess the impacts on individual attribute of environment. Based on the modelling outcomes and findings of the technical studies, a macro level environment management plan is prepared.
		Inline to the present stage of the project, APSEZ is already complying, as per Environment Management Plan and further recommendations, applicable to APSEZ as mentioned in the EMP, wrt Traffic Management Plan, Ground water quality management, Salinity ingress programme, Air and Noise quality Management, Surface and Marine water quality management, Ecology and Biodiversity Management, Solid & Hazardous

Sr. No.	Condition	Compliance Status	
		waste management, Socio-economic Management and Shoreline Management, will be implemented in phase wise manner as per the progress of development within the boundary limits of APSEZ.	
	The final CIA study report was submitted to GCZMA MoEF&CC for their consideration vide our letter of 30.04.2018. Details of the same were submitted along with yearly EC Compliance report for the period Apr'18 to Se Presentation on the findings of the report was made to GC committee on 4 th October 2019 and after detailed discuss authority has decided to constitute committee to discuss details of the report further.		
		However, APSEZ is already complying with the Environment Management Plan (applicable to APSEZ) suggested in Cumulative Impact Assessment report. The detailed compliance, applicable to APSEZ is attached as Annexure – 12 .	

Annexure – 1

	QRA STUDY RECOM M ENDATIONS COM PLIANCE REPORT_JEETY AREA					
S. No.		Remarks	Document Number			
1	Selection of the loading arms and commissioning checks to ensure proper operation of the PERC in the event of ESD actuation (maximum time shall not exceed more than 2min for complete isolation, loading arm release and ship pumps stop in case of hydrocarbon leak)	Complied as per MLA Specification and C&E				
2	Provide trip interlocks (ESD) in berth 2 to ensure isolation/tripping of the ship unloading pumps based on suitable leak detection system (LFL) in berth 2. Ensure unloading hose are designed for hydraulic surges in the event of ESD actuation.	Not considered as Berth-2 is not integrated in MLTPL				
3	Mechanical interlocking systems to ensure complete closure of the valves before releasing of coupling (PERC)	Complied as per MLA Specification and C&E				
4	Two independent level indicators. High level alarms (1002) shall be set at not more than 85% level of the volumetric capacity of the drain vessel. Audio visual indication shall be at local panel & control room.	ALARM & TRIP SET POINT LIST 2321-E-BOP-GEN-DP-D-E- 006	2321-E-BOP-GEN-DP-D-E-006			
5	Provision for stopping the transfer operation on high level of the drain system and low level permissive for unloading operation	ALARM & TRIP SET POINT LIST 2321-E-BOP-GEN-DP-D-E- 006	2321-E-BOP-GEN-DP-D-E-006			
6	Drain drum shall have at least two safety relief valves with isolation arrangement, set at different values and at not more than 110% operating pressure of the vessel and each having 100% relieving capacity adequate for limiting the pressure build up in the vessel not more than 120% of operating pressure	GENARAL ARRANGEMENT DRAWING FOR JETTY DRAIN POT (2000-FA-13) 2321-E-BOP-SDS-DM-G-E-007	2321-E-BOP-SDS-DM-G-E-007			
7	Drain system to be designed to accommodate the capacity of the drain contents of both un loading arms	DRAINAGE PHILOSOPHY 2321-E-BOP-GEN-DP-N-E-0 10	2321-E-BOP-GEN-DP-N-E-0 10			
8	Surge analysis for the unloading arm and unloading line to be done to ensure proper design considerations in the event of ESD actuation Bypassing of hydraulic surge protection systems to be done only after satisfactory protection measures implemented and with management clearance only	SURGE ANALYSIS REPORT FOR PROPANE / PROPYLENE UNLOADING LINE A 2321-E-BOP-GEN-DP-R-E-0 28	2321-E-BOP-GEN-DP-R-E-028			
9	Selection of electrical and other instruments based on hazardous area classification (IS 5572: 2008)	Already complied and PESO approval of jetty operation is available, which is based on this only.				
10	All flanges shall be connected for bonding for electrical continuity	Already complied and PESO approval of jetty operation is available, which is based on this only.				
11	Lightning protection shall be provided as per the requirements of IS:2309. (high mast towers)	Complied				
12	Periodical maintenance schedule should be implemented and meticulously follow					
13	F&G systems management to be inspected periodically and availability ensured	Complied.F&G DETECTOR AND JB LOCATION LAYOUT DRAWINGS 2321-E-BOP-FDS-DI-L-E-001	2321-E-BOP-FDS-DI-L-E-001			
14	Periodical inspection of pipeline and drain systems	Implemented SAP PM Module				
15	SOP for critical operations to be developed and displayed at critical locations in local/English languages	Complied				
16	SIL verification of the SIFs selected	Complied.SIL VERIFICATION REPORT 2321-E-BOP-GEN-DI- R-E-001	2321-E-BOP-GEN-DI-R-E-001			
17	Tower mounted water cum Foam monitors shall be provided for protection to unloading arms/first aid to tankers	Complied.				
18	Water curtains shall be provided for segregation of unloading arms/piping manifold and ship tanker in the event of fire on either of these facilities.	Complied.				

19	Kerb wall shall be provided around all sides of the unloading arm with concrete flooring of the ground under and extending up to minimum distance of at least 5 M (min.) from the edge of the unloading arm with a slope of 1:100 (min.). Grading of the ground underneath should be levelled and directed to an area connected with water seal away	As a contingency plan, sufficient no. of sand buckets has been provided for taking care of lube oil spillage. However possibility of provision of kerb wall is being explored as the space constraint is there.
20	Kerb wall height shall be minimum 30 cm but shall not exceed 60 cm.	Do as above
21	During ship berthing/de berthing conditions in berth 2, unloading operations in berth 1 to be stopped	Observations being maintained.
22	Ship power generation systems and other electrical systems should be verified for possible ignition source, if safety measures are in place which eliminates ignition source (for all the ships), unloading activity in berth 1,2,3,4 can be done simultaneously after stabilization of LPG unloading operation	Being complied
23	If Motor spirit/SKO/HSD/ethanol/methanol unloading operations are in progress in berth 2/3, unloading operations to be stopped until LPG tanker secured and ignition sources eliminated	Being complied
24	Hot works jobs for Berth 1 to be avoided during unloading in Berth 2	Complied as per HSE Policy PTW procedure implemented. Done with Approval from LPG and Liquid Head during berth is vacant.
25	Berth 3/4 can be used for unloading operation during construction and commissioning activities in Berth 1	Complied as per HSE Policy PTW procedure implemented
26	Any Hot work in the pipe corridor to be covered under PTW systems with continuous monitoring of LFL, running fire water hose (to avoid sparks), area barrication, proper hood to avoid spark spillage	Complied as per HSE Policy PTW procedure implemented
27	Continuous LFL monitors with audible alarms near the vessel being unloaded to identify any hydrocarbon leak	Complied. Total 7 nos. gas detectors and 3 nos. Flame detectors installed at jetty which are integrated with unloading system through DCS

	QRA STUDY RECOM M ENDATIONS COM PLIANCE REPORT_PIPELINE					
S. No.	Recommendations	Remarks	Document Number			
1	Periodical inspection of pipelines	Done as per OISD guidelinse	Maintenance Check list			
2	Leak detection systems based on pressure, temperature and flow	LEAK DETECTION SOFTWARE PACKAGE installed.	2321-E-BOP-BTH-DI-S-E-004			
3	CCTV monitoring of the pipeline corridor/jetty, in control room	CCTVinstalled and monitored through control room as well as security.	2321-E-BOP-CCT-DI-I-E-002			
4	Surge Analysis shall be performed to ensure adequate time lag between closure of ROVs at jetty end and at the tank end. The time lag shall be engineered so that surge pressure does not increase beyond the design limit. While engineering the closure time of each ROV, a consideration shall be given so that the pressure due to surge does not exceed the design pressure.	Complied. A SURGE ANALYSIS REPORT FOR PROPANE / PROPYLENE UNLOADING LINE A FROM JETTY is available.	2321-E-BOP-GEN-DP-R-E-028			
5	A suitable continuous back-up power supply shall be provided for the control system and operation of ROVs both at jetty end and tank end	CCR and MCR is provided with UPS as back power.	2321-E-BOP-GEN-DP-R-E-029			
6	Electrical equipment including for lighting system shall conform to hazardous area classification and be selected in accordance with IS:5571. These shall be tested by agencies such as CMRI, ERTL, CPRI or independent test laboratory of country of origin for such equipment. Indigenous Flameproof equipment shall comply with relevant BIS standard as per requirements of statutory authorities	Complied as per Haz. Area Classification. HAZARDOUS AREA LAYOUT (SH 1 OF 0 3)	2321-E-BOP-HAZ-DE-L-E-001			
7	Pressure testing/ Low pressure leak check (with N2) of the piping / flanged joints completed for entire pipeline and associated station piping before commissioning	Complied as per PRE-COMMISSIONING	2321-E-BOP-GEN-DP-N-E-0 11			
/	of the pipelines after any maintenance activity In case of displacement of Nitrogen with LPG, it should be done to flare	PROCEDURE	2321-E-BOP-GEN-DP-N-E-014			

QRA STUDY RECOM M ENDATIONS COM PLIANCE REPORT_TANK FARM AREA					
S. No.	Recommendations	Remarks	Document Number		
1	F&G mapping study to be carried to identify the location of the detectors and voting logic to be used to ensure tripping of the unit, in case of any hydrocarbon leak	Complied.	2321-E-BOP-FDS-DI-L-E-001		
2	Hydraulic analysis and simulation study to be carried out, to operate heating trains at the minimum pressure possible to reduce the effects of LFL and jet fire scenarios	Complied.	2321-E-BOP-GEN-DP-R-E-011		
3	Consider converting level indications on Propane BOG / Flash Condensate Receiver (2000-FA-05) and Butane BOG / Flash Condensate Receiver (2000- FA-06) as 2003 voting logic for tripping on low level and MID point selection control philosophy for controlling the level to improve the reliability	Complied and possibilty of further improvement is being explored. ALARM & TRIP SET POINT LIST	2321-E-BOP-GEN-DP-D-E-006		
4	Consider shifting the PSV on the inlet of the CW supply header of Propane BOG / Flash Condenser (2000-EA-03) and Butane BOG / Flash Condenser (2000-EA-04) to return header with reduced set point and LFL sensors at the outlet of the PSV	Being explored.			
5	Consider providing discharge PT on 2000-GA-05/06 discharge common header with alarm provision	Complied. API PUMP - P&ID FOR PROPANE BOG/FLASH CONDENSATE PUMP (2000-GA-05 AB)	2321-Q-BOP-API-DE-I-E-001		
6	Revisit fail safe conditions of ROV-063/64 (considered as fail open) by HAZOP study	Yes.			
7	Consider additional PSV on Propane BOG / Flash Condensate Receiver (2000 FA-05) and Butane BOG / Flash Condensate Receiver (2000-FA-06) to increase the reliability and standby condition in case of maintenance of other PSV (same nozzle with separate isolation valves)	One no. provided. Refer to FFS layout for MVWS & HVWS of BOG,TLF,Heating train, Transfor PIPING LAYOUT & ISOMETRIC DRAWING FOR HVWS SYSTEM FOR TRANSFOMER # 1 LAYOUT FOR FIREWATER NETWORK	2321-E-BOP-FFS-DP-L-E-003 2321-E-BOP-FFS-DP-L-E-002		
8	Consider providing remote operated sprinklers systems based on LFL sensors covering Propane BOG / Flash Condensate Receiver (2000-FA-05) and Butane BOG / Flash Condensate Receiver (2000-FA-06) and propane and butane handling pumps.	Complied. Refer to FFS layout for MVWS & HVWS of BOG,TLF,Heating train, Transfor PIPING LAYOUT & ISOMETRIC DRAWING FOR HVWS SYSTEM FOR TRANSFOMER # 1 LAYOUT FOR FIREWATER NETWORK	2321-E-BOP-FFS-DP-L-E-003 2321-E-BOP-FFS-DP-L-E-002		
9	Consider trip logic for the steam boilers based LFL sensors on the tank farm	Complied. ALARM & TRIP SET POINT LIST	2321-E-BOP-GEN-DP-D-E-006		
10	Consider shifting the PSV-063/PSV-034 provided downstream ROV-063 and ROV-064 relocated to Propane BOG / Flash Condensate Pumps (2000-GA-05) and Butane BOG / Flash Condensate Pumps (2000-GA-06) common discharge headers.	Being eplored.API PUMP - P&ID FOR PROPANE BOG/FLASH CONDENSATE PUMP (2000-GA-05 AB)	2321-Q-BOP-API-DE-I-E-001		
11	Consider voting logic between PT-0 16/0 17/0 18 for tripping on high and low pressure interlocks of the propane and butane tanks and MID point selection control philosophy for controlling the tank pressure to improve the reliability	Complied as per logic. ALARM & TRIP SET POINT LIST	2321-E-BOP-GEN-DP-D-E-006		
12	Provide flow meters in N2 line to PSV headers to ensure continuous flow of N2	Complied.			

			1
13	Ensure SOP developed and followed on all critical activities, interlocks checking before unloading operations	Compied.OPERATION AND MAINTENANCE MANUAL- IOM	2321-E-BOP-CM P-DM -S-E-001
14	SOP and work instructions on display in local and English near the critical activity locations	Compied.OPERATION AND MAINTENANCE MANUAL- IOM	2321-E-BOP-CMP-DM-S-E-001
12	Consider HAZOP and SIL study before commissioning the facility and concerns addressed	Complied.HAZOP STUDY REPORT	2321-E-BOP-GEN-DP-R-E-005
16	Ensure CCTV coverage of critical locations and remote monitoring is done continuously	Complied.	2321-E-BOP-GEN-DP-R-E-006
17	Ensure all portable electrical equipment used in the location are Ex rated and covered under PTW systems, and certified	Complied.	2321-E-BOP-CCT-DI-I-E-002
18	Selection of electrical and other instruments based on hazardous area classification (IS 5572: 2008)	Complied as per HAZARDOUS AREA LAYOUT (SH 1 OF 03)	2321-E-BOP-HAZ-DE-L-E-001
19	All flanges shall be connected for bonding for electrical continuity and earthing of the equipment's to be ensured as per IS-3043	Complied and Quarterly checklist available for inspection of bonding for electrical continuty.	
20	Lightning protection shall be provided as per the requirements of IS: 2309.	Complied.Lightning protection available.	
21	Periodical maintenance schedule should be implemented and meticulously followed	Complied.SAP PM module is implemented	
22	F&G systems management to be inspected periodically and availability ensured	Complied.SAP PM module is implemented	
23	Periodical inspection of pipeline and drain systems	Complied.SAP PM module is implemented	

Annexure – 2

	Total Green Zone Detail Till Up to March - 2020					
LOCATION	Area (In Ha.)	Trees (Nos.)	Palm (Nos.)	Shrubs (SQM)	Lawn (SQM)	
SV COLONY	66.40	29592	7072	67187.00	92019.00	
PORT & NON SEZ	8 1.38	146692	19220	75061.78	6 19 8 2.38	
SEZ	116.60	227120	20489	220583.60	28 16 2.0 3	
MITAP	2.48	8 168	33	3340.00	4036.00	
WEST PORT	94.35	206772	63331	24112.00	22854.15	
AGRI PARK	8.94	17244	1332	5400.00	2121.44	
SOUTH PORT	14.45	27530	3470	3882.00	3327.26	
Samudra Township	56.03	53922	11834	20908.89	47520.07	
Productive Farming (Vadala Farm)	23.79	27976				
TOTAL (APSEZL)	464.40	745016	126781.00	420475.27	262022.33	
	Total Saplings	871797				

Details of Greenbelt Development at APSEZ, Mundra

Details of Mangrove Afforstation done by APSEZ

SI.	Location	Area (ha)	Duration	Species	Implementation
no.					agency
1	Mundra Port	24.0	-	Avicennia marina	Dr. Maity, Mangrove
0	Maria da Davit	05.0		A de a service de activite a	consultant of India
2	Mundra Port	25.0	-	Avicennia marina	Dr. Maity, Mangrove consultant of India
3	Luni/Hamirmora (Mundra, Kutch)	160.8	2007 - 2015	Avicennia marina, Rhizophora mucronata, Ceriops tagal	GUIDE, Bhuj
4	Kukadsar (Mundra, Kutch)	66.5	20 12 - 20 14	Avicennia marina	GUIDE, Bhuj
5	Forest Area (Mundra)	298.0	20 11 - 20 13	Avicennia marina	-
6	Jangi Village (Bhachau, Kutch)	50.0	20 12 - 20 14	Avicennia marina	GUIDE, Bhuj
7	Jakhau Village (Abdasa, Kutch)	310.6	2007-08 & 2011-13	Avicennia marina, Rhizophora mucronata, Ceriops tagal	GUIDE, Bhuj
8	Sat Saida Bet (Kutch)	255.0	20 14 - 15 & 20 16 - 17	Avicennia marina & Bio diversity	GUIDE, Bhuj
9	Dandi Village (Navsari)	800.0	2006 - 2011	Avicennia marina, Rhizophora mucronata, Ceriops tagal	SAVE, Ahmedabad
10	Talaza Village (Bhavnagar)	50.0	20 11-12	Avicennia marina	SAVE, Ahmedabad
11	Narmada Village (Bhavnagar)	250.0	20 14 - 20 15	Avicennia marina	SAVE, Ahmedabad
12	Malpur Village (Bharuch)	200.0	20 12-14	Avicennia marina	SAVE, Ahmedabad
13	Kantiyajal Village (Bharuch)	50.0	20 14 - 15	Avicennia marina	SAVE, Ahmedabad
14	Devla Village (Bharuch)	150.0	210-16	Avicennia marina	SAVE, Ahmedabad
15	Village Tala Talav (Khambhat, Anand)	100.0	20 15 - 20 16	Avicennia marina	SAVE, Ahmedabad
16	Village Tala Talav (Khambhat, Anand)	38.0	20 15 - 20 16	Avicennia marina	GEC, Gandhinagar
17	Aliya Bet, Village Katpor (Hansot, Bharuch)	62.0	20 17-18	Avicennia marina & Rhizophora spp.	GEC, Gandhinagar
Total	Mangrove Plantation:	2889.90	Ha		

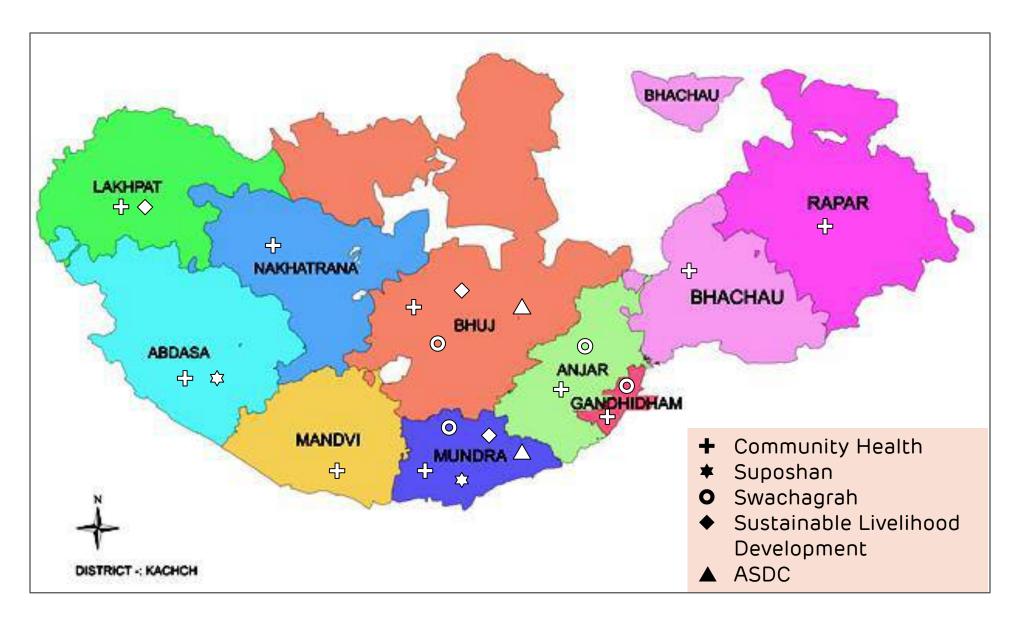
Annexure – 3

Our Journey

The year 2019-20 has passed off with <u>motivation</u> through recognition by Ministry of Corporate Affairs and <u>courage</u> to work for the commitment given to the community. It is necessary that sustained growth is achieved at rural level along with the industrial development. This can be made possible by involving more and more people in the rural development programme. Since beginning, The Adani Foundation Mundra is committed to the cause of the deprived and underprivileged. It has been working relentlessly across 6 Talukas, covering 92 villages, to uplift the lives of more than 60,000 families with a multi-faceted approach.

This year conceded with more streamline projects of Education i.e. Utthan – to enhance primary education of 17 schools of Mundra and 8 Schools of Nakhatrana, milestone achievement in Fisherman Livelihood project, Launched Gram Utthan in seven villages of Mundra, considerable impact created by Mangroves Biodiversity projects and new era defined in agriculture projects i.e. Home biogas and Dragon Fruit Cultivation

Adani Hospital Mundra is come out as a true blessings for the community due to reframed rate structure with more than 90% discount. Current year G K General Hospital recognized by Government for best implementation of Ayushman Yojana and for the best health service provider as well. Two Health Weeks were Celebrated to increase outreach of GKGH.


Namda Artisan Karim mansoori was awarded with "Best State Artisan Award" by CM, Gujrat. Live exhibition of different mangroves spices in District Level Krishi Mela by Adani Foundation. " Speaker of Kutchh" organized to motivate and identify youth speaker at District Level.

The people of Kutch have generously supported the activities carried out by the Adani Group or else this wouldn't have been possible. Their determination, understanding and commitment have strengthened the development even more.

Thanks to Mr. Rakshit Shah – Executive Director APSEZ and Mr. Avinash Rai – CEO APSEZ for being mentor of the team Always!

Our Achievement would not be possible without the ultimate support by Mr. P N Roy Chaudhry, Executive Director - AF and generous faith and passionate support by Dr. (Mrs.) Priti G Adani, Chairperson– Adani Foundation Page 50 of 456

Our Presence in Kutch

INDEX

5	Education
2	EUCATION
14	Adani Vidya Mandir Bhadreshwar
17	Udaan
19	Community Health Mundra
26	Community Health Bhuj
33	SLD - Fisherman Amenities work
40	Environment Sustainability
50	SLD - Agriculture Initiatives
54	Women Empowerment Projects
60	Community Infrastructure Development
63	Adani Skill Development Centre - Bhuj
70	Adani Skill Development Centre – Mundra
73	Swachhagraha

<u>`</u>	
75	Suposhan
80	Project Swavlamban
83	Adani Kandla Bulk Terminal Pvt. Ltd Tuna
85	Adani Green Energy Limited - Nakhtrana
89	Adani Cementation Private Limited - Lakhpa
93	Adani Solar Energy Private Limited - Bitta
95	Employee Volunteering Program
98	Our Change Makers
113	Events
122	Awards and Accolades
131	Beneficiary Count
132	Financial Overview

Page 52 of 456

Education

3417 Students : 25 Schools Utthan **4** 502 Students : Khel Mahakumbh **3100 Enrollment Kit** : 118 Schools : Dignity of Workforce **997** Students : Mother's meet touch **3110** Mothers : Udaan Project **33030** Students : Adani Vidya Mandir **443** Students : Guruvandana- I,II **552** Teachers

The future of India depends upon the quality of education imparted to our children in primary schools. Primary education is the basic foundation on which a nation builds its future.

In this context with an aim to enhance the quality of primary education in Kutch district, Adani foundation adopted 25 government school located at Mundra and Nakhtrana Taluka under the project 'UTTHAN' a drive of quality education.

Large-scale efforts have been made by the government and non-government sectors, especially in rural government primary schools, but coverage and quality of education are still not satisfactory. Adani Foundation leveraging their experience, to intervene in Government Schools. These interventions will aim to enhance the quality of primary education in Government schools. Under Project UTTHAN 25 primary government schools of Mundra and Nakhtrana Taluka of Kutch district have been adopted to take up various initiatives aimed at improving quality in these schools. 3417 children are benefiting from a meaningful education in these schools.

Academic

Co -curricular

Extra curricular

Page 55 of 456

Academic

- One teacher One school + Sports teacher + IT teacher
- 'IT on Wheel' Van with 35 laptops and computer instructor make students more tech savvy and spreading the digital and technology knowledge amongst the younger generation
- To achieve academic excellence of Priya Vidyarthi, Utthan Shikshak implies various alternative method to make their classroom more friendly and interesting.
- English is to be taught to the students from the early classes so that they will be equipped with ample resources during their further studies.
- Training cum Induction Program on various topic like teaching methodology of progressive learner, assessment pattern of slow learnr, multiple intelligence etc.

Library activities

Use of Reading Corner by students of Std. 3 to 8 of Utthan School Every Saturday Library activity with the Book issue were planned and executed in a meaningful manner

7113 Book issued in academic year 2019-20

Through book mark exchange program Received 32 Partner schools from 11 different

countries

Book mark exchange program

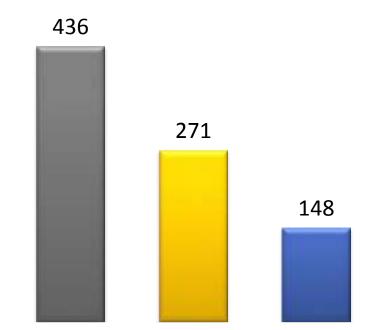
Other Activities

Sports are a crucial part of a student's growth and development. Through participation in sports and games, a student gains various skills, experience and confidence. With the intervene of our Sports teacher in all Utthan Schools successfully enrolled 500+ students in Khel Mahakumbh

All 17 Utthan school has received FIT INDIA certificate from Government of Gujrat.

36 Students (24 girls, 12 boys) reached on District level in Khelmakakumbh 500+ students enrolled in Khel Mahakumbh

Achievements


Utthan Sahayaks with the help of customize table meet huge success to achieve the main objective of the program **The No's of priya vidhyarthi in 2019 was 271 which is reduced to 148 in 2020** Third party assessment by KSKV University Department of Master of Social Work

Smart Classroom:

One of the major element of project Utthan is to convert traditional teaching method into technological based learning After the installation of Software classroom become more Interactive and Interesting – Stated in the Impact Assessment report done by KSKV University

Gradually Reduction in no's of Priya Vidhyarthi

No. of Priya Vidyarthi as per the result of Gunotsav - 2017
 No. of Priya Vidyarthi as per the report of Impact Assessment 2019
 No.of Priya Vidyarthi as per the Internal assessment 2020

Page 59 of 456

Extra - Curricular

- Utthan Sahayak + 1222 students from High school & Higher secondary of 6 villages celebrate Fifth International Yoga Day
- On International Plastic Bag Free Day, Awareness were spread through Effective speech, Soft board decoration, Video and Newspaper clipping in all Utthan school.
- Celebration of Gurupurnima in all
 Utthan Schools during morning special.
- 363 students from 17 schools got an
 opportunity to visit Adani West port. Main
 port , Willmar, power & power through
 project Udaan.
- Tree plantation in all the Utthan School. Adani
 Foundation align with the circular passed by the
 Government of Gujarat "Ek baal Ek Jhhad"
 distributed 100 trees in each school. Students
 not only planted the trees in fact they adopt
 each tree with giving their own names.

Adani foundation has make out four major criteria for peripheral Development work amongst them "EDUCATION PROGRAMME" is the one of the major area where we work on following objectives.

Render support to gap understanding school Environment.

Efforts for 100% enrollment and retention of eligible children in Govt. primary school.

To fill the gap- understanding the importance and urgency of requirement though material or infrastructure support.

Sr. No.	Activities	Benefici aries
1	Mothers Meeting	3110
2	Chintan Shibir	1155
3	Praveshotsav	3100
4	Celebrations	3295
5	Other Activities	734
	Total	11394

Adani foundation is supporting for improving quality of education To motivate children for schooling as well as inspire peers with create conducive Environment by various activities like Mothers Meeting, Chintan Shibir etc.

Adani Vidya Mandir Bhadreshwar

In Bhadreshwar, Mundra, the Adani Vidyamandir has completely revolutionized the education scenario. Only the children of families with an income of less than 1.5 lakh are admitted to this school. Along with quality education, the school also focuses on providing nutritious food, uniforms and other services to the children for free.

In year 2019-20 Total strength of students are <u>443 in</u> Adani Vidya Mandir

Adani Vidya Mandir Bhadreshwar

Annual Day Celebration

Annual Day was celebrated in Adani Vidya Mandir on 13th December 2019 on theme "Mera Bharat Mahan". Chief Guest of the Event was Wing Commander BSF and Mr. Rakshit Shah Executive Director, APSEZ was the chief guest of the Event. All the students participated with great Enthusiasm and Zeal.

4VMB	STD -	10 SECC	DND BA	TCH R	ESULT

Year 2019-2020

SR NO	GRADE	STUDENTS
1 /	Above 80 %	1
2 /	Above 70 %	3
3 /	Above 60 %	5
4 /	Above 50 %	9
57	Above 40 %	7
6 f	-ail	2
-	TOTAL	27

AVMB Std.-10 Second Batch Result 2018-19

Adani Vidya Mandir Bhadreshwar achievement in Gujrat Board Standard 10th Examination Result 92% (25 students have passed the examination out of 27). Adani Foundation will take all responsibility of further study of students with respect to their interest.

Page 64 of 456

Project Udaan

With a vision to familiarize, educate and inspire the future generations, Adani Foundation organizes Education Exposure visits to Mundra for High schools and educational institutes in Various parts of Gujrat.

568 institutes and 33,030 beneficiaries have made inspirational visit up to March 2020

Page 65 of 456

Objective of the program:

The main objective of the project is to encourage and motivate young school students to develop their entrepreneurial skills. The main idea behind this project goes back a long way when Mr. Gautam Adani himself had a life changing experience. Young Mr. Adani had the chance to go and visit Kandla port, Gujarat. Looking at the expanse, the large scale activities being carried out at the port he got extremely inspired and encouraged. From that day onwards he nurtured his entrepreneurial skills only to later become the proud owner of one of the most successful ports in the world. Mr. Adani believes that if that one visit could have such an impact on his life, it could similarly do wonders for hundreds of other young minds if given a chance to dream big.

Other activities

Follow up Mechanism:

There is a structured feedback mechanism for the project where the visiting students along with their teachers send back a feedback form to the organization sharing their experience and inputs to better the overall program. Entering in its 10th year, there are concentrated efforts in the organization to conduct a full-fledged impact study of the program to measure its short term and long terms effects. Page 66 of 456

Community Health Mundra

Project	Total OPD & IPD
Senior citizen	9860
Medical Supports	2129
Dialysis Supports	6
Medical Mobile van	20399
Rural Clinic	25142
Ayushman Bharat yojna	364
General Health camp	3137
Utthan Health camp	837
Brest & Cervical Cancer Camp	370
Forthnight health celebration	712
Tota	62956

"ॐ सर्वे भवन्तु सुखिनः सर्वे पन्तु निरामयाः" is the Arogya Mantra of India – Adani Foundation Mundra is always following this mantra in case of health and well being of the community. Health is the basic need for development of community. Adani Foundation understands this fact and its committed to improve health care facilities in every corner of region.

Page 67 of 456

Rural Clinic & Mobile healthcare unit

To solve the health issue in interior villages and to cover the marginalized as well as poor people Mobile Van and rural clinic service is being executed by adani foundation is to reduce travel time, hardships and expenses. The mobile health care unit cover 25 villages and 07 fishermen settlements. Around 90 types of general life saving medicines are available in these units. It has turned out to be a boon for women and children as the service is availed at their door - step. The Adani Foundation operates Rural Dispensaries in 7 villages of Mundra block, 03 villages of Anjar block and 1 clinics in Mandvi Block. Mobile dispensary and rural clinics provide health services with token charge of 10/- rupees per patient daily by a doctor and a volunteer.

11 Rural Clinic 8 from mundra 3 from Anjar block treated ; **25142 patients**.

31 villages covered through Mobile healthcare unit **20399** patients benefited during the year

Health Cards to Senior Citizens

In the Fourth part of life is there is need special care for health and warmth hence Adani foundation has started senior citizen project in Mundra Block since 9 years.

The project is being implemented in three phase vise with key point of Blue and green card according to beneficiaries criteria. The amount strategy per phase vise – Three year is as below

🗆 First phase	75000 INR
Second phase	50000 INR
Third Phase	30000 INR

During the year 2019-20, total 9860 transactions were done by 8672 card holders of 68 villages of Mundra Taluka. They received cash less medical services under this project.

The third phase of this scheme was started in last year. The limit for the beneficiary was set to 30000/- within a period of 3 years. the senior citizens get emergency medical care at Adani Hospital, Mundra and refer to GKGH, Hospital ,Bhuj in Emergency.

Sr.Citizen Project – Total village wise Card transection for April-19 to March-20

General health camps, Pediatric Camp, breast and cervical cancer screening camp and surgical health camps was organized at frequently to meet the specific requirements of the community and in disease outbreak season. In the year of 2020-2021 Total 3137 people had been

benefitted by various kind of camp and needy and screened patients are treated in Adani Hospital.

As well as linkages and facilitated them with government health Yojna like Ayushman Bharat, RSBY, Maa Amrutam and Maa Vatsalya yojna ,Bal sakha yojna.

Health camp					
Sr. no.	Place	Villages Name	Total Patients		
1	Ganesh Mandir Mela_ Health Camp	Luni	40		
2	Hajipir Mela provide Medicine	Hajipir mela	100		
3	Salimbhai Labour colony Health camp	Dhrub	71		
4	Shri Ram Katha Nandi Sarovar Ahinsadham	Pragpar	4 <mark>91</mark>		
5	Aslambhai Labour colony health camp	Dhrub	175		
6	Tatwamsi Keraliyan Samaj	Mundra	6 <mark>4</mark>		
7	Labour Colony Health camp - AWL	Dhrub	15 <mark>4</mark>		
8	Labour Colony Health camp - AWL	Dhrub	117		
9	Khoja Jamat khana Mundra	Mundra	125		
10	Multi Speciality Camp Ramvadi Gundala	G <mark>undala</mark>	1 <mark>05</mark>		
11	Health camp at Uras Darga Sarif Luni	Luni	824		
12	Labour Colony Health camp - AWL	Dhrub	161		
13	Pra.School Sukhpar Vaas _mundra	Mundra	108		
14	Samaj vadi Sukhpar vaas - Mundra	Mundra	160		
15	Luni Samuha Sadi	Luni	290		
16	16 Labour Colony Health camp - AWL		152		
	Total 3137				

Medical support

While Health emergency create its takes limitless rupees to recover it and it is not possible to economically poor though Adani Foundation provides primary health care and financial assistance for ailments such as kidney related problems, paralysis, cancerous and tumor surgeries, neurological and heart problems, blood pressure, diabetes etc.

Medical Support had been given to 2129 benefitted from Mundra, Mandavi and Anjar Block at adani hospital, Mundra where as In the Critical cases after stable them we refer them to GKGH, BHUJ for further treatment.

Dialysis support

As the kutchh is arid region and higher saline Drinking water in Mundra, there is urinary stone and kidney failure case is more prominent in Block. A dialysis support project to providing dialysis treatment to help the extremely needy patients to live a healthy life.

Total 6 Patients are being supported for regular dialysis (twice in a week) during this year.

Community Health Bhuj

- 5398 Patients taken Care and Coordination
- 52 Health Camps 4779 beneficiaries
- 609 Dead body referred by carry van
- 3557 Ayushman Gold Card facilitation through Enrollment camp and Mahiti Setu
- 549 support for Implants and Needy Patients
- 9896 People helped through Mahiti Setu for various government schemes
- 816 people benefitted in 6 health awareness camps

Gujarat Adani Institute of Medical Science (GAIMS) - Bhuj

Gujarat Adani Institute of Medical Science is the first Medical College of Kutch region. It started in partnership with Adani Group and Government of Gujrat in the year 2009. This college was affiliated by the Medical council of India in the year 2014 for the MBBS with 150 seats per year. Gujarat Adani Institute of Medical Science is affiliate with the first digital university "Krantiguru Shyamji Krishna Verma Kutch University". In GAIMS, currently 750 students are studying, The GAIMS Medical College is situated in heart of Bhuj city on a large plot of 27 acres.

A teaching hospital (G K General Hospital) with 750 beds is established with GAIMS in which patients of Kutch are getting subsidized medical facilities. The Hostel facility is also available for the students in the campus only. The accommodation facility is given to the staff of GAIMS.

Adani Foundation - Bhuj

- Adani Foundation Team has initiated coordination with GKGH hospital since 2014 and established a reception area for the smooth patient coordination and preparation for the social networking program.
- Adani Foundation organized 52 General Health Camps and Speciality Camps in various interior villages of Kutch in coordination with GKGH which created magical impact and benefitted 4779 patients. Adani Foundation Bhuj Health team has also organized more than six awareness camps.
- Dead body medical van Dignity to death is one of the noble initiatives taken up by the Adani Foundation. If any death occurs in GKGH, dead bodies are shifted to the native village of the concerned in the Kutch District free of cost. Total 609 dead bodies privileged till now to different locations in Kutch.

Patent Care and coordination

Sr. No.	Month	Total Patient Special Care in OPD and IPD level
1	April to June	1350
2	July to September	1474
3	October to December	1419
4	January to March	1155

In the financial year 2019-20 G K General Hospital Adani Foundation team has coordinated with 5398 patients for proper IPD care from admission stage to up to discharge level.

Mahiti Setu

Mahiti Setu has created trust and easy access to various government schemes – outreach will increase with time and awareness. 9686 people helped through Mahiti setu for various govt scheme

Sr. No.	Month	Total Beneficiaries
1	April to June	2249
2	July to September	1993
3	October to December	1951
4	January to March	3493

Arogya Saptah

Adani foundation, Adani Hospital and GAIMS have Jointly Celebrated "Arogya Saptah" 8th to 14th August & 20th to 26th January in Respect of Independence and Republic of our country. Celebration included multi specialty camps, Workshops, truckers health check up, surgical camp on foundation day and adolescent fair at different part of district. Collector, 7th to 14th August 2019

Day	Date	Event Name	Details about the event	Beneficiaries
1	07/08/2019	Health check up at Orphan age, Bhuj	Orphan children's of Yatimkhana ahlesunat primary schools 101 students health checked and referred 24 students for further treatment	101
2	08/08/2019	Blood Donation Camp, Nakhatrana	Blood donation of 16,500 MI was taken from blood donation camp at Nakhtrana.	55
3	09/08/2019	Pregnant Women health check up, Madhapar	ANC mothers HB and health checked by gynaecologist and advised for care and diet during the pregnancy	50
4	10/08/2019	Surgical Mega Camp, Khavda	Mega Surgical Health camp held in Khavda region 223 patient had been treated and more than 35 patients referred for further treatment	223
5	11/08/2019	General Health Camp, Palara Jail	Due to constant complaints about the health of the examiners of the Palara Jail, the camp was organized in the Palara jail and there were an 35 patients referred to gkgh of skin patient.	139
6	12/08/2019	Ayushman Health Card Enrolment, Gorevali	Aushyman bharat golden card enrolment camp was held at Gorevali PHC there was 39 family covered under the the skim and 52 card was given to beneficiary.	52
7	13/08/2019	Awareness on women health, mukt jivan college, Bhuj	Woman awareness for hostel girl of Muktjivan Swamibapa mahila collage was held 250 Student got aware about Menstrual, HIV, Breast and cervical cancer.	250
8	14/08/2019	Blood Donor Appreciation	More than 50 and 100 times blood donor was appreciated with certificate by Adani foundation and GAIMS.	36

Arogya Saptah

Objective of the program was to avail health benefits at GKGH and also at Adani Hospital Mundra and Approximately 1539 people were direct beneficiaries of the program.

20th – 26th January 2020

Day	Date	Event Name		Beneficiaries
1	20/01/2020	Eye diagnosis camp- Khavda	Due to the dry climate eye diseases such as Cataract etc. are more prevalent in Kachchh area. Thus we held speciality camp of eye and 9 operative patient referred to GKGH	42
2	21/01/2020	Woman Health and awareness and HB camp	Adolescent girl, woman HB awareness and check up camp was held at Mota reha village, 3 girls of higher haemoglobin was awarded as Miss Haemoglobin	86
3	22/01/2020	Health check-up camp ugedi	3 rd event of Health week 4 was held as Health check-up at Ugedi village of Nakhtrana Taluka. 115 Patient was taken benefits of the camp.	115
4	23/01/2020	Subhaschandra boss Jaynti celebration	Speech and Drawing Competition Held at 'PATVADI NAKA' Primary School on the occasion of the birth anniversary of Freedom Fighter Subhash Chandra Bose	150
5	24/01/2020	Ayushyman Bharat camp-Bhadreshwar	Golden card of central Government's PM-JAY scheme enrolled at Bhadreshvar PHC 32 family and 45 beneficiary taken benefits of this camp.	45
6	25/01/2020	World leprosy day celebration	Organized an awareness program to celebrate World Leprosy Day 160 PCA and Nursing staff got advice about leprosy	160
7	26/01/2020	Appreciation to housekeeping staff	PCA and Security staff who has done excellent work for Public Health was appreciated by adani foundation as part of 4 th Health week on the occasion of Republic Day celebrations	35

Sustainable Livelihood Development

In the villages at Mundra Taluka, several communities are economically side-lined and weaker that depend on a sole income source or are unemployed. Sustainable livelihood projects have been launched to cater financial independence through building local partnerships, providing diverse livelihood avenues, inculcate the attitude to establish savings, equipping to earn and updating local skills by making use of existing resources to encourage self-reliant lifestyles. Participation Is encouraged by launching specific projects for fishermen communities, farmers and cattle owners, youth and women.

Fisherman Amenities work

- 4 939 Students
- 4 137 Students
- 4 28 Fisherman
- 4 11 Fisherwomen : Linkag
- 4 1295 Fisherman
- 4340 Members
- 4 6261 Mandays

- : Education Support
- : Adani Vidya Mandir *
- : Alternate livelihood
- men : Linkages for schemes
 - : Community Engagement
 - : Potable water provision
 - : Mangroves Plantation *
- 4 12 Members : Sea Weed Culture
- 4 6970 Direct Beneficiaries

28 Fisherman are engaged in various contract related jobs and 37 Fisherman are doing job after taken training from Adani Skill Development Center.

To strengthen the standard of pri-primary education, Adani Foundation has constructed 4 BALWADI at different fishermen helmet

Which focuses on the development of basic age-appropriate learning concepts, discipline, regularity, awareness of health & hygiene, cleanliness and also provides nutritious food. 140 children are benefiting from this scheme

Balwadi				
Sr.	Village & Bandar	children		
1	Juna Bandar	45		
2	Luni Bandar	25		
3	Bavdi Bandar	40		
4 Zarapra		30		
	Total	140		

Learning with Joy

Adani foundation came to know that fishermen children are being suffered to continue their study due to migration of their family at different Vasahat so foundation has started vehicle support for transportation from different Bandar to village total 120 students were benefitted.

Scholarship Support

The Adani Foundation provided scholarship support to motivation and encouragement of fishermen boys and girls for higher education under this program we provide 100% fees support to girls and 80% fees support to boys as a scholarship. this year total 78 students are being facilitated by Adani foundation.

Book support:

49 Fisherman Students from Higher Secondary Standard (9 to 12) has been benefitted from various of Juna Bandar, Zarpara, Navinal, Bhadreshwar.

Cycle support:

Fishermen who are at fishermen hamlets are migrated with whole family for 8 month fishing season. During that time to continue higher education of their children at Mundra, Adani foundation provide cycle support every year to 9th standard students This year cycle support has been given to 7 students

Awareness Program

To create awareness about health, personal hygiene, child education and nutritional diet in fishermen community, various awareness programs have been organized.

Facilitation of Government's fishermen welfare scheme "Sarkar Apane Dwar" program organize. More than 150 Beneficiaries participated in this events.

Machhimar Ajivika Uparjan Yojana

Providing fishing materials support like fishing nets, ropes, buoys, anchor, etc. according to fishermen need. Before these Fishermen had to buy this borrowed materials from traders which were very expensive for them

28 fishermen has been facilitated by fishing materials

Potable Water to Fisher Folk at vasahat-2019-20

Sr.	Vasahat	family	Requirement Per day	Remarks
1	Luni Bandar	116	15000	9 Month
2	Bavdi Bandar	88	15000	9 Month
3	Kutdi Bandar	140	15000	Provide by Adani Solar
4	Virabandar	58	10000	Provide by Tuna port
5	Randh Bandar	350	25000	9 Month
6	Ghavarvaro Banadar	58	7500	Provide by Tuna port
7	Junabandar	134	30000	Connection with Mundra Gram Panchayat
8	Zarapra Vasahat	72		12 Months
9	Chhachh vadi Zarapra	69		12 Months
	Total	1085	117500	

Machhimar Shudhh Jal Yojana

Pure water play important role for good health hence reduce water scarcity and ultimately reduce load over women, potable water was provided to the fishermen communities at different vasahat through water tanker A total of 1,17,500 litres of water per day was supplied to 1085 households from different settlements on a daily basis..

Cricket Tournament

Adani Foundation, Mundra organized Cricket Tournament, <u>"Adani Premiere</u> League" among fishermen community to promote healthy sportsmanship ,and harmonically transparent community relationship among fisher folk of Mundra ,Anjar and Mandvi Taluka.

Total 65 Teams were participated from 13 villages i.e 750 Fisherman youth from various Villages Zarpara, Navinal, Shekhadia, Modhava, Salaya, Mundra, Tragadi, Luni, Gundiyali, Bhadreshwar ,Vandi (Tuna),layja and kathada with great enthusiasm.

Ramotsav Programme

To Development of physical and mental Development of youth Ramotsav week Program has been organized at various Vasahat. (i.e. Junabandar, Luni, Zarapara, Bavdi Bandar and Navinal & Vira Bandar)

This year Total 545 children of 1st to 10th standerds were participated.

Environment Sustainability

The Environment Impact Assessment (EIA) Notification, 2006, issued under the Environment (Protection) Act, 1986, as amended from time to time, prescribes the process for granting prior environment clearance (EC) in respect of cevoain development projects/activities listed out in the Schedule to the Notification.

Sustainable development has many important facets/components like social, economic, environmental, etc. these components are closely interrelated and mutually reenforcing. Under Corporate Environmental responsibility 10 km radious villages from SEZ Boundaries.

To make connections between human actions and the level of biological diversity found within a habitat and/or ecosystem, this year we launch project "Sanrakshan" in coordination with GUIDE. MOU has been signed with Dr. Thivakaran – GUIDE for conservation of five spices of mangroves.

Bio diversity Project

Bio diversity Project has been Continue with three spices Rhizophora Mucronata ,Ceripos Tagal, Ceriops Decandra with good growth at Luni Bandar.

The mangrove biodiversity enrichment project in and around Adani ports special economic zone limited (APSEZL) aims to introduce select true mangrove species on a pilot scale in suitable coastal belts and assess their survival. Because this project is the first of its kind, the expected survival rate is between 20-30%.

The project is currently in its initial stages of establishing nurseries and sowing seeds of several different species brought in from multiple locations in and outside of Gujarat state. These nurseries have been developed in tidal flats near the village of Luni, Kutchh, Gujarat.

The mangrove seeds/propagules) for the establishment of the nursery were brought in from various locations in India, namely, Machilipatnam (Andhra Pradesh), Pondicherry (Tamil Nadu), Parangipettai (Pichavaram Mangroves, Tamil Nadu), Kandla (Gujarat) and Jamnagar (Gujarat).

In most of these locations, there is adequate fresh water supply available due to high/substantial rainfall and/or presence of major rivers (also important river confluences and deltas that give rise to a thriving estuarine environment). Consequently, the mangrove species that successfully grow in those regions are adapted to a low-salinity environment (where salinity is approximately 20 ppt) against that of 37-44 ppt prevailing in Kutchh coastal waters. Furthermore, the species selected to establish the biodiversity enrichment project also belong to this group of mangrove species. This subsequently creates a challenge for the team heading this project because the Kachchh region does not provide adequate salinity ranges for survival of most of these species. In fact, it provides an extremely harsh saline environment (salinity can range up to as high as 44 ppt during summer).

Considering the above-mentioned scenario, the site selection criteria, need for species of high salinity tolerance and studying their natural occurrence in Kutchh becomes critical in ensuring a substantial survival rate of the mangrove species selected to potentially successfully establish a diverse and resilient mangrove community in the Kutchh region.

Furthermore, a highly diverse set of mangrove species will ensure resilience in the face of changing climate and could probably provide as a thriving gene pool and seed bank in the future for the Kutchh region.

Book Launch : Multi- species Mangroves Biodiversity Park by Chairperson, Adani Foundation

Page 90 of 456

ide

SUJLAM SUFLAM JAL ABHIYAN

Global Problem-Local Solution

<u>Water Conservation Work</u> At the turn of millennium, the state watched with growing alarm the steady depletion of its ground water and launched massive drive to achieve water security in Mundra region.

- A large number of water harvesting structure (18 Nos. of check dams in coordination with salinity department) and
- Ground recharge activities (pond deepening work for more than 52 ponds) individually and 26 ponds under Sujlam Suflam Jal Abhiyan were built leading to a significant increase in water table and higher returns to the farmers.
- Roof Top Rain Water Harvesting 54 Nos. and Recharge Bore well 75 Nos.
- Drip Irrigation 823 Farmers benefitted in coordination with Gujrat Green Revolution Company
- Participatory Ground Water Management in ten villages with holistic approach for Kankavati Sandstone Aquifer Programme

Water Harvesting Structures

Dhrub- pond deepening work – work completed •

For Water conservation drive we are having vision for next five years that

- <u>Drinking Water Sustainable Villages by Roof Top Rain Water Harvesting at least 5</u> <u>villages</u>
- Agriculture water conservation by 100% Drip, Bore well Recharge
- Farm Bunding and Crop pattern
- <u>Recycling Sewage water from STP</u>
- Awareness for water conservation to community
 Page 92 of 456

Machhimar Ajivika Uparjan Yojana

The 'Ajivika Uparjan Yojana' was implemented to promote and support alternative livelihoods among the Fisher folk communities during the non-fishing months. The Foundation introduced 'Mangrove Nursery Development and Plantation' in the area as an alternate income generating activity for the people of the region. Both men and women received training on Mangrove plantation, moss cleaning, etc. as per requirements. The Foundation provided them with employment equivalent to 6261 man-days. In addition to this, employment worth of 42048 man-days has been provided till date. The Foundation has also supported Pagadiya fishermen as painting laborers by providing them with employment and job in various field.

Sea Weed Project

The cultivation of seaweed have significant potential for the sequestration of carbon dioxide (CO2) and will very fulfill in mitigating the climate change. Seaweeds are macrophysics algae, a primitive type of plants lacking true roots, stems and leaves. They provides valuable source of raw material for industries like health food, medicines, pharmaceuticals, textiles, fertilizers, animal feed etc.

As per study of government of Gujarat, Seaweed culture can be best developed along the coast lines of Amreli and Kutchh districts in Gujarat. Juna bandar has good potential for seaweed farming as it has Calm and less wind action. We started this project as Pilot base at Junabadar with 50Kg Quantity. though there was good growth but due to cyclone it was damaged at present it 600Kg.

PROJECT "DRIP IRRIGATION"

• Basis of Requirements of Drip Irrigation

The main source of livelihood being agriculture, the cultivators tend to use more and more underground water for irrigation. Underground waters have gone very highly saline. The use of such water for irrigation has made the soil also saline and the crop yields have dwindled.

Process of Drip Support

Farmer have to applied in the prescribed form of Adani foundation with photograph. Inspection and verification will be by AF representative.

Ration card, work order of G.G.R.C, 7/12 certificate and all bills must be attached.

Farmer will be informed by telephonic to have form query.

Primary information about farmer land will be received by telephone.

Farm visit within 10 days of after received of application and verified the installation of system as per map and material as per bill will be checked and get farmer feed back. Verification report submitted to account office.

Payment within 20 days if all document is complete through net banking. Farmer economic study after our support. – Follow up

 We have covered 164 farmers and 755 acre drip irrigation area last year. Curret year We have covered 131 farmers and 667 acre drip irrigation which is remarkable for water conservation.

Home Biogas

Home biogas is the Israel based company was founded in 2012 manufactures dynamic biogas unit not only for farm waste but for kitchen waste too.

Under Gram Utthan Project, Adani Foundation is supporting home biogas to farmers to Uthhan Villages phase wise. Current year supported 95 home biogas in Dhrub, Zarpara and Navinal Villages.

- Reducing organic waste,
- Transitioning to renewable energy
- Motivation for reduction in use for fertilizer

And Improving the health and living conditions for the millions of families that are still cooking on charcoal and wood. Adani Foundation is not only supporting but creating awareness to save environment and health of the community who regularly cooking on Chula. It is proven that one hour cooking on Chula is as dangerous as smoking 40 cigrates.

Objective of the Project :

As a Main Process, Bacteria break down organic waste in a naturally occurring process, and Home Biogas stores and harnesses the energy created so that it can be used for gas.

Earlier we had proceeded for capacity 2 cum but after visit and series of meetings with farmer group – we need to take up plant capacity 6 cum

Participation by Community:

For acceptance of this new biogas - We did awareness programmes, given information about usages of home biogas to farmers. Demonstration and training for smooth operation and also maintenance. Community has given 10 percent participation means 3000 INR per Home biogas.

SLD Agriculture Initiatives

- The organization has carried out remarkable activities in the agricultural and animal husbandry sectors. We have initiated Programme for Awareness of Farmers in collaboration with KVK. The outreach is approximate 200 farmers of seven villages under Gram Uthhan.
- The purpose of this project is to initiate village wise integrated agricultural & allied development for sustaining agriculture and socio economic situation of farming community of Mundra block.

Fodder Cultivation

After periodic discussions with Village Development Committee, Gram Panchayat and Gau Seva Samiti of Siracha – Adani Foundation had coordinated for Village Gauchar Development. Total 85 Acre Gauchar Land was approved by GP for Development by decision taken in Gram sabha . Among them 22 Acre land Has been Sowed with Sorghum and Remaining land would be Grow with Wild Grass

Siracha

22 Acre – 88000Kg Sorghum 63 Acre- 63000Kg Wild Grass **Total 85 Acre= 151000KG** Bhadreshwar @ 7 Acre= 28000Kg Kukadsar @ 15 Acre= 60000Kg

Implementation Process includes

- Meeting with Village Development
 Committee
- Meeting with SDM for Gauchar Land Details

Brief Description

Make availability of 4000 tissue cultured plants of Barahi varieties to the farmers of project area. For this, we have selected best offshoots of Barahi plants from Well known Laboratory in coordination with farmers groups, Vice Chancellor (Anand Krishi University), Dr Murlidharan (Scientist, Date Research Center) and Krishi Vigyan Kendra Mundra.

The selected tissues from laboratory will take 3 years period for development and fruit. Hence, whole program is coordinating farmers participation basis having four party i.e. Tissue culture laboratory, Adani Foundation, KVK and farmers committee of project area. Major functions of all parties are as under;

TC Lab: Develop TC plantlets of Yellow varieties

Adani foundation: Financial support

KVK : Technical support to the program

Farmers committee: Provide their support for selection of Tissue plants & contribution in distribution & provide 50% cost of plants.

Objective:

To provide tissue culture plants of local elite varieties of Datepalm to the farmers of project area at affordable price.

Expected Outcome

We have registered Farmer's Producer Company first (Kutchh Kalptaru Farme's Producer Company) in which 140 farmers are registered members of project area. Adani Foundation will support for 25 plants/farmers phase wise. In first phase during Financial Year 2019-20 we will provide support to 70 Farmers.

Financial Outcome

If we will assume 100 kg production of fresh fruits of Datepalm of best varieties per plant. Then total production is 4 lakh Kg. and price Rs. 80 / Kg. Then total gross income will be generated Rs. 3.20 crore. Consultant Fees will be Rs. 60,000 including FPO Registration Charges

Strategy: For 4000 Date tissue plant in 2 phase (per plant cost 3300 INR) Farmers : 70 Farmers will be supported 25 Plants (1750 Plants in current year)

(50 percent contribution from Farmers (they will get 35% from Government in a form of subsidy after plantation.)

Tissue Culture : Date Palm

Page 101 of 456

Women Empowerment Projects

- In Kutch, the situation of women is miserable. Women are totally dependent on male members of family for their needs. Consumption of liquor is one of the main culprits in Kutch. Due to this evil prevalent among men many women are suffering.
- Considering this situation, We have started our training program with two major women's group of Villages near Adani Power and Adani Ports. Both the groups of women (<u>123 women in total</u>) successfully completed their training for preparing washing powder, phenyl, liquid for cleaning utensils and hand wash etc.
- We have selected 10 women groups having 123 members total, as per their ability for different work i.e. accounting, banking, leadership, marketing, administration etc.
- As a further step to bring sustainability, we thought to start a shop "Saheli Mahila Gruh Udyog" at Shantivan Colony.

Women Empowerment Projects Step towards socio economic development

No	Name	Members	Work	Avg Income
1	Sonal Saheli Group	11	Washing Powder and Phynayle making	3000
2	Tejasvi Saheli Group	10	Stitching Unit / Bag Making	5000
3	Pragpar Saheli Group	29	Handicraft Suf, Pakko and Jat	7500
4	Shradhha Saheli Group	11	Dry and Fresh Nasta Making Unit	3200
5	Meghdhanush Saheli Group	10	Mud Mirror Work	6000
6	Umang Saheli Group	11	Soft Toys and Dori work	1400
7	Asha Saheli Group	10	Sanitary Pad Making Unit	2500
8	Anjali Saheli Group	10	Paper Bag and Paper Cup Making Unit	
9	Vishwas Saheli Group	10	Dry Nasta – Chiki, Potato Waffer, Papad	2200
10	Radhe Saheli Group	11	Non Women Bags	1150
		123		

Women Empowerment Projects Step towards socio economic development

Apart from Self help Group, Adani Foundation is motivating and supporting Rural women for apprearing SSC/HSC board exams, completing graduations and joining course under Skill Development Center or RSETI.

Also coordinating for Bank Sakhi, Vima Sakhi, Gram Rakshak Dal and Private Companies for full time job. For the same we coordinate with district administration, DRDA and HR Department of Private Company. This Coorination became very fruitful in case of Britannia Company. We have coordinated with approximately 300 women for apprearing for interview and filling forms for Britania. As on date 271 women are doing job in Britannia and getting Rs. 9700 plus PF per Month.

No	Name	Members	Work	Avg Income
1	Bank Sakhi Yojana	9	By State Government – agent work	3000
2	Gram Rakshak Dal	7	Secured job by Government	6000
3	Laundry work at Samudra Township	2	Commercial Complex Samudra	2500
4	Britannia Company	270	By Capacity Building and confidence building	9800
5	Bima Sakhi Yojana	6	By State Government	3000
6	Aggarbatti making Unit	2	Widow Women	1700
		296		

7 women of village Sadau, Mangra and Baroi Selected in Gram Rakshak Dal by our Coordination

Women Empowerment

Adani Foundation Mundra has received Order of supplying 10,000 sanitary pad per Month to Seven Public Health Centers of Mundra Taluka and 9 KGBV hostels at Kutchh District.

Feminism isn't about making women strong. Women are already strong. It's about changing the way the world perceives that strength.

Page 106 of 456

Right now 8 Females are working for the same. In second phase after starting one more unit our capacity will increase approx. 700 pad per day – which will enhance income of them up to 4000 per month.

Women Empowerment

An initiative under the Sustainable Livelihoods Development Program to encourage women, take control of their own lives and increase their confidence whether they are single, married or widowed.

Total Sale more than Rs.4.50 Lacs and women are getting approximately Rs.8500 per month.

14 Women of Pragpar village are traditionally doing Suf Embroidery. We are on the verge of completion to development of Sahkari Mandali. After getting formal structure we could be able to sale products online with GST.

Community Infrastructure Development

Community infrastructure primarily refers to small scale basic structures, technical facilities and systems built at the community level that are critical for sustenance of lives and livelihoods of the population living in a community. Adani foundation has designed, planned and built a infrastructure community health, agriculture and living standards, all initiatives were fulfilled according to the needs of people of community. Adani Foundation supports for infrastructure development on request basis. Adani foundation carries out the construction of prayer shade name "PRATHNA SHADHNA" at AVMB.

Construction of Prayer Shed at AVMB

Painting & Branding Old Strcture at Old Bandar and Luni Bandar

Upgradation of Balwadi at Zarpara

Waiting place for Pgadiya at Navinal

Garden Development work

S & F Benches In Various Location in Various Village

Construction of Shed at BRC Bhavan

Renovation Balwadi at Bavdi Banadar

Fixing of LED street light at Bhopawandh, Mundra & Bhorara)

Page 110 of 456

Adani Skill Development Centre (ASDC) is playing a pivotal role in implementing sustainable development in the state.

Several miscellaneous industries exist in Kutch district. Adani Skill Development Centre has started a center in Mundra block so that the needs of these industries are fulfilled, the local youth is enrolled in various training / skill courses and the distance between the both is minimized.

The objective of this Centre is to impart different kinds of training to the students of 10th, 12th, college or ITI from surrounding areas. Thus, various employmentoriented trainings are organized to optimize the skills, art and knowledge through proper guidance and direction.

During this year Total 2664 people trained in various trainings to enhance socio economic development. Out of which more than 60% people are getting employment or Self Employment and average income up to Rs. 5200 per month. Digital literacy training is very helpful in coordinating with today's Digital world....

Adani Skill Development Centre

Adani Skill Development Centre Kutchh

Digital Literacy 1119

Self Employee Tailor 262

60

JOC 60

Beauty Therapist 465

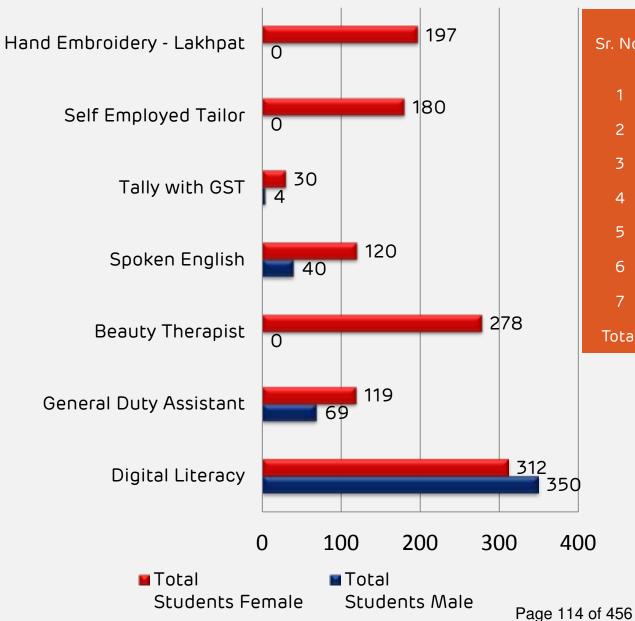
197

TALLY FOR

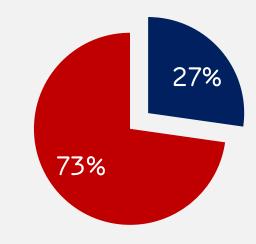
Tally with

GST

34

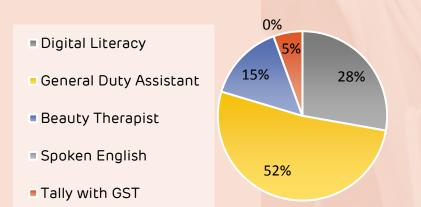

Spoken English 229

Total Batches: 126


Page 112 of 456

In the year 2019-20,ASDC-Bhuj trained 1699 candidates.

Sr. No.	Name of Trade	Total St	Total Students		
51, 190,		Male	Female		
1	Digital Literacy	350	312		
2	General Duty Assistant	69	119		
3	Beauty Therapist	0	278		
4	Spoken English	40	120		
5	Tally with GST	4	30		
6	Self Employed Tailor	0	180		
7	Hand Embroidery - Lakhpat	0	197		
Total	(1699)	463	1236		



Adani Skill Development Centre - Bhuj

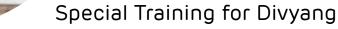
- Certificate Oriented Training Program: On Successful completion of the course and completion of Assessment organized by the Centre.
- The training methodology ensures a balance between theoretical concept delivery and emphasis on application of concepts through latest training pedagogical processes.

Placement F.Y. 2019-'20

ADANI SKILL DEVELOPMENT CENTRE - BHUJ							
Quarter & Training wise Candidate Detail F.Y.: 2019-20							
Sr. No.	Name of Trade	Q-1_Total	Q-2_Total	Q-3_Total	Q-4_Total	Total	
1	Digital Literacy	278	163	138	83	662	
/	General Duty Assistant	60	0	68	60	188	
3	Beauty Therapist	38	0	0	240	278	
4	Spoken English	144	16	0	0	160	
5	Tally with GST	12	22	0	0	34	
6	SET	0	0	0	180	180	
7	HE	0	0	0	197	197	
Total	10 400	532	201	206	760	1699	

- 52% students got the job in PMKVY GDA training.
- 28% students got job in Digital Literacy Course.
- 8 women self employed in Beauty Therapist Course.

Page 115 of 456


Special Training for Widows

MOU signed between Govt. of Gujarat and Adani Skill Development Centre with an aim to provide quality skill training to widow women to become self -reliant and generate their livelihood. Total 25 widow women has enrolled for GDA course training.

Digital Literacy, Beauty And Wellness And Spoken English Training for Physically Challenged Students under Social Welfare Justice Department at Navchetan Andhjan Mandal, Bhuj.

The trainings conducted by Adani Skill Development Centre, Bhuj for Differently Abled Students - Madhapar. Navchetan Andhjan Mandal has dedicated Computer Lab which consists of 15 computers with NVDA software to facilitate disabled students to learn efficiently.

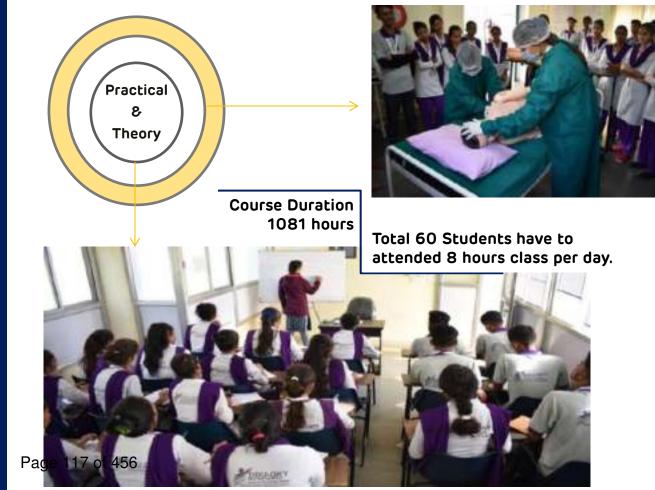
124 students trained for Digital Literacy, Beauty And Wellness And Spoken English Training.

(Digital Literacy = 62, Spoken English= 40, Beauty & wellness= 22)5 of them placed during the year.

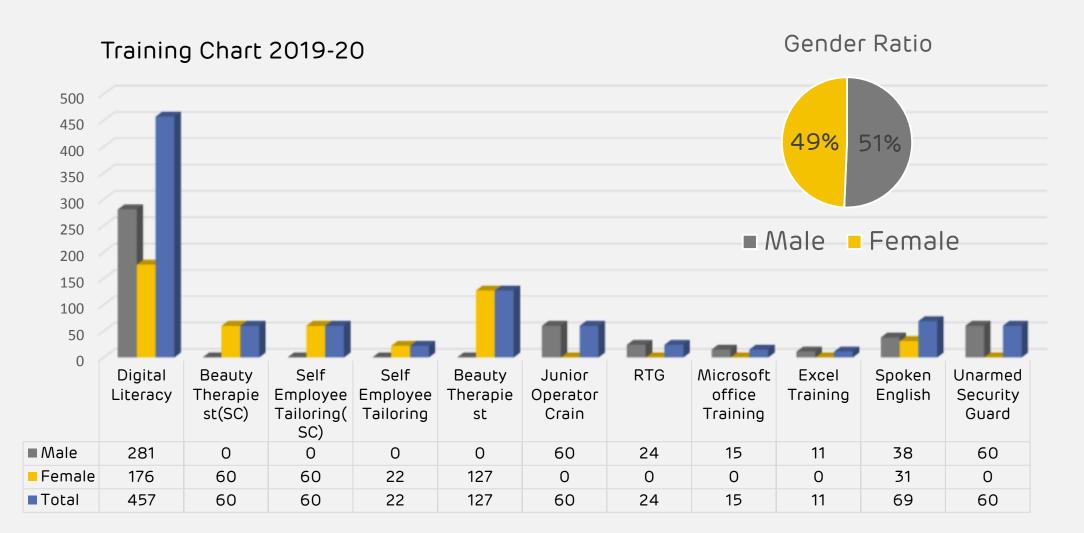
Page 116 of 456

Adani Skill Development Centre – Bhuj

One more feather added in cap of ASDC Bhuj Centre is PMKVY GDA Training Project Saksham – Adani Skill Development Centre completed Four PMKVY GDA Batches in Bhuj received with Four Star Rating in PMKVY certification.


Total 120 Candidates trained till the date (F.Y. 2018-20).

In a year 2019-'20, 28 out of 60 (52%) candidates got the job in various medical departments. 55 candidates passed out of 60 people of PMKVY General Duty Assistant training.


ASDC Bhuj first ever Centre to implement successfully DDU GKY Project for GDA Training.

Total Hours	Domain	Non-Domain	Non-Domain	Non-Domain	
	(GDA)	(Soft-skill)	(IT)	(English)	
1081	780	38	150	113	

DDU-GKY is placement linked skill development initiative by ministry of rural development, government if India (MoRD).

In the year 2019-20, ASDC-Mundra trained 965 candidates.

Adani Skill Development Centre – Mundra

RPL recognizes the value of learning acquired a formal setting and provides a government certificate for an individuals skill.

Candidates received an accidental insurance coverage for three years at free of cost.

Certified 27 assessor, 19 Trainer and 08 Assessor.

Started first loader-Unloader job role in Port.

Total Candidates registration 2500

Page 119 of 456

- 42 candidates cleared PMKVY Junior Operator Crane exam out of 43.
- 21 candidates working in various company with 8000-15000 PM.
- 26 students got job in various company
- More then 30 women working as self employed.
- Mobilization activities for SC batches in various village and collage

Adani Skill Development Centre - Mundra

SC Project

Skill Development trainings to various weaker sections of Community To deliver and promote employability In collaboration with Department of social justice & empowerment, Gujarat

More than 100 trainees benefited under Self employed tailor training course at Mundra.

More than 300 candidates have been trained in various courses.

Swachhagraha

Adani Foundation has launched project "Swachhagraha" Swachhata ka Satyagraha in the year 2015, to support the 'Swachh Bharat Abhiyan'. Falling in line with our Honorable Prime Minister's call for a Clean India, we launched this mass movement towards making our Nation litter free.

On 9th October 2019 the Project handed over to all institute with a gentle promise to keep swachhagraha flame lighting. In this ceremony with the blessings of Shilin Adani mam Best Swachhagraha Schools awarded by District Education Officer, Kutchh

Swachhagraha at Kutchh 4 City / town 266 Schools 266 Prerak trained 5000+ Dal members

Page 121 of 456

Swachhagraha Outreach

Swachhagraha Wall

Safai Ke Sitare

Toilet Etiquettes

age 122 01 400

Large Scale

Suposhan

The objective of the Project is to reduce occurrence of malnutrition and anemia.

create awareness about malnutrition and anemia and related factors amongst all stakeholders and role they may play in curbing the issue. To successful implementation of the project, "Sangini – Village Health Volunteer" plays major role in the Project.

wilmar

thy prowing nation

Suposhan Page 124 of 456

Underweight adolescent girl gets married early

Poor nutrition during pregnancy

Insufficient weight gain during pregnancy

> Malnourished mother has low birth weight baby

Child remains malnourished due to inadequate food & other deterrents.

Basis of Requirement

As per Global Nutrition Report released recently, Children below five years- 23 % Stunted and 8 % are wasted. 69.5 % children 6-59 months old, 55.8% adolescent girls aged 15-18 years, 55.3% women aged 15-49 years have Anaemia. Moreover anaemia prevalence in pregnant women is as high as 58.7 %) Curbing Malnutrition was part of Millennium Development Goals and again focussed through second and third Sustainable Development Goals on Zero hunger and Good Health & Wellbeing respectively.

This year under SuPoshan project AF has conducted anthropometry study of more than 6268 children. More than 98 children became free of malnutrition due to efforts of AF team.AF is also committed to spread awareness in this regard. More than 2023 FGD were conducted during this year.

Total HB screenings of RPA woman- 6598no and adolescent girls -10645no was this year. this activity helps in controlling anaemia in women and indirectly malnutrition.

Page 125 of 456

Community Engagement and other Activities 19-20					
Sr No	Activity	Progress			
1	Total Sangini	25			
2	Total Village	45			
3	Total Anganwadi Cover	72			
4	Total Families	9178			
5	Total Children	5736			
6	Total Adolescent Girl	5067			
7	Total Women (RPA)	9762			
8	Focus Group Discussion	2023			
9	Family Counselling	431			
10	Village level Events	117			
11	No of SAM children referred to CMTC	75			
12	No of SAM children provided with Energy Dense Food (Only New children)	112			
13	No of total HB & BMI screening - Women in reproductive age	6598			
14	No of total HB & BMI screening - Adolescent girls	10645			
15	Stunting Category (Changing)	18			
16	Wasting Category (Changing)	25			
17	Underweight Category (Changing)	55			
18	Adolescent Girls with Anaemia (10-19 yr.) (Changing)	249			
19	Women with Anaemia in reproductive age (14-50 yr.) (Changing)	272			
22	Women in RPA provided with IFA Tablets	201			
23	Adolescent girls provided with IFA Tablets	102			
20	Sangini Meeting	17			
21	Sangini Training	5			
22	Total Anthropometric screening	6268			

Page 126 of 456

Implementation Strategy

Base line data was provided for Mundra Taluka in initial phase of Project.

•Total Number Aanganwadis in the selected area •Information on Sub- canters / Primary Health Centres/ Community Health centres/ Referral Hospitals

•Availability of Healthy worker- male & female both, ANMs, LHVs, Doctors, specialists such as Gynaecologist, Paediatricians, Pharmacist, Dietician Lab. Technician, Nursing Staff etc. at above centres (Number & names with contact details)

•Selected areas' Birth rate, Death rate, Infant Mortality Rate, Mother Mortality Rate, Sex ratio, Child Sex ratio against district, state and national average

•Total number of beneficiaries and against that enrolled beneficiaries at Anganwadi/ICDS: 0-6 year children, Adolescent girls, pregnant women and lactating mothers

•Identified malnourished and anaemic children/ adolescent girls and women (numbers, DOB & name as well as current level of malnutrition & anaemia with dates- Base Line data)

•Current Inputs provided through the Government machineries

•Other services available through CBOs, NGOs etc.- Details of inputs and contact details of those organizations

•Understanding & Listing of area specific cultural and behavioural barriers

Expected Outputs

Community Health vertical at each location would focus on project on "Curbing Malnutrition amongst Children, Adolescent girls and Women "with combined approach of community management of Malnutrition and Anaemia and necessary medical treatment components.

- Each child and especially malnourished will be mapped with growth chart
- Regular inputs of RUTF treatment when necessary.
- FDGs with mothers and adolescent girls.
- Village meeting one in a month at every village
- Health camp every month
- Awareness campaigns.

Expected Outcomes

To reduce the occurrence of malnutrition amongst Children by 95 % in three years

•To reduce malnutrition and anaemia amongst adolescent girls and pregnant & lactating women by 70% in three years

•To create awareness about the issue of malnutrition and anaemia and related factors amongst all stakeholders and role they may play in curbing the issue

•To create a pool of resources to be utilised for combating the issue of Malnutrition and Anaemia

•To support efforts in reducing IMR and MMR

Project Swavlamban

Project Swavlamban Launched with blessings of differently abled people of MUNDRA TALUKA.

<u>Our objective is</u>

- To increase awareness about Government schemes for Divyang people, widows and senior citizens and coordinate them with Social Welfare Department, GoG
- After getting income generation equipment support Proper training provision to make them self-reliant in true sense!!
- Adani Foundation is playing the role of facilitator in case of tie up with Government Scheme for Widows, Senior Citizens and Handicapped people. The identity cards are issued for the handicapped in coordination with Bhuj Samaj Suraksha Khata which is beneficial for them to get specific kit for their disability type. Uoto date 1094 beneficiaries linked up with pension scheme.
- The financial benefit of the senior citizen Yojana is Rs. 500 per month and the widow scheme is of Rs. 1250 per month. Jilla Samaj Suraksha Officer and team remain present every time.

No	Туре	Beneficiaries	Financial benefit
1	Palak Mata Pita	6 x 3000	18,000
2	Widow	74 x 1250	92,500
3	Senior Citizen	79 x 750	59,250
	Total	533	1,69,750

Project Swavlamban

Government and Adani Foundation both have supported Total 1094 Beneficiaries of Amount Rs. 15,44,100.00

Govt. shemes Mundra Taluka		Rate	Total Amount	AF Support Mundra Taluka		Rate	Total Amount
Artificially foots	14	15000	210000	wheelchair 30		4000	120000
Artificially Hand	1	5000	5000	Wheelchan	50	4000	120000
Blind satick	7	200	1400	Cabin	5	15000	75000
Bycycle	9	4500	40500	Fridge	1	18000	18000
Crutches	4	200	800	Filoge		18000	18000
Hand cart	4	5000	20000	Fruit Shop	2	8000	16000
Hearing Aid	13	3000	39000			5000	20000
M.R kit	20	500	10000	Grocery Shop Item	4	5000	20000
music	1	500	500	Hand Cart	2	9000	18000
Pension	4		0				(0.0.0.0
RTE Admission	1		0	Harmonium	1	10000	10000
Sewing Machine	30	5000	150000	Rikshaw	1	80000	80000
Tricycle	33	6500	214500				
Walker	3	1000	3000	Sewing Machine	16	5500	88000
walking satick	12	200	2400	Tricycle	25	6800	170000
Wheelchair	26	4000	104000				
Bus pass	392		0	Wheelchair	32	4000	128000
Medical certi	401		0	Total	119		743000
Total	975		801100				742000

CSR Tuna

Adani Kandla Bulk Terminal Pvt. Ltd. is joint venture of Adani Ports and SEZ Limited as well as Kandla Port. We are going to implement drainage pipeline for Tuna and Wandi with participation of Kandla Port in current year. Survey is done and work will be started soon..

Adani Kandla Bulk Terminal Pvt. Ltd.

CSR Tuna

બદલો લેવા પ્રશ્તો લાખ રંતેના સારી છે.

33.59 93.64

- In Rampar and Tuna Village We are providing Fodder in summer season. Also guiding farmers for modern farming techniques for Organic Farming and sustainable Agriculture
- Praveshotsav Kit is distributed in 8 schools covering 180
 Students in Tuna and Surrounding seven villages.. Our efforts were appreciated by community.
- Adani Foundation is bridging the gap between Government Schemes and Beneficiaries. This year we could able to support 5 widows and 4 differently abled to avail benefits of Government. Tree Plantation and 4 health camp was organized in Tuna and Rampar Village.

त्थाला लंग यहे न होये छे.

CSR Nakhtrana

Adani Green Energy Limited (Nakhtrana)

CSR Nakhtrana

Adani Green Energy(MP) Limited (AGEMPL) proposes to setup an integrated wind energy project as Green Energy Works which includes Limestone 750 Mw, Through approx. 1250 windmill at Dayapar to Nakhtrana in District Kutch (Gujarat). Foundation, in cooperation with respective Block Agriculture Departments during PRAs, the regularly conducts various training programmes for the farmers. They have been introduced to various innovative and cost-saving practices in farm cultivation.

<u>Community Health</u> - In Coordination with GKGH 2 Specialty Camp, Eye Camp and 3 General Health Camp was organized. Total beneficiaries is 572.

Adani Foundation has initiated <u>**Project Utthan**</u> – at 8 Schools at Nakhatrana by signing MOU with District Education Department. Frame work of the Utthan Project is as per Utthan Mundra.

<u>**Project Svavlamban**</u> Started Swavlamban Center at Nakhatrana Town to make widow and Divyang Women Sustainable though Stitching work. We have supported 5 stitching machine and material for fund rotation.

In Community Infrastructure Development work we have taken up work of Road Levelling and Culvert Construction at Gadani Village. Main reason to initiate the project is - During Monsoon Period difficult to use road for farmers and School Going Children of Vadi Vistar and Due to water logging excess water enters into farms which affect development of crop. Approximately 80 farmers and 70 School going children will be beneficiaries of the Project.

The work will be resulted into Construction of Pipe Culvert and Road Levelling work at Vadi Vistar at Gadani Village with Outcome to Easy Approach for Farmers and Students of Vadi Vistar School during monsoon Period.

CSR Lakhpat

Adani Cementation Private Limited (Lakhpat)

Adani Cementation Limited (ACL) proposes to setup an integrated cement project as Lakhpat Cement Works which includes Limestone Mine in 251.9 ha area, Cement Plant of rated production capacity of 10MMTPA Clinker and 3MMTPA of OPC/ PPC/ PSC/ COMPOSITE CEMENT in three phases, and a berthing jetty of 15MMTPA traffic capacity in phase wise manner in Taluka Lakhpat of District Kutch (Gujarat).

Project Public hearing held in month of May 2019. For Smooth Execution of the Project we have done Participatory Rural Appraisal and Village Development Committee formation at three nearest villages (Koriyani, Kapurashi and Mundhvay) of our upcoming cement plant.

Linkages with Govt. Scheme

 Wheelchair support - 2
 Education Support

 Tri cycle support - 3
 Music Kit - 4

 Divyang torm - 2
 Sports Kit - 4

 Provided to Govt. Schools of Kapurashi, Koriyani and Mundhvay
 Serving at CHC Dayapar. More than 250 beneficiaries per month

Page 138 of 456

Fodder Cultivation

Most of the population of Lakhpat Depends upon Livestock for their livelihood. Fodder is the prime requirement of them. Adani Foundation had distributed Jovar seeds after considerable rain to 260 Farmers to motivate them for sustainable Livestock development.

The Problem

- 😻 Scanty rainfall
- Deficit of fodder availability
- Fodder only available on high rates.

(demo

Expected Yield: 747.5 tonnes

The Solution

Encourage farmers

- To grow grass as fodder
- To cultivate jowar as fodder harvest
- Village level grassland development

World Disable Day celebration

Celebrated World Disability Day - Swavlamban center opened at Dayapar for disable and widow women. Support 10 tricycles and 2 wheelchairs and 9 artificial limps to disables.

Page 140 of 456

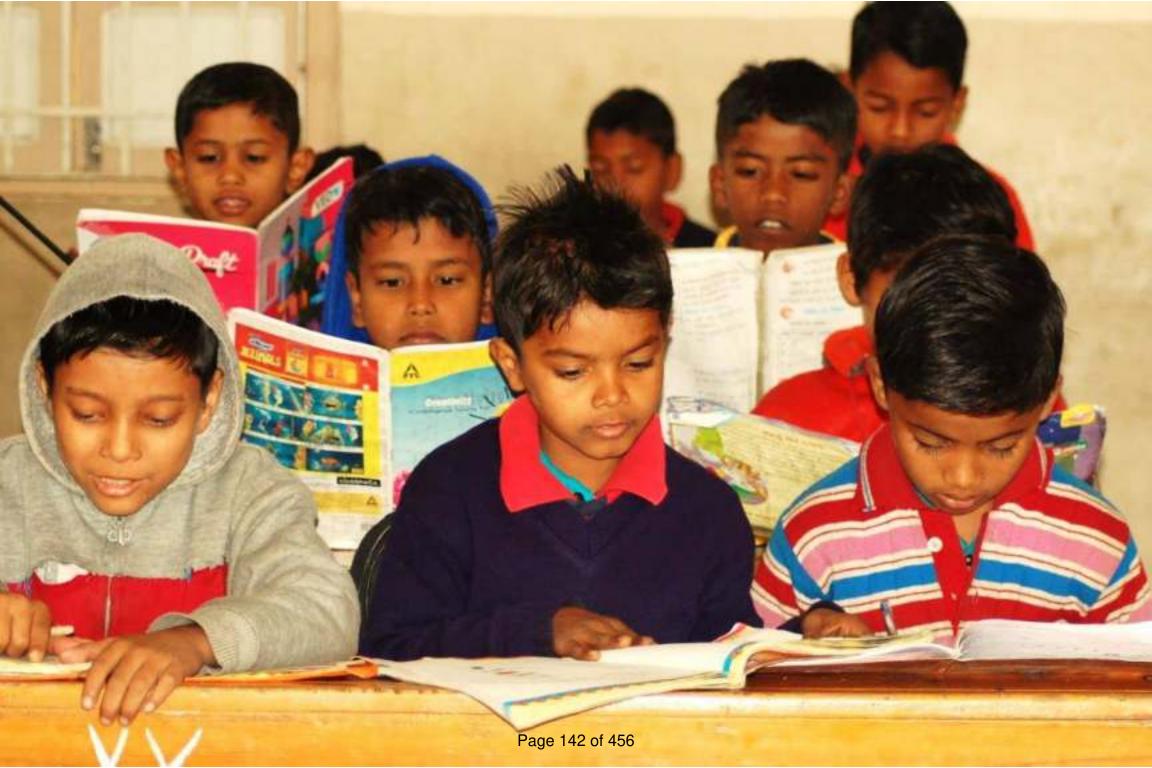
રામગ્ર વિસ્તારસી સી રીવી કેમેરાની દેઠળ છે.

sister of coverse services

CSR Bitta

Adani Solar Energy Private Limited (Bitta)

Under Adani Solar Limited – 40 MW Solar Panel Power Unit is Situated at Bitta Village in Abdasa Taluka. We are providing Fodder Support and Health Camp Facilities at Bitta. Our Suposhan Project is running successfully at Bitta...


Adani Foundation has taken Eco Friendly initiative for whole village. Village street lights, School and GP is provided Solar Panel to save electricity. The unit was conceptualized and implemented by Solar Team.

As Abdasa is water scared region and very less rain in past years , as per humble request of villagers Adani Foundation has provided 1,13,750 Kg Fodder to Bitta, Dhrufi and Moti Dhrufi village.

Under "Sujlam Suflam Jal Abhiyan" Two Pond Deepening was carried out and got appreciation letter from District Magistrate.

Praveshotsav Kit is distributed in 8 schools covering 47 Students in Bitta and Surrounding seven villages. Our efforts were appreciated by community.

Employee Volunteering Program

704 children in the school are from families of migrant labourers working in various industries in and around Mundra. Children from migrant labourer families in addition to resource constraints at home also bear the disadvantage of unfamiliarity with local language and culture inhibiting participation in school.

Current year 997 students have been adopted – which is matter of proud. To make employees connected with children Vallabh Vidyalaya regularly send progress report twice in a year. Process of cheque handing over ceremony is delayed due to corona virus issues.

Employee Volunteering Program

International Yoga Day Celebrated at Shantivan Colony ground where 2100 students have participated from different Government School.

More than 500 Employees participated and HR Department has coordinated whole event. Chief Guest of the Event was Mr. Sunil Singhi Chairman, Labour welfare board, GOG We distributed 250 hooks to employees residing at Shantivan colony. Hook is the thin rod of steel. In this hook all will collect plastic bags. After three months we will collect all bags and give to Suzlon for recycle will made PVC Horse Pipe. **I.e "Waste to Best".** Employee's family members became determined for not using Plastic bags.

For motivation purpose facilitation of employee was done by Mrs. Vinita Rai (President, Ladies Group -Shantivan Colony)

Employee Volunteering Program

Periodic Support to Old age home at Gundala where total 105 Senior citizens are living.

Till Date 36 Adani Employee have celebrated Birthdays or any memorable day with senior citizen by sponsoring and servicing for lunch/dinner facility Dignity of workforce day was organized jointly of APSEZ (Adani ports n SEZ Limited), AWL(Adani Wilmar Limited), MSPVL (Mundra Solar Pvt Limited) Adani Hospital and Adani foundation at labour colony with medical camp and handing over of sanitation. more than 32 employees have volunteered in this event.

 Total OPD by Medical camp at Labour colony- 760 (5 Camps)
 Joy of Giving Week Cloth Distribution to 800 workers

In this event Mr. Sharad Sharna Head-AWL with staff, Bhaktbandhu DGM HR and Admin staff (APSEZ), Mr. Ganesh Sharma Head HR, President -Kutch Labour Union and Adani foundation team remained.

Page 145 of 456

"I have a Disability yes that's true, but all that really means is I may have to take a slightly different path than you."

We always complain to God, for life, for appearance, and for so many others. But today I am talking about Rubina, a young girl from Deshalpar village. Rubina has a unique personality, who, despite being unable to speak or listen, always she faces these physical shortcomings with a smile.

somehow Rubina found about Adani skill development beauty therapist course and she decided to join this course. when she joined the there was question in everyone's mind, is she enabled to do this course, how she will manage, how will learn, ask questions, listen etc. but she proved wrong to everyone. like miracle happens, she completed her training very smoothly. not just completed but she was very active and enthusiastic during training.

today she has started her mahendi studio, the amount of earning is not so much high, but the satisfaction is up to sky.

At the end she smiled and said

"Don't compare your struggles to anyone else's. Don't get discouraged by the success of others. Make your own path and never give up"

Suf Handicraft : Conserving "VIRASAT" of Decades

Parvati Ben's earliest memory of stitching delicate handicrafts is from when she was as little as 5-years-old. Since then, she has followed this art with an immense dedication that shows through her intricate and precise handiwork.

Parvati is a resident of Pragpar-2 village. She lives in a house with 5 other people and is the sole breadwinner. Even so, Parvati is a humble, loving and welcoming individual.

Parvati Ben had been practising her intricate Suf handicraft all along, making scarves, table cloths, garments and more for her fellow villagers and the occasional visitors. Her artwork had consistently been worth more than what she sold it for- her only desire being that her art finds an expression, a space in the world, however small it may be.

One day, Adani Foundation discovered this diligent, rigorous woman. Parvati Ben now works on projects brought to her by Adani Foundation and is hence able to sustain her entire family on her own. She has risen to be an aspirational figure, looked upon as a role model by her fellow village women. Parvati Ben is playing a major role in now setting up a federation for the village women across Mundra district to practise their handicraft work and earn a livelihood.

But more than all the titles and positions, what Parvati Ben deems sacred is the sheer recognition of her art. All she ever wanted was to be known as an artist and now she is the voice of this very own art, inspiring dozens of women like her to become independent.

When Miracle happened !!

One mentally disabled boy named Gyan was residing in one small village Bihar. During makarsankranti festival Ganga Snan he was going with his family. By mistake he entered in different train n reached to Bhuj.

As for any Train coming in western India Bhuj is last station and that's why many mentally disabled people found out in Bhuj.

27 years old Gyan was alone in Bhuj - he used to beg and eat, too tough life !!

After passing two months anyhow, One day due to small accident he was brought to Adani GKGH. During treatment, one smart para medical staff found out mobile number in tattoo drawn on his hand.

Staff members of GKGH called on this number and ask his family to come Bhuj.

Finally Gyan meet his family n back to his home.

Healthy Children Become Happy Children

Under the initiative of Balwadi at Vasahat (doorstep Early age Education for less Fisher folk), special awareness camps are organized for kids in school in order to imbibe health seeking behavior in the next generation. Various awareness activities based on healthy living are taught to them such as hand-washing steps and healthy eating habits so that they actively participate in adopting methods for personal hygiene in their daily routine.

Yamina is one of the student of Balwadi. She is five years old. Earlier she used to come to Balwadi without taking bath or hair combing. But after regular awareness camps for mother and students now she is coming well dressed and clean – due to maintaining personnel hygiene she remains healthy too..

Every Dark Cloud has Silver Lining

Ms. Ramila Maheswari belongs to village Dhrub. Her father's occupation is farming. She has completed graduation and was searching job but lacking in computer operation skill.

Ramila says one of my friends suggested me to join digital literacy training at Adani Skill Development Centre, Mundra. I visited the center with my friend and joined class. I sincerely attended all classes of the course and learnt basics of computer operation viz; Typing, Paint, MS Office (word, Excel, power point), shortcut Keys and using internet for web browsing like; Gmail, Paytm, amazon, net banking etc.

She is saying with smiling on face that

"Today, I am working with firm "YASH ENTERPRISE" in Nana Kapaya, Mundra as a customer care executive and earning Rs. 7000 per month. I am really thankful to Adani Skill development Center to make 'SAKSHAM'.

Pathways towards bright future !!

Kripalsinh Jadeja comes from Hatadi, Mundra with a family of 5 people, four elder brothers and parents. His father is a farmer and mother help him in farming. The brother is working as truck driver. The economic condition of the family was very poor.

Kripalsinh has completed 12th and was searching job. The team of ASDC Mundra had mobilized in the area where he stays and through which he got to know that Adani Skill Development Centre (ASDC) is providing training for checker-cum- RTG crane operator and this was his dream job.

He performed well during the training and understood how this training would help him to grow in future in the field he desires. He was regular to the classes and always eager to know the process well and he performed well during all the activities.

Kripalsinh says he gained back his confidence after starting the training and was motivated by the trainer to participate in all activities and grab any opportunity where he can showcase his skills.

He says that he got more support by getting additional training of soft skills, public speaking, professional manners and facing interviews with confidence.

While undergoing the ASDC training Kripalsinh never imagined that this additional knowledge and skill up gradation would bring him a bright future.

My Emotional Support

Adani Foundations' Senior Citizen Health Card is like a cure to our emotional, physical and psychological problem; in the times when we are completely lonely and handicap at age."....Says both of them while weeping.

Every human being has specific periods of the life wherein the childhood is for fun and the adulthood is spent for the family; remains old age to take care of health Adani Foundation is holded hands of the senior citizens of Mundra Rajendrasinh and his wife stay alone. Their son and daughters stay separately. They earn their living by grazing cattle. he is having severe arthritis and respiratory disorder. The source of income is very meager and that to dependent on rain. He had to borrow money from family friends or at times take on interest for taking basic treatment. His wife Shantaba also has blood sugar and hence she also requires medical assistance at times. The couple took Adani Foundations' Senior Citizen Health Card in 2015 by which they are able to save good amount, which was their medical expense every month.

Can any other relationship be as beautiful?"

When you grow old, loneliness is sometimes more painful than physical sickness. During routine visits of Dr Deven Goswami – Medical Officer of Rural clinic in Siracha the community as a health volunteer, he met Parma Ba (grandmother in Gujrati) who initially appeared as an introvert. She lives in Siracha Village. According to her neighbors, she confined herself within the four walls after her husband's demise. Despite living with her children, she is often seen sitting alone in the corridor of her house, as the family members are apparently busy with their own lives. Financially strained, she refrained from visiting a doctor due to fear of their exorbitant fee.

Dr. Deven was determined to not only get her to Rural Clinic, but also cultivate a health seeking behavior in her. He would keep on standing outside her house till the time she didn't agree to listen to his request. Do you know something? Ba is his best friend today. They not only share our secrets with each other, but also counsel each other as a mother and a son. Can any other relationship be as beautiful?"

Good Human Beings are Gods Incarnate

While many people talk about water crisis and drought in Kutchh, Rambhai Gadhavi of Zarpara has practically found and tried a solution to it and that is water conservation. Born into a poor farmer's family, he faced water problems in childhood and used to wake up at wee hours to fetch water, which inspired him to find ways of water conservation. Under Guidance and Support of Adani Foundation He practiced non-irrigation agricultural methods as solutions to water crisis which causes drought, thereby leading to Indian farmer suicides every year.

He did Bore well recharge and Farm Bunding to increase capacity of ground water though rain and to prevent run off. Not only that, he gave guidance to other farmers to accept water conservation practices.

Rambhai and his wife Veerbai's enthusiasm is remarkable in micro irrigation, fodder cultivation and Recharge activities. They are real change makers of "Sustainable Agriculture Projects" of Adani Foundation

Every drop that matters!

Kutchh district is a dry temperate zone and rainfall is negligible. Water requirement is met through the reservoirs in which the water decreases during summer months when crop is standing in the field. Whatever irrigation was provided resulted in soil erosion leading to loss of huge quantity of soil every year thereby increasing the farmer's problem in producing good quality crop. Therefore, usage of water and land is to be done sensibly by the farmer. Muljibhai The farmer of Navinal Village attended awareness programme of micro irrigation and organic farming organized by the Adani Foundation and showed interest in adopting the same. He was given every suitable help in subsidy and was persuaded into adopting drip irrigation for field crops.

Not only this, with support of DRDA and Adani Foundation he had adopted Bio gas which is utilized for cooking and organic fertilizer as well.

With the help of drip system, the Muljibhai was able to diversify towards different Horticulture crops like Pomegranate, Jamfal, chikoo etc. in addition to traditionally grown crops like Cotton and Caster. As a result, he is able to get 40-45% higher yield as compared to flood irrigated crops. Diversification has helped in improving returns from the same area.

Reenaben is making patients smile with compassionate care

Reena Amal has literally put his wise words into practice. An ambitious and determined girl, she was pursuing B.A. when tragedy struck. Her husband died of a heart attack leaving her widowed at the age of 24 with two young boys to raise. Unable to get support from her in-laws, she had to move back into her parents' home. In spite of being unsure about the future, her love for her children gives her new hope every single day. Her desire to provide them with a good education and a stable life fuels her to aspire for more. So, she joined ASDC's General Duty Assistant course and hasn't looked back since then.

Reena proved to be a dedicated student throughout the course. She impressed her trainers with her zeal to learn. She soon completed the course and became a successful patient care assistant. Currently, she is working at the G.K. General Hospital and earning salary of Rs. 9900/- pm in the OPD under the guidance of a dietician. She is learning how to prepare diet charts according to the needs of various patients. She is most grateful to ASDC in Bhuj for giving her this opportunity to become self-reliant and care for her children. Reena has truly risen above tragedies and obstacles in life by immersing herself in a life of serving and caring for others!

Dilipbhai says " Digital Literacy training has given a boost in my life."

"Change occurs at every turn of the page of life."

I am providing outsourcing services of Administration in G.K General Hospital, Bhuj. I am 40 plus and I have observed the IT wave and Artificial Intelligence has proved as boon in healthcare industry. Young colleagues at work are using their IT skills to make ease at work but growing Digitalization also brought many challenges for middle aged people like me. I enquired about Digital literacy course to many places but couldn't found the quality training centre. In Adani Skill Development Centre, I have not only improved my Ms office and typing skills but also found effective and time saving techsavy solutions for day to day time consuming activities. Dilip Joshi

Adani helped me to live with dignity !

Bhadreshwar is a well known village due to Suradas family, the generous donor Jagdusha and Jain temple Vasai Tirth ! Here we want to introduce a couple of this village who are blind ! Yes, Khetshi Chande and his wife Manglaben who live in this village with their daughter Trupti. His only source of income was the government pension. Once when Khetshibhai was with Karshanbhai from Adani at Mundra bus station, he sung few lines describing his own life. "Nach nachavya che ghana ne, aaj hu khud nachi rahyo chu, didha nathi pan devdavya chhe daan ghana ne, aaj khud yaachi rahyo chu; prabhu tari aa lilaa, jem tu ramade em rami rahyo chu !" which means once he was helping others and today he is asking others for help.

When Karshanbhai visited his home, he came to know that once upon a time Khetshibhai was having a small shop but due to less sell he stopped it. At this moment instantly Karshanbhai proposed Khetshibhai that he should start once again his shop and for that Adani would support him. This proposal made Khetshibhai very happy but than he asked if he could get any help from someone who could support him to buy grocery worth 10 thousand. Karshanbhai told him that he would put it in "Self reliance program" by Adani foundation for sure. After few days on the birthday of honorable Mr. Gautambhai Adani, there was a celebration at the school in Bhadreshwar on 24th May, 2018. In this celebration Khetshibhai was handed over a grocery kit which he was in need by Panktiben from Adani foundation in presence of Sarpanch and citizens.

Today Khetshibhai is running his shop at Maheshwarivas of Bhadreshwar village with all dignity ! He is happily earning around 2000 per month and is able to send his daughter to Adani vidhya mandir where she is studying in 7th ! This happy family is always blessing Adani foundation for helping needy people !

Pathways towards self Dependency!!

Tunda is a small village of Mundra block. Gorighar Goswami is pujari of Lord Shiva temple and he lives with his wife Anitaaben, three children and his mother. Gorighar was doing need based works in various companies for earning purpose and with that income he was fulfilling his family needs ! Ones when Gorighar was returning from other village an accident occurred with him and he died on the spot. When this news came to his family, it was unbelievable to them. Adani foundation respects all the invitation from the village but whenever there is any incident of sad demise, Adani

foundation is there for sure to consulate. A staff member of Adani foundation went to their home and gave consolation to Anitaben and promised her to help her .

In the next visit Devalben recognize the economical condition of the family as after him no one earning member was there in the family

We always believe that if something is there in your luck, no one can take it away from you. Llife teaches us that you will get whatever is there in your luck but not without your own efforts ! Anitaben is a person who was ready for every efforts to help her family ! This keen interest of this woman was noted by Adani foundation ! Anitaben was allotted a stitching machine in presence of CSR head of Adani Panktiben and Sarpanch of village Abdremanbhai Kumbhar.

As she was having knowledge of stitching, this stitching machine gave her a lift and she started her work with more force ! Today Anitaben is well known for her traditional cloths stitching and she is getting more and more orders from her village ! When she came to know that TATA power company is in need of lots of cloth bags, she grabbed the opportunity which helped her to earn good amount ! Today she is earning around 8 to 9 thousand which is enough to run her family very well ! She said, "Due to Adani foundation I have started not only earning very well but it has changed my life thoroughly ! On behalf of all women like me I would like to thank Adani Foundation !

World Environment Day

555+ Tree plantation in Bhuj, Mundra & Nakhtrana Taluka on world Environment day

> 9000+ cum Augmentation and deepening work of check dam in Mandvi & Lakhpat Taluka

World Environment Day was celebrated in Five Talukas by different activities related to conservation of Environment. These Events were organized in coordination with DDO, TDO, SDM and Village Leaders of all Five Talukas. The activities Tree Plantation, Check dam Augmentation work, Inauguration work of Godhatal Dam Deepening work. 11000+ Tree plantation during year in Bhuj, Mundra, Nakhtrana, Anjar, Lakhpat, and Mandvi Taluka

Mundra Adani foundation MUNDRA has celebrated swachhagraha related International Coastal Clean up Day celebrated with Coast Guard" with theme swachhagraha.. School students, Coast Guard staff and Adani foundation Staff had cleaned Mandvi beach and give a message of swachhagraha.. At the end information given about swachhagraha project

Teachers day celebration in coordination with District Education Office and District Development Office with Adani Foundation - District Level Best teacher Award on this auspicious day.

13 teachers is selected after screening by DEO Office and tofay award will be given in presence of DEO, DPEO and Vasan bhai Ahir Minister Gujarat.

Teacher's Day : Guru Vandana

Rethinking about future of plastics

National conference on current status n Rethinking about future of plastics was organized at GUIDE – Adani Foundation was partner of the Event. We have presented our efforts for changing mindset for No plastic awareness campaign..

Plus We also shared mangroves biodiversity project with GUIDE and given book to all present dignitaries

International Volunteer Day (IVD)

International Volunteer Day (IVD) on 5 December was designated by the United Nations in 1985 as an international observance day to celebrate the power and potential of volunteerism.

It is an opportunity for volunteers, and volunteer organisations, to raise awareness of, and gain understanding for, the contribution they make to their communities. On 3rd July – Occasion of" International No plastic Day" - AF Team has distributed 250 hooks to employees residing at Shantivan colony.

Hook is the thin rod of steel. In this hook all have collected plastic bag wrapper i.e. Waffer, Buiscuit, milk etc @ 8.5 Kg. This Plastic will be given for recycle for making Hose Pipe. I.e "Waste to Best". Employee's family members became determined for not using Plastic bags.

Today On 5th December – We have felicitated the five volunteers who collected highest quantity of plastic bags. Chief Guest of the Event was Ms. Vinita Rai (Head, SVC Ladies Club) and Mr. Avinash Rai (CEO, APSEZ).

Respected Ganesh Sharma Sir (VP – HR, APSEZ) and Respected Patiyal Sir (Head –Admin, APSEZ) had nicely coordinated for the Event.

This will be regular and sustainable event for AF.

Divine Feelings Towards Mata no Madh

People used to go by foot to Mata no madh in Navaratri. Total 8 camps at different locations is inaugurated today in way towards Mata no Madh by Adani Foundation Bhuj and GKGH Hospital.

Total 34537 Patients were benefitted in this Camp

Mata no Madh is a village in Lakhpat Taluka of Kutch district, Gujarat, India. The village lies surrounded by hills on both banks of a small stream and has a temple dedicated to Ashapura Mata. She is considered patron deity of Kutch. The village is located about 105 km from Bhuj, the headquarters of Kutch district.

"Ayushman Bharat – Celebrating First Birthday !!"

On the first birth anniversary of "AYUSHMAN ENROLMENT CARD" Adani Foundation Bhuj and Mundra had successfully completed 11 Ayushman card enrollment camps in a single Day.

Skill Development Training Program for Schedule Cast Beneficiaries

We could able to fulfil target of training 1440 SC beneficiaries from Eight Talukas from Kutchh for different courses.

Mr Vinod Chavda (MP, Kutchh and Morabi) Mrs Lata Solanki (Pramukh, Nagar Palika,Bhuj) Mr Rohit (District Social Justice and Empowerment), Mr Jatin Trivedi (Head, ASDC)and Mr solanki (Chairman, social justice commitee Kutchh) we're present.

courses

- 1. Hand embroidery
- 2. Self employed stitching
- 3. Mobile Repairing
- 4. Beauty parlor
- 5. Crane operator

completed 10 years of udaan

Education Minister Mr. Bhupendrasinh Chudasama visited Udaan Project and Utthan Project of Adani Foundation. He Appreciated Udaan Project which is truly inspirational and impactful Project. He got information though power pint presentation about Utthan Project – Enhancing Primary Education of Government School. He motivated and appreciated joint effort of AF Team and District Primary Education office

Events

Adani Foundation have arranged a program "**Celebrating The Health Of Women**" at Mundra. The motive was awareness in women about their health and issues. Around 250 women were participated in this event. Doctors were gave information about women health, periods cycle, breast cancer etc. Doctor discussed about breast cancer, its symptoms, precautions, does and don'ts etc., and advised women to go for regular check up after forties. At the end of program health kit distributed to women.

Republic Day Celebration at ASDC Centre

Bhuj Adani Skill Development Centre witnessed the celebration of the Republic Day on the 25th January, 2020.

Students, Staff and Faculty members filled with a feeling of patriotism and dedication gathered in front of the Guest & Director-Adani Foundation, Vasant Gadhavi. In his speech, the director highlighted the importance of the Constitution and its unique features in the preamble of the constitution. He also gave an insight on the various accomplishments achieved by Centre and motivated the crowd for bringing more laurels for the Centre through their accomplishments.

International disability day

Celebration of international disability day - Adani foundations Lakhpat celebrated three different programmes in coordination with District social welfare department and Lokseva trust.

1. Seva setu programme in which information and form fill up for various Govt schemes for Divyang I.e. bus pass, sadhan sahay and pension

2. Sadhan sahay - If beneficiary can not fulfill Govt criteria then of disability percentage or age bar - Adani foundation has supported beneficiaries.

3. Opening of swavlamban center in coordination of merchant association - widow women will stitch non woven bags and merchant association will purchase regularly and mamlatdar saheb will monitor the system.

Page 168 of 456

Mr. Karim Mansoori – Namda Artist was felicitated at National Artisan Expo Rajkot by Mr. Vijay Rupani along with 13 other artisans from all over Gujarat. the motive of felicitation was, their work towards community and their efforts for revising their art. Karim Mansoori was the only artisan of this art called "NAMDA" in Gujarat state. he was also part of this six-day National Artisan expo, for one week.

Page 169 of 456

With a great pleasure to share that APSEZ - CSR received such a big recognition as a honourable mention in western recognition under category Challenging circumstances under first National corporate social responsibility 2019.

Chief guest of the ceremony was our President Honble. Ramnath kovind. Ceremony was presided over by smt Nirmala sitaraman - Minister Finance and Guest of honour was Mr Anurag sinh Thakur Minsitry of state for finance and corporate affairs ..

Award received by Respected Dr Malay Mahadeviya and accompanied by Mr Rakshit shah and Mr Avinash Rai.

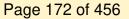
Page 170 of 456

Awards and Accolades

Awards and Accolades

8.

Apex India CSR Innovation Award 2019


Adani Foundation Mundra received **"Gold Award"** under Apex India CSR Innovation Award 2019 Today at Goa. Cheif Guest of the event was Shri Prasad (Union Minister Goa,GOI) and Guest of Honour Mr Suri (Former Governer Goa). From Adani Foundation Mundra - Mr Vijay Gosai (Coordinator SLD Projects) and Mr. Karsan Gadhvi (Sr PO SLD Projects) received the Award.

Page 171 of 456

0000000

Awards and Accolades

Awards and Accolades

8.

QCFI Best Case Study (National Award)2019

Nurturing Excellence in Environment and Self-reliance

It was an honour for our Mundra team to be presented with the 'Far Excellence' category award at the National Case Study Presentation Competition by Quality Circle Forum, for their 'Mangroves afforestation and alternate livelihood' case study. We hope to continue our efforts to #empower people and preserve the #environment for the betterment of all.

Page 173 of 456

Awards and Accolades

Awards and Accolades

8.

Quality education is all about providing students with the resources & opportunities that open a new window to the outside world. At our Adani Vidya Mandir schools, we're dedicatedly working to facilitate our children and make them future-ready. It's an immensely proud moment for us as Adani Vidya Mandir schools Bhadreshwar was recognised at the Samagra Shiksha Empowering India 2020 Awards, by Ministry of Human Resource Development, Government of India, for empowering children with education, ensuring a Brighter Tomorrow for India's future generations. The awards were presented by Dr.Ramesh Pokhriyal Nishank.

Page 175 of 456

Ms. Pankti Shah was invited as a guest of honour for Mission Eco Next "Eco Eureka Training" by ministry of science and technology - Government of India at KSKV Bhuj.

Initiatives of Adani Foundation for Biodiversity and water conservation was shared on this platform.

Mr. Mavajibhai Baraiya was invited as a guest of honor for "Creating Sustainable Farming Villages" by Krushi Research and Development Association by Vagad Visa Oswal Samaj. Initiatives of Adani Foundation for Fodder Sustainability and water conservation was shared by him.

Recognizing excellence in Con

Tich Indian Institute of Corporate Affairs

Chief Guest Shri Ram Nath Kovind

Hon'ble President of India

29 October 2019, Vigyan Bhawan, New Delhi

Pursided over by Smt Nirmala Sitharaman direction Managins of Farmers and Contracts Allians

Gaugh of Horson Shri Anurag Singh Thakur Interaction of States for Research and Componistic Atlance

successing they are appropriate and study

Simmer's

श्रीमती किर्मला सीतारमण श्री अनुराग सिंह वाकर the part statute and read with

Different settime.

29 अस्तराहार 2019, दिख्यान भारान, नाई दिल्ली

मुख्य असिथि

श्री राम नाथ कोविन्द

stimulat susarily sites indicat

Awards and Accolades

No	Core Area	Beneficiaries	Remarks
1	Education	7514	Uthhan, Praveshotsav, Labour School Support
2	Adani Vidya Mandir	443	School Students
3	UDAAN	33030	568 Institutes Visited
4	Adani Skill Dev. Center	2664	Mundra and Bhuj
5	Community health Mundra	62956	MHCU, Medical Camps, Senior Citizen
6	Community health Bhuj	25604	Health Camps, Mahiti Setu, patient care
7	SLD Fisherman	6970	Water, Education, Mangroves etc.
8	SLD Agriculture	2907	Drip Irrigation, Bio gas, tissue
9	SLD Women Empowerment	419	Saheli mahila gruh udyog – 12 SHG
10	Community Infra. Development	94206	Pond deepening, AKBTPL, Labours work
11	Suposhan Mundra	20565	Adolescent, Children and RPA
12	Nakhatrana	610	Community Health, Biodiversity and CID
13	Tuna	445	Cattle Owner, Praveshotsav, Svavlamban
14	Lakhpat	765	Cattle owner for fodder, Divyang and School Support
	Total Beneficiaries	259098	

Page 179 of 456

Financial Overview

	Adani Foundation	A REAL PROPERTY OF A REAL PROPER		
	Executive Summary-Budget	Utilization		
Sr. No.	Budget Line Item	Budget 2019-20	F.Y. 2019-20 Budget Utilization) (Rs. In Lacs % of utilization
A.	Admin Expense	71.50	64.47	90.17%
8.	Education	57.75	55,46	96.04%
C.	Community Health	220.66	244.89	110.98%
D.,	Sustainable Livelihood Development	487.80	451.41	92.54%
E,	Rural Infrastructure Development	321.53	249.36	77.56%
	Total AF CSR Budget :	1159.24	1065.60	91,92%
F.	Utthan - Education	108.93	81.21	74.55%
G.	Model Village	197.26	173.65	88.03%
	Total Project Utthan Budget	306.19	254.86	83.24%
H,	Adani Vidya Mandir - Bhadreshwar	204.35	184.93	90.50%
	Total AVMB Budget	204.35	184.93	90.50%
1	Project Udaan_Mundra	373.14	307.69	82.46%
	Total Project Udaan Budget	373.14	307.69	82.46%
	Grand Total :	2042.92	1813.08	88.75%

भारत सरकार Government of India कारपोरेट कार्य मंत्रालय Ministry of Corporate Affairs राष्ट्रीय कारपोरेट सामाजिक वावित्व (सीएसआर) पुरस्कार 2019 National Corporate Social Responsibility (CSR) Awards 2019

Certificate of

सम्माननीय उल्लेख Honourable Mention

चुनीतीपूर्ण परिस्थितियों में सीएसआर CSR in Challenging Circumstances

Others Indial

"अडानी पोर्ट्स एंड स्पेशल इकोनॉमिक ज़ोन लिमिटेड" "Adani Ports and Special Economic Zone Limited "

ng famili - Ann Delle feela: - Dele: 29-30-3020 affan - Seconses Nordfre and dener Winstry of Corporate Affan Annexure – 4

Clearer Production / Waste Minimization Facilitated

Recognised by MoEF New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

"HALF YEARLYENVIRONMENTAL MONITORING REPORT"

FOR

ADANI PORTS AND SPECIAL ECONOMIC ZONE LIMITED TAL: MUNDRA, KUTCH, MUNDRA – 370 421

MONITORING PERIOD: OCTOBER 2019 TO MARCH 2020

PREPARED BY:

POLLUCON LABORATORIES PVT.LTD.

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE/FAX – (+91 261) 2455 751, 2601 106, 2601 224. E-mail: pollucon@gmail.comweb: www.polluconlab.com

TC - 5945

ISO 9001:2015

ISO 14001:2015

OHSAS 18001:2007

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

MARINE WATER MONITORING SUMMARY REPORT

RESULTS OF MARINE WATER [M1 LEFT SIDE OF BOCHA CREEK - N 22°45'183" E 069°43'241"]

SR.	TEST		ОСТОВ	ER 2019	NOVEMB	ER 2019	DECEMB	ER 2019	JANUAF	RY 2020	FEBRUA	RY 2020	MARCH	1 2020	
NO.	PARAMETERS	UNIT	SURFACE	воттом	SURFACE	воттом	SURFACE	воттом	SURFACE	воттом	SURFACE	BOTTOM	SURFACE	воттом	TEST METHOD
1	рН		8.29	8.17	8.21	8.16	8.14	8.05	8.17	8.06	8.15	8.09	8.2	8.04	IS3025(P11)83Re.02
2	Temperature	oC	30.4	30.0	30.2	29.8	29.9	29.6	29.8	29.6	30	29.8	30.3	30.2	IS3025(P9)84Re.02
3	Total Suspended Solids	mg/L	276	296	196	127	136	164	149	164	129	146	216	250	IS3025(P17)84Re.02
4	BOD (3 Days @ 27 °C)	mg/L	4.8	Not Detected	5.3	Not Detected	4.2	Not Detected	3.6	Not Detected	3.8	Not Detected	4.0	2.0	IS 3025 (P44)1993Re.03Editi on2.1
5	Dissolved Oxygen	mg/L	5.9	6.0	5.9	6.1	5.5	5.9	5.7	5.9	5.6	5.4	8.8	6	IS3025(P38)89Re.99
6	Salinity	ppt	34.9	35.3	35.1	35.3	34.8	35.5	36.5	37.4	37.1	37.6	34.6	34.4	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	Not Detected	APHA(22 nd Edi)5520 D											
8	Nitrate as NO ₃	µmol/L	3.98	4.15	5.26	5.68	4.9	4.57	6.78	7.29	4.18	4.20	10.8	8.2	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	0.2	0.16	1.38	0.99	0.72	0.52	0.75	0.97	0.63	0.57	1.1	0.9	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH₃	µmol/L	1.90	2.10	3.29	3.47	3.12	2.93	2.69	2.52	1.79	1.86	6.24	5.54	IS3025(P34)88Cla.2. 3
11	Phosphates as PO_4	µmol/L	1.1	1.3	2.15	2.56	1.87	1.63	1.52	1.6	1.34	1.41	1.6	1.3	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	7.08	7.14	9.93	10.14	8.78	8.02	10.22	10.78	6.60	6.63	8.5	8.2	IS3025(P34)88
13	Petroleum Hydrocarbon	µg/L	Not Detected	Not Detected	10	Not Detected	13.6	Not Detected	12	Not Detected	17.6	10.2	18	4	PLPL-TPH
14	Total Dissolved Solids	mg/L	36258	36890.0	36710	36989	35874	36526	37468	38270	37998	38456	36218	36080	IS3025(P16)84Re.02
15	COD	mg/L	18	7.5	19	Not Detected	25	Not Detected	28	20.0	25	17.6	10	8.0	APHA(22 nd Edi) 5520-D Open Reflux
Α	Flora and Fauna														
16	Primary productivity	mgC/L /day	8.77	7.6	10	9.3	13.5	10.8	18.9	15.3	19.8	16.2	2.13	0.76	APHA (22nd Edi) 10200-J
В	Phytoplankton														
17.1	Chlorophyll	mg/m ³	3.57	2.45	2.93	2.72	3.25	2.83	2.93	2.67	3.15	2.83	1.11	0.929	APHA (22 nd Edi) 10200-H
-€	7-10-					ABORA	181					1	- the		
н. т.	H. T. Shah				BURAT-7					Dr. ArunBajpai					
Lab Manager						Od *	01					Lab N	lanager (Q)		

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

.pollu<u>con.com</u>

尺	DELLOSEN LABORATORIES P
$ \bigcirc $	Environmental Auditors, Consultants & Analysts.

Cleaner Production / Weste Minimization Pacificator

VT. LTD

						Clear	ier Production	1 / Waste NELL	Initiation Fac	ALL MADOR			1.0		
				Record	ised by Mol	EF. New De	lhi Under S	Sec. 12 of E	nvironmen	tal (Protecti	on) Act-198	6			
17.2	Phaeophytin	mg/m ³	0.2	1.2	1.1	1.1	1.3	1.3	2	2.26	1.63	1.73	3.2	2.90	APHA (22 nd Edi) 10200-H
17.3	Cell Count	No. x 10³/L	180	72	196	88	204	102	182	104	166	94	228	76	APHA (22 nd Edi) 10200-H
17.4	Name of Group Number and name of group species of each group		Pinnularia sp. Oscilatori a sp. Biddulphi a sp. Rhizosole nia sp.	Navicula sp. Thallasiosi ra sp. Thallasion ema sp. 	Biddulphi a sp. Rhizosole nia sp. Coscinodi scus sp. Navicula sp. 	Cheatocer ous sp. Navicula sp. Gyrosigm a sp. 	Amphipro ra sp. Gyrosigm a sp. Biddulphi a sp. Nitzschia sp. 	Thallasios ira sp. Navicula sp. Rhizosole nia sp. 	Synedra sp. Rhizosole nia sp. Biddulphi a sp. Skeletone ma sp. 	Navicula sp. Pleurosig ma sp. Thalassiot hrix sp. 	<i>Melosira</i> <i>sp.</i> <i>Cheatocer</i> <i>ous sp.</i> <i>peridiniu</i> <i>m sp</i> <i>Rhizosole</i> <i>nia sp.</i> <i>Thallasion</i> <i>ema sp.</i>	Fragillaria sp. Biddulphi a sp. Pleurosig ma sp.	Biddulphi a sp. Melosira sp. Navicula sp. Nitzschia sp. Skeletone ma sp.	Melosira sp. Navicula sp. Nitzschia sp. Fragillaria sp. 	АРНА (22 nd Edi) 10200-Н
С	Zooplanktons														
18.1	Abundance (Population)	noX10 ³ / 100 m ³	56 53		59		39		44		20		APHA (22 nd Edi) 10200-G		
18.2	Name of Group Number and name of group species of each group		Mysids Gastropods Copepods Polychaetes		Bivalves Crustaceans Mysids		Crusta Biva	apods aceans alves naetes	Deca Ctenoj	acods apods phores opods	Deca Polych Mys	aetes	Copepods Decapods Foraminiferans Ostracodes		APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	3.	.9	3.	.8	4.1		2	.1	3.4	15	4.	58	APHA (22 nd Edi) 10200-G
D	Microbiological Para	ameters													
19.1	Total Bacterial Count	CFU/ml	24	80	17	20	23	20	2450		2460		1770		IS 5402:2002
19.2	Total Coliform	/ml	Abs	ent	Abs	ent	Abs	sent	Absent		Absent		Absent		APHA(22 nd Edi)9221 D
19.3	Ecoli	/ml	Abs	ent	Abs	ent	Abs	sent	Absent		Absent		Absent		IS:1622:1981Edi.2.4 (2003-05)
19.4	Enterococcus	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Absent		Absent		IS: 15186:2002
19.5	Salmonella	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Absent		Abs	ent	IS : 5887 (P-3)
19.6	Shigella	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abs	sent	IS : 1887 (P-7)
19.7	Vibrio	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abs	sent	IS : 5887 (P-5)
- €	l					SURA SURA	1 all					Dr. Ar	unBajpai		
						Nod +	100								
Lab I	/lanager					-						Lab M	lanager (Q)	

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

NOCON o LABORATORIES PVT. LTD Environmental Auditors, Consultants & Analysts. Cleaner Production / Weste Minimization Pacificator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M1 LEFT SIDE OF BOCHA CREEK - N 22°45'183" E 069°43'241"]

SR.	TEST PARAMETERS	LINITT	OCTOBER 2019	NOVEMBER 2019	DECEMBER 2019	JANUARY 2020	FEBRUARY 2020	MARCH 2020	TEST METHOD
NO.	IESI PAKAMETERS	UNIT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	
1	Organic Matter	%	0.76	0.82	0.65	0.7	0.83	0.82	FCO:2007
2	Phosphorus as P	µg/g	504	576	612	743	712	170	APHA(22 nd Edi) 4500 C
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy	
4	Petroleum Hydrocarbon	µg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	5.2	4.86	5.2	4.96	4.72	5.6	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	µg/g	118	214	170	136	191	218	AAS 3111B
5.3	Manganese as Mn	µg/g	1236	969	934	905	938	1680	AAS APHA 3111 B
5.4	Iron as Fe	%	5.25	5.1	4.98	5.01	4.82	5.2	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	µg/g	21.4	37.4	43	37	27	80.6	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	µg/g	34.7	58.6	39	28	35	70.8	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	µg/g	175	224	120	139	158	240	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	µg/g	2.13	3.76	2.49	2.12	1.73	8.2	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	µg/g	0.07	Not Detected	Not Detected	Not Detected	Not Detected	0.12	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		amphipods Polychaetes 	Polychaetes Copepods amphipods	Polychaetes Echinoderms Crustaceans	Crustaceans Polychaetes Bivalves	Crustaceans Polychaetes	Decapods Amphipods 	APHA (22 nd Edi) 10500-C
6.2	MeioBenthos		Turbellarians	Foraminiferans		Foraminiferans	Nematodes	Copepods Hydrozoa	APHA (22 nd Edi) 10500-C
6.3	Population	no/m2	618	559	706	765	676	370	APHA (22 nd Edi) 10500-C

H. T. Shah

Lab Manager

harris

Dr. ArunBajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: pollucon@gmail.com Page 185 of 456

.pollucon.com

一日	8-230 m 2223
	DOLLOCON LABORATORIES PVT. LTD.
	Environmental Auditors, Consultants & Analysts.

Cleaner Production / Wester Minimization Pacilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M2 MOUTH OF BOCHA & NAVINAL CREEK - N 22°44'239" E 069°43'757"]

SR.			ОСТОВ	ER 2019	NOVEME	ER 2019	DECEME	ER 2019	JANUAF	RY 2020	FEBRUA	RY 2020	MARCI	H 2020	TEST
NO.	TEST PARAMETERS	UNIT	SURFACE	BOTTOM	METHOD										
1	рН		8.26	8.17	8.13	8.08	8.10	8.01	8.02	7.95	8.16	8.07	8.24	8.06	IS3025(P11)83 Re.02
2	Temperature	oC	30.5	30.1	30.1	29.7	29.9	29.4	29.9	29.7	30	29.9	30.3	30.1	IS3025(P9)84R e.02
3	Total Suspended Solids	mg/L	290	312	231	267	134	152	124	149	154	168	260	280	IS3025(P17)84 Re.02
4	BOD (3 Days @ 27 °C)	mg/L	4.3	Not Detected	3.3	Not Detected	3.6	Not Detected	3.0	Not Detected	3.2	Not Detected	4.0	3.0	IS 3025 (P44)1993Re.03 Edition2.1
5	Dissolved Oxygen	mg/L	6.0	6.1	5.8	6.0	5.6	5.9	5.7	5.9	5.7	5.4	6.6	6	IS3025(P38)89 Re.99
6	Salinity	ppt	35.1	35.3	35.5	35.9	34.7	36.4	36.9	37.6	36.8	37.5	34.9	34.6	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	Not Detected	APHA(22 nd Edi)5 520D											
8	Nitrate as NO ₃	µmol/L	4.18	4.85	5.3	5.41	4.8	4.3	7.12	7.6	6.14	6.30	14.2	10.2	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	1.3	1.14	1.37	0.92	0.68	0.5	0.376	0.79	0.43	0.59	1.5	1.1	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	µmol/L	1.50	2.10	3.26	3.51	3.14	2.91	2.74	2.68	1.90	1.82	5.9	5.5	IS3025(P34)88 Cla.2.3
11	Phosphates as PO_4	µmol/L	1.9	1.5	2.4	2.58	1.98	1.73	1.63	1.42	1.38	1.53	1.5	1.3	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	4.50	5.30	9.92	9.84	8.60	7.71	10.23	11.07	8.47	8.71	7.6	7.4	IS3025(P34)88
13	Petroleum Hydrocarbon	µg/L	Not Detected	Not Detected	9.3	Not Detected	11.4	Not Detected	15	Not Detected	14.9	13.2	17	7.0	PLPL-TPH
14	Total Dissolved Solids	mg/L	36610	37394	36890	37014	36186	37894	37812	38450	37616	38370	37128	36726	IS3025(P16)84 Re.02
15	COD	mg/L	16.2	7.0	24.0	Not Detected	23.0	Not Detected	25.0	19.0	28	21	12.0	10.0	APHA(22 nd Edi) 5520-D Open Reflux
Α	Flora and Fauna														
16	Primary productivity	mgC/ L/day	8.73	7.29	9.72	9.36	14.4	11.7	20.7	17.1	21.6	18	1.35	0.67	APHA (22nd Edi) 10200-J
В	Phytoplankton														
17.1	Chlorophyll	mg/ m ³	3.04	2.34	2.83	2.4	2.99	2.72	3.2	3.04	3.25	2.93	2.2	0.97	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/ m³	1.0	1.3	1.1	1.6	1.2	0.9	1.4	0.99	1.34	1.17	3.5	4.4	APHA (22 nd Edi) 10200-H
-€	7-10-					SURAT	C Salad					ha	- the		
н. т.	Shah					BISUMAN	2					Dr. Aru	nBajpai		
Lab I	Vlanager					Od *	01					Lab Ma	nager (Q)		

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART,

NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

1	t Rom	DEON	LABORATORIES PV1
\in	- Environmental A	outitors. Consci	Itants & Analysts

Cleaner Production / Weste Minimization Pacilitator

				Recognis	ed by MoE	E New Dell	hi Under Se	c. 12 of En	vironmenta	l (Protectio	n) Act-1986	6	-				
17.3	Cell Count	No. x 10 ³ /L	136	61	141	64	160	89	184	90	172	84	285	140	АРНА (22 nd Edi) 10200-Н		
17.4	Name of Group Number and name of group species of each group		<i>ceratiums p Coscinodi scus sp. Pinnularia sp.</i> 	Nitzschia sp. Surirella sp. Biddulphi a sp. 	Thallasion ema sp. Coscinodi scus sp. Biddulphi a sp. ceratium sp. 	Navicula sp. Rhizosole nia sp. 	Surirella sp. Biddulphi a sp. Coscinodi scus sp. Thallasion ema sp. Navicula sp.	<i>Melosira</i> sp. Nitzschia sp. Cyclotella sp. 	Nitzschia sp. Coscinodi scus sp. Pleurosig ma sp. Rhizosole nia sp. 	Navicula sp. Stauronei s sp. Synedra sp. 	Skeletone ma sp. Cyclotella sp. Biddulphi a sp. Melosira sp. Rhizosole nia sp.	Fragillaria sp. Nitzschia sp. Ceratium sp.	Biddulphi a sp. Cyclotella sp. Nitzschia sp. Peridiniu m Coscinodi scus sp.	Thallasio nema sp. Skeletone ma sp. Navicula sp. 	APHA (22 nd Edi) 10200-H		
С	Zooplanktons																
18.1	Abundance (Population)	noX10 ³ / 100 m ³	44	4	47		42		52		45		32		APHA (22 nd Edi) 10200-G		
18.2	Name of Group Number and name of group species of each group		Ostra Iamellib Chaetog	ranchs	Crusta	Crustaceans		gnathes naetes niferans	•		Foramin Chaetog Polych	inathes	Gastrot Coper Polychaet Bival	oods e worms	APHA (22 nd Edi) 10200-G		
18.3	Total Biomass	ml/10 0 m ³	2.2	25	2.	55	3.1		2.9		3.75		4.2		APHA (22 nd Edi) 10200-G		
D	Microbiological Param	eters															
19.1	Total Bacterial Count	CFU/ml	22	00	18	40	23	50	22	10	228	30	164	10	IS 5402:2002		
19.2	Total Coliform	/ml	Abs	ent	Abs	ent	Abs	ent	Absent		Absent		Absent		APHA(22 nd Edi)9 221-D		
19.3	Ecoli	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	sent	Absent		Absent		IS:1622:1981Ed i.2.4(2003-05)		
19.4	Enterococcus	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	sent	Absent		Abse	ent	IS: 15186 :2002		
19.5	Salmonella	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abse	ent	IS: 5887 (P-3)		
19.6	Shigella	/ml	Abs	ent	Abs	Absent		Absent		ent	Absent Absent		Absent		Absent		IS: 1887 (P-7)
19.7	Vibrio	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abse	ent	IS : 5887 (P-5)		

H. T. Shah

Lab Manager

have

Dr. ArunBajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

EMAIL: pollucon@gmail.com Page 187 01 456

loron LABORATORIES PVT. LTD Environmental Auditors, Consultants & Analysts, Cleaner Production / Weste Minimization Pacificator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M2 MOUTH OF BOCHA & NAVINAL CREEK - N 22°44'239" E 069°43'757"]

SR.			OCTOBER 2019	NOVEMBER 2019	DECEMBER 2019	JANUARY 2020	FEBRUARY 2020	MARCH 2020	TECT METUOD
NO.	TEST PARAMETERS	UNIT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	TEST METHOD
1	Organic Matter	%	0.69	0.7	0.54	0.73	0.65	0.72	FCO:2007
2	Phosphorus as P	µg/g	470	554	590	714	632	206	APHA(22 nd Edi) 4500 C
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy	
4	Petroleum Hydrocarbon	µg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	5.1	4.36	4.92	4.83	4.85	5.2	AAS APHA 3111 B
5.2	Total Chromium as Cr+3	µg/g	141	270	158	140	203	130	AAS 3111B
5.3	Manganese as Mn	µg/g	903	963	910	932	924	1940	AAS APHA 3111 B
5.4	Iron as Fe	%	5.22	4.9	4.86	4.98	4.98	5.1	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	µg/g	37.8	53.2	40	48	32	94.6	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	µg/g	39.1	28.4	35	32	27	62.8	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	µg/g	183	170	154	156	143	256	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	µg/g	2	3.16	2.68	2.36	1.69	10.7	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	µg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Polychaetes Gastropods 	Polychaetes Crustaceans 	Polychaetes Gastropods Branchayrans	Polychaetes Gastropods Crustaceans	Polychaetes Crustaceans Bivalves	Polychaete worms Amphipods Gastropods	APHA (22 nd Edi) 10500-C
6.2	MeioBenthos		Nematodes	Nematodes		Nematodes	_	Hydrozoa	APHA (22 nd Edi) 10500-C
6.3	Population	no/m ²	706	647	676	733	616	296	APHA (22 nd Edi) 10500-C

H. T. Shah

Lab Manager

harris

Dr. ArunBajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

EMAIL: pollucon@gmail.com Page 188 of 456 pollucon.com

尺	DOLLOCON LABORATORIES PVT. LTD.
-	Environmental Auditors, Consultants & Analysts.

Cleaner Production / Weste Minimization Pacilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M3 EAST OF BOCHAISLAND - N 22°46'530" E 069°41'690"]

SR. NO.	TEST PARAMETERS	UNIT	OCTOBI SURFACE	ER 2019 BOTTOM	NOVEMB			ER 2019	JANUAR			RY 2020	MARCH		TEST METHOD
					SURFACE	BOTTOM	IS3025(P11)83Re.								
1	рН		8.23	8.15	8.20	8.12	8.15	8.03	8.24	8.16	8.19	8.10	8.3	8.15	02
2	Temperature	oC	30.4	30.0	30.1	29.9	29.9	29.5	29.9	29.7	30	29.9	30.2	30.3	IS3025(P9)84Re.0 2
3	Total Suspended Solids	mg/L	283	326	192	211	208	216	183	174	144	152	248	224	IS3025(P17)84Re. 02
4	BOD (3 Days @ 27°C)	mg/L	4.5	Not Detected	4.0	Not Detected	4.2	Not Detected	3.3	Not Detected	3.7	Not Detected	4.0	3.0	IS 3025 (P44)1993Re.03Ed ition2.1
5	Dissolved Oxygen	mg/L	5.9	6.0	5.8	5.9	5.7	5.9	5.6	5.9	5.6	5.4	6.2	5.8	IS3025(P38)89Re. 99
6	Salinity	ppt	34.6	34.9	35.6	35.8	35.9	36.6	37.1	37.6	37.5	37.8	35	34.6	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	APHA(22 nd Edi)552 0D
8	Nitrate as NO ₃	µmol/L	3.91	4.28	5.1	5.29	5.36	5.57	6.28	6	5.18	5.0	13.8	8.0	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	0.16	0.11	1.36	1.14	1.1	1	0.65	0.75	0.61	0.48	1.2	0.6	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	µmol/L	3.27	3.90	3.57	3.81	3.40	3.62	2.42	2.16	1.92	1.73	2.7	2.2	IS3025(P34)88Cla .2.3
11	Phosphates as PO ₄	µmol/L	2.83	3.16	3.7	3.21	3.12	3.26	1.64	1.39	1.50	1.29	1.6	1.40	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	7.34	8.3	10.03	10.2	9.86	10.2	9.35	8.91	7.71	7.21	3.8	2.7	IS3025(P34)88
13	Petroleum Hydrocarbon	µg/L	12.0	Not Detected	11.3	Not Detected	15.0	Not Detected	12	Not Detected	19	Not Detected	18	12	PLPL-TPH
14	Total Dissolved Solids	mg/L	36024	36184	37010	37554	36410	37116	37810	38450	38370	38694	36210	35714	IS3025(P16)84Re. 02
15	COD	mg/L	15.6	8.2	24.0	Not Detected	27.0	Not Detected	25.0	19.0	23	17	10	8.0	APHA(22 nd Edi) 5520-D Open Reflux
А	Flora and Fauna														
16	Primary productivity	mgC/L /day	8.5	6.97	9.18	8.28	15.12	12.24	18.9	15.3	21.42	18	1.71	0.47	APHA (22nd Edi) 10200-J
В	Phytoplankton														
17.1	Chlorophyll	mg/m ³	3.2	2.24	2.83	2.72	2.93	2.88	3.09	2.67	3.31	3.09	2.5	0.65	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m ³	1.0	1.9	1.3	1.1	2.7	0.9	1.91	2.3	1.47	1.54	2.4	1.8	APHA (22 nd Edi) 10200-H
-6	1-0-					SURAT	181					F	- the		
Н. Т.	Shah					1 Contraction	E					Dr. Ar	unBajpai		
Lab N	/lanager					d *	0					Lab M	anager (Q)	1	

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

EMAIL: pollucon@gmail.com Page 189 01 456

MOCON LABORATORIES PVT. LTD. DO

Environmental Auditors, Consultants & Analysts.

Cleaner Production / Weste Minimization Pacilitator

			-	Recognis	ed by MoE	E New Del	hi Under Se	ec. 12 of En	vironments	d (Protectio	in) Act-198	6	-		
17.3	Cell Count	No. x 10³/L	146	70	184	78	196	86	178	94	164	84	264	96	APHA (22 nd Edi) 10200-H
17.4	Name of Group Number and name of group species of each group		Amphipro ra sp. Nitzschia sp. Thallasios ira sp. Ceratium sp.	Navicula sp. Coscinodi scus sp. Biddulphi a sp. 	Navicula sp. Coscinodi scus sp. Cheatocer ous sp. Rhizosole nia sp.	Nitzschia sp. Biddulphi a sp. Pleurosig ma sp. 	Navicula sp. Fragillaria sp. Thallasion ema sp. Coscinodi scus sp.	Nitzschia sp. Biddulphi a sp. Amphipro ra sp. 	Cheatocer ous sp. Navicula sp. Biddulphi a sp. Skeletone ma sp. 	Thalassio nema sp. Nitzschia sp. Navicula sp. 	Cyclotella sp. Rhizosole nia sp. Coscinodi scus sp. Ceratium sp.	Biddulphi a sp. Fragillaria sp. Cheatocer ous sp.	Nitzschia sp. Navicula sp. Coscinodi scus sp. Rhizosole nia sp. Biddulphi a sp.	Fragillari a sp. Navicula sp. Melosira sp. 	АРНА (22 nd Edi) 10200-Н
С	Zooplanktons														
18.1	Abundance (Population)	noX10 ³ / 100 m ³	4	1	4	6	4	4	4	7	4	2	20)	APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		Foramir Polych Gastro	naetes opods	Gastro Crusta Polych	ceans	My: Deca	epods sids ipods gnathes	Lamellib Gastro Deca Polych	pods pods	Polych Ostra Gastro	cods	Coper Nemat Polychaet	odes	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	2.	3	2.	6	2.	95	2.	9	3.	15	5.2	.8	APHA (22 nd Edi) 10200-G
D	Microbiological Para	meters													
19.1	Total Bacterial Count	CFU/ml	23	10	17	80	21	50	22	40	22	10	169	90	IS 5402:2002
19.2	Total Coliform	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abse	ent	APHA(22 nd Edi)922 1-D
19.3	Ecoli	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	Abse	ent	IS:1622:1981Edi.2 .4(2003-05)
19.4	Enterococcus	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	Abse	ent	IS: 15186:2002
19.5	Salmonella	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	Abse	ent	IS: 5887 (P-3)
19.6	Shigella	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abse	ent	IS: 1887 (P-7)
19.7	Vibrio	/ml	Abs	ent	Abs		Abs	sent	Abs	ent	Abs	ent	Abse	ent	IS: 5887 (P-5)
	┨───॑ <mark></mark> Shah Vanager					SURAT	The state					Dr. Arı	unBajpai anager (Q)		

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

Environmental Auditors, Consultants & Analysts.

Cleaner Production / Weste Minimization Pacilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M3 RIGHT SIDE OF BOCHA CREEK - N 22°46'530" E 069°41'690"]

SR. NO. TEST PARAMETERS		OCTOBER 2019	NOVEMBER 2019	DECEMBER 2019	JANUARY 2020	FEBRUARY 2020	MARCH 2020	TECT METHOD	
NO.	IESI PARAMETERS	UNIT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	TEST METHOD
1	Organic Matter	%	0.7	0.74	0.73	0.65	0.55	0.63	FCO:2007
2	Phosphorus as P	µg/g	461	560	658	698	672	150	APHA(22 nd Edi) 4500 C
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy	
4	Petroleum Hydrocarbon	µg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	5.07	4.46	5.12	4.76	4.89	5.43	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	µg/g	163	276	172	152	169	150	AAS 3111B
5.3	Manganese as Mn	µg/g	970	1010	953	917	960	1570	AAS APHA 3111 B
5.4	Iron as Fe	%	5.18	4.69	4.6	4.86	4.9	5.12	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	µg/g	41.3	59.4	37	30	39	50.2	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	µg/g	35.7	47.3	43	28	32	40.6	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	µg/g	201	251	165	198	183	218	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	µg/g	2.84	2.6	1.9	2	1.78	11.6	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	µg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Polychaetes Gastropods 	Crustaceans Gastropods 	Branchayrans amphipods Gastropods	Polychaetes Ostracods amphipods	Polychaetes Crustaceans	Polychaete worms Isopods Decapods	APHA (22 nd Edi) 10500-C
6.2	MeioBenthos		Nematodes	Foraminiferans		Nematodes	Nematodes	Nematodes	APHA (22 nd Edi) 10500-C
6.3	Population	no/m ²	676	588	704	735	618	340	APHA (22 nd Edi) 10500-C
- € н. т.	त्ररिप Shah			ABORA MODIFIC	TT VI CALL			Dr. ArunBajpai Lab Manager (Q)	

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

EMAIL: pollucon@gmail.com Page 191 01 456

Cleaner Production / Weste Minimization Pacilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M4 JUNA BANDAR N 22°47'577" E 069°43'620"]

SR.	TEST PARAMETERS	UNIT	ОСТОВ			SER 2019		ER 2019	JANUAF		FEBRUA		MARCI		TEST
NO.		0.111	SURFACE	BOTTOM	METHOD										
1	рН		8.25	8.17	8.18	8.12	8.17	8.03	8.21	8.15	8.27	8.21	8.11	8.07	IS3025(P11)83R e.02
2	Temperature	oC	30.6	30.2	30.1	29.8	29.9	29.5	29.9	29.7	30	29.9	30.2	30	IS3025(P9)84Re .02
3	Total Suspended Solids	mg/L	264	289	237	249	210	226	236	252	184	201	285	219	IS3025(P17)84R e.02
4	BOD (3 Days @ 27 °C)	mg/L	4.9	Not Detected	3.2	Not Detected	3.8	Not Detected	3.5	Not Detected	4.1	Not Detected	2.5	1.8	IS 3025 (P44)1993Re.03 Edition2.1
5	Dissolved Oxygen	mg/L	6.0	6.2	5.7	5.9	5.6	5.7	5.7	5.9	5.6	5.4	5.8	5.2	IS3025(P38)89R e.99
6	Salinity	ppt	35.2	35.7	37	37.3	35.8	36.5	37.0	37.7	37.3	37.9	35	34.2	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	Not Detected	APHA(22 nd Edi)5 520D											
8	Nitrate as NO ₃	µmol/L	3.57	3.81	4.98	5.16	5.2	5.36	6.40	5.97	4.79	4.58	20.6	17.4	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	0.23	0.17	1.3	1.18	1.19	0.9	0.85	0.68	0.72	0.60	1.2	0.8	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	µmol/L	2.91	3.24	3.68	3.34	3.76	3.52	1.92	1.76	1.83	2.14	2.2	1.8	IS3025(P34)88C la.2.3
11	Phosphates as PO ₄	µmol/L	2.16	2.39	3.49	2.56	3.64	3.13	1.84	1.45	1.56	1.83	1.7	1.4	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	6.71	7.22	9.96	9.68	10.15	9.78	9.17	8.41	7.34	7.32	7	6	IS3025(P34)88
13	Petroleum Hydrocarbon	µg/L	15	Not Detected	17	Not Detected	13	Not Detected	15.2	Not Detected	19	Not Detected	14	8.0	PLPL-TPH
14	Total Dissolved Solids	mg/L	36818	37260	37162	37428	36280	37771	37910	38540	38185	38726	36840	36320	IS3025(P16)84R e.02
15	COD	mg/L	21.0	8.6	25	Not Detected	28	Not Detected	29	17	25	16.3	8.0	6.0	APHA(22 nd Edi) 5520-D Open Reflux
Α	Flora and Fauna	<u> </u>													
16	Primary productivity	mgC/L/d ay	8.07	6.16	9.45	8.46	13.95	12.15	19.8	16.2	21.5	17.82	2.56	0.67	APHA (22nd Edi) 10200-J
В	Phytoplankton														
17.1	Chlorophyll	mg/m ³	2.93	2.67	2.88	2.72	3.2	2.93	3.04	2.72	3.09	2.88	3.1	0.7	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m ³	1.7	1.1	2.1	1.9	2.6	1.7	1.78	2.32	1.54	1.6	2.4	1.7	APHA (22 nd Edi) 10200-H
-O-D															
Н. Т.	Shah					SURAT-7	IV					Dr. Aru	nBaipai		
	Vlanager					Tod + O	\mathbf{S}						nager (Q)		

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

尺	DOLLOCON LABORAT
$ \bigcirc $	Environmental Auditors, Consultants & An

Environmental Auditors, Consultants & Analysts. Cleaner Production / Weste Minimization Pacificator

TORIES PVT. LTD

				Recognise	d by MoEF	New Delhi	Under Sec	12 of Env	ironmental	Protection	1 Act-1986	5	-		
17.3	Cell Count	No. x 10 ³ /L	156	76	178	90	204	98	180	107	164	90	310	80	APHA (22 nd Edi) 10200-H
17.4	Name of Group Number and name of group species of each group	-	Oscillatori a Navicula sp. Gyrosigm a sp. 	Navicula sp. Fragillaria sp. Ditylium sp. 	Coscinodi scus sp. Cyclotella sp. Nitzschia sp. Thallasion ema sp.	Navicula sp. Rhizosole nia sp. Biddulphi a sp. 	Thallasion ema sp. Pleurosig ma sp. Biddulphi a sp. Ceratium sp.	Amphipro ra sp. Navicula sp. Cyclotella sp. 	Nitzschia sp. Rhizosole nia sp. Cheatocer ous sp. Pleurosig ma sp. 	Navicula sp. Biddulphi a sp. Synedra sp. 	Melosira sp. Coscinodi scus sp. Thallasios ira sp. Pleurosig ma sp. Nitzschia sp.	Ceratium sp. Cheatocer ous sp. Navicula sp. Nitzschia sp.	Fragillaria sp. Melosira sp. Pinnularia sp. Rhizosole nia sp. Skeletone ma sp.	Nitzschia sp. Amphora sp. Biddulphi a sp. 	АРНА (22 nd Edi) 10200-Н
С	Zooplanktons														
18.1	Abundance (Population)	noX10 ³ / 100 m ³	4	5	5	0	4	7	5	3	4	3	17		APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		Ctenop Polych Crusta -	naetes	Polych Gastro Nemai	opods	Polych Cope Ostra Chaetog	icods	Deca Lamellib	nipods Ipods Ioranches Inaetes	Polych Chaetog Ctenop	gnathes	Cope Ostrac Mollus Ostra	codes scans	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	2.	.6	3.	2	3	3	3.	25	3.3	35	10	.2	APHA (22 nd Edi) 10200-G
D	Microbiological Paran	neters													
19.1	Total Bacterial Count	CFU/ml	25 [,]	40	15	40	22	30	21	.80	23	20	15	40	IS 5402:2002
19.2	Total Coliform	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	APHA(22 nd Edi)9 221-D
19.3	Ecoli	/ml	Abs	sent	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	IS:1622:1981Edi .2.4(2003-05)
19.4	Enterococcus	/ml	Abs	sent	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	IS:15186 :2002
19.5	Salmonella	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	IS: 5887 (P-3)
19.6	Shigella	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	IS : 1887 (P-7)
19.7	Vibrio	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	IS : 5887 (P-5)

5 -

H. T. Shah

Lab Manager

have

Dr. ArunBajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

EMAIL: pollucon@gmail.com Page 193 of 456

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M4 JUNA BANDAR N 22°47'577" E 069°43'620"]

SR.	TEST PARAMETERS	LINITT	OCTOBER 2019	NOVEMBER 2019	DECEMBER 2019	JANUARY 2020	FEBRUARY 2020	MARCH 2020	TEST METHOD
NO.	IESI PAKAMETEKS	UNIT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	
1	Organic Matter	%	0.71	0.78	0.65	0.69	0.69	0.96	FCO:2007
2	Phosphorus as P	µg/g	503	546	624	684	658	190	APHA(22 nd Edi) 4500 C
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy	
4	Petroleum Hydrocarbon	µg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	4.85	4.28	5.23	4.8	4.79	5.5	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	µg/g	195	253	163	176	181	190	AAS 3111B
5.3	Manganese as Mn	µg/g	987	1034	926	902	956	1940	AAS APHA 3111 B
5.4	Iron as Fe	%	5.11	4.86	4.5	5.12	4.83	5.35	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	µg/g	48.3	50.8	39	18	28	38.6	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	µg/g	54.8	33.2	54	26	32	72.2	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	µg/g	211	180	116	175	192	222	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	µg/g	2.73	2.14	1.9	2.1	1.86	10.2	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	µg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Crustaceans Gastropods 	Copepods Polychaetes 	Gastropods Polychaetes Crustaceans	Polychaetes Gastropods Mysids	Copepods Polychaetes Crustaceans	Polychaete worms Isopods Decapods	APHA (22 nd Edi) 10500-C
6.2	MeioBenthos		Nematodes Foraminiferans	Nematodes	Foraminiferans	Nematodes	_	Bryozoans	APHA (22 nd Edi) 10500-C
6.3	Population	no/m²	706	618	645	794	676	296	APHA (22 nd Edi) 10500-C

H. T. Shah

Lab Manager

haven Dr. ArunBajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

LABORATORIES PVT. LTD. Environmental Auditors, Consultants & Analysts.

Cleaner Production / Weste Minimization Pacilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M5 TOWARDS WESTERN SIDE OF EAST PORT - N 22°46'041" E 069°47'296"]

SR.	TEST PARAMETERS	UNIT	ОСТОВ		NOVEMB		DECEMB		JANUA			RY 2020	MARCH 2020		TEST
NO.		0.111	SURFACE	BOTTOM	SURFACE	BOTTOM	METHOD								
1	рН		8.25	8.21	8.21	8.17	8.15	8.06	8.21	8.10	8.26	8.20	8.16	8.12	IS3025(P11)83Re .02
2	Temperature	oC	30.4	30.1	30.0	29.8	29.9	29.6	29.9	29.7	30.1	29.9	30.6	30.2	IS3025(P9)84Re. 02
3	Total Suspended Solids	mg/L	279	296	172	190	184	201	198	185	181	203	209	170	IS3025(P17)84Re .02
4	BOD (3 Days @ 27 °C)	mg/L	4.5	Not Detected	3.2	Not Detected	4.0	Not Detected	3.6	Not Detected	4.2	Not Detected	4.0	3.0	IS 3025 (P44)1993Re.03E dition2.1
5	Dissolved Oxygen	mg/L	5.8	6.0	5.7	5.9	5.6	5.9	5.7	5.9	5.7	5.3	6.2	5.8	IS3025(P38)89Re .99
6	Salinity	ppt	34.1	38.2	36.3	37.2	35.8	36.6	37	37.8	375	37.7	34.8	34.5	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	Not Detected	Not Detected	APHA(22 nd Edi)55 20D										
8	Nitrate as NO ₃	µmol/L	3.7	3.9	4.72	5.16	4.95	5.12	6.79	7.30	4.96	4.70	14.2	12.4	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	0.26	0.3	1.13	1.38	1	0.9	0.92	1.26	0.84	0.67	1.3	1.1	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH₃	µmol/L	3.57	4.00	3.16	3.47	3.54	3.18	2.74	2.58	1.96	1.72	1.9	1.5	IS3025(P34)88Cl a.2.3
11	Phosphates as PO ₄	µmol/L	2.17	2.35	2.48	3.12	2.69	2.8	1.90	1.73	1.70	1.56	1.7	1.4	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	7.53	8.20	9.01	10.01	9.49	9.20	10.45	11.14	7.76	7.09	2.8	2.4	IS3025(P34)88
13	Petroleum Hydrocarbon	µg/L	14.0	Not Detected	12.0	Not Detected	15.3	Not Detected	12.6	Not Detected	15.8	Not Detected	18	7	PLPL-TPH
14	Total Dissolved Solids	mg/L	36898	36920	37242	37671	36310	37612	37912	38634	38496	38630	35720	35230	IS3025(P16)84Re .02
15	COD	mg/L	17.4	7.2	21.0	Not Detected	20.0	Not Detected	23	16	24.8	17.4	12.0	10.0	APHA(22 nd Edi) 5520-D Open Reflux
Α	Flora and Fauna														
16	Primary productivity	mgC/L /day	7.96	6.41	9	8.46	13.68	11.97	19.35	16.2	19.62	16.56	1.84	0.83	APHA (22nd Edi) 10200-J
В	Phytoplankton														
17.1	Chlorophyll	mg/m ³	2.93	2.34	2.88	2.5	3.25	3.04	3.20	2.72	3.31	2.93	1.16	0.97	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m ³	1.3	2.0	1.9	1.8	1.8	1.9	0.98	1.69	2.0	1.96	2.2	1.6	APHA (22 nd Edi) 10200-H
-€	7-10-					Call Call	1001					F.	- the		
	Shah Manager					SURAT	el la						unBajpai anager (Q)	1	

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

.pollucon.com

尺	POLLOCON LABORATORIES PV
	Environmental Auditors, Consultants & Analysts,

Cleaner Production / Weste Minimization Pacifilitator

			-	Recognis	ed by MoE	F New Del	hi Under Se	ec. 12 of En	vironments	al (Protectio	on) Act-198	6	_		
17.3	Cell Count	No. x 10 ³ /L	138	50	168	82	190	102	204	102	172	94	340	90	APHA (22 nd Edi) 10200-H
17.4	Name of Group Number and name of group species of each group	-	Cheatocer ous sp. Cyclotella sp. Rhizosole nia sp. Skeletone ma sp.	Rhizosole nia sp. Melosira sp. Gyrosigm a sp. 	Rhizosole nia sp. Cyclotella sp. Cheatocer ous sp. Skeletone ma sp.	Biddulphi a sp. Rhizosole nia sp. Pleurosig ma sp. 	Navicula sp. Rhizosole nia sp. Thallasion ema sp. Biddulphi a sp.	Nitzschia sp. Melosira sp. Rhizosole nia sp. 	Synedra sp. Biddulphi a sp. Coscinodi scus sp. Navicula sp. 	Nitzschia sp. Pleurosig ma sp. Rhizosole nia sp. 	Navicula sp. Melosira sp. Thallasios ira sp. Coscinodi scus sp. Ceratium sp.	Ceratium sp. Nitzschia sp. Biddulphi a sp. Skeletone ma sp.	Amphora sp. Fragillaria sp. Melosira sp. Rhizosole nia sp. Coscinodi scus sp.	Fragillaria sp. Melosira sp. Nitzschia sp. 	АРНА (22 nd Edi) 10200-Н
С	Zooplanktons														
18.1	Abundance (Population)	noX10 ³ / 100 m ³	5	3	6	0	5	5	4	6	5	0	1!	5	APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		Polych Gastro Crusta	opods	Crusta Cope -	pods	Polycl	epods naetes opods	,		Chaetog Polych Deca	aetes	Polychaet Amph Gastrot Cope	ipods triches	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	2.	.8	4.	45	3	.7	2.4	45	3.	.4	5.6	59	APHA (22 nd Edi) 10200-G
D	Microbiological Para														
19.1	Total Bacterial Count	CFU/m I	23	80	21	20	21	80	22	50	22	40	182	20	IS 5402:2002
19.2	Total Coliform	/ml	Abs	ent	Abs	sent	Abs	sent	Abs	sent	Abs	ent	Abs	ent	APHA(22 nd Edi)92 21-D
19.3	Ecoli	/ml	Abs	ent	Abs	sent	Abs	sent	Abs	sent	Abs	ent	Abs	ent	IS:1622:1981Edi. 2.4(2003-05)
19.4	Enterococcus	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	IS: 15186:2002
19.5	Salmonella	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	IS : 5887 (P-3)
19.6	Shigella	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	IS: 1887 (P-7)
19.7	Vibrio	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	IS: 5887 (P-5)

-20

H. T. Shah

Lab Manager

have

Dr. ArunBajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

ideon LABORATORIES PVT. LTD Environmental Auditors, Consultants & Analysts, Cleaner Production / Weste Minimization Pacificator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M5 TOWARDS WESTERN SIDE OF EAST PORT - N 22°46'041" E 069°47'296"]

SR.			OCTOBER 2019	NOVEMBER 2019	DECEMBER 2019	JANUARY 2020	FEBRUARY 2020	MARCH 2020	TECT METHOD
NO.	TEST PARAMETERS	UNIT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	TEST METHOD
1	Organic Matter	%	0.75	0.71	0.53	0.7	0.75	0.8	FCO:2007
2	Phosphorus as P	µg/g	469	518	590	638	672	270	APHA(22 nd Edi) 4500 C
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy	
4	Petroleum Hydrocarbon	µg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	4.63	4.23	4.98	4.7	4.82	5.33	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	µg/g	189	263	156	168	153	170	AAS 3111B
5.3	Manganese as Mn	µg/g	1137	974	928	940	968	1380	AAS APHA 3111 B
5.4	Iron as Fe	%	3.83	4.65	5.1	4.82	4.9	5.4	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	µg/g	39.5	23.9	31	42	32	21.8	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	µg/g	47.3	41.4	35	30	28	60.6	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	µg/g	187	237	174	158	162	172	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	µg/g	2.64	2.19	1.96	2.14	1.76	17.2	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	µg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	0.18	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Polychaetes amphipods 	Copepods Isopods Crustaceans	Polychaetes Crustaceans amphipods	Hydrozoans Polychaetes Isopods Crustaceans	Polychaetes Gastropods	Polychaete worms Isopods Mysids	APHA (22 nd Edi) 10500- C
6.2	MeioBenthos		Turbellarians Nematodes				Foraminiferans	Hydrozoa	APHA (22 nd Edi) 10500- C
6.3	Population	no/m2	765	676	735	762	645	364	APHA (22 nd Edi) 10500- C

H. T. Shah

Lab Manager

harris

Dr. ArunBajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 .pollu<u>con.com</u>

Cleaner Production / Weste Minimization Pacilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M7 EAST PORT N 22°47'120" E 069°47'110"]

SR.	TEST PARAMETERS	UNIT	ОСТОВІ		-	SER 2019		ER 2019		RY 2020		RY 2020	MARCH		TEST METHOD
NO.		0.111	SURFACE	BOTTOM											
1	рH		8.21	8.13	8.19	8.10	8.17	8.09	8.21	8.14	8.24	8.19	8.05	8.09	IS3025(P11)83Re. 02
2	Temperature	oC	30.3	30.1	30.0	29.8	29.9	29.7	29.9	29.6	30	29.5	30.1	29.6	IS3025(P9)84Re.0 2
3	Total Suspended Solids	mg/L	298	312	239	261	206	218	170	182	168	187	186	156	IS3025(P17)84Re. 02
4	BOD (3 Days @ 27°C)	mg/L	4.5	Not Detected	3.6	Not Detected	4.1	Not Detected	4.2	Not Detected	4.0	Not Detected	2.2	1.6	IS 3025 (P44)1993Re.03Ed ition2.1
5	Dissolved Oxygen	mg/L	5.9	6.1	5.8	6.0	5.6	5.9	5.7	5.9	5.6	5.3	6.2	5.8	IS3025(P38)89Re. 99
6	Salinity	ppt	35.2	35.7	36.4	37.3	35.9	36.6	36.7	37.5	37.1	37.8	34.8	34.5	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	Not Detected	APHA(22 nd Edi)552 0D											
8	Nitrate as NO ₃	µmol/L	3.64	3.83	4.7	4.97	4.98	5.12	6.24	6.47	4.76	4.56	7.8	5.2	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	0.31	0.24	1.23	1.42	1.14	1.28	0.93	1.40	0.57	0.69	1.1	0.8	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	µmol/L	3.69	3.81	3.83	4.10	3.26	3.17	2.50	2.37	1.92	1.72	3.1	1.9	IS3025(P34)88Cla .2.3
11	Phosphates as PO ₄	µmol/L	2.41	2.62	1.76	2	1.89	2.3	1.62	1.48	1.36	1.58	1.43	2.24	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	7.64	7.88	9.76	10.49	9.38	9.57	9.67	10.24	7.25	6.97	4.3	2.8	IS3025(P34)88
13	Petroleum Hydrocarbon	µg/L	15.0	Not Detected	13.0	Not Detected	15.0	Not Detected	17	Not Detected	19.8	Not Detected	15	10.0	PLPL-TPH
14	Total Dissolved Solids	mg/L	36624	37260	36928	37742	36371	37123	37638	38634	37994	38696	35602	35112	IS3025(P16)84Re. 02
15	COD	mg/L	16.3	7.9	25	Not Detected	21	Not Detected	27	18	25.2	19	7	6.0	APHA(22ndEdi) 5520-D Open Reflux
Α	Flora and Fauna														
16	Primary productivity	mgC/L /day	7.31	6.25	9.18	8.46	12.96	10	19.62	15.48	20.25	16.47	1.6	1.3	APHA (22nd Edi) 10200-J
В	Phytoplankton														
17.1	Chlorophyll	mg/m ³	2.67	2.45	2.83	2.5	3.04	2.77	3.20	2.9	3.36	2.7	1.15	0.97	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m ³	1.1	1.9	1.5	1.3	1.8	1.8	1.21	1.12	1.16	2.11	2.4	1.9	APHA (22 nd Edi) 10200-H
-O-D															

H. T. Shah

Lab Manager

Dr. ArunBajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

.pollucon.com

EMAIL: pollucon@gmail.com Page 198 of 456

14	5-000 0-000
1	DOLLOCON LABORATORIES PVT. LTD.
$ \bigcirc $	C CONTRACTOR CROCKATORIES FVT. ETD.

Environmental Auditors, Consultants & Analysts, Cleaner Production / Weste Minimization Pacificator

				Recognis	ed by MoE	E New Dell	hi Under Se	ec. 12 of En	vironments	al (Protectio	in) Act-198	6	_												
17.3	Cell Count	No. x 10 ³ /L	156	62	172	64	192	84	204	106	164	90	270	65	APHA (22 nd Edi) 10200-H										
17.4	Name of Group Number and name of group species of each group		Coscinodi scus sp. Rhizosole nia sp. Biddulphi a sp. Thallasios ira sp.	Ceratium sp. Nitzschia sp. Fragillaria sp. 	Navicula sp. Coscinodi scus sp. Biddulphi a sp. ceratium sp. 	Navicula sp. Rhizosole nia sp. Fragillaria sp. 	Navicula sp. Pleurosig ma sp. Coscinodi scus sp. Fragillaria sp. Thallasion ema sp.	Nitzschia sp. Melosira sp. Rhizosole nia sp. Biddulphi a sp. 	Biddulphi a sp. Coscinodi scus sp. Rhizosole nia sp. Cheatocer ous sp. 	Nitzschia sp. Pleurosig ma sp. Biddulphi a sp. 	Melosira sp. cymbella sp Thallasios ira sp. Coscinodi scus sp.	Nitzschia sp. Rhizosole nia sp. Biddulphi a sp. cymbella sp	Amphora sp. Cyclotella sp. Rhizosole nia sp. Navicula sp. Thallasion ema sp. Coscinodi scus sp.	Biddulphi a sp. Melosira sp. Rhizosole nia sp. 	АРНА (22 nd Edi) 10200-Н										
С	Zooplanktons																								
18.1	Abundance (Population)	noX10 ³ / 100 m ³	5	5	5	9	5	3	4	3	47		18	3	APHA (22 nd Edi) 10200-G										
18.2	Name of Group Number and name of group species of each group		Polych Cope Mys Deca	pods sids	Gastro Cope Crusta	pods	Foramii Cope Polycł	pods	Foramir Amph Deca Gastro	ipods pods	Polych Deca Chaetog	pods	Polychaet Amph Gastrot Ostra	pods riches	APHA (22 nd Edi) 10200-G										
18.3	Total Biomass	ml/100 m ³	2.	8	3.	.4	1	3	3.1		3.75		8.	2	APHA (22 nd Edi) 10200-G										
D	Microbiological Para	meters																							
19.1	Total Bacterial Count	CFU/ml	24	20	17	40	22	.80	21	40	22	50	194	10	IS 5402:2002										
19.2	Total Coliform	/ml	Abs	ent	Abs	Absent		Absent		Absent		Absent		Absent		ent	Absent		Absent		Absent		Abs	ent	APHA(22 nd Edi)922 1-D
19.3	Ecoli	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	IS:1622:1981Edi.2 .4(2003-05)										
19.4	Enterococcus	/ml	Abs		Abs			ent	Abs		Absent		Absent		Abs		IS: 15186:2002								
19.5	Salmonella	/ml	Abs		Abs			sent	Absent		Absent		Abs		IS : 5887 (P-3)										
19.6	Shigella	/ml	Abs		Absent		Absent Abser			Absent						Abs		IS: 1887 (P-7)							
19.7	Vibrio	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	Abs	ent	IS : 5887 (P-5)										

---0-

H. T. Shah

Lab Manager

have

Dr. ArunBajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

EMAIL: pollucon@gmail.com Page 199 of 456

Cleaner Production / Weste Minimization Pacilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M8 RIGHT SIDE OF BOCHA CREEK N 22°45'987" E 069°43'119"]

SR.	TEST	UNIT	ОСТОВ		NOVEME			ER 2019		RY 2020	FEBRUA		MARCI		TEST
NO.	PARAMETERS	UNIT	SURFACE	BOTTOM	SURFACE	BOTTOM	METHOD								
1	рН		8.28	8.20	8.23	8.16	8.17	8.09	8.20	8.15	8.26	8.10	8.34	8.28	IS3025(P11)83Re .02
2	Temperature	oC	30.3	30.9	30.0	29.8	29.8	29.3	29.9	29.6	30	29.7	29.8	29.4	IS3025(P9)84Re. 02
3	Total Suspended Solids	mg/L	272	312	182	203	190	212	246	271	201	219	206	178	IS3025(P17)84Re .02
4	BOD (3 Days @ 27 °C)	mg/L	4	Not Detected	3.6	Not Detected	4.2	Not Detected	4.5	Not Detected	4.2	Not Detected	3.4	2.8	IS 3025 (P44)1993Re.03E dition2.1
5	Dissolved Oxygen	mg/L	5.8	6.0	5.7	6.0	5.7	5.9	5.7	5.8	5.6	5.4	6	5.6	IS3025(P38)89Re .99
6	Salinity	ppt	35.3	35.7	36.4	37.3	35.3	36.5	36.8	37.6	37.2	37.9	35.1	34.8	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	Not Detected	Not Detected	APHA(22 nd Edi)552 0D										
8	Nitrate as NO ₃	µmol/L	3.24	3.6	4.73	4.9	4.58	4.24	6.57	6.72	4.83	4.70	9.6	7.4	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	0.19	0.11	1.64	1.37	1.32	1.1	1.28	0.96	1.56	1.31	1.5	0.7	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH₃	µmol/L	3.74	3.98	3.90	4.18	3.85	4.00	2.50	2.74	1.94	1.72	3.8	3.2	IS3025(P34)88Cla .2.3
11	Phosphates as PO ₄	µmol/L	2.89	3.1	2.2	3.87	2.9	3.12	2.0	1.93	1.80	1.56	2.1	0.612	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	7.17	7.69	10.27	10.45	9.75	9.34	10.35	10.42	8.33	7.73	4.9	3.7	IS3025(P34)88
13	Petroleum Hydrocarbon	µg/L	Not Detected	Not Detected	10.0	Not Detected	9.6	Not Detected	14	Not Detected	17	Not Detected	16	11.0	PLPL-TPH
14	Total Dissolved Solids	mg/L	36170	36902	37920	38756	36316	37908	37720	38450	38170	38724	35710	35470	IS3025(P16)84Re .02
15	COD	mg/L	18.0	7.6	24.0	Not Detected	21.0	Not Detected	25	17	27.2	18	14	10	APHA(22 nd Edi) 5520-D Open Reflux
Α	Flora and Fauna														
16	Primary productivity	mgC/L /day	8.43	6.4	9.72	8.5	13.68	12.0	18.90	15.75	19.89	16.38	2.43	0.74	APHA (22nd Edi) 10200-J
В	Phytoplankton														
17.1	Chlorophyll	mg/m ³	2.83	2.61	2.67	2.5	3	2.67	3.25	2.88	3.20	2.93	1.2	0.93	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m ³	1.7	1.2	1.6	1.3	2.0	2.0	1.0	1.49	1.09	1.40	1.5	0.4	APHA (22 nd Edi) 10200-H
-€	7-0-					AND NA	101					L	- the		
	Shah Manager					ODDIO *	STI						unBajpai anager (Q)	

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

.pollucon.com

1	POLLOCON LABORATORIES PVT. L
	Environmental Auditors, Consultants & Analysts,

Cleaner Production / Wester Minimization Pacificator

				Recogn	ised by Mol	EF New Del	lhi Under S	Sec. 12 of Er	nvironment	tal (Protecti	on) Act-198	16	_												
17.3	Cell Count	No. x 10 ³ /L	174	68	190	78	204	84	198	102	172	86	290	90	APHA (22 nd Edi) 10200-H										
17.4	Name of Group Number and name of group species of each group	-	Melosira sp. Coscinodi scus sp. Biddulphi a sp. Thallasios ira sp.	Nitzschia sp. Rhizosole nia sp. Cyclotella sp. 	Navicula sp. Biddulphi a sp. Cyclotella sp. Fragillaria sp.	Nitzschia sp. Rhizosole nia sp. Thallasion ema sp. 	Nitzschia sp. Thallasion ema sp. Coscinodi scus sp. Melosira sp.	Navicula sp. Pleurosig ma sp. Rhizosole nia sp. 	Rhizosole nia sp. Cheatocer ous sp. Coscinodi scus sp. Nitzschia sp. 	Nitzschia sp. Navicula sp. Thallasios ira sp. 	Melosira sp. Thallasios ira sp. Pleurosig ma sp. Rhizosole nia sp. Ceratium sp.	Nitzschia sp. Biddulphi a sp. Coscinodi scus sp.	Synedra sp. Skeletone ma sp. Biddulphi a sp. Navicula sp. Nitzschia sp.	Fragillaria sp. Nitzschia sp. Thallasiosi ra sp. 	АРНА (22 nd Edi) 10200-Н										
С	Zooplanktons																								
18.1	Abundance (Population)	noX10 ³ / 100 m ³	6	1	5	Э	5	3	42		47		2	1	APHA (22 nd Edi) 10200-G										
18.2	Name of Group Number and name of group species of each group		Chaeto <u>c</u> Gastro Polych	opods	Gastropods Crustaceans Copepods		Polychaetes Mysids Gastropods		Gastro Polych Amph Foramir	naetes nipods	Polych Mys Gastro	sids	Gastropods Polychaetes worms Bivalves Copepods		APHA (22 nd Edi) 10200-G										
18.3	Total Biomass	ml/100 m ³	3.	7	3.3	35	3	.1	3	.0	3.	9	7.	.5	APHA (22 nd Edi) 10200-G										
D	Microbiological Para	ameters																							
19.1	Total Bacterial Count	CFU/ml	25	00	19	20	24	80	23	20	23	50	16	50	IS 5402:2002										
19.2	Total Coliform	/ml	Abs	Absent		Absent		Absent		Absent		ent	Abs	sent	Absent		Absent		Absent		Absent		Abs	ent	APHA(22 nd Edi)922 1-D
19.3	Ecoli	/ml	Abs	ent	Abs	ent	Abs	sent	Absent		Absent		Abs	ent	IS:1622:1981Edi. 2.4(2003-05)										
19.4	Enterococcus	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	IS: 15186:2002										
19.5	Salmonella	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	IS: 5887 (P-3)										
19.6	Shigella	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Absent		IS: 1887 (P-7)										
19.7	Vibrio	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	IS : 5887 (P-5)										

-0 -0-

H. T. Shah

Lab Manager

have

Dr. ArunBajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

EMAIL: pollucon@gmail.com Page 201 01 456

NOCON o LABORATORIES PVT. LTD Environmental Auditors, Consultants & Analysts. Cleaner Production / Weste Minimization Pacificator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M8 RIGHT SIDE OF BOCHA CREEK - N 22°45'987" E 069°43'119"]

SR. NO.	TEST PARAMETERS	UNIT	OCTOBER 2019 SEDIMENT	NOVEMBER 2019 SEDIMENT	DECEMBER 2019 SEDIMENT	JANUARY 2020 SEDIMENT	FEBRUARY 2020 SEDIMENT	MARCH 2020 SEDIMENT	TEST METHOD
1	Organic Matter	%	0.73	0.76	0.69	0.71	0.57	0.7	FCO:2007
2	Phosphorus as P	µg/g	497	534	648	620	672	408	APHA(22 nd Edi) 4500 C
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy	
4	Petroleum Hydrocarbon	µg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	4.81	4.92	4.98	4.72	4.87	5.4	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	µg/g	167	253	163	158	172	240	AAS 3111B
5.3	Manganese as Mn	µg/g	953	1026	916	930	963	1890	AAS APHA 3111 B
5.4	Iron as Fe	%	5.2	5.08	5.14	4.9	5.02	5.3	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	µg/g	43.6	19.9	28	38	31	56.1	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	µg/g	57.5	46.2	30	47	28	78.8	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	µg/g	191	224	152	195	164	282	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	µg/g	3.27	2.9	1.83	1.98	1.7	14.8	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	µg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Polychaetes Sipunculids	Crustaceans Gastropods	Polychaetes Gastropods	Polychaetes Ostracods Branchyurans	Polychaetes Gastropods Crustaceans	Bivalves Mysids	APHA (22 nd Edi) 10500- C
6.2	MeioBenthos		Nematodes Foraminiferans	Nematodes	Ostracods	Nematodes	_	Nematodes Copepods	APHA (22 nd Edi) 10500- C
6.3	Population	no/m²	762	733	645	794	676	294	APHA (22 nd Edi) 10500- C

H. T. Shah

Lab Manager

harris

Dr. ArunBajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

EMAIL: pollucon@gmail.com Page 202 of 456 pollucon.com

Cleaner Production / Weste Minimization Pacificator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M11 MPT T1 JETTY N 22°42'278" E 069°43'450"]

SR.	TEST PARAMETERS	UNIT	ОСТОВ		NOVEMB	ER 2019	DECEMB			RY 2020	-	RY 2020	MARCI		TEST
NO.	IESI PARAMETERS	UNIT	SURFACE	BOTTOM	METHOD										
1	рH		8.22	8.16	8.17	8.10	8.14	8.02	8.26	8.16	8.25	8.21	8.15	8.1	IS3025(P11)83Re .02
2	Temperature	oC	30.3	30.7	30.1	29.9	29.8	29.2	29.9	29.5	30.1	29.8	30.3	29.8	IS3025(P9)84Re. 02
3	Total Suspended Solids	mg/L	364	381	210	248	224	239	182	170	194	216	310	238	IS3025(P17)84Re .02
4	BOD (3 Days @ 27 °C)	mg/L	4.7	Not Detected	3.6	Not Detected	4.8	Not Detected	4.2	Not Detected	4.6	Not Detected	3.4	3.0	IS 3025 (P44)1993Re.03E dition2.1
5	Dissolved Oxygen	mg/L	5.9	6.1	5.7	5.9	5.7	5.9	5.6	5.9	5.6	5.3	6.2	5.8	IS3025(P38)89Re .99
6	Salinity	ppt	35.4	35.8	36.8	37.3	35.4	36.1	36.9	37.8	37.3	37.9	35.7	35.2	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	Not Detected	APHA(22 nd Edi)552 0D											
8	Nitrate as NO ₃	µmol/L	3.57	3.85	4.29	4.56	4.64	4.3	6.27	6.48	5.16	4.87	15.7	10.2	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	0.23	0.31	1.12	1.9	1.29	1.1	0.84	0.72	0.69	0.60	2.2	1.6	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	µmol/L	3.70	3.91	3.84	3.97	3.90	3.85	2.57	2.40	1.98	1.74	1.7	1.4	IS3025(P34)88Cla .2.3
11	Phosphates as PO_4	µmol/L	2.23	2.64	2.72	3.81	2.83	3.12	1.83	1.71	1.67	1.48	1.2	0.9	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	7.50	8.07	9.25	10.43	9.83	9.25	9.68	9.60	7.83	7.21	2.38	2.25	IS3025(P34)88
13	Petroleum Hydrocarbon	µg/L	15.0	Not Detected	11.0	Not Detected	15.0	Not Detected	13.2	Not Detected	15.2	Not Detected	20	8.0	PLPL-TPH
14	Total Dissolved Solids	mg/L	36916	37390	38280	38742	36151	36744	37820	38630	38184	38796	36792	36168	IS3025(P16)84Re .02
15	COD	mg/L	19.0	Not Detected	27	Not Detected	23	Not Detected	25	17	24	18	11	8.0	APHA(22 nd Edi) 5520-D Open Reflux
А	Flora and Fauna														
16	Primary productivity	mgC/L /day	8.64	6.36	9.18	8.28	14.58	12.42	19.62	14.85	19.98	15.48	1.93	1.01	APHA (22nd Edi) 10200-J
В	Phytoplankton														
17.1	Chlorophyll	mg/m ³	3	2.72	2.67	2.45	3.26	3.04	3.15	2.88	3.20	2.99	2.1	0.50	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m ³	1.5	1.7	1.7	1.4	3.0	1.1	2.49	2.16	2.10	1.83	2.5	2.1	APHA (22 nd Edi) 10200-H
						AORAT	0.0								

-0-2

H. T. Shah

Lab Manager

SURAT-7

harris

Dr. ArunBajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

EMAIL: pollucon genail.com dvEBSITE: www.pollucon.com Page 203 01 456

191	S ADD M S ADD
/ 1	DOLLOCON LABORATORIES PVT. LTD.
(
	and the second s

Environmental Auditors, Consultants & Analysts. Cleaner Production / Weste Minimization Pacilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

					and well and and							70.V					
17.3	Cell Count	No. x 10 ³ /L	157	64	182	97	198	101	210	104	178	86	290	86	APHA (22 nd Edi) 10200-H		
17.4	Name of Group Number and name of group species of each group		Navicula sp. Nitzschia sp. Rhizosole nia sp. Coscinodi scus sp.	Nitzschia sp. Thallasios ira sp. Skeletone ma sp. 	Nitzschia sp. Rhizosole nia sp. ceratium sp. Cheatocer ous sp. Gyrosigm a sp.	Fragillaria sp. Navicula sp. Synedra sp. Cyclotella sp. 	Skeletone ma sp. Thallasion ema sp. Coscinodi scus sp. Biddulphi a sp. Navicula sp.	Navicula sp. Melosira sp. Amphipro ra sp. 	Skeletone ma sp. Nitzschia sp. Rhizosole nia sp. Cheatocer ous sp. 	Biddulphi a sp. Pleurosig ma sp. Nitzschia sp. 	Nitzschia sp. Skeletone ma sp. cymbella sp Biddulphi a sp. Fragillaria sp.	Nitzschia sp. Thallasios ira sp. Coscinodi scus sp. Cheatocer ous sp.	Navicula sp. Rhizosole nia sp. Thallasios ira sp. Coscinodi scus sp. Skeletone ma sp.	Navicula sp. Thallasios ira sp. Biddulphi a sp. 	АРНА (22 nd Edi) 10200-Н		
С	Zooplanktons						·				•		•				
18.1	Abundance (Population)	noX10 ³ / 100 m ³	6	62		58		54		0	4	7	22	APHA (22 nd Edi) 10200-G			
18.2	Name of Group Number and name of group species of each group		Gastro Polych Ostra	naetes	Crusta Gastro Polych	opods	Gastro Polych Ctenoj	aetes	Polych Foramir Amph Gastro	niferans ipods	Ostra Gastro Polych	opods	Copepods Foraminiferans Ostracods Gastropods		APHA (22 nd Edi) 10200-G		
18.3	Total Biomass	ml/100 m ³	3.	.1	3.4	45	3.10		2.85		3.	6	8.	8	APHA (22 nd Edi) 10200-G		
D	Microbiological Para	meters															
19.1	Total Bacterial Count	CFU/ml	26	40	21	40	24	80	23	20	23	70	170	50	IS 5402:2002		
19.2	Total Coliform	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Absent		Absent		Abs	ent	APHA(22 nd Edi)922 1-D
19.3	Ecoli	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Absent		Absent		Abs	ent	IS:1622:1981Edi. 2.4(2003-05)
19.4	Enterococcus	/ml	Abs	ent	Abs	Absent		ent	Abs	ent	Absent		Abs	ent	IS : 15186 :2002		
19.5	Salmonella	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Absent		Abs	ent	IS: 5887 (P-3)		
19.6	Shigella	/ml	Abs	ent	Abs	Absent		ent	Absent		nt Absent Absent		Absent		Abs	ent	IS: 1887 (P-7)
19.7	Vibrio	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	IS: 5887 (P-5)		

5 --

H. T. Shah

Lab Manager

have

Dr. ArunBajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

EMAIL: pollucon@gmail.com Page 204 of 456

P	
7=	DOLLOCON LABORATORIES PVT. LTD
0	Environmental Auditors, Consultants & Analysts.

Cleaner Production / Weste Minimization Pacilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M12 SPM N 22°40'938" E 069°39'191"]

SR.	TEST	UNIT		ER 2019		ER 2019	DECEMB			RY 2020	FEBRUA			H 2020	TEST
NO.	PARAMETERS		SURFACE	BOTTOM	METHOD										
1	pН		8.25	8.18	8.19	8.12	8.20	8.13	8.25	8.12	8.24	8.2	8.02	7.88	IS3025(P11)83Re .02
2	Temperature	oC	30.3	30.7	30.2	29.9	29.9	29.5	29.9	29.7	30	29.7	29.4	29.1	IS3025(P9)84Re. 02
3	Total Suspended Solids	mg/L	348	365	268	287	216	240	172	197	183	209	290	256	IS3025(P17)84Re .02
4	BOD (3 Days @ 27°C)	mg/L	4	Not Detected	3.5	Not Detected	4.0	Not Detected	4.3	Not Detected	4.0	Not Detected	4.0	3.0	IS 3025 (P44)1993Re.03E dition2.1
5	Dissolved Oxygen	mg/L	5.9	6.1	5.7	5.9	5.7	5.9	5.6	5.9	5.6	5.4	5.8	5.4	IS3025(P38)89Re .99
6	Salinity	ppt	35.5	35.6	36.7	37.2	36.5	36.9	36.9	37.8	37.2	37.9	36.1	35.7	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	Not Detected	APHA(22 nd Edi)552 0D											
8	Nitrate as NO ₃	µmol/L	3.81	4.12	4.1	4.32	3.68	3.42	6.12	6.35	5.26	5.13	21.8	14.6	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	0.2	0.28	1.59	1.93	1.3	1.16	0.89	0.82	0.65	0.52	1.7	1.2	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	µmol/L	3.59	3.72	3.42	3.67	3.32	3.70	2.41	2.68	2.14	2.36	3.4	2.8	IS3025(P34)88Cla .2.3
11	Phosphates as PO_4	µmol/L	2.17	2.36	2.39	2.73	2.16	2.4	1.87	1.70	1.63	1.52	1.5	1.4	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	7.60	8.12	9.11	9.92	8.30	8.28	9.42	9.85	8.05	8.01	5.1	3.8	IS3025(P34)88
13	Petroleum Hydrocarbon	µg/L	16.0	Not Detected	12.0	Not Detected	13.0	Not Detected	16	Not Detected	19	Not Detected	12	7	PLPL-TPH
14	Total Dissolved Solids	mg/L	36718	37098	38184	38654	37119	38132	37824	38647	37980	38728	36772	35986	IS3025(P16)84Re .02
15	COD	mg/L	18.0	Not Detected	23	Not Detected	26	Not Detected	25	19	27	18.3	12	10	APHA(22 nd Edi) 5520-D Open Reflux
А	Flora and Fauna														
16	Primary productivity	mgC/L /day	8	6.79	9.72	8.28	14.85	13.59	18.72	16.02	19.35	15.30	2.47	0.74	APHA (22nd Edi) 10200-J
В	Phytoplankton														
17.1	Chlorophyll	mg/m ³	2.99	2.50	2.61	2.56	3.09	2.93	3.20	2.99	3.25	3.09	2.2	1.02	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m ³	2.2	2.0	1.1	2.0	1.5	1.1	1.84	1.91	1.27	1.72	1.6	1.2	APHA (22 nd Edi) 10200-H
-€	7-10-					SURA	181					F	- the		
н. т.	Shah					B	E					Dr. Ar	unBajpai		

Lab Manager

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

Lab Manager (Q)

191	DOLLOCON LABORATORIE
	Environmental Auditors Concellance & Analysts

			-	Recogni	ised by Mol	EF New Del	lhi Under S	ec. 12 of Er	ivironment	al (Protecti	on) Act-198	16			
17.3	Cell Count	No. x 10 ³ /L	196	78	190	82	206	94	210	116	172	98	224	75	APHA (22 nd Edi) 10200-H
17.4	Name of Group Number and name of group species of each group		Navicula sp. Pleurosig ma sp. Amphipro ra sp. Rhizosole nia sp.	Cyclotella sp. Cheatocer ous sp. Nitzschia sp. 	Rhizosole nia sp. ceratium sp. Coscinodi scus sp. Pleurosig ma sp. 	Navicula sp. Biddulphi a sp. Synedra sp. Bacteriast um sp. 	Navicula sp. Rhizosole nia sp. Thallasion ema sp. Pleurosig ma sp. Ceratium sp.	Nitzschia sp. Melosira sp. Thallasios ira sp. 	Closteriu m sp. Skeletone ma sp. Melosira sp. Biddulphi a sp. Rhizosole nia sp.	Navicula sp. Thallasios ira sp. Fragillaria sp. 	Melosira sp. Biddulphi a sp. Thallasios ira sp. Rhizosole nia sp. Coscinodi scus sp.	Nitzschia sp. Pleurosig ma sp. Cheatocer ous sp. Navicula sp.	Fragillaria sp. Peridiniu Melosira sp. Thallasios ira sp. Skeletone ma sp.	Melosira sp. Navicula sp. Nitzschia sp. 	АРНА (22 nd Edi) 10200-Н
С	Zooplanktons														
18.1	Abundance (Population)	noX10 ³ / 100 m ³	5	7	6	2	5	8	4	7	5	1	1	2	APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		Polych Gastro Mys	opods	Gastro Nema Crusta	todes	Cope Chaetoo Polych	inathes	Amph Polych Gastro -	naetes opods	Ostra Polych Cope	aetes	Foramir Ctenop Polych Cope	ohores aetes	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	2.	9	3	.5	3.	15	2.7	75	3.3	75	10	.0	APHA (22 nd Edi) 10200-G
D	Microbiological Pa														
19.1	Total Bacterial Count	CFU/m I	23	50	19	50	21	80	22	50	22	50	14	20	IS 5402:2002
19.2	Total Coliform	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	APHA(22 nd Edi)922 1-D
19.3	Ecoli	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	IS:1622:1981Edi. 2.4(2003-05)
19.4	Enterococcus	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	IS: 15186:2002
19.5	Salmonella	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	IS: 5887 (P-3)
19.6	Shigella	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	IS: 1887 (P-7)
19.7	Vibrio	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	IS : 5887 (P-5)

-0--01

H. T. Shah

Lab Manager

have

Dr. ArunBajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 Environmental Auditore, Consultants & Analysis

Cleaner Production / Weste Minimization Pacificator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF ETP WATER OUTLET

SR.	PARAMETERS	UNIT			RESULTS OF ETP	WATER OUTLET		GPCB Limit	TEST METHOD
NO.	PARAMETERS	UNIT	08/10/2019	11/05/2019	06/12/2019		 		
1	Colour	Co-pt	40	30	40		 	100	IS3025(P4)83Re.02
2	рН		6.91	8.05	7.21		 	6.5 TO 8.5	IS3025(P11)83Re.02
3	Temperature	°C	31.2	30.8	30.1		 	40	IS3025(P9)84Re.02
4	Total Suspended Solids	mg/L	59	82	68		 	100	IS3025(P17)84Re.02
5	Total Dissolved Solids	mg/L	1960	1681	2034		 	2100	IS3025(P16)84Re.02
6	COD	mg/L	98	88	84		 	100	APHA(22 nd Edi) 5520-D Open Reflux
7	BOD (3 Days @ 27 °C)	mg/L	25	23	26		 	30	IS 3025 (P44)1993Re.03Edition2.1
8	Chloride as Cl	mg/L	579	419	570		 	600	IS3025(P32)88Re.99
9	Oil & Grease	mg/L	2.8	2.2	3.1		 	10	APHA(22 nd Edi)5520D
10	Sulphate as SO ₄	mg/L	448	411	536		 	1000	APHA(22 nd Edi)4500 SO ₄ E
11	Ammonical Nitrogen as NH ₃	mg/L	6.24	7.5	5.18		 	50	IS3025(P34)88Cla.2.3
12	Phenolic Compound	mg/L	Not Detected	Not Detected	Not Detected		 	1	IS3025(P43)92Re.03
13	Copper as Cu	mg/L	Not Detected	Not Detected	Not Detected		 	3	AAS APHA(22 nd Edi)3111 B
14	Lead as Pb	mg/L	Not Detected	Not Detected	Not Detected		 	0.1	AAS APHA(22 nd Edi)3111 B
15	Sulphide as S	mg/L	1.3	1.28	1.2		 	2	APHA(22 nd Edi) 4500-S
16	Cadmium as Cd	mg/L	Not Detected	Not Detected	Not Detected		 	2	AAS APHA(22 nd Edi)3111 B
17	Fluoride as F	mg/L	0.6	0.52	0.46		 	2	APHA(22 nd Edi) 4500 F D SPANDS

*Below detection limit

5

H. T. Shah

Lab Manager

harris

Dr. ArunBajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

ABORATORIES PVT. LTD

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

	ADANI PORT – TUG BERTH 600 KL PUMP HOUSE												
Sr. No	Date of Sampling	Particulate Matter (PM10) μg/m ³	Particulate Matter (PM 2.5) µg/m ³	Sulphur Dioxide (SO2) μg/m ³	Oxides of Nitrogen (NO2) µg/m ³	Carbon Monoxide as CO mg/m³	Hydrocarbon as CH4 mg/m ³	Benzene as C₅H₅ µg/m³					
1	02/10/2019	63.44	38.64	15.38	35.28	0.55	BDL*	BDL*					
2	07/10/2019	82.62	50.26	22.45	30.36	0.72	BDL*	BDL*					
3	09/10/2019	79.45	35.84	20.50	33.54	0.44	BDL*	BDL*					
4	14/10/2019	84.30	33.41	16.56	36.51	0.66	BDL*	BDL*					
5	16/10/2019	75.41	39.47	13.52	26.88	0.74	BDL*	BDL*					
6	21/10/2019	61.44	34.65	17.56	23.46	0.42	BDL*	BDL*					
7	23/10/2019	87.72	48.37	9.37	37.59	0.57	BDL*	BDL*					
8	30/10/2019	71.55	43.55	21.45	40.26	0.33	BDL*	BDL*					
9	31/10/2019	89.28	51.25	12.69	34.52	0.85	BDL*	BDL*					
10	04/11/2019	90.58	48.37	14.34	29.57	0.74	BDL*	BDL*					
11	06/11/2019	65.67	34.59	19.33	39.26	0.44	BDL*	BDL*					
12	11/11/2019	82.37	43.29	16.16	36.21	0.77	BDL*	BDL*					
13	13/11/2019	68.23	41.58	25.14	32.51	0.57	BDL*	BDL*					
14	18/11/2019	79.34	38.50	20.22	24.62	0.81	BDL*	BDL*					
15	20/11/2019	84.35	45.37	15.66	38.30	0.53	BDL*	BDL*					
16	25/11/2019	76.31	36.26	17.55	42.62	0.36	BDL*	BDL*					
17	27/11/2019	95.37	53.24	10.34	33.44	0.64	BDL*	BDL*					
18	02/12/2019	88.61	46.58	16.55	35.68	0.52	BDL*	BDL*					
19	04/12/2019	67.29	35.42	28.47	42.68	0.64	BDL*	BDL*					
20	09/12/2019	71.53	31.22	19.36	39.48	0.39	BDL*	BDL*					
21	11/12/2019	90.27	47.33	11.57	36.42	0.87	BDL*	BDL*					
22	16/12/2019	76.64	36.34	13.49	32.47	0.68	BDL*	BDL*					
23	18/12/2019	80.36	44.25	17.52	34.50	0.74	BDL*	BDL*					
24	23/12/2019	75.49	39.25	20.53	43.57	0.48	BDL*	BDL*					
25	25/12/2019	69.42	32.43	22.37	26.57	0.92	BDL*	BDL*					
26	30/12/2019	82.32	42.33	18.56	37.51	0.78	BDL*	BDL*					
27	01/01/2020	79.53	45.37	22.45	29.55	0.87	BDL*	BDL*					
28	06/01/2020	90.55	53.49	18.62	34.61	1.01	BDL*	BDL*					
29	08/01/2020	83.63	49.24	13.58	31.51	0.66	BDL*	BDL*					
30	13/01/2020	73.47	40.25	17.37	42.31	0.53	BDL*	BDL*					

Continue ...

 \mathbf{T}

H. T. Shah Lab Manager

SHRAT

to a company

Dr. ArunBajpai Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: <u>pollucon@gmail.com</u> 2008 of 456

COLLOCON LABORATORIES PVT. LTD.

Environmental Auditors, Consultants & Analysts. Cleaner Production / Weste Minimization Pacificator

Recognised by MoEF New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

	ADANI PORT – TUG BERTH 600 KL PUMP HOUSE											
Sr.N o.	Date of Sampling	Particulate Matter (PM10) µg/m ³	Particulate Matter (PM 2.5) µg/m ³	Sulphur Dioxide (SO2) µg/m ³	Oxides of Nitrogen (NO2) µg/m ³	Carbon Monoxide as CO mg/m³	Hydrocarbon as CH4 mg/m ³	Benzene as C ₆ H ₆ µg/m ³				
31	15/01/2020	67.25	37.55	25.42	38.22	0.72	BDL*	BDL*				
32	20/01/2020	92.44	52.70	10.26	32.44	0.94	BDL*	BDL*				
33	22/01/2020	86.69	46.37	19.58	21.53	1.02	BDL*	BDL*				
34	27/01/2020	78.37	41.33	23.50	27.21	0.76	BDL*	BDL*				
35	29/01/2020	69.49	36.21	21.58	35.66	0.42	BDL*	BDL*				
36	03/02/2020	63.54	28.47	20.23	37.57	0.93	BDL*	BDL*				
37	05/02/2020	78.63	32.55	11.25	27.55	0.72	BDL*	BDL*				
38	10/02/2020	86.50	47.58	23.51	38.35	0.44	BDL*	BDL*				
39	12/02/2020	71.22	35.46	18.25	31.26	0.46	BDL*	BDL*				
40	17/02/2020	90.36	41.87	21.24	34.56	0.84	BDL*	BDL*				
41	19/02/2020	82.41	44.50	16.24	23.32	0.76	BDL*	BDL*				
42	24/02/2020	75.36	39.59	8.45	29.34	0.62	BDL*	BDL*				
43	26/02/2020	66.39	34.30	15.37	32.45	0.66	BDL*	BDL*				
44	02/03/2020	90.29	48.66	23.49	41.32	0.52	BDL*	BDL*				
45	04/03/2020	70.66	29.30	17.55	43.52	1.01	BDL*	BDL*				
46	09/03/2020	83.62	43.54	22.29	29.36	0.82	BDL*	BDL*				
47	11/03/2020	68.51	34.22	25.33	42.56	0.77	BDL*	BDL*				
48	16/03/2020	80.65	44.33	18.30	28.57	0.96	BDL*	BDL*				
49	18/03/2020	79.56	40.25	14.53	36.58	0.55	BDL*	BDL*				
	TEST METHOD	IS:5182(Part 23):Gravimetric CPCB - Method (Vol.I,May-2011)	Gravimetric- CPCB - Method (Vol.I,May-2011)	IS:5182(Part II):Improved West and Gaeke	IS:5182(Part VI):Modified Jacob &Hochheiser (NaOH-NaAsO2)	NDIR Digital Gas Analyzer	SOP: HC: GC/GCMS/Gas analyzer	IS 5182 (Part XI):2006/CPCB Method				

*Below detection limit

H. T. Shah Lab Manager

to a company

Dr. ArunBajpai Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: pollucon@gmail.com Page 209 of 456 LABORATORIES PVT. LTD.

Environmental Auditors, Consultants & Analysts. Cleaner Production / Weste Minimization Pacilitator

Recognised by MoEF New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

				NEAR FIRE S	TATION			
Sr. No.	Date of Sampling	Particulate Matter (PM10) μg/m ³	Particulate Matter (PM 2.5) µg/m ³	Sulphur Dioxide (SO2) µg/m ³	Oxides of Nitrogen (NO2) µg/m ³	Carbon Monoxide as CO mg/m ³	Hydrocarbon as CH4 mg/m ³	Benzene as C₀H₀ µg/m³
1	02/10/2019	89.36	42.82	10.36	20.86	0.47	BDL*	BDL*
2	07/10/2019	58.49	23.47	8.64	26.38	0.64	BDL*	BDL*
3	09/10/2019	69.29	46.24	17.44	29.39	0.31	BDL*	BDL*
4	14/10/2019	74.38	36.86	20.55	33.58	0.41	BDL*	BDL*
5	16/10/2019	60.55	24.30	9.51	18.91	0.19	BDL*	BDL*
6	21/10/2019	71.61	38.51	14.65	35.68	0.25	BDL*	BDL*
7	23/10/2019	64.31	20.25	11.69	23.43	0.44	BDL*	BDL*
8	30/10/2019	53.81	27.77	6.53	30.56	0.53	BDL*	BDL*
9	31/10/2019	62.48	40.08	15.40	28.48	0.62	BDL*	BDL*
10	04/11/2019	80.31	43.52	8.23	22.46	0.54	BDL*	BDL*
11	06/11/2019	91.56	50.36	22.78	36.46	0.27	BDL*	BDL*
12	11/11/2019	62.56	24.55	19.51	24.52	0.70	BDL*	BDL*
13	13/11/2019	81.23	44.61	9.42	28.42	0.50	BDL*	BDL*
14	18/11/2019	65.69	26.64	15.40	38.46	0.41	BDL*	BDL*
15	20/11/2019	73.59	39.39	11.22	21.96	0.65	BDL*	BDL*
16	25/11/2019	83.40	29.43	7.63	32.33	0.52	BDL*	BDL*
17	27/11/2019	67.32	21.68	14.53	25.70	0.48	BDL*	BDL*
18	02/12/2019	76.56	32.68	12.69	24.50	0.72	BDL*	BDL*
19	04/12/2019	61.36	28.39	10.64	37.27	0.55	BDL*	BDL*
20	09/12/2019	54.26	25.64	8.66	33.54	0.22	BDL*	BDL*
21	11/12/2019	83.44	38.48	15.61	30.53	0.49	BDL*	BDL*
22	16/12/2019	57.70	21.51	21.21	27.57	0.77	BDL*	BDL*
23	18/12/2019	75.24	37.52	9.54	24.21	0.47	BDL*	BDL*
24	23/12/2019	68.59	34.60	6.58	36.58	0.32	BDL*	BDL*
25	25/12/2019	59.35	23.64	16.63	42.13	0.61	BDL*	BDL*
26	30/12/2019	64.26	39.27	13.30	32.40	0.66	BDL*	BDL*
27	01/01/2020	74.31	39.23	8.61	20.56	0.63	BDL*	BDL*
28	06/01/2020	86.39	46.40	15.70	27.31	0.86	BDL*	BDL*
29	08/01/2020	71.53	34.23	11.62	22.41	0.80	BDL*	BDL*
30	13/01/2020	65.43	30.43	6.49	36.27	0.36	BDL*	BDL*

Continue ...

 \mathbf{T}

H. T. Shah Lab Manager

hannin

Dr. ArunBajpai Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: pollucon@snail.com Page 210 of 456

COLLOCON LABORATORIES PVT. LTD.

Environmental Auditors, Consultants & Analysts. Cleaner Production / Weste Minimization Pacificator

Recognised by MoEF New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

	NEAR FIRE STATION												
Sr.N o.	Date of Sampling	Particulate Matter (PM10) µg/m ³	Particulate Matter (PM 2.5) µg/m ³	Sulphur Dioxide (SO2) µg/m ³	Oxides of Nitrogen (NO2) µg/m ³	Carbon Monoxide as CO mg/m ³	Hydrocarbon as CH ₄ mg/m ³	Benzene as C ₆ H ₆ µg/m ³					
31	15/01/2020	59.35	25.47	10.21	31.54	0.61	BDL*	BDL*					
32	20/01/2020	80.40	33.48	12.36	25.73	0.56	BDL*	BDL*					
33	22/01/2020	78.35	42.31	17.50	35.69	0.71	BDL*	BDL*					
34	27/01/2020	68.63	24.35	19.31	23.65	0.85	BDL*	BDL*					
35	29/01/2020	53.63	27.64	7.50	17.37	0.24	BDL*	BDL*					
36	03/02/2020	50.53	21.55	6.86	32.50	0.73	BDL*	BDL*					
37	05/02/2020	63.47	27.51	9.66	19.59	0.53	BDL*	BDL*					
38	10/02/2020	75.64	33.43	12.66	35.69	0.29	BDL*	BDL*					
39	12/02/2020	62.48	29.26	7.65	15.50	0.68	BDL*	BDL*					
40	17/02/2020	73.62	38.06	11.23	27.59	0.57	BDL*	BDL*					
41	19/02/2020	65.88	41.23	14.19	20.37	0.39	BDL*	BDL*					
42	24/02/2020	59.34	28.47	10.41	23.58	0.50	BDL*	BDL*					
43	26/02/2020	71.59	25.47	13.52	26.52	0.70	BDL*	BDL*					
44	02/03/2020	78.50	35.68	16.52	30.58	0.32	BDL*	BDL*					
45	04/03/2020	65.54	21.34	13.57	24.42	0.85	BDL*	BDL*					
46	09/03/2020	72.52	28.68	10.53	19.36	0.61	BDL*	BDL*					
47	11/03/2020	84.36	45.65	12.69	17.56	0.80	BDL*	BDL*					
48	16/03/2020	74.96	39.27	21.59	23.72	0.66	BDL*	BDL*					
49	18/03/2020	66.04	36.56	6.59	32.57	0.76	BDL*	BDL*					
	TEST METHOD	IS:5182(Part 23):Gravimetric CPCB - Method (Vol.I,May-2011)	Gravimetric- CPCB - Method (Vol.I,May-2011)	IS:5182(Part II):Improved West and Gaeke	IS:5182(Part VI):Modified Jacob &Hochheiser (NaOH-NaAsO2)	NDIR Digital Gas Analyzer	SOP: HC: GC/GCMS/Gas analyzer	IS 5182 (Part XI):2006/CPCB Method					

*Below detection limit

H. T. Shah Lab Manager

hannin

Dr. ArunBajpai Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: <u>pollucon@gmail.com</u> Page 2 W BSITF: <u>www.pollucon.com</u>

LABORATORIES PVT. LTD.

Recognised by MoEF New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

				ADANI HO	OUSE			
Sr. No	Date of Sampling	Particulate Matter (PM10) μg/m ³	Particulate Matter (PM 2.5) µg/m ³	Sulphur Dioxide (SO2) μg/m ³	Oxides of Nitrogen (NO2) μg/m ³	Carbon Monoxide as CO mg/m ³	Hydrocarbon as CH4 mg/m ³	Benzene as C₀H₀ µg/m³
1	02/10/2019	70.65	51.38	16.51	30.48	0.48	BDL*	BDL*
2	07/10/2019	51.32	18.68	13.59	17.51	0.45	BDL*	BDL*
3	09/10/2019	62.61	24.52	15.37	27.52	0.52	BDL*	BDL*
4	14/10/2019	58.72	30.28	10.69	21.54	0.27	BDL*	BDL*
5	16/10/2019	71.38	32.43	17.40	33.42	0.40	BDL*	BDL*
6	21/10/2019	67.70	26.42	7.65	26.37	0.22	BDL*	BDL*
7	23/10/2019	74.41	37.65	19.34	32.46	0.34	BDL*	BDL*
8	30/10/2019	59.47	33.48	8.61	24.60	0.39	BDL*	BDL*
9	31/10/2019	68.58	23.68	11.23	31.55	0.37	BDL*	BDL*
10	04/11/2019	60.78	33.61	19.22	37.54	0.32	BDL*	BDL*
11	06/11/2019	71.22	29.95	11.27	23.58	0.23	BDL*	BDL*
12	11/11/2019	54.61	25.66	13.39	32.47	0.49	BDL*	BDL*
13	13/11/2019	75.36	31.57	16.27	20.22	0.61	BDL*	BDL*
14	18/11/2019	86.32	35.44	8.59	16.65	0.37	BDL*	BDL*
15	20/11/2019	65.61	30.24	18.43	34.30	0.58	BDL*	BDL*
16	25/11/2019	70.67	34.57	9.60	26.50	0.42	BDL*	BDL*
17	27/11/2019	82.60	40.23	20.54	36.35	0.71	BDL*	BDL*
18	02/12/2019	81.66	42.61	21.29	38.32	0.63	BDL*	BDL*
19	04/12/2019	78.20	39.61	19.44	22.40	0.71	BDL*	BDL*
20	09/12/2019	68.46	29.32	12.69	28.43	0.57	BDL*	BDL*
21	11/12/2019	77.36	34.57	7.87	24.37	0.80	BDL*	BDL*
22	16/12/2019	64.51	26.41	15.69	35.45	0.54	BDL*	BDL*
23	18/12/2019	55.78	32.53	22.57	41.51	0.37	BDL*	BDL*
24	23/12/2019	62.47	28.49	14.52	23.54	0.25	BDL*	BDL*
25	25/12/2019	83.41	38.48	9.64	18.62	0.41	BDL*	BDL*
26	30/12/2019	70.69	31.57	11.52	30.45	0.50	BDL*	BDL*
27	01/01/2020	58.22	35.61	20.22	35.67	0.41	BDL*	BDL*
28	06/01/2020	60.54	38.53	10.66	31.69	0.57	BDL*	BDL*
29	08/01/2020	77.53	45.32	18.48	33.51	0.71	BDL*	BDL*
30	13/01/2020	61.55	27.66	13.58	20.55	0.27	BDL*	BDL*

Continue ...

 \mathbf{T}

H. T. Shah Lab Manager

have

Dr. ArunBajpai Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: pollucon@snail.com Page 212 of 456

DOLLOCON LABORATORIES PVT. LTD

Environmental Auditors, Consultants & Analysts. Cleaner Production / Weste Minimization Pacificator

Recognised by MoEF New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

	ADANI HOUSE											
Sr. No.	Date of Sampling	Particulate Matter (PM10) μg/m ³	Particulate Matter (PM 2.5) µg/m ³	Sulphur Dioxide (SO2) µg/m ³	Oxides of Nitrogen (NO2) μg/m ³	Carbon Monoxide as CO mg/m ³	Hydrocarbon as CH ₄ mg/m ³	Benzene as C ₆ H ₆ µg/m ³				
31	15/01/2020	53.46	31.53	16.63	19.60	0.81	BDL*	BDL*				
32	20/01/2020	72.61	34.53	7.61	23.42	0.88	BDL*	BDL*				
33	22/01/2020	69.35	37.49	9.58	15.30	0.46	BDL*	BDL*				
34	27/01/2020	56.40	28.53	15.65	30.36	0.60	BDL*	BDL*				
35	29/01/2020	64.20	32.53	12.41	21.55	0.64	BDL*	BDL*				
36	03/02/2020	57.64	25.41	15.67	25.30	0.33	BDL*	BDL*				
37	05/02/2020	71.68	24.53	18.22	30.39	0.48	BDL*	BDL*				
38	10/02/2020	64.31	30.28	8.68	15.62	0.24	BDL*	BDL*				
39	12/02/2020	56.27	26.41	10.36	18.32	0.61	BDL*	BDL*				
40	17/02/2020	61.57	33.57	14.16	23.41	0.40	BDL*	BDL*				
41	19/02/2020	58.48	35.36	11.61	31.60	0.55	BDL*	BDL*				
42	24/02/2020	70.27	31.53	6.86	20.43	0.71	BDL*	BDL*				
43	26/02/2020	52.65	22.57	9.49	28.36	0.42	BDL*	BDL*				
44	02/03/2020	70.22	32.20	21.22	26.44	0.47	BDL*	BDL*				
45	04/03/2020	57.63	26.82	8.64	17.47	0.39	BDL*	BDL*				
46	09/03/2020	77.00	35.69	19.32	38.32	0.56	BDL*	BDL*				
47	11/03/2020	54.24	24.16	17.48	31.64	0.50	BDL*	BDL*				
48	16/03/2020	66.18	31.53	12.67	35.63	0.34	BDL*	BDL*				
49	18/03/2020	59.37	27.57	10.30	28.73	0.62	BDL*	BDL*				
	TEST METHOD	IS:5182(Part 23):Gravimetric CPCB - Method (Vol.I,May-2011)	Gravimetric- CPCB - Method (Vol.I,May-2011)	IS:5182(Part II):Improved West and Gaeke	IS:5182(Part VI):Modified Jacob &Hochheiser (NaOH-NaAsO2)	NDIR Digital Gas Analyzer	SOP: HC: GC/GCMS/Gas analyzer	IS 5182 (Part XI):2006/CPCB Method				

*Below detection limit

H. T. Shah Lab Manager

have

Dr. ArunBajpai Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: <u>pollucon@gmail.com</u> Page 2 13 of 456 COLLOCON LABORATORIES PVT. LTD

Environmental Auditors, Consultants & Analysts. Cleaner Production / Weste Minimization Pacificator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

	CT-3 RMU-2												
Sr.N o.	Date of Sampling	Particulate Matter (PM10) μg/m ³	Particulate Matter (PM 2.5) µg/m ³	Sulphur Dioxide (SO2) μg/m ³	Oxides of Nitrogen (NO2) μg/m ³	Carbon Monoxide as CO mg/m ³	Hydrocarbon as CH ₄ mg/m ³	Benzene as C ₆ H ₆ µg/m ³					
1	02/10/2019	76.32	45.31	19.40	27.69	0.36	BDL*	BDL*					
2	07/10/2019	69.38	36.29	14.57	33.47	0.61	BDL*	BDL*					
3	09/10/2019	74.38	39.27	6.41	36.56	0.71	BDL*	BDL*					
4	14/10/2019	87.56	42.66	12.61	26.22	0.54	BDL*	BDL*					
5	16/10/2019	91.33	50.32	15.66	21.69	0.29	BDL*	BDL*					
6	21/10/2019	77.86	24.66	10.34	30.66	0.82	BDL*	BDL*					
7	23/10/2019	82.40	44.65	17.61	39.58	0.48	BDL*	BDL*					
8	30/10/2019	78.35	40.26	13.57	29.36	0.21	BDL*	BDL*					
9	31/10/2019	92.49	47.22	22.42	40.22	0.73	BDL*	BDL*					
10	04/11/2019	95.37	53.65	17.55	25.63	0.62	BDL*	BDL*					
11	06/11/2019	83.66	46.19	13.52	28.58	0.93	BDL*	BDL*					
12	11/11/2019	76.33	38.23	24.34	44.58	0.66	BDL*	BDL*					
13	13/11/2019	86.27	49.23	18.73	36.45	0.40	BDL*	BDL*					
14	18/11/2019	96.23	54.31	11.21	33.54	0.31	BDL*	BDL*					
15	20/11/2019	79.31	41.28	21.28	40.28	0.78	BDL*	BDL*					
16	25/11/2019	87.67	45.36	14.39	31.59	0.24	BDL*	BDL*					
17	27/11/2019	93.29	48.61	16.56	43.49	0.55	BDL*	BDL*					
18	02/12/2019	90.33	54.31	24.34	45.56	0.86	BDL*	BDL*					
19	04/12/2019	82.33	44.52	21.26	40.60	0.44	BDL*	BDL*					
20	09/12/2019	77.67	40.28	16.36	36.49	0.26	BDL*	BDL*					
21	11/12/2019	95.44	50.27	20.59	39.58	0.60	BDL*	BDL*					
22	16/12/2019	79.63	32.45	25.38	41.50	0.94	BDL*	BDL*					
23	18/12/2019	86.93	47.27	19.60	28.62	0.69	BDL*	BDL*					
24	23/12/2019	92.40	51.56	15.26	32.43	1.01	BDL*	BDL*					
25	25/12/2019	88.42	45.36	12.52	37.51	0.34	BDL*	BDL*					
26	30/12/2019	75.61	35.32	9.54	24.56	0.65	BDL*	BDL*					
27	01/01/2020	85.62	48.36	17.60	24.70	0.77	BDL*	BDL*					
28	06/01/2020	76.39	42.65	8.67	19.21	0.70	BDL*	BDL*					
29	08/01/2020	90.30	54.39	21.54	39.27	0.97	BDL*	BDL*					
30	13/01/2020	86.24	46.31	16.39	27.46	0.90	BDL*	BDL*					

H. T. Shah Lab Manager

have

Dr. ArunBajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: <u>pollucon@gmail.com</u> Page 2 14 0f: 456 LABORATORIES PVT. LTD.

Environmental Auditors, Consultants & Analysts. Cleaner Production / Weste Minimization Pacificator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

	CT-3 RMU-2												
Sr.N o.	Date of Sampling	Particulate Matter (PM10) µg/m ³	Particulate Matter (PM 2.5) µg/m ³	Sulphur Dioxide (SO2) µg/m ³	Oxides of Nitrogen (NO2) µg/m ³	Carbon Monoxide as CO mg/m³	Hydrocarbon as CH4 mg/m ³	Benzene as C₅H₅ µg/m ³					
31	15/01/2020	77.85	41.53	19.50	34.54	0.49	BDL*	BDL*					
32	20/01/2020	87.67	49.56	14.58	38.50	0.58	BDL*	BDL*					
33	22/01/2020	91.54	52.35	12.37	31.22	0.38	BDL*	BDL*					
34	27/01/2020	73.68	35.32	22.33	35.36	0.52	BDL*	BDL*					
35	29/01/2020	80.63	44.65	15.29	29.63	0.29	BDL*	BDL*					
36	03/02/2020	74.52	36.53	14.55	23.70	0.58	BDL*	BDL*					
37	05/02/2020	91.53	52.52	20.17	33.64	0.81	BDL*	BDL*					
38	10/02/2020	80.37	42.52	10.33	27.56	0.63	BDL*	BDL*					
39	12/02/2020	77.64	39.53	12.40	25.41	0.78	BDL*	BDL*					
40	17/02/2020	83.49	45.36	16.32	30.32	0.32	BDL*	BDL*					
41	19/02/2020	70.36	37.49	18.44	28.44	0.25	BDL*	BDL*					
42	24/02/2020	82.46	49.27	11.99	34.50	0.45	BDL*	BDL*					
43	26/02/2020	76.30	38.23	7.63	17.58	0.64	BDL*	BDL*					
44	02/03/2020	85.34	43.52	19.52	33.74	0.73	BDL*	BDL*					
45	04/03/2020	76.27	38.61	11.25	28.32	0.63	BDL*	BDL*					
46	09/03/2020	69.57	32.65	13.54	21.31	0.95	BDL*	BDL*					
47	11/03/2020	79.44	42.57	16.46	26.36	0.69	BDL*	BDL*					
48	16/03/2020	88.68	47.19	20.35	31.60	0.53	BDL*	BDL*					
49	18/03/2020	72.68	31.53	8.61	14.52	0.86	BDL*	BDL*					
	TEST METHOD	IS:5182(Part 23):Gravimetric CPCB - Method (Vol.I,May-2011)	Gravimetric- CPCB - Method (Vol.I,May-2011)	IS:5182(Part II):Improved West and Gaeke	IS:5182(Part VI):Modified Jacob &Hochheiser (NaOH-NaAsO2)	NDIR Digital Gas Analyzer	SOP: HC: GC/GCMS/Gas analyzer	IS 5182 (Part XI):2006/CPCB Method					

*Below detection limit

H. T. Shah Lab Manager

and the

Dr. ArunBajpai Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: <u>pollucon@gmail.com</u> Page 2 15 0f: 456

ABORATORIES PVT. LTD.

Environmental Auditors, Consultants & Analysts, Cleaner Production / Weste Minimization Pacilitator

Recognised by MoEF New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF NOISE LEVEL MONITORING

Result of Noise level monitoring [Day Time]

			ADANI	PORT – TUG BER	TH 600 KL PUPM	HOUSE	
SR. NO.	Name of Location			Result [L	eq dB(A)]		
no.	Sampling Date & Time	24/10/2019	25/11/2019	06/12/2019	17/01/2020	24/02/2020	13/03/2020
1	6:00-7:00	67.2	65.9	66.4	60.8	63.2	62.1
2	7:00-8:00	73.2	68.3	62.2	67.3	67.2	68.4
3	8:00-9:00	70.2	62.7	61.3	64.2	69.3	72.1
4	9:00-10:00	68.9	67.0	64.3	61.2	66.1	74.1
5	10:00-11:00	66.4	72.2	67.2	67.3	69.8	68.4
6	11:00-12:00	70.1	71.6	63.1	70.3	65.3	65.4
7	12:00-13:00	65.5	68.3	65.6	68.4	67.4	68.3
8	13:00-14:00	62.1	63.5	63.2	67.3	62.9	63.1
9	14:00-15:00	67.7	65.8	67.3	63.2	64.1	61.3
10	15:00-16:00	63.3	68.8	63.2	66.6	61.6	67.3
11	16:00-17:00	60.3	62.1	66.1	68.3	66.5	65.3
12	17:00-18:00	68.2	62.9	69.4	65.3	69.5	68.1
13	18:00-19:00	62.1	69.3	66.2	61.9	65.2	65.5
14	19:00-20:00	66.2	63.2	65.9	65.3	62.4	63.2
15	20:00-21:00	62.5	67.5	65.3	68.9	66.3	67.7
16	21:00-22:00	67.3	65.5	62.1	65.3	63.2	64.2
	Day Time Limit*			75 Lea	dB(A)		

Result of Noise level monitoring [Night Time]

SR.	Name of Location		ADANI	PORT – TUG BER	TH 600 KL PUPM	HOUSE	
NO.	Name of Location	Result [Leq dB(A)]					
1	Sampling Date & Time	24/10/2019	25/11/2019	06/12/2019	17/01/2020	24/02/2020	13/03/2020
2	22:00-23:00	68.2	64.2	63.9	65.5	60.5	66.3
3	23:00-00:00	65.3	62.1	68.4	66.5	66.3	64.2
4	00:00-01:00	62.4	67.7	64.2	64.1	63.4	60.2
5	01:00-02:00	69.3	69.4	62.8	63.4	67.5	60.7
6	02:00-03:00	66.3	68.4	67.8	65.1	67.0	64.2
7	03:00-04:00	67.5	66.8	64.8	61.8	66.3	62.1
8	04:00-05:00	69.3	64.7	67.4	62.4	62.3	65.3
9	05:00-06:00	68.4	67.3	65.3	61.4	67.4	62.5
	Night Time Limit*			70 Leo	ן dB(A)		

H. T. Shah Lab Manager

Dr. ArunBajpai Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: pollucon@snail.com Page 216 of 456

LABORATORIES PVT. LTD.

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF NOISE LEVEL MONITORING

Result of Noise level monitoring [Day Time]

				NEAR FIRE	STATION		
SR. NO.	Name of Location				eq dB(A)]		
NO.	Sampling Date & Time	18/10/2019	20/11/2019	18/12/2019	10/01/2020	12/02/2020	
1	6:00-7:00	67.4	67.3	63.2	63.2	65.3	
2	7:00-8:00	68.1	64.2	67.3	68.5	68.3	
3	8:00-9:00	62.3	62.1	69.5	70.3	71.2	
4	9:00-10:00	66.1	65.9	71.5	64.2	63.2	
5	10:00-11:00	61.3	73.2	65.6	63.9	62.1	
6	11:00-12:00	66.8	70.4	67.3	69.5	66.5	
7	12:00-13:00	64.4	66.4	63.7	67.3	69.3	
8	13:00-14:00	69.4	69.4	67.4	64.2	65.3	
9	14:00-15:00	67.2	64.1	72.9	63.8	71.4	
10	15:00-16:00	68.4	69.7	71.3	69.4	67.5	
11	16:00-17:00	65.5	65.3	64.8	67.3	66.3	
12	17:00-18:00	62.1	63.8	69.5	63.5	65.1	
13	18:00-19:00	68.3	67.4	65.6	65.5	68.5	
14	19:00-20:00	65.2	66.9	67.3	69.4	66.2	
15	20:00-21:00	68.1	69.4	63.2	65.3	62.4	
16	21:00-22:00	69.3	64.9	62.3	64.2	65.7	
	Day Time Limit*			75 Lea	dB(A)		

Result of Noise level monitoring [Night Time]

SR.	Name of Location			NEAR FIRE	E STATION			
NO.				Result [Leq dB(A)]				
1	Sampling Date & Time	18/10/2019	20/11/2019	18/12/2019	13/01/2020	12/02/2020		
2	22:00-23:00	66.3	66.8	68.3	53.4	65.3		
3	23:00-00:00	62.2	62.1	66.4	56.1	62.8		
4	00:00-01:00	65.9	68.4	62.9	50.2	60.4		
5	01:00-02:00	69.4	64.2	68.4	52.7	66.4		
6	02:00-03:00	69.8	62.5	68.9	57.4	68.4		
7	03:00-04:00	66.1	65.5	69.2	60.4	64.2		
8	04:00-05:00	61.5	68.8	61.9	60.8	68.6		
9	05:00-06:00	65.3	62.2	66.9	61.8	65.4		
	Night Time Limit*			70 Leo	ן dB(A)			

H. T. Shah Lab Manager

hours

Dr. ArunBajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: pollucon@snail.com Page 217 of 456

Invironmental Auditors, Consultants & Analysts.

ABORATORIES PVT. LTD

Cleaner Production / Weste Minimization Pacificator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF NOISE LEVEL MONITORING

ADANI HOUSE Name of Location SR. Result [Leq dB(A)] NO. Sampling Date & Time 02/12/2019 22/01/2020 02/10/2019 22/11/2019 05/02/2020 04/03/2020 6:00-7:00 64.2 64.2 65.3 66.3 65.3 64.8 1 2 7:00-8:00 68.4 67.9 64.8 68.3 67.8 67.4 3 8:00-9:00 74.2 70.3 68.2 69.2 62.1 70.2 68.2 4 9:00-10:00 67.3 64.1 70.2 65.2 68.3 5 10:00-11:00 70.2 66.8 69.5 63.6 65.3 65.2 11:00-12:00 71.3 62.3 6 69.4 67.3 66.2 68.3 7 12:00-13:00 65.3 71.3 63.2 61.3 67.6 67.4 13:00-14:00 68.2 65.3 66.7 67.4 70.4 63.2 8 9 14:00-15:00 63.1 63.8 67.2 64.6 65.3 61.3 67.3 10 15:00-16:00 61.4 68.5 71.2 70.3 64.1 16:00-17:00 11 64.2 68.8 69.2 65.3 62.9 69.4 12 72.2 17:00-18:00 68.4 64.3 64.2 63.5 66.3 13 64.2 18:00-19:00 68.1 63.2 62.4 68.3 67.3 14 19:00-20:00 66.4 62.7 65.3 70.2 67.4 65.3 15 20:00-21:00 69.8 65.5 68.3 67.5 64.3 63.1 16 21:00-22:00 63.2 67.5 64.2 66.9 65.7 65.3 **Day Time Limit*** 75 Leq dB(A)

Result of Noise level monitoring [Day Time]

Result of Noise level monitoring [Night Time]

SR.	Name of Location			ADANI	HOUSE					
NO.	Name of Location		Result [Leq dB(A)]							
1	Sampling Date & Time	02/10/2019	22/11/2019	02/12/2019	22/01/2020	05/02/2020	04/03/2020			
2	22:00-23:00	69.4	67.4	65.3	66.2	68.3	67.4			
3	23:00-00:00	64.2	64.3	68.3	63.4	65.3	64.2			
4	00:00-01:00	62.1	65.4	63.9	63.2	67.2	60.3			
5	01:00-02:00	60.4	64.1	68.5	62.2	60.3	65.3			
6	02:00-03:00	65.5	61.6	64.3	65.3	62.6	66.1			
7	03:00-04:00	68.5	66.9	62.1	60.3	58.4	63.2			
8	04:00-05:00	67.4	64.7	64.3	58.3	60.3	61.5			
9	05:00-06:00	63.2	65.1	62.6	60.2	63.1	64.3			
	Night Time Limit*			70 Leo	dB(A)					

H. T. Shah Lab Manager

Dr. ArunBajpai Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: <u>pollucon@gmail.com</u> Page 2 10 01 456

ABORATORIES PVT. LTD.

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF NOISE LEVEL MONITORING

Result of Noise level monitoring [Day Time]

	Name of Location			CT-3 F	RMU-2					
SR. NO.	Name of Location	Result [Leq dB(A)]								
NO.	Sampling Date & Time	14/10/2019	27/11/2019	20/12/2019	22/01/2020	07/02/2020	20/03/2020			
1	6:00-7:00	64.2	67.4	60.4	58.3	62.4	61.2			
2	7:00-8:00	68.4	64.3	67.3	60.4	67.4	65.2			
3	8:00-9:00	73.2	71.7	63.2	64.2	60.3	67.4			
4	9:00-10:00	69.3	67.9	62.3	68.3	63.4	69.6			
5	10:00-11:00	66.2	69.4	69.5	64.4	68.2	66.4			
6	11:00-12:00	62.9	63.5	65.2	69.5	66.3	63.1			
7	12:00-13:00	69.5	65.3	63.7	66.2	63.2	61.8			
8	13:00-14:00	65.5	63.2	70.2	62.4	65.2	68.4			
9	14:00-15:00	62.2	61.8	68.3	69.4	68.5	64.2			
10	15:00-16:00	65.8	67.4	67.1	65.3	64.2	66.9			
11	16:00-17:00	68.2	64.3	62.8	64.5	67.3	68.5			
12	17:00-18:00	68.9	66.7	67.7	68.4	62.1	63.2			
13	18:00-19:00	64.2	65.4	63.3	65.2	65.7	69.5			
14	19:00-20:00	62.1	69.8	64.2	62.5	69.3	65.2			
15	20:00-21:00	67.1	65.1	62.8	67.4	67.7	62.1			
16	21:00-22:00	69.3	62.4	67.8	64.5	62.3	65.8			
	Day Time Limit*			75 Lea	dB(A)					

Result of Noise level monitoring [Night Time]

SR.	Name of Location			CT-3 F	RMU-2					
NO.			Result [Leq dB(A)]							
1	Sampling Date & Time	14/10/2019	27/11/2019	20/12/2019	22/01/2020	07/02/2020	20/03/2020			
2	22:00-23:00	62.1	67.2	65.9	65.2	64.3	65.3			
3	23:00-00:00	65.3	62.1	68.4	60.4	68.6	63.1			
4	00:00-01:00	68.3	68.3	64.7	61.4	60.3	60.4			
5	01:00-02:00	68.3	63.2	67.5	60.8	58.8	58.2			
6	02:00-03:00	60.2	66.9	62.9	60.7	59.3	62.3			
7	03:00-04:00	62.2	62.3	69.5	58.4	62.4	60.3			
8	04:00-05:00	65.1	68.9	65.7	62.4	61.7	62.2			
9	05:00-06:00	61.3	62.9	62.8	60.3	64.4	60.4			
	Night Time Limit*			70 Leo	dB(A)					

H. T. Shah Lab Manager

Dr. ArunBajpai Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: pollucon@snail.com Page 219 of 456

LABORATORIES PVT. LTD.

Environmental Auditors, Consultants & Analysts. Cleaner Production / Weste Minimization Pacilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF STACK MONITORING

SR NO	TEST PARAMETERS	UNIT	STD. LIMIT	THERMIC FLUID HEATER (BITUMEN- 01)	THERMIC FLUID HEATER (BITUMEN- 02)	HOT WATER SYSTEM-1	HOT WATER SYSTEM-2	TEST METHOD	
					ОСТОВ	3ER 2019			
1	Particulate Matter	mg/Nm ³	150	15.51				IS:11255 (Part-I):1985	
2	Sulfur dioxide	ppm	100	5.63				IS:11255 (Part-II):1985	
3	Oxides of Nitrogen	ppm	50	30.65				IS:11255 (Part- VII):2005	
NOVEMBER 2019									
1	Particulate Matter	mg/Nm ³	150	21.53			25.75	IS:11255 (Part-I):1985	
2	Sulfur dioxide	ppm	100	4.09			5.64	IS:11255 (Part-II):1985	
3	Oxides of Nitrogen	ppm	50	32.41			37.46	IS:11255 (Part- VII):2005	
			DECEMBER 2019						
1	Particulate Matter	mg/Nm ³	150		14.80			IS:11255 (Part-I):1985	
2	Sulfur dioxide	ppm	100		3.62			IS:11255 (Part-II):1985	
3	Oxides of Nitrogen	ppm	50		31.70			IS:11255 (Part- VII):2005	
					JANUA	RY 2020			
1	Particulate Matter	mg/Nm ³	150	23.74		25.61		IS:11255 (Part-I):1985	
2	Sulfur dioxide	ppm	100	3.57		5.82		IS:11255 (Part-II):1985	
3	Oxides of Nitrogen	ppm	50	35.33		36.72		IS:11255 (Part- VII):2005	
					FEBRU	ARY 2020			
1	Particulate Matter	mg/Nm ³	150		18.72			IS:11255 (Part-I):1985	
2	Sulfur dioxide	ppm	100		2.64			IS:11255 (Part-II):1985	
3	Oxides of Nitrogen	ppm	50		28.33			IS:11255 (Part- VII):2005	
	<u> </u>				MARC	H 2020			
1	Particulate Matter	mg/Nm ³	150		24.34		18.61	IS:11255 (Part-I):1985	
2	Sulfur dioxide	ppm	100		2.89		5.47	IS:11255 (Part-II):1985	
3	Oxides of Nitrogen	ppm	50		23.64		30.63	IS:11255 (Part- VII):2005	

*Below detection limit

Results on 11 % O₂ Correction when Oxygen is greater than 11 %. And 12% CO₂correction when CO₂is less thsn 12%

H. T. Shah Lab Manager

and the

Dr. ArunBajpai Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: pollucon@snail.com Page 220 of 456

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF D.G. STACK MONITORING

07/10/2019 07/10/2019 07/10/2019

SR.	TEST PARAMETERS	Unit		Adani Port		GPCB	Test Method	
NO.	IESI PARAMETERS	onit	D.G. Set-1 (500 KVA)	D.G. Set-2 (500 KVA)	D.G. Set-3 (500 KVA)	Limit		
1	Particulate Matter	mg/Nm ³	16.82	14.38	12.56	150	IS:11255 (Part-I):1985	
2	Sulphur Dioxide	ppm	5.49	3.92	7.44	100	IS:11255 (Part-II):1985	
3	Oxide of Nitrogen	ppm	34.34	31.84	35.74	50	IS:11255 (Part- VII):2005	
4	Carbon Monoxide	mg/m3	8.7	8.6	6.3	Not Specified	Digital Gas Analyzer	
5	Hydro Carbon NMHC	ppm	Not Detected	Not Detected	Not Detected	Not Specified	Gas Chromatography	

*DG sets are used as standby, so stack monitoring is done on quarterly basis. Results on 15 % O2 Correction when Oxygen is greater than 15 %

07/10/2019 07/10/2019 11/02/2020

			Adani Port	CDCB		
TEST PARAMETERS	ETERS Unit D.G. Set-4 D.G. Set-5 (500 KVA) (500 KVA)		D.G. Set -6, 7 & 8 (1250 KVA, each)	Limit	Test Method	
Particulate Matter	mg/Nm ³	10.51	13.84	14.25	150	IS:11255 (Part-I):1985
Sulphur Dioxide	ppm	4.41	5.51	6.41	100	IS:11255 (Part-II):1985
Oxide of Nitrogen	ppm	36.81	30.52	35.86	50	IS:11255 (Part- VII):2005
Carbon Monoxide	mg/m3	5.2	5.1		Not Specified	Digital Gas Analyzer
Hydro Carbon NMHC	ppm	Not Detected	Not Detected		Not Specified	Gas Chromatography
	Sulphur Dioxide Oxide of Nitrogen Carbon Monoxide	Particulate Mattermg/Nm³Sulphur DioxideppmOxide of NitrogenppmCarbon Monoxidemg/m3	D.G. Set-4 (500 KVA)Particulate Mattermg/Nm³Sulphur Dioxideppm4.41Oxide of Nitrogenppm36.81Carbon Monoxidemg/m35.2Hydro Carbon NMHCppm	TEST PARAMETERSUnitD.G. Set-4 (500 KVA)D.G. Set-5 (500 KVA)Particulate Mattermg/Nm³10.51Sulphur Dioxideppm4.41Oxide of Nitrogenppm36.81Oxide of Nitrogenmg/m35.2Carbon Monoxidemg/m35.2Hvdro Carbon NMHCppmNot	TEST PARAMETERSUnitD.G. Set-4 (500 KVA)D.G. Set-5 (500 KVA)D.G. Set-6, 7 & 8 (1250 KVA, each)Particulate Mattermg/Nm³10.5113.8414.25Sulphur Dioxideppm4.415.516.41Oxide of Nitrogenppm36.8130.5235.86Carbon Monoxidemg/m35.25.1Hydro Carbon NMHCppmNotNot	TEST PARAMETERSUnitD.G. Set-4 (500 KVA)D.G. Set-5 (500 KVA)D.G. Set-6 7 & 8 (1250) KVA, each)GPCB LimitParticulate Mattermg/Nm³10.5113.8414.25150Sulphur Dioxideppm4.415.516.41100Oxide of Nitrogenppm36.8130.5235.8650Carbon Monoxidemg/m³5.25.1Not specifiedHydro Carbon NMHCppmNotNotNot

% O2 Correction when Oxygen is greater than 15 % stack monitoring is done on guarterly

 \mathbf{T}

H. T. Shah

Dr. ArunBajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: <u>pollucon@gmail.com</u> Page 221 of 456

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

			26/02/2020	26/02/2020	26/02/2020		
SR.				CT-4		GPCB	
NO.	TEST PARAMETERS	Unit	D.G. Set-1 (1500 KVA)	D.G. Set-2 (1500 KVA)	D.G. Set-3 (1500 KVA)	Limit	Test Method
1	Particulate Matter	mg/Nm ³	28.41	19.82	23.27	150	IS:11255 (Part-I):1985
2	Sulphur Dioxide	ppm	6.55	5.36	7.69	100	IS:11255 (Part-II):1985
3	Oxide of Nitrogen	ppm	32.88	30.78	36.72	50	IS:11255 (Part- VII):2005
4	Carbon Monoxide	mg/m3				Not Specified	Digital Gas Analyzer
5	Hydro Carbon NMHC	ppm				Not Specified	Gas Chromatography

*DG sets are used as standby, so stack monitoring is done on quarterly basis. Results on 15 % O2 Correction when Oxygen is greater than 15 %

H. T. Shah Lab Manager

Dr. ArunBajpai Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: pollucon@gmail.com Page 222 of 456 LABORATORIES PVT. LTD.

Environmental Auditors, Consultants & Analysts. Cleaner Production / Weste Minimization Pacilitator

Recognised by MoEF New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

Minimum Detection Limit [MDL]

	Ambient Air Parameters						
Sr. No.	Test Parameter	MDL					
1	Particulate Matter (PM10) (µg/m ³)	10					
2	Particulate Matter (PM 2.5) (µg/m ³)	10					
3	Sulphur Dioxide (SO ₂) (μ g/m ³)	5					
4	Oxides of Nitrogen (µg/m ³)	5					
5	Hydrogen Sulphide as H2S (µg/m ³)	6					

	Stack Parameters						
Sr.No.	Test Parameter	MDL					
1	Particulate Matter (mg/Nm ³)	10					
2	Sulphur Dioxide (ppm)	1.52					
3	Oxides of Nitrogen (ppm)	2.65					
4	Carbon Monoxide (mg/Nm ³)	0.1					
5	Haydro Carbon NMHC (ppm)	1.0					

	Sea Water Parameters		
SR. NO.	TEST PARAMETERS	UNIT	MDL
1	рН		2
2	Temperature	°C	2
3	Total Suspended Solids	mg/L	2
4	BOD (3 Days @ 27 °C)	mg/L	1
5	Dissolved Oxygen	mg/L	0.1
6	Salinity	ppt	1
7	Oil & Grease	mg/L	2
8	Nitrate as NO ₃	µmol/L	0.5
9	Nitrite as NO ₂	µmol/L	0.01
10	Ammonical Nitrogen as NH ₃	µmol/L	0.2
11	Phosphates as PO ₄	µmol/L	0.5
12	Petroleum Hydrocarbon	μg/L	1
13	Total Dissolved Solids	mg/L	10
14	COD	mg/L	3
15	Primary productivity	mgC/L/day	0.1
16	Chlorophyll	mg/m ³	0.1
17	Phaeophytin	mg/m ³	0.1
18	Cell Count	No. x 10 ³ /L	1

	Sea Sediment Parameters							
SR. NO.	TEST PARAMETERS	UNIT	MDL					
1	Organic Matter	%	0.1					
2	Phosphorus as P	µg/g	1					
3	Petroleum Hydrocarbon	µg/g	1					
4	Aluminum as Al	%	0.1					
5	Manganese as Mn	µg/g	1					
6	Mercury as Hg	µg/g	0.1					

H. T. Shah Lab Manager

have

Dr. ArunBajpai Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: pollucon@gmail.com Page 223 of 456

Recognised by MoEF New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

	STP Water parameter(mg/L)							
Sr. No.	Sr. No. Test parameter MDL							
1	рН	2						
2	Total Suspended Solids (mg/L)	2						
3	BOD (3 days @ 270 C) (mg/L)	1						
4	Residual Chlorine (mg/L)	0.2						
5	Fecal Coliform (MPN INDEX/100 mL)	1.8						

	ETP Water Parameters							
SR. NO.	TEST PARAMETERS	UNIT	MDL					
1	Colour	Co-pt	2					
2	pH		2					
3	Temperature	°C	2					
4	Total Suspended Solids	mg/L	2					
5	Total Dissolved Solids	mg/L	10					
6	COD	mg/L	3					
7	BOD (3 Days @ 27 °C)	mg/L	1					
8	Chloride as Cl	mg/L	1					
9	Oil & Grease	mg/L	2					
10	Sulphate as SO ₄	mg/L	1					
11	Ammonical Nitrogen as NH ₃	mg/L	0.2					
12	Phenolic Compound	mg/L	0.005					
13	Copper as Cu	mg/L	0.01					
14	Lead as Pb	mg/L	0.01					
15	Sulphide as S	mg/L	0.1					
16	Cadmium as Cd	mg/L	0.002					
17	Fluoride as F	mg/L	0.05					

H. T. Shah Lab Manager

hannin

Dr. ArunBajpai Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: <u>pollucon@mail.com</u> Page 224 of 456

Cleaner Production / Weste Minimization Pacilitator

Recomised by MoEF New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

"HALF YEARLY ENVIRONMENTAL MONITORING REPORT"

FOR

BORE HOLE WATER ADANI PORTS AND SPECIAL ECONOMIC ZONE LIMITED TAL: MUNDRA, KUTCH, MUNDRA – 370 421

> MONITORING PERIOD: OCTOBER 2019 TO MARCH 2020

> > PREPARED BY:

POLLUCON LABORATORIES PVT.LTD.

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE/FAX – (+91 261) 2455 751, 2601 106, 2601 224. E-mail: pollucon@gmail.com Web: www.polluconlab.com

TC - 5945

ISO 9001:2015

ISO 14001:2015

OHSAS 18001:2007

Cleaner Production / Waste Minimization Bicilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF BORE HOLE WATER

SR.				RESULTS				
NO	TEST PARAMETERS	UNIT	PUMP HOUSE-1	PUMP HOUSE-2	PUMP HOUSE-3	TEST METHOD		
	Sampling Date		Sampling Date		06/12/2019	06/12/2019	06/12/2019	
1	рН		7.84	7.78	7.87	IS3025(P11)83Re.02		
2	Salinity	ppt	5.60	1.72	1.8	APHA 2520B		
3	Oil & Grease	mg/L	Not Detected	Not Detected	1.8	APHA(22ndEdi)5520D		
4	Hydrocarbon	mg/L	Not Detected	Not Detected	Not Detected	GC/GC-MS		
5	Lead as Pb	mg/L	0.058	0.062	0.072	AAS APHA(22ndEdi)3111 B		
6	Arsenic as As	mg/L	Not Detected	Not Detected	Not Detected	AAS APHA 3114 B		
7	Nickel as Ni	mg/L	Not Detected	Not Detected	Not Detected	AAS APHA(22ndEdi)3111 B		
8	Total Chromium as Cr	mg/L	Not Detected	Not Detected	Not Detected	AAS 3111B		
9	Cadmium as Cd	mg/L	Not Detected	0.036	0.038	AAS APHA(22ndEdi)3111 B		
10	Mercury as Hg	mg/L	Not Detected	Not Detected	Not Detected	AAS APHA- 3112 B		
11	Zinc as Zn	mg/L	Not Detected	2.31	0.42	AAS APHA(22ndEdi)3111 B		
12	Copper as Cu	mg/L	Not Detected	Not Detected	Not Detected	AAS APHA(22ndEdi)3111 B		
13	Iron as Fe	mg/L	4.28	5.44	2.70	AAS APHA(22ndEdi)3111 B		
14	Insecticides/Pesticides	mg/L	Absent	Absent	Absent	GC/GC-MS		
15	Depth of Water Level from Ground Level	meter	1.9	2.05	1.8			

*BDL: Below Detection Limit

 Σ^{γ}

H. T. Shah

Lab Manager

hours

Dr. Arun Bajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

EMAIL: pollugn@gmail.com Page 226 of 456

Cleaner Production / Waste Minimization Pacilitator

Recomised by MoEF New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

SR.			RESI	ULTS	
NO	TEST PARAMETERS	UNIT	NEAR ETP OFFICE	NEAR CONTROL ROOM	TEST METHOD
	Sampling Date		06/12/2019	06/12/2019	
1	рН		7.89	7.81	IS3025(P11)83Re.02
2	Salinity	ppt	14	6.4	APHA 2520B
3	Oil & Grease	mg/L	2.83	Not Detected	APHA(22ndEdi)5520D
4	Hydrocarbon	mg/L	Not Detected	Not Detected	GC/GC-MS
5	Lead as Pb	mg/L	0.052	0.062	AAS APHA(22ndEdi)3111 B
6	Arsenic as As	mg/L	Not Detected	Not Detected	AAS APHA 3114 B
7	Nickel as Ni	mg/L	Not Detected	Not Detected	AAS APHA(22ndEdi)3111 B
8	Total Chromium as Cr	mg/L	Not Detected	Not Detected	AAS 3111B
9	Cadmium as Cd	mg/L	Not Detected	Not Detected	AAS APHA(22ndEdi)3111 B
10	Mercury as Hg	mg/L	Not Detected	Not Detected	AAS APHA- 3112 B
11	Zinc as Zn	mg/L	0.087	3.26	AAS APHA(22ndEdi)3111 B
12	Copper as Cu	mg/L	Not Detected	Not Detected	AAS APHA(22ndEdi)3111 B
13	Iron as Fe	mg/L	0.32	5.7	AAS APHA(22ndEdi)3111 B
14	Insecticides/Pesticides	mg/L	Absent	Absent	GC/GC-MS
15	Depth of Water Level from Ground Level	meter	2.1	2.1	

*BDL: Below Detection Limit

H. T. Shah

Lab Manager

hours

Dr. Arun Bajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

EMAIL: pollugen@gmail.com Page 227 of 456

Cleaner Production / Waste Minimization Pacificator

Recomised by MoEF New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

	Borehole Water Parameters		
SR. NO.	TEST PARAMETERS	UNIT	MDL
1	pH		2
2	Salinity	mg/L	0.5
3	Oil & Grease	mg/L	2
4	Hydrocarbon	mg/L	0.01
5	Lead as Pb	mg/L	0.01
6	Arsenic as As	mg/L	0.001
7	Nickel as Ni	mg/L	0.02
8	Total Chromium as Cr	mg/L	0.025
9	Cadmium as Cd	mg/L	0.002
10	Mercury as Hg	mg/L	0.005
11	Zinc as Zn	mg/L	0.06
12	Copper as Cu	mg/L	0.01
13	Iron as Fe	mg/L	0.1
14	Insecticides/Pesticides	mg/L	0.1

H. T. Shah

Lab Manager

hours

Dr. Arun Bajpai

Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751

EMAIL: pollugen@gmail.com Page 228 of 456

Recognised by MoEF New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

"HALF YEARLY ENVIRONMENTAL MONITORING REPORT"

FOR

adani WATER FRONT DEVELOPMENT PROJECT [WEST PORT] ADANI PORTS AND SPECIAL ECONOMIC ZONE LIMITED TAL: MUNDRA, KUTCH, MUNDRA – 370 421

MONITORING PERIOD: OCTOBER 2019 TO MARCH 2020

PREPARED BY:

POLLUCON LABORATORIES PVT.LTD.

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE/FAX – (+91 261) 2455 751, 2601 106, 2601 224. E-mail: pollucon@gmail.com Web: www.polluconlab.com

TC - 5945

ISO 9001:2015

ISO 14001:2015

OHSAS 18001:2007

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF STP WATER OUTLET

SR	TECT		West Basin STP Outlet								
NO	TEST PARAMETERS	Unit	Octob	per-19	Novem	ber-19		ber-19	GPCB	TEST	
								06/12/ 2019	17/12/ 2019	permissible Limit	METHOD
1	рН						7.15	7.74		IS3025(P11) 83Re.02	
2	Total Suspended Solids	mg/L					16	16	30	IS3025(P17) 84Re.02	
3	BOD (3 days @ 270 C)	mg/L					6.0	11	20	IS 3025 (P44)1993R e.03Edition2 .1	
4	Residual Chlorine	mg/L					0.8	0.6	Min 0.5	APHA(22ndE di)4500 Cl	
5	Fecal Coliform	MPN/ 100 mL					170	170	< 1000	APHA (22ndEdi) 9221 C&E	

SR	^{SR} TEST NO PARAMETERS	West Basin STP Outlet								
		Unit	Janua 03/01/ 2020	ry-20 	Februa 04/02/ 2020	ary- 20 17/02/ 2020	Marc 03/03/ 2020	c h-20 18/03/ 2020	GPCB permissible Limit	TEST METHOD
1	рH		8.17		7.14	7.31	7.62	7.75		IS3025(P11) 83Re.02
2	Total Suspended Solids	mg/L	10		9.0	14	14	15	30	IS3025(P17) 84Re.02
3	BOD (3 days @ 270 C)	mg/L	11		8.0	10.2	10	13	20	IS 3025 (P44)1993R e.03Edition2 .1
4	Residual Chlorine	mg/L	0.8		0.6	0.5	0.6	0.6	Min 0.5	APHA(22ndE di)4500 Cl
5	Fecal Coliform	MPN/ 100 mL	210		240	220	350	110	< 1000	APHA (22ndEdi) 9221 C&E

H. T. Shah

Lab Manager

Dr. ArunBajpai

Lab Manager (Q)

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

	WEST PORT – PMC OFFICE									
Sr. No.	Date of Sampling	Particulate Matter (PM10) µg/m3	Particulate Matter (PM2.5) µg/m3	Sulphur Dioxide (SO2) µg/m3	Oxides of Nitrogen (NO2) µg/m3	Carbon Monoxide as (CO) mg/m3	Hydrocarbo n as (CH4) mg/m3	Benzene as (C6H6) µg/m3		
1	02/10/2019	79.62	46.49	13.42	31.60	0.49	BDL*	BDL*		
2	07/10/2019	85.33	49.43	19.53	34.53	0.25	BDL*	BDL*		
3	09/10/2019	78.54	55.45	12.40	28.40	0.29	BDL*	BDL*		
4	14/10/2019	93.69	58.30	15.67	22.61	0.30	BDL*	BDL*		
5	16/10/2019	89.25	40.34	14.66	32.42	0.48	BDL*	BDL*		
6	21/10/2019	94.35	46.37	20.27	36.42	0.36	BDL*	BDL*		
7	23/10/2019	84.27	43.52	18.44	27.52	0.55	BDL*	BDL*		
8	30/10/2019	91.40	56.44	16.88	19.56	0.47	BDL*	BDL*		
9	31/10/2019	87.34	52.52	23.49	38.20	0.73	BDL*	BDL*		
10	04/11/2019	94.26	55.32	15.67	35.27	0.39	BDL*	BDL*		
11	06/11/2019	86.22	48.59	18.17	24.57	0.49	BDL*	BDL*		
12	11/11/2019	90.28	51.23	26.39	41.28	0.27	BDL*	BDL*		
13	13/11/2019	83.56	46.21	21.30	34.57	0.44	BDL*	BDL*		
14	18/11/2019	93.51	53.65	23.40	37.54	0.52	BDL*	BDL*		
15	20/11/2019	82.65	49.26	14.67	33.59	0.32	BDL*	BDL*		
16	25/11/2019	95.34	50.31	20.25	21.55	0.54	BDL*	BDL*		
17	27/11/2019	89.82	47.63	19.56	29.46	0.62	BDL*	BDL*		
18	02/12/2019	91.57	52.48	23.40	39.22	0.37	BDL*	BDL*		
19	04/12/2019	84.50	45.62	26.18	43.47	0.48	BDL*	BDL*		
20	09/12/2019	78.54	38.56	21.92	22.54	0.55	BDL*	BDL*		
21	11/12/2019	86.26	42.11	13.48	33.55	0.74	BDL*	BDL*		
22	16/12/2019	95.34	50.22	17.25	38.81	0.30	BDL*	BDL*		
23	18/12/2019	79.10	46.21	15.66	32.52	0.44	BDL*	BDL*		
24	23/12/2019	83.49	49.22	19.56	27.34	0.53	BDL*	BDL*		
25	25/12/2019	92.30	53.48	28.70	40.58	0.60	BDL*	BDL*		
26	30/12/2019	85.38	36.55	22.54	34.51	0.62	BDL*	BDL*		
27	01/01/2020	84.09	38.47	24.61	38.43	0.48	BDL*	BDL*		
28	06/01/2020	92.41	52.44	21.52	32.60	0.66	BDL*	BDL*		
29	08/01/2020	76.54	33.50	19.66	21.22	0.40	BDL*	BDL*		
30	13/01/2020	95.39	54.49	15.27	34.54	0.60	BDL*	BDL*		

Continue...

H. T. Shah

Lab Manager

Dr. ArunBajpai

Lab Manager (Q)

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

			WES	T PORT – PM				
Sr. No.	Date of Sampling	Particulate Matter (PM10) µg/m3	Particulate Matter (PM2.5) µg/m3	Sulphur Dioxide (SO2) µg/m3	Oxides of Nitrogen (NO2) µg/m3	Carbon Monoxide as (CO) mg/m3	Hydrocarbo n as (CH4) mg/m3	Benzene as (C6H6) µg/m3
31	15/01/2020	86.37	45.33	23.40	39.28	0.53	BDL*	BDL*
32	20/01/2020	91.56	50.26	26.32	41.54	0.82	BDL*	BDL*
33	22/01/2020	79.67	41.57	10.57	24.50	0.69	BDL*	BDL*
34	27/01/2020	87.32	47.55	12.35	29.31	0.33	BDL*	BDL*
35	29/01/2020	75.30	37.59	13.62	31.22	0.63	BDL*	BDL*
36	03/02/2020	86.55	33.45	13.53	31.55	0.55	BDL*	BDL*
37	05/02/2020	77.57	39.27	16.57	18.43	0.39	BDL*	BDL*
38	10/02/2020	81.27	43.32	7.68	22.35	0.50	BDL*	BDL*
39	12/02/2020	74.20	34.33	11.50	27.74	0.32	BDL*	BDL*
40	17/02/2020	87.64	46.38	20.43	35.62	0.57	BDL*	BDL*
41	19/02/2020	75.66	52.36	10.70	25.50	0.53	BDL*	BDL*
42	24/02/2020	93.32	55.62	22.41	36.88	0.45	BDL*	BDL*
43	26/02/2020	84.38	48.38	18.41	30.66	0.27	BDL*	BDL*
44	02/03/2020	93.55	45.41	9.26	39.61	0.58	BDL*	BDL*
45	04/03/2020	89.54	48.63	12.24	25.35	0.65	BDL*	BDL*
46	09/03/2020	78.54	41.23	20.20	37.54	0.45	BDL*	BDL*
47	11/03/2020	85.68	46.58	10.58	33.56	0.48	BDL*	BDL*
48	16/03/2020	90.54	54.32	13.28	29.62	0.68	BDL*	BDL*
49	18/03/2020	69.36	35.42	17.55	34.60	0.38	BDL*	BDL*
	TEST METHOD	IS:5182 (Part 23):Gravimetric CPCB - Method (Vol.I,May- 2011)	Gravimetric- CPCB - Method (Vol.I,May- 2011)	IS:5182(Part II):Improved West and Gaeke	IS:5182(Part VI):Modified Jacob &Hochheiser (NaOH- NaAsO2)	NDIR Digital Gas Analyzer	SOP: HC: GC/GCMS/Gas analyzer	IS 5182 (Part XI):2006/CPCB Method

H. T. Shah

Lab Manager

Dr. ArunBajpai

Lab Manager (Q)

DELLOCON LABORATORIES PVT. LTD

Environmental Auditors, Consultants & Analysis, Cleaner Production / Waste Minimization Pacilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

			WEST POR	T - HORTI C	ULTURE CAI	BIN		
Sr. No.	Date of Sampling	Particulate Matter (PM10) µg/m3	Particulate Matter (PM2.5) µg/m3	Sulphur Dioxide (SO2) µg/m3	Oxides of Nitrogen (NO2) µg/m3	Carbon Monoxide as (CO) mg/m3	Hydrocarbo n as (CH4) mg/m3	Benzene as (C6H6) µg/m3
1	02/10/2019	61.56	29.66	17.51	29.30	0.54	BDL*	BDL*
2	07/10/2019	57.41	20.36	10.25	19.56	0.37	BDL*	BDL*
3	09/10/2019	63.64	33.44	18.32	32.41	0.33	BDL*	BDL*
4	14/10/2019	76.58	31.57	13.43	15.61	0.64	BDL*	BDL*
5	16/10/2019	80.30	37.53	11.49	25.36	0.44	BDL*	BDL*
6	21/10/2019	62.69	35.55	15.67	33.24	0.32	BDL*	BDL*
7	23/10/2019	54.72	28.47	6.83	17.59	0.38	BDL*	BDL*
8	30/10/2019	64.29	25.70	12.22	26.32	0.53	BDL*	BDL*
9	31/10/2019	71.30	45.35	20.22	35.62	0.89	BDL*	BDL*
10	04/11/2019	81.22	44.54	12.71	28.45	0.71	BDL*	BDL*
11	06/11/2019	68.53	38.66	14.27	16.56	0.46	BDL*	BDL*
12	11/11/2019	71.69	31.57	21.35	38.47	0.42	BDL*	BDL*
13	13/11/2019	67.68	32.53	11.56	21.56	0.36	BDL*	BDL*
14	18/11/2019	88.08	41.07	17.38	30.50	0.56	BDL*	BDL*
15	20/11/2019	70.25	36.28	19.55	24.50	0.47	BDL*	BDL*
16	25/11/2019	69.49	27.56	13.23	27.65	0.58	BDL*	BDL*
17	27/11/2019	58.66	30.36	7.41	18.39	0.41	BDL*	BDL*
18	02/12/2019	75.45	29.48	13.58	23.49	0.54	BDL*	BDL*
19	04/12/2019	83.39	36.57	17.54	34.55	0.39	BDL*	BDL*
20	09/12/2019	70.52	23.56	15.01	16.39	0.64	BDL*	BDL*
21	11/12/2019	56.31	27.44	8.32	20.50	0.45	BDL*	BDL*
22	16/12/2019	78.51	40.24	14.36	31.59	0.66	BDL*	BDL*
23	18/12/2019	64.51	31.48	21.77	27.58	0.78	BDL*	BDL*
24	23/12/2019	72.62	35.40	16.24	18.41	0.46	BDL*	BDL*
25	25/12/2019	68.35	26.31	23.81	36.57	0.27	BDL*	BDL*
26	30/12/2019	77.56	32.23	20.51	38.54	0.71	BDL*	BDL*
27	01/01/2020	78.59	34.24	18.57	33.54	0.80	BDL*	BDL*
28	06/01/2020	67.59	31.69	12.38	21.51	0.79	BDL*	BDL*
29	08/01/2020	53.56	20.31	8.67	17.57	0.74	BDL*	BDL*
30	13/01/2020	76.63	43.53	11.55	29.81	0.55	BDL*	BDL*

Continue...

H. T. Shah

Lab Manager

Dr. ArunBajpai

Lab Manager (Q)

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

			WEST POR	T - HORTI C	ULTURE CAI	BIN		
Sr. No.	Date of Sampling	Particulate Matter (PM10) µg/m3	Particulate Matter (PM2.5) µg/m3	Sulphur Dioxide (SO2) µg/m3	Oxides of Nitrogen (NO2) µg/m3	Carbon Monoxide as (CO) mg/m3	Hydrocarbo n as (CH4) mg/m3	Benzene as (C6H6) µg/m3
31	15/01/2020	80.37	36.28	15.30	32.41	0.45	BDL*	BDL*
32	20/01/2020	69.57	29.40	20.43	24.27	0.52	BDL*	BDL*
33	22/01/2020	74.51	39.41	14.33	16.33	0.32	BDL*	BDL*
34	27/01/2020	57.69	25.65	7.66	19.54	0.78	BDL*	BDL*
35	29/01/2020	63.56	33.53	17.55	23.41	0.87	BDL*	BDL*
36	03/02/2020	58.38	23.44	9.50	26.18	0.69	BDL*	BDL*
37	05/02/2020	72.34	33.61	7.32	14.55	0.65	BDL*	BDL*
38	10/02/2020	62.59	26.31	11.49	18.50	0.46	BDL*	BDL*
39	12/02/2020	70.27	31.53	16.49	20.10	0.62	BDL*	BDL*
40	17/02/2020	68.30	37.24	13.51	28.15	0.26	BDL*	BDL*
41	19/02/2020	84.58	28.36	8.65	16.48	0.72	BDL*	BDL*
42	24/02/2020	50.22	18.22	17.40	21.08	0.48	BDL*	BDL*
43	26/02/2020	77.57	40.24	14.35	24.23	0.81	BDL*	BDL*
44	02/03/2020	76.55	30.57	14.60	32.59	0.54	BDL*	BDL*
45	04/03/2020	60.57	28.31	9.68	21.91	0.78	BDL*	BDL*
46	09/03/2020	73.55	37.53	18.11	25.34	0.76	BDL*	BDL*
47	11/03/2020	81.36	44.49	13.24	28.34	0.87	BDL*	BDL*
48	16/03/2020	77.57	40.28	17.58	18.65	0.31	BDL*	BDL*
49	18/03/2020	85.34	43.66	11.28	27.74	0.61	BDL*	BDL*
	TEST METHOD	IS:5182 (Part 23):Gravimetric CPCB - Method (Vol.I,May- 2011)	Gravimetric- CPCB - Method (Vol.I,May- 2011)	IS:5182(Part II):Improved West and Gaeke	IS:5182(Part VI):Modified Jacob &Hochheiser (NaOH- NaAsO2)	NDIR Digital Gas Analyzer	SOP: HC: GC/GCMS/Gas analyzer	IS 5182 (Part XI):2006/CPCB Method

H. T. Shah

Lab Manager

Dr. ArunBajpai

Lab Manager (Q)

DELLOCON LABORATORIES PVT. LTD

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Pacilitatur

	Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986								
			WEST P	PORT - WES	T BASIN STP	•			
Sr. No.	Date of Sampling	Particulate Matter (PM10) µg/m3	Particulate Matter (PM2.5) µg/m3	Sulphur Dioxide (SO2) µg/m3	Oxides of Nitrogen (NO2) µg/m3	Carbon Monoxide as (CO) mg/m3	Hydrocarbo n as (CH4) mg/m3	Benzene as (C6H6) µg/m3	
1	02/10/2019	66.24	40.24	11.64	25.46	0.68	BDL*	BDL*	
2	07/10/2019	76.35	44.39	20.44	28.29	0.82	BDL*	BDL*	
3	09/10/2019	68.44	42.69	16.51	35.59	0.69	BDL*	BDL*	
4	14/10/2019	71.51	28.72	21.31	31.55	0.52	BDL*	BDL*	
5	16/10/2019	85.33	45.72	19.55	27.50	0.50	BDL*	BDL*	
6	21/10/2019	58.45	30.46	25.66	40.26	0.86	BDL*	BDL*	
7	23/10/2019	70.27	39.54	8.69	33.47	0.78	BDL*	BDL*	
8	30/10/2019	69.43	36.43	18.70	23.49	0.81	BDL*	BDL*	
9	31/10/2019	81.30	41.32	17.65	30.24	0.94	BDL*	BDL*	
10	04/11/2019	74.32	30.56	20.58	31.58	0.57	BDL*	BDL*	
11	06/11/2019	62.43	33.57	23.64	34.59	0.70	BDL*	BDL*	
12	11/11/2019	86.37	47.57	18.73	30.22	0.89	BDL*	BDL*	
13	13/11/2019	72.69	43.45	24.50	38.63	0.73	BDL*	BDL*	
14	18/11/2019	92.58	49.24	21.58	35.65	0.48	BDL*	BDL*	
15	20/11/2019	77.55	46.78	12.48	27.38	0.74	BDL*	BDL*	
16	25/11/2019	82.27	40.28	22.44	25.63	0.88	BDL*	BDL*	
17	27/11/2019	79.26	44.24	9.47	21.54	0.63	BDL*	BDL*	
18	02/12/2019	68.20	37.57	25.28	43.60	0.87	BDL*	BDL*	
19	04/12/2019	70.54	41.53	22.53	39.24	0.80	BDL*	BDL*	
20	09/12/2019	65.37	35.61	23.67	29.31	0.96	BDL*	BDL*	
21	11/12/2019	71.30	39.32	10.60	23.50	0.65	BDL*	BDL*	
22	16/12/2019	67.55	33.57	8.56	36.37	0.97	BDL*	BDL*	
23	18/12/2019	74.59	43.57	13.52	30.58	0.63	BDL*	BDL*	
24	23/12/2019	57.69	29.48	26.50	38.54	0.77	BDL*	BDL*	
25	25/12/2019	82.43	47.20	21.56	32.55	0.52	BDL*	BDL*	
26	30/12/2019	72.69	28.44	16.56	25.36	0.69	BDL*	BDL*	
27	01/01/2020	69.32	31.56	14.52	21.51	0.71	BDL*	BDL*	
28	06/01/2020	87.22	39.24	24.25	35.29	0.76	BDL*	BDL*	
29	08/01/2020	70.64	27.35	17.55	25.47	0.85	BDL*	BDL*	
30	13/01/2020	67.53	36.36	7.86	32.56	0.96	BDL*	BDL*	

Continue...

H. T. Shah

Lab Manager

Dr. ArunBajpai

Lab Manager (Q)

DELLOCON LABORATORIES PVT. LTD

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Pacilitatur

	Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986							
			WEST F	PORT - WEST	BASIN STP	•		
Sr. No.	Date of Sampling	Particulate Matter (PM10) µg/m3	Particulate Matter (PM2.5) µg/m3	Sulphur Dioxide (SO2) µg/m3	Oxides of Nitrogen (NO2) µg/m3	Carbon Monoxide as (CO) mg/m3	Hydrocarbon as (CH4) mg/m3	Benzene as (C6H6) µg/m3
31	15/01/2020	92.45	50.20	20.29	37.58	0.89	BDL*	BDL*
32	20/01/2020	81.58	47.49	23.41	34.55	0.73	BDL*	BDL*
33	22/01/2020	64.54	34.52	18.35	39.24	0.57	BDL*	BDL*
34	27/01/2020	71.53	43.28	9.57	22.54	0.90	BDL*	BDL*
35	29/01/2020	82.61	45.62	10.57	27.57	0.92	BDL*	BDL*
36	03/02/2020	73.58	40.53	7.56	28.00	0.63	BDL*	BDL*
37	05/02/2020	83.71	43.36	13.65	22.64	0.54	BDL*	BDL*
38	10/02/2020	76.24	38.61	16.93	34.92	0.93	BDL*	BDL*
39	12/02/2020	50.23	27.52	8.97	24.47	0.70	BDL*	BDL*
40	17/02/2020	57.57	32.48	18.53	33.04	0.47	BDL*	BDL*
41	19/02/2020	78.33	33.44	12.47	19.40	0.68	BDL*	BDL*
42	24/02/2020	67.32	24.68	14.41	30.70	0.74	BDL*	BDL*
43	26/02/2020	58.73	31.44	20.29	23.28	0.85	BDL*	BDL*
44	02/03/2020	82.80	39.86	20.60	36.40	1.05	BDL*	BDL*
45	04/03/2020	79.87	42.36	18.39	39.29	0.73	BDL*	BDL*
46	09/03/2020	87.26	45.74	11.22	18.67	0.63	BDL*	BDL*
47	11/03/2020	72.64	31.56	22.68	30.66	0.96	BDL*	BDL*
48	16/03/2020	68.64	34.57	14.29	21.59	0.60	BDL*	BDL*
49	18/03/2020	76.53	26.52	23.61	38.63	0.80	BDL*	BDL*
	TEST METHOD	IS:5182(Part 23):Gravimetric CPCB - Method (Vol.I,May- 2011)	Gravimetric- CPCB - Method (Vol.I,May- 2011)	IS:5182 (Part II):Improved West and Gaeke	IS:5182 (Part VI):Modified Jacob &Hochheiser (NaOH- NaAsO2)	NDIR Digital Gas Analyzer	SOP: HC: GC/GCMS/Gas analyzer	IS 5182 (Part XI):2006/CPC B Method

H. T. Shah

Lab Manager

Dr. ArunBajpai

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA Prage Lass 500 (1445) 5007. PHONE: [0261] 2635750, 2635751 EMAIL: <u>pollucon@gmail.com</u>. WEBSITE: <u>www.pollucon.com</u>

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF NOISE LEVEL MONITORING

Result of Noise level monitoring [Day Time]

	Name of Location		١	NEST PORT -	PMC OFFIC	E	
SR. NO.				Result [L	.eq dB(A)]		
no.	Sampling Date & Time	16/10/2019	08/11/2019	23/12/2019	27/01/2020	17/02/2020	18/03/2020
1	6:00-7:00	60.2	65.3	63.2	64.3	64.2	64.2
2	7:00-8:00	64.2	62.5	68.5	68.3	68.4	65.2
3	8:00-9:00	72.4	68.8	65.4	60.3	65.2	67.4
4	9:00-10:00	70.3	73.2	64.8	69.4	60.2	62.1
5	10:00-11:00	68.4	66.6	72.1	73.1	63.8	63.2
6	11:00-12:00	63.2	68.3	69.4	71.3	65.4	68.2
7	12:00-13:00	68.5	63.6	67.3	65.8	66.3	64.2
8	13:00-14:00	65.4	67.0	63.2	64.2	65.1	62.5
9	14:00-15:00	68.2	70.1	65.5	63.8	63.6	69.3
10	15:00-16:00	69.4	63.2	68.7	67.4	60.1	71.3
11	16:00-17:00	64.7	66.3	67.2	68.3	62.2	68.3
12	17:00-18:00	69.4	63.5	62.1	66.4	68.3	65.1
13	18:00-19:00	66.8	65.5	61.2	63.2	63.4	70.2
14	19:00-20:00	62.1	69.3	65.8	68.4	64.3	67.3
15	20:00-21:00	66.4	63.7	69.5	64.3	69.3	63.2
16	21:00-22:00	64.3	67.8	66.4	65.7	67.6	61.4
	Day Time Limit*			75 Leo	dB(A)		

Result of Noise level monitoring [Night Time]

SR.	Name of Location		١	WEST PORT -	PMC OFFICE				
NO.		Result [Leq dB(A)]							
	Sampling Date & Time	16/10/2019	08/11/2019	23/12/2019	20/01/2020	17/02/2020	18/03/2020		
1	22:00-23:00	69.5	68.4	65.1	64.2	66.8	64.2		
2	23:00-00:00	65.0	66.4	62.9	62.2	65.3	67.3		
3	00:00-01:00	67.1	64.3	68.8	65.3	60.7	62.2		
4	01:00-02:00	61.1	69.3	67.3	60.4	57.3	58.5		
5	02:00-03:00	60.3	65.2	64.5	59.4	62.5	64.3		
6	03:00-04:00	63.2	62.6	65.8	66.3	65.4	62.2		
7	04:00-05:00	65.3	64.3	62.7	62.1	60.3	65.3		
8	05:00-06:00	68.2	62.8	67.5	64.3	61.4	62.9		
N	ight Time Limit*			70 Leq	dB(A)				

H. T. Shah

Lab Manager

Dr. ArunBajpai

Lab Manager (Q)

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

Result of Noise level monitoring [Day Time]

	Name of Location		WEST	PORT - HOR		CABIN	
SR. NO.	Name of Location			Result [L	.eq dB(A)]		
nor	Sampling Date & Time	09/10/2019	13/11/2019	11/12/2019	08/01/2020	10/02/2020	09/03/2020
1	6:00-7:00	66.3	58.3	62.7	60.4	58.4	58.3
2	7:00-8:00	68.3	64.5	65.3	60.2	64.2	63.2
3	8:00-9:00	69.5	67.9	63.7	65.2	65.7	68.3
4	9:00-10:00	62.4	71.4	67.4	66.4	68.6	65.2
5	10:00-11:00	65.2	64.2	65.3	69.5	65.8	64.2
6	11:00-12:00	68.3	67.3	66.8	65.3	61.4	61.2
7	12:00-13:00	65.2	63.2	63.1	63.5	66.2	62.4
8	13:00-14:00	70.4	61.8	62.7	69.4	62.3	64.2
9	14:00-15:00	64.2	67.9	67.3	63.9	67.4	69.9
10	15:00-16:00	62.4	63.1	65.3	69.2	69.4	65.4
11	16:00-17:00	65.3	67.6	66.8	62.5	66.4	63.2
12	17:00-18:00	69.5	70.2	68.3	65.3	60.2	60.3
13	18:00-19:00	63.1	65.7	65.2	66.3	63.2	62.9
14	19:00-20:00	61.5	63.1	61.2	69.5	62.1	67.4
15	20:00-21:00	63.2	66.0	69.3	67.3	65.7	61.3
16	21:00-22:00	67.4	62.3	62.7	63.2	61.9	63.2
I	Day Time Limit*			75 Leo	dB(A)		

Result of Noise level monitoring [Night Time]

SR.	Name of Location		WEST	PORT - HOR	FI CULTURE (CABIN			
NO.	Name of Location	Result [Leq dB(A)]							
	Sampling Date & Time	09/10/2019	13/11/2019	11/12/2019	08/01/2020	10/02/2020	09/03/2020		
1	22:00-23:00	68.3	64.3	69.4	67.6	67.4	65.3		
2	23:00-00:00	65.4	62.2	66.3	64.8	62.4	67.3		
3	00:00-01:00	63.1	64.4	68.4	59.5	59.3	62.1		
4	01:00-02:00	66.3	59.4	62.1	62.4	61.4	60.3		
5	02:00-03:00	60.2	61.4	58.8	58.2	63.2	64.2		
6	03:00-04:00	62.1	65.3	62.3	64.9	64.3	63.1		
7	04:00-05:00	65.3	62.3	65.9	64.2	61.8	60.0		
8	05:00-06:00	68.4	60.4	62.1	61.7	63.2	58.4		
N	light Time Limit*			70 Leq	dB(A)				

H. T. Shah

Lab Manager

Dr. ArunBajpai

Lab Manager (Q)

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

Result of Noise level monitoring [Day Time]

	Name of Location		WE	EST PORT - W	EST BASIN S	STP		
SR. NO.		Result [Leq dB(A)]						
NO.	Sampling Date & Time	21/10/2019	11/11/2019	16/12/2019	20-01-2020	19-02-2020		
1	6:00-7:00	68.4	60.4	63.2	60.2	63.2		
2	7:00-8:00	70.3	67.2	68.4	67.3	67.4		
3	8:00-9:00	74.2	70.3	72.2	65.7	66.3		
4	9:00-10:00	67.4	65.8	70.3	73.2	69.4		
5	10:00-11:00	68.3	68.5	65.2	70.2	71.3		
6	11:00-12:00	63.1	62.9	62.0	69.3	65.3		
7	12:00-13:00	60.3	68.3	66.8	65.4	60.5		
8	13:00-14:00	68.8	74.3	62.4	68.4	68.6		
9	14:00-15:00	66.4	70.3	64.8	63.2	69.4		
10	15:00-16:00	64.3	69.2	70.3	67.3	66.4		
11	16:00-17:00	68.4	62.5	69.8	65.4	63.1		
12	17:00-18:00	69.4	65.3	67.1	70.3	70.4		
13	18:00-19:00	71.4	68.9	62.1	69.4	65.3		
14	19:00-20:00	66.3	62.9	61.8	67.1	63.7		
15	20:00-21:00	63.2	68.8	65.8	62.3	65.5		
16	21:00-22:00	68.4	68.3	71.2	65.8	68.8		
[Day Time Limit*			75 Lec	dB(A)			

Result of Noise level monitoring [Night Time]

SR.	Name of Location		WE	EST PORT - W	EST BASIN S	ТР			
NO.			Result [Leq dB(A)]						
	Sampling Date & Time	21/10/2019	11/11/2019	16/12/2019	20/01/2020	19/02/2020			
1	22:00-23:00	67.3	64.2	66.4	63.2	65.8			
2	23:00-00:00	65.2	65.8	63.1	62.2	69.6			
3	00:00-01:00	61.4	68.3	65.3	64.8	63.1			
4	01:00-02:00	69.4	68.3	60.1	60.4	60.3			
5	02:00-03:00	65.2	63.2	68.3	59.4	64.4			
6	03:00-04:00	68.6	62.1	62.3	66.3	64.7			
7	04:00-05:00	66.3	65.3	64.3	62.1	60.3			
8	05:00-06:00	67.8	69.5	68.3	64.3	62.8			
N	ight Time Limit*			70 Leo	dB(A)				

H. T. Shah

Lab Manager

Dr. ArunBajpai

Lab Manager (Q)

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF D.G. STACK MONITORING

			18/12/2019	18/12/2019		
SR.	Ilnit			Basin	GPCB Limit	
NO.	PARAMETERS D.G. S		D.G. Set-1 (1500 KVA)	D.G. Set-2 (1500 KVA)		Test Method
1	Particulate Matter	gm/kw-hr	0.031	0.027	0.2	IS:11255 (Part- I):1985
2	NO _X + HC	gm/kw-hr	0.102	0.089	40	IS:11255 (Part- VII):2005&Gas Chromatography
3	Carbon Monoxide	gm/kw-hr	0.018	0.021	3.5	Digital Gas Analyzer

H. T. Shah Lab Manager

Dr. ArunBajpai Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: pallicon@gnail.com Page 240 of 456

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

MINIMUM DETECTION LIMIT [MDL]

	Ambient Air Parameter	
Sr. No.	Test parameter	MDL
1	Particulate Matter (PM10) (µg/m ³)	10
2	Particulate Matter (PM 2.5) (µg/m ³)	10
3	Sulphur Dioxide (SO ₂) (μ g/m ³)	5
4	Oxides of Nitrogen(µg/m ³)	5
5	Carbon Monoxide as CO (mg/m ³)	0.1
6	Hydrocarbon as CH_4 (µg/m ³)	150
7	Benzene as C_6H_6 (mg/m ³)	2

	STP Water parameter(mg/L)						
Sr. No.	Test parameter	MDL					
1	pH	2					
2	Total Suspended Solids (mg/L)	2					
3	BOD (3 days @ 270 C) (mg/L)	1					
4	Residual Chlorine (mg/L)	0.2					
5	Fecal Coliform (MPN INDEX/100 mL)	1.8					

Stack Parameters		
Sr.No.	Test Parameter	MDL
1	Particulate Matter (mg/Nm ³)	10
2	Sulphur Dioxide (ppm)	1.52
3	Oxides of Nitrogen (ppm)	2.65
4	Carbon Monoxide (mg/Nm ³)	0.1
5	Haydro Carbon NMHC (ppm)	1.0

H. T. Shah Lab Manager

Ser

Dr. ArunBajpai Lab Manager (Q)

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE: [0261] 2635750, 2635751 EMAIL: <u>pollucon@rmail.com</u> Page 241 of 456

While House Near C LO.C. Office Char Raste. Vapi-398 125. Gujaret, India. Phone : +91 26: 2439-363 / 24258:0 Email . response@uethin Website : www.uettin

active under the D14-1988 (2011/2015) (517-117-11993)	
	Monthly Average Report
	Amblent Alr Quality Monitoring
Name and Address of Client	 M/s. Adani Power (Mundra) Ltd. Village: Tunde & Siracha, Tal. Mundra, Dist.: Kutch. GUJARAT – 370 435.
Month of Monitoring	: October - 2019
Name of Location	: Village - Siracha
ID No.	: URA/ID/A-19/10/001

			α.	nçontration in A	mbient Air (µg /	'm [≯])	
Sr. No.	Sampling Date	РМ:0 µg/М	ΡΜ 25 μg/M ³¹	Sulphur Dioxide (SO ₂).ig/M ³	Nitrogen Dioxide (NO ₂)µg/M ³	Ozone (O _S)µg/M ⁹	Mercury (Hg) µg/M [°]
	38 Permissible It (TWA for 24 h(s.)	100	60	80	90 [°]	100	N.A.
1:	01/10/2015	67.7	27.2	17.6	26.7		-
z	04/10/2019	70.9	28.8	12.5	21.5		
з.	08/10/2019	62.6	24.D	13.3	20.3	·	
4.	11/10/2019	53.4	22.0	11.5	13.6		-
5.	15/10/2019	61.7	18.3	20.7	22.5	16.8	BDL
6.	18/10/2019	60. 1	20.2	8.6	22,4		
7.	21/10/2019	67.3	21.9	18.5	18.7		
8.	23/10/2019	68.6	22.9	19.4	24.6		
Average 64		64.0	23.2	15.3	21.3		

Analysis Method Reference: SPM - IS: 5182 (Part 4', 1999, PM₁₀ - IS: 5182 (Part 23), 2006, PM₂₃ - Guidelines by CPCB (Vol-1), SO₂ - IS: 5182 (Part 2), 2001, NO₂ - IS: 5182 (Part 6), 2006, Hg: AAS by VGA Method -3112 B APEA 27 Edison&Hg: 2 ppbO3: IS - 5182 (Part 9) 2009Ozone BDL limit: 5 µg/m3

UniStar Environment & Research Lab, Pvt. Ltd. (Authorized Signatory) (7-2-1)

While House, Near G.I.D.C. Office, Char Rasta, Vajn 398 190, Gajanat India. Phone 1 –91 péri 24.043677/925610 Encal Treeponae@uertiis Website Twyw.uertiin

EFACC (90) Recognized Contrainmental accleyinger Fersk-West 20, 206 accessing 200	Generative Research and CPC3 Recognized Brethance rol CHSAS (800) (2017 3.0 (2017)
9	Monthly Average Report Ambient Air Quality Monitoring
Name and Address of Client	: M/s. Adani Power (Mundro) Ltd. Village: Tunda & Siracha, Tal. Mundra, D'st.: Kubch. GUJARA∓ – 370 435.
Month of Monitoring	: October - 2019
Name of Location	: Village - Kandagara
ID No.	: URA/ID/A-19/10/002

		Concentration in Ambient Air	mbient Air (µg /ı	π ⁵)			
Sr. No.	Sampling Date	PM _{1P} µg/M [°]	Р М_{2.5} µg/M ³	Sulphur Dioxide (SO ₂) _{H-B} / M ³	Nitrogen Dioxide (NO ₂]µg/M [°]	Ozone (O₃)µg/M"	Mercury (Rg) pg/M ⁹
	B Permissible it (TWA for 24 hrs.):	100	60	80	80	100	NLA.
1.	01/10/2015	63.1	25.6	12.5	20.3		-
z.	04/10/2019	65.0	21.5	19.2	24-1		
з.	08/10/2019	60.9	20.3	14.3	19.6		
4.	11/10/2019	73.7	24.8	15,7	19.5		
5.	15/10/2019	60.2	26.5	173	23.7	18.9	BOL
6.	18/10/2019	55.9	22.0	20.3	16.7		
7.	21/10/2019	56.0	21.3	10.6	22.6		
8.	23/10/2019	62.0	31.8	17.2	28.4		
Avera	ige	61.9	24.2	15.9	21.1		

Remark: Calibrated equipment & instruments were used during monitoring & analysis of above identified sample.

Analysis Method Reference: SPM~ IS: 5182 (Part 4), 1999, PM₁₉- (S: 5182 (Part 23), 2006, PM₂₅- Guidelines by CPCH (Vol-1), **SO**₂- IS: 5182 (Part 2), 2001, **NO**₈- IS: 5182 (Part 6), 2006, Hg: AAS by VGA Method -3112 H APHA 22 Edison&Hg: 2 pob **O3**: IS - 5182 (Part 9) 2009Ozone BDL limit: 5 µg/m3

UniStar Environment & Research Labs Pvt. Ltd.

(Authorized Signatory)

Regil: Office (215, Royal Alcade, New G., D.C.Office, Char Reals Vavi-S96 (25, Gujaral, India Econored Work Office : S.I.O.C. Dahej-II, Dhanich : Sujarat CincUrs ForGuson (Pr) Crock46a Page 243 of 456

White House, Near (21 0.0, Office, Char Rasta, Vapi-385 195, Guyanat India, Phone : 491 265 243,4667 (24256:0 Email : tesponsogatan In Weits te , www.uertum

Non-AUC (GO)(Associated () v oursens non-diversitie (ne Env. 986(120) 20 Stor (01/2020)	QUI-NASE ACCOUNT IN Con-Ultralit Ungentation	e M.P.Secogn and Brais ones fol (CH5AS) 500-7007 A collibre (Charles of ell 1) Certical Company	150 - Pañi Ruis Certifico Simpary
	Monthly Av Amblent Air Qua	erage Report Ity Monitoring	
Name and Address of Client	awer. (Mundra) Ltd. & Siracha, Dist.: Kutch. O 435.		
Month of Monitoring Name of Location	: September - 2 : Village- Wand		
ID No.	: URA/IO/A-19/	/09/003	

	Sampling Date		Concentration in	ncentration in Ar	mbient Air (µg /t	n³} ·	
\$r. No.		РМ ₁₀ µg/М ⁰	РМ ₂₅ µg/М ¹	Sulphur Dioxide (SO ₂)µg/M ³	Nitrogen Dioxide (NO ₂)µg/M ³	Ozone (O ₃)µg/M ³	Mercury (Hg) µg/M [:]
	28 Permissible it (FWA for 24 hrs.)	100	60	80	80	100	N:A.
1.	01/10/2019	72.2	34.3	15.4	17.6		-
2.	04/10/2019	64.5	27.2	15.3	19.3		
3.	08/10/2019	62.1	21.3	11.9	26.3		
4.	11/10/2019	72.4	32,6	13.5	21.5		_
5.	15/10/2019	68.2	7 6 .2	23.1	24.3	21.1	BDL
6.	18/10/2019	70.5	29.4	17.3	26.2		
7.	21/13/2019	73.1	30.4	15.8	23.5		-
8.	23/10/2019	63.5	25.1	20.6	21.6		
Avera	ge	68.3	28.3	16.6	22.5		

Remark: Calibrated equipment & Instruments were used during monitoring & analysis of above identified sample.

Analysis Method Reference: SPM - IS: 5182 (Part 4), 1999, PM₁₀ - IS: 5182 (Part 23), 2006, PM₂₅- Goldelines by CPCB (Vol-1), **SO**₂ - IS: 5182 (Part 2), 2001, **NO**₇ - IS: 5182 (Part 6)/2006, Hg: AAS by VCA Method -3112 B APHA 22 Edison&Hg: 2 ppb **O3**: IS = 5182 (Part 9) 2009Ozone BDE limit: 5 µg/m3

UniStar Environment &

Research Labs Pvt. Ltd.

(Authorized Sign tory)

White House. Near G.I.D.C. Office, Char Raets, Vapi-395 195, Gujarat, India. Phone : +91 050 24339667 2420618 Smail: response Buellin Website: Www.uetlin

Т

in ver-8.co — (acc) (1. Medagy, Sceni, Province memo) Laboration viderine (F.A. 1966) (201-3019 fe (1.01) 2005)	Consultanti Australia Ele Consultanti Angeliazsitian	GF33 Roogr and Endormetrol A register (A should be fill)	CHRADIS/01/2027 ComPad Company	SOL PECT 2016 Centled Compary				
Monthly Average Report								
	Amblent Air Qua	lity Monitoring		•				

Name and Address of Client	: M/s. Adani Power (Mundra) Ltd. Village: Tunda & Siracha, Ťal. Mandra, Dist.: Kutch. GUJARAT – 370 435.
Month of Monitoring	: November - 2019
Name of Location	Village - Siracha

ID No.

Village - Siracha

URA/ID/A-19/11/001

		Concentration in Ambient Air (µg /m ³)						
Sr. No.	Sampling Date	ΡΜ ₁₀ μg/ M ³	PM₂₅ μg/M³	Sulpher Dioxide (SØ ₂)µg/M [°]	Nitrogen Dioxíde (NO ₂)µg/M ¹	Ozone {O _a }µg/M ³	Mercury (Hg) µg/lw ⁱⁱ	
GPCB Permissible Simit (TWA for 24 hts.)		100	60	80	80	100	'N.A.	
1.	05/11/2019	62.0	25.7	11.8	17.3			
2.	08/11/2019	61.5	21.7	16.7	24.6			
з.	13/11/2019	59.7	20.6	15.2	21.8			
4.	15/11/2019	68.7	25.7	13.5	20.3		-	
5.	19/11/2019	61.4	33.4	17.5	27,5	9.3	BDL	
б.	22/11/2019	64.7	23.4	19.1	25.4		+-	
7.	26/11/2019	72.1	32.1	23.5	23.7			
8.	29/11/2019	68.6	26.8	15.8	20.7			
Avera	ige	64.8	26.2	16.5	22.1		_	

Analysis Method Reference: SPM - 15: 5182 (Part 4), 1999, PM_{30 -} IS: 5182 (Part 23), 2006, PM₂₀ - Guidelines by CPCB (Vol-1), \$02 - IS: 5182 (Part 2), 2001, NO₈ - IS: 5182 (Part 6), 2006, Hg: AAS by VGA Method -3112 H APHA 22 Edison&Ag: 2 opbO3: 45 - 5182 (Part 9) 2009Ozone BDL limit: 5 µg/m3

UniStar Environment &

Research Labs Pvt. Ltd.

(Authorized Signatory)

т

White House, Near G.I.D.C. Diffee, Char Rasta Vep -337 135. Gujarati, India Phone : 191 243 2433966 / 2425510 Email : response@ue1.in Website : www.uerun

Name of Location	: Village · Kandagara	
Month of Monitoring	: November 2019	
Nome and Address of Client	 M/s. Adani Power (Mundra) Ltd. Village: Tunda & Sirscha, i al. Woordra, Dist.: Kutch. GU/ARAT = 370 435. 	
	Monthly Average Report Ambient Air Quality Monitoring	
eres order Heitzanssantson sons auf i sinssen 	Standard seasonal de - Standard de La traduce d Consumer Segundation - Alvairos (Jachard e VI)	

		Concentration In Ambient Air (µg /m ³)						
Sr. No.	Sompling Date	РМ њ. µg/М ²	PM≥s µg/M [®]	Sulphur Dioxide (SO ₂)µg/M ⁸	Nitrogen Dioxide (NO ₂)µg/M ³	· Ozon e (Θ ₃)μg/M ⁸	Mercory (Hg) µg/M ⁷	
	B Permissible It (TWA for 24 hrst)	100	60	S D	80	100	n.a.	
1	05/11/2019	70,0	29.1	18.2	27.3	4		
2.	08/11/2019	78.2	23.6	23.4	22.7			
з.	13/11/2019	63.6	26.5	14.5	18.2			
4.	15/11/2019	63.5	26.3.	20.3	26.3		•	
5.	19/11/2019	73.2	35.2	1/4.2	21.1	13.7	BDL	
ő.	22/11/2019	63.1	32.1	8.6	20.5			
7.	26/11/2015	58.4	29.2	16.4	24.8	•		
8.	29/11/2019	60.9	22.3	13.9	22.8			
Avera	ge	66.4	28.0	16.2	23.0			

Remork: Calibrated equipment & instruments were used during monitoring & analysis of above identified sample.

Analysis Method Reference: SPIM–15: 5282 [Part 4], 1995, **PM**₁₀–75: 5182 [Part 23], 2006, **PM**₂₇- Guidelines by CPCB (Vol-1), **SO₂–15: 5182** (Part 2), 2001, **NO_x–** 5: 5182 (Part 6), 2006, **Hg**: AAS by VGA Method -3112 B API [A 22] Edison&**Hg: 2 ppb O3:** IS – 5182 (Part 9) 2009Ozone 3DL limit *S*_{PB}/c·3

UniStar Environment & Research Labs RVt. Ltd. [Authorized Signatory]

i.

White House, Neer G.I.D.C. Office, Char Raste, Vaploki: 195, Biljano, Incla. Phona : +91 280 24339567 2425610 Disail : reeportac@uemin Webste : www.uerl.in

March SCC - /COF- Bodog dave threadon-actual accessivatione Ben W. (March 2013/5-11)(2)(20)	GD 4443CL Accretited 1A Conspiler Objectes An	5700 Food (Need Environments) A unification (Sid Need Direction	OFSIAS (2001:2087) Gestried Company	190 - Résilion R Centes Somoony
	Monthly Ave Ambient Air Qual			
Name and Address of Client	: M/s. Adani Por Village:Tunda& Tal. Mundra, D GU.ARAT – 37(is Kutch.		
Month of Monitoring	🐑 November - 20	019		
Name of Location	2 Village - Want	jh		
ID No.	: URA/ID/A-19/1	1/003		

		Concentration in Ambient Air (µg /m²)					
5r. No.	Sampling Date	Р М ₂о µg/М ⁹	PM ₂₅ µg/M ³	Sulphur Dioxide (SO ₂)µg/M ²	Nitrogen Dioxide (NO ₃)ug/M ¹	Ozone (O _a) _{elg} /M ³	Mercury {Hg} µg/M ⁸
	B Permissible It (TWA for 24 brs.)	100	60	. S D	80	100	N.A.
2.	05/11/2019	73.2	36.5	21.4	25.7		
2.	02/11/2019	68.2	27.3	23.6	22.2		
3.	13/11/2019	76.4	34.6	14 8	22.4		
4.	15/11/2019	67.3	28.9	18.2	26.5		
5.	19/11/2019	69.9	29.1	14.4	22.9	27.8	BUL
б.	22/11/2019	72.4	39.5	23.5	24.7		-
7.	26/11/2019	65.2	26.6	17.6	19.4	·	/#
8.	29/11/2019	78.4	40.5	19.3	23.2		
Avera	ge	70.8	32.9	19.1	23.4		÷-

Remark: Calibrated equipment & instruments were used during monitoring & analysis of above identified sample.

Analysis Method Reference: SPM - 15: 5182 (Part 4), 1999, PM₁₀ - - S. 5182 (Part 23), 2006, PM₂₅: Guidelines by CPCB (Vol 1], **50**₂ - IS: 5182 (Part 2), 2001, NO₂ - IS: 5182 (Part 6), 2006, Hg: AAS by VGA Method -3112 B APHA 22 Edison&Hg: 2 ppb **OS**: IS - 5182 (Part 6) 2009Ozone BOL limit: 5 µg/m3

UniStar Environment & Research Labs Pvt. Ltd.

0

(Authorized Signatory)

FFIC CK: 1 PETONUM	(13-0), - Rectionized der Ibb 6984 (28-) (19-6)	- Shrinan Meshal Wata Majir (di 2014)	QCHARE Accounted Consultant Orphaliza		lisio, aktoriastos Montes aviorastos	OH\$A\$16001-0007 Centred Company	379 - Vice) on Cottfort Conset	
				Average Rep r Quality Mon				
Name and Add <i>ress</i> of Client			 M/s. Adani Power (Mundra) Ltd. Village: Tunda & Strocha, Tal. Mundrá, Dist.: Kusch. GU/A&AT – 370 435. 					
Mont	h of Monitorin	в	: Decembe					
Name	of Location		: Village - Sinacha					
ID No	.		: URA/ID/A-19/12/001					
		-	Cone	Concentration in Amblent Air ($\mu g / m^3$)				
Sr. Na.	Sulphur					Ozone (O ₃)µz/M ^E	Mercury (Hg) ug/M ²	
GPCB Permissible Limit (TWA for 24 100			60	80	80	100	'N.A.	

	it (TWA for 24 hrs.)	100	60	80	80	100	'N.A.
1.	02/12/2015	70.5	85.7	13.8	17.3		
2.	06/12/2019	66.9	23.8	19.5	23.2		-
J.	19/12/2015	62.7	25.5	18.2	27.8		
4.	13/12/2019	64.G	23.2	7,6	15.1		
5.	17/12/2019	54.9	23.5	14.5	25.3	15:6	ØDL
6.	19/12/2019	- 72.3	27.3	18.3	19.5		-
9.	24/12/2019	65.4	26.3	- 35.1	27.5		
8.	27/12/2019	53.3	21.5	13.4	22.2		
Aver:	age	65.0	25.8	15.1	22.2		_

Analysis Method Reference: **5**PM - 'S: 5182 (Part 4), 1999, PM₁₀ - IS: 5182 (Part 23), 2006, PM₂₈, Guidelines by CPCB (Vol-1), **50**₂ - 'S: 5182 (Part 2), 2001, NO₈ - IS: 5182 (Part 5), 2005, Hg: AAS by VGA (Viethod -3.112.3) APHA 22 Edison&Hg: 2 ppb**O3**: IS - 5182 (Part 9) 2009Ozone BDL limit: 5 µg/m3

UniStar Environment &

Research Labs Pvt. Ltd. (Authorized Signatory)

While House Near Q. (B.C. Office, Char Rasta, Vank996 195, Gujarat, India, Phone 1 +91 260 2436/66 / 2426010 Email : response@uart.in Website : www.celt.in

Austria III. (Teorial Recognicado Enviro America) Lacatalas undorte Eta 1993 (2012) 10 (1.5), 2020	GAD NASE (Accide) Consolitati (Crypti)			19.0 - 9001.2013 Certtea Containy
		il <u>y Average Report</u> ir Quality Monitoring		
Name and Address of Client	: M/s. Ad Village Tal. Mur GULARA	L		
Month of Monitoring	: Decemb	жг. , 2019		
Name of Location	< Village -	- Kandagara		
ID No.	: URA/ID/	/A 19/12/002		

			Concentration In Ambient Air (µg /m²)						
Şr. No.	Sampling Date	PM 10 µՀ/M ³	РМ _{ал} рв/М ³	Sulphur Diaxide (SO ₇)µg/M ²	Nitrogen Dioxide (NO ₂)µg/fv ^s	Ozone (O3)µg/M ⁹	Mercury (Hg) թշ/M ²		
	ℬ Permissible it (TWA far 24 hrs.)	100	60	80	80	1 0 0	N.A.		
1.	02/12/2019	60.9	27.8	18.2	27.3				
2.	06/12/2019	57.1	29.3	16.8	28.3				
3.	10/12/2019	74.0	30.8	18.3	24.1		-		
4.	13/12/2019	68.6	21.2	24.5	17.7				
3.	17/12/2019	58.7	25.5	11.6	23.6	15.2	BDL		
6.	19/12/2019	67.9	30.5	21.7	21.4				
7.	24/12/2019	70.9	32.0	9.3	24.8				
8.	27/12/2019	69.6	30.2	15.4	20.7				
Avera	age	66.0	28.1	17.0	23.5		-		

Remark: Calibrated equipment & instruments were used during monitoring & analysis of above identified sample.

Analysis Method Reference: SPM+ IS: 5182 (Part 4), 1999, PM_{xd} + IS: 5182 (Part 23), 2006, PM_{zd} - Guidelines by CPCB (Vol-1), SO_{z} - IS: 5182 (Part 2), 2001, NO_{x} - IS: 5182 (Part 6), 2005, Hg: AAS by VGA Method -3152 B APHA 22, Ed son&Hg: 2 ppb O3: IS = 5182 (Part 9) 2009Ozone BDL limit: 5 µg/m3

UniStar Environment & Research Labs Pyt. Ltd. (Authorized Signatory)

White House Near GJ D.C. Office, Char Raals, Vop. 095-195, Gujarat, India. "Phone ; +01-155, 24329667, 2423618 Envail ..responses@cent.in Websitafi www.w6/fir

to SPACICI (I GCI) - Recologinize di Brix Pontmenne abare lay ve der hei Brix (186) - 2012, dans (1, 6, 1993) -	OCINAVE Accredias Derectory Opanias		OH\$A\$18001.0007 Ceiffie: Contgainy	(3.5 9661-2015 - Certified Company
		Average Report Quality Monitoring		
Name and Address of Client	Village: Luj	il Power (Mundra) Ltd. nda&Siracha, ra, Dist.: Kutch. - 370 435.		
Month of Monitoring	: December	- 2019		
Name of Location	: Village - V	Vandh		
ID No.	URA/ID/A	-19/12/003		

			Concentration In Amblent Air (µg /m ³)						
Sr. No.	Sampling Date	- ΡΜ 12 μg/Μ ³	Р М 2.5 µg/M ³	Solphor Dioxide (SO ₂)µz/M ³	Nitzogen Dioxide (NO ₂)µg/M ³	Ozone (O _s)µg/M ²	Mercury (Hg) µg/Mi		
	8 Permissible 1 (TWA for 24 Prs.)	100	60	- 80	20	100	¹ N.A.		
L.	02/12/2019	78.1	34.7	20.4	22.7				
Z.	06/12/2019	73.3	33.7	20.6	28.3				
З.	10/12/2019	68.5	39.2	18.2	25.1				
4.	13/12/2019	60.1	29.6	23.5	17.4				
5.	17/12/2019	65.S	33.3	12.1	27.9	22.5	BOL		
6	19/12/2019	76.2	36.5	20,8	22.7				
4.	24/12/2019	74.9	31.6	22.4	26.5				
8.	27/12/2019	73.2	32.7	16.3	20.2				
Avera	ee -	71.3	33.9	19.3	23.9				

Remork: Calibrated equipment & instruments were used during monitoring & analysis of above identified sample

Analysis Method Reference: SPM - IS: 5182 (Part 4), 1999, PM₁₀ - IS: 5182 (Part 23), 2006, PM₂₃- Guidelines hy CPCB (Vol 1], 50₂ - IS: 5182 (Part 2), 2001, NO_χ - IS: 5182 (Part 6), 2006, Hg: AAS by VCA Method -3112 D APHA 22 Erlison&Hg: 2 pph O3: IS - 5182 (Part 9) 2009Ozone BDL lim 1: 5 μg/m3

UniStar Environment & Research Labs Pvt. Ltd.

I

(Authorized 5 natory)

White House, Near G I.O.C. Office, Char Rasis, Vaci-395 195, Gujarat, India. Phone : +91 263 24339667 2425610 Email : response gueri.in Website : vorwarei.in

MoEC&CC__(GOU_Peoplement Environmental Laboratory under the B*A-1986 (12:01:2020 to 24:35-2020

Consultant Accreaned EA Consultant Organization

ared EA GPC5 Recognized Protocomental migation Aud Trove (Schedial Bellin CHSA318501.2007 Ceillied Company

ISO - 9061-201A Cedifice Company

Monthly Average Report Ambient Air Quality Monitoring

Name and Address of Client : M/s. Adami Power (Mundra) Ltd. Village: Tunda & Siracha, Tai. Mundra, Dist.: Kutch. GUJARAT – 370 435.

Month of Monitoring : January - 2020

Name of Location

ID No.

: Village · Siracha

:

URA/ID/A-20/01/001

8.		Concentration in Ambient Air (µg /m ³)					Mercury (Hg) µg/M ⁸ N.A, BDL
5r. No.	Sampling Date	PM₂₀ µg/M³	РМ _{а.5} µg/M ³	Sulphur Dioxide (SO ₂)µg/M ³	Nitrogen Dioxide (NO _z)µg/M ²	Özone (Q ₃)µg/M ³	
	B Permissible t (TWA for 24 hrs.)	100	60	80	80	100	N.A,
1.	03/01/2020	70.5	24.0	17.3	25.7		
z .	07/01/2020	59.5	23.1	11.2	19.3	11.3	BDL
з.	10/01/2020	62.1	20.8	15.5	18.3		
4.	15/01/2020	64.6	23.8	18.3	28.1		
5.	17/01/2020	75.8	19.9	12.4	23.4		
6.	21/01/2020	79.6	26.8	17.9	. 19.6		
7.	24/01/2020	60.9	23.0	13.3	24.7		
8.	28/01/2020	64.5	27.6	12.4	22.1		_
Aver:	age	67.2	23.6	14.8	22.7		-,

Analysis Method Reference: SPM - IS: 5182 (Part 4), 1999, PM₁₀ - IS: 5182 (Part 23), 2006, PM₂₅- Guidelines by CPCB (Vol-1), SO₂ - IS: 5182 (Part 2), 2001, NO₂ - IS: 5182 (Part 6), 2006, Hg: AAS by VGA Method -3112 B APHA 22 ... Edison&Hg: 2 ppbO3: IS = 5182 (Part 9) 2009Ozone BDL limit: 5 pg/m3

UniStar Environment &

Research Laby Pvt. Ltd.

(Authorized Signatory)

While House, Near GLD.C. Office, Char Rassa, VepI-396 196, Gujarat, India, Phone : +91 260 2430988 / 2425610 Email : response@uart.in Weballe : www.uet.in

MicENSCO (COD) Repagnized bis (Component Laboritary under the EfA-1986 (17.01.2020 to 24.05.0.20)	GCENASET According CA GritsRooogneedEmitorimental ChtAs18000,0007 Consultoni Organization Auletter (Schieldichen) Getried Campune	Certied Comsain
	Monthly Average Report Amblent Air Quality Monitoring	
Name and Address of Client	 M/s. Adaní Power (Mundra) Ltd. Village: Tunda & Siracha, Tal. Mundra, Dist.: Kutch. GUJARAT – 370 435. 	
	*	

I

Month of Monitoring

: January - 2020

Name of Location : Village - Kandagara

ID No. : URA/ID/A-20/01/002

			Co	ncentration in Ar	nbient Air (µg /r	n²)	Mercury (Hg) µg/M ³ N.A. BDL
Sr. No,	Sampling Date	РМ₂ 0 µg/M ⁹	PM₂s μg/M°	Sulphur Dioxide (SO ₂)µg/M ³	Nitrogen Dioxide (NO2)µg/M ⁸	Оzone (О _з)µg/M ³	
	B Permissible t (TWA for 24 hrs.)	100	60	BO	80	109	N.A.
1.	03/01/2020	68.0	28.9	20.6	Z7.3		
2.	07/01/2020	75.5	29.0	13.3	22.4	17.3	BDL
э.	10/01/2020	70.3	28.2	21.2	18.7		
4.	15/01/2020	56.1	23.7	19.3	23.2		
5.	17/01/2020	71.5	30.6	15.7	28.5		
6.	21/01/2020	72.6	26.4	16.2	19.3		
7.	24/01/2020	71.6	29.4	20.7	26.2		
8.	28/01/2020	76.7	30.0	19.4	27.6		
Avera	204	70.3	28.3	18.3	24.2		-

Remark: Calibrated equipment & instruments were used during monitoring & analysis of above identified sample.

Analysis Method Reference: SPM- IS: 5182 (Part 4), 1999, PM_{40} - IS: 5182 (Part 23), 2006, $PM_{2.5}$ - Guidelines by CPCB (Vol-1), SO₂- IS: 5182 (Part 2), 2001, NO_8 - IS: 5182 (Part 6), 2006, Hg: AAS by VGA Method -3112 B APHA 22. Edison&Hg: 2 ppb O3: IS - 5182 (Part 9) 2009Ozone BDL limit: 5 µg/m3

UniStar Environment & Research Labs P/rt. Ltd. e (Authorized Signatory)

White House, Near G.I.D.C. Office, Char Rasta, Vap -339 195, Gujjensi, India. Phone : +91 200 2433968 / 2425610 Email , response@uert.in Website : www.uert.in

AoLi & CC. GOJ - Rec conizari - Environmenta asorales: under the Brevišto (1971-2000) - 24 05 2020	Convert Accredit Consultant Organ	ibed BA GPCB Recognited Environmental matters A coli () [School/left]	ISO 9001:2015 Certified Company
		ly Average Report ir Quality Monitoring	
Name and Address of Client	Village:T Tai, Mun	lani Power (Mundra) Ltd. Funda&Siracha, hdra, Dist.: Kutch. T = 370 435.	-
Month of Monitoring	: January	- 2020	
Name of Location	: Village ·	- Wandh	
ID No.	: URA/ID/	/A-20/01/003	

			Concentration in Ambient Air (µg /m³)						
Sr. No.	Sampling Date	РМ φ μg/M ³	PM ₁₂ µg/M ³	Sulphur Dioxide (SO ₂)µg/M ³	Nitrogen Dioxide (NO ₂)µg/M ³	Özone (O ₃)μg/M ³	Mercary (Ĥ s) µg/M ³		
	B Permissible It (TWA for 24 hrs.)	100	60	80	80	100	N.A.		
1.	03/01/2020	76.4	30.6	17.3	29.8				
2.	07/01/2020	64.7	31.3	16.2	25.0	18.7	BDL		
э.	10/D1/2020	61.2	26.6	21.6	23.4		-		
4,	15/01/2020	69.5	27.2	20.4	21.2		-		
5.	17/01/2020	72.8	31.0	18.2	31.6		-		
б.	21/61/2020	72.2	33.3	22.8	28.7				
7.	24/01/2020	76.5	34.4	21.3	24.2		-		
` а .	28/01/2020	80.1	39.0	17.5	20.4				
Avera	ige	71.7	31.7	19.4	25.5				

Remark: Calibrated equipment & instruments were used during monitoring & analysis of above identified sample.

Analysis Method Reference: SPM - IS: 5182 (Part 4), 1999, PM₁₀ - IS: 5182 (Part 23), 2006, PM_{2.5}- Guidelines by CPCB (Vol-1), 50₂ - IS: 5182 (Part 2), 2001, NO₆ - IS: 5182 (Part 6), 2006, Hg: AAS by VGA Method -3112 B APHA 22 Edison&Hg: 2 ppb **O3**: IS - 5182 (Part 9) 2009Ozone BDL limit: 5 μg/m3

(Authorized Signatory)

White House, Noar G.I.L.C. Office, Char Rasta, Vepl-303 105, Cujarat India. Phone : 191 200 2433866 / 2425610 Email: response@uerl.in Website : www.uerl.in

ol (5.00 - 750) - Ketognized Environments Louis yurden i wi884-964-1961.000 wi94.059000			Recognized Environments CONVEX. Activitied BA (PO) Second environmental SNA 984-19010001624052000 Consultant Origanization Autor (Stative of e-II)			Consection Provi Conflod Company	no – Koaris Codifes Compo	
			Monthly A Amblent Air C	verage Rep Quality Moni				
Nieimie	r and Address of	fClient	: M/s. Adam V llage: Tur Tal. Munda	: M/s. Adam Powor (Mundra) Ltd. V Ilage: Tunoa & Siracha, Tal. Mundra, Dist.: Kutch. GUJABAT – 370 435.				
Mont	h of Monitoring		: February -					
Name	of Location		: Village - Siracha					
ID No	.		: URA/ID/A-	20/02/001				
			Concentration in Ambient Air (,дг/m³)					
Sr. Sampling No. Date PM ₁₀ µ8/M ²			PM ₂₅ μg/Μ ²	Sulphur Dioxide SO ₂)µg/M ³	Nitrogen Dioxide (NO ₂)µg/M [°]	Ozone (O3)µg/M ²	Mercury (Hg) _{1-R} /Mi	
	β Permissible t (TWA for 24 h/%)	100	60	80	80	100	N.A.	
	or (oo (acao	CO 4	00.1	10.4				

Lin	it (TWA for 24 h/s,)	100	60	80	80	100	N.A.
1.	04/02/2020	68.4	30.7	19.4	77.8		
2.	07/02/2020	79.8	25.2	20.1	25.7		
З.	11/02/2020	76.1	26.5	17.6	71.5	15.8	BDL
4,	14/02/2020	61.9	32.5	21.7	24.7		
5.	18/02/2020	63.1	40.3	18.5	22.2		
6.	21/02/2020	59.4	72,5	22.7	2.5.8		
7.	25/02/2020	72.6	30,0	11.3	22.7	1	
8.	28/02/2020	66.4	21.6	12.4	20.1	3	
Aver	age	68.5	28.6	18.0	23.3		_ ·

Analysis Method Reference: SPM - IS: 5182 (Part 4), 1990, PM₁₀ - IS: 5182 (Part 23), 2006, PM₂₅- Guidelines by CPCB (Vol-1), SO₂ - IS: 5182 (Part 2), 2001, NO₂ - IS: 5182 (Part 6), 2006, Hg: AAS by VGA Method -) 112 3 APTA 22. Edison SHg: 2 ppbO3: IS - 5182 (Part 9) 2009Ozone BD_ limit: 5 µg/m3

UniStar Environment &

Research Labs Pvj. Etd.

G

(Authorized Signatory)

White →),reat Near G.I.D.C. O'fice, Char Rasia, Vapi 068 195, Gujarto India. -hono –61 268 243366672425510 Small pesponse@ue1to Wetwite ; www.jad.jn

Name and Address of Client : M/s. Adami Power (Mundra) Ltd. Village: Tunda & Shqcha, Village: Tunda & Shqcha, Tal. Mundra, Dist.: Kutch. GUUARA1 = 370.435. Month of Monitoring : February = 2020 Name of Location : Village = Kandagara ID No. : URA/ID/A-20/02/002	Concentration in Ambient Air (µg /m³)	 •
Village: Tunda & Skucha, Tal. Mundra, Dist.; Kutch, GUJARA (= 370.435) Month of Monitoring ; February - 2020	: URA/ID/A-20/02/002	
Village: Tunda & Sirgeha, Tal. Mundra, Dist.; Kutch, GUJARA (= 370.435.	: Village - Kandagara	
Village: Tunda & Stracha, Tal. Mundra, Dist.: Kutch.	: February - 2020	
Monthly Average Report Ambient Air Quality Monitoring	 Ambient Air Quality Monitoring M/s. Adani Power (Mundra) Ltd. Village: Tunda & Stracha, Tal. Mundra, Dist.: Kutch. 	

Sr. No.	Sampling Date	ΡΙΜ το μ <mark>Β</mark> /Μ΄	Рм ₄₅ µ8/М ³	Sulphur Dioxide (SO ₂)µg/M ³	Nitrogen Dioxide (NO2)ug/M ²	Ozone (O _s)µg/M1	Metrury (Hg) ug/M ³			
GPCB Permissible Limit (TWA for 24 hts.)		100	60	80	80	100	N.A.			
7	04/02/2020	60.8	26.8	15.4	20.1					
2.	07/02/2020	59.7	22.8	17.2	22.6					
Э.	11/02/2020	73.1	39.4	20.6	24.1	18.6	BOL			
4.	14/02/2020	62.9	30.5	21.7	25.7					
5.	18/02/2020	79.2	35.8	16.2	21.3		17			
6.	21/02/2020	76.9	30.6	18.6	20.9					
7.	25/02/2020	73.0	27.6	14.7	21.9		·			
8.	28/32/2020	80.4	34.0	17.3	22.3		_			
Avera	ge	70.8	30.9	17,7	22.4					

Remork: Calibrated equipment & instruments were used during maniforing & analysis of above identified sample.

Analysis Method Reference: SPM - IS: 5182 (Part 4), 1990, PM₁₀₇ (S: 5182 (Part 23), 2006, PM₂₄- Guide in es by CPCB (Vol-1), SO₂- JS: 5182 (Part 2), 2001, NO₈- IS: 5182 (Part 5), 2006, Hg: AAS by VGA Method -3112 R APTA 22 Edison& Hg: 2 ppb O3: IS - 5182 (Part 9) 200902one BDL limit: 5 μg/m3

UniStar Environment & Research Jabs Pit. Ltd. an (Authorized Signatory)

While House Near G.I.D.C. Office, Cliar Rasta Vapi 203 195, Gujant India Phone : +11 263 2453356 / 24256 0 Email : response@guer in Webeite : www.uert.n

110 - 800 - 100 , Readgridet : Lavie meetal Laborational der Ne BA2088 (1251-2001 – 2165300)	QCINASET AN Ozinko tani (terached BA Ogiet te lea	CPCB Recognized Service not to A unit administration (Signification of the	DESAST8001:2007 Darthed Company	ed i popriacha Cerrad Correeny	
			age Report V Monitoring			
Name and Address of Client	Viila Tal.	. Adani Pow ge: Lunda&S Mundra, Dis ARAT = 370 :	t.: Kutch.	:		-
Month of Monitoring Name of Location		uary 2020 ge - Wondł				
ID No.	: URA	/ID/Á-20/0:	2/003			

			Co	ncentration in Aj	mbient Air (µg / r	m ²²)	·
Sr. No.	Sampling Date	Р М ы µg/M`	PM ₂₅ µg/M ⁸	Sulphur Dioxide (SO ₂)ug/M ¹	Nitrogen Dioxide (NO ₂)ଧୂଧ/M ⁵	Ozone (Q₃)µg/ VI ³	Mercury- ((Hg) µg/M ²
	B Permissible ic (TWA for 24 ins.)	100	60	80	80	100	N.A.
1.	04/02/2020-	74.0	34.0	23.7	25.9		
2	07/02/2020	79.7	36.9	22.3	74 7		
3.	*1/02/2020	69.0	27.3	19.1	22.2	22.8	BOL
4.	14/02/2020	64.0	23.1	20.7	23.7		
5.	18/02/2020	83.5	40.9	18.6	21.9		
6.	24/02/2020	76.8	37.4	- 18.5	24.5		
7.	25/02/2020	70.3	32.7	15.6	23.9		
3.	28/02/2020	73.6	32.0	13.8	18.2		
Avera	Be	73.9	33.0	19.0	23.1		

Remark: Calibrated equipment & instruments were used during monitoring & analysis of above identified sample,

Analysis Method Reference: SPM - 15: 5182 (Part 4), 1999, **PM**_{cn} - **IS**: 5182 (Part 23), 2006, **PM**_{2.5}- Cuidelines by CPCB (Vol 1), **SO**₂ - **IS**: 5182 (Part 2), 2001, **NO**₂ - **IS**: 5182 (Part 5), 2006, **Hg**: AAS by VGA Method: 3112 B AP - A 22 Cdlson& **Hg**: 2 ppb **O3**: IS = 5182 (Part 0) 2009Ozone BDL limit: S (rg/m3)

UniStar Environment & Research Labs Pot. Ltd.

۰.

(Authorized Signatory)

White House, Near G.I.D.C. Office, Char Rasta, Vapi-396 195. Gujarat, India. Phone : +91 260 2433966 / 2425610 Email : response@verLin Website : www.uerLin

MoEFACC (GOI) Recognized Environmental Laboratory under the IPA 1988 (12:81 2020 to 24:85 2020) GCINABET Accredited BA Consultant Organization

GPCB Recognized Environmental Available [Schedule-II]

ental OHSA518001 2007 -11) Certified Company 150 9001/3015 Certified Company

Monthly Average Report

Ambient Air Quality Monitoring

Name and Address of Client	:	M/s. Adani Power (Mundra) Ltd. Village: Tunda & Siracha, Tal. Mundra, Dist.: Kutch. GUJARAT – 370435.
		GUJARAT - 370 435.

Month of Monitoring

March 2020

Name of Location Village Siracha

ID No.

: URA/ID/A 20/03/001

	Sampling Date		Concentration in Ambient Air (µg /m²)						
Sr. No.		Ρ Μ 10 μg/Μ ⁸	Р М 2.5 µg/М ³	Sulphur Dioxide (SO_)µg/M ³	Nitrogen Dioxide (NO ₂)µg/M ³	Ozone (O _s)µg/M ³	Mercury (Hg) µg/M ⁵		
	B Permissible t (TWA for 24 hrs.)	100	60	80	80	100	N.A.		
1.	03/03/2020	71.2	24.2	1 9 .3	22.3				
2.	07/03/2020	76.4	25.4	12.7	20.5				
З.	10/03/2020	59.6	29.2	20.8	23.6	19.4	BDL		
4.	13/03/2020	60.8	23.1	1 9 .5	20.2				
5.	17/03/2020	69.1	35.0	14.9	17.7				
6.	20/03/2020	77.1	38.8	20.9	16.4				
Avera	ge	69.0	29.3	18.0	20 .1		_		

Remork: Calibrated equipment & Instruments were used during monitoring & analysis of above identified sample.

Analysis Method Reference: SPM - IS: 5182 (Part 4), 1999, PM₁₀ - IS: 5182 (Part 23), 2006, PM_{2.5}- Guidelines by CPCB (Vol-1), SO₂ - IS: 5182 (Part 2), 2001, NO₅ - IS: 5182 (Part 6), 2006, Hg:AAS by VGA Method -3112 & APHA 22 Edison&Hg: 2 ppbO3: IS = 5182 (Part 9) 2009Ozone BDL limit: 5 μg/m3

(Authorized Signatory)

White House, Near G.I.D.C. Office, Char Rasta, Vapi-396 195. Gujarat, India. Phone : +91 260 2433966 / 2425610 Email : response@verLin Website : www.uerLin

MoEFACC (GOI) Recognized Environmental Interatory under the IPA 1988 (12:01 2009 to 24:05 2000) QCINABET Accredited BA Consultant Organization GPCB Recognized Environmental Avid(tar [Schedule-II]

Cettled Company

150 9001:3015 Certified Company

Monthly Average Report

Ambient Air Quality Monitoring

Name and Address of Client	M/s. Adani Power (Mundra) Ltd. Village: Tunda & Siracha, Tal. Mundra, Dist.: Kutch. GUJARAT – 370 435.
	2004001 070 4001

Month of Monitoring March - 2020

Name of Location

: Village - Kandagara

ID No. URA/ID/A-20/03/002

		Concentration in Ambient Air (µg /m²)						
Sr. No.	Sampling Date	P M ₁₀ μg/M³	PM _{2.5} µg/M ⁵	Sulphur Díoxide (SO: Jµg/M ⁵	Nitrogen Díoxide (NO_Jµg/M ²	Ozone (O₅)µg/M³	Mercury (Hg) µg/M ³	
	B Permissible It (TWA for 24 hrs.)	100	60	80	80	100	N.A.	
1.	03/03/2020	67.3	24.6	23.1	25.7			
2.	07/03/2020	74.4	39.2	20.5	14.2			
З.	10/03/2020	79.3	34,2	13.7	28.5	22.7	BDL	
4.	13/03/2020	69.9	26.2	18.3	24.3			
5.	17/03/2020	75.0	21.7	15.4	19.8			
6.	20/03/2020	67.8	28.3	20.1	25.4			
Avera	ige	72.3	29.0	18.5	23.0			

Remark: Calibrated equipment & instruments were used during monitoring & analysis of above identified sample.

Analysis Method Reference: SPM—IS: 5182 (Part 4), 1999, PM₁₀—IS: 5182 (Part 23), 2006, PM_{2,5}- Guidelines by CPCB (Vol-1), SO₂—IS: 5182 (Part 2), 2001, NO₄—IS: 5182 (Part 6), 2006, Hg:AAS by VGA Method -3112 8 APHA 22 Edison&Hg: 2 ppb O3: IS — 5182 (Part 9) 2009Ozone BDL limit: 5 μg/m3

(Authorized Signatory)

White House, Near G.I.D.C. Office, Char Rasta, Vapi-396 195. Gujarat, India. Phone : +91 260 2433966 / 2425610 Email : response@verLin Website : www.uerLin

MoEFACC (GOI) Recognized Environmental Laboratory under the IPA 1988 (12:01 2009 to 24:05 2008) QCINABET Accredited BA Consultant Organization GPCB Recognized Environmental Auditor [Schedule-II] OHSA518001 2007 10 Certified Company C

150 9001:3015 Certified Company

Monthly Average Report

Amblent Air Quality Monitoring

Name and Address of Client	Villag Tal. M	Adani Power (Mundra) Ltd. æ:Tunda&Siracha, Aundra, Dist.; Kutch. RAT – 370 435.
	GOIA	IKA1 - 570 455.

Month of Monitoring March 2020

Name of Location

- WATCH - 2020

tion : Village - Wandh

ID No. URA/ID/A-20/03/003

		Concentration in Ambient Air (µ g /m ³)						
Sr. No.	Sampling Date	ΡΜ ιο μg/M ³	PM _{2.5} µg/M ⁹	Sulphur Dioxíde (SO Jµg/M	Nitrogen Dioxide (NO: Jµg/M ³	Ozone (O ₂)µg/M ³	Mercury (Hg) µg/M ⁹	
	B Permissible t (TWA for 24 hrs.)	100	60	80	80	100	N.A.	
1.	03/03/2020	76.8	38.1	12.8	20.6			
2.	07/03/2020	72.7	34.4	21.6	15.3			
3.	10/03/2020	68.5	32.1	20.2	23.7	27.3	BDL	
4.	13/03/2020	81.1	42.0	19.5	28.2			
5.	17/03/2020	76.4	40.8	22.4	24.5			
6.	20/03/2020	66.1	29.6	15.7	22.7			
Aven	ige	73.6	36.2	18.7	22.5			

Remark: Calibrated equipment & instruments were used during monitoring & analysis of above identified sample.

Analysis Method Reference: SPM - IS: 5182 (Part 4), 1999, PM₁₀ - IS: 5182 (Part 23), 2006, PM_{2,5}- Guidelines by CPCB (Vol-1), SO₂ - IS: 5182 (Part 2), 2001, NO₈ - IS: 5182 (Part 6), 2006, Hg:AAS by VGA Method -3112 8 APHA 22 Edison&Hg: 2 ppb O3: IS - S182 (Part 9) 2009Ozone BDL limit: 5 μg/m3

(Authorized Signatory)

December- 2019(Post Monsoon)

FOR

M/s. ADANI POWER (MUNDRA) LIMITED

At Tunda & Siracha, Tal. Mundra, Dist.: Kutch. KUTCH, GUJARAT – 370 435

PREFACE

M/s. Adani Power (Mundra) Limited (APMuL) is a subsidiary company of Adani Group engaged in imported coal based thermal power plant at Mundra near village Tunda&Siracha, Taluka Mundra District Kutch, Gujarat has entrusted the work of carrying out Marine Monitoring to **M/s. UniStar Environment and Research Labs Pvt. Ltd., Vapi.**

Adani Power (Mundra) Limited has commissioned the first supercritical 660 MW unit in the country, engaged in imported coal based thermal power plant with capacity of 4620 MW at Mundra near village Tunda & Siracha, Taluka Mundra District Kutch, Gujarat. Has entrusted the work of carrying out Marine Monitoring to **M/S.UniStar Environment and Research Labs Pvt. Ltd., Vapi.**

The marine monitoring involves Physio-chemical and biological analysis of Marine water. Marine water quality of Sub-tidal and Intertidal regions, Flora and Fauna analysis in marine water area and Benthos in inter-tidal and sub-tidal analysis for the coastal area near Adani Power plant (Mundra) Limited. Water sample are collected from five location (station) and Benthos sample are collected from High water and low water transect area. Samples are brought to the laboratory by field sampling team and the analysis was carried out in our laboratory and the results are presented in this report.

This Marine Monitoring reports provide a data obtained from monitoring and analysis activities undertaken during (Post monsoon) December 2019.

Date: 27/12/2019

M/S.UniStar Environment and Research Labs Pvt. Ltd. White house, Char Rasta, Vapi-396 191

Sampling by

(Bhavin Patel)

Report Prepared By

(Shweta Rana)

Approved by

(Jaivik Tandel)

TABLE OF CONTENTS

NO.	Contents	Page			
		no.			
Introduction To Project					
1.1	Background	4			
1.2	Objectives	5			
1.3	Study program	5			
1.4	Sampling	7			
	Water quality				
2.1	Marine Water quality	8			
2.2	Physico-chemical Water analysis result	8			
	Biological characteristics (Biodiversity Studies)				
3.1	Planktonic forms	13			
3.2.	Significance of Phytoplankton & Zooplankton	14			
3.3	Phytoplankton	14			
3.3.1	Microscopic observation	15			
3.3.2	Planktonic diversity	15			
3.4	Zooplankton	17			
3.4.1	Microscopic observation	18			
3.4.2	Zooplankton diversity	18			
3.5	Benthic fauna	21			
3.5.1	Significance of benthic macro invertebrates	22			
3.5.2	Methodology	23			
3.5.3	Handling and preservation	24			
3.5.4	Identification	24			
3.5.5	Benthic biodiversity	24			
3.6	Chlorophyll and Pheophytin	26			
3.6.1	Method	27			
3.6.2	Result	28			
3.7	Conclusion	29			
	Sampling Photographs	30			

Figure No.	Contents					
	Map / Photos / Images/Graph					
1.1	Study Marine Station Location Map	6				
1.2	Phytoplankton Photographs	17				
1.3	.3 Total number of zooplankton					
1.4	4 Zooplankton Photographs					
1.5	Benthos Diversity in Project Site	26				
1.6	Degradation Pathways of Chlorophyll	27				
	Sampling Photographs					

Table No.	Contents					
	Tables					
1	Station locations and co ordinates	5				
2	Water Sampling Locations, December 2019 (Post Monsoon)	8				
3	Physico-Chemical Water Analysis Results	9				
4	Test Method For Phytoplankton & Zooplankton Analysis	14				
5	Phytoplankton Sampling Station	15				
6	Total abundance & groups of phytoplankton observed at the sampling stations	16				
7	Zooplankton Sampling Station	17				
8	Total abundance, biomass and groups of Zooplankton at the sampling stations	19				
9	Density (Nos. m-3) and contribution (%, in parentheses) of various zooplankton	20				
	groups at station 1 to 5	20				
10	Test method for Benthos Analysis	23				
11	Sub-tidal Benthos Sampling Sites	23				
12	Intertidal Benthos Sampling Sites	23				
13	Standing stock and abundance of sub tidal macro benthos	25				
14	Standing stock and abundance of Inter tidal macro benthos	25				
15	Test Method for Chlorophyll a & Pheophytin Analysis	27				
16	Chlorophyll <i>a</i> and Pheophytin	28				
17	Names of the Marine Monitoring Team Members	30				

INTRODUCTION

1.1 Background

Adani Power (Mundra) Limited (APMuL) is engaged in imported coal based thermal power plant with capacity of 4620 MW at Mundra near village Tunda&Siracha, Taluka Mundra District Kutch, Gujarat.

Adani Power (Mundra) Limited (APMuL) is largest single location private coal based power plant in the world it is created history by synchronizing the first super-critical technology based 660MW generating unit at Mundra. This is not only the first super-critical generating unit in the country but also the fastest project implementation ever by any power developer in the country. The Phase III of the Mundra Project, which is based on supercritical technology, has received 'Clean Development Mechanism (CDM) Project' certification from United Nations Framework Convention on Climate Change (UNFCCC). This is the world's first thermal project based on supercritical technology to be registered as CDM Project under UNFCCC.

Adani Power (Mundra) Limited (APMuL) assessing marine environment it involves Physiochemical and biological analysis of Marine water. Marine water quality of Sub-tidal and Intertidal regions, Flora Phytoplankton's and Phytopigments and Fauna analysis in marine water area it includes Zooplanktons, Benthos in inter-tidal and sub-tidal analysis for the coastal area near power plant marine outfall water mixing and Sea intake, with special reference to intake channel and seawater discharge.

This report is prepare by the **M/S.UniStar Environment and Research Labs Pvt. Ltd**., at the instance of APMuL and addresses the marine environmental issues related to the APMuL's operational power plant.

1.2 Objectives:

- a) Physico chemical seawater parameter to be analyzed for understands the water quality in study area.
- b) The prevailing marine biological status of the study area is evaluated based on the quantitative and qualitative data on marine life namely Phytoplankton, zooplankton, Chlorophyll & Pheophytin, Sub-tidal/Intertidal Macro benthos.
- c) To recommend adequate marine environmental management measures

1.3 Study program:

Period:

The field investigation is completed during December 2019 and sampling team was planned in such a manner so as to get a detailed picture of the marine environment characteristics of the study area and Sampling and analysis for marine environment has been carried out by **M/S.UniStar Environment and Research Labs Pvt. Ltd**.

Study Station locations:

A total of five subtidal station and three intertidal transects was selected for the sampling, here we are given exact location and their position were sampled.

Subtidal Station							
Station	Locations	Locations Co ordinates					
1	Intake point	22°48′ 31.′69″N	69°32′57.18″E				
2	Mouth of intake point	22°46′54.62″N	69°32′02.89″E				
3	West port area	22°45′16.56″N	69°34'45.26"E				
4	Outfall area	22°44′ 30.23″N	69°36′17.02″E				
5	Outfall area	22°44′47.17″N	69°36′35.74″E				

Table 1: Station locations and co ordinates

Intertidal transect							
	High Tide water level	22°47′07.55″ N	69°32′16.91″ E				
	Low Tide water level	22°47'06.38"N	69°32′11.62″E				
	High Tide water level	22°45′58.72″ N	69°34′35.41″ E				
II	Low Tide water level	22°45′57.74″ N	69°34′35.05″ E				
	High Tide water level	22°44′ 52.21″ N	69°36′41.64″E				
	Low Tide water level	22°44′ 51.23″ N	69°36′39.28″ E				

Figure 1.1: Study marine stations location map

a) Sampling frequency:

All Sampling subtidal stations were monitored during flood to ebb. Water samples were collected in duplicate (surface and bottom) for assessing water quality and marine biological characteristics.

Intertidal sampling was completed during low tide, for assessed Macro benthic fauna samples were collect in duplicate from each transects.

b) Sampling methodology:

- Niskin (5 litre capacity) with a mechanism for closing at a desired depth using messenger was used for collecting sub–surface water samples. Sampling at the surface was done using a clean polyethylene bucket. Known volume of water sample (1 L) was preserved with 4% Lugol's iodine solution.
- For the analysis of Benthos, sub tidal sediment samples were collected using Van-veen grab covering an area of 0.04 m². Intertidal samples were collected using metal quadrant. Samples were sieved with 500 μ metal sieve and preserved with Rose Begal-Formalin solution.
- For Zooplankton oblique hauls were made using Heron Tranter net attached with calibrated flow meter. After collection, samples were preserved with 5% formalin.

C) Methods of analysis:

I) Physicochemical Parameter: Samples were analyses by using analytical methods for estimations of Temperature, Turbidity, PH, SS, Salinity, DO, BOD, COD, Phosphate, Total nitrogen, Nitrite, Nitrate, Phenols and PHc.

II) Biological Samples: Phytoplankton, Zooplankton and Macro benthos.

a) <u>Phytoplankton</u>: Sample for cell count was preserved in Lugol's iodine solution, and identification of phytoplankton was done under a compound microscope using Sedgwick Rafter slide.

b) <u>Chlorophyll</u>: For the estimation of chlorophyll *a* and Pheophytin, the extinction of the acetone extract was measured using Turner Flurometer before and after treatment with dilute acid respectively.

c) <u>Zooplankton</u>: Volume (biomass) was obtained by displacement method. A portion (25-50 %) of the sample was analyzed under a microscope for faunal composition and population count.

d) <u>Benthos</u>: The total Macro benthos population (sub tidal & intertidal) was estimated as number of 1 m^2 area and biomass on wet weight basis.

WATER QUALITY

2.1 Marine Water quality:

Sea water samples have been collected during December 2019 (Post Monsoon) From Five locations, which are listed in Table 2

Station no.	Location	Tide
1	Intake point	Flood
2	Intake point	Ebb to Flood
3	West port area	Flood to Ebb
4	Outfall area	Flood
5	Outfall area	Flood to Ebb

Table 2: Water sampling locations, December 2019(Post Monsoon)

2.2 Physico chemical Water analysis result:

All the water sampled, which is collected by sampling team is brought to the lab for Physico chemical analysis. The marine water quality at different collected stations are measured during this investigation is presented in Table No.3

Table:	3 Physico	chemical	Water	Analysis	Result
--------	-----------	----------	-------	----------	--------

Sr.	Devenuet	Stati	on 1	Stati	ion 2			
No.	Parameters			Bottom	Test Method Permissible			
	PHYSICAL QUALITY							
1.	рН @ 25 ° С	8.02	8.02	8.05	8.03	IS 3025(Part 11)1983		
2.	Temperature (^o C)	24.5	25	25	24.5	IS 3025(Part 9)1984		
3.	Turbidity (NTU)	0.1	0.1	0.1	0.1	IS 3025(Part 10)1984		
			CHEMICAL	QUALITY				
1.	Total Suspended Solids (mg/l)	42	48	28	26	(APHA 23 rd Ed.,2017,2540- D)		
2.	Biochemical Oxygen Demand (BOD) (mg/l)	2.4	2.2	2.8	3.0	IS 3025(Part 44)1993Amd.01		
3.	Sulphate as SO₄(mg/l)	2950	2900	2800	2830	(APHA 23 rd Ed.,2017,4500- SO4 E)		
4.	Ammonical Nitrogen(μmol/l)	0.6	0.4	1.8	1.2	(APHA 23 rd Ed.,2017,4500- NH3 B)		
5.	Salinity (ppt)	33.03	33.29	32.85	33.03	By Calculation		
6.	Dissolved Oxygen (mg/l)	5.1	5.3	5.6	4.9	IS 3025(Part 38)1989,		
7.	Total Nitrogen (μmol/l)	11.5	12.9	12.6	13.2	(APHA 23 rd Ed.,2017,4500-O,B),		
8.	Dissolved Phosphate (µmol/I)	1.6	1.7	1.1	1.8	APHA 23 rd Ed.,2017,4500 NH3 - B		
9.	Nitrate (µmol/l)	6.6	12.6	8.4	9.6	(APHA 23 rd Ed.,2017,4500-P,D)		
10.	Nitrite (µmol/l)	0.7	0.8	0.9	0.6	(APHA 23 rd Ed.,2017,4500 NO3-B)		
11.	Phenol(µg/l)	4.0	6.8	9.8	8.6	APHA 23 rd Ed.,2017,4500NO2B		
12.	PHc (ppb)	0.6	0.9	0.8	0.9	IS 3025(Part 43)1992Amd.02		

Note: MDL = Minimum Detection Limit (MDL: 0.01) and N.D. = Not detectable

Sr.	Dovomotovo	Stati	on 3	Stat	ion 4					
No	Parameters	Surface	Bottom	Surface	Bottom	Test Method Permissible				
	PHYSICAL QUALITY									
1.	рН @ 25 ° С	8.12	8.10	8.08	8.02	IS 3025(Part 11)1983				
2.	Temperature ⁰C	26.0	26.5	25.5	25.5	IS 3025(Part 9)1984				
3.	Turbidity (NTU)	0.1	0.1	0.1	0.1	IS 3025(Part 10)1984				
			CHEMIC	AL QUALIT	r					
1.	Total Suspended Solids (mg/l)	26	22	44	34	(APHA 23 rd Ed.,2017,2540- D)				
2.	Biochemical Oxygen Demand (BOD) (mg/l)	3.4	3.6	2.6	3.2	IS 3025(Part 44)1993Amd.01				
3.	Sulphate as SO₄(mg/l)	2790	2750	2850	2796	(APHA 23 rd Ed.,2017,4500- SO4 E)				
4.	Ammonical Nitrogen(μmol/l)	8.2	10.4	7.8	8.5	(APHA 23 rd Ed.,2017,4500- NH3 B)				
5.	Salinity (ppt)	33.29	33.63	33.55	33.20	By Calculation				
6.	Dissolved Oxygen (mg/l)	5.2	5.5	5.6	5.1	IS 3025(Part 38)1989,				
7.	Total Nitrogen (μmol/l)	12.6	13.2	9.5	9.8	(APHA 23 rd Ed.,2017,4500- O,B),				
8.	Dissolved Phosphate (µmol/l)	4.4	2.7	3.1	1.9	APHA 23 rd Ed.,2017,4500 NH3 - B				
9.	Nitrate (µmol/l)	1.1	6.2	4.4	3.9	(APHA 23 rd Ed.,2017,4500- P,D)				
10.	Nitrite (µmol/l)	0.6	0.9	1.1	1.8	(APHA 23 rd Ed.,2017,4500 NO3-B)				
11.	Phenol(µg/l)	1.2	1.8	1.1	1.4	APHA 23 rd Ed.,2017,4500NO2B				
12.	PHc (ppb)	ND	6.2	4.7	5.3	IS 3025(Part 43)1992Amd.02				

Note: MDL = Minimum Detection Limit (MDL: 0.01) and N.D. = Not detectable

Sr.	Dowenstews	Stat	tion 5	Test Method Devesiesible				
No.	Parameters	Surface Bottom		Test Method Permissible				
PHYSICAL QUALITY								
1.	pH @ 25 ° C	8.14	8.16	IS 3025(Part 11)1983				
2.	Temperature (^o C)	26.0	26.5	IS 3025(Part 9)1984				
3.	Turbidity (NTU)	0.1	0.1	IS 3025(Part 10)1984				
		CHEMIC	AL QUALITY					
1.	Total Suspended Solids	26	28	(APHA 23 rd Ed.,2017,2540- D)				
2.	Biochemical Oxygen Demand (BOD) (mg/l)	3.8	4.3	IS 3025(Part 44)1993Amd.01				
3.	Sulphate as SO₄ (mg/l)	2823	2872	(APHA 23 rd Ed.,2017,4500- SO4 E)				
4.	Ammonical Nitrogen(μmol/l)	4.4	6.2	(APHA 23 rd Ed.,2017,4500- NH3 B)				
5.	Salinity (ppt)	33.63	33.29	By Calculation				
6.	Dissolved Oxygen (mg/l)	5.9	5.7	IS 3025(Part 38)1989,				
7.	Total Nitrogen (μmol/l)	12.8	12.6	(APHA 23 rd Ed.,2017,4500- O,B),				
8.	Dissolved Phosphate (µmol/l)	1.8	3.0	APHA 23 rd Ed.,2017,4500 NH3 - B				
9.	Nitrate (µmol/l)	6.6	8.2	(APHA 23 rd Ed.,2017,4500- P,D)				
10.	Nitrite (µmol/l)	1.3	0.9	(APHA 23 rd Ed.,2017,4500 NO3-B)				
11.	Phenol(µg/l)	N.D.(MDL:0.01)	0.7	APHA 23 rd Ed.,2017,4500NO2B				
12.	PHc(ppb)1M Level	0.5.	N.D.	IS 3025(Part 43)1992Amd.02				

Note: MDL = Minimum Detection Limit (MDL: 0.01) and N.D. = Not detectable

a) <u>Temperature</u>: Marine water temperature of the study area was checked on site, so surface
 & bottom water temperature observed in the study area in range between 25°C to 26.5°C.
 The water temperature generally varied in accordance with the prevailing air temperature, tidal activity and seasonal variation.

b) <u>**pH**</u>: The pH of the water is generally buffering effect, influenced by the freshwater and anthropogenic discharge from land. The observed pH in the study area in range of 8.02 to 8.14 at surface level and 8.02 to 8.16 at bottom level.

c) <u>Salinity</u>: Salinity which is an indicator of seawater, the standard average salinity of sea water is 32 to 33 ppt, which is variable depending on the riverine flow, any fresh water discharge from landward side, rainy season and temperature in study area. Average salinity (ppt) for monsoon study is 32.85 to 33.63 ppt at surface water as well as 33.03 to 33.63 ppt at bottom water.

d) <u>DO & BOD</u>: High Dissolve oxygen level is measured of good oxidizing conditions in an aquatic environment. In unpolluted waters equilibrium is maintained between its generation through photosynthesis and dissolution from the atmosphere, and consumption by the respiration and decay of organic matter in a manner that Dissolve oxygen levels are close to or above saturation value.

Dissolve oxygen level of the study area is varied from 5.1 mg/l to 5.9 mg/l at water surface level & 4.9 mg/l to 5.7 mg/l at water bottom level. The comparison of average Dissolve oxygen value of post monsoon period is 5.4 mg/l which show the good oxidizing conditions in study area aquatic environment.

BOD was generally indicating effective consumption of oxidisable matter in that water body. BOD of the study area is varied from 2.4 mg/l to 3.8 mg/l at water surface level and 2.2 mg/l to 4.3 mg/l at water bottom level.

e) <u>Nutrients</u>: Dissolved phosphorus and nitrogen compounds serve as the nutrients for phytoplankton which is the primary producer in aquatic food chain. Phosphorous compounds are present predominantly as reactive phosphate while combined nitrogen is present as nitrate, nitrite and ammonium species. So nutrient concentration (phosphate -nitrate - nitrite) in the study area is Phosphate range 1.1 to 4.4 µmol/l in at Surface water and 1.7 to 3.0 µmol/l at Bottom water , Nitrate range 1.1 to 8.4 µmol/l in surface water and 3.9 to 12.6 µmol/l at bottom water, Nitrite range 0.7 to 1.3 µmol/l in surface level and 0.6 to 1.8 µmol/l at bottom level. This nutrient concentration values indicate water healthiness.

f) <u>PHc and phenol</u>: The observed Phenol in the study area in range of 0.7 to 1.2 μ g/l at surface level and 0.6 to 1.8 μ g/l at bottom level. The level of PHc in the study area in range of 0.0 to 4.7 μ g/l at surface level and 0.0 to 6.2 μ g/l at bottom level.

g) <u>Total suspended solids</u>: The suspended solids generally constitute clay, silt and sand from the bed sediment and that from the upstream as well as contributed through shore erosion. Anthropogenic discharges also contribute to suspended solids in the form of contaminates such as oil and solid waste in polluted area. Suspended solids in the study area are little variable, surface area range observed 26 to 44mg/l as well as bottom area range is 22 to 48mg/l.

BIOLOGICAL CHARACTERISTICS (BIODIVERSITY STUDIES):

Marine environment is unique ecosystems involve the complex interaction between abiotic and biotic components. Any change in the abiotic factors leads to change in aquatic organisms (biotic factor). The human interventions always compromise the health of marine ecosystem by disturbing the ecological balance. Hence the assessment of the biotic components along with abiotic factors is an integral part of Environmental assessment and monitoring study. During the present study at APMuL the abundance and distribution of marine organisms (plankton and benthos) were studied as part of routine environmental monitoring.

3.1 Planktonic Forms:

The name plankton is derived from the Greek word "planktons", meaning "wanderer" or "drifter". While some forms of plankton are capable of independent movement and can swim up to several hundred meters in a single day, their position is primarily determined by currents in the body of water they inhabit. By definition, organisms classified as "plankton" are unable to resist ocean currents. Plankton is primarily divided into broad functional groups:

- 1. Phytoplankton
- 2. Zooplankton

This scheme divides the plankton community into broad producer and consumer groups.

a) Phytoplankton:

The organisms responsible for primary production in all aquatic ecosystems are known as "phytoplankton." These miraculous microscopic organisms not only form the base of life in our oceans, but also produce up to 90% of the oxygen in our atmosphere.

Phytoplankton is microscopic plants that live in the ocean, freshwater and other terrestrial based water systems. There are many species of phytoplankton, each of which has a characteristic shape, size and function. Marine species of phytoplankton grow abundantly in oceans around the world and are the foundation of the marine food chain. Marine Phytoplankton is the producing (autotrophic) component in the ocean. There are fourteen

classes of phytoplankton. Each class of phytoplankton contains unique attributes in size, cell structure, nutrients and function.

b) Zooplankton:

Zooplankton are the consumer organism, incapable of making its own food from light or inorganic compounds, and feeds on organisms or the remains of other organisms to get the energy necessary for survival. They are primarily depends on the phytoplankton and other small organisms groups for their nutritional needs.

3.2 Significance of Phytoplankton and Zooplankton:

Phytoplankton are the major primary producers of organic matter in the aquatic ecosystem. They contribute up to 90% in primary productivity in the Oceanic environment. As part of photosynthesis process they produce organic compounds from carbon dioxide with the help of sunlight and inorganic compound. Collectively, they directly or indirectly support the entire animal population, and thus form the basis of most marine food webs. Phytoplankton also helps in the carbon dioxide sequestration process. The significance of zooplanktons is found in their role in transferring biological production from phytoplankton to large organisms in the marine food web and to the sea floor. A large number of phytoplankton species are grazed upon by the microscopic protozoan, tunicates, copepods and other crustaceans. These in turn become food for other animals further linking the food web. Therefore, variability in the reproduction of copepods would affect the survival of young fish that depend on them.

Sr. no.	Test performed	Method
1	Phytoplankton	APHA, Edition 21, Part 10000, 10200 F
2	Zooplankton	APHA, Edition 21, Part 10000, 10200 G

Table: 4 Test methods for Phytoplankton & Zoop	lankton analysis
--	------------------

3.3 Phytoplankton:

Phytoplankton sampling was carried out at 5 stations. At each station water samples were collected from surface and bottom waters. The sampling location is given in following table.5

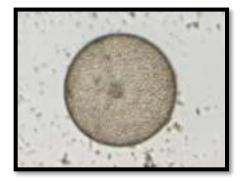
Station	Location	Co ordi	Water depth	Tide	
1	Intake point	22°48′ 31.′69″N	69°32′57.18″E	6 m	Flood
2	Intake point Mouth area	22°46′54.62″N	69°32′02.89″E	6.5 m	Ebb - Flood
3	West port area	22°45′16.56″N	69°34'45.26"E	10 m	Flood - Ebb
4	Outfall area	22°44′ 30.23″N	69°36′17.02″E	6 m	Flood
5	Outfall area	22°44'47.17"N	69°36′35.74″E	5 m	Flood - Ebb

Table 5:	Phytoplankton	Sampling Station
----------	---------------	------------------

A Niskin sampler with a closing mechanism at a desired depth was used for collecting sub surface water samples. Surface samples were collected using a clean polyethylene bucket. Samples were stored in amber colored plastic containers fitted with inert cap liners. Further Lugol's solution was added to preserve the phytoplankton cells for further enumeration. The identification of phytoplankton were carried out under a microscope using Sedgwick Rafter slide.

3.3.1 Microscopic Observations

For phytoplankton enumeration 0.5 ml of the sample was taken on Sedgwick-Rafter counting cells. The identification was done using a microscope under 40X or 100X magnification. The standard keys given by Desikachary, 1959; Sournia, 1974; Tomas 1997; Horner, 2002 were used for the identification of phytoplankton cells. Species were identified to a genus level.


3.3.2 Phytoplankton Diversity

Phytoplankton sampling was carried out at 5 stations throughout the sampling period. A maximum 25 phytoplankton genera, *Navicula, Thalassiosira, Thalassionema, Pleurosigma, Pleurosigma, Pseudonitzschia, Coscinodiscus, Protoperidinium, Scrippsiella, Cylindrotheca, Skeletonema, Hemialus* and *Melocera* were identified at ST-2 during the study period. At station 3 minimum of 19 phytoplankton genera, *Navicula, Thalassiosira, Rhizosolenia, Thalassionema, Pleurosigma, Odontella, Pseudonitzschia, Coscinodiscus, Protoperidinium, Scrippsiella, Skeletonema, Hemialus, Ditylum, Chaetoceros, Bacteriastrum, Amphidinium, <i>Prorocentrum* and *Gunardia were* identified from the preserved samples.

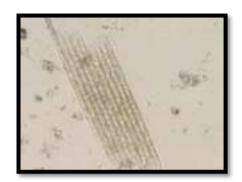
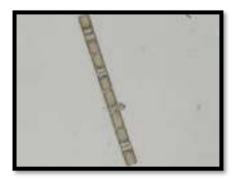

The phytoplankton abundance in the study region was ranged from 12029 to 18906 cells L⁻¹. Highest phytoplankton abundance was observed at the STN-2 water. However, lowest phytoplankton abundance was observed at the STN-3 water (Table: 6)

Table 6: Total abundance & groups of phytoplankton at the sampling stations


Station	Abundance	Genera	Distoriority groups cheering in study
Station	(cells L ⁻¹)	count	Phytoplankton groups observed in study
ST-1	12322	22	Bacteriastrum ,Navicula, Thalassiosira, Rhizosolenia, Thalassionema, Odontella, Pleurosigma, Pseudonitzschia, Leptocylindrus, Coscinodiscus, Scrippsiella, Cylindrotheca, Skeletonema, Surirella, Hemialus, Ditylum, Chaetoceros, and Prorocentrum.
ST-2	18906	25	Navicula, Thalassiosira, Thalassionema, Pleurosigma, Pleurosigma, Pseudonitzschia, Coscinodiscus, Protoperidinium, Scrippsiella, Cylindrotheca, Skeletonema, Hemialus and Melocera.
ST-3	12029	19	Navicula, Thalassiosira, Rhizosolenia, Thalassionema,Pleurosigma,Odontella,Pseudonitzschia,Coscinodiscus,Protoperidinium,Skeletonema,Hemialus,Ditylum,Chaetoceros,Bacteriastrum,Amphidinium,Prorocentrum and Gunardia.
ST-4	13561	21	Navicula, Thalassiosira, Rhizosolenia, Nitzschia, Thalassionema, Pleurosigma, Odontella, Corethron, Pleurosigma, Pseudonitzschia, Leptocylindrus, Coscinodiscus, Protoperidinium, Scrippsiella, Cylindrotheca, Skeletonema, Surirella, Haslea, Meuneria and Ditylum.
ST-5	12250	23	Navicula, Thalassiosira, Rhizosolenia, Thalassionema, Odontella, Corethron, Pseudonitzschia, Coscinodiscus, Protoperidinium, Scrippsiella, Cylindrotheca, Skeletonema, Hemialus, Ditylum, Chaetoceros, Bacteriastrum, Gunardia and Ceratium.

Coscinodiscus

Thalassionema

Skeletonema

Odontella

1.2 Phytoplankton Photographs

3.4 Zooplankton:

Zooplankton samples were collected at 5 selected locations. The sampling details are given in following table 7.

Station	Location	Co ord	Water depth	Tide	
1	Intake point	22°48′ 31.′69″N	69°32′57.18″E	6 m	Flood
2	intake point	22°46'54.62"N	69°32′02.89″E	6.5 m	Ebb - Flood
3	West port area	22°45′16.56″N	69°34′45.26″E	12 m	Flood - Ebb
4	Outfall area	22°44′ 30.23″N	69°36′17.02″E	5 m	Flood
5	Outfall area	22°44'47.17"N	69°36′35.74″E	6 m	Flood - Ebb

Table 7: Zooplankton Sampling Station

Oblique hauls for Zooplankton were made using Heron Tranter net with calibrated flow meter. Samples were preserved with formalin and stored in plastic containers with inert cap liners till further analysis.

3.4.1 Microscopic Observations

For quantification of zooplankton, 0.5 ml of the sample was taken in zooplankton counting chamber. The identification was carried out under Stereomicroscope at 45X or 100X magnification. The zooplanktons were identified using standard identification keys given by Kasturirangan 1963; Santhanam and Srinivasan, 1994 and Conway et al., 2003 etc. Species were identified to group level.

3.4.2 Zooplankton Diversity

A maximum 11 groups of Zooplankton consisting of Copepoda, Copepoda nauplii, Decapoda, Gastropod larvae, Crustacean larvae, Bivalve larvae, Fish and decapods egg, Fish larvae, Polychaete larvae, Brachiopoda, and Chaetognatha were recorded from the study area. (Table 8 and 9). Copepods and Decapods, which on an average constituted 55.71% and 24.29% of total zooplankton density respectively in all the stations. Fish and invertebrate eggs are another major group reported from study area contributing 7.04% of total zooplankton density at all stations. Brachiopoda was another group of importance, which contributed 5.15% of the zooplankton density. Copepod nauplii was another major group reported in study area, consist of 3.55% of all zooplankton assemblage. Occurrence of copepods and their nauplii as well as crustacean larvae, decapods and fish larvae/eggs in zooplankton samples suggest that the study area has fair production potentials for live food organism's resources for fish and shellfishes.

Zooplankton standing stock in terms of abundance revealed variation within all stations. Zooplankton biomass (ml/m³) and density (nos. /m³) is presented in Table 8. Among all the stations, least zooplankton biomass of 0.106 ml/m³ was recorded at Station#2 while, maximum biomass was reported at Station#5 (0.189 ml/m³). Minimum zooplankton population density was reported at Station#1 (4608 nos. /m³), whereas, maximum density reported at station#5 (5856 nos. /m³).

Table 8: Total abundance, biomass and groups of zooplankton at the sampling stations

Stations	Biomass (ml/m ³)	Population (no./m ³)	Total groups	Zooplankton groups observed in the study
ST-1	0.179	4608	11	Copepoda, Copepoda nauplii, Decapoda, Gastropod larvae, Crustacean larvae, Bivalve larvae, Fish and decapods egg, Fish larvae, Polychaete larvae, Brachiopoda, Chaetognatha
ST-2	0.106	5488	11	Copepoda, Copepoda nauplii, Decapoda, Gastropod larvae, Crustacean larvae, Bivalve larvae, Fish and decapods egg, Fish larvae, Polychaete larvae, Brachiopoda, Chaetognatha
ST-3	0.1137	4816	11	Copepoda, Copepoda nauplii, Decapoda, Gastropod larvae, Crustacean larvae, Bivalve larvae, Fish and decapods egg, Fish larvae, Polychaete larvae, Brachiopoda, Chaetognatha
ST-4	0.158	5152	11	Copepoda, Copepoda nauplii, Decapoda, Gastropod larvae, Crustacean larvae, Bivalve larvae, Fish and decapods egg, Fish larvae, Polychaete larvae, Brachiopoda, Chaetognatha
ST-5	0.189	5856	11	Copepoda, Copepoda nauplii, Decapoda, Gastropod larvae, Crustacean larvae, Bivalve larvae, Fish and decapods egg, Fish larvae, Polychaete larvae, Brachiopoda, Chaetognatha

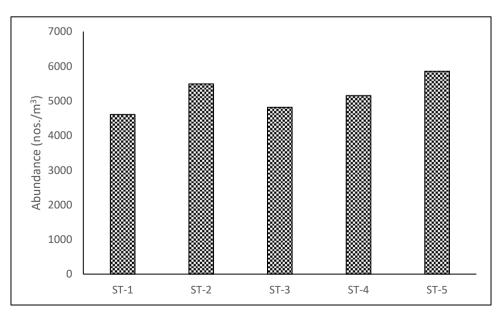
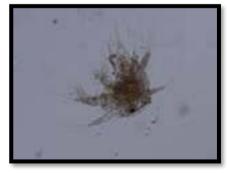


Table 9: Density (Nos. m⁻³) and contribution (%, in parentheses) of various zooplankton groups at station 1 to 5 in the APMuL marine waters, Mudra during December, 2019

Zooplankton groups	Station 1	Station 2	Station 3	Station 4	Station 5
Calanoid copepod					
Acartia sp.	472	720	720	592	504
Centropages sp.	368	448	560	336	904
Centropages furcatus	152	304	336	304	480
Paracalanus sp.	184	224	472	288	328
Acrocalanus sp.	168	192	0	80	312
Cosmocalanus sp.	144	0	392	0	376
Subeucalanus sp.	56	0	24	0	0
Labidocera sp.	264	0	416	0	360
Unidentified Calanoid copepod	424	632	0	128	176
Cyclopoida					
Oithona sp.	72	24	16	128	16
Harpacticoida	0	0	0	0	0
Microsetella sp.	0	0	8	0	0
Euterpina acutifrons	8	0	0	0	0
Poicilostomatatoida					
Oncaea sp.	0	0	0	0	168
Corycaeus sp.	304	504	224	96	32
Copepod nauplii	96	104	104	448	168
Decapoda					
Decapoda Larvae	568	744	720	448	80
Euphausiacea	48	80	72	288	88
<i>Lucifer</i> sp.	336	592	216	312	504
Lucifer typus	64	96	24	128	0
Lucifer penicilifer	0	0	72	256	0
Brachyurans larvae	112	208	24	64	24
Anomurans larvae	0	32	0	96	0
Fish eggs	304	248	128	136	680
Invertebrates eggs	0	0	0	0	328
Fish Larvae	8	0	0	0	0
Mollusca					
Gastropoda juvenile	0	32	0	0	16
<i>Limacina</i> sp.	16	0	0	0	0
Diacavolinia	0	0	0	96	8
Bivalvia juvenile	32	0	0	0	0
Polychaeta					
Polychaeta larvae	0	24	0	8	0
Brachiopoda					
Penilia avirostris	136	64	48	384	16
Evadne nordmanni	152	152	96	24	160
Cirripedia nauplii	0	0	104	0	0
Chaetognatha					
Sagitta sp.	64	16	16	288	104
Oikopleura sp.	56	32	24	224	24
Total density (Nos/m³)	4608	5472	4816	5152	5856
Total biomass (ml/m ³)	0.179	0.106	0.137	0.158	0.189

Copepod


Brachyuran crab larvae

Anomuran crab larvae

Copepod nauplii

1.4 Microphotographs of zooplanktons reported at sampling stations 3.5 Benthic Fauna

The benthic zone is the ecological region at the lowest level of a water (such as an ocean or a lake) which include the sediment surface and some sub-surface layers. The superficial layer of sediment is an integral part of the benthic zone, as it influences greatly the biological activity which takes place there. Organisms living in this zone are called benthos. They generally live in close relationship with the substrate bottom; many such organisms are attached to the bottom. Some benthic organisms are mainly dwelling at the bottom of the substratum but at times may travel upwards in the water column. They may also occupy rock crevices, organic debris and other microhabitat at the bottom. The benthic invertebrates

ranges from microscopic (e.g. micro invertebrates, <10 microns) to a few tens of centimeters or more in length (e.g. macro invertebrates, >50 cm).

Benthic organisms are morphologically different from that planktonic organisms. Many are adapted to live on the substrate (bottom). In benthic habitats they can be considered as dominant creatures. These organisms adapted to deep-water pressure so cannot survive in the upper parts of the water column. Since light does not penetrate very deep ocean-water, the benthic organisms often depends on the organic matter falling from the upper water column as their main energy source. This dead and decaying matter sustains the benthic food chain. The most benthic organisms in are scavengers or detritivores. These organisms by virtue of being relatively stationary, are constantly exposed to changes undergoing in overlying water, and hence, respond very well to aquatic pollution. The macro benthic population is very sensitive to environmental perturbation and is highly influenced by the physicochemical characteristics of water, nature of substratum, food, predation and other factors. The density of benthic invertebrates also fluctuates widely with the changes in the season.

3.5.1 Significance of benthic macro invertebrates

The biomass of benthic organisms in estuaries and coastal embayment is often high. It declines if communities are affected by prolonged periods of poor water quality especially when anoxia and hypoxia are common. Burrowing and tube-building by deposit-feeding benthic organisms (bioturbators) helps to mix the sediment and enhances decomposition of organic matter. Nitrification and denitrification are also enhanced because a range of oxygenated and anoxic micro-habitats are created. For example, the area of oxic-anoxic boundaries and the surface area available for diffusive exchange are increased by tubebuilding macro invertebrates. Loss of nitrification and denitrification (and increased ammonium efflux from sediment) in coastal and estuarine systems is an important cause of hysteresis, which can cause a shift from clear water to a turbid state.

The loss of benthic suspension-feeders can further enhance turbidity levels because these organisms filter suspended particles including planktonic algae, and they enhance sedimentation rates through bio deposition (*i.e.* voiding of their wastes and unwanted food). Changes in the macro fauna (and flora) cause changes in nutrient storage pools. Macro fauna are also important constituents of fish diets and thus are an important link for transferring

energy and nutrients between trophic levels, also driving pelagic fish and crustacean production. For these reasons the benthic organisms are extremely important indicators of environmental change.

3.5.2 Methodology

To enumerate the macro-benthic population sediment samples were collected from 5 subtidal and 3 inter-tidal transects. The details are as mentioned in the table (11 & 12). Sample was collected in the month of December 2019.

Sr. No	Test performed	Method
1	Benthos	APHA, Edition 21, Part 10000,10500 A-10500 D

Table 10: Test method for Benthos analysis

Sr. INO	Test performed	ivietnoa
1	Benthos	APHA, Edition 21, Part 10000,10500 A-10500 D

Station	Location	Co ord	linates	Sediment quality		
1	Intake point	22°48′ 31.'69"N	69°32′57.18″E	Silty clay		
2	intake point	22°46′54.62″N	69°32′02.89″E	Silty clay		
3	West port area	22°45'16.56"N	69°34′45.26″E	Silty clay		
4	Outfall area	22°44′ 30.23″N	69°36′17.02″E	Sandy		
5	Outfall area	22°44′47.17″N	69°36′35.74″E	Silty clay		

Table 11: Sub-tidal Benthos Sampling Sites

Transect	Location	Co ordinates	Intertidal expose area (m)	Sediment quality
	High water level	22°47′07.55″ N 69°32′16.91″ E		Sandy
I	Low water level	22°47'06.38"N	42 m	Silty-sand
		69°32′11.62″E		Sirry Suria
	High water level	22°45′58.72″ N		Sandy
		69°34′35.41″ E		Sandy
II	Low water level	22°45′57.74″N	54 m	Silty-sand
		69°34'35.05"E		Silty-Saliu
	High water level	22°44′ 52.21″ N		Sandy
Ш		69°36'41.64"E	47m	
	Low water level	22°44′ 51.23″ N	47111	Sandy
		69°36′39.28″ E		,

For the analysis of Benthos subtidal sediment samples were collected using Van- veen grab as well as intertidal samples were collected using metal quadrant.

The total Macro benthos population (sub tidal & intertidal) was estimated as number of 1 m² area and biomass on wet weight basis.

3.5.3 Handling and Preservation

The samples were first sieved with 500 μ size metal sieve and then washed with sea water. Sieving yields residual mixture of benthic organisms and detritus matter. The organisms were handpicked using forceps and paint brush. After sorting, macro benthic organisms were identified to the group level. Organisms were preserved in 5% formalin.

3.5.4 Identification

Identification of the organisms was done under stereo-microscope. Day, 1967, Fauchald, 1977 were used as standard reference for identification of the macro invertebrates.

3.5.5 Benthic Diversity

The present study revealed comparatively high macrobenthos abundance and biomass reported at sub-tidal stations than inter-tidal stations at APMuL, Mundra.

At the intertidal sampling locations average macrofuanal biomass was measured to be 1.67 mg m⁻². Macrobenthic biomass ranges from 1.08 mg m⁻² at station#2 (IT-2) to 2.15 mg m⁻² at station#1 (IT-1). Whereas the macrobenthos density ranges from 112.5 nos m⁻² at station#2 (IT-2) to 185 nos. m⁻² at station#3 (IT-3).

At the subtidal stations, average macrobenthos biomass was recorded to be 3.02 mg m⁻². Macrobenthic biomass ranges from 2.58 mg m⁻² at station#4 (ST-4) to 3.64 mg m⁻² at station#1 (ST-1) at APMuL marine monitoring sites. Whereas, least density of benthic macro organisms was reported as 212.50 nos. m⁻² at Station#2 (ST-2), whereas, highest density was reported as 395 nos. m⁻² respectively at Station#1 (ST-1). Polychaetes were the major contributing group in the benthic faunal assemblage, followed by the crustaceans. Polychaetes belongs to family Capitellidae, Cossuridae, Glyceridae, Goniadidae, Nephtyidae, Nereidae, Spionidae, Syllidae were the polychaete faimilies recorded during this study.

Table 13: Standing stock and abundance of sub tidal macro benthos

Station	Biomass (mg. m ⁻²)	Abundance (no. m ⁻²)	Total Group (No.)	Major Group
ST-1	3.64	395		Polychaeta,Bivalvia, Gastropoda, Amphipoda , Brachyura, Mysida, Isopoda
ST-2	2.82	285	6	Polychaeta,Bivalvia, Gastropoda, Amphipoda , Isopoda, Sipunculid
ST-3	3.11	277.5	7	Polychaeta, Nematoda, Bivalvia, Gastropoda, Amphipoda , Brachyura, Isopoda
ST-4	2.58	212.5	7	Polychaeta, Sipunculid, Bivalvia, Gastropoda, Amphipoda , Brachyura, Isopoda
ST-5	2.94	260		Polychaeta,Bivalvia, Gastropoda, Amphipoda , Brachyura, Mysida, Isopoda

Sub tidal region:

- A maximum seven group of macro benthic organisms were recorded from ST-1, ST-3, ST-3, ST-4, and ST-5, representing Polychaeta, Nematoda, Sipuncula, Bivalvia, Gastropoda, Amphipoda, Brachyura, Mysida, Isopoda identified from. A minimum of six macrobenthic benthic groups were recorded at ST-2, including Polychaeta, Bivalvia, Gastropoda, Amphipoda, Isopoda, Sipunculid.
- In the sub-tidal region, higher macro benthos abundance was recorded at ST-1 (395 no. m⁻²), whereas, lowest abundance was recorded at ST-5 (212.5 no. m⁻²). Higher macrobenthic biomass was recorded at ST-3 (3.11 mg. m⁻²) as compared to other stations (Table: 13).

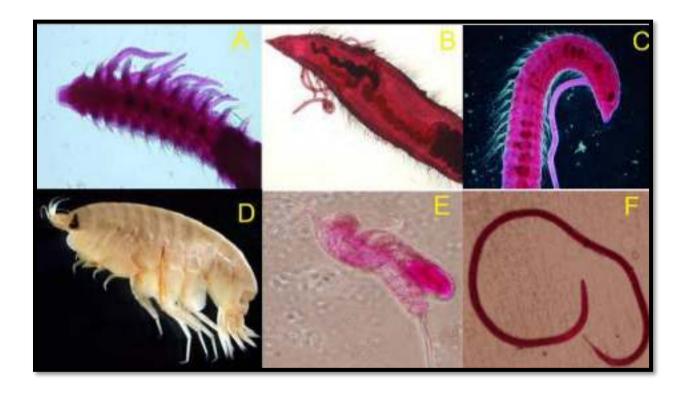

Station	Biomass (mg. m ⁻²)	Abundance (no. m ⁻²)	Total Group	Macro benthic groups observed in the study	
IT-1 (LW)	2.15	185	4	Polychaeta, Nematoda, Bivalvia, Gastropoda	
IT-1 (HW)	1.26	135	4	Polychaeta, Nematoda, Bivalvia, Gastropoda	
IT-2 (LW)	1.08	112.5	3	Polychaeta, Bivalvia, Gastropoda	
IT-2 (HW)	-	-	-	-	
IT-3 (LW)	1.79	135	4	Polychaeta, Nematoda, Bivalvia, Gastropoda	
IT-3 (HW)	0.92	72.5	2	Polychaeta, Bivalvia	
Note: LW-lo	Note: LW-low water during low tide; HW: high water during high tide				

Table 14: Standing stock and abundance of intertidal macro benthos

Inter tidal region:

- Four macrobenthic groups were identified at stations, IT-1 (LW), IT-1 (HW), IT-3 (LW) and IT-2 (HW), representing to Polychaeta, Nematoda, Bivalvia, Gastropoda. Organisms belongs to benthic group Polychaeta, Bivalvia, Gastropoda were identified from IT-2 (LW), whereas, at station IT-3 (HW) benthic faunal assemblages comprised of Polychaeta, and Bivalvia only.
- The highest macro benthos abundance (185 no. m⁻²) was reported at IT-1 (LW). Highest biomass (2.15 mg. m⁻²) was also recorded at IT-1 (LW) (Table: 14).

1.5 Microphotographs of macro benthic organisms.

Figures: A. Spionidae; B. Cirratulidae; C. Cossuridae; D. Amphipoda; E. Herpecticoida; F. Nematoda

3.6 Phytoplankton pigments (Chlorophyll and Pheophytin)

Chlorophyll and Pheophytin concentration:

Marine phytoplankton contains the essential as well as accessory pigment similar as that of terrestrial plants. Chlorophyll is the essential photosynthetic, green molecule responsible for energy fixation in the process of photosynthesis. The energy fixed by the phytoplankton gets transfer to higher tropic level in the food web through grazing process by the consumers.

Chlorophyll is a measure of algal biomass and it acts as an empirical link between nutrient concentrations.

Algal chlorophyll forms a series of degradation products upon degradation. In addition to Chlorophyll the naturally occurring pigments in algal cells, a filtered water sample will also contain colored degradation products of these pigments. The nature of these degradation products depends on which part of the chlorophyll molecule that is affected. As chlorophyll degrades, the initial step is either the loss of the magnesium from the center of the molecule or the loss of the phytol tail. This results in the formation of the molecule, *phaeophytin*. Depending on the parent molecule a number of distinct molecules like phaeophytins, chlorophyllides, and pheophorbides can be produced. Thus in addition to Chlorophyll *a* filtered sea water contains colored degradation products of phytoplankton pigments.

Figure 1.6: The Degradation Pathways Of Chlorophyll

CHLOROPHYLL		PHEOPHYTIN
Ļ	Loss of mg	Ļ
CHLOROPHYLLIDE	>	PHEOPHORBIDE

Table 15: Method of analysis for Chlorophyll a and Pheophytin

Sr. no	Test performed	Method
1	Chlorophyll g and Dhoophytin	APHA, Edition 21, Part 10000, 10200 H (with some
	Chlorophyll <i>a</i> and Pheophytin	modification)

3.6.1 Estimation of Chlorophyll *a* and Pheophytin:

- Sampling locations were same as that of the plankton samples. Surface water samples were collected in clean plastic dark bottles.
- Water samples were filtered through Whattman glass microfiber filters (GF/F: 47 mm) and paper was macerated in 90% acetone and one night stored in the dark at 4°C.
- The extraction slurry was transferred to 15 ml centrifugation tube and centrifuged at \sim 2000 rpm for 10 min.
- The extract was decanted into a 15 ml centrifuge tube, volume was adjusted to 10 ml with 90% acetone.
- Clarified extract was transferred to cuvette. Chlorophyll florescence was measured using Turner Flurometer.
- The extract was then acidified in the cuvette with 0.1 ml of 0.1 N NH₄Cl. The acidified extract is gently agitated and phaeophytin florescence was measured using Turner Flurometer (after acidification).

3.6.2 Results

Distribution of phytoplankton biomass expressed in terms of Chlorophyll a (Chl a) and phaeophytin at sub-tidal and inter-tidal stations in the marine environment of APMUL, Mundra is presented in. In sub-tidal region, concentrations of Chl a ranged from 0.15 to 2.40 mg/m3 at station#3 and station#2, respectively. The content of phaeophytin ranged from 0.80 to 1.40 mg m3 at station#3 and station#2, respectively. The concentration of phaeophytin is a measure of the dead cells and is an indirect indicator of biotic and abiotic stress conditions of the algae leading to deterioration of chlorophyll a. The ratio from concentrations of chlorophyll a and phaeophytin in an aquatic ecosystem suggest balance between the growth and mortality of phytoplankton life. In healthy environments, ratios of chlorophyll a to phaeophytin generally exceed 1.2. Ratios of Chl a to phaeophytin in the sub-tidal study area of APMUL, Mundra ranged from 1.50 to 1.88. The ratios of the concentrations of chl a and phaeophytin in the sampled stations were generally high (>1) except station#5, indicating that the appropriate conditions prevailed for the phytoplankton growth.

Sampling locations	Chlorophyll a	Phaeophytin	Chl a: Phaeophytin
Sampling locations	mg m ⁻³	mg m⁻³	ratio
ST-1	2.2	1.3	1.69
ST-2	2.4	1.4	1.71
ST-3	1.5	0.8	1.88
ST-4	1.9	1.2	1.58
ST-5	1.8	1.2	1.50

Table 16: Chlorophyll *a* and Pheophytin (mg/l)

3.7 Conclusion

- The phytoplankton abundance in the study region was ranged from 12029 to 18906 cells L⁻¹. Highest phytoplankton abundance was observed at the STN-2 water. However, lowest phytoplankton abundance was observed at the STN-3 water.
- In general, the concentrations of chlorophyll-a, and phaeophytin in the sampled stations were generally high (>1) except station 3 (phaeophytin: 0.8). Chlorophyll-a and Phaeophytin ratio calculated to be >1.2 at all the stations, indicating that the appropriate conditions prevailed for the phytoplankton growth.
- The lowest zooplankton biomass of 0.106 ml/m3 was recorded at Station 2 while, maximum biomass was reported at Station 5 (0.189 ml/m³). Minimum zooplankton population density was reported at Station 1 (4608 nos. /m³), whereas, maximum density reported at station 5 (5856 nos. /m³).
- The highest macro benthos abundance (185 no. m⁻²) was reported at IT-1 (LW). Highest biomass (2.15 mg. m⁻²) was also recorded at IT-1 (LW). In the sub-tidal region, higher macro benthos abundance was recorded at ST-1 (395 no. m⁻²), whereas, lowest abundance was recorded at ST-5 (212.5 no. m⁻²). Higher macrobenthic biomass was recorded at ST-3 (3.11 mg. m⁻²) as compared to other stations
- Complete sampling data survey reveals that the physicochemical and marine biological parameters of the post monsoon (December 2019) analyses data persisted and not differed from the baseline monitoring data. However, the unstable intertidal benthic dead shells deposit as the effect of natural tidal currents and interchange with sediment carriage activity moves the settlement of the benthic fauna, primarily in the sampling location at station 03 (West Port area) area.
- The biological parameters considered for the present monitoring study are phytoplankton pigments and cell count, zooplankton standing stock and population, macrobenthic biomass and population status is stable and healthy in our sapling sites

Sr. No.	Name of Person
1.	Dr. Kalyan De (Marine Scientist)
2.	Mr. Vijay Thanki (Env. Chemist)
3.	Mr. Pravin Singh (Env. Chemist)
4.	Miss. Shweta A. Rana (Env. Microbiologist)
5.	Dr. Shivanagouda N. Sanagoudra (Marine Biologist)

DIFFERENT TYPES OF SAMPLING PHOTOGRAPHS

Annexure – 5

Chiragsing Rajput

From:	Chiragsing Rajput
Sent:	Monday, April 6, 2020 6:14 PM
То:	'ro-gpcb-kute@gujarat.gov.in'; rowz.bpl-mef@nic.in; mefcc.ia3@gmail.com;
	monitoring-ec@nic.in; 'ms-gpcb@gujarat.gov.in'
Cc:	Shalin Shah; Azharuddin Kazi; Vivek Gundraniya; Kripa Shah; Mahendra Kumar
	Ghritlahre (Mahendra.Ghritlahare@adani.com); Ashvin Kumar Patni; Dhanesh Tank
Subject:	Intimation Letter_Stoppage of Environment Monitoring due to COVID-19_APSEZ,
	Mundra
Attachments:	Letter_Stoppage of Envionmental Monitoring due to COVID-19.pdf

Dear Sir,

Please find attached intimation letter w.r.t. stoppage of environmental monitoring within Adani Ports & SEZ Limited, Mundra, Kutch (Gujarat) since 23rd March, 2020 considering COVID-19 Pandemic lockdown.

So kindly consider this submission and oblige.

Thanks & Regards, Chiragsing Rajput Environment Cell | Adani Ports & Special Economic Zone Ltd. Mob +919687678443 | Ext: 52132 | <u>chiragsing.rajput@adani.com</u> | <u>www.adani.com</u> Adani House, 1st Floor, P.O. Box 1, Mundra 370421, Gujarat, India.

Growth Goodness

Our Values: Courage | Trust | Commitment

APSEZL/EnvCell/2020-21/001 Date: 06.04.2020 To, **Regional Officer**, Regional Office - East Kutch Gujarat Pollution Control Board, Gandhidham - 370201.

- Intimation for stoppage of environmental monitoring within APSEZ, Mundra (Kutch, Subject: Gujarat) during COVID – 19 Pandemic lockdown.
- Ref.: Regulatory Permission obtained by APSEZ, Mundra (Kutch, Gujarat) as per attached Annexure – 1.

Dear Sir,

With reference to above stated subject, we would like intimate you that, in compliance to various regulatory permissions granted by MoEF&CC/SEIAA as well as SPCB for various project, M/s. Adani Ports and SEZ Limited, Mundra (Kutch, Gujarat) has been regularly carrying out post environment clearance, monitoring (environmental attributes viz. Air, Water, Noise, Soil, Marine etc.) through NABL accredited / MoEF recognized laboratory and same is being reported/submitted to regulatory body periodically.

However, considering the current scenario of COVID - 19 Pandemic lockdown, we were forced to stop the Environmental Monitoring from 23rd March, 2020 and same shall be restarted after completion of this lockdown period and/or when the condition is normalized (as directed by district administration/State/Central Govt.). The date of restart of Environment Monitoring, shall be communicated to your good office.

Kindly consider our above submission and oblige.

Thanks & Regards For, Adani Ports and Special Economic Zone Limited

Shalin Shah (Head – Environment)

CC To:

- 1. Member Secretary, GPCB Head Office, Paryavaran Bhavan, Sector 10 A, Gandhi Nagar 382 010
- 2. APCCF, Regional Office (WZ), MoEF&CC, Regional Office (WZ), E-5, Kendriya Paryavaran Bhawan, Arera Colony, Link Road No. - 3, Bhopal - 462 016
- 3. The Director (IA Division), Ministry of Environment, Forests & Climate Change, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi-110003

Adani Ports and Special Economic Zone Ltd Adani House, PO Box No. 1 Mundra, Kutch 370 421 Gujarat, India

Tel +91 2838 25 5000 Fax +91 2838 25 51110 info@adani.com www.adani.com

Registered Office: Adani House, Nr Mithakhali Circle, Ragen 2022, Ofn 456 bad 380 009, Gujarat, India

ANNEXURE – 1

REGULATORY PERM ISSIONS

Sr.	Permission for	Ref. No. & Dated
No.		
Enviror	mental / CRZ clearance from MoEF&CC / SEIAA	
1.	Handling facility of General Cargo / LPG / Chemicals and their storage terminal	F. No. J-16011/13/95-IA.III, 25 th August, 1995
2.	Port expansion project including dry/break bulk cargo container terminal, railway link and related ancillary and back-up facilities	F. No. J-16011/40/99-IA.III, 20 th September, 2000
3.	Single Point Mooring (SPM), Crude Oil Terminal (COT) and connecting pipes	F. No. J-16011/30/2003-IA-III, 21 st July, 2004
4.	Development of Multipurpose berth (Terminal- 2)	F. No. 11-84/2006- IA.III, 5 th February, 2007
5.	Water Front Development Project	F. No. 10-47/2008- IA.III, 12 th & 19 th January, 2009, 7 th October, 2015
6.	Township and area development project	Letter No. SEIAA/GUJ/EC/8(b)/44/2010, 20 th February, 2010
7.	Establishment of Common Effluent Treatment Plant (CETP) of 17 MLD	Letter no. SEIAA/GUJ/EC/7(h)/43/2010, 20 th February, 2010
8.	Multi Product SEZ, Desalination, Sea Water Intake, Outfall Facility and Pipeline	F. No. 10-138/2008-IA.III, 15 th July, 2014
Consen	it to Operate from SPCB	
1.	Mundra Port Terminal (PCB ID: 17739) for handling, storage and distribution of Dry, Liquid and Containerized Cargo	Order No. AWH-83561, Dated 09.02.2017
2.	WFDP – West Port (PCB ID: 35427) for Dry cargo handling	Order No. AWH-79241, Dated 28.07.2016
3.	SPM and Pipeline for Crude Oil Terminal (PCB ID: 37436)	Order No. WH-86980, Dated 30.08.2017
4.	Multi Product SEZ (PCB ID: 31463)	Order No. AWH-88998, Dated 23.11.2017
5.	MUPL – CETP (PCB ID: 10605) for 2.5 MLD Capacity	Order No. AWH-79311, Dated 29.07.2016
6.	AMSIPL (PCB ID: 10602) for township and area development	Order No. AWH-89533, Dated 05.12.2017
7.	APSEZ, Residential colony (PCB ID: 17738) for STPs (350 + 250 KLD) & RO Plant (10 KLPH)	Order No. AWH-81075, Dated 12.09.2016
8.	MLPTPL (PCB ID: 53331) for handling, storage and distribution of LPG	Order No. AWH-103906, Dated 09.11.2019

Adani Ports and Special Economic Zone Ltd Adani House, PO Box No. 1 Mundra, Kutch 370 421 Gujarat, India Tel +91 2838 25 5000 Fax +91 2838 25 51110 info@adani.com www.adani.com

Registered Office: Adani House, Nr Mithakhali Orcle, Ragen 293, Afrit A56 ad 380 009, Gujarat, India

Annexure – 6

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN Sector-10-A, **Gandhinagar** 382 010 Phone : (079) 23222425 (079) 23232152 Fax : (079) 23232156 Website : www.gacb.gov.in

CCA-Amendment (H+ (957:08_)

EPCB/CCA-KUTCH-39(6) /GPCB ID 17739/_ / 🌣

To Adani Ports & Special Economic Zone Ltd, At-Navinal Island, Mundra, Kutch, Mundra - 370421, Dist.: Kutch

Subject : Amendment to Consolidated Consent and Authorisation (CC&A).

Reference

- CCA order No AWH-83561, vide letter no. PC/ CCA- KUTCH-39(4)/ ID 17739, date 09/01/2017.
- Your CCA Amendment Application Inward ID No. 163528, dated 26/08/2019.

Sir,

In exercise of the power conferred under section-25 of the Water (Prevention and Control of Pollution) Act-1974, under section-21 of the Air (Prevention and Control of Pollution)-1981 and Authorization under Rule 6(2) of the Hazardous and Other Waste (Management and Transboundary) Rules, 2016 & framed under Environment (Protection) Act-1986. The Board has granted CCA vide order No. AWH-83561issued vide this office latter no. CCA-Kutch-39(4)/ ID-17739on 09/01/2017, which is validupto to 20/11/2021.

The Board has right to review and amend the conditions of the said CCA order. The said CCA order is further amended as below:

- This order shall be read as CCA-Amendment Order No. H-105708, Data of Issue: valid up to20/11/2021.
- 2. Condition No. 2 of the said CCA order is amended as below:

á

2. The Consent shall be valid up to 20/11/2021 for the use of outlet for the dischargeoffreated effluent and emission due to operation of industrial plant for storage of following items/products.

Sr. No	Product name	Capacity as per CCA dated 09/01/2017	Proposed capacity	Total Capacity after CCA (Amendment)
1	General Cargo	4.0 Lac MT/Month	NIL	
2.	Dry Cargo Handling	9 MM i /Month	NiL	112.8 MMTPA
3.	Liquid Cargo Cargo ((Chemical/POC Products)	2.65 Lac MT/Month (3.16 MMTPA)	1.82 MMTPA ;	5.00 MMTPA
4.	Import, Storage And Distribution of Edible Oil	1.25 Lac MT/Month (2.2 MMTPA)	NIL	2.20 MMTPA
5 .	Storage And Distribution of Bitumen	6.400 MT/Month (0.3 MMTPA) Gujarat Gre	NIL	0.30 MMTPA

Page 1 of 3

6	Container Termina' Handling operation	5.7 Million TEUs/Annum	NIL	5.7 Million TEUs/Annum
7	Waste destruction system for decomposition/destruction of municipal solid weste	3.5 Cubic Meter (MSW Destruction Caosety @ 500 Kg/day)	NIL	3.5 Cubic Meter (MSW Destruction Capacity @ 500 Kg/day)
8	Oil water separate (Flame Proof) to remove -Oil portion from slope dii received from Vessels/Ships	25 M ³ /Hr	NIL.	25 M³/Hr

SUBJECT TO THE FOLLOWING SPECIFIC CONDITIONS:

- 1. There shall be no change in existing infrastructure facility due to CCA Amendment.
- 2. Industry shall not carry out any activities which attracts provision of EIA Notification & CRZ notification.
- 3. There shall be no further construction/developmentdue to CCA Amendment.
- 4. There shall be no change in water consumption, wastewater generation, fuel consumption and flue gas emission due to the proposed amendment.
- 5. Industry shall comply with all whos and regulations of Hazardous chemicals.

5. Condition No- 5.2of the said CCA order is amended as below.

5.2 <u>Adani Ports & Special Economic Zone Ltd</u>is hereby granted an authorization to operate facility for following hazardous wastes after expansion on the premises.

Sr. No	Waste	Quantity as per CCA dated 09/01/201 7	Tota! Quantity after CCA Amendme nt	Schedule I/Categor y	Facility
1	Used/Spent Oil	300 MT	300 MT	1-5.1	Collection, Storage Transportation & disposal b reuse within premises and/o selling out to registere recycler/re-processors
2.	ETP Sludge	ראָ ז.0\$5 א ד	1.095 MT	1-35.3	Collection, Storage Transportation & disposal b co-processing at cemer industries and/or CHWIF site
3.	Sludge & & fitters contaminated with oil	5 MT	5 MT	/3.3	Collection, Storage Transportation & disposal b co-processing at cemer industries and/or CHWIF site
4 A	Waste residue containing oil/ Oily rags	131 MT	150 MT	- 33.2	Collection, Storage a designated place Transportation, Disposal a TSDF
5.	Pig waste	24 MT	24 MT	I-3.1	Collection, Storage

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector-10-A, Gandhinagar 382 010

Phone : (079) 23222425 (079) 23232152

Fax : (079) 23232156

GPCI	В				
-					Website www.anci.cov Transportation & depositor co-processing at cement industries and/or CHWIF site.
6 .	Tank bottom sludge	Whatever quantity generated	Whatever quantity generated	1-3.2	Collection, Storage, Transportation & disposal by co-processing at cement industries and/or CHWIF site/ or recycling to register recycler
7.	Discarded containers/ba rreis	16 MT	25 MT	1-33-3	Collection, Storage, Transportation & disposal by reuse within premises and/or selling out to register recycler/reprocessor
8.	Asbestoses waste	Whatever quantity generated	Whatever quantity generated	I-15.1	Collection, Storage, Transportation & disposal at CHWIF site.
9.	Glass Wool Waste (Thermal Insulation Material)	Whatever quantity generated	Whatever quantity generated	-9 	Collection, Storage, Transportation & disposal by co-processing at cement industries and/or inclneration at CHWIF site and/ or recycling through registered recycler
10.	Downgrade Chemicals	Whatever quantity generated	Whatever quantity generated	1-20.2	Collection, Storage, Transportation & disposal by selling to authorized Solvent Recover
11.	Waste Öil	0.18 MT	0.18 MT	-5.2	Collection, Storage, Transportation & disposal by selling out to registered recycler/reprocessor
12.	Expired Paint Material		10 MT	1-21.1	Collection, Storage, Transportation & disposal by co-processing at cement Industries and/ or incineration at CHWIF site.

...

6. Rest of conditions of all the CCA order no. CCA order No AWH- 83561, vide letter no. PC/ CCA- KUTCH-39(4)/ID 17739, date 09/01/2017 shall remain unchanged & industry shall comply 18. 015-16-5526361 with the same judiciously.

N

For and on behalf of ه**د**ير **Gujerat Pollution Control Board**

(Smt U.K. Upadhyay) Environment Engineer

Clean Gujarat Green Gujarat

ISO-9001-2008 & ISO-14001 - 2004 Certified Organisation

Page 296 of 456

Annexure – 7

Sr.	Activity	L (Budgeted Cost (INR in Lacs)		
No.	-	20 17 – 18	20 18 – 19	20 19 – 20	20 19 – 20
1.	Environmental Study / Audit and Consultancy	9.0	6.7	0.33	6.0
2.	Legal & Statutory Expenses	5.07	4.42	0.84	3.0
3.	Environmental Monitoring Services	27.02	20.36	21.74	24.0
4.	Hazardous / Non Hazardous Waste Management & Disposal	65.62	95.72	108.43	120.57
5.	Environment Days Celebration and Advertisement / Business development	2.85	0.28	1.5	10.0
6.	Treatment and Disposal of Bio- Medical Waste	1.13	1.21	1.62	1.56
7.	Mangrove Plantation, Monitoring & Conservation	60.0	47.0	Nil	Nil
8.	Other Horticulture Expenses	547.0	579.32	734.18	727.80
9.	O&M of Sewage Treatment Plant and Effluent Treatment Plant (including STP, ETP of Port & SEZ & Common Effluent Treatment Plant)	70.02	144.29	110.18	128.52
10.	Expenditure of Environment Dept. (Apart from above head)	102.15	109.28	105.13	124.38
	Total	889.86	1008.58	1083.95	1145.83

Cost of Environmental Protection Measures

Annexure – 8

Issued at Mumbai

Public Liability Insurance (Under PLI Act 1991)

SCHEDULE

Policy No: 3133201064226304000

Item 1.	Insured	:	Adani Port & SEZ Limited
	Pan Number	:	AAACG7917K
Item 2.	Producer	:	Ace Insurance Brokers Private Limited
Item 3.	Financial Interest	:	Not Applicable
Item 4.	Mailing address of the Insured	:	Adani House, P O Box 1, Mundra,Kutch Gujarat-370421
ltem 5.	Business	:	port and Cargo Handling, Operation and stevedoring storage and warehousing
Item 6.	Policy Period	:	From 00:01 hours: 01 April 2019 To (Midnight) : 31 March 2020
ltem 7.	Premium	:	Rs. 32,536.00
Item 8.	Premium & Coverage Statement8.1Premium Computation8.2Insurance Limits & Excess	:	Refer to Page 2

Item 9. Clauses, Conditions & Warranties

Form Number	Form Name	Effective Date	Date Issued
PL-02-0032	Policy Schedule	01 April 2019	02 April 2019
PL-02-0031	Insurance Contract	01 April 2019	02 April 2019

:

Subject otherwise to terms and conditions of Public Liability Insurance Policy.

Signed for and on behalf of HDFC ERGO General Insurance Company Limited, on 02 April 2019

Authorised Signatory

Goods & Service Tax Registration No: 24AABCL5045N1ZE The contract will be cancelled ab intio in case; the consideration under the policy is not realized.

The stamp duty of Rs 0.50/- (Fifty Paise only) paid by Demand Draft, vide Receipt/Challan no CSD/381/2019/1258/19 Date - 19/Mar/2019 as prescribed in Government Notification Revenue and Forest Department No Mudrank 2017/CR.97/M-1, dated the 09th January 2018

Note: Where the proposal form is not received, information obtained from insured, whether orally or otherwise, is captured in the policy document. Discrepancies, if any, in the information contained in the policy document may be pointed out by an insured within 15 days from the policy issue date after which information contained in the policy document shall be deemed to have been accepted as correct.

Branch	Ahmedabad - 206, Second Floor, Shopper Plaza Iv, Opp. Bsnl Telephone Exchange Road,				
Branch	Navarangpura,Ahmedabad - 380006 380006 Phone No.+91-79-39883600				

Premium & Coverage Statement

(Item. 8 of Schedule, Attached to and forming part of Policy No: 3133201064226304000)

8.1 Premium Computation

Premium Details	Amount (Rs.)
Net Premium	Rs. 16,268.00
Add: Contribution to Environment Relief Fund	Rs. 16,268.00
Total Premium	Rs. 32,536.00
Invoice Number :	201064226304000
GSTN :	24AAACG7917K1ZH
Place of Supply:	Gujarat
SAC Code	9971

8.2 Insurance Limits & Excess

Insurance Limits

Details	Amount (Rs.)
Each Accident Insurance Limit	50,000,000.00
Aggregate Insurance Limit	150,000,000.00

Excess

Compulsory Not Applicable Excess

Intermediary Name - Ace Insurance Broker Private Limited

Intermediary code - 201463722442

Public Liability Insurance (Under PLI Act 1991)

1. OPERATIVE CLAUSE

WHEREAS the Insured named in the Schedule hereto and carrying on the business described in the said schedule has applied to HDFC ERGO GENERAL INSURANCE COMPANY LIMITED (hereinafter called `the Company') for the indemnity hereinafter contained and has made a written proposal and declaration which shall be the basis of this contract and is deemed to be incorporated herein and has paid the premium and statutory contribution towards the Environment Relief Fund as consideration for or on account of such indemnity in accordance with the manner prescribed under Section 64VB of the Insurance Act, 1938 and as per the provisions of the Public Liability Insurance Act and the rules framed there under.

NOW THIS POLICY WITNESSETH that subject to the terms, conditions and exclusions herein contained or endorsed or otherwise expressed herein, to indemnify the Insured or Owner against the statutory liability arising out of accidents occurring during the currency of the policy due to handling of hazardous substances as provided for in the said Act and the Rules framed thereunder.

2. DEFINITIONS

For the purpose of this policy, the following terms shall have the meaning as set forth hereunder:

- (i) "Act" unless otherwise specifically mentioned shall mean the Public Liability Insurance Act 1991 as amended from time to time;
- (ii) "Accident" means an accident involving a fortuitous, sudden or unintentional occurrence while handling any hazardous substance resulting in continuous, intermittent or repeated exposure to death of, or injury to any person or damage to any property but does not include an accident by reason only of war or radioactivity;
- (iii) "Handling" in relation to any hazardous substance means the manufacture, processing, treatment, package, storage, transportation by vehicle, use, collection, destruction, conversion, offering for sale, transfer or the like of such hazardous substance;
- (iv) "Hazardous Substance" and group means any substance or preparation which is defined as hazardous substance under the Public Liability Insurance Act, 1991 and the Rules framed thereunder;
- (v) "Owner" or "Insured" means a person who owns, or has control over handling of any hazardous substance at the time of accident and includes:
 - (a) in the case of a firm, any of its partners
 - (b) in the case of an association, any of its members, and
 - (c) in the case of a company, any of its directors, managers, secretaries or other officers who is/are directly in charge of, and is/are responsible to the company for the conduct of the business of the company;
- (vi) "Turnover" shall mean
 - (a) In case of Manufacturing Units Entire annual gross sales turnover including all levies and taxes of manufacturing units handling hazardous substance as defined in the Public Liability Insurance Act, 1991. For the purpose of this insurance, the term "Units" shall mean all operations being carried out in the manufacturing complex in one location.
 - (b) In case of Godowns/ Warehouse Owners Total annual rental receipts of premises handling hazardous substance as defined in the Public Liability Insurance Act, 1991.
 - (c) In case of Transport Operators Total annual freight receipts
 - (d) In all other cases Total annual gross receipt

3. EXCLUSIONS

3133201064226304000

Page 3 of 8

HDFC ERGO General Insurance Company Limited. (Formerly HDFC General Insurance Limited from Sept 14, 2016 and L&T General Insurance Company Limited upto Sept 13, 2016).CIN: U66030MH2007PLC177117. Registered & Corporate Office: 1st Floor,HDFC House, 165 - 166 Backbay Reclamation,H. T. Parekh Marg, Churchgate, Mumbai – 400 020.Customer Service Address: D-301, 3rd Floor, Eastern Business District (Magnet Mall), LBS Marg, Bhandup (West), Mumbai - 400 078.Toll Free Number: 1800 2700 700 Te.: +91 22 6638 3600 | Fax: 91 22 6638 3699 | care@hdfcergo.com | www.hdfcergo.com. UIN IRDAN125P0002V01200809 Reg No.146

The Company shall not be liable:

- (i) for any wilful or intentional non-compliance of any statutory requirements;
- (ii) in respect of fines, penalties, punitive and /or exemplary damages;
- (iii) under any law or legislation except in so far as provided for in Section 8 (1) & 8 (2) of the Act;
- (iv) in respect of damage to property owned, leased or hired or under hire purchase or on loan to the Insured or otherwise in the Insured or Owner's control, care or custody;
- for any liability directly or indirectly occasioned by, happening through or in consequence of war, invasion, act of foreign enemy, hostilities (whether war be declared or not) civil war, rebellion, revolution, insurrection or military or usurped power;
- (vi) for any liability directly or indirectly caused by or contributed to by:
 - (a) Ionising radiation or contamination by radioactivity from any nuclear fuel or from any nuclear waste from the combustion of nuclear fuel
 - (b) the radioactive, toxic, explosive or other hazardous properties of any explosive nuclear assembly or nuclear component thereof;
- (vii) for matter outside the scope of Public Liability Insurance Act, 1991.
- (viii) in respect of losses/liability arising outside India.

4. CONDITIONS

- 1) The Insured Owner shall give written notice to the Company as soon as reasonable practicable of any claim made against the Insured Owner or of any specific event or circumstance that may give rise to a claim. The Insured Owner shall immediately give to the Company copies of notice of application forwarded by the Collector and all such additional information and/or assistance that the company may require.
- 2) No admission, offer, promise or payment shall be made or given by or on behalf of the Insured owner under this policy without the written consent of the Company.
- 3) The Company shall not be liable for any claim for relief made after five years from the date of occurrence of the accident.
- 4) The Insured Owner shall keep record of annual turnover, and at the time of renewal of insurance declare such turnover and all other details as may be required by the Company. The Company shall at all reasonable times have full rights to call for and examine such records.
- 5) If at the time of happening of any accident resulting in a claim under the policy there be any other insurance covering the same liability, then the Company shall not be liable to pay or contribute more than its rateable proportion of such liability.
- 6) The Company may cancel this policy by giving seven days' notice in writing of such cancellation to the Insured's last known address and in such an event the Company will return a pro-rata portion of the premium (subject to a minimum retention of 25 per cent of the annual premium) for the unexpired part of the insurance.

The policy may also be cancelled by the Insured by giving thirty days' notice in writing to the Company, in which event the Company will retain premium at short period scale as set forth in the table below, provided there is no claim under the policy during the Policy Period.

In case of any claim under the policy no refund of premium shall be allowed.

Page 4 of 8 HDFC ERGO General Insurance Company Limited. (Formerly HDFC General Insurance Limited from Sept 14, 2016 and L&T General Insurance Company Limited upto Sept 13, 2016).CIN: U66030MH2007PLC177117. Registered & Corporate Office: 1st Floor,HDFC House, 165 - 166 Backbay Reclamation,H. T. Parekh Marg, Churchgate, Mumbai – 400 020.Customer Service Address: D-301, 3rd Floor, Eastern Business District (Magnet Mall), LBS Marg, Bhandup (West), Mumbai - 400 078.Toll Free Number: 1800 2700 700 Te.: +91 22 6638 3600 | Fax: 91 22 6638 3699 | care@hdfcergo.com | www.hdfcergo.com. UIN IRDAN125P0002V01200809 Reg No.146

The Company shall have no obligation to give notice that the policy is due for renewal or renew this policy upon expiration or termination.

Table of Short Period Scales		
Period of Risk(Not exceeding)	Premium to be retained by the Company (% of the Annual Rate).	
1 week	10%	
1 month	25%	
2 months	35%	
3 months	50%	
4 months	60%	
6 months	75%	
8 months	85%	
Exceeding 8 months	Total Annual Premium	

7)

lf

the Company shall disclaim by the Insured Owner for any claim hereunder and such claim shall not within 12 calendar months from the date of such disclaimer have been made the subject matter of a suit in a component Court of Law. Then the claim for all practical purpose shall be deemed to have been abandoned and shall not thereafter be recoverable hereunder or be mad the subject matter of any suit.

- 8) The Company shall not be liable to make any payment in respect of any claim if such be in any manner fraudulent or support by any person on behalf of the insured Owner and/or if the insurance has been continued in consequence of any material misstatement or non-disclosure of any material information by or on behalf of the Insured Owner. In such a case if the Company pays any amount to the claimant due to any statutory provision such amount shall be recoverable from the Insured Owner.
- 9) The policy and the Schedule shall be read together as one contract and any word or expression to which a specific meaning has been assigned in the Act and the Rules framed there under or this policy shall bear such as specific meaning.
- 10) Any dispute regarding interpretation of the terms, conditions and exceptions of the Policy shall be determined in accordance with the law and practice of a court of competent jurisdiction within India.
- 11) Any person who has a grievance against the Company, may himself or through his legal heirs make a complaint in writing to the Insurance Ombudsman in accordance with the procedure contained in The Redressal of Public Grievance Rules, 1998 (Ombudsman Rules). Proviso to Rule 16(2) of the Ombudsman Rules however, limits compensation that may be awarded by the Ombudsman, to the lower of compensation necessary to cover the loss suffered by the insured as a direct consequence of the insured peril or Rs. 20 lakhs Rupees Twenty Lakhs Only) inclusive of ex-gratia and other expenses. A copy of the said Rules shall be made available by the Company upon prior written request by the Insured.

STATUTORY NOTICE: "INSURANCE IS THE SUBJECT MATTER OF SOLICITATION"

Grievance Redressal Procedure

If you have a grievance that you wish us to redress, you may contact us with the details of your grievance through:

- Call Centre (Toll free helpline) 1800 2 700 700 (accessible from any Mobile and Landline within India) 1800 226 226 (accessible from any MTNL and BSNL Lines)
- Emails grievance@hdfcergo.com
- Designated Grievance Officer in each branch.
- Company Website www.hdfcergo.com
- Fax : 022 66383699
- Courier : Any of our Branch office or corporate office

You may also approach the Complaint & Grievance (C&G) Cell at any of our branches with the details of your grievance during our working hours from Monday to Friday.

If you are not satisfied with our redressal of your grievance through one of the above methods, you may contact our Head of Customer Service at

The Complaint & Grievance Cell , HDFC ERGO General Insurance Company Ltd. D-301, 3rd Floor, Eastern Business District (Magnet Mall), LBS Marg, Bhandup (West), Mumbai - 400078. Maharashtra

In case you are not satisfied with the response / resolution given / offered by the C&G cell, then you can write to the Principal Grievance Officer of the Company at the following address

To the Principal Grievance Officer HDFC ERGO General Insurance Company Limited D-301, 3rd Floor, Eastern Business District (Magnet Mall), LBS Marg, Bhandup (West), Mumbai - 400078. Maharashtra e-mail: principalgrievanceofficer@hdfcergo.com

You may also approach the nearest Insurance Ombudsman for resolution of your grievance. The contact details of Ombudsman offices are mentioned below if your grievance pertains to:

- Insurance claim that has been rejected or dispute of a claim on legal construction of the policy
- Delay in settlement of claim
- Dispute with regard to premium
- Non-receipt of your insurance document

Page 6 of 8 HDFC ERGO General Insurance Company Limited. (Formerly HDFC General Insurance Limited from Sept 14, 2016 and L&T General Insurance Company Limited upto Sept 13, 2016).CIN: U66030MH2007PLC177117. Registered & Corporate Office: 1st Floor,HDFC House, 165 - 166 Backbay Reclamation,H. T. Parekh Marg, Churchgate, Mumbai – 400 020.Customer Service Address: D-301, 3rd Floor, Eastern Business District (Magnet Mall), LBS Marg, Bhandup (West), Mumbai - 400 078.Toll Free Number: 1800 2700 700 Te.: +91 22 6638 3600 | Fax: 91 22 6638 3699 | care@hdfcergo.com | www.hdfcergo.com. UIN IRDAN125P0002V01200809 Reg No.146

Names of Ombudsman and Addresses of Ombudsmen Centers		
Jurisdiction	Office Address	
Jurisdiction		
Gujarat, Dadra & Nagar Haveli, Daman and Diu	AHMEDABAD. Office of the Insurance Ombudsman, 2nd floor, Ambica House, Near C.U. Shah College, 5, Navyug Colony, Ashram Road, Ahmedabad – 380 014 Tel.: 079 - 27546150 / 27546139, Fax:079 – 27546142 Email: bimalokpal.ahmedabad@gbic.co.in	
Karnataka	BENGALURU - Shri. M. Parshad Office of the Insurance Ombudsman, Jeevan Soudha Building,PID No. 57-27-N-19, Ground Floor, 19/19, 24th Main Road, JP Nagar, Ist Phase, Bengaluru – 560 078. Tel.: 080 - 26652048 / 26652049 Email: bimalokpal.bengaluru@gbic.co.in	
Madhya Pradesh, Chattisgarh	 BHOPAL - Shri. R K Srivastava Office of the Insurance Ombudsman, Janak Vihar Complex, 2nd Floor, 6, Malviya Nagar, Opp. Airtel Office, Near New Market, Bhopal – 462 003 Tel.: 0755 - 2769201 / 2769202 Fax: 0755 - 2769203 Email: bimalokpal.bhopal@gbic.co.in 	
Orissa.	BHUBANESHWAR - Shri. B. N. Mishra Office of the Insurance Ombudsman, 62, Forest park, Bhubneshwar – 751 009. Tel.: 0674 - 2596461 /2596455 Fax: 0674 - 2596429 Email: bimalokpal.bhubaneswar@gbic.co.in	
Punjab, Haryana, Himachal Pradesh, Jammu & Kashmir, Chandigarh	CHANDIGARH - Office of the Insurance Ombudsman, S.C.O. No. 101, 102 & 103, 2nd Floor, Batra Building, Sector 17 – D, Chandigarh – 160 017. Tel.: 0172 - 2706196 / 2706468 Fax: 0172 - 2708274 Email: bimalokpal.chandigarh@gbic.co.in	
Tamil Nadu, Pondicherry Town and Karaikal (which are part of Pondicherry).	CHENNAI - Shri Virander Kumar Office of the Insurance Ombudsman, Fatima Akhtar Court, 4th Floor, 453, Anna Salai, Teynampet, CHENNAI – 600 018 Tel.: 044 - 24333668 / 24335284,Fax: 044 – 24333664 Email: bimalokpal.chennai@gbic.co.in	
Delhi,	DELHI - Smt. Sandhya Baliga Office of the Insurance Ombudsman, 2/2 A, Universal Insurance Building, Asaf Ali Road, New Delhi – 110 002. Tel.: 011 - 23239633 / 23237532 Fax: 011 – 23230858 Email: bimalokpal.delhi@gbic.co.in	
Assam, Meghalaya, Manipur, Mizoram Arunachal Pradesh, Nagaland and Tripura.	GUWAHATI - Office of the Insurance Ombudsman, Jeevan Nivesh, 5th Floor, Nr. Panbazar over bridge, S.S. Road, Guwahati – 781001(ASSAM). Tel.: 0361 - 2132204 / 2132205 Fax: 0361 - 2732937 Email: bimalokpal.guwahati@gbic.co.in	
Andhra Pradesh, Telangana, Yanam and part of Territory of Pondicherry.	HYDERABAD - Shri. G. Rajeswara Rao Office of the Insurance Ombudsman, 6-2-46, 1st floor, "Moin Court", Lane Opp. Saleem Function Palace, A. C. Guards, Lakdi-Ka- Pool, Hyderabad - 500 004. Tel.: 040 - 65504123 / 23312122 Fax: 040 - 23376599 Email: bimalokpal.hyderabad@gbic.co.in	

Rajasthan,	JAIPUR - Shri. Ashok K. Jain Office of the Insurance Ombudsman, Jeevan Nidhi – II Bldg., Gr. Floor, Bhawani Singh Marg, Jaipur - 302 005. Tel.: 0141 - 2740363 Email: Bimalokpal.jaipur@gbic.co.in
Kerala, Lakshadweep, Mahe-a part of Pondicherry.	ERNAKULAM - Shri. P. K. Vijayakumar Office of the Insurance Ombudsman, 2nd Floor, Pulinat Bldg., Opp. Cochin Shipyard, M. G. Road, Ernakulam - 682 015. Tel.: 0484 - 2358759 / 2359338 Fax: 0484 – 2359336 Email: bimalokpal.ernakulam@gbic.co.in
West Bengal, Sikkim, Andaman & Nicobar Islands.	 KOLKATA - Shri. K. B. Saha Office of the Insurance Ombudsman, Hindustan Bldg. Annexe, 4th Floor, 4, C.R. Avenue, Kolkata - 700 072. Tel.: 033 - 22124339 / 22124340 Fax : 033 - 22124341 Email: bimalokpal.kolkata@gbic.co.in
Districts of Uttar Pradesh : Laitpur, Jhansi, Mahoba, Hamirpur, Banda, Chitrakoot, Allahabad, Mirzapur, Sonbhabdra, Fatehpur, Pratapgarh, Jaunpur,Varanasi, Gazipur, Jalaun, Kanpur, Lucknow, Unnao, Sitapur, Lakhimpur, Bahraich, Barabanki, Raebareli, Sravasti, Gonda, Faizabad, Amethi, Kaushambi, Balrampur, Basti, Ambedkarnagar, Sultanpur, Maharajgang, Santkabirnagar, Azamgarh, Kushinagar, Gorkhpur, Deoria, Mau, Ghazipur, Chandauli, Ballia, Sidharathnagar	LUCKNOW - Shri. N. P. Bhagat Office of the Insurance Ombudsman, 6th Floor, Jeevan Bhawan, Phase-II, Nawal Kishore Road, Hazratganj, Lucknow - 226 001 Tel.: 0522 - 2231330 / 2231331 Fax: 0522 - 2231310 Email: bimalokpal.lucknow@gbic.co.in
Goa, Mumbai Metropolitan Region excluding Navi Mumbai & Thane.	MUMBAI - Shri. A. K. Dasgupta Office of the Insurance Ombudsman, 3rd Floor, Jeevan Seva Annexe, S. V. Road, Santacruz (W), Mumbai - 400 054. Tel.: 022 - 26106552 / 26106960 Fax: 022 - 26106052 Email: bimalokpal.mumbai@gbic.co.in
State of Uttaranchal and the following Districts of Uttar Pradesh: Agra, Aligarh, Bagpat, Bareilly, Bijnor, Budaun, Bulandshehar,Etah, Kanooj, Mainpuri, Mathura, Meerut, Moradabad, Muzaffarnagar, Oraiyya, Pilibhit, Etawah, Farrukhabad, Firozbad, Gautambodhanagar, Ghaziabad, Hardoi, Shahjahanpur, Hapur, Shamli, Rampur, Kashganj, Sambhal, Amroha, Hathras, Kanshiramnagar, Saharanpur.	NOIDA - Shri. Ajesh Kumar Office of the Insurance Ombudsman, Bhagwan Sahai Palace 4th Floor, Main Road, Naya Bans, Sector 15, Distt: Gautam Buddh Nagar, U.P-201301. Tel.: 0120-2514250 / 2514251 / 2514253 Email: bimalokpal.noida@gbic.co.in
Bihar, Jharkhand.	PATNA - Shri. Sadasiv Mishra Office of the Insurance Ombudsman, 1st Floor,Kalpana Arcade Building,, Bazar Samiti Road, Bahadurpur, Patna 800 006 Tel.: 0612- 2680952. Email: bimalokpal.patna@gbic.co.in
Maharashtra, Area of Navi Mumbai and Thane excluding Mumbai Metropolitan Region.	PUNE - Shri. A. K. Sahoo Office of the Insurance Ombudsman, Jeevan Darshan Bldg., 3rd Floor, C.T.S. No.s. 195 to 198, N.C. Kelkar Road, Narayan Peth, Pune – 411 030. Tel.: 020 – 32341320 Email: bimalokpal.pune@gbic.co.in

Annexure – 9

Compliance Report of EMP & Mitigation Measures

Sr. No.	Suggested Measures	Compliance Status
> Co	onstruction Phase:	
1	Proper care is warranted while dredging which should be in a controlled manner. It should also be insured that reclamation, dredging, widening and slop stabilization measures do not significantly alter the stabilized erosional-accretional regime and prevailing rate of exchange of water between the outer area of the intricate creek system as well as the free flow of tidal water, to protect the mangroves.	All construction and operation activities as well as dredging and reclamation activities are being carried out as per the approvals. Please refer condition no. 8 & 9 of the CRZ recommendation compliance report for further details.
2	Good sanitation, water and fuel should be made available to the work force. Labour colonies should be set- up landward of the HTL and away from mangrove.	Most of the construction labours resides in the nearby villages where all basic facilities are easily available. However, for those residing near the construction site, infrastructure facilities such as water supply, fuel, sanitation, first aid, ambulance etc. are provided by APSEZ. Details were submitted as a part of compliance report submission for the period Apr'17 to Sep'17. Please refer general condition no. ii of the EC & CRZ clearance for further details.
> 0	peration Phase:	
1	Wastewater such as generated during cleaning of jetties, floor washing, domestic use etc. should be collected in a settling pond and released to marine environment only after ascertaining that it is free from oil and SS. The toilets on the jetties must have compact sewage treatment facilities.	Entire quantity of sewage generated from APSEZ premises is being treated in designated ETP / STP and treated sewage is used for Horticulture purposes. Please refer specific condition no. xii of the EC & CRZ clearance or further details.
2	Dust should be routinely monitored at the vantage points and corrective measures such as water sprinkling should be practiced if it increases beyond permissible limits.	Ambient Air Quality (twice in a week) monitoring is being carried out by NABL and MoEF&CC accredited agency namely M/s. Pollucon Laboratories Pvt. Ltd. Adequate safeguard measures are being taken for abatement of dust emissions. Please refer specific condition no. xi of the EC & CRZ clearance or further details.
3	It should be ensured that the effluent released into the Gulf meets	Entire quantity of effluent / sewage generated from APSEZ premises is being

Sr. No.	Suggested Measures	Compliance Status
	the prescribed GPCB criteria at all times.	treated in designated ETP / STP and treated water is being utilized on land for Horticulture purposes after compliance with GPCB standards.
		Please refer specific condition no. xii of the EC & CRZ clearance or further details.
4	Appropriate spill response scheme (Tier-1 to Tier-3) should be in place to minimize impacts on marine environment, should a spill occur.	Oil spill contingency plan is in place to handle Tier 1 level oil spills considering different accident scenarios, and the vulnerable areas are identified and mitigation plan is prepared. A copy of the plan updated & approved by coast guard is attached as Annexure – 10 .
5	MPSEZL should commit mangrove restoration programme through afforestation in a defined time frame over larger and promising areas and should monitored periodically and protect from anthropogenic pressures.	APSEZ has carried out mangrove afforestation in 2890 ha. area across the coast of Gujarat. Please refer specific condition no. i & vii of the EC & CRZ clearance or further details.
6	A comprehensive marine quality monitoring programme with periodic investigations at predetermined locations should be undertaken by a specialized agency.	Marine monitoring is being carried out once in a month by NABL and MoEF&CC accredited agency namely M/s. Pollucon Laboratories Pvt. Ltd. Please refer specific condition no. ix of the EC & CRZ clearance or further details.
7	The dust and noise levels at pre- decided locations including the jetty sites should be periodically monitored and remedial action taken if the levels exceed the prescribed norms.	Ambient Air Quality (twice in a week) and Noise (once in a month) monitoring are being carried out by NABL and MoEF&CC accredited agency namely M/s. Pollucon Laboratories Pvt. Ltd. Please refer specific condition no. xi of the EC & CRZ clearance or further details.
8	MPSEZL should establish an Environment Management Cell (EMC) directly under the control of the Chief Executive.	M/s APSEZL has a well structured Environment Management Cell, staffed with qualified manpower for implementation of the Environment Management Plan at site. Site team report to General Manager (Environment) at Corporate, who heads the Environment Management Cell who directly reports to the top management. Environment Cell Organogram is attached as Annexure – 13 .

Annexure-10

OIL SPILL CONTINGENCY RESPONSE PLAN TIER 1

(To be used in conjuction with OSRA Vol-1 and Vol-2)

ADANI PORTS AND SPECIAL ECONOMIC ZONE LIMITED POST BAG NO. 1 NAVINAL ISLAND MUNDRA 370 421 PH. : (02838) 289221 / 289371 FAX : (02838) 289170 / 289270

Reviewed By	:	Capt. Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 1 of 98

Section 00: Document Control

This document is the property of Adani Ports and Special Economic Zone Ltd, hereinafter referred to as APSEZL, and shall not be removed from the Company's premises.

When the controlled copy holder ceases to be the authorized recipient of this document, the document should be returned to the HOD (Marine), Mundra Office.

This document is distributed as per Oil Spill Contingency Response plan. In addition, documents on a "need based" basis will be distributed.

All documents so distributed will be controlled documents & identified by a unique control number as per Oil Spill Contingency Response plan.

The holder of the control copy shall ensure that the persons working under him, who are responsible for any activity described in this document are made aware of such responsibility. These persons shall be given this document to read and as acknowledgment of having read shall sign the **OSCRP – Section 01 Record of Circulation** page of this document.

All persons to whom the documents have been circulated shall also be made aware of any revisions thereto by the holder of the controlled copy of the document. The person shall, after reading, sign in the **OSCRP – Section 01 Record of Circulation** page of this document as acknowledgment of having read and under stood the document.

DISTRIBUTION LIST OF OIL SPILL CONTINGENCY RESPONSE PLAN							
SN.	Issued To Co		Date of Issue				
1.	Chief Operating Officer	01	01/01/2014				
2.	Management Representative	02	01/01/2014				
3.	Marine Control Room	03	01/01/2014				
4.	Sr. Manager (Fire Services)	04	01/01/2014				
5.	Auditor's Copy	05	01/01/2014				
6.	Systems Co-ordinator	Original Copy	01/01/2014				
7.	HOD (Marine)	06	01/01/2014				
8.	Coast Guard	07	01/01/2014				

The Unique no. of this copy is: _____

Reviewed By	:	Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 2 of 98

Section 01: Record of Circulation

RECORD OF CIRCULATION

The holder of the copy thereto shall circulate this document and any revisions to concerned persons. After reading, this document shall be signed and returned to the holder.

Name	Rank	Date read	Signature
			<u> </u>

Reviewed By : Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	:	04	Page 3 of 98

Section 02: Amendment Records

					IENT RECO	KD SHEE		
Sr. No.	Section	Sub- section	Page No.	Revision No.	Revision Date	Des	cription of Revision	Approve
1.	Annex 3		75				of Oil Spill nt mentioned	Approved
2.	Annex 15		91				cycler approved by	Approved
3.	15		96			Continge	ncy Planning nce Checklist	Approved
4	Annex 16		92		29.08.2017	List of ag guidance rehabilita mangrov oil spill	gency for support & for rescue & ation of oiled bird & es management during	Approved
5	03	3.6	45		29.08.2017		al information added	Approved
6	02	2.6	26		01.10.2018	Shore li	ine resources updated	Approved
7	Annex 3		75		01.10.2018	Tu	g details updated	Approved
8	Annex 4		78		01.10.2018		ct details of APSEZ	Approved
9	Annex 4		79		01.10.2019	Conta	ct details of APSEZ rsonnel updated	Approved
	ed By : ed By :	Capt Par Capt. An	-		Issue No. Revision No.	: 01 : 04	Issued On : 01.10 Page 4 of 98	0.2019

Section 03: Strategy

1 Introduction

- **1.1** Authorities and responsibilities
- **1.2** Coordinating committee
- **1.3** Statutory requirements
- **1.4** Mutual aid agreements
- **1.5** Geographical limits of plan
- **1.6** Interfaces with ROSDCP and NOSDCP

2 Risk assessment

- 2.1 Identification of activities and risks
- 2.2 Types of oil likely to be spilled
- **2.3** Probable fate of spilled oil
- 2.4 Development of oil spill scenarios including worst case discharge
- 2.5 Shoreline sensitivity mapping
- **2.6** Shoreline resources, priorities for protection
- 2.7 Special local considerations

3 Response strategy

- **3.1** Philosophy and objectives
- **3.2** Limiting and adverse conditions
- **3.3** Oil spill response in offshore zones
- **3.4** Oil spill response in coastal zones
- **3.5** Shoreline oil spill response
- **3.6** Storage and disposal of oil and oily waste

4 Equipment

- 4.1 Marine oil spill response equipment
- **4.2** Inspection, maintenance and testing
- **4.3** Shoreline equipment, supplies and services

5 Management

- 5.1 Crisis manager and financial authorities
- **5.2** Incident organization chart
- **5.3** Manpower availability (on-site, on call)
- **5.4** Availability of additional manpower
- 5.5 Advisors and experts spill response, wildlife and marine environment
- **5.6** Training / safety schedules and drill / exercise programme

6 Communications

- 6.1 Incident control room and facilities
- **6.2** Field communications equipment
- 6.3 Reports, manuals, maps, charts and incident logs

Reviewed By : Capt Pankaj Sinha	Issue No.	: 0)1	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 0)4	Page 5 of 98

Action and operations

7 Initial procedures

- 7.1 Notification of oil spill to concerned authorities,
- 7.2 Preliminary estimate of response tier
- 7.3 Notifying key team members and authorities
- 7.4 Manning Control Room
- 7.5 Collecting information (oil type, sea / wind forecasts, aerial surveillance, beach reports)
- **7.6** Estimating fate of slick (24, 48, 72 hours)
- 7.7 Identifying resources immediately at risk, informing parties

8 Operations planning

- 8.1 Assembling full response team
- 8.2 Identifying immediate response priorities
- **8.3** Mobilizing immediate response
- 8.4 Media briefing
- 8.5 Planning medium-term operations (24, 48 and 72 hour)
- 8.6 Deciding to escalate response to higher tier
- 8.7 Mobilizing or placing on standby resources required
- **8.8** Establishing field command post communications

9 Control of operations

- 9.1 Establishing a Management team with experts and advisors
- **9.2** Updating information (sea, wind, weather forecasts, aerial surveillance, beach reports)
- **9.3** Reviewing and planning operations
- 9.4 Obtaining additional equipment, supplies, manpower
- 9.5 Preparing daily incident log and management reports
- **9.6** Preparing operations accounting and financial reports
- **9.7** Preparing releases for public and press conferences
- 9.8 Briefing local and government officials

10 Termination of operations

- **10.1** Deciding final and optimal levels of beach clean-up
- 10.2 Standing down equipment, cleaning, maintaining, replacing
- **10.3** Preparing formal detailed report
- **10.4** Reviewing plans and procedures from lessons learnt

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 6 of 98

Data Directory

Maps / Charts

- 1. Coastal facilities, access roads, telephones, hotels etc.
- 2. Coastal charts, currents, tidal information (ranges and streams), prevailing winds
- 3. Risk locations and probable fate of oil
- 4. Shoreline resources for priority protection
- 5. Shoreline types
- 6. Sea zones and response strategies
- 7. Coastal zones and response strategies
- 8. Shoreline zones and clean up strategies
- 9. Oil and waste storage / disposal sites
- 10. Sensitivity Maps/ Atlas

Lists

- 1. **Primary Oil spill Equipment:** booms, skimmers, spray equipment, dispersant, absorbents, oil storage, Radio communications etc. (Manufacturer, type, size, location, transport, contact, delivery time, cost and conditions)
- 2. Auxiliary Equipment: Tugs and work boats, aircraft, vacuum trucks, tanks and barges, loaders and graders, plastic bags, tools, protective clothing, communication equipment etc. (Manufacturer, type, size, location, transport, contact, delivery time, cost and conditions)
- 3. **Support Equipment:** Aircraft, communications, catering, housing, transport, field sanitation and shelter etc. (Availability, contact, cost and conditions)
- 4. **Sources of Manpower:** Contractors, local authorities, caterers, security firms (Availability, numbers, skills, contact, cost and conditions)
- 5. Experts and Advisors: Environment, safety, auditing (Availability, contact, cost and conditions)
- 6. Local and National Government contacts: Name, rank and responsibility, address, telephone, fax, telex.

Data

- 1. Specifications of oils commonly traded
- 2. Wind and weather
- 3. Information sources

Reviewed By : Capt Pankaj Sinha	lssue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 7 of 98

Annexures

Annexure 1	Initial Oil Spill Report
Annexure 2	POLREP Report

- Annexure 3 List of resources available
- Annexure 4 List of Telephone numbers of Expert and advisors
- Annexure 5 Responsibilities: Marine Officer / SPM Officer
- Annexure 6 Responsibilities: Marine Manager / On Scene Commander
- Annexure 7 Responsibilities: SPM Pilot
- Annexure 8 Responsibilities: HOD Marine
- Annexure 9 Oil Spill Progress report
- Annexure 10 Emergency response Log
- Annexure 11 Classification of oils
- Annexure 12 Response Guidelines
- Annexure 13 Site Specific Health and Safety Plan.
- Annexure 14 Indian Chart 2079
- Annexure 15 List of recycler approved by state of Gujarat
- Annexure 16 List of agency for support & guidance for rescue & rehabilitation of oiled bird & mangroves management during oil spill

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 8 of 98

Strategy

1. Introduction

The movement of Petroleum/ Petroleum-products from the production centre in middle east to Adani Ports and SEZ Ltd and various other ports in Gulf of Kutch is handled through ships at sea and to refineries using pipe lines on ground. Like any other port, Adani Port is very much vulnerable to oil spill disaster arising due to collision, leakage or grounding of vessels in sea and damage to pipelines on ground.

This action plan prepared by Adani Ports and SEZ Ltd, Mundra is to combat the oil spill (LOS-DCP) is in accordance with the NOS-DCP, International Petroleum Industry Environmental Conservation Association (IPIECA).

1.1 Authorities and responsibilities

Adani Ports and SEZ Limited

APSEZL has responsibility for dealing with oil spillages which occur within port limit if the estimated quantity of product lost is 700 tons or less.

Should the spill migrate to other areas, the Coast Guard Monitor will assume the position of On Scene Commander and will direct the response effort. In both cases, APSEZL will act and deploy their resources as required by the relevant On Scene Commander.

This operational version of Oil Spill Contingency Response Plan for the Adani Ports and SEZ Ltd, Mundra is intended for use by all such personnel like Marine Personnel, Tug Masters and all others as indicated in the Spill Response Organization who may be involved in the response to oil spills which may occur within Adani Port Limits.

This plan has been prepared as per the stipulation of Ministry of Environment and Forest Clearance (MoEF) and Coast Guard Requirements.

Gujarat Maritime Board

While responsibility for oil spill contingency remains with conservator of the port – Gujarat Maritime Board Port Officer, this plan (Tier 1) demonstrates the readiness of Adani Port for mitigating oil spill incidents.

Port Conservator will monitor and provide the necessary assistance required for administering the oil spill operation within the port limit.

Indian Coast Guard

The Indian Coast Guard has a statutory duty to protect the maritime and other national interests of India in the Maritime Zones of India and to prevent and control marine pollution. Coast Guard is also the Central Co-coordinating Authority for marine pollution control in the country. The Indian Coast Guard is responsible for implementation and enforcement of the relevant marine pollution laws.

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 9 of 98

The National Oil Spill Disaster Contingency Plan stipulates the organizational and operational details to effectively combat a national oil spill contingency. The plan promotes the development of Regional and Local Contingency Plans in the three Coast Guard Regions.

The Coast Guard Monitor will assume the role of On Scene Commander in the event that any oil spill involving PLL operations exceeds 700 tons.

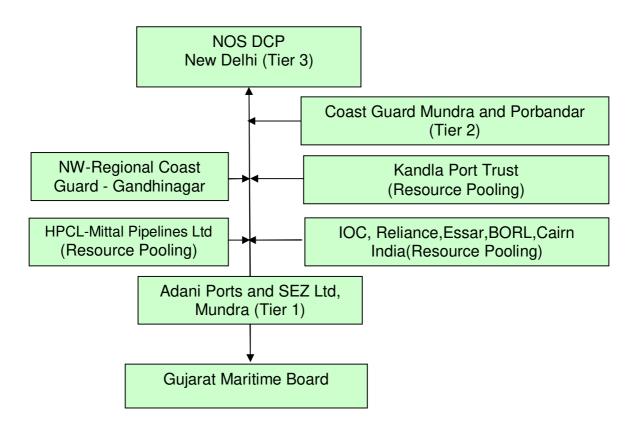
Gujarat Pollution Control Board

The Gujarat Pollution Control Board is responsible for, and control, waters up to 5 km from the shoreline. They require to be advised of all pollution incidents.

Ministry of Environment, Gujarat

The Ministry requires to be informed of all pollution incidents.

Emergency Response Team


Emergency Response Team (ERT) is the nomenclature used to describe the command and control team established for an oil spill incident at the jetty or in the jetty approaches, with representatives of organisations attending as described in section 2.4.

The ERT will convene at the Terminal Control Room, under the chairmanship of the Terminal Manager, and will consist of a Management Team and a Support Team as noted in section 2.3.

It is a strategic plan to quickly call on additional resources in a systematic manner firstly from Adani port and subsequently from other ports.

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 10 of 98

1.2 Coordinating Committee

1.3 Statutory requirements

The Indian Government is a signatory to the International Convention on Oil Pollution Preparedness, Response and Co-operation which came into force in May 94. Under the NOSDCP, it is obligatory for a port to have a Local Oil Spill Contingency Plan to combat oil spills within port limits.

This oil spill contingency response plan (Tier 1) is the response plan in accordance with the facilities available at Adani Port only.

This plan is prepared in accordance with:

- Marine Environmental Impact Assessment of SPMs, COTs and connecting pipelines of APSEZL at Mundra dated February 2001, prepared by National Institute of Oceanography, Mumbai.
- b) Report on Risk assessment study and On-site disaster management Plan for SPMs, COTs and connecting Pipelines of Adani Ports and Special Economic Zone Limited, by TATA AIG Risk Management Services Limited, dated February 2001.
- c) HAZOP study report of SPM Terminal pipeline project by Intec Engineering, dated 26/02/2004.
- d) IPIECA guide to Contingency planning for oil spills on water.
- e) Oil spill risk assessment and contingency plan study done by M/s Environ Software Pvt. Ltd. (Copy enclosed)

Reviewed By : Capt Pankaj Sinha	lssue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 11 of 98

1.4 Mutual aid agreements

APSEZL signed MOU with HPCL Mittal Pipelines Limited, Mundra operating in the region of Gulf of Kutch to have mutual aid agreement for the purpose of assisting each other within stipulated time frame with best combination of resources to combat and overcome any large and worst spill with the intent of maximizing the availability of the private, public and government sector response resources during oil spills where assistance is requested by another member.

As per agreement, the member agencies of the affected member state or province may directly request cascadable response resources located in oil handling agencies operating in the region of Gulf of Kutch.

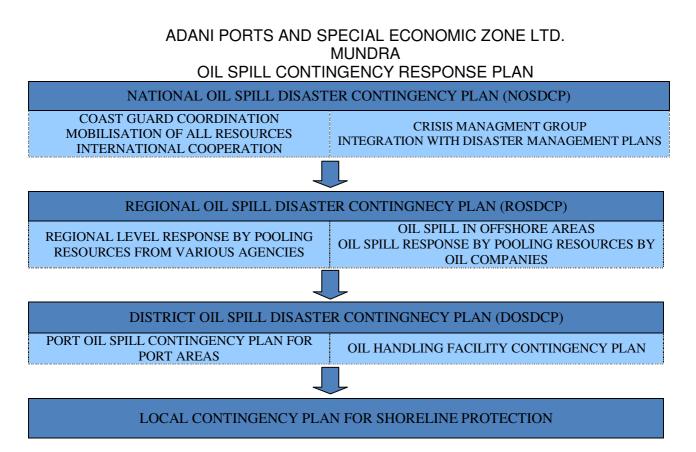
1.5 Geographical limits of plan

Adani Ports and SEZ Ltd, Mundra is situated at the North head of Gulf of Kutch which is at the west coast of India. Ships calling Adani Port therefore have to traverse across the GOK. This oil spill contingency response plan (Tier 1) is applicable for the following:

- 1) Loading and Unloading of liquid cargo at the Multi-purpose terminal jetty at the Adani Port.
- 2) Unloading of the crude oil the vessels at the single point mooring (SPM) to offload 70,000 to 3,00,000 DWT.
- 3) Bunkering operations carried out within the port limits.

4) Any spill that occurs from any source within port limit (including West Basin, South Basin and LNG Terminal) whether at berths, anchorages or in the channel.

APSEZL falls within the area jurisdiction of The Commander, No.1 Coast Guard District (Gujarat), located at Porbandar. Mundra has a full-fledged Indian Coast Guard Station. The Port limit of APSEZL, Mundra is shown in enclosed chart in annexure 14.


1.6 Interface with ROSDCP and NOSDCP

For responding to oil spill, the Indian Coast Guard has developed the National Oil Spill Disaster Contingency Plan NOSDCP which has the approval of the Committee of Secretaries and has been in operation since 1996. The NOSDCP brings together the combined resources of the various organizations and departments, Coast Guard, Ports and Oil handling Agencies, and related industries, to provide a level of preparedness to the threat posed to the marine environment by oil spills.

The NOSDCP sets out a clear definition of the responsibilities of the major participants, such as the Coast Guard, various ministries and departments, ports and oil industry.

The national oil spill contingency plan hierarchy outlined in Figure 1 consists of NOSDCP at the apex level to coordinate significant or disaster type spills, the Regional Oil Spill Disaster Contingency plan (ROSDCP) to coordinate spill in the Gulf of Kutch, utilizing the resources available within the region.

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 12 of 98

Figure 1 - Contingency Plan hierarchy

The aim of Local Contingency Plan - for the Mundra Port, is to outline arrangements for responding to oil spills in the coastal and shoreline areas, with the aim of protecting against environmental pollution as a result of oil spill or, where this is not possible, minimise the effect and respond the oil spill in an environment friendly manner and dispose the collected oil/debris in according to the existing laws/regulations/orders in force. CONTINGENCY PLAN FOR SHORELINE PROTECTION ISTRICT OIL SPILL CONTINGN

2 Risk Assessment

The number of vessels calling annually at APSEZL is more than 3000 including Chemical, Gas and oil tankers. The threat of oil spill is much high in Gulf of Kutch and is very oil spill sensitive area. A marine national park is located in the Southern shore of GOK. There is a popular beach spot on the Northern shore namely Mandvi. Lastly, as GOK is a closed system, any oil spilled will arrive to the shores.

2.1 Identification of activities and risks

The scenario of the spill are classified under two categories :

- Oil Spill at Mundra Port Multi-Purpose Terminals
- Oil Spill at SPM

The oil spill could occur due to various reasons at any of the APSEZL's marine facilities (SPMs, Basins/ berths, anchorage or approach channel) within the new Mundra Port limit. The spills beyond these areas are not covered in this plan. Both the categories are discussed in detail

Accidental oil spill at Multipurpose terminals/ Basins/ berths, anchorage or approach channel is possible from overflow of slop tanks, bunker tanks, reception facility and road tankers (generally a low pressure operation).

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 13 of 98

Accidental oil spill at the SPM may be due to hose puncture while unloading, failure of swivel joint of SPM or Leakage of Crude Oil at PLEM or from the submarine pipeline.

Following risks are being addressed to mitigate incident of oil pollution:

- Connection of hoses with established work instructions for use of blank flanges, drip trays etc.
- Thorough understanding of use of OSD and limitations of vessel surging due to slack mooring ropes in given weather conditions.
- Monitoring of ships pump room atmosphere, display of fire notices and acknowledging accidental explosion through the use of IMO ship / shore check list.
- Spillage of F.O. during bunkering operations by using bunkering check list
- Ballast discharge contamination or malfunction of ship's sea side valves by prohibiting such operations without written permission of the port.
- Non use of reception facility of the port by ships on cost plus basis.

Operational leakage

Spill due to floating hose failure at SPM: (183 t, at pumping rate of 10000 m³/h of crude oil for 75 sec): (Spill points - S1 at HMEL SPM & S2 at Mundra SPM)

Crude oil pumping rate from the tanker to the shore tanks will be varying between 5000 m³/hr and 10000 m³/hr. In the present study, the maximum pumping rate of $10000m^3$ /hr has been considered to assess the risk on a higher side. The Safety Break Away Coupling in the crude oil transfer hose will be activated within a few seconds in the event of hose rupture or hose failure. Again for the sake of assessing higher risk, a response time of 60 sec – 75 sec (worst case scenario) is considered to estimate the amount of oil that would spill at the SPM. Thus the quantity of crude oil spill has been estimated to be a maximum of 183 tons in the event of hose failure.

Spill due to rupture of sub-sea crude oil pipeline from SPM to shore tanks: (384 tons of crude oil, at pumping rate of 10000 m³/hr for 60 sec): Spill point S3 taken at midpoint of the pipeline from HMEL SPM to LFP)

Crude oil pumping rate from the tanker will be in the range of 5000 m^3/hr to10000 m^3/hr . In the present study, to assess the maximum risk, pumping rate of 10000 m^3/hr has been considered. The minimum wall thickness of sub-sea crude oil pipeline is 15.6 mm and the maximum thickness is 24 mm. Moreover all along, 5 inches concrete cladding (weight coating) is provided on the surface of the pipeline. Crude oil pipelines designed, constructed and laid as per the international norms are safe and leakages are extremely rare during their designed life. However, a rupture of size 1 cm x 12.7 cm has been assumed for assessing the quantum of oil spill through sub-sea pipeline.

The maximum manifold pressure will be 12 kg/cm^2 and crude oil will be pumped to the shore tanks without any boosting device in-between. As the level in the tanker depletes, discharge pressure would also be reduced. Moreover, with the flow distance the crude oil pressure inside the pipe drops. For the sake of assessing the amount of oil spill in case of rupture of sub-sea pipeline, an average pressure of 10 kg/cm^2 and a water column height of 35 m have been considered.

Accordingly the quantity of Crude oil spill has been estimated using the formula given by

$$Q = C_d A (2gH)^{1/2}$$

Where,

Q = quantity of spill (m^3/s)

Reviewed By : Ca	apt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By : Ca	apt. Anubhav Jain	Revision No.	:	04	Page 14 of 98

ADANI PORTS AND SPECIAL ECONOMIC ZONE LTD. MUNDRA OIL SPILL CONTINGENCY RESPONSE PLAN $C_d = \text{coefficient of discharge (0.9)}$

A = Area of rupture (m^2) (1 cm x 12.7 cm) H = Net head (m) (6.5 kg/cm² = 65 m)

This would give a value of 0.04 m^3 of crude oil per sec spilling out of the pipeline through the rupture as the pump will be in operation.

The availability of solenoid operated hydraulic shutoff valves in the sub-sea pipeline, which will get activated in less than 15 seconds time as soon as the pressure falls, will limit the amount of oil leaked in case of pipe rupture and consequent drop inside the pipeline. However 60 sec response time has been considered for quantification of oil spill. Accordingly the quantity of Crude oil spill has been estimated to be 2.4 m³ before the pump discharge valve closes. However, there will be high pressure inside the pipeline initially and the oil inside the pipeline will start leaking into the waters through the hole as the pressure inside the pipe line is higher than the outside pressure, even after the valve is closed and pumping is stopped. Even after the pipeline inside pressure equalises the outside static pressure acting on the rupture, oil continues to start leaking as the density difference between the oil and water; oil being lighter and LFP is higher in elevation compared to the pipeline elevation. Two factors need to be considered here; the specific gravity of the crude oil inside the pipeline is less than 1 whereas the sea water specific gravity is more than 1. Also depending on the location of the hole/leak, there will always be a static head of sea water acting on the leak when the oil tries to flow out and sea water trying to flow in to occupy the place vacated by the leaked oil. Hence all the oil in the pipeline will not leak and there would be an equilibrium point reached when there would be no more oil leaking from the hole as the sea water pressures effectively blocks the oil leak. Also, the leak would be attended to within the stipulated time as per the standard maintenance procedures followed by the organisation. For the purpose of this study and as a worst case scenario before the leak is repaired by the established maintenance procedures, it is assumed that a maximum of 5% of the pipeline oil volume would leak and though it would be a continuous leak, this total quantity is taken to be instantaneous for the purpose of the study.

The pipeline length is approximately 10 km (from SPM to LFP) and the pipeline size is 42" NB. The pipeline volume works out to be approximately 8662 m^3 or 7622 t.

Hence the total oil leaked due to rupture in sub-sea pipeline will be 2.15 t + 5% of pipeline volume of oil in t (0.05 x 7622 = 381 t) which works out to be a maximum of 383.45 t, say 384 t of crude oil.

For the purpose of simulation studies, this spill on the pipeline is assumed to have taken place at the midway point from HMEL SPM to LFP (designated as spill point **S3** in the report) and is taken on the subsea pipeline from HMEL SPM to LFP. As the pipeline from HMEL SPM to LFP and the Mundra SPM to LFP run very close only one leak point in the pipeline is studied as it gives a representative oil spill study for the pipeline leakage scenario.

Spill due to collision at SPM: (Spill points S1 & S2)

Crude Oil is received at SPM by ocean tankers having capacity between 90,000-360,000 metric tons. Crude Oil is pumped to shore tanks through pipeline/s from the SPM. In the present scenario, collision of the vessel at the SPM or tanker route with another vessel enroute to other terminals can cause partial damage to the vessels cargo tanks (not more than 3 nos. of cargo tanks) leading to a maximum oil spill of about 700 tons to 25,000 tons of crude oil. In the present study, the probable quantity of crude oil spill due collision at SPM is considered as 700 tons at the minimum and as 25,000 tons at the maximum.

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 15 of 98

ADANI PORTS AND SPECIAL ECONOMIC ZONE LTD. MUNDRA OIL SPILL CONTINGENCY RESPONSE PLAN Spill due to collision or grounding in the tanker route: (Spill point S4)

Tankers are expected to call at the SPMs frequently depending upon the demand for the refineries for the crude oil. These tankers may meet accidents like collision with other vessels or grounding in the vicinity of the SPM. In case of such accidents, the spillage may vary depending on the size of the tanker and the extent of damage and number of cargo tanks ruptured etc. In the present study the probable quantity of spill in the tanker route considered for modelling is 25000 tons at a point which lies on the tanker route to SPM not exactly within Mundra port limit; but a spill point is taken along the tanker route in the Gulf but close to the Mundra port limit.

Spills at the berths (applicable to berths at West Basin, South Basin, East Basin, North Basin, LNG berth and existing cargo berths of Mundra port.)

Oil spills can take place at the berths in the basins during the loading / unloading as well as berthing and traversing operations. The likely spill scenarios are discussed below:

a) Spills during the navigation of the vessel along the approach channel: (Spill point S7 for West Basin)

The spill location can be anywhere in the path. One location along the approach path has been selected for carrying out for model runs.

b) Spills around the jetty (in the maneuvering basin / turning circle): (Spill point S6 for West Basin and Spill point S10 for South Basin)

This can occur due to tug boat impacting the vessel and grounding of the vessel. One location around the jetty at the turning circle has been considered for the computational runs

c) Spills at the berths: (Spill point S5 for West Basin, Spill point S9 for South Basin, Spill point S13 for East Basin, Spill point S14 for North Basin, Spill point S8 for LNG jetty, Spill point S11 for MMPT 1 and Spill point S12 for MICT / AMCT berth locations)

During the loading/unloading operations spills may take place due to one or more of the following: -

Hose/ loading arm leakage (liquid products handled at the liquid berth), overflow on the vessel deck, vessel grounding at the jetty, vessel colliding with jetty, fire and explosion on the vessel or at the jetty, during bunkering operations etc.

Spills along approach Channel / Route

Vessels to the port berths follow the Deep Water route in Gulf of Kutch and Pilot boards at Pilot Boarding Ground "A" or "B", subject to tide and the berth allotted to the tanker.

While the risk of grounding is low, it cannot be wholly eliminated; the most likely causes are steering or propulsion system failure or navigational error, any of which could result in grounding on the channel margins. Given that the bed of the Gulf is rocky at some places the likelihood of any significant hull damage cannot be ruled out. In a general case scenario, weld fractures in the forward bunker tanks could give rise to a release of approximately 10 Tons of diesel oil and in a worst case scenario extensive damage to the bunker tanks may occur which would cause a spill of 500 to 700 t of FO spill.

Collision

The risk of collision while transiting the channel is negligible given the reason that port authorities use sophisticated ship tracking and navigational systems as the Gulf traffic has increased. These systems would ensure that the chances of any collision are remote or non-existent when ships / marine craft traverses / transits through the channel. However, even if any collision occurs, it is beyond reasonable

Reviewed By	:	Capt Pankaj Sinha	lssue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 16 of 98

doubt that such an incident would result in the fore part rather than the parallel mid-body of the vessel and the loss of integrity of hull plating of a cargo tank is most unlikely. A spill quantity of 700 t can be the maximum in such a scenario.

Berthing Incident

Oil and/ or liquid chemical spill can occur as a result of hull coming in contact with the corners of the jetty structure during ship berthing or un-berthing maneuvers. Such incidents are generally due to failure of a

vessel's main propulsion or steering systems, loss of control onboard on support tug in attendance or Master error or wrong judgment.

The potential spill quantities involved depend on the vessel type and the location and extent of the impact damage; hull damage to a 20000 DWT – 80000 DWT tanker / vessel in way of a forward or aft wing tank, for example, could give rise to a release of some 500 Tons of product. The potential spill quantity, should hull plating be ruptured in way of an aft wing diesel oil bunker tank can, historically, be up to 100 Tons.

Tug Impact

There are well-documented incidents where cargo or bunker oil has been released as a result of hull impact damage by tugs. This can occur when tugs are approaching a vessel underway prior to berthing, or when coming alongside a moored vessel prior to un-berthing. The potential spill quantities again depend on the location and extent of the impact damage but can be over 20 tons for Diesel oil and 100 Tons for cargo (FO) oil. Spills from this cause are considered to be of low likelihood but the risk is acknowledged.

Loading Arms / Flexible hoses

The operation of loading arms / flexible hoses can lead to minor releases of oil. Common sources are vent valves, swivel joints and hydraulic lines. Such spillage seldom exceeds 0.1 Tons.

Cargo Tank Overflow

Cargo tank overflows can occur on board loading vessels; spills of this nature can be due to instrumentation failure, tank valve mismanagement or operator error. The spill quantity is a function of the flow rate and also the number of tanks being loaded at the time of the incident. Some of the oil and/or chemical will be retained on deck but, in a worst case scenario, up to 3 tons could escape overboard.

Hull Failure

The incidence of oil pollution due to hull failure is low and some 84% of the incidents attributed to this cause by ITOPF involved spill quantities of less than 7 tons; these spills were caused mainly by minor hull fractures and weld failures. The potential for more serious incidents with spill quantities in excess of 700 tons must however is acknowledged.

Fire and Explosion

Fires and explosions on board ship represent a safety hazard with the risk of pollution as a secondary impact. Most tankers engaged for trading will be equipped with inert gas systems. Given the controls, which are imposed and enforced by APSEZL authorities in respect of the oxygen content of cargo tanks, the risk of fire and/or explosion in the cargo spaces must be regarded as minimal, insofar as cargo transfer operations are concerned.

Strict monitoring and control of the main cargo pump room atmosphere will minimize the fire and explosion risks associated with this space.

Reviewed By	:	Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 17 of 98

Fires resulting from uncontrolled smoking in the accommodation, unauthorized hot work such as welding, and engine room fires can spread rapidly if not dealt with swiftly and can give rise to incidents of a very serious nature.

While the likelihood of fire or explosion occurring on board vessels berthed at the Mundra port berths is low, the risk is nevertheless acknowledged. Such an incident could give rise to a spillage of 700 tons or more.

Bunkering – spillage of fuel oil

Bunkering at the port may sometimes give rise to spills due to hose failure and / or bunker tank overflow etc. in spite of the strict regulatory supervision of the port operations. These spills could be as small as a few kgs to a maximum of 500 t of FO.

As can be seen from the spill scenarios mentioned above, the spills range from extremely negligible quantities to enormous quantities in rare catastrophic events. The simulation of oil spills does not vary significantly in various scenarios except for the magnitude of impact zone and the quantity involved in such impacts. Though the software is intended to be used for specific scenarios so as to get the trajectory and other weathering information; in this study, a few hypothetical scenarios have been simulated and computations carried out considering the worst-case scenarios of oil spills at the different likely locations in the domain.

Based on the above deliberations, the following scenarios for computations have been selected for carrying out modeling studies for the oil spill trajectory and weathering processes.

Spill Locations	Pre- monsoon (Jan)	Monsoon (July)	Post monsoon (Nov)
SPM			
Crude oil spill of 183 t at the pumping rate of 10000 m ³ /hr (for 75 sec release) at the SPMs (due to Hose failure) Spill points: S1 and S2 During spring and neap tide conditions (tide conditions : PF and PE)	•	•	•
Instantaneous crude oil spill of 700t at the SPMs Spill points: S1 and S2	•	•	•
Instantaneous crude oil spill of 25000t at the SPMs Spill points: S1 and S2	•	•	•
Pipeline Leakage			
Crude oil spill of 384 t at the pumping rate of 10000 m ³ /hr (for 60 sec release) along the pipeline corridor at a select (midway) point of subsea pipeline in the pipeline routes Spill point: S3	•	•	•
Tanker route			
Instantaneous crude oil spill of 25000t along the tanker route at select location. Spill point: S4	•	•	•

Computational Scenarios:

Reviewed By	:	Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 18 of 98

West Basin (berths)			
100 tons (due to Berthing incident/ collision) at the West Basin berths (FO) Spill point: S5	•	•	•
50 Tons (due to Berthing incident/ collision (diesel oil tanks) at the West Basin berths (HSD) Spill point: S5	•	•	•
700 Tons due to Hull Failure / Fire / Explosion (FO) at the berths Spill point: S5	-	•	•
In the maneuvering basin: o 20 Tons of HSD oil due to Tug Impact (HSD) o 100 Tons of FO due to Tug Impact Spill point: S6	•		•
Along the vessel route at one location: Instantaneous oil spill of 700t along the tanker route at a select location.(FO): Spill point: S7	•	•	•
LNG Berth			
100 tons (due to Berthing incident/ collision) at the LNG berth (FO) Spill point: S8	•	•	•
50 Tons (due to Berthing incident/ collision (diesel oil tanks)) at the LNG berth (HSD) – Spill point: S8	•	•	•
700 Tons due to Hull Failure / Fire / Explosion (FO) at the berth Spill point: S8	•	•	•
South Basin (Berths)			
100 tons (due to Berthing incident/ collision) at the South Basin berths (FO) Spill point: S9	•	•	•
50 Tons (due to Berthing incident/ collision (diesel oil tanks) at the South Basin berths(HSD) – Spill point: S9	•	•	•
700 Tons due to Hull Failure / Fire / Explosion (FO) at the berth Spill point: S9	•	•	•
At the turning circle: o 20 Tons of HSD oil due to Tug Impact o 100 Tons of FO due to Tug Impact Spill point: S10	•	•	•
At the existing MMPT 1 Berth: : Spill Point S11			
100 tons (due to Berthing incident/ collision) at the berth(FO) Spill point: S11	•	•	•
50 Tons (due to Berthing incident/ collision (diesel oil tanks)) at the berth (HSD) – Spill point: S11	•	•	•
700 Tons due to Hull Failure / Fire / Explosion (FO) at the berth	•		•

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 19 of 98

-	-	•				
-	-	•				
-	-	•				
-	-	•				
•	•	•				
•	•	•				

2.2 Types of oil likely to be spilled

Mundra Port mainly deals with Vegetable oils, Furnace oil, Naphtha, Methanol, High Speed Diesel, Super Kerosene Oil and other light oils at its Multi-Purpose terminal. The vessels calling at the port (or the designated anchorage areas) may spill fuel, diesel or a minimal quantity of lubricating oils. The SPM is being used to discharge crude oils from tankers.

At Berths:

- Vegetable oils,
- Furnace oil,
- Naphtha,
- Methanol,
- High Speed Diesel,
- Super Kerosene Oil,
- Carbon Black Feed Stock (CBFS),
- Motor Spirit,
- Other light oils
- Other HNS Substances

At SPM:

• Crude oil

At anchorages or within port limits:

- Fuel oil,
- Diesel oil,
- Minimal quantity of lubricating oil.

2.3 Probable fate of spilled oil

APSEZL is all weather, commercial port with geographical and hydrological advantages on the West Coast of India, in the Gulf of Kutch. Tidal range is between +0.37 m during Neaps and + 6.40 m during springs. Tidal streams flow $070^{0} - 250^{0}$ at an average rate of 3 kts and 4-5 kts during spring tides.

Reviewed By	: Capt Pankaj Sinha	Issue No. : 01	Issued On : 01.10.2019
Approved By	: Capt. Anubhav Jain	Revision No. : 04	Page 20 of 98

It has been observed from the modeling study that during pre-monsoon season, the spills occurring at the APSEZL marine facilities move towards the southern / southwestern part of the Gulf of Kutch nearer to the facilities depending on tide phase.

The spills taking place at the APSEZL marine facilities move towards northern coast of Gulf of Kutch during monsoon season and affect the coast near Mundra, Kandla etc.

During post - monsoon season, the spills taking place at the APSEZL marine facilities move towards south / southwest and affect the islands /coast on southern side of the Gulf of Kutch.

The surface or subsurface oil spill consists of slick floating on the water surface, which partially dissolves in the water and partially evaporates into the atmosphere. There is a continuous exchange between the suspended and surface oil (floating oil). The assumption made in deriving the governing equations is that the thickness of the oil layer is negligible in comparison with the water depth.

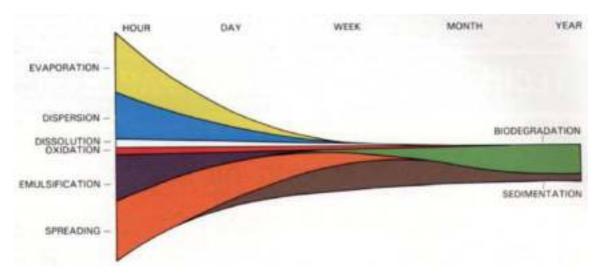
In addition to the location, size and physico-chemical properties of the spill, other major factors affect the fate of the oil slick are governed by complex interrelated transport (turbulence) and weathering processes (evaporation, emulsification and dissolution). The spilled oil spreads and moves by the forces of winds and currents. A small portion of hydrocarbons begin to go into solution in the underlying water column, but most of the oil is lost through evaporation into the atmosphere. In the present model, all these processes are considered in the transport of Oil Slick.

Out of the above mentioned oils the vegetable or light oils do not pose any significant threat to the environment.

The spilled 'persistent' crude oil (or fuel oil) undergoes a number of physical and chemical changes known as "weathering". The major weathering processes are spreading, evaporation, dispersion, emulsification, dissolution, oxidation sedimentation and biodegradation.

The term persistent is used to describe those oils which, because of their chemical composition, are usually slow to dissipate naturally when spilled into the marine environment and are therefore likely to spread and require cleaning up. Non-persistent oils tend to evaporate quickly when spilled and do not require cleaning up. Neither persistence nor non-persistence is defined in the Conventions. However, under guidelines developed by the 1971 Fund, an oil is considered non-persistent if at the time of shipment at least 50% of the hydrocarbon fractions, by volume, distill at a temperature of 340°C (645°F), and at least 95% of the hydrocarbon fractions, by volume, distill at a temperature of 370°C (700°F) when tested in accordance with the American Society for Testing and Materials Method D86/78 or any subsequent revision thereof."

- a) **Spreading**: is one of the most significant processes during early stages of a spill is initially due to gravity. The oil spreads as a coherent slick and the rate is influenced by its activity. After a few hours, the slick begins to break-up and after this stage, spreading is primarily due to turbulence. Wind and wave actions also tend to fragment the slick, breaking it up into islands and windrows.
- b) **Evaporation**: The rate and extent of evaporation depends primarily on the volatility of the oil. In general, oil components with a boiling point below 200 D C evaporate within 4 to 16 hours in tropical conditions. Spills of refined products such as kerosene and gasoline evaporate completely and light crude lose up to 40 % of its volume within a few hours. In contrast, heavy crude and fuel oils undergo little evaporation.
- c) **Dispersion**: Waves and turbulence act on the slick to produce droplets of oil of different sizes. Small droplets remain in suspension while the larges ones rise to the surface. The rate of dispersion mainly depends on the nature of the oil and the sea state. Oils which remain fluid can spread unhindered by other weathering processes can disperse completely in moderate sea conditions within a few days. Viscous oils tend to form thick lenses on the water surface with slow


Reviewed By : Capt Pankaj Sinha	Issue No.	: 0)1	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 0)4	Page 21 of 98

tendency to disperse, which can persist for several weeks.

- d) **Emulsification**: Several oils have tendency to absorb water to form water-in-oil emulsions thereby increasing the volumes of the emulsified mass by a factor of 3 to 4. The arte at which the oil is emulsified is largely a function of sea state though viscous oils absorb water slowly. In turbulent sea conditions, low viscosity oils can incorporate as high as 80 % water by volume within 2 to 3 hours.
- e) **Dissolution**: The heavy components of crude oil are virtually insoluble in sea water while lighter compounds are slightly soluble. Hence levels of dissolved PHc rarely exceed 1 mg/l following a spill. Therefore, dissolution, does not make a significant contribution to the removal of oil from the sea surface.
- f) **Sedimentation**: Very few oils are sufficiently heavy to sink in sea water. However, the weathered residue gets mixed up with the suspended substances in water and may sink. This process becomes significant when water-in-oil emulsions attain specific gravity near to one and therefore need very little suspended substances to exceed the specific gravity of sea water (1.025).
- g) **Oxidation:** Hydrocarbon molecules react with oxygen and either breaks down into soluble products or combine to form persistent tars. Many of these oxidation reactions are promoted by sunlight and their effect on overall dissipation is minor in relation to other weathering processes.
- h) **Biodegradation**: Sea water contains a range of marine bacteria, moulds and yeasts which can use oil as source of carbon and energy. The main factors affecting the rate of biodegradation are temperature and the availability of oxygen and nutrient, principally compounds of nitrogen and phosphorous. Each type of micro-organism tends to degrade a specific group of hydrocarbons and whilst a range of bacteria exists between them which are capable of degrading most of the wide variety of compounds in crude oil, some components are resistant to attack.

Because the micro-organisms live in sea water, biodegradation can only take place at an oil/water interface. At sea, the creation of oil droplets, either through natural or chemical dispersion, increases the interfacial area available for biological activity and so enhances degradation.

The processes of spreading, evaporation, dispersion, emulsification and dissolution are most important during the early stages of a spill whilst oxidation, sedimentation and biodegradation are long-term processes, which determine the ultimate fate of oil. Fig.3.1 shows schematic diagram of weathering processes with time.

Reviewed By : Capt Pankaj Sinha	lssue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 22 of 98

ADANI PORTS AND SPECIAL ECONOMIC ZONE LTD. MUNDRA OIL SPILL CONTINGENCY RESPONSE PLAN Schematic diagram of weathering processes with time

It should be appreciated that throughout the lifetime of an oil slick, it continues to drift on the sea surface, independent of these processes. The actual mechanism governing movement is complex but experience shows that oil drift can be predicted by taking into account wind-induced effects and surface water currents. These can be calculated using mathematical modeling to determine the oil spill trajectory. The wind-induced effect is normally taken as 1-3% of the wind velocity, and the current effect as 110% of the current velocity. Reliable prediction of slick movement is clearly dependent upon the availability of good wind, tide and current data.

An understanding of the way in which weathering processes interact is important in forecasting their combined effect in changing the characteristics of different oils and the lifetime of slicks at sea. In order to predict such interactions, numerical models have been developed, based on theoretical and empirical considerations.

Accidental oil spills as indicated in 'Oil Spill Scenario' in section 2.1 of this plan might occur in the area of SPM. On the basis of the data modeled, the results indicate that

- a) about 38 % of hydrocarbons are lost by evaporation, 2.8 % by emulsification and 0.75 % by dissolution within 5 hours;
- b) the quantum of dissolved oil increases up to initial 5 hours and thereafter decreases as lighter (more soluble) hydrocarbons evaporate;
- c) after 50 hour, no oil dissolves;
- d) the trend of emulsified oil is similar to that of evaporated oil but emulsification occurs at a slow rate;
- e) the radius of oil slicks increases to nearly 1400 m at the end of 148 hours; and
- f) the maximum PHc concentration in water is about $39 \mu g/l$.

The spill trajectories clearly reveal the dominance of wind in deciding the location of landfall of the weathered oil. Thus during June-August, the spill will be preferentially transported in the north east direction under the influence of south west winds while during October-November, and possible up-to February, the oil will be predominantly carried to the southern shore. It is also evident that under the influence of the southwest winds, the oil will be deposited on the northern shore within 60 hours, while it might take about 80 hours to reach the southern shore during north east winds.

2.4 Development of oil spill scenarios including worst case discharge

The scenario of the spill are classified under two categories:

- 1. Oil Spill at Mundra Port Multi-Purpose Terminals/ Basins
- 2. Oil Spill at SPM

Oil Spill at Mundra Port Multi-Purpose Terminals/ Basins

a) Leak during cargo transfer operations Minor (250 liters)

This can occur at the start of cargo operations, during operation due to leakage in pipes, expansion joints, and at the time of disconnection of hose at manifold. However, such instances are remote on implementation of International Safety Management by Ships and Quality Management systems by Port.

Reviewed By : Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	:	04	Page 23 of 98

b) Slop tank / bunker tank overflow at, Jetty / Ship Minor (250 - 1000 ltrs.)

This source of pollution is purely of an accidental nature. The ship is expected to be ship shape with good trained crew and this has been emphasized to the Master of the vessel at the time of cargo transfer / bunkering. Based on a rate of 20 cbm/hr. and reaction time of 1 min, and hose content of 150 ltrs., likely spill is only 250 litres. A ship shore check list for cargo operations and bunkering is employed. A joint declaration is made by Marine Staff and Chief Officer / Master and enforced by Marine Manager. This results in good ship / shore co-ordination.

c) Spill during berthing (tug impact) Moderate (3000 liters)

Accidental contact with tugs or another marine structure is a possibility but quantum is not going to be significant because of Fendering system employed and training given to tug crews. Also with concept of double hull tanker the entire cargo compartments are protected by another hull, thus cargo spillage due to impact of tug is remote.

d) Grounding / Hull Damage :

APSEZL operates dry cargo & liquid cargo berths. Tankers mainly carry Furnace oil, Naphtha, Methanol, High Speed Diesel, Super Kerosene Oil and Vegetable oil. Oil transfer operations at the jetty are supervised by Liquid terminal staff. Manifold area has receptacle facilities to prevent accidental spills at connection / disconnection time. Berthing is done under controlled conditions and spill due to contact damage to underwater oil tanks is very remote. Radio officer controls movement of vessels in and around the berth and traffic presently is insignificant to pose any collision damage risk. Under water sea bed characteristic is soft sand. The berth area of about 500² m is surveyed monthly for any changes and underwater obstructions; hence grounding resulting into oil spill is very remote.

Oil Spill at SPM

a) Hose Puncture while unloading:

In such an event, crude oil, about 10670 Kgs may spill onto water. On spillage the oil slick will be carried away at a distant location depending upon water current and wind direction. The trained crew of the maintenance vessel patrolling the area during unloading, would control the oil slick movement by using booms and subsequently, the oil will be collected by the skimmer.

b) Failure of Swivel joint of SPM:

In this event about 17780 Kgs of crude oil may spill onto water. In this case the leakage may be detected visually by the personnel monitoring the operation from the ship tanker or by the detectors provided on the SPM.

c) Leakage of Crude oil at PLEM or from the submarine pipeline:

This case will occur at least 20 m below the water surface, oil being lighter than water will travel upward and float on to water. By the time oil water reaches the sea water surface, the oil droplets may start undergoing "weathering process" and it may form emulsion along with water.

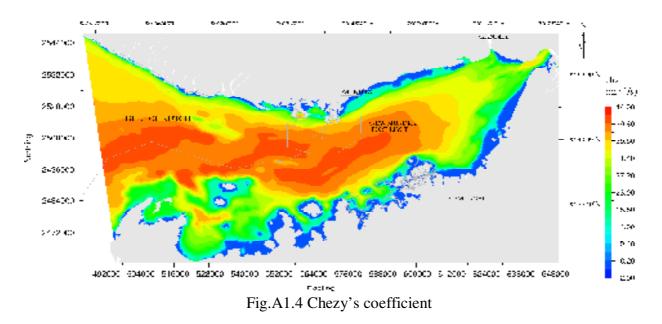
d) Ship Collision Frequency :

Based on the statistical data and its analysis carried out by National Institute of Oceanography, the probability of this type of accident is about one in every seven years for the traffic projection and hence, this case is ignored.

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 24 of 98

e) Ship Grounding Frequency :

Based on the statistical data and its analysis carried out by National Institute of Oceanography, the probability of this type of accident is about one in eleven years for the traffic projection and hence, this case is also ignored. Also with concept of double hull tanker the entire cargo compartments are protected by another hull, thus cargo spillage due to grounding is remote.


2.5 Shoreline sensitivity mapping

Gulf of Kutch is a typical semi-enclosed basin where the tidal forces interact with the open ocean waters of the sea, across its western open boundary at Okha. The currents of the region are tidal-driven and the water column is vertically well mixed. These features make the numerical modeling task easier, as a 2-D hydrodynamic model is sufficient to accurately reproduce the tides and currents for the study region in the Gulf of Kutch at Mundra.

The model domain of longitudes of 68° 50' 56.7" E and 70^{0} 27' 36.9" E and the latitudes of $22^{\circ}14'$ 58.8" N and 23° 01' 49.1" N is selected for carrying out sensitivity analysis and predicting the fate and transport of oil spill that may take place at APSEZL's SPMs, Basins, berths and tanker route near Mundra coast in Gulf of Kutch.

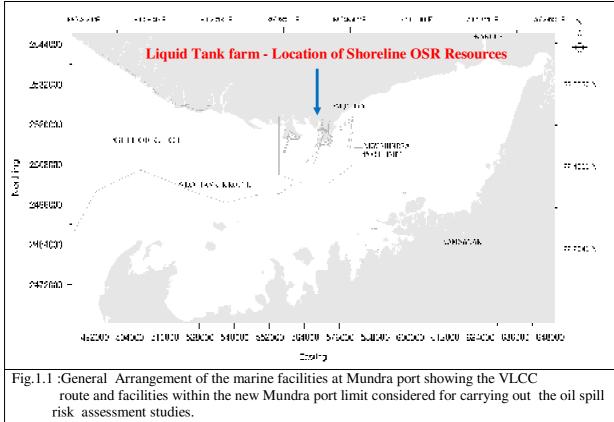
The bottom roughness in the Gulf of Kutch varies due to the variation of bed sediment grain sizes. The bed consists of various sizes of clay, sand, silt and rocky soils. In the present study a uniform Manning's roughness coefficient has been used for numerical runs of hydrodynamic processes. The filled contours of Chezy's roughness coefficient are shown in Fig. A.1.4. The same roughness coefficient has been used to predict tides and tidal velocities in the Mundra area for prediction of oil spill trajectory.

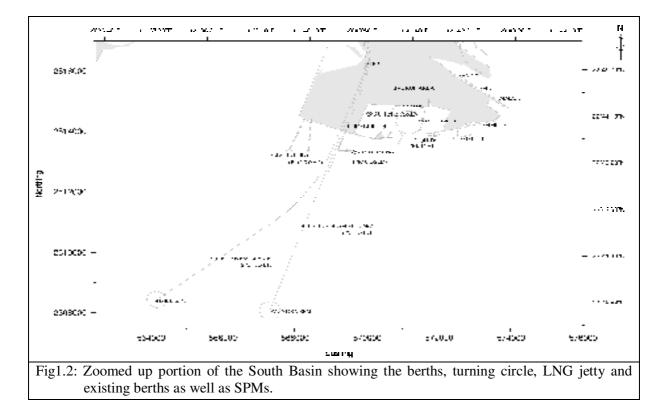
The interpolated Chezy's coefficient calculated based on Manning's roughness and total water depth is shown in Fig.A1.4. The sensitivity analysis has been carried out with various Manning's value, which is the combined effect of d_{50} sediment size and bed configuration, to calibrate the model with respect to the tide data of March and October 1994, at Sikka. The computational runs were continued with various sets of various bed roughness values till computed and measured tide levels are within the acceptable limit.

For Shoreline sensitivity mapping refer Volume 2 (Annexure-V, VI and VII) of Oil Spill Risk Assessment.

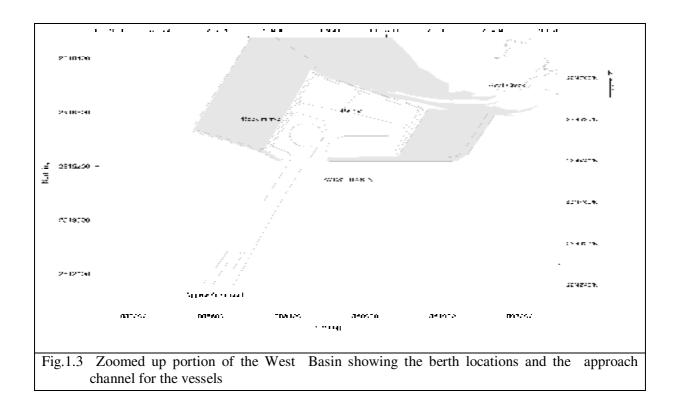
Reviewed By	:	Capt Pankaj Sinha	lssue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 25 of 98

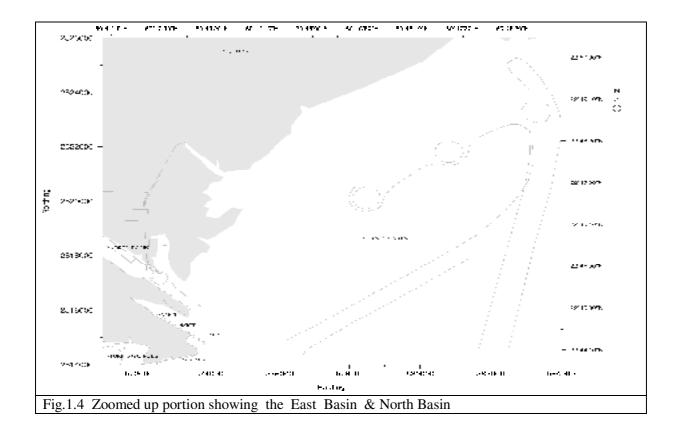
2.6 Shoreline resources, priorities for protection


The SPMs and the Marine facilities (Existing Berths, South Basin, West Basin, North Basin, East Basin and LNG Berth etc.) are located in the Northern side of Gulf of Kutch at Mundra. VLCCs bring Crude oil and unload at the two SPMs which are connected to the Shore tanks by means of Submarine pipelines. The Crude unloaded at these SPMs is pumped through Submarine pipeline to Shore tank farm area.


Various Marine craft / solid cargo/ liquid cargo vessels traverse through the Gulf waters to berth at the various Terminals / Berths located in the new Mundra port limit. The general layout of the various facilities like SPMs, terminals etc. within the Mundra port limit area are shown in Fig.1.1 to Fig.1.4 in chapter 1. There is a probability of spillage at SPMs, along the sub-sea pipelines and tanker route during unloading operations and transportation. Apart from these operations at the SPMs, loading / unloading operations at the different berths of the Mundra port – South Basin, West Basin, North Basin, East Basin, LNG jetty and existing berths also may give raise to accidental spills at the berth locations. The spills at these locations may affect the shore and other facilities along the coast of Gulf of Kutch. The coast of Mundra has tidal flats, sand bars and not much in the way of mangroves. The mangroves, Marine Park / Marine Sanctuary etc. are on the Southern side of Gulf of Kutch. As it was observed that the spills occurring at the various locations of the APSEZL Marine facilities may reach the Coast on the Northern side as well as on the Southern side of the Gulf depending upon the season, there is a need to protect the environment in the event of an oil spill at any of the APSEZL Marine facilities.

<u>Shoreline Resources available with APSEZL, Mundra for deployment during shoreline cleanup/</u> <u>emergent situation:</u>


Item	Quantity
Oil Spill Dispersants	15000 liters
Sorbent pads	2000 nos.
Portable dispersant storage tank: 1000 ltr capacity	1 no.
Portable pumps	2 nos.
Oil discharge hose, 3", 2 x 10 m	1 set
Tanker Trucks	04 nos.
Mini Vacuum Pump (30 m3 / hr)	05 nos.
Sorbent Boom Pack(12.5cm x 4 M)	500 mtr
Slurry Pump (60 m3 / hr)	01 no.
Start Tank with capacity 10000 liter(10 m ³)	02 nos.
OSD Applicator- Oil Dispersant Spry Unit(20 ltr) for use on beach and inter tidal zones	02 nos.


Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 26 of 98

Reviewed By	:	Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 27 of 98

Reviewed By : Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	:	04	Page 28 of 98

Marine resources in Gulf of Kutch

Phytoplankton

Phytoplanktons are vast array of minute and microscopic plants passively drifting in natural waters and mostly confined to the illuminated zone. In an ecosystem these organisms constitute primary producers forming the first link in the food chain. Phytoplankton long has been used as indicators of water quality. Some species flourish in highly eutrophic waters while others are very sensitive to organic and/or chemical wastes. Some species develop noxious blooms, sometimes creating offensive tastes and odours or anoxic or toxic conditions resulting in animal death or human illness. Because of their short life cycles, plankton responds quickly to environmental changes. Hence their standing crop in terms of biomass, cell counts and species composition are more likely to indicate the quality of the water mass in which they are found. Generally, phytoplankton standing crop is studied in terms of biomass by estimating chlorophyll and primary productivity, while in terms of population by counting total number of cells and their generic composition. When under stress or at the end of their life cycle, chlorophyll in phytoplankton decomposes to phaeophytin as one of the major products.

Phytopigments

During April 2010, the phytoplankton pigments viz. chlorophyll a (1.7 - 2.4 mg/m3; av 1.9 mg/m3) and phaeophytin (0.3 - 1.2 mg/m3; av 0.7 mg/m3) varied considerably. In October 2010, chlorophyll a ranged from 2.0 - 4.2 mg/m3 (av 3.1 mg/m3) and phaeophytin from 0.7 - 1.1 mg/m3 (av 0.7 mg/m3) (Tables 8.1 and 8.2). The average concentration (mg/m3) of chlorophyll a off Vadinar during different sampling events (2010) is listed in Table 8.1:

Area	Pathfinder	Nearshore	ESSAR DP	IOC SPM	ESSAR SPM	Salaya Creek	Gulf
April 2010	2.4	2.1	1.9	1.4	2.0	2.0	1.7
Oct 2010	2.1	4.2	2.8	4.1	2.0	-	3.7

 Table 8.1: Average chlorophyll a (mg/m3) off Vadinar (April 2010 to October 2010)

The values of phaeophytin during the present monitoring period are given in Tables 8.2, while, the average concentrations (mg/m3) between different sampling events (April 2010 and October 2010) are listed in Table 8.2.

Month	Pathfinder	Nearshore	ESSAR DP	IOC SPM	Essar SPM	Salaya Creek	Gulf
April 2010	1.2	0.6	0.8	0.3	0.6	0.8	0.6
Oct 2010	1.1	0.9	1.1	0.9	0.7	-	0.8

Table 8.2: Average phaeophytin (mg/m³) off Vadinar (April 2010 to October 2010)

Phytoplankton population

As is generally the case with Coastal waters, the phytoplankton population density (68-332 nox 10^3 /l; av 186 no x 10^3 /l) and generic diversity (11-30 no; av 18 no) varied over a wide range and in a random manner during April 2010 (Table 8.3). In October 2010 the phytoplankton population density ranged from 100-789.6 nox 10^3 /l (av 329.4 no x 10^3 /l) and generic diversity ranged from 12-25 no (av 19 no) (Table 8.4) off Vadinar.

Reviewed By	:	Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 29 of 98

Table 8.3: Average phytoplankton population density (no x 10³/l) and total genera (no) off Vadinar (April 2010 to October 2010)

	Pathfinder Nearshore			ESSAF	R DP	IOC SPM		
Month	Cell count (nox10 ³ /l)	Total genera (no.)						
Apr-10	216.2	19	200.5	17	192.7	15	127.7	18
Oct								
2010	203.1	19	446.6	20	323.6	23	360.4	18

	Essar SPM		Salaya Creek				Gulf			
Month	Cell count (nox10 ³ /l)	Total gener	l ra (no.)	Cell coun (nox10 ³ /l)		Total genera	(no.)	Cell count (nox10 ³ /l)	Total genera (no.)	
Apr-10	124	1	6	198.5	18	3	211		15	
Oct										
2010	260	1	6	-	-		487.6		14	

The above results indicated wide temporal and spatial fluctuations in the standing stock of phytoplankton between April 2010 and October 2010 off Vadinar. In general, the coastal waters revealed high average cell counts during October 2010 as compared to previous data. The generic diversity of phytoplankton during April 2010 widely varied with the dominance of genera such as Nitzschia (17.7%), Guinardia (16.7%), Skeletonema (9.1%), Thalassiosira (7.4%), Hemiaulus (7.2%), Navicula (6.1%), Rhizosolenia (4.5%), Biddulphia (3.4%) and Leptocylindrus (3.4%). In October 2010, the dominant phytoplankton genera were Leptocylindrus (57.6%), Guinardia (13.9%), Nitzschia (8.1%) and Chaetoceros (7.2%)

Mangroves

According to one estimate the dense mangrove cover of Narara Bet is spread over an area of 5.5 km^2 . The mangrove area has increased in recent years due to extensive plantations made by the Forest Department. Mangrove cover and mudflat areas (km²) in Jamnagar, Lalpur, Khambalia and Kalyanpur Talukas estimated based on satellite data are given in Table 8.4 below:

Table 8.4: Mangrove areas (km²) along Jamnagar coast

Taluka	Mangroves (Dense)	Mangroves (Sparse)	Tidal mudflats
Jamnagar	12.03	23.91	83.53
Lalpur	1.96	3.95	50.50
Khambalia	3.86	11.48	101.94
Kalyanpur	0.04	0.01	0.78

*Singh H.S., 2000. Mangrove in Gujarat, GEER foundation

Reviewed By : Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	:	04	Page 30 of 98

Mangroves at Vadinar

The intertidal expanse in the vicinity of Dargah ranged in 1 - 1.2 km. Lower intertidal zone was muddy with dense algal growth. The mid and upper intertidal zone sustained mangrove vegetation of ~ 500 m width. The zone around HTL was dominated by a sandy beach with ~ 5 m width and a narrow beam at the backshore. The distribution of mangroves at Vadinar during the present monitoring (April 2010) is given in Table 8.5 below:

	Location	Species	% FQ	Density	Height	DBH	Seedling
					(m)	(cm)	(no/m^2)
D1	22° 26'42.6''N	A. marina	100	Sep-67	0.5 - 3.5	<2.6 - 6	0 - 2
	69° 42' 07.8''E			-38			
D2	22° 26' 50.5''N	A. marina	40	0 - 5	0.5 - 1.5	<2.5 - 4	0 - 1
	69° 41' 52.9''E			-2			
Vadinar	· (Dargah - south side;	afforested a	rea)				
D3	22° 26' 30.8''N	A. marina	100	(20 - 75)	1.0 - 2.3	<1.5 - 5	0 - 15
	69° 42' 05.6''E			-50			

Table 8.5: Distribution of mangroves at Vadinar (Dargah - North side)

As evident from above data, the stand density of *A.marina* at two locations (D1 and D2) along North-east of Vadinar Dargah varied from nil to 67 plants/100 m² with higher density of plants noticed at location D1. Frequency of occurrence ranged from 40 - 100% in the mid and upper intertidal zones. The height varied from 0.5 to 3.5 m. Mostly the plants were dwarf (av 1 m) with occasional tall plants of 3.5 m. Diameter at Breadth Height (DBH) varied from <2.5 to 6 cm. The seedling density was poor and varied from 0 - 2 no/m². The mid intertidal segment was the popular feeding site for flocks of flamingos.

The upper intertidal expanse along South-west of Vadinar Dargah (D3) showed good growth of afforested mangroves (Table 8.5). The density of mangroves ranged from 20 - 75 plants/100 m² with an average of 50 plants/100 m². The plant height varied from 1.0 to 2.3 m and the DBH ranged from <1.5 to 5 cm. The seedling density was low (0-15 no/m²), however, better than that noticed along North-east of Vadinar - Dargah (D1 & D2). Present results are comparable with earlier monitoring studies (2007 - 2009).

Mangroves at Narara

The intertidal expanse along the IOCL pipeline corridor varied from 2000 - 2200 m. The mangroves vegetation from upper intertidal region was observed to be healthy, dominated by *A.marina* on both sides of the pipeline corridor. Four locations (N1 to N4) were selected for monitoring of mangroves at Narara as detailed in below given Table 7.6.

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 31 of 98

ADANI PORTS AND SPECIAL ECONOMIC ZONE LTD. MUNDRA OIL SPILL CONTINGENCY RESPONSE PLAN Table 8.6: Distribution of mangroves at Narara

	Location	Species	% FQ	Density	Height	DBH	Seedling
					(m)	(cm)	(no/m^2)
N1	22° 27' 56.8''N	A.marina	100	20-45	2-3	3-8	0-85
	69° 43' 43.2''E			(38)			
		C.tagal	10	0.7*	-	-	-
		R.mucronata	5	0.2*	-	-	-
N2	22° 27' 59.1''N	A.marina	100	60-90	2-4	25-12	0-7
	69° 43' 21.3''E			(85)			
N3	22° 28' 03.5''N	A.marina	100	28-85	0.5-2.5	<15-7	0-55
	69° 43' 27.4''E	R mucronata	3	(50)	-	-	-
N4	22° 28' 07.2''N	A.marina	100	30-130	0.5-3.5	<2.0-	0-10
	69° 43' 24.6''E			(80)		3.5	

 $* \text{ no}/500 \text{ m}^2$

As can be noticed in the above table, the plant density of *A.marina* varied from 20 - 130 plants/100 m² with a frequency of occurrence of 100% at Narara. The species like *Ceriops tagal* (7 plants/500 m²) and *Rhizophora mucronata* (2 plants/500 m² - 3 plants/100 m²) were rarely noticed. The locations N2 (85 plants/100 m²) and N4 (80 plants/100 m²) revealed better average density of *A.marina* as compared to the rest. The height of *A.marina* varied from 0.5 to 4 m with N2 and N4 locations indicating better plant height than the rest. The DBH varied from <1.5 to 12 cm at the monitoring locations. The seedling density ranged from 0 - 85 no/m² with N1 and N3 locations sustained better seedling density than the rest. Few new plants (30 - 45 cm in height) of *C.tagal* and *R.mucronata* were noticed at the EOL pipeline corridor during the present monitoring.

Sand dune vegetation

The narrow beach of ~ 5 m width around HTL along Narara Bet is marked with berm of ~ 1.5-2 m width, followed by back shore sandy zone. Occasional shrubs of *Salicornia brachiata* and *Suaeda maritima* are observed on the backshore sandy zone. The sand dune flora is more predominant on berm and immediate back shore zone of ~5 m width. Sand dune flora is represented by seven species viz; *Crassa sp, Cyperus arenarius, Launea sp, Suaeda maritima, Salicornia brachiata*, unidentified *Poaceae* member and unidentified *Fabaceae* member.

Seaweeds and Seagrasses

Seaweeds, which are known as a source of food, fodder and manure, are mostly found attached to various substrata like sandy, muddy and coralline sediments as well as rocky areas and play a significant role in enriching the sea by adding dissolved organic matter, nutrients and detritus besides serving as nursery areas for the larvae and juveniles of innumerable marine organisms. Some green Seaweeds are edible, red algae are the important source of agar and some of the brown algae are used for manufacturing algin and alginic acid. Seaweeds are also used to produce some bioactive compounds.

The algal zone of Narara Bet is confined to 1.2-2.5 km width. A total of 62 species of algae and 3 species of sea grasses are recorded from this region. Among them Lyngbya, Caulerpa, Cladophora, Ulva, Cystoceira, Dictyota, Hydroclathrus, Padina, Sargassum, Acanthopora, Amphiroa, Champia, Centraceros, Gracilaria, Hypnea and Polysiphonia were common with the dominance of Padina and Gracilaria at the lower reef flat. The open mudflats of Narara Bet are dominated by algae like Enteromorpha, Ulva, Lyngbya and Polysiphonia, while, the upper sandy shore and mangrove areas are associated with Enteromorpha and Ulva. Seagrasses such as Halophila ovata and Halodule uninervis are common in patches on sandy regions of the reef, while, Halophila beccarii occasionally occurred on mudflats along the tidal channels.

Reviewed By	:	Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 32 of 98

Open mudflats near Dargah and Narara pipeline corridor supported growth of twelve marine algae dominated by Enteromorpha spp (Table 8.7). The biomass of Enteromorpha estimated at ~ 4 kg/m2.

Sr. No.	Species	% FO*	ES*
1	Enteromorpha clathrata	100	D
2	Enteromorpha intestinalis	100	D
3	Caulerpa racemosa	50	С
4	Ulva fasciata	100	D
5	Ulva lactuta	100	D
6	Ulva reticulate	90	D
7	Codium elongatum	30	0
8	Sargassum ilicifolium	45	С
9	Sargassum tenerimmum	60	CD
10	Gracilaria corticata	55	С
11	Gracillaria verrucosa	85	С
12	Polysiphonia platycarpa	20	0

Table 8.7: Marine algal flora along Narara/Vadinar

*%FO: Percentage Frequency Occurrence, ES: Ecological Status, D: Dominant (% FO = 80-100), CD: Co-dominant (% FO = 60-79), C: Common (% FO = 40-59), O: Occasional (% FO = 20-39).

The intertidal zone of Kalubhar Tapu harbours 47 species of marine algae and three species of seagrasses. The reef areas of this island are dominated by *Dictyota*, *Gracilaria*, *Padina*, *Hydroclathrus*, *Ulva* and *Hypnea*. The open mudflats and sandy areas at the upper intertidal are preferred by *Enteromorpha*, *Ulva*, *Lyngbya* and *Polysiphonia*. The sandy region of the reef flat supported seagrasses like *Halophila* and *Halodule*.

Zooplankton

The zooplankton standing stock in terms of biomass and population density during April 2010 (Table 8.8) varied from 0.2 to 121.2 ml/100m³ (av 3.3 ml/100m³) and 2.2-722.7 x $10^3/100m^3$ (av 39 x $10^3/100m^3$), respectively while during October 2010 the zooplankton biomass and abundance ranged from 0.2 to 12.0 ml/100m³ (av 3.5 ml/100m³) and 2.5-157.8 x $10^3/100m^3$ (av 48.4 x $10^3/100m^3$) respectively suggesting normal secondary production off Vadinar during the monitoring period.

The average zooplankton biomass (ml/100m³), population density ($nox10^3/100m^3$) and total groups (no) off Vadinar during the monitoring period varied in accordance with the data presented in Table 8.8.

Table 8.8: Average values of zooplankton (A) biomass (ml/100m ³⁾ (B)	Population density
(nox10 ³ /100m ³) and (c) total groups (no) off Vadinar (April 2010 – October 2019	0)

Area		Pathfinder	Nearshore	ESSAR DP	IOC SPM	Essar SPM	Salaya Creek	Gulf
A mmi 1	А	8.3	1.1	1.1	0.9	1.4	2.5	3.5
April 2010	В	89.9	24.6	14.4	22.7	12.7	20.4	37.4
2010	С	17	15	12	16	13	16	17
Oat	Α	4	3.9	1.5	3	5.7	-	2.1
Oct 2010	В	57.4	55.9	23.5	30.5	83.1	-	32.8
2010	С	13	11	10	10	9	-	7

Reviewed By	:	Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 33 of 98

The overall zooplankton standing stock was low and highly variable off Vadinar which could be due to high patchiness and seasonal variability in their distribution apart from high grazing pressure at higher trophic levels.

During April 2010, 24 faunal groups were identified in the coastal waters off Vadinar during the monitoring period while 17 faunal groups were present in the samples of October 2010. The most common faunal groups were copepods (40.5%), decapod larvae (19%), gastropods (22.5%), lamellibranchs (10.7%), and foraminiferans (2.1%) in April 2010. In addition to the above, groups like chaetognaths, siphonophores, *Lucifer* sp, polychaetes, ctenophores, medusae, amphipods, ostracods, mysids, heteropods, isopods, stomatopod larvae, appendicularians and fish larvae were also frequently noticed but in less numbers during April 2010. During October 2010, the dominant groups were copepods (93.6%) and decapod larvae (4.8%). In general, the coastal waters off Vadinar revealed a moderate production of zooplankton associated with random fluctuations and seasonal changes.

Macro benthos

The organisms inhabiting the sediment are referred as benthos. Depending upon their size, benthic animals are divided into three categories, macrofauna, microfauna and meiofauna and macrofauna. Benthic community responses to environmental perturbations are useful in assessing the impact of anthropogenic perturbations on environmental quality. Macrobenthic organisms which are considered for the present study are animals with body size larger than 0.5 mm. The presence of benthic species in a given assemblage and its population density depend on numerous factors, both biotic and abiotic.

Intertidal macrofauna

During April 2010, Intertidal macrofauna was studied along 5 transects viz. 1 transect (Transect I) at Kalubhar Island and 4 transects at Narara Bet. Several locations were sampled along each transect between the HTL and the LTL viz; High Water (HW), Mid Water (MW) and Low Water (LW). The intertidal macrofaunal standing stock in terms of population density (50-7800 no/m², av 2292 no/m²) and biomass (0.1-37.2 g/m²; wet wt, av. 9.2 g/m²; wet wt) varied widely During the post monsoon, only the first three transects were sampled. In October 2010, the intertidal macrofaunal standing stock in terms of population density ranged from 0-3625 no/m² (av 1185 no/m²) and biomass from 0-67.8 g/m²; wet wt (av. 14.6 g/m²; wet wt). These results are compared with historical data in Table 8.9.

Table 8.9 Average of intertidal macro benthos off Vadinar during April 2010 to October 2010, (A)
Biomass (g/m ²) (B) Population density (no/m ²) and (C) Total groups

Transect		Ι	Π	III	IV	V
April	А	11.2	4.2	13.7	10.7	6.1
2010	В	3983	1172	1292	2401	2614
	С	5	3	6	6	3
Oct	Α	11.9	16.8	15.1	-	-
2010	В	1495	904	1156	-	-
	С	5	7	5	-	-

Overall, the intertidal region sustained good faunal standing stock and diversity and the contribution of major faunal components are comparable over the past many years at Narara Bet/Kalubhar.

Subtidal macrofauna

Subtidal macrofauna was studied at 13 stations in the coastal system off Vadinar during April 2010 and at 10 stations during October 2010. The distribution of subtidal faunal standing stock in terms of biomass (0.3 - 41.0 g/m²; av 8.0 g/m² wet wt) and population density (150-8925 no/m²; av 1902 no/m²) during April 2010. In October 2010 the biomass ranged from $0.3 - 23.9 \text{ g/m}^2$ (av 7.1 g/m²; wet wt) and population density ranged from 125-14975 no/m² (av 2282 no/m²) The current data is listed (April 2010 – Oct 2010) in Table 8.10.

Reviewed By	:	Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 34 of 98

Table 8.10Average of subtidal macrobenthos off Vadinar during April 2010to October 2010, (A)Biomass (g/m²) (B) Population density (no/m²) and (C) Total groups

Area		Pathfinder	Nearshore	ESSAR DP	IOC SPM	ESSAR SPM	Salaya Creek	Gulf
	Α	11.2	2.9	2.0	6.1	1.3	15.5	6.4
April 2010	В	3833	338	388	694	2375	1553	1865.5
	С	7	3	4	6	5	6	4
	Α	12.1	7.7	1.9	4.9	1.8	-	10.6
Oct 2010	В	5019	2967	400	1169	181	-	1652
	С	8	5	4	4	2	-	7

The macrobenthic population was dominated by polychaetes (50.1%), amphipods (18.5%), pelecypods (8.2%), decapod larvae (7.4%), tanaids (3.6%) and foraminiferans (3.2%) during April and by polychaetes (76.3%), amphipods (12.3%) and pelecypods (5%) during October 2010.

Corals and associated biota

Live corals at the Narara and Kalubhar reefs are mainly confined to the lower littoral (reef flat) and shallow subtidal zones (< 8 m). They are absent at the upper reef flat probably because of high rate of sedimentation and long exposure during low tide.

Narara Bet

The eastern segment of Narara Bet represents a formation of vast mud flat, which resulted in significant negative influence on the live coral population. Many regions along the reef flat on the western side are exposed during low tide for prolonged periods because of which the distribution of live corals was poor. In all 30 and 22 Scleractinian species have been identified in the intertidal and subtidal zones respectively of Narara Bet with *Montipora, Goniopora, Porites, Favia, Favites, Goniastrea, Platygyra, Cyphastrea, Pseudosiderastrea, Turbinaria, Leptastrea* and *Symphyllia* as the dominant genera.

In general, the live coral density decreased with depth. The live corals were absent beyond 8 m (CD). However, the subtidal area at Narara sustained good coral populations within 5 m (CD). Distance-wise corals were rich within 250 m towards the sea from the LTL. The corals of the genera *Montipora, Porites, Favites, Goniastrea, Goniopora, Cyphastrea, Leptastrea, Favia* and *Turbinaria* dominated the subtidal area.

Kalubhar

In general, Kalubhar reef sustained relatively healthy live corals at the lower intertidal and subtidal (<7 m depth) zones as compared to the population at the Narara reef. The north and north-west regions of Kalubhar had better coral density and diversity as compared to the east and south-east regions because of high sedimentation of the reef flat and the subtidal zones. Overall, 30 and 7 species of Scleractinians in the intertidal and subtidal zones respectively at Kalubhar have been identified. The corals at Kalubhar were mainly represented by genera *Montipora, Favia, Favites, Porites, Goniastrea, Goniopora, Cyphastrea, Platygyra,* and *Symphyllia* and *Turbinaria.* The live corals were absent at the reef edge of 50 m width due to total exposure for longer period whereas their coverage increased (90 to 100%) at the reef slope below 1 m depth.

Reviewed By : Capt Pankaj Sinha	Issue No.	: (01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: (04	Page 35 of 98

A rich reef associated flora and fauna was noticed at Kalubhar. The common and dominant seaweed genera were *Sargassum*, *Gelidiella*, *Acanthophora*, *Ulva*, *Caulerpa*, *Codium*, *Dictyota*, *Padina*, *Halymenia*, *Enteromorpha*, and *Gracillaria*. Varieties of sponges were associated with coral boulders. The fauna consisted of coelenterates (*Zoanthus* sp., *Discosoma* sp., *Stoichactis*, *giganteum*, *Cerianthus* sp. and variety of corals), annelids (various polychaetes), echiuroid (*Ikedella misakiensis*), crustaceans (amphipods, isopods, *Acetes* sp., shrimps and crabs), molluscs (*Octopus* sp., *Sepia* sp., *Loligo* sp., gastropods, bivalves, nudibranchs etc.) echinoderms and variety of reef fishes.

Fishery

Gujarat ranks number one position in marine fish production in India. The Gulf contributes about 22% to the fish production of the state. The share of the Jamnagar District is between 5 and 14% (av 10%) to the State's total marine fish landings. The important fish landing centres in the vicinity of IOCL SPM area which falls under Khambalia zone are Vadinar, Bharana, Nana Amla and Salaya which together contributed about 6823 t, 8253 t and 5330 t of fish landings in 2006-07, 2007-08 and 2008-09 respectively to the total landings of the Jamnagar District. Similarly, the important fish landing centres in the vicinity of Sikka which falls under Jamnagar zone are Sachana, Baid, Sarmat, Bedi and Sikka which together contributed about 4768 t, 5122 t and 5848 t of fish landings in 2006-07, 2007-08 and 2008-09 respectively. Within the Jamnagar zone, the major landings (98%) were from Sachana (32%), Baid (27%), Sikka (19.7%) and Bedi (18.9%) during the last 3 years. Within the Khambalia zone (56.5%) contributed to about 13% higher fish landings than Jamnagar zone (43.5%) for the last 3 years. However, the landings at Sikka (1.3%) and Vadinar (0.5%) to the total landings of the district were negligible during the period 2006-2009.

Reptiles and mammals

The reptiles are mainly represented by marine turtles Chelonia mydas and Lepidochelys olivacea which breed and spawn on the sandy beach along the Sikka-Vadinar coast as well as on the islands.

Dolphin (*Dolphinus delphis*) and whale (*Balanoptera* sp) are common in the Gulf. Though occurrence of Dugong (*Dugong dugon*) in the Gulf particularly along the Jamnagar coast has been reported, there are no recent sightings.

The resources discussed above likely to be threatened are tidal flats, Phytoplankton, Phytopigments, Mangroves, seaweeds and seagrasses, Zooplankton, Macrobenthos, Corals and associated biota, salt works fishing activities and other vocational related to marine sensitive areas in the coast of Vadinar and Sikka.

It has been observed from the modeling study that during pre-monsoon season, the spills occurring at the APSEZL marine facilities move towards the southern / southwestern part of the Gulf of Kutch nearer to the facilities depending on tide phase.

The spills taking place at the APSEZL marine facilities move towards northern coast of Gulf of Kutch during monsoon season and affect the coast near Mundra, Kandla etc.

During post - monsoon season, the spills taking place at the APSEZL marine facilities move towards south / southwest and affect the islands /coast on southern side of the Gulf of Kutch.

2.7 Special local considerations

Considering the distant proximity of various other installations with the port of Mundra, in case of a tier 1 spill, no other special considerations are deemed to be required apart from an active spill response close to the port facility itself.

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 36 of 98

3 Response strategy

3.1 Philosophy and objectives

This plan is intended to assist APSEZL in dealing with an accidental release or discharge of oil. Its primary purpose is to set in motion the necessary actions to stop or minimize the discharge and to mitigate its effects. Effective planning ensures that the necessary actions are taken in a structured, logical and timely manner.

This plan guides the HOD– Marine and his Duty Staff through the decisions which will be required in an incident response. The tables, figures and checklists provide a visible form of information, thus reducing the chance of oversight or error during the early stages of dealing with an emergency situation.

For this plan to be effective, it must be:

- familiar to those APSEZL staff with key response functions;
- regularly exercised; and,
- Reviewed and updated on a regular basis.

This plan uses a tiered response to oil and chemical pollution incidents. The plan is designed to deal with Tier One spillage. The products handled are likely to pose a greater fire and safety, rather than an environmental risk; there may thus be additional factors involving the safety of personnel, which will take precedence over the pollution response. In this case, reference must be made to the APSEZL Emergency Procedures Manual. The salvage and casualty management of any vessel that poses a threat of pollution is priority considerations.

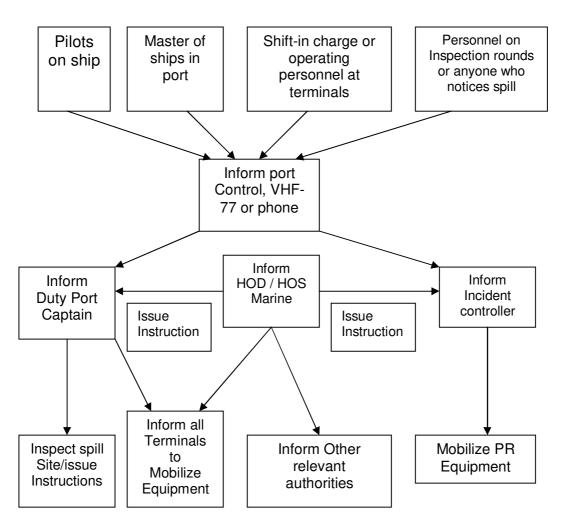
During oil spill response activities, account must be taken of the following:

- site hazard information
- adherence to permit procedures
- spill site pre-entry briefing
- boat safety
- APSEZL safety manual and material safety data sheets
- Personal protective equipment needs
- heat stress
- decontamination

3.2 Limiting and adverse conditions

APSEZL is situated in natural protected Gulf of Kutch and there are less incidences of heavy wind or any other factor affecting operation.

3.3 Oil spill response in offshore zones


SPM handles (unloading) crude oil and pumps it to shore tank farm area through sub-sea pipeline. The impact of such spills on marine environment is on the higher side. Hence, oil spill equipments are required for combating oil in case of such spills at the marine facilities at Mundra.

Based on the oil spill modeling study, it has been observed that crude oil spill of 700 tons (Tier-I) will spread over an area having radius of around 400 m within 4hr. APSEZL has already having facilities for combating a Tier-1 spill.

Reviewed By	:	Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 37 of 98

3.4 Oil spill response in coastal zones

Contingency Chart to deal with Oil Spill

On-site Crisis Management Group – Action Group

In an emergency, the personnel available at or near the incident site play vital role. This concept is made use of in nominating the Key Persons. It is necessary to nominate a functionary as the Incident Controller who is invariably a shift-in-charge of the facility. The Incident Controller tackling the emergency in real times requires the support from various other services i.e. Fire & Safety, Medical Services covering communication, transport and personal functions etc. A key person for each of these services therefore, is nominated.

Overall in charge of these activities is **Chief Operating Officer – Mundra Port.** The different functional coordinators, designated, will co-ordinate with Chief Controller in their respective functional areas. It is suggested that key personal chart be developed, giving the names, designation, telephone nos. of top level personnel who will act as coordinators in different disciplines/services. The duties and the responsibilities of various Key Persons and Coordinators need to be written down on a chart and should be made available across the organization at the site / location.

Reviewed By	:	Capt Pankaj Sinha	lssue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 38 of 98

Roles & Responsibilities

Incident Control Officer – (HOS – Marine / Duty Port Captain)

- Directs and co-ordinates all field operations at the scene of the accident
- Assess incident/crisis at site, nature, location, severity, casualties, resource requirement
- Classifies incident Advises Exe. Controller, Civil Defence, Dy. Conservator, Traffic Manager regarding crisis severity status and emergency level, wind direction, temperature, casualties and resource requirements.
- Conducts initial briefing to Chairman
- Activates elements of the terminal emergency plan/ site response actions
- Protect port personnel and the public
- Directs security/fire fighting/oil spillage/gas leakage/vessel accidents/natural calamities, cargo operations shutdown
- Search for casualties and arrange first aid and hospitalization
- Brief or designate a person to brief, personnel at the incident scene
- Determine information needs and inform Crisis Management Group
- Coordinates all functional heads in field operations group to take action
- Manages incident operations to mitigate for re-entry and recovery
- Coordinate search and rescue operations
- Arrange evacuation of non-essential workers to assembly points -outside port
- Arranges tugs, mooring boats and pilot(s) for sailing vessel(s)
- Co-ordinates actions, requests for additional resources and periodic tactical and logistical briefings with Site Emergency Coordinator
- Coordinate incident termination and cleanup activities
- Instructs various emergency squads as necessary

Site Emergency Coordinator – (Senior Pilot and Duty Radio Officer)

- Direct operations from the emergency control center with assistance from Crisis Management Group
- Take over central responsibility from the Site incident controller (SIC)
- Decide level of crisis and whether to activate off site emergency plan
- Instruct SIC to sound appropriate alarm
- Direct the shutting down, evacuation and other operations at the port
- Monitor on site and off site personal protection, safety and accountability
- Monitor that causalities if any are given medical aid and relatives informed
- Exercise direct operational control of the works outside the affected works
- Monitor control of traffic movements within the port
- Coordinate with the senior operating staff of the fire, police and statutory authorities
- Issue authorized statements to the news media
- Review and assess possible developments to determine the most probable course of events
- Authorize the termination of the emergency situation by sounding the all clear siren-continuous long single tone siren for one minute
- Control rehabilitation of affected areas after emergency
- Arrange for a log of the emergency

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 39 of 98

Fire Coordinator – (HOS - Fire / HOS - Safety)

(Under the direction of the Incident Control Officer)

- Announces fire incident point over the public address system and evacuates workers to the assembly points
- Informs fire station immediately and leads fire fighting team to the incident location
- Informs SIC if external fire tender / fire-fighting equipment / materials/mutual aid is required
- If necessary, arranges and activates other fire-fighting equipment
- Arranges safety equipment e.g. fire suits, protective gloves and goggles, breathing apparatus
- In liaison with Civil Engineering Department, ensures that adequate water pressure is maintained in the fire hydrant system/at the area supply
- Maintains adequate records

HOS - Security / Duty Security Officer

- Directs, gate security and facilitates evacuation, transport, first aid, rescue
- Controls the entry of unauthorized persons and vehicles-disperses crowd
- Permits the entry of authorized personnel and outside agencies for rescues operations without delay. Liaises with State police
- Allows the entry of emergency vehicles such as ambulances without hindrances
- Ensures that residents within port area are notified about disaster and instructs to evacuate if necessary
- Ensure that all people are aware of the assembly points, where the transportation vehicles are available
- Ensure that the people are as per the head count available with the assembly point section of that area
- Liaise with the Chief Medical Officer to ensure first aid is available at the assembly points
- Carry out a reconnaissance of the evacuated area before declaring the same as evacuated and report to SIC.

Medical Superintendent

- Direct medical team
- Set up casualty collection centre arrange first aid posts
- Arrange for adequate medicine, antidotes, oxygen, stretchers etc
- Contact and cooperate with local hospitals and ensure that the most likely injuries can be adequately treated at these facilities e.g. burns
- Advise Chief Emergency Controller on industrial hygiene and make sure that the facility personnel are not exposed to unacceptable levels of toxic compounds
- Make arrangements for transporting and treating the injured
- Inform the hospitals of the situation in case of a toxic release and appraise them of the antidotes necessary for the treatment
- Maintain a list of blood groups of each employee with special reference to rare blood groups
- Liaise with Govt. Hospitals/Red Cross

Marine Pollution Coordinator – Manager (Marine / pollution control)

- Minimizes the impact of an accident on the environment for which it would develop methodologies to control hazardous spills
- Monitors cooperation with emergency response squads to conduct the actual cleanup work during and after the emergency.

Reviewed By : Capt Pankaj Sinha	Issue No. : 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No. : 04	Page 40 of 98

- In case of fire and specially if the fire involves toxic/flammable materials, to ensure responsible actions for containing the run off fire water and other water from the damaged units
- Determines the level of contamination of the site as a result of the accident
- During cyclones/floods arranges sand bags and transfers important plans and documents to higher levels

Traffic Coordinator – Duty Port Captain

- Directs operation staff
- Prepares vessels to vacate from berth
- Arranges to protect cargo in vicinity from damage
- Arranges to segregate and shift cargo in sheds
- Submits consolidated list of dangerous goods in port including tankers in port and tank farms in port area
- Coordinates with ship owners / agents/C & F agents/stevedores

Communications Officer – (Duty Port Captain / Duty Marine Control officer)

- Ensure telephone operator/signal room advises entire emergency team
- On receipt of instructions from the chief Incident controller, notifies the fire brigade/police/hospitals/district collector/mutual aid partners
- Keep the switchboard open for emergency calls and transmit the same to the concerned personnel effectively
- Refrain from exchanging any information with authorized persons unless authorized to do so by the Chief Incident Controller
- Maintains contact with other vessels through VTMS

Chief Emergency Controller – (Head - HSE)

- Inform district emergency authorities-District Collector, Medical officer-Coast Guard Pollution control -Inspector of factories-Inspector of Dock Safety & Health,
- Activate the off site plan if necessary
- Liaise with Jt. Secy./Director MOST (Ministry of Shipping) or relevant Govt. authority
- Inform the media

Civil Coordinator - (HOS - Environment cell / HOS - Estate)

- Inform Gujarat Pollution Control Board and other environmental agencies about the incident for getting necessary guidance
- Instruct the contractors to carry out urgent civil works if required
- Hire the barges for collecting the spilled oil, if required

Marine Engineering Coordinator – (HOS – SPM / Diving Team in-charge)

- Organise the tugs for combating the pollution
- Start the rigging of pollution combating equipment on tugs/launches
- Hire additional crafts if required

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 41 of 98

HOD- Corporate affairs:

- Collect detailed information periodically and liaise with press about the incident
- Arrange transport facilities, if required
- Inform local authorities/District Collector about the incident (as per EAP)

HOS - Legal & HOD - Estate:

- Issue notice under Major Port Trusts Act, Indian Ports Act(Prevention & Control of Pollution) Rules, etc; to the defaulting master/owner/agent
- Arrange for settlement of claims related to the pollution(as per EAP)

3.5 Shoreline oil spill response

Most oil spills reach the shorelines and cause visible oil pollution which is particularly sensitive to public opinion. The selection and correct application of clean up techniques are therefore essential. When an oil spill occurs on open water the optimal solution is to intercept and recover the oil before it reaches the shoreline. This is because:-

- The environmental damage is normally less critical in the open water environment
- The logistics of oil removal becomes more complex in the varied natural environment of coastlines compared with the open sea.
- The costs of oil recovery increases dramatically when oil reaches sensitive shorelines compared with open water operations.

Experience has shown that it is very difficult to avoid some oil reaching the shorelines. Mechanical equipment and chemical treatment at sea are often insufficient to recover all oil spilled at sea. When the oil reaches the shoreline, a number of different parameters specific for this particular situation have to be taken into consideration:-

- Quantity of oil
- Characteristics of the oil (for instance, toxicity and viscosity)
- Prevailing on-site conditions (weather, season, tides, temperature)
- Shoreline type or combination of types (cliffs, pebble, sand, marsh)
- Special Considerations

The four main steps in a shoreline clean-up operation are:

Step 1: Assessment

- Determine the need to clean, setting priorities in line with this contingency plan
- Determine required degree of clean-up for each area in accordance with priorities
- Attain agreement between clean-up team, ecological experts, government authorities

Step 2: Select Clean-up Method

- Choose method appropriate to type of shoreline, access, degree of oiling
- Minimize damage caused by choice of clean-up technique, degree of clean-up
- Address conflicts of interest (e.g. needs of amenity use versus environment or response speed versus aggressiveness)

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 42 of 98

Step 3: Clean-up Operations

- Monitor clean-up, confirm choices made above, re-evaluate if necessary
- Minimize disturbance of shoreline features
- Minimize collection of un-oiled debris, sediments

Step 4: Termination / Monitoring

- Ongoing assessment of clean-up operations
- Determine when clean-up objectives have been met
- Post-spill monitoring to confirm recovery of shoreline features, biota

The four main methods for shoreline clean-up are as follows:-

A. Pumping and Skimming Techniques

- Applicable to shorelines that are heavily oiled.
- Often the first step in cleaning a heavily contaminated shoreline.
- Preferred option because it results in fluid wastes that are relatively free of sediments and debris, which are more easily dealt with in disposal.
- Pumping and skimming techniques can also be used in conjunction with flushing techniques.

B. Flushing Techniques

- Use water or steam to flush oil from the beach, and direct it to a recovery location.
- Applicable to heavily contaminated beaches, and substrates that are relatively impermeable (e.g., mud and saturated beaches, boulders, and man-made structures) that will not allow the flushed oil to penetrate the beach surface.
- Typically carried out in conjunction with a skimming operation. The flushed oil is directed downslope to skimmers positioned at the water's edge, with booms deployed around the skimmers to prevent any loss of the water.
- Options of using low or high pressure water, and of using ambient temperature water versus warm water or steam.
- Low pressure, cold water is generally the least effective, particularly with sticky oils and emulsions, but is least harmful on the environment.
- High pressure water and heated water and steam are more effective, but may remove and/or kill beach-dwelling organisms.

Reviewed By : Capt Pankaj Sinha	Issue No.	: 0	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 43 of 98

C. Sediment Removal Techniques

- Applicable to a variety of shoreline types, and in particular, when the shoreline is heavily contaminated, though likely to cause the greatest environmental impact
- The requirements are access for the heavy equipment required for transporting away oily debris and sediments for disposal and a surface which is able to support heavy equipment
- An important factor to consider is the depth of oil penetration
- Important to limit the depth of material removed in order to minimise disturbance to the beach, and to minimise disposal requirements
- The best option is to use manual labour to pick up the oily sediment and mechanical means to transport it away

D. Biodegradation Techniques

- Generally refers to "active" bioremediation, where nutrients and/or microorganisms are applied to enhance natural degradation
- Generally suitable for areas that are lightly oiled, especially lightly oiled salt marshes and tidal flats where the use of equipment could increase the environmental effects by forcing oil into the substrate
- It can also be used as a final clean-up step following more active efforts

The shoreline clean-up operation is normally not an emergency operation as is the case with an oil spill on open water. A clean-up project can last many weeks or months depending on the amount of oil spilled. Many wrong decisions can be made in planning and carrying out a shoreline clean-up operation. The contingency plan must be used in combination with consulting experts with experience of shoreline clean up. The agencies such as NIO, NEERI, Ports and Oil companies have experts with experience which is relevant for the specific oil spill situation and they should be consulted prior undertaking shoreline clean-up.

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 44 of 98

3.6 Storage and disposal of oil and oily waste

After the natural degradation by coagulation and evaporation of oil on water, residual oil and waste material collected during a Tier 1 response will be disposed off by in-situ or terrestrial burning.

	Type of material	Separation methods	Disposal methods
LIQUIDS	Non-emulsified oils	Gravity separation of free	Use of recovered oil as fuel
LIQUIDS	Non-emuisined ons	water	or refinery feedstock
		Emulsion broken to	Use of recovered oil as fuel or
		release water by ;	refinery feedstock.
	Emulsified oils	- Heat treatment	Burning
		- Emulsion breaking	Return of separated sand to
		chemicals	source.
		- Mixing with sand	
		Collection of liquid oil	Use of recovered oil as fuel or
		leaching from sand during	refinery feedstock.
		temporary storage	Direct disposal
SOLIDS	Oil mixed with sand	Extraction of oil from sand	Stabilization with inorganic
SOLIDS		by washing with water or	material.
		solvent	Degradation through land
		Removal of solid oil by	farming or composting.
		sieving	Burning
		Collection of liquid oil	Direct disposal.
		leaching from beach	Burning
	Oil mixed with cobbles,	material during temporary	
	pebbles or shingle	storage	
	peoples of similar	Extraction of oil from	
		beach material by washing	
		with water or solvents	
		Collection of liquids	Direct disposal.
	Oil mixed with wood,	leaching from debris	Burning.
	plastics, sea weeds,	during temporary storage	Degradation through land
	sorbents	Flushing of oil from debris	farming or composting for oil
		with water	mixed with sea weeds or
			natural sorbents.
	Tar balls	Separation from sand by	Direct disposal
		sieving	Burning

Location for Dug Pond for temporary storage of oily water:

To store the contaminated oily water, temporary dug pond will be excavated for storage of oily water. It is expected that 20 times volume of oil & water mixture will be generated if oil spill happen in the sea. Storage capacity of dug pond of volume 14000 m3 considering spill of level 1 (Tier-1) is required.

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 45 of 98

Location Identified for Dug Pond behind Maruti Yard (Lat. 22° 45.252'N, Long. 69° 41.093'E) is roposed.

Size of Dug Pond to be provided : 100 mtr X 100mtr X 1.5mtr

Total storage capacity (m3) : considering 20 times oily water @ 700 m3 = 14000 m3

Once the contaminated mixture of oil and water is stored, the same will be transferred via tanker to following location. Following are the steps require to be followed.

1. Oil Water Separator: Capacity 25 m3/hr.

2. Effluent Treatment Plant: Capacity 120 KLD

3. Parallely oil recyclers will be approached for the collection and transportation of the oily water.

4. Contaminated Soil / Sediments will be directly sent to the Treatment Storage and Disposal Facility (TSDF) site. List of Oil recyclers and TSDF sites are shown in Annexure – 15

5. Different types of equipment & manpower require for creating dug pond:

Reviewed By : 0	Capt Pankaj Sinha	lssue No.	:	01	Issued On : 01.10.2019
Approved By : 0	Capt. Anubhav Jain	Revision No.	:	04	Page 46 of 98

Name of Equipment	Quantity	Primary Responsibility of Equipment & Material	Secondary Responsibility
Excavator	10 Nos.	Marine Dept.	MHS section (Dry Cargo) / Asset Department / Procurement
JCB Machines	10 Nos.	Marine Dept.	ES Civil / Asset Department / Procurement
Material			
HDPE Liners for dug pond	10600	Marine Dept.	Stores & Procurement
pond	Sq.mtr.		

In phase wise manner stored oily water will be treated at both the above facility to separate oil from water to the possible extent. Whereas, after recovery of oil from water, water confirming to the effluent discharge limit of oil (< 10 ppm) will be discharged in to sea.

Whereas in case oily water will not capable of treat at OWS & ETP will be dispose through sending it to registered recyclers, for which APSEZL have already done tie up with the registered recyclers as mentioned in **Annexure – 15**.

APSEZL have also done necessary tie up with various institutes/agency/NGO as mentioned in **Annexure – 16** for providing service for rescue & rehabilitation of oil socked birds as well as restoration of mangroves, when oil reaches to the sea shore and mangrove areas during oil spill. Mobile van / vehicle require for rescue of oil socked birds to transfer from affected area to treatment facility center.

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 47 of 98

4 Equipment

4.1 Marine oil spill response equipment

Detailed in Annexure 3

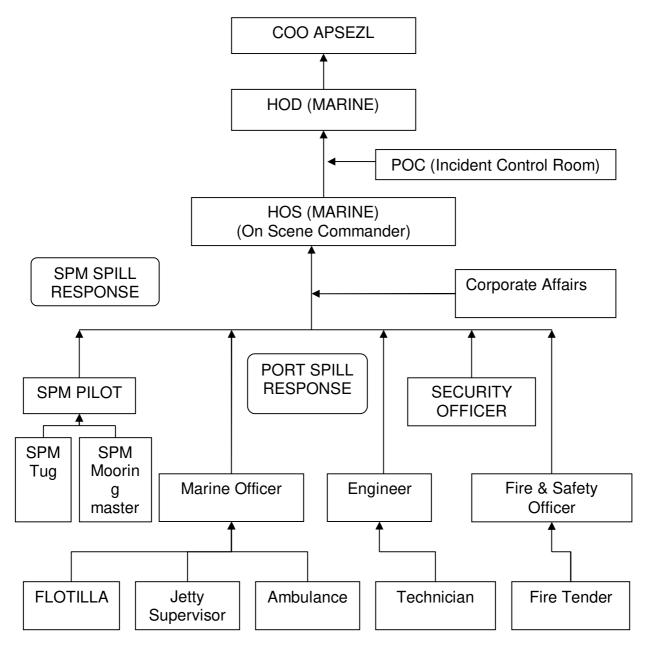
4.2 Inspection, maintenance and testing

The equipments are being kept in working condition. Routine inspection, maintenance and testing performed as per the stipulated requirements.

4.3 Shoreline equipment, supplies and services

The shoreline clean-up equipment which are essential for the oil removal operations at beaches are as follows:-

- Protective clothing for everybody (including boots and gloves), spare clothing.
- Cleaning material, rags, soap, detergents, and brushes.
- Equipment to clean clothes, machinery, etc., with jets of hot water.
- Plastic bags (heavy duty) for collecting oily debris.
- Heavy duty plastic sheets for storage areas especially for the lining of temporary storage pits.
- Spades, shovels, scrapers, buckets, rakes
- Ropes and lines
- Anchors, buoys
- Lamps and portable generators
- Whistles
- First Aid material.


Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 48 of 98

5 Management

5.1 Crisis manager and financial authorities

The COO of APSEZL is the final authority of the oil spill response in case of a Tier 1 scenario. He is responsible for raising the level of the response if required and summoning additional help. The authority of all financial decisions rest with him.

5.2 Incident organization chart

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 49 of 98

5.3 Manpower availability (on-site, on call)

In an event of incident Kandla Port Trust, Gujarat Maritime Board, Gulf of Kutch Ports, District and Regional plans are deemed to have been implemented. Adani Ports and Special Economic Zone Limited (APSEZL) manpower and resources will be put at the disposal and will be deployed as required, provided APSEZL is the polluter and spill is within the Port Limits.

In the event of APSEZL not being the polluter and any event outside the port limit of Adani Port, APSEZL equipment will be subject to mutual assistance plan and it will be the responsibility of the above forum.

5.4 Availability of additional manpower

Similarly in the event of APSEZL being the polluter, additional manpower and supplies can be requested from the resources which are part of this forum.

A numbers of private parties have their labor force working round the clock in the port and on call these can be available.

5.5 Advisors and experts - spill response, wildlife and marine environment

APSEZL, being the nodal agency in this LOS-DCP, will function as the main agency. In the event of the emergency getting raised to higher tier, i.e. in case the incidence becomes a national disaster, the help and advice of Indian Coast Guard will be taken.

5.6 Training / safety schedules and drill / exercise programme

Training of all APSEZL staff who may get involved in implementing this plan is acknowledged. In house and external facilities (of ICG) are used periodically to impart training as per matrix below. Marine Manager has been appointed as training coordinator and custodian of oil pollution equipment. He shall organize training, drills and inspection of equipment as per the plan in force.

Training Module	Duration	Frequency	Participants	Remarks
IMO Model Course	2-5 days	Once	Key persons	By Maritime Training
				Institute
Oil Spill	1-5 days	Once every 5	Key persons	Coast Guard
		years		
Oil spill equipment	1-5 days	Once every Year	Managers	In house
Oil	1 day	Once every year	Managers &	In house for in-depth
spillManagement			junior staff	knowledge
course				
Notification	1-2 hours	6 months	Operational	Check systems &
exercise			staff	communication
Table top	2-6 hours	12 months	Managers	Interactive discussions
Incident	6-8 hours	12 months with	All	Mock drill
		others		

Number of IMO Level-1 and IMO Level-2 qualified staff available with Adani Ports and SEZ Ltd, Mundra:

IMO Level-1 - 28 **IMO Level-2 -** 04

Reviewed By	:	Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 50 of 98

6 Communications

6.1 Incident control room facilities

Detailed in Annexure 3

6.2 Field communication equipment

Detailed in Annexure 3

6.3 Reports, manuals, maps, charts and incident logs

A copy of the relevant manual is kept with HOD – Marine. Maps/ Charts of APSEZL are kept in Marine Control Tower and attached in Annexures

Action and operations

7 Initial procedures

7.1 Notification of oil spill to concerned authorities

The emergency (due to spill) should be initiated by the first person noticing it by activating the fire alarm from the nearest call-point or by contacting the fire control room immediately on the internal telephone or through mobile phone or through VHF Channel.

The SPM Pilot or On Scene Commander will report the spill to the Marine Control Room.

7.2 Preliminary estimate of response tier

The first few minutes after the incident / accident are invariably the most critical period in prevention of escalation. Therefore the person available at or near the incident site (and often responsible for carrying out that particular activity) on round the clock basis play a vital role in an emergency. The SPM Pilot or On Scene Commander will report the spill to the control room along with his estimate of the response tier.

7.3 Notifying key team members and authorities

Statutory First Information Report (FIR - given in annexure 1) is to be communicated by fastest means possible to President, GMB port and CG at Porbandar followed by full Pollution Report (POLREP – given in annexure 2). The report is to be updated, should the oil spill not be contained and likely to increase to Tier 2

7.4 Manning Control Room

Auxiliary control center is located at Port Operation Centre. Escalation of emergency if any is monitored here. Statutory reporting procedures of FIR and POLREP of developing situation and action taken are also sent from this center. The detail of the contacts to whom the information is to be given is placed at Annexure 4.

7.5 Collecting information (oil type, sea / wind forecasts, aerial surveillance, beach reports)

Marine Manager has the responsibility of arranging the collection of the relevant information which will help in mitigating the emergency

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 51 of 98

7.6 Estimating fate of slick (24, 48, 72 hours)

Considering the prevalent tidal stream, wind and weather conditions, section 8.3 is to be used in estimating the fate of the slick

7.7 Identifying resources immediately at risk, informing parties

Depending on the quantity of fluid spilled and the prevalent wind & weather conditions, the resources / facilities immediately at risk have to be identified by the On scene commander and the concerned parties informed.

8 Operations planning

8.1 Assembling full response team

On being appraised of the spill, the duty marine officer will inform the marine manager, who will, in turn initiate the assembly of the complete response team which essentially involves relaying information to all relevant personnel, parties and authorities and informing them of the initial response requirements.

8.2 Identifying immediate response priorities

Depending on the initial estimated response tier and the prevalent weather conditions, the marine manager, in consultation with the on scene SPM pilot / marine officer will identify the immediate resources at risk and the response priorities.

8.3 Mobilizing immediate response

The Manager - Marine will initiate the mobilization procedure of the spill equipment, resources and personnel depending on the scale of emergency at hand.

8.4 Media briefing

No other person is authorized to communicate with any external party by any means whatsoever unless expressly permitted by the HOD – Marine or COO, APSEZL.

8.5 Planning medium-term operations (24, 48 and 72 hour)

The HOD – Marine will plan the subsequent action to be taken in response to the tier 1 spill after the initial response is well under way and its consequences / effectiveness are duly evaluated.

8.6 Deciding to escalate response to higher tier

After carefully assessing the scenario and appraising the efficiency of the initial response in the prevalent conditions, the HOD – Marine will decide whether or not to escalate the response.

8.7 Mobilizing or placing on standby resources required

It is recommended that in case of a doubt (as the exact estimate of the quantity of oil spilled is quite difficult and the boundaries between the tiers will inevitably be blurred) it is important to be prepared to involve the next higher tier from the earliest moments. It is easier to stand down an alerted system than to try to escalate a response by calling up unprepared reserves at a late stage.

Reviewed By	:	Capt Pankaj Sinha	lssue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 52 of 98

8.8 Establishing field command post communications

Communications between the Emergency Response Center/ Marine Control room and marine personnel during the response to any oil spillage will be primarily by VHF marine band radio on Channel 73 or 77

Communications between the Marine Control Room and other vessels will be established on VHF radio Channel 16 and will thereafter be conducted on Channel 73 / 77.

Use of cellular telephones will be minimized.

Communications between the Emergency Response Center/ Marine Control Room and external authorities and organizations will be undertaken by telephone and facsimile.

9 Control of operations

9.1 Establishing a Management team with experts and advisors

Detailed in Annexure 4

9.2 Updating information (sea, wind, weather forecasts, aerial surveillance, beach reports)

The Marine Control Room is well equipped in assimilating data on weather and its forecasts. In case of a Tier 1 response, aerial surveillance and beach reports are not deemed to be essential

9.3 Reviewing and planning operations

Ongoing response and its influence in mitigating the situation will have to be constantly under review in order to contain the spill at the earliest.

9.4 Obtaining additional equipment, supplies, manpower

While deciding not to elevate the tier of the response the HOD- marine may still request additional resources from nearby port facilities which are essentially members of the common forum and are obliged to assist.

9.5 Preparing daily incident log and management reports

A complete report will be submitted by the Marine Manager to the HOD (Marine) every morning (in case the response extends to more than 1 day). Format for the above report in Annexure 9

Format for the above report in Annexure 9

9.6 Preparing operations accounting and financial reports

The Port's accounting department will assess the expenditure incurred in the ongoing operation and submit a report to the President's office.

9.7 Preparing releases for public and press conferences

The COO's office, HOD – Marine and the Corporate communications cell will formulate the requisite press releases from time to time and hold press conferences.

Reviewed By	:	Capt Pankaj Sinha	lssue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 53 of 98

9.8 Briefing local and government officials

The COO's office, HOD – Marine and the Corporate communications cell will formulate the requisite reports to brief local and government officials..

10 Termination of operations

10.1 Deciding final and optimal levels of beach clean-up

If at all a distant beach is affected, the COO APSEZL office will decide the optimal levels of cleanup in consultation with the conservator of the port – Gujarat Maritime Board Port Officer.

10.2 Standing down equipment, cleaning, maintaining, replacing

Considering the natural disintegration of the residual oil on water after the cleanup of the bulk amount, The HOD – Marine will decide when to stand down the response. The resources which have been used will have to be re-instated to the original condition by elaborate cleanup or replacement.

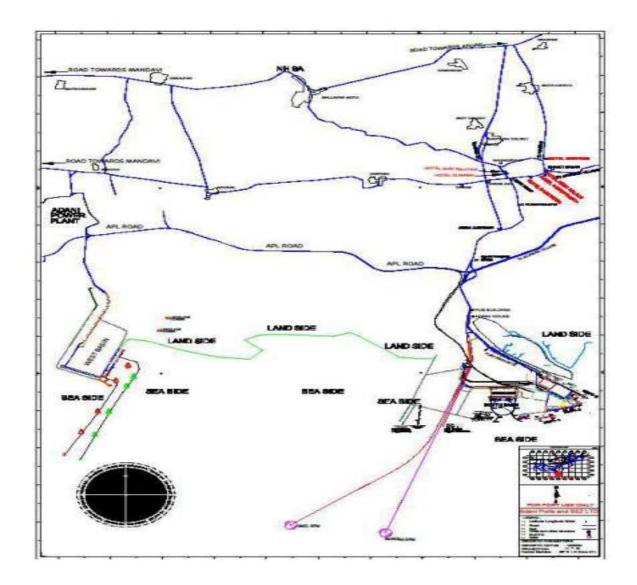
10.3 Preparing formal detailed report

The COO's office, HOD – Marine and the Corporate communications cell will formulate the requisite reports to brief local and government officials and media.

10.4 Reviewing plans and procedures from lessons learnt

A complete spill response report will be produced by the Marine manager providing comprehensive and all-inclusive details of the circumstances leading to the spill, initial response and consequent affect of the same, subsequent follow up, effect of prevailing weather, adverse situations, safety issues, difficulties faced and lessons learnt.

Requisite changes will be affected to this plan on basis of such report.

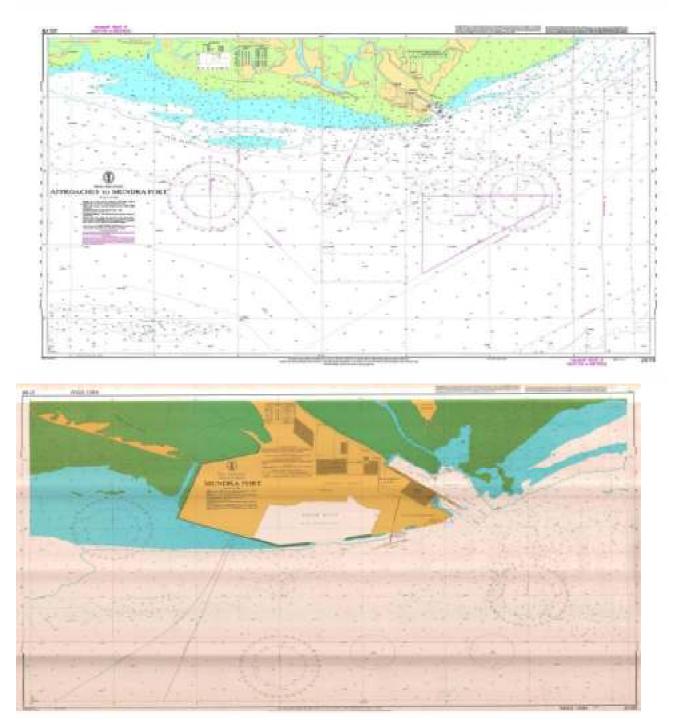

Such a report will also be prepared by the marine manager after each drill or training session and requisite modification(s) incorporated to the plan in order to enhance the overall efficacy of the same.

Reviewed By : Capt Pankaj Sinh	a Issue No.	:	01	Issued On	:	01.10.2019
Approved By : Capt. Anubhav Ja	in Revision No.	:	04	Page	e 54	of 98

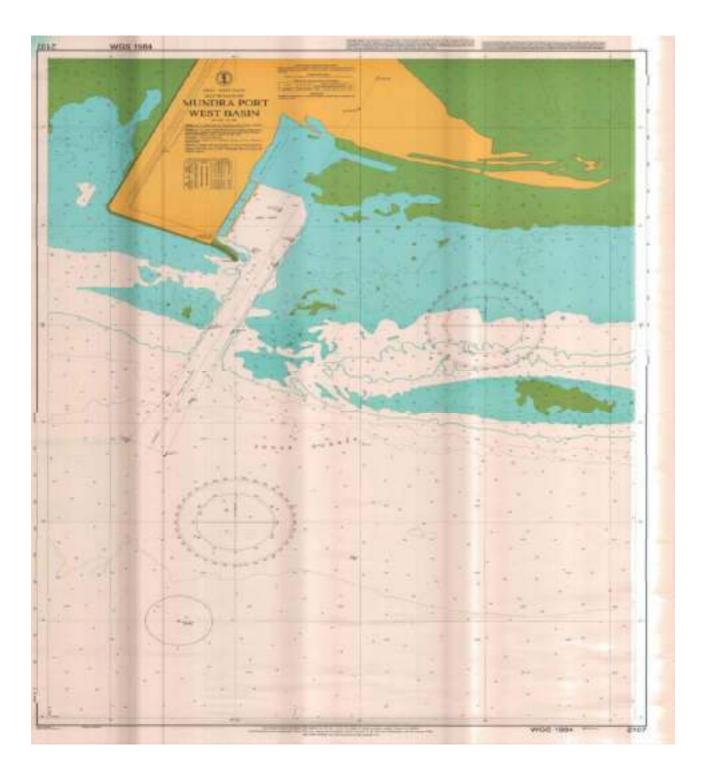
Data Directory

Maps / Charts

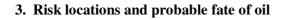
1. Coastal facilities, access roads, hotels etc.

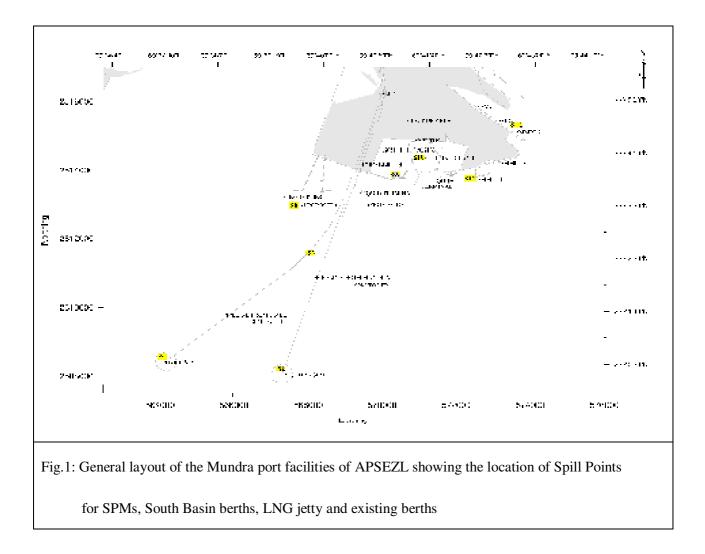


Telephones: Detailed in Annexure 4

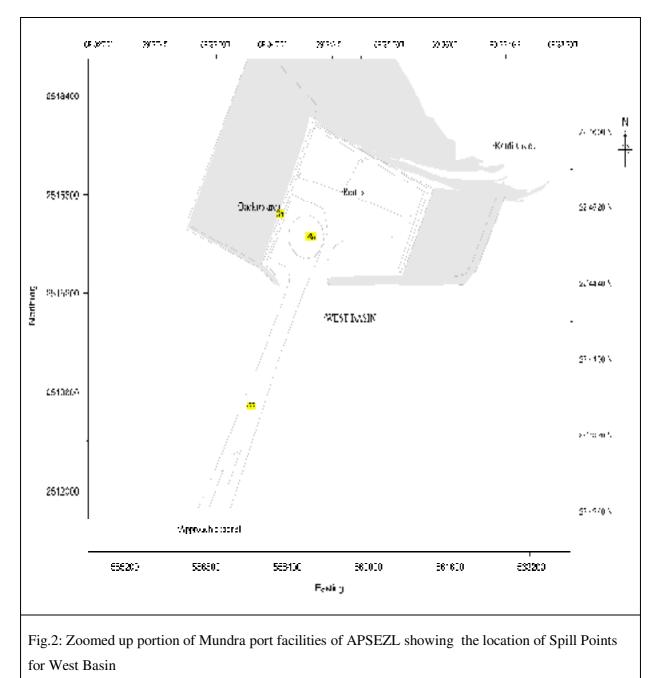

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.201	9
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 55 of 98	

2. Coastal charts, currents, tidal information (ranges and streams), prevailing winds

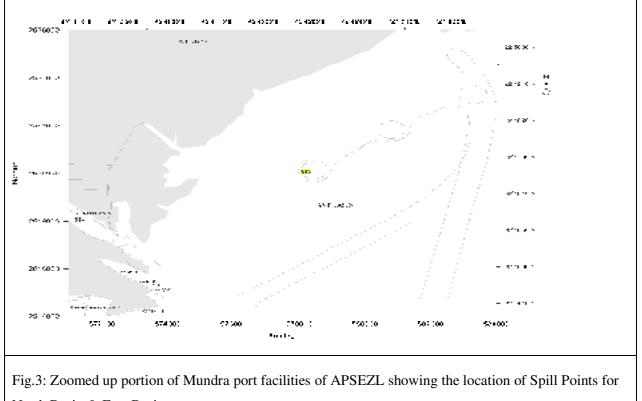

Currents, tidal information (ranges and streams) : Detailed in Annexure- II, Annexure- III and Annexure- IV (Volume 2) of Oil Spill Risk Assessment

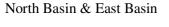


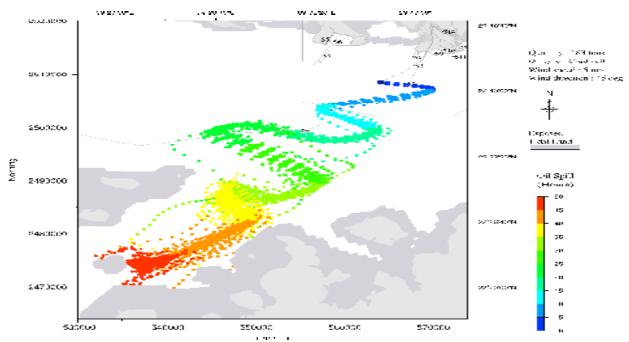
Reviewed By : Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	:	04	Page 56 of 98



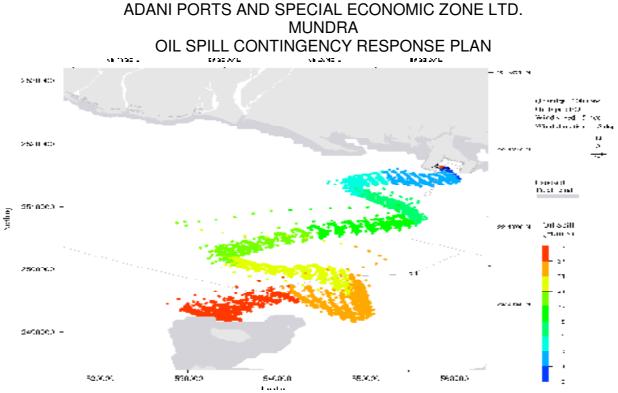
Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 57 of 98



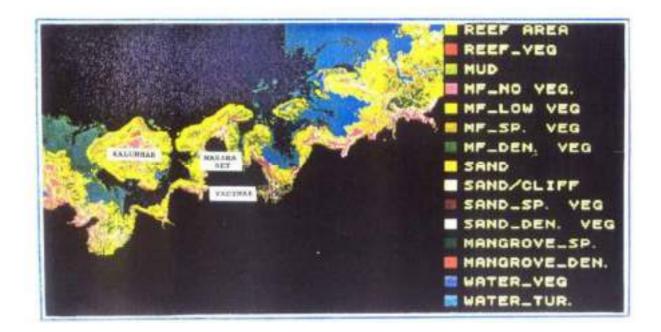



Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 58 of 98

Reviewed By : Capt Pankaj Sinha	lssue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 59 of 98

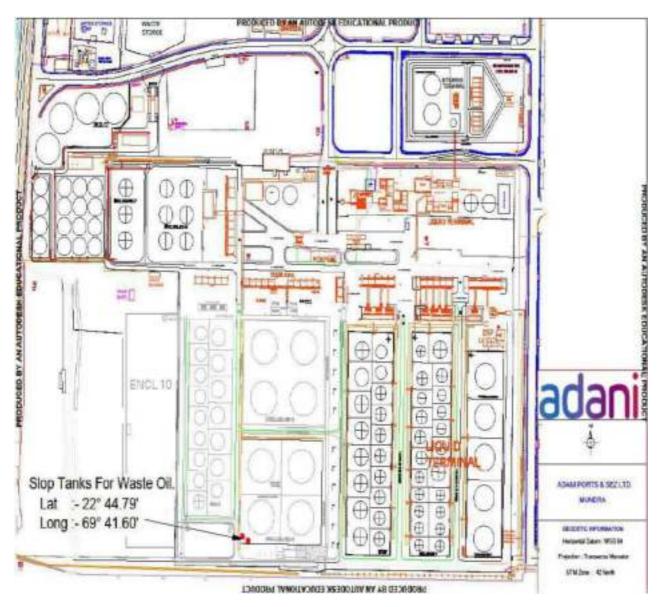


Oil Spill trajectory due to instantaneous crude oil leakage of 700 t (due to collision) at spill point S1 (HMEL SPM) after 50 hours during flood condition of the neap tide


Reviewed By	:	Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 60 of 98

Oil Spill trajectory due to instantaneous FO leakage of 700 t (due to hull failure/ fire / explosion) at typical berth location in the West Basin

For Risk locations and probable fate of oil refer Annexure- V (Volume 2) of Oil Spill Risk Assessment.


Shoreline resources for priority protection

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 61 of 98

Oil and Waste Storage / Disposal sites

Oil and Waste storage / Disposal tank No. 46, 109 and 110 are available within Liquid Tank farm.

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 62 of 98

ADANI PORTS AND SPECIAL ECONOMIC ZONE LTD. MUNDRA OIL SPILL CONTINGENCY RESPONSE PLAN Sensitivity Maps/ Atlas

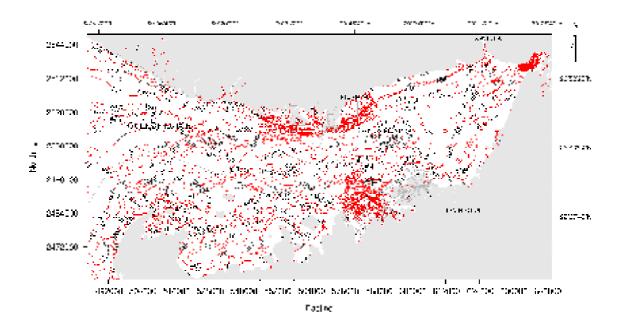


Fig.A1.1 Terrain features of study domain.

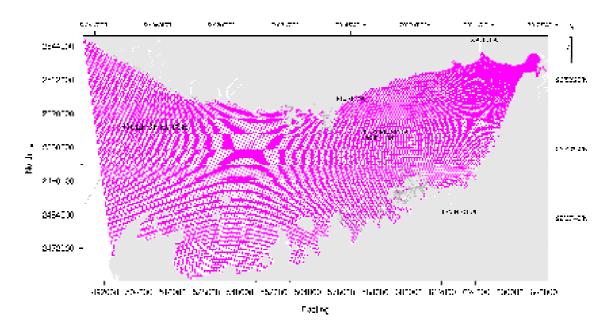
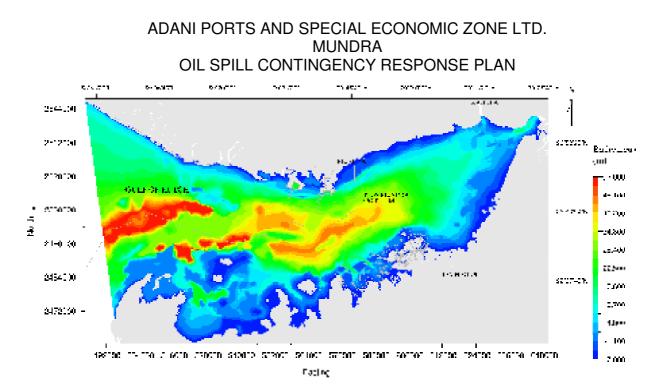



Fig.A1.2 Computational grid

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 63 of 98

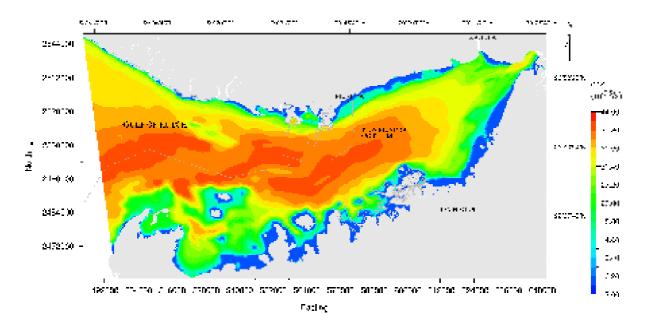


Fig.A1.4 Chezy's coefficient

Reviewed By : Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	:	04	Page 64 of 98

Lists

1. **Primary Oil spill Equipment:** booms, skimmers, spray equipment, dispersant, absorbents, oil storage, Radio communications etc.

Detailed in Annexure 3

2. Auxiliary Equipment: Tugs and work boats, aircraft, vacuum trucks, tanks and barges, loaders and graders, plastic bags, tools, protective clothing, communication equipment etc.

Detailed in Annexure 3

3. Support Equipment: Aircraft, communications, catering, housing, transport, field sanitation and shelter etc. (Availability, contact, cost and conditions)

Not applicable

4. Sources of Manpower: Contractors, local authorities, caterers, security firms (Availability, numbers, skills, contact, cost and conditions)

Refer Para 5.3

5. Experts and Advisors: Environment, safety, auditing (Availability, contact, cost and conditions)

Detailed in Annexure 4

6. Local and National Government contacts: Name, rank and responsibility, address, telephone, fax, telex.

Detailed in Annexure 4

Data

1. Specification of Oils commonly traded

At the liquid berth, the representative products that would be handled are petroleum products like FO/ HSD / SKO / MS / CBFS / CPO / Naphtha etc. Vessels calling at the port will be having FO and HSD for their propulsion requirements.. The products like MS, Naphtha etc are oils of non – persistent nature; they tend to evaporate fast and will not stay long on the surface of the sea waters. Hence spill studies have been carried out for FO and HSD spills at the berths.

At the SPMs, Crude oil unloading takes place.

Physical and Chemical Properties of products handled at the SPMs, Berths and of the propulsion fuels of the ships / tankers

Data on the properties for the hydrocarbons / products handled at the jetty is required for quantitative hazard identification and consequence calculations. The properties of the FO and HSD, the petroleum hydrocarbons likely to be spilled due to the operations at the jetty are given in Table-3.1.

Reviewed By : Capt Pankaj Sinha	lssue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 65 of 98

ADANI PORTS AND SPECIAL ECONOMIC ZONE LTD. MUNDRA OIL SPILL CONTINGENCY RESPONSE PLAN Table-3.1: Properties of Crude Oil, FO and Diesel

Sl. No	Chemical	Boiling Range (° C)	Specific Heat of Liquid (J/Kg ° K)	Heat of Evaporation (x 10 ⁵ J/Kg)	Heat of Combustion (x 10 ⁵ J/Kg)
1	Crude Oil	IBP - 700+	2385	3.4	425
2	HSD	200 - 350	2889	4.65	448
3	Fuel Oil	180 - 450	2500	3.4	452

The following characteristics of oil are used for modelling study:

(a) Crude Oil

Sp. Gr = 0.82 to 0.88Surface Tension = 3.0 e-03Molar Volume = 0.002Viscosity: 275 CST at 37.8 deg C Wax content: 12 - 19 %Pour point of untreated crude: 30 deg C Pour point of treated crude: 18 deg C

(b) FO

Sp. Gr = 0.92Boiling point = > 260° C Vapor pressure = < 0.1 psia at 21° C

(c) HSD

Sp. Gr = 0.86Pour point = 6° C - 18° C Vapor pressure = 2.12 to 26 mm Hg at 21° C

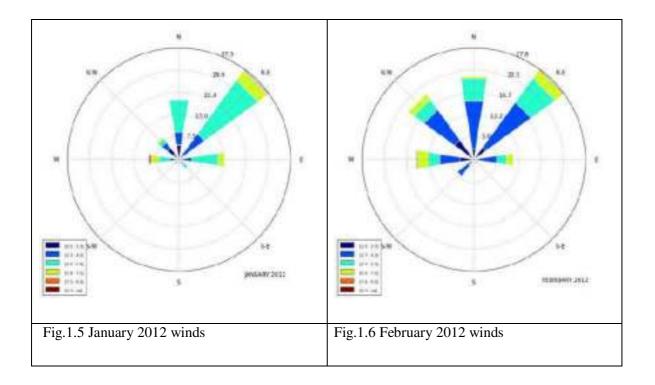
2. Wind and weather

Meteorological and Oceanographic Conditions

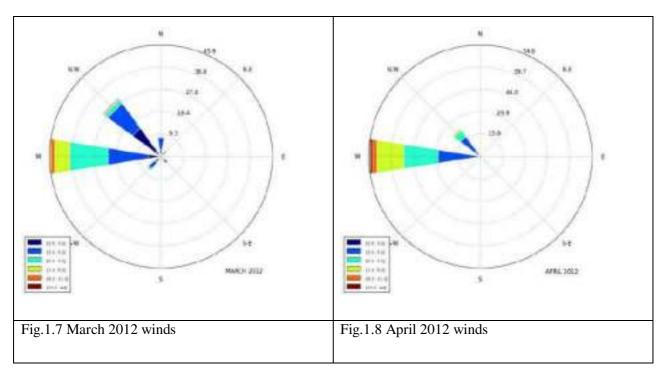
The met-ocean conditions have been previously ascertained at several stages in the course of various studies conducted in past in respect of Mundra port projects. Flow modeling for the Mundra port location has been covered in the model developed by Environ, India, who have developed the model for whole of Gulf as relevant to Mundra region. It has been observed during model studies that flow regime does not have significant changes due to the proposed developments. The following are the main hydo-meteorological parameters for planning and designing of the marine facilities described below.

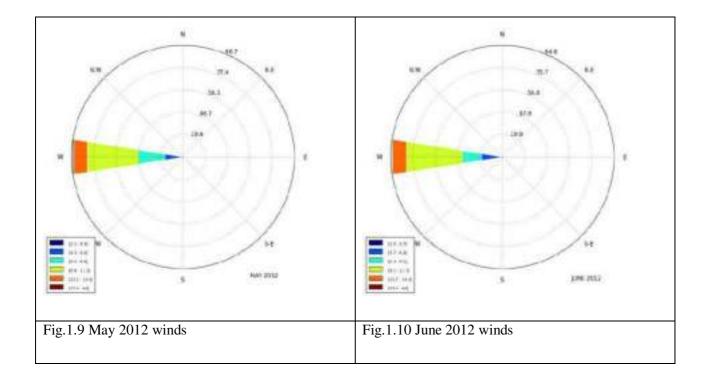
Rainfall and Temperature

The Kutch is a semi-arid region with weak and erratic rainfall confined largely to June-October period. With a few rainfall days, the climate is hot and humid from April till October and pleasant during brief winter from December to February. Although the monthly mean maximum temperature recorded is 37°C during 2005, it occasionally exceeds 40°C. Rainfall alone forms the ultimate source of freshwater resource to the region. The average rainfall at Mundra is about 400 mm/year.

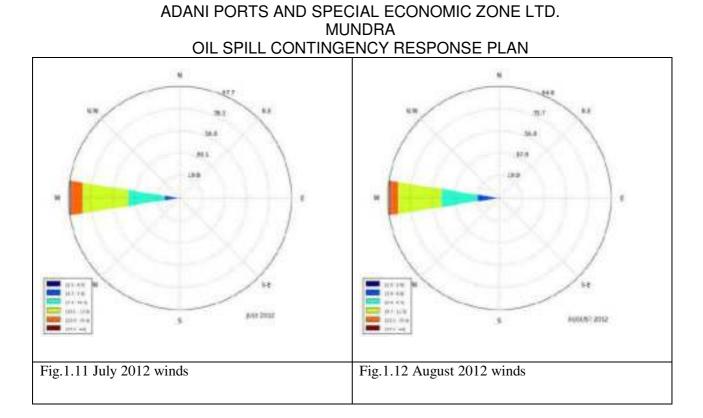

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 66 of 98

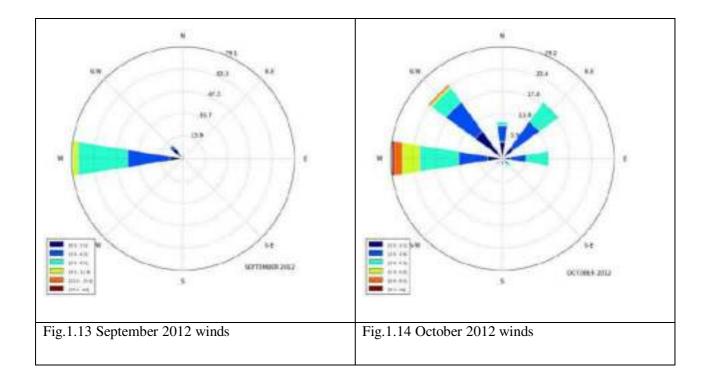
Cyclones

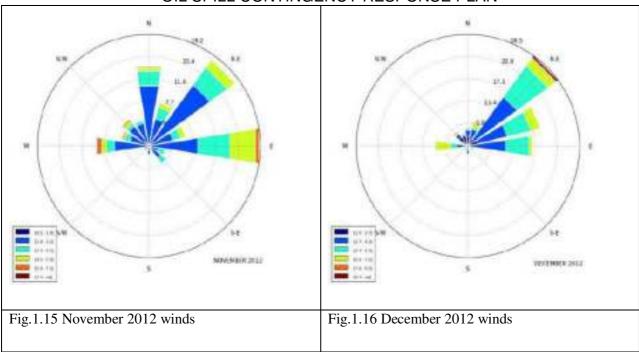

Cyclonic disturbances strike North-Gujarat, particularly the Kachchh and Saurashtra regions, periodically. These disturbances generally originate over the Arabian Sea and sometimes the Bay of Bengal. Generally during June, the storms are confined to the area North of 15°N and East of 65°E. In August, the initial stages, they move along the northwest course and show a large latitudinal scatter. West of 80°E, the tracks tend to curve towards North. During October the direction of movement of a storm is to the West in the Arabian Sea. However, East of 70E some of the storms move North-Northwest and later recurves North East to strike Gujarat-North Mekran coast.

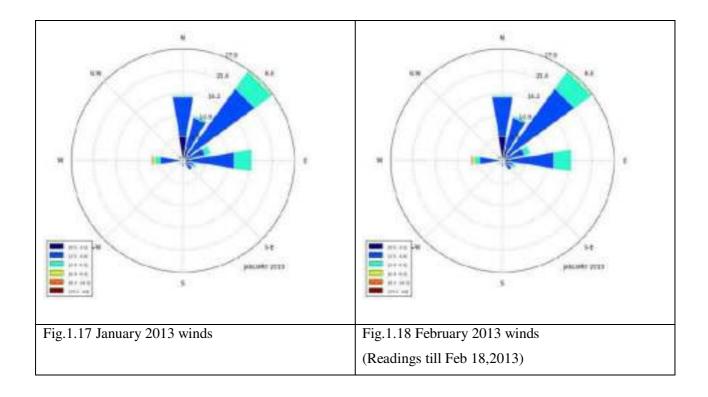

Wind

There are strong winds at times at Mundra Port. The month wise wind rose diagrams for the year 2012 and for the months of January and February of the year 2013 are given below. In the period lasting over months March to May the wind direction is generally SWW (225° - 250°) and velocity varies from 20 to 25 Knots. From June through August, the wind direction is predominantly SW and velocity varies from 25 to 30 Knots with short gusts going up to 35 to 40 Knots. Towards end of September and through October wind direction changes to NE with velocities ranging from 7 to 10 Knots. Direction remaining same the velocity varies 10 knots to 25 Knots in the period November to January. February is the calm period when wind direction is Southerly with velocity in the range of 7 Knots. Stormy weather may generate winds having velocity up to 100 Knots which should be taken as the worst case scenario for design of tall structures and heavy duty cranes.




Reviewed By : Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	:	04	Page 67 of 98




Reviewed By :	Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By :	Capt. Anubhav Jain	Revision No.	:	04	Page 68 of 98

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 69 of 98

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 70 of 98

Tides

The tidal planes were assessed in 1998 and are as shown in Table below.

The Highest Astronomical Tide (HAT) is estimated to be about +6.4 m above chart datum (CD), and the Lowest Astronomical Tide (LAT) to be at 0.0 m CD.

Tide	Height (m) above CD
Mean High Water Springs	5.8
Mean High Water Neaps	4.6
Mean Low Water Neaps	2.1
Mean Low Water Springs	1.0

Currents

Currents in the approaches to the port are dominated by the tidal flows, with predictable variations over diurnal, monthly and annual time scales. Currents in this part of the Gulf flow parallel to the natural sea-bed contours. Currents can be relatively strong, with speeds in excess of 3.0 Knots reported at sometimes of the year. The Admiralty Chart shows currents off Navinal point to be 3.0 Knots East & West bound. It is observed that the currents are usually aligned with the bed contours and are stronger in deeper waters off the coast. The impact of future development over the existing coast-line can be determined by the change in current speed resulting from the proposed developments.

Waves

In past HR Wallingford (HRW) has studied the wave climate considering wave energy from locally generated waves and swell propagating in to the Gulf of Kutch from the Arabian Sea. The results of the study carried out by HRW are presented in the Table below.

Direction Sector (°N)	Return Period (years)	Inshore Direction (°N)	Hs (m)	T2 (sec)
	1	222	1.2	5.0
	5	222	1.4	5.3
210	20	221	1.6	5.8
	100	221	1.8	6.1
	1	226	1.5	5.4
	5	226	1.7	5.8
240	20	225	1.8	6.1
	100	225	2.0	6.5
	1	239	1.4	5.5
	5	236	1.7	6.3
270	20	236	1.8	6.7
	100	235	2.0	7.4
	1	240	0.8	5.2
	5	240	0.9	5.6
300	20	239	1.0	6.2
	100	238	1.2	6.7

Design Waves at Mundra

Atmospheric stability is an important factor for predicting the dispersion characteristics of gases/vapours into the surrounding environment. Change in atmospheric stability is a direct consequence of the vertical

Reviewed By	:	Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 71 of 98

temperature structure. The stability effects are mathematically represented through Pasqual parameters. The following stability classification is employed:

Stability Class	Atmospheric Condition			
А	Very Unstable			
В	Unstable			
С	Slightly Unstable			
D	Neutral			
E	Stable			
F	Very Stable			

Condition of atmospheric stability is estimated by a suitable method that uses dispersion parameters viz., vertical temperature gradient, profile of the winds and roughness factor. The roughness factor for the Mundra area is small since it mainly comprises of plain land.

The following meteorological information has been taken in the calculations for the Mundra area (GMB-2010):

Average ambient temperature	: 30°C
Average wind speed	: Wind data for the whole year 2012 is available and is used
Stability condition	: F (Very Stable)

3 Information sources

This plan is prepared in accordance with:

- a) Marine Environmental Impact Assessment of SPMs, COTs and connecting pipelines of APSEZL at Mundra dated February 2001, prepared by National Institute of Oceanography, Mumbai.
- b) Report on Risk assessment study and On-site disaster management Plan for SPMs, COTs and connecting Pipelines of Adani Ports and Special Economic Zone Limited, by TATA AIG Risk Management Services Limited, dated February 2001.
- c) HAZOP study report of SPM Terminal pipeline project by Intec Engineering, dated 26/02/2004.
- d) IPIECA guide to Contingency planning for oil spills on water.
- e) Oil spill risk assessment and contingency plan study done by M/s Environ Software Pvt. Ltd. (Copy enclosed)

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 72 of 98

ANNEXURES

Particulars of person, office reporting Tel No. Date & time of incident			
Date & time of incident			
Spill location			
Likely cause of spill			Witness
Initial response action			Ву
Any other information			
This FIR is to be sent to Marine offence not to report oil pollution This FIR is to be followed by co	on incident.		ommunication possible. It is an
Following POLREP report to th required:	ne Governmen	nt through nearest (CG information will also be
Identity of informant			
Time of FIR			
Source of spill			
Cause of spill			
Type of spill			
Colour code information (from	CG)		
Radius of slick			
Tail			
Volume			
Quantity			
Weather			
Tide / current			
Density			
Layer thickness			
Air / Sea temp.			
Predicted slick movement			
Size of spill classification (Tier	1, 2 or 3)		

Reviewed By	:	Capt Pankaj Sinha	lssue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 73 of 98

ADANI PORTS AND SPECIAL ECONOMIC ZONE LTD. MUNDRA

OIL SPILL CONTINGENCY RESPONSE PLAN

POLREP

ANNEXURE 2

In case of an oil spill, APSEZ will provide information to Commandant Coast Guard District 1 Porbandar COMDIS 1 and Coast Guard Station Mundra in the following format:

SN.	Parameter	Data
1.	Identity of the informant	
2.	Time of information receipt	
3.	Source of Spill	
4.	Cause of Spill	
5.	Type of oil	
6.	Colour code information	
7.	Configuration	
8.	Radius	
9.	Tail	
10.	Volume	
11.	Quantity	
12.	Weathered or Fresh	
13.	Density	
14.	Viscosity	
15.	Wind	
16.	Wave Height	
17.	Current	
18.	Layer Thickness	
19.	Ambient air temperature	
20.	Ambient sea temperature	
21.	Predicted slick movement	
22.	Confirm Classification of spill size	
	tional Information :	

Reviewed By	: Capt Pankaj Sinha	Issue No. : 0 ⁻	Issued On : 01.10.2019
Approved By	: Capt. Anubhav Jain	Revision No. : 04	Page 74 of 98

LIST OF RESOURCES AVAILABLE					AN	ANNEXURE 3		
Tugs Available f	Tugs Available for Oil Spill Containment							
Name of Tug	Туре	ВНР	OSD	AFFF	Capacity (cubm/Hr)	BP		
Dolphin No. 3	ASD	2200 X 2	3000 ltr	2000 ltr	1200	55		
Dolphin No. 4	ASD	2200 X 2	3000 ltr	2000 ltr	1200	55		
Dolphin No. 7	ASD	2200 X 2	3000 ltr	2000 ltr	1200	55		
Dolphin No. 10	ASD	3000 X 2	3000 ltr	-	-	70		
Dolphin No. 11	ASD (DSV)	2200 X 2	3000 ltr	2000 ltr	1200	55		
Dolphin No. 14	ASD	3000 X 2	3000 ltr	2000 ltr	1200	70		
Dolphin No. 15	ASD	3000 X 2	3000 ltr	2000 ltr	1200	70		
Dolphin No. 16	ASD	3000 X 2	3000 ltr	2000 ltr	1200	70		
Dolphin No. 17	ASD	3000 X 2	3000 ltr	-	-	70		
Dolphin No. 18	ASD	3000 X 2	3000 ltr	2000 ltr	1200	70		
Khushboo	Fixed screw	401X2	-	-	-	10		

Dolphin No. 3, 4, 7, 10, 11, 14, 15, 16, 17 & 18 are fitted with Oil Spill Dispersant boom and proportionate pump to mix OSD and Sea water as required. Dolphin No.3, 4, 7, 11, 14, 15, 16, 17 & 18 are fitted with a fire curtain and remote controlled fire monitors.

All above eleven Tugs have class notation as Harbour Tugs and are certified to work within the Harbour limits only.

Reception Facility : 12" pipe line, connected to a slop tank at chemical tank farm.

Dolphin 11 has fire fighting system of 1200 m3/hr along with 20 ton lifting "A" frame and diving support facility.

Location of Oil Spill Equipment: The Oil Spill Equipments are stored in SPM Store.

Resources / Equipment Available with APSEZL, Mundra

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 75 of 98

Item	Quantity
Canadyne Fence Boom (Reel model 7296/8496 with Power Pack, Towing	1
bridles and Tow lines - 235 meter	1 no
Power pack with boom reel with hydraulic hoses	2 nos.
Power pack - 20 KV with boom reel with hydraulic hoses	2 nos.
Lamor Side Collector system (Recovery Capacity 123 m ³ / hr)	2 nos.
(Side collector LSC-3C/2300(01CO2-P536). Oil transfer pump OT A 50 with oil	2 sets
transfer hose set	
Lamor Minimax 12 m ³ skimmer	2 sets
Power pack for skimmers with hydraulic hoses	4 nos.
Power pack - 20 KV for skimmers with hydraulic hoses	1 no.
Floating tank (25 m ³)	1 nos.
Foot pumps for floating tank	6 nos
Oil Spill Dispersants	5000 ltr
Portable dispersant storage tank: 1000 Itr capacity	1 no.
Portable pumps	2 nos.
Two – way hydraulic maneuvering panel	2 nos
Oil Containment Boom -Length 2000 metres, Height -1500 mm, Draft-900mm, Free Board-600mm	2000 mtr
Current Buster Boom-Fasflo -75 (for response in fast current)	2 Nos
Skimmer-KOMARA 15 Duplex Skimmer System with floating IMP 6 Pump.	4 Nos
12.5T Flexible Floating Storage Tank (PUA).	3 Nos
Diesel Driven Transfer Pump for Flex Barge	2 Nos
Site Hose Kit for the transfer Pump for the Flex Barge	2 Nos
3" & 2"Hose Adaptor for Transfer Pump and Hose	2 Nos
Shoreline Cleanup Equipment	
Mini Vac System	5 Nos
OSD Applicator - Oil Dispersant Spry Unit (20 Ltr) for use on Beach and Inter Tidal Zones	2 Nos
Startank with Capacity 10000 liter(10m ³)	2 Nos
Sorbent Boom Pack(12.5cm x4 M)	500 mtr
Sorbent pad	2000 Nos

Facilities in the Marine Control room:

1. Tidal stream gauge: This can accurately read the prevalent rate of flow and direction of current.

2. Tide gauge: For accurately calculating the height of tide at any given time.

3. Wind gauge: For direction and speed of wind.

4. VHF sets (fixed and portable) with complete range of marine frequencies to be used for field operations.

Reviewed By : Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	:	04	Page 76 of 98

ADANI PORTS AND SPECIAL ECONOMIC ZONE LTD. MUNDRA

OIL SPILL CONTINGENCY RESPONSE PLAN

LIST OF TELEPHONE NUMBERS OF EXPERT ADVISORS ANNEXURE 4

List of Important Telephone Numbers of Govt. Officials and other neighboring Organisations (Expert and Advisors) related to Spill Combating Plan

SN.	Company	Name and Designation	Telephone Numbers
1.			-
1.	APSEZL, Mundra	Chief Operating Officer Head Marine	02838-6272602838-255727 02838-255727
		Pollution Response Officer Port Control	02838-255761 / 289170 (Fax)
			02838-255739
2.	Kandla Port Trust	Chairman	02836-233001 / 234601
		Dy. Conservator	02836-223585 / 220235
		Harbor Master	02836-270201
		Signal Station	02836-270194 / 549
3	Indian Oil Corporation,	CM (Ops)	02838- 222194
	Mundra	Manager (Ops)	02838- 222197
		Control Room	02838- 224444
4	Indian Oil Corporation,	DGM (Ops)	02833-256527
	Vadinar	Manager Tech Services	02833-256464
		Port Control	02833-256555
5	Reliance Petroleum Ltd	Marine Chief	0288-4013607
C	Jamnagar	Senior Port Captain	0288-4013750
		Port Control	0288-4012600 / 4012610
6	The Commanding Officer	ICGS, Mundra	02838 - 271402 & 03 (Tel)
0	Indian Coast Guard Station,	Station Ops Officer	02838 – 271404 (Fax)
	Mundra	Station ops officer	
7	The Commander	COMCG (NW)	079-23243241 (Tel)
	Coast Guard Region (North	Regional Ops & Plans Officer	079-23243283 (Fax)
	West), Gandhinagar		
8	The Commander	COMDIS-1	0286-2214422 (Tel)
	No.1 Coast Guard District	District Ops & Plans Officer	0286-2210559 (Fax)
	(Guj), Porbandar	-	
9	The Commander	COMCG (W)	022-24376133 (Tel)
	Coast Guard Region (West)	Regional Ops & Plans Officer	022-24333727 (Fax)
	Mumbai		
10	The Officer-in-Charge	PRT (W)	022-23722438 (Tel)
	Coast Guard Pollution	Officer-in-Charge	022-23728867 (Fax)
	Response Team (West), Mumbai		
11	Gujarat Maritime Board	Vice Chairman & CEO	079-23238346 / 23238363
		Chief Nautical Officer	079-23234716

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 77 of 98

12	Ministry of Environment Govt. of Gujarat	Director (Environment)	079-23252154 / 23251062 079-23252156 (Fax)
13	Gujarat Pollution Control Board	Environmental Engineer	079-232 22756 079-232 22784 (Fax)

List Of Important Telephone Numbers Of Adani Group Personnel

S.No.	Description / contact person / designation	Telephone Nos.				
5.110.	Description / contact person / designation	Landline	Mobile			
01	Capt. Anubhav Jain, Head – Marine & PFSO, APSEZL	02838 - 255727	91 9925223674			
02	Mr.–Jagdish Patel Head CT-3	91-2838 - 255998	91 9979855979			
03	Capt. Kumar Paritosh, Head CT-4	02838 - 255733	91 9879104839			
04	Mr. Hari Govindan V , Dy.PFSO, MICT	91-2838 - 285072	91 9879104805			
05	Marine control, APSEZL	02838 – 255333 / 255761	91 9825228673			
06	Port Operation center, APSEZL	02838 –255762	91 9825000949			
07	Port security Control, APSEZL	02838 - 289322	91 9825000933			
08	Head - Security, APSEZL	02838 - 255999	91 9099991093			
09	Head - Health, safety & Environment, APSEZL	02838 - 255777	91 7574894383			
10	Head - Fire Dept. APSEZL	02838 – 255857	91 7069083035			
11	Occupational Health Centre	02838 - 255710	91 8980015070			

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 78 of 98

		Marine Officer/ SPM Mooring m	naster ANNEXURE 5
Responsibilities • Observe or receive report of oil or chemical spill incident • Initiate measures to prevent/ reduce further spillage • Maintain communication with other all vessels			r spillage
Step		Actions	Additional Information
Alert	SPM I	ne Manager / On Scene Commander / Pilot and other support/ response craft	VHF Channel 73 / 77
Initial Actions	 Ensure Verify Advise Mana Initiate 	ll cargo operations e all safety precautions taken/observed r incident details e all relevant information to (Marine ger / On Scene Commander / or SPM Pilot e personal log tugs/other response craft on stand-by	Liaise with Terminal Shift Engineer
Further Actions	 / SPM Mobil by (M Maintagevents Act as 	(Marine Manager / On Scene Commander Pilot as necessary ize response equipment/ personnel as directed arine Manager / On Scene Commander / ain personal log of communications and instructed by (Marine Manager / On Scene nander / SPM Pilot	
Final Actions		it personal log to HOD – Marine l debrief	

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 79 of 98

	MARINE MANAGER / On Scene Commander ANNEXURE 6				
Responsibiliti	ies	 Provide accurate situation reports to Radio Collect evidence and/ or statements Liaise with HOD-Health, Safety, Environment 	erify classification erify fate of spill erify resources immediately at risk, inform parties rovide accurate situation reports to Radio Room/ HOD – Marine		
Step		Actions	Additional Information		
Alert	HOD – M				
Initial Actions	Scene C Ensure Initiate Investig Commu Ensure Initiate	d to incident location, assume role of On- Coordinator all safety precautions have been taken response / gate cause/ source of spill unicate all information to HOD – Marine samples of spilled oil taken personal log hotographic evidence e evidence and take statements	Stopped or ongoing		
Further Actions	ProvideProvide	resources are being deployed as required e co-ordination at-sea response e detailed situation reports to HOD- Marine with -Health, Safety Environment & Fire ment.			
Final Actions		personal log to HOD – Marine debrief			

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 80 of 98

	SPM Pilot	ANNEXURE 7
Responsibili	 Initially assess situation Verify classification Provide accurate situation reports to Radi Collect evidence and/ or statements Liaise with incident vessel regarding state 	
Step	Actions	Additional Information
Alert	 Marine Control Room OSC Tugs and other support / response crafts 	VHF Channel 73 / 77
Initial Actions	 Assume role of On-Scene Coordinator Investigate cause/ source of spill Communicate all information to Marine Control Room Ensure samples of spilled oil taken Initiate personal log Take photographic evidence Collect evidence and take statements 	Stopped or ongoing
Further Actions	 Ensure resources are being deployed as required Provide co-ordination of the at-sea response Provide detailed situation reports to HOD – Marine 	
Final Actions	 Submit personal log to HOD – Marine Attend debrief 	

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 81 of 98

	HOD – Marine	ANNEXURE 8
Responsibilit	 Confirm/ amend initial classification Manage the APSEZL response Authorize expenditure after consultation w Brief COO, APSEZL Liaise with Coast Guard Approve press statements for release 	rith COO APSEZL
Step	Actions	Additional Information
Alert	 Coast Guard External organizations 	
Initial Actions	 Verify/ amend spill classification Ensure all safety precaution have been taken Confirm external organizations have been alerted Convene Emergency Response Team Predict slick movement Liaise with vessel Agents/ Owners as appropriate 	
Further Actions	 Chair the Emergency Response Team meetings Constantly review the strategy being employed and advise of changes where necessary Approve all expenditure commitments Brief President APSEZ Agree press statements with Corporate Relations Chief Confirm formal samples have been taken Advise Coast Guard if oil migrates outside of Local Area 	
Final Actions Final Actions (contd.)	 Terminate the clean-up Collate personal logs. Prepare the incident report. Hold full de-brief involving all members. Amend contingency plan as required. General Report to President 	

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 82 of 98

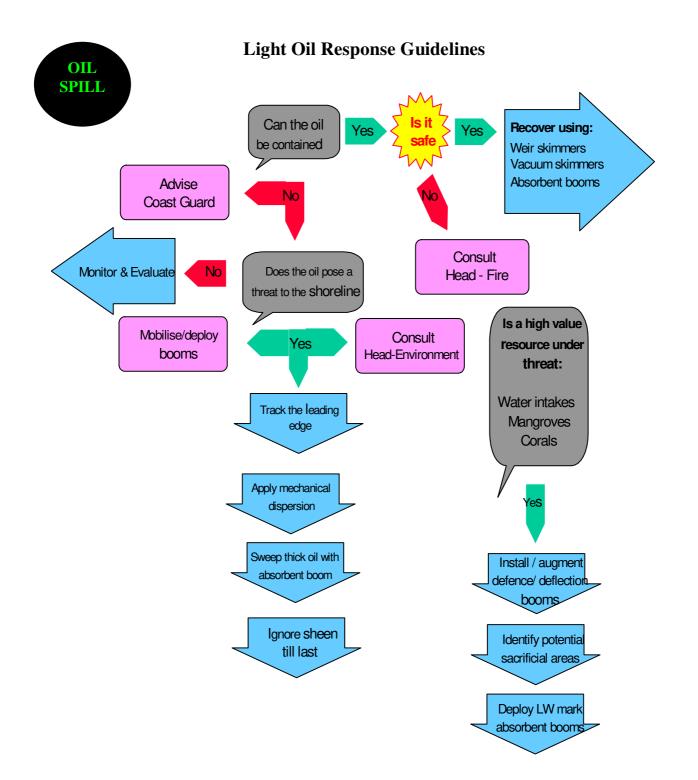
OIL SPILL PROGRESS REPORT					ANNEXURE	9	
Incident Name:							
Updated by:							
Date:		Time (lo	ocal):				
Summary of Incident Respor	se Operations:						
Summary of Incident Respor	nse Resource Uti	lization:					
Number of Aircraft:			Numl	per of V	vessels:		
Dispersant Used:		Liters	Leng	th of Bo	ooms in Use:		m
Number of Recovery Devices:			Num	per of S	torage Devices:		
Sorbent Used:		kg	Bio-r	emedia	tion Used:		kg
Number of Personnel:			Numl	per of V	ehicles:		
Specialist Equipment:							
Oil Spill Balance Sheet:							
Total amount of oil spilled:						Тс	ons
Total amount of oil recovered:						Тс	ons
Outstanding amount of spilled	oil:					Тс	ons
Mass balance:							
Estimated Natural Weathering:	:					Тс	ons
Mechanically agitated:						Тс	ons
Chemically dispersed:						Тс	ons
Skimmer recovered:						Тс	ons
Sorbent recovered:						Тс	ons
Manually recovered:						Тс	ons
Bio-remediated:						Тс	ons
Other:						Тс	ons
Reviewed By : Capt Pan	•	Issue No.		: 01	Issued On	01.10.2019	
Approved By : Capt. Anu	ıbhav Jain	Revision N	lo.	: 04	Page 8	33 of 98	

Emergency Response Log		ANNEXURE 10
Page Number:		Date:
Name:		Position:
Contact Number		Signature:
Time	Activity Completed:	

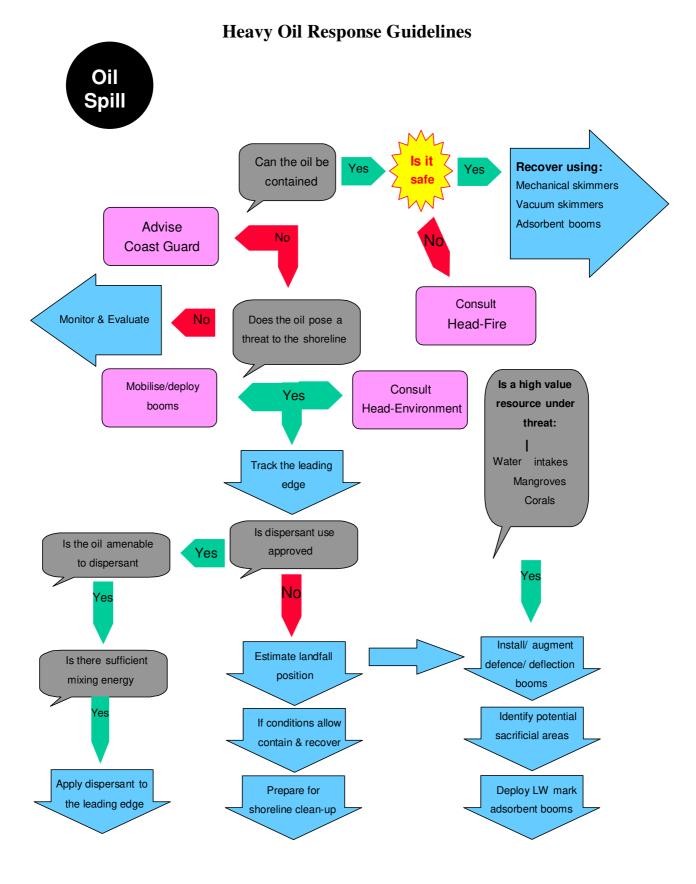
Control Room Officer

HOD – Marine

Reviewed By : Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	:	04	Page 84 of 98


lice

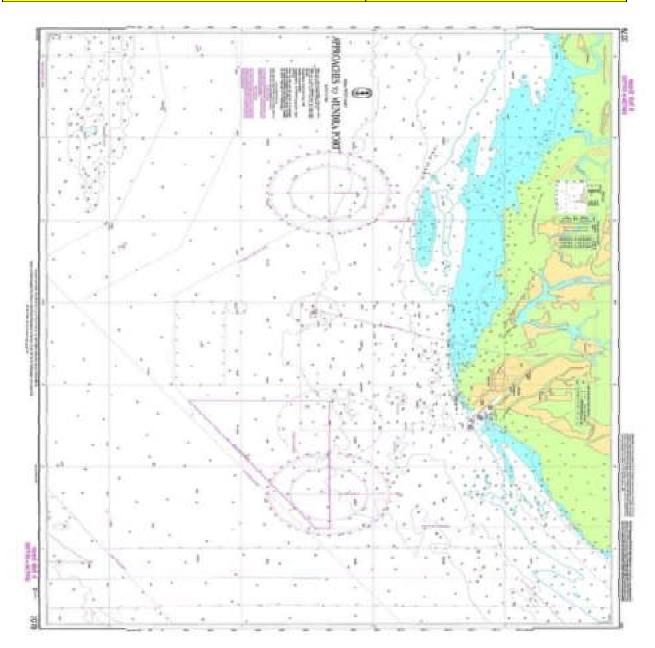
Classification of Oil						ANNEXURE 11							
Group 1 o	ils		111				Group	2 o	ils				1
							A: "API 35-4	5 (Spe	cific ;	gravity	0.8-0	85)	
A: API > 45 (Speci	uc Ermith.	¢0.8)					B: Pour point			200			
B. Pour point C	West Lines						C: Viscosity @						
C: Vocasity ∉ 10- D: % bailing below	20/1. #351	num sicar	inii				D.% boiling b	below	200%	C: betv	ween 2	0 and	1 50
E % boiling above	DATE NO	unter trian :	nd /96				E: % boiling a	doove 3	170°C	: betw	veen 15	5 and	505
							Province and a	ine					
	A B	c	D	8			Low pour point	- OL	A.	8	(
Azgad	4 3			14			Rathles Color Cla	44					
Arabian Super Light	月一發		and the second second				Arabian Extra Lig	ha	38	-30	3.8		
Cessark	48 -15			-18			Azeri		37	-3	89		
Carley	47 -13			17			Brent		38	-3	7.8		
	54 48			- 0			Draugen		40	-15	48.		
	豆 书			1			Dukhan		41	-49	941		
Hds.	52 -62			- 特			Liverpool Bay		45	-21	493		14
Terengganu condensate				- 0			Sokol (Sakhalin)		37	-27	483	and the second	1
Wolylutt	49 33			4			Rio Negro		35	-5	23 8	10°C	
	Я	0.5 @ 15		0			Umm Shaif		37	-24	10 @	10°C	
	45 -55		C	-0			Zakum		40	-24	6巻1	0°C	1
Naptha	55	0.5 # 15	C 100				Marine Gas oli (M	(GO)	37	-3	581	IS C	
							the second state	1000					
							High pour point						
Group 3	oils						Amna		36	19	Semi-	solid	1
Group 3	oils	XI.						-	36 38	19 18	Semi- 32 @	Contraction of the local distance of the loc	
Group 3			tv 0.85	0.95	1		Amna		-0.			19°C	1
A: "API 17.5-35	5 (Speci		ty 0.85	0.95	5)		Amna Beatrice		38	18	32 @	15°C solid	1000
A: "API 17.5-35 Pour point "C	5 (Speci	fic gravi				solid	Anna Beatrice Bintulu		38 37	18 19	32 @ Semi-	15°C solid 15°C	and the second
t: "API 17.5-35 Pour point "C Viscosity @ 1 % boiling bel	5 (Speci 10-20°C Iow 200	fic grav	en 8 CS voen 10	St and l and	i semi : 35%	solid	Amna Beatrice Bintulu Escravos		38 37 34	18 19 10	32 @ Semi- 9 @ 1	15°C solid 5°C solid	and the second second
A: "API 17.5-35 Pour point "C Viscosity @ 1 % boiling bel % boiling abo	5 (Speci 10-20°C low 200 rve 370°	fic grav	en 8 CS voen 10	St and l and	i semi : 35%	solid	Amna Beatrice Bintula Escravos Sarir		38 37 34 38	18 19 10 24	32 @ Semi- 9 @ 1 Semi-	15°C solid 5°C solid	and the second second
t: "API 17.5-35 Pour point "C Viscosity @ 1 % boiling bel	5 (Speci 10-20°C low 200 rve 370°	fic gravi betwe C betw C betw	en 8 CS vøen 10 veen 30	it and and and (d semi : 35% 65%		Amna Beatrice Bintula Escravos Sarir		38 37 34 38	18 19 10 24	32 @ Semi- 9 @ 1 Semi-	15°C solid 5°C solid	and the second second
A: "API 17.5-35 Pour point "C Viscosity @ 1 % boiling bel % boiling abc	5 (Speci 10-20°C low 200 ive 370° PC A	fic gravi : betwe C: betw C: betw B	en 8 CS voen 10 veen 30 C	St and and and (d semi : 35% 65% D	E	Amna Beatrice Bintulu Escravos Satir Statiford		38 37 34 38	18 19 10 24	32 @ Semi- 9 @ 1 Semi-	15°C solid 5°C solid	and the second second
A: "API 17.5-35 Pour point "C Viscosity @ 1 % boiling bel % boiling abc ow pour point st laska North Slope	6 (Speci 10-20°C low 200 low 370° PC A 28	fic gravi betwe C: betw C: betw B -18	en 8 CS ween 10 ween 30 C 32 # 1	it and and and	d semi 35% 65% D 32	E 41	Amna Beatrice Bintula Escravos Sarir		38 37 34 38	18 19 10 24	32 @ Semi- 9 @ 1 Semi-	15°C solid 5°C solid	and the second
A: "API 17.5-35 Pour point "C Viscosity @ 1 % boiling bel % boiling abc ow pour point % laska North Slope rabian Heavy	5 (Speci 10-20°C low 200 rve 370° FC A 28 28 28	fic gravi betwe C betw C betw C betw C betw R -18 -18 -40	en 8 CS ween 10 reen 30 C 32 # 1 55 # 1	it and l and i and i 19°C	d semi 35% 65% D 32 21	E 41 56	Anna Beatrice Bintula Escravos Sarir Statfjord	oils	38 37 34 38 40	18 19 10 24 6	32 @ Semi 9 @ 1 Semi- 7 @ 1	15°C solid 5°C solid	and the second
A: "API 17.5-35 E: Pour point "C : Viscosity @ 1 : % boiling bel : % boiling abc ow pour point <6 laska North Slope rabian Heavy rabian Medium	5 (Speci 10-20°C low 200 nve 370° FC A 28 28 30	fic gravi betwo C betw C betw C betw B -18 -18 -40 -21	en 8 CS ween 10 ween 30 C 32 # 1 55 # 1 25 # 1	it and and and 19°C 19°C	d semi 35% 65% D 32 21 22	E 41 56 51	Anna Beatrice Bintula Escravos Sarir Statfjord Group 4 A: "API <17.5 (Sp	oils ecilic g	38 37 34 38 40	18 19 10 24 6	32 @ Semi 9 @ 1 Semi- 7 @ 1	15°C solid 5°C solid	and the second second
A: "API 17.5-35 E: Pour point "C : Viscosity @ 1 : % boiling bel : % boiling abc ow pour point <6 laska North Slope rabian Heavy rabian Medium rabian Light	5 (Speci 10-20°C low 200 nve 370° FC A 28 28 30 33	fic gravi betwo C betw C betw C betw B -18 -40 -21 -40	en 8 CS ween 10 ween 30 32 # 1 55 # 1 25 # 1 14 # 1	it and and and SC SC SC	i semi i 35% 65% 0 32 21 22 25	E 41 56 51 45	Anna Beatrice Bintula Escravos Sarir Statfjord Group 4 A: "API <17.5 (Sp B: Pour point >30	oils ecific g	38 37 34 38 40 ravity	18 19 10 24 6 ×0.95)	32 @ Semi- 9 @ 1 Semi- 7 @ 1	15°C solid 15°C solid 10°C	and and a second se
A: "API 17.5-35 E: Pour point "C : Viscosity @ 1 : % boiling bel : % boiling abc ow pour point % laska North Slope rabian Heavy rabian Medium rabian Ught onny Light	5 (Speci 10-20°C low 200 rve 370° PC A 28 28 30 33 35	fic gravi betwo C betw C betw C betw B -18 -40 -21 -40 -11	c 32 m 10 c 32 m 10 c 32 m 1 55 m 1 25 m 1 25 m 1 25 m 1 25 m 1	it and and and ISC ISC ISC ISC	1 semi 35% 65% D 32 21 22 25 25	E 41 56 51 45 30	Anna Beatrice Bintula Escravos Sarir Statfjord Group 4 A: "API <17.5 (Sp B: Pour point >30 C: Viscasity @ 10-	oils ecific gr	38 37 34 38 40 ravity	18 19 10 24 6 ×0.95) en 1500	32 @ Semi- 5 @ 1 Semi- 7 @ 1	15°C solid 15°C solid 10°C	and and a second se
A: "API 17.5-35 Pour point "C Viscosity @ 1 % boiling bel % boiling abc ow pour point % laska North Slope rabian Heavy rabian Ught onny Light arian Heavy	5 (Speci low 200 low 200 low 370 PC A 28 30 33 35 31	fic gravi betwo C betw C betw C betw C betw B -18 -40 -21 -40 -11 -36	c 32 m 10 c 32 m 10 c 32 m 1 55 m 1 25 m 1	it and and and SC SC SC SC SC	1 semi 35% 65% 0 32 21 22 25 26 24	E 41 56 51 45 30 48	Anna Beatrice Bintula Escravos Sarir Statfjord A: "API <17.5 (Sp B: Pour point >30 C: Viscasity (# 10- D: % boiling below	oils ecific g 2070 E w 20070	38 37 34 38 40 ravity sctwee 2 less	18 19 10 24 6 ×0.95) en 1500 than 25	32 @ Semi- 5 @ 1 Semi- 7 @ 1	15°C solid 15°C solid 10°C	and and a second se
A: "API 17.5-35 E: Pour point "C : Viscosity @ 1 : % boiling bel : % boiling abc ow pour point <6 laska North Slope rabian Heavy rabian Medium rabian Light anian Heavy anian Light	5 (Speci 10-20°C low 200 nve 370° PC A 28 30 33 35 31 34	fic gravi betwo C betw C c betw C c c c c c c c c c c c c c c c c c c c	c 32 m 10 c 32 m 10 c 32 m 1 c	it and and and is c is c is c is c is c is c is c	1 semi : 35% 65% 0 32 21 22 25 26 24 26	E 41 56 51 45 30 48 43	Anna Beatrice Bintula Escravos Sarir Statfjord Group 4 A: "API <17.5 (Sp B: Pour point >30 C: Viscasity @ 10-	oils ecific g 2070 E w 20070	38 37 34 38 40 ravity sctwee 2 less	18 19 10 24 6 ×0.95) en 1500 than 25	32 @ Semi- 5 @ 1 Semi- 7 @ 1	15°C solid 15°C solid 10°C	and a second sec
A: "API 17.5-35 Pour point "C Viscosity @ 1 % boiling bole w pour point st w pour point st pow pour point st patian Heavy rabian Light anian Heavy mian Light halfi	5 (Speci low 200 low 200 low 370 PC A 28 30 33 35 31 34 28	fic gravi betwo betwo betw betw betw betw betw betw betw betw	en 8 CS veen 10 veen 30 C 32 e 1 55 e 1 14 e 1 25 e 1 25 e 1 15 e 1 80 e 1	it and and and SC SC SC SC SC SC SC	1 semi : 35% 65% 0 32 21 22 25 26 24 26 21	E 41 56 51 45 30 48 43 55	Anna Beatrice Bintula Escravos Sarir Statfjord A: "API <17.5 (Sp B: Pour point >30 C: Viscasity (# 10- D: % boiling below	oils ecific g 2070 E w 20070	38 37 34 38 40 setwer less grea 8	18 19 10 24 6 **********************************	32 @ Semi- 5 @ 1 Semi- 7 @ 1 	15°C solid 15°C solid 10°C	-soli
A: "API 17.5-35 E: Pour point "C : Viscosity @ 1 3% boiling bol w pour point st w pour point st w pour point st pabian Heavy rabian Light anian Heavy mian Light hafji mi	5 (Speci low 200 low 200 low 370 PC A 28 30 33 35 51 34 28 33	fic gravi betwo betw betw betw betw betw betw betw betw	c 32 m 10 c 32 m 10 c 32 m 1 c	it and and is c is c is c is c is c is c is c is c	i semi : 35% 65% 0 32 21 22 25 26 24 26 21 32	E 41 56 51 45 30 48 43 55 38	Anna Beatrice Bintulu Escravos Sarir Statfjord Group 4 A: "API <17.5 (Sp B: Pour point >30 C: Viscasity @ 10 D: % boiling below E: % boiling above Bachaquero 17	oils ecfic g 20°C 8 × 200°C 8 370°C	38 37 34 38 40 ravity setwee i less grea	18 19 10 24 6 ×0.95) on 1500 than 25 they than	32 @ Semi- 5 @ 1 Semi- 7 @ 1 	15°C solid 15°C solid 10°C	-soli
A: "API 17.5-35 E: Pour point "C : Viscosity @ 1 : % boiling bel : % boiling abc ow pour point % laska North Slope rabian Heavy rabian Medium rabian Light arian Heavy arian Light hatji mi hunder Herse	5 (Speci low 200 low 200 low 370 PC A 28 30 33 35 31 34 28 33 35 31 34 28 33 35	fic gravi betwo betwo betw betw betw betw B -18 -40 -21 -40 -11 -36 -32 -57 -12 -27	en 8 CS ween 30 2 2 1 3 2 1 5 5 1 2 5 1 1 5 1 5	it and and is c is c is c is c is c is c is c is c	i semi 35% 65% 0 32 21 22 25 26 24 26 21 32 32	E 41 56 51 45 30 48 43 55 38 39	Anna Beatrice Bintula Escravos Sarir Statfjord Group 4 A: "API <17.5 (Sp B: Pour point >30 C: Viscasty @ 10 D: % boiling below E: % boiling above Bachaquero 17 Bescan	oils ecific g 2010 b 2010 b 20	38 37 34 38 40 setwer less grea 8	18 19 10 24 6 **********************************	32 @ Semi- 5 @ 1 Semi- 7 @ 1 	15°C solid 5°C solid 0°C	-soli E 60
A: "API 17.5-35 E: Pour point "C : Viscosity @ 1 : % boiling bol w pour point st w pour point st w pour point st point stopp rabian Heavy rabian Heavy mian Light hafji mi hunder Horse a Juana Light	5 (Speci low 200 low 200 low 370 PC A 28 30 33 35 31 34 28 33 35 31 34 28 33 35 31 34 28 33 35 32	fic gravi betwo betwo betwo betwo c betwo c c c c c c c c c c c c c c c c c c c	en 8 CS veen 10 veen 30 C 32 ef 1 55 ef 1 25 ef 1 25 ef 1 25 ef 1 15 ef 1 80 ef 1 18 ef 1 18 ef 1 10 ef 1 500 ef	it and and i is c is c is c is c is c is c is c is	i semi i 35% 65% 0 32 21 22 25 26 21 32 25 26 21 32 32 32 24	E 41 56 51 45 30 48 43 55 38 39 45	Anna Beatrice Bintula Escravos Sarir Statfjord Group 4 A: "API <17.5 (Sp B: Pour point >30 C: Viscosity (# 10- D: % boiling belov E: % boiling above Bachaquero 17 Bascan Cinta	oils ecific g 2070 E 37070 E 16 10 33	38 37 34 38 40 attwee : less grea 8 -29 15 43	18 19 10 24 6 **********************************	32 @ Semi- 5 @ 1 Semi- 7 @ 1 5 & 0 CSt and 5% 1 30% 5 & 1 30% 5 & 1 30% 5 & 1 30%	19°C solid 5°C solid 0°C 1 semi 10 4 10	-soli E 60 80 54
A: "API 17.5-35 E: Pour point "C : Viscosity @ 1 : % boiling bel : % boiling abc ow pour point 40 laska North Slope rabian Medium rabian Medium rabian Medium rabian Heavy anian Light anian Light ini hunder Horse a Juana Light oil	5 (Speci 10-20°C low 200 rve 370° FC A 28 30 33 35 31 34 28 33 35 31 34 28 33 35 32 33	fic gravi betwe C betw C 57 -13 -32 -37 -42 -9	en 8 CS veen 10 veen 30 C 32 # 1 55 # 1 25 # 1 25 # 1 25 # 1 14 # 1 15 # 1 15 # 1 16 # 1 18 # 1 10 # 1 500 # 14 # 1	it and and SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC	1 semi 35% 65% 0 32 21 22 25 26 24 26 21 32 32 24 24 24	E 41 56 51 45 30 48 43 55 38 39 45 35	Anna Beatrice Bintula Escravos Sarir Statfjord Group 4 A: "API <17.5 (Sp B: Pour point >30 C: Viscosity (# 10- D: % boiling belov E: % boiling above Bachaquero 17 Bascan Cinta Handii	oils ecfic g -20°C - 5 w 200°C = 370°C A 16 10 33 33	38 37 34 38 40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	18 19 10 24 6 *0.95) on 1500 than 25 than 25 than 25 than 25 than 25 than 500 than 25 than 500 than 50	32 @ Semi- 5 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 Cor Cor CSt and 5% 1 30% : 9 15*C -solid solid	19°C solid 5°C solid 0°C	-soli E 60 80 54 33
A: "API 17.5-35 E: Pour point "C : Viscosity @ 1 : % boiling bol w pour point st w pour point st w pour point st point stopp rabian Heavy rabian Heavy mian Light hafji mi hunder Horse a Juana Light	5 (Speci 10-20°C low 200 rve 370° FC A 28 30 33 35 31 34 28 33 35 31 34 28 33 35 32 33	fic gravi betwe C betw C 57 -13 -32 -37 -42 -9	en 8 CS veen 10 veen 30 C 32 ef 1 55 ef 1 25 ef 1 25 ef 1 25 ef 1 15 ef 1 80 ef 1 18 ef 1 18 ef 1 10 ef 1 500 ef	it and and SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC	1 semi 35% 65% 0 32 21 22 25 26 24 26 21 32 32 24 24 24	E 41 56 51 45 30 48 43 55 38 39 45	Anna Beatrice Bintula Escravos Sarir Statfjord A: "API <17.5 (Sp B: Pour point >30 G: Viscosity (# 10- D: % boiling below E: % boiling above Bachaquero 17 Boscan Cinta Handl Merey	oils ecfic g -20°C - 5 w 200°C = 370°C A 16 10 33 33 17	38 37 34 38 40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	18 19 10 24 6 ×0.95) on 1500 than 25 ther than 5,000 (5,000 (5,000 (32 @ Semi- 5 @ 1 Semi- 7 @ 1 5 & mi- 7 @ 1 7 @ 1	19°C solid 5°C solid 0°C 1 semi 10 4 10 23 7	-soli E 60 80 54 33 70
A: "API 17.5-35 E: Pour point "C : Viscosity @ 1 : % boiling bel : % boiling abc ow pour point 48 laska North Slope rabian Heavy rabian Medium rabian Light onny Light anian Light hafji mi hunder Horse a Juana Light oil 0 180	5 (Speci 10-20°C 10	fic gravi betwe C betw C 57 -13 -32 -37 -42 -9	en 8 CS veen 10 veen 30 C 32 # 1 55 # 1 25 # 1 25 # 1 25 # 1 14 # 1 15 # 1 15 # 1 16 # 1 18 # 1 10 # 1 500 # 14 # 1	it and and SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC	1 semi 35% 65% 0 32 21 22 25 26 24 26 21 32 32 24 24 24	E 41 56 51 45 30 48 43 55 38 39 45 35	Anna Beatrice Bintula Escravos Sarir Statfjord A: "API <17.5 (Sp B: Pour point >30 C: Viscasity (P 10- D: % boiling below E: % boiling above Bachaquero 17 Bascan Cinta Handi Morey Nis Bierd	oils ecific g -20°C - 5 w 200°C = 370°C A 16 10 33 33 17 34	38 37 34 38 40 40 40 40 40 40 40 40 40 40 40 40 40	18 19 10 24 6 ×0.95) cn 1500 than 23 than 23 than 23 than 23 than 25 5,000 0 Semi- Semi- 7,000 0 Semi-	32 @ Semi- 5 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 1 Semi- 5% 1 30% 5% 1 30% 5% 5% 1 30% 5% 5% 1 30% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%	19°C solid 5°C solid 0°C 10 10 4 10 23 7 13	-soli E 60 80 54 370 59
A: "API 17.5-35 E: Pour point "C : Viscosity @ 1 : % boiling bel : % boiling abc ow pour point 48 laska North Slope rabian Medium rabian Light only Light anian Light hatij mi hunder Herse a Juana Light oil 0 180 ligh pour point 15	5 (Speci 10-20°C 10	fic gravi betwe C betw C c betw C betw C c betw C c c c c c c c c c c c c c c c c c c c	en 8 CS veen 10 veen 30 C 32 # 1 55 # 1 25 # 1 25 # 1 25 # 1 14 # 1 15 # 1 80 # 1 10 # 1 500 # 14 # 1 1,500-3	it and and and 19°C 19°C 19°C 19°C 19°C 19°C 19°C 19°C	1 semi 35% 65% 0 32 21 22 25 26 24 26 21 32 32 24 24 24 19°C	E 41 56 51 45 30 8 48 55 38 39 45 35 ~	Anna Beatrice Bintula Escravos Sarir Statfjord Contention Bis Pour point >300 Content >300 Cont	oils ecific g -20°C - 1 w 200°C = 370°C A 16 10 33 33 17 34 14	38 37 34 38 40 40 40 40 40 40 40 40 40 40 40 40 40	18 19 10 24 6 ×0.95) cn 1500 than 23 they than 5 .000 0 Semi- Semi- Semi- Semi- Semi- Semi- Semi-	32 @ Semi- 5 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 CSt and 5% 1 30% : B 15YC solid solid 1 15YC solid solid	19°C solid 5°C 0°C 10°C 10°C 10°C 10°C 10°C 10°C 10°	-soli E 60 80 54 370 92
A: "API 17.5-35 E: Pour point "C : Viscosity @ 1 : % boiling bel : % boiling abo ow pour point 48 laska North Slope rabian Medium rabian Medium rabian Medium rabian Medium rabian Heavy anian Light hatij min hunder Herse a Juana Light oil 0 180 ligh pour point 35 abinda	5 (Speci 10-20°C 10	fic gravi C betwe C betw C c betw C c c c c c c c c c c c c c c c c c c c	ven 8 CS veen 10 veen 30 C 32 # 1 55 # 1 25 # 1 25 # 1 25 # 1 25 # 1 16 # 1 15 # 1 16 # 1 10 # 1 500 # 14 # 1 1,500-3 Somi-s	it and and and SC SC SC SC SC SC SC SC SC SC SC SC SC	1 semi 35% 65% 0 32 21 22 25 26 21 32 25 26 21 32 22 24 24 24 15°C	E 41 55 145 30 8 43 55 8 9 45 55 39 45 55 - 56	Anna Beatrice Bintula Escravos Sarir Statfjord Group 4 A: "API <17.5 (Sp B: Pour point >300 C: Viscasity @ 10- D: % boiling below E: % boiling above Bachaquero 17 Boscan Cinta Handi Merey Nite Biend Pilon Shengi	oils ecific g -2010 E # 20010 # 37670 # 16 10 33 33 17 34 14 24	38 37 34 38 40 40 40 40 40 40 40 40 40 40 40 40 51 54 31 54 31 51 31 21	18 19 10 24 6 ×0.95) cn 1500 than 23 than 23 than 23 than 23 5.000 0 Semi- Semi- Semi- Semi- Semi- Semi- Semi- Semi-	32 @ Semi- 5 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 Semi- 5 @ 1 Semi- 5 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 Semi- 5 @ 1 Semi- 5 @ 1 Semi- 5 @ 1 Semi- 5 @ 1 Semi- 7 @ 1 Semi- 5 @ 1 Semi- 1 Semi-1 Semi	19°C solid 5°C 0°C 10 4 10 223 7 13 2 9	-acia E 60 80 54 33 70 59 572 70
A: "API 17.5-35 E: Pour point "C : Viscosity @ 1 : % boiling bel : % boiling bel : % boiling abc ow pour point 40 laska North Slope rabian Meavy mian Light arian Heavy mian Light hatij mi hander Hesse a Juana Light oil 0 180 ligh pour point 35 abinda xco	5 (Speci 10-20°C 10	fic gravi betwe C betw C be	ven 8 CS veen 10 veen 30 C 32 # 1 55 # 1 25 # 1 25 # 1 25 # 1 25 # 1 25 # 1 16 # 1 10 # 1 500 # 14 # 1 1,500-3 Semi-s Semi-s	it and and and SSC SSC SSC SSC SSC SSC SSC SSC SSC SS	1 semi 35% 65% 0 32 21 22 25 26 21 32 24 24 24 24 15°C 18 21	E 41 55 11 45 30 48 43 55 38 39 45 35 ~ 56 46	Anna Beatrice Bintulu Escravos Sarir Statfjord A: "API <17.5 (Sp B: Pour point >300 C: Viscasity (# 10- D: % boiling below E: % boiling below E: % boiling above Bachuquero 17 Boscan Cinta Handi Mirety Nite Blend Pilon Shengi Taching	oils ecific g rc -20rc E 370rc A 16 10 33 33 17 34 14 24 31	38 37 34 38 40 10 10 10 10 10 10 10 10 10 10 10 10 10	18 19 10 24 6 *0.95) en 1500 than 23 than 23 than 23 than 23 5.000 0 Semi- Semi- Semi- Semi- Semi- Semi- Semi- Semi-	32 @ Semi- 5 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 Semi- 5 @ 1 Semi- 5 @ 1 Semi- 5 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 Semi- 5 @ 1 Semi- 1 & 1 S	19°C solid 5°C 5°C 15 solid 0°C 10 4 10 23 7 13 2 9 12	-soli E 60 854 370 99 270 49
A: "API 17.5-35 E: Pour point "C : Viscosity @ 1 : % boiling bel : % boiling abo ow pour point 48 laska North Slope rabian Medium rabian Medium rabian Medium rabian Medium rabian Heavy anian Light hatij min hunder Herse a Juana Light oil 0 180 ligh pour point 35 abinda	5 (Speci 10-20°C 10	fic gravi C betwe C betw C c betw C c c c c c c c c c c c c c c c c c c c	ven 8 CS veen 10 veen 30 C 32 # 1 55 # 1 25 # 1 25 # 1 25 # 1 25 # 1 16 # 1 15 # 1 16 # 1 10 # 1 500 # 14 # 1 1,500-3 Somi-s	it and and and SSC SSC SSC SSC SSC SSC SSC SSC SSC SS	1 semi 35% 65% 0 32 21 22 25 26 21 32 25 26 21 32 22 24 24 24 15°C	E 41 55 145 30 8 43 55 8 9 45 55 39 45 55 - 56	Anna Beatrice Bintula Escravos Sarir Statfjord Group 4 A: "API <17.5 (Sp B: Pour point >300 C: Viscasity @ 10- D: % boiling below E: % boiling above Bachaquero 17 Boscan Cinta Handi Merey Nite Biend Pilon Shengi	oils ecific g -2010 E # 20010 # 37670 # 16 10 33 33 17 34 14 24	38 37 34 38 40 40 40 40 40 40 40 40 40 40 40 40 40	18 19 10 24 6 ×0.95) cn 1500 than 23 than 23 than 23 than 23 5.000 0 Semi- Semi- Semi- Semi- Semi- Semi- Semi- Semi-	32 @ Semi- 5 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 Semi- 5 @ 1 Semi- 5 @ 1 Semi- 5 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 Semi- 7 @ 1 Semi- 5 @ 1 Semi- 1 @ 1 S	19°C solid 5°C 0°C 10 4 10 223 7 13 2 9	E 60 80 54 33 70 59 52 70


Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 85 of 98

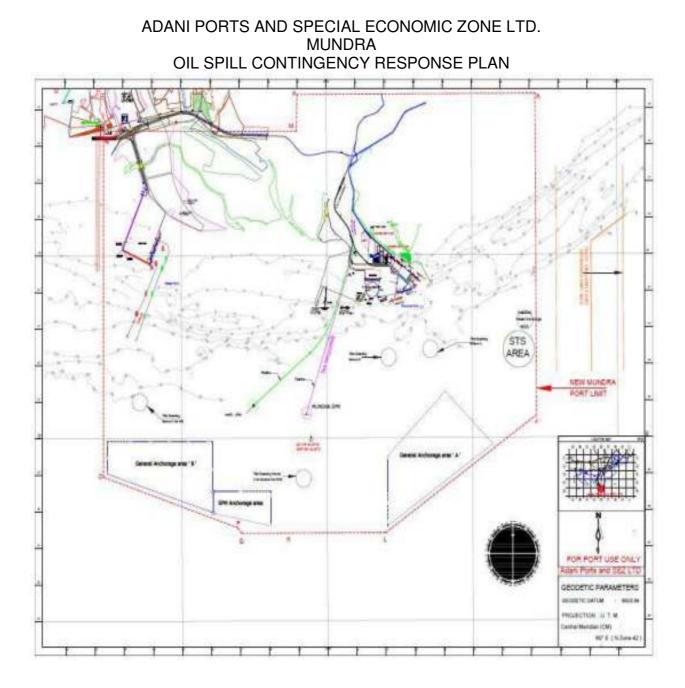
Response Guidelines

ANNEXURE 12

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 86 of 98


Reviewed By : Capt F	Pankaj Sinha Issue No.	:	01	Issued On	: 01.10.2019
Approved By : Capt.	Anubhav Jain Revision No		04	Page	87 of 98

				Sit	<mark>e Speci</mark>	fic Hea	lth a	nd S	Safe	ty Plan			AN	NEXU	J RE 13
					Ass	essmen	t Foi	rm							
1. APPLI	ES TO SIT	те:													
2. DATE :					3. TIM	3. TIME :				4. INC	IDEN	т:			
5. PRODU	U CT(S) :	•										(Att	tach MSDS)	
6. Site Cha	aracterizat	tion													
6a. Area			pen wate	er	□ Ins	hore water	:	□ R	iver/	Creek		Salt m	narsh	□ Mu	ıdflats
		□ Sh	noreline		🗆 Sai	nd			hingle			Intake	Channel		
6b. Use		□ Co	ommerc	ial	□ Industrial □ Public □			Gover	mment	□ Re	creational				
		□ Re	esidentia	ıl	□ Ot	her									
7. Site Ha	zards														
	□ Boat	safety				□ Fire,	explo	osion,	in-sitı	ı burn		□ SI	ips, trips ar	d falls	
		nical ha				□ Heat							eam and ho	ot water	
	Drun		-			□ Heli	-	opera	ations				des		
			operation	15		🛛 Liftii	-						renches, exc	cavations	
	□ Elect		zards				or vehi	icles					isibility		
	□ Fatig					□ Nois						Weather			
	□ Other	rs			Overhead/buried utilities				ΠW	ork near w	ater				
					Pumps and hoses										
0.11.15															
8. Air Mo											L G			0.1	
0 D	\square O ₂			LEL			Benzer	ne			l_2S			Other	
9. Persona		ve Equi	pment						0	11					
□ Foot P								_	Cove		4				
									_	ervious sui onal Floata					
Eye Pr Ear Pr								_			tuon				
Hand H									Respirators Other						
10. Site Fa									Ouic	4					
□ Sanitat	ion					□ First	Aid				C] De	contaminat	ion	
11. Conta	t details :														
Doctor								Ph	one						
□ Hospit	al							Ph	one						
□ Fire								Ph	one						
D Police								Ph	one						
□ Other								Ph	one						
12. Date P	lan Comp	leted													
13. Plan C	ompleted	by													


Reviewed By : Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	:	04	Page 88 of 98

Indian Chart 2079

ANNEXURE 14

Reviewed By : Cap	t Pankaj Sinha Iss	sue No. :	01	Issued On :	01.10.2019
Approved By : Capt	t. Anubhav Jain Re	evision No. :	04	Page 89	of 98

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 90 of 98

List of recycler approved by state of Gujarat

ANNEXURE 15

LIST OF APPROVED VENDOR FOR COLLECTION & DISPOSAL OF OIL SPILL WASTE WATER AND OILY SOIL

Sr No.	Name of the party & Contact Detail	Date of Issue of Passbook alongwith validity	Capacity
1	M/s Jawrawala Petroleum, Plot No: 200/33, B/H Kashiram Textile Mill, Narol, Ahmedabad - 382405 Contact Detail - (079) - 25358099 (M) +919824045726		1.4800 KLPA - Used Oil 2.9000 KLPA – Waste Oil
2	M/s Reliance Barrel Supply co., 200/34, B/H- Kashiram Mill, Narol, Ahmedabad-382405 Contact Detail - (079) - 25356629 (M) +919824090021	03/09/2014 to 02/09/2019	1. 8280 KLA - Used Oil 2. 9000 KLA – Waste Oil
3	M/s Western India Petrochem Industry, Plot No-50, 51, GIDC Estate, Village Gozaria, Dist- Mehsana. Contact Detail - Tel:+91- 278- 420941 Fax:+91- 278- 429503		1. 3660 KLPA – Used oil 2. 11100 KLPA – waste oil
4	M/s Saurashtra Enviro Projects Pvt. Ltd.(SEPPL) 3rd Floor,K.G.Chambers, Udhana Darwaja, Ring Road, Surat, Gujarat, India-395002 Contact Detail - +912612351248	TSDF Site	3,95,000 MT (Landfilling) + 7.50 Million Kcal/Hr. (Incineration)
5	M/s Bharuch Enviro Infrastructure Ltd, Ankleshwar Contact Detail - Phone 91-2646-253135 Fax 91-2646-222849	TSDF Site	23,00,000 MT (Landfilling) + 120 MT/Day (Incineration)
6	M/s Nandesari Environment Control Ltd. Nandesari, Vadodara, Contact Detail – Phone 265 – 2840818 Fax 265 – 2841017	TSDF Site	3,00,000 MT (Landfilling) + 700 Kg/Hr. (Incineration)

Reviewed By	:	Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 91 of 98

LIST OF AGENCY FOR SUPPORT & GUIDANCE FOR RESCUE & ANNEXURE 16 REHABILITATION OF OILED BIRD & MANGROVES MANAGEMENT DURING OIL SPILL

	Name of the party & Contact Detail	Contact Person	Contact Detail	Activity
1	Gujarat Institute of Desert Ecology P.O Box No. #83, Opp. Changleshwar Temple, Mundra Road Bhuj - 370001 Gujarat – India.	Thivakaran	EMAIL: desert_ecology@yahoo.com FAX: 02832-235027 02832-235025	Restoration of Mangroves
2	Kalapoornasuri Karunadham Karunadham Hospital, At – Shedata, Bhuj, Kucth		(M) 9925020776	Rescue of oil socked birds / animals and medical treatment facility
3	Anchorwala Ahinshadham Bhagwan Mahavir Pashu Raksha Kendra, Pragpar, Mundra, Kutch.		Phone (02838) 22352	Rescue of oil socked birds / animals and medical treatment facility
4	ASHA Foundation C/182, Ashoknagar, Opposite ISRO Satellite, Ahmedabad – 380015, Gujrat, India.	Lalubhai	Phone: 09824037521 ,09879877281 Email: ashahmedabad@yahoo.co.in Website: www.ashafoundationindia.org	Rescue of oil socked birds / animals and medical treatment facility

Reviewed By : Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By : Capt. Anubhav Jain	Revision No.	: 04	Page 92 of 98

ADANI PORTS AND SPECIAL ECONOMIC ZONE LTD. MUNDRA OIL SPILL CONTINGENCY RESPONSE PLAN Terms, definitions and abbreviations used in this plan

APSEZL	Adani Ports and Special Economic Zone Ltd.
COO	Chief Operating Officer
DGM	Deputy General Manager
DGS	Directorate General of Shipping
ENGR.	Engineer
ESD	Emergency Shut Down
FIR	First Information Report
FO	Furnace Oil
GMB	Gujarat Maritime Board
GPCB	Gujarat Pollution Control Board
HOD	Head Of Department
HQ	Head Quarters
HSD	High Speed Diesel
ICG	Indian Coast Guard
IMO	International Maritime Organization
IPMS	Integrated Port Management System
KPT	Kandla Port Trust
LWS	Low Water State
MCLS	Maximum Credible loss scenario
MMD	Mercantile Maritime Deptt.
MOEF	Ministry of Environment & Forest
MSDS	Material Safety Data Sheets
NOS DCP	National Oil Spill Disaster Contingency Plan
OSC	On Scene Commander
PLEM	Pipe line end manifold
POLREP	Pollution Report
PPE	Personal Protective Equipment
PR	Public Relations Officer
R/O	Radio Officer
SKO	Super Kerosene Oil

Reviewed By	:	Capt Pankaj Sinha	Issue No.	:	01	Issued On : 01.10.2019
Approved By	:	Capt. Anubhav Jain	Revision No.	:	04	Page 93 of 98

ADANI PORTS AND SPECIAL ECONOMIC ZONE LTD. MUNDRA OIL SPILL CONTINGENCY RESPONSE PLAN Certificate of Endorsement

(To be certified personally by an officer not below the post of Deputy Conservator of a port facility or the Installation Manager of an oil installation, or offshore installation, or equivalent legally responsible authority)

I hereby certify that:

1 The oil spill contingency plan for the facility under my charge has been prepared with due regard to the relevant international best practices, international conventions, and domestic legislation.

The nature and size of the possible threat including the worst case scenario, and the resources consequently at risk have been realistically assessed bearing in mind the probable movement of any oil spill and clearly stated.

The priorities for protection have been agreed, taking into account the viability of the various protection and clean-up options and clearly spelt out.

4. The strategy for protecting and cleaning the various areas have been agreed and clearly explained.

5. The necessary organization has been outlined, the responsibilities of all those involved have been clearly stated, and all those who have a task to perform are aware of what is expected of them.

6. The levels of equipment, materials and manpower are sufficient to deal with the anticipated size of spill. If not, back-up resources been identified and, where necessary, mechanisms for obtaining their release and entry to the country have been established.

7. Temporary storage sites and final disposal routes for collected oil and debris have been identified.

 The alerting and initial evaluation procedures are fully explained as well as arrangement for continual review of the progress and effectiveness of the clean-up operation.

The arrangements for ensuring effective communication between shore, sea and air have been described.

10. All aspects of plan have been tested and nothing significant found lacking.

11. The plan is compatible with plans for adjacent areas and other activities.

12. The above is true to the best of my knowledge and belief.

13. I undertake to keep the plan updated at all times and keep the Indian Coast Guard informed of any changes through submission of a fresh certificate of endorsement.

Seal:

Capt. Anuthav Jain AGM - Marine & PFSO Adani Ports & SEZ Ltd. Mundra - Kutch - Guiara Signature:

Name: Capt. Anubhav Jain

Designation: Head - Marine

Organisation: Adani Ports and SEZ Ltd, Mundra

Date: 01 Oct 2019

Place: Mundra

Reviewed By : Capt Pa	ankaj Sinha	Issue No.	:	01	Issued On	: 01.10.201
Approved By : Capt. A	nubhav Jain	Revision No	. :	04	Page	94 of 98

Appendix E5 to NOS DCP 2015

(Para 4.5 refers)

Contingency Planning Compliance Checklist

and SEZ Limited, Mundra
5

	DESCRIPTION	Complied Yes/No	Remarks
Risk	Assessment	1	
L	Whether the facility produces / handles / uses / imports / stores any type of petroleum product.	Yes	(Ref. OSCRP 2.2)
2,	Whether risk assessment is done	Yes	(Ref. OSCRP 2.0)
3.	Who did the risk assessment	Yes	Environ Software (P) Ltd. 8 APSEZ
4.	Whether maximum volume of oil spill that can occur in the worst case scenario is considered.	Yes	(Ref. OSCRP 2.4)
5.	Whether relative measures of the probability and consequences of various oil spills including worst case scenario are taken into account.		(Ref. OSCRP 2.4)
6.	Whether all types of spills possible in the facility are considered including grounding, collision, fire explosion. Rupture of hoses.	Yes	(Ref. OSCRP 2.3 & 2.4)
7	Please specify the list of oils considered for risk assessment	Yes	(Ref. OSCRP 2.2)
8	Whether the vulnerable areas are estimated by considering maximum loss scenario and weather condition	Yes	(Ref OSCRP 2.1 Computational Scenarios)
9	Whether impacts on the vulnerable areas are made after considering the marine protected areas population fishermen saltpans mangroves corals, and other resources within that area	Yes	(Ref. OSCRP 2.6)
10	Whether measures for reduction of identified high risk are included by reducing the consequences through spill mitigation measures	Yes	(Ref. OSCRP 1.4, 2.3, 2.6. 3 & 5)
11	Whether steps have been considered to reduce risks to the exposed population by increasing safe distances by acquiring property around the facility if possible	NA	All facilities developed within SEZ keeping safe distances from the exposed population.
12	Whether risk levels are established for each month after considering the probability with tide and current and consequences of each such spill	Yes	(Ref. OSCRP 2.1 computational scenarios 8 2.3)
13	Whether prevention and mitigation measures are included in the plan	YES	(Ref. OSCRP 4.0, 7.0, 8.0 8 9.0)
14	Whether the spill may affect the shoreline.(length of the shoreline with coordinated)	Yes	Ref. OSCRP 2.3 & 2.5)
15	Whether time taken the oil spill to reach ashore in each quantity of spill in various month are mentioned in the plan	Yes	(Ref. OSCRP 2.3)
16	Whether sensitivity mapping has been carried out	Yes	(Ref. OSCRP 2.5)
17	Does the sensitivity mapping clearly identify the vulnerable areas along with MPAs, corals fishermen community, saltpans, mangroves and other socio-economic elements in the area	Yes	(Ref. OSCRP 2.5 8 2.6)

Revision No.

04

1

Page 95 of 98

Approved By : Capt. Anubhav Jain

ADANI PORTS AND SPECIAL ECONOMIC ZONE LTD. MUNDRA

-	OIL SPILL CONTINGENCY H	10010	
1B	Do the sensitivity maps indicate area to be protected on priority	Yes	(Ref. OSCRP 2.6)
19	Does the maps indicate boom deployment locations	NA	Booms not deployed permanently
20	Whether any marine protected area will be affected	YES	(Ref. OSCRP 2.5 & 2.6)
21	Whether total number of fishermen likely to affected is mentioned in the plan	Yes	(Ref. OSCRP 2.6)
22	Whether any saltpan in the area is going to be affected	Yes	(Ref. OSCRP 2.6)
23	Whether any mangroves in the area will be affected by a spill	Yes	(Ref. OSCRP 2.6)
Prep	paredness		
24	whether any containment equipment is available	Yes	(Ref. OSCRP Annex 3)
25	Whether any recovery equipment is available	Yes	(Ref. OSCRP Annex 3)
26	Whether the facility is having any temporary storage capacity	Yes	(Ref. OSCRP Annex 3)
27	Whether location of the oil spill response equipment is mentioned in the plan	Yes	Has been included in Annex
28	Whether suitable vessels available for deploying the boom skimmer etc.	Yes	(Ref. OSCRP Annex 3)
29	Whether OSD held with facility	Yes	(Ref. OSCRP Annex 3)
30	Whether the OSD held with the facility is approved for use in Indian waters	Yes	
31	Whether the facility has MoU with other operator for tier -1 preparedness	Yes	(Ref. OSCRP 1.4)
32	Whether the list of oil spill response equipment available with each agency in deliberation	Yes	MoU document
33	Whether the facility has any MoU with private OSRO	NA	Port itself is equipped to deal with oil spill emergencies
34	Whether the procedure for evoking the mutual aid is clearly described in the plan	Yes	(Ref. OSCRP 1.4)
35	Whether additional manpower is available	Yes	(Ref. OSCRP 5.4)
36	Whether list of approved recyclers is mentioned in the plan	Yes	List of recycler approved by state of Gujarat is included in Annexure 15.
37	Whether NEBA (net environmental Benefit Analysis) has been undertaken	Yes	Before commissioning of any new project, various environmental aspects with their positive or adverse impact is considered under EIA Environment impact Assessment stage.
38	Whether the areas from priority protection have identify in the plan	YES	(Ref. OSCRP 2.5 & 2.6)
39	Whether relevant authorities and stakeholder were consulted for NEBA and during the areas for property protection	Yes	Before commissioning of any new project Environment impact Assessment & Public consultation is carried out in which relevant authorities & stakeholders

OIL SPILL CONTINGENCY RESPONSE PLAN

Reviewed By	÷	Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By	ŧ	Capt. Anubhav Jain	Revision No.	; 04	Issued On : 01.10.2019 Page 96 of 98

40	Whether district administration	has been		were consulted. District Level Disaster
40	appraised of the risk impact of oil spill		Yes	Management Plan is prepared and regularly updated at district level by District Collector of Kutchh Under DMP Oil spillage contingency is identified as risk. During preparation & updating of disaster management plan, District Level Authority organises & compiles information from various industries of kutchh. APSEZL is regularly participating in the same & providing necessary information to district leve administration.
Acti	ion Plan			commiscredien.
41	Whether the plan outlines procedure for reporting of oil spill to coast guard	or	Yes	(Ref. OSCRP 7.3)
42	Whether the oil spill response action is mentioned	Yes	(Ref .OSCRP 3.1 to 3.6)	
43	Whether the action plan include all du	Yes	(Ref. OSCRP 3.4)	
44	attended in connection with an oil spil Whether the action plan includes key p	Yes	Ref. OSCRP Annexure-4	
45	by their name and designation viz. C/C Whether alternate coverage is planned care of the absence of a particular per cases where action plan is developed to names]	to take son [in	Yes	(Ref. OSCRP 5)
45	Whether the plan includes assignment coordinators viz.the communication or ,safety coordinator ,Emergency manag team, Administration and communicat coordinator and safety coordinator	ement	Yes	(Ref. OSCRP 3.4)
47	Whether contact directory containing key response and management person intimated in the plan		Yes	Ref. OSCRP Annexture-4
48	Whether approved recyclers are ide processing recovered oil and oily debri	Yes	List of approved recycler of Gujarat state is included in annexure 15. Membership of common disposal facility for disposal of oily debris is also	
49	Whether the shoreline likely to be affer identified	cted is	Yes	Attached annexure 15. (Ref. OSCRP 2.5 & 2.6)
50	Whether final report on the incident is to CGHQ as per NOS-DCP 2014	submitted	NA	No incident
51	Whether the spill incident and its cons	equences	NA	No incident
view	ved By : Capt Pankaj Sinha Is	sue No.	: 01	Issued On : 01.10.201
		and the local division of the local division		and the second se

	are informed to	fishermen and other NGOs for	Loro	
		atection through media	_	
	Training and exc	ercises		
52	Whether mock f specified in the	ire /emergency response drills are plan	Yes	(Ref. OSCRP 5.6)
53	Whether the mo probable oil spil	ock drills cover all types of	Yes	
54	Whether the pla manpower	n mentions list of trained	Yes	(Ref. OSCRP 5.6)
55		for periodic mock drill are well-defined format	Yes	
56		n updated according to the drills and exercises	Yes	
	DESCRIPTION			
57	What is the freq contingency pla	uency of updation /review of n?	Yes	As Per NOSDCP 2015
58	partner	int exercises with mutual aid	Yes	
59	Frequency of mo	ock-drills for practice	Yes	(Ref. OSCRP 5.6)
60		ords for periodic mock drills are well-defined format	Yes	(Ref. OSCRP 5.6)
61		n is updated according to the drills and exercises	Yes	
62		dation /review of contingency	Yes	As Per NOSDCP 2015
		the all information appended above	e and tri	e and correct to my
		Capt. Anubhay Jain	1	0
		AGM - Marine & PESO	1	- wy
		Adani Ports & SEZ Ltd.	60	an
			V	/
Date	2: 01 Oct 2019	Mundra - Kutch - Gularaief c	onserva	tor /Installation manager
		VERIFIED		
Date	a:	(District commander if	CG)	
		or his representativ	9	
Date	E)	(Regional commander	ICG)	
		or his representativ		

Reviewed By	*	Capt Pankaj Sinha	Issue No.	: 01	Issued On : 01.10.2019
Approved By	÷	Capt. Anubhav Jain	Revision No.	: 04	1 A state of the second sec

Annexure–11

Expense Details for Fisherfolk Amenitites work in different core areas

Expense Details for Fisherfolk Amenitites work in different core areas								
Sr.	Details	20 16 - 17	20 17-18	20 18 - 19	2019-20	TOTAL	AMT IN LACS	
	Expenditu	re Details (Amo	unt in Rs.)					
1	Vidya Deep Yojana	2069300	193000	2087000	1771000	6 120 30 0	61.20	
2	Vidya Sahay Yojana	552580	495000	691000	708000	2446580	24.47	
3	Adani Vidya Mandir – Shaping Lives	4200000	4030000	3472000	6434020	18 1360 20	18 1.36	
4	SENIOR CITIZEN HEALTH CARD	0	8430000	1750000	2975000	13155000	131.55	
5	FINANCIAL SUPPORT TO POOR PATIENTS	4439507	1275000	8 130 0 0	1296063	7823570	78.24	
6	Machhimar Kaushalya Vardhan Yojana	188708	200000	397000	73000	858708	8.59	
7	Machhimar Sadhan Sahay Yojana	0	0	315000	522000	837000	8.37	
8	Machhimar Awas Yojana	4592106	1165000	0	2311000	8068106	80.68	
9	Machhimar Shudhh Jal Yojana	2236050	2700000	2038000	1773000	8747050	87.47	
10	Sughad Yojana	1367300	170000	0	192000	1729300	17.29	
11	Machhimar Akshay kiran Yojana	860850	100000	68000	0	1028850	10.29	
12	Machhimar Suraksha Yojana			0	0	0	0.00	
13	Machhimar Ajivika Uparjan Yojana-Mangroves plantation	1558800	500000	1382000	1400000	4840800	48.41	
14	Bandar Svachhata Yojana	106400	50000	0	0	156400	1.56	
15	Cricket league and Cycle Marathon	432000	657119	638000	610800	2337919	23.38	
16	Sports Material For Children & Youth at Vasahats	197797	0	0	0	197797	1.98	
17	New Pilot Initiative for Polyculture	398240	160000	0	0	558240	5.58	
18	New Pilot Initiative for Cage farming Asian Seabass & Lobster	864000	660000	0	0	1524000	15.24	
19	Sea Weed Culture Project	0	0	0	200000	200000	2.00	
20	Mangrove Biodiversity Project	0	0	1890000	684000	2574000	25.74	
		24063638	20785119	15541000	20949883	81339640	813.40	

Annexure–12

Compliance Report of CIA Study Environment Management Plan

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
1	Land Use Change It is predicted that the built up land in the rural areas would increase by an order 50% from the baseline 2015. New settlements near the SEZ area might create slums. Unorganized urban development leading to poor sanitation and proliferation of vectors and disease.		APSEZ has developed two townships (Shantivan and Samudra) presently accommodating 1668 households. Necessary permissions from concerned authorities were already obtained for the development of townships and Associated infrastructure facilities.	The existing townships will be expanded to accommodate about 4 lakh people when the APSEZ is fully developed.	APSEZ	As and when Required	APSEZ has developed two townships (Shantivan and Samudra) accommodating 2180 households and associated infrastructure facilities. Accommodation is made available for all interested employees working within Adani group & SEZ industries. Out of which 86% Occupancies are accommodated within the townships and rest are available for employees working within APSEZ. At present 43 nos. of industries are operating within the SEZ. Township facilities are also made by some of SEZ industries within Mundra town for their employees with basic infrastructure facilities and requirements. Most of the employees working in SEZ industries are residing in Mundra township having all basic requirements and associated facilities. The existing social infrastructure facilities are adequate for present development at APSEZ. The existing townships with associated facilities will be expanded as per requirement.

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
10				Technical (activity)		Technical	APSEZ has also been granted permission for receiving domestic sewage @ 2.5 MLD from Mundra village (which was earlier discharged in to open area within Mundra region) in to wastewater treatment plant for treatment and disposal. APSEZ has already started receiving of domestic sewage from Mundra, which will abate the poor sanitation and unhygienic condition within Mundra region. Total project cost for laying domestic sewage underground pipeline with other associated facilities from Mundra to APSEZ is 362 Lacs .
1.2	Once the project is fully developed, due to increase in built up land in the APSEZ area, there will be an increase in the storm water runoff from the facility.	Level-1	The study area experiences scanty rainfall less than 400 mm/year. Considering the natural gradient, ASPEZ have designed and implemented storm water drains in the existing facility to meet the peak daily rainfall of 440 mm/hr. Hence flooding of	Technical feasibility study can be carried out to explore the possibility of developing storm water collection ponds to utilize maximum possible storm water runoff for dust suppression in the coal yard areas during non-rainy days.	APSEZ	Technical Study - one time, Implementat ion - Continual process	Presently, 42% of the total SEZ area (8434.5890 Ha) is developed. Based on technical studies, APSEZ has developed adequate storm water facilities that meets with daily demand as per recorded highest rainfall. At present all existing coal yards are designed with drain, for collection of water during water sprinkling and rainfall, which is carried away to dump pond. Supernatant water from dump pond is being collected and used for dust suppression activities or after sedimentation, discharged to sea. Photographs showing the drain and dump pond are attached as Annexure – A . During last year 2019-20, the maximum recorded rain fall was 33.2 mm/hr ., which was

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
			water in the neighboring areas is not envisaged.				much less than the design capacity of existing storm water drainage system. So our existing storm water management facility is adequate to handle the storm water runoff from the area. Hence flooding of water in the neighboring areas is not envisaged.
			As per the directions given in the environmental clearance issued for the proposed Multi- Product SEZ and CRZ clearance for Desalination, sea water intake, outfall facility and pipeline project, the master plan of the project was designed and being implemented without disturbing the natural flow of rainwater in all the seasonal streams.	The channel depth in all the natural streams shall be maintained to accommodate peak flood flow during the monsoon and periodical de-silting activities in the natural steams passing through the APSEZ area	APSEZ, District Administration * and Irrigation department	As and When Required	Presently there is no Desalination plant, sea water intake and outfall facility developed as part of EC & CRZ clearance of Multiproduct SEZ. The project will be designed and implemented without disturbing the natural flow of rainwater in all the seasonal streams.

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
1.3	Due to conservation and protection of mangroves in the designated conservation area, it has been predicted that the current mangrove footprint area would marginally increase in next 15 years due to natural growth. This will enhance the overall biodiversity in the local coastal eco- system.	Positive Impact with ecologica I benefits	In addition to conservation of the identified 1254 ha mangrove areas around Mundra port and SEZ, APSEZ has taken up large scale mangrove afforestation activities in an area of more than 2800 ha at various locations across the coast of Gujarat state in consultation with various organizations	APSEZ will continue mangrove afforestation as per the commitment made with concerned regulatory authority	APSEZ	Short Term	 APSEZ has carried out mangrove afforestation in 2890 ha. area across the coast of Gujarat till date. No further mangrove afforestation is pending w.r.t. commitment made with concerned regulatory authority for APSEZ, Mundra project. As per study conducted by NCSCM in 2017, mangrove cover in and around APSEZ, Mundra has increased from 2094 Ha to 2340 ha (as compared between 2011 to 2017). The analysis has shown an overall growth of 246 ha. The cost for said study was INR 3.15 Cr. Further work has been assigned to NCSCM in March 2020 as part of compliance for the action plan "Monitoring of mangrove cover". The cost of the said work is INR 23.56 Lacs.
1.4	Development activities along the coast might cause certain		Detailed hydro- dynamic modelling and shoreline change	It is recommended to map the coastal morphology (Shoreline) at least once in three years	APSEZ	Continual Process	Shoreline assessment study will be conducted in FY 2020-21.

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
	changes in hydro- dynamic characteristic s along the shoreline. Shoreline of any area also can be influenced by storm surges and other natural processes.		prediction for a fully developed APSEZ facility has been studied. The study reveals that the erosion and accretion in the study area at the end of 15th year will be within the designated criteria of ± 0.5 m/year. which reconfirms that the waterfront development activities of APSEZ would pose insignificant impact on the Mundra shoreline.				
2	Regional Traffic I	Management I					
2.1	The projected traffic data as per the EIA Report of Multi-Product	Level-1	As per the master plan of APSEZ, eight artillery roads will be	Additional road as per master plan will be built in future based on the overall progress of the project.	APSEZ	As and When Required	Presently 42% of the total SEZ area (8434.5890 Ha) is developed. Existing road/rail infrastructure facilities are adequate to evacuate the existing cargo. Further, APSEZ's cargo evacuation through rail

S. Identified environmental No. and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
Special Economic Zone, the peak vehicular traffic from the port and SEZ operations (including supporting facilities and colony) could be in the order of 18,300 and 10,400 vehicles per day respectively. There could be a possible increase in traffic congestions on village- highway intersections and road accidents.		connected to either state highway or national highway for evacuating the goods from APSEZ. None of these roads are passing through settlements, thereby avoiding traffic Congestions in the respective villages. The carrying capacity of the eight artillery roads connecting APSEZ is estimated to be about 16,000 PCU/hr as against the envisaged peak traffic volume of 4,500	Currently about 25% of cargo from APSEZ is transported by Rail and the same will be enhanced to 40% when the facility is fully developed in future. This will further reduce the traffic volumes on the regional road network.			has increased to 30 % thereby reducing the usage of road. Additional road facilities will be built as per master plan considering future development. The facilities for transportation of cargo other than road will be enhanced considering future development, which will reduce the traffic volumes on the regional road Network.

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
			PCU/hr. Out of eight artillery roads considered in APSEZ master plan, seven roads were already developed and functional. APSEZ has been imparting Driver Training Programs to all their contractors to enhance awareness on road safety.	APSEZ can undertake technical feasibility of implementing Intelligent Transport System (ITS) for the freight carriers associated with their development activities.	APSEZ & GSRDC*	Long Term	 APSEZ is being imparting the regular in-house classroom and on-job training to the all drivers and employees on below topics: Basic induction Training for drivers ITV Driver Training ITV Driver Induction for Supervisor Defensive Driving & BBS Traffic Management & Road Signage Driving safety training RORO Driver training Defensive Driving & Emergency Action Plan Drivers Responsibilities & Safe driving Emergency Rescue (Vehicle) Training Approx. 3300 Participants (On roll and contractual manpower) were benefitted from above trainings in FY 2019-20. The same will

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
							 be continued in future also. APSEZ has also implemented the Remote traffic management system (RTMS) to manage the traffic movements and capturing the violations to further improve the system. Following steps were taken by APSEZ to reduce the accidents. ✓ Installation of approx. 100 Nos. of cameras which is being operated at ISCR (Integrated security control room) to monitor & manage the traffic system in APSEZ on real time basis. ✓ Installation of 02 Nos. RTMS - Remote traffic management system (having combination of Radar + OCR camera + LED display board - showing speed limit) to recognize the over speeded vehicles, so that timely capture the same and avoid any road accidents.
3 3.1		Management : No-Impact	and sewage treatmen APSEZ is	nt & disposal Plan As per the master plan	APSEZ	As and When	Currently there are two fresh water sources
3.1	For a fully developed APSEZ facility, water demand will be in the order of 4,30,000 m3/day (430 MLD). APSEZ	πυ-πηρασι	APSEZ is meeting the current water demand through Narmada water supply scheme and 47 MLD captive	As per the master plan and permissions granted under EC, APSEZ will be developing progressively 4,50,000 m3/day (450 MLD) of desalination plants to meet the	AFOLZ	Required	available with APSEZ. Desalination Plant – 47 MLD Narmada water through GWIL – 11 MLD (sanctioned capacity). Current water demand for APSEZ along with SEZ industries including Adani Power Plant is around 30 MLD.

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
	will be sourcing majority of the water from the captive desalination plants, which will be developed in progressive manner.		desalination plant at site. Necessary water allocation from concerned authorities was obtained and the same will be renewed from time to time as per the directions of state government.	future demand. Hence stress on regional water resources due to these developmental projects will be less significant.			So presently, these sources are adequate to fulfill the current fresh water requirement of APSEZ. The desalination plant of additional capacities will be installed on modular basis considering future requirement of APSEZ.
3.2	Existing water demand in the Mundra taluk is estimated as 8500 m3/day (@55 lpcd) and the potable and sanitation water needs would increase to 37,000 m3/day (@125 lpcd) in future when the area is	Level-2	Adani Foundation has been contributing to various watershed development projects in the Mundra region to enhance ground water resources in the area. Adani Foundation has contributed about Rs. 300 Lakhs so far for	Adani Foundation is planning to implement the various water resource conservation programs in next ten years under various schemes.	APSEZ and CGWB*	Long Term	 Water needs of APSEZ is being met through existing Desalination Plant of APSEZ and Narmada canal supplied by the GWIL which may be further enhanced on modular basis, At present Ground water is not utilized for any activities of APSEZ. However various works are being carried out continuously under Water Conservation Work to achieve water security in Mundra region by Adani Foundation Following works are carried out as a part of water conservation work since April – 2018. Under <i>"Sujlam Suflam Jal Abhiyan compaign"</i> AF Mundra had completed deepening work in 26 pond works as per

S. Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
fully grown into larger municipality due to induced economic growth. Water demand of the local communities is met through Narmada water supply system to some extent, but largely depending on the ground water in the study area. Mundra block is reported to be a safe ground block as on date. Due to influx of people and rapid urbanization due to the economic		the development of 18 check dams.				 given target by District Collector Kutch in 19 villages. Total excavation done 51723 Cum. Total storage capacity created 51.72 million liters. These works done as per government guidelines. Under "Partcipatory Ground Water Management" work we have created artificial recharge borewell in Borana, Mangara & Dhrub village. Participatory Ground Water Management in ten villages with holistic approach for Kankavati Sandstone Aquifer Programme. With the objective of to preserve the rain water to reduce the impact of salinity and recharge the ground water (the main source of water) to facilitate the Agricultural activities as well as for drinking water. Ground recharge activities (pond deepening work for more than 52 ponds) individually were built leading to a significant increase in water table and higher returns to the farmers. Roof Top Rain Water Harvesting 54 Nos. and Recharge Bore well 75 Nos. Drip Irrigation 823 Farmers benefitted in coordination with Gujrat Green Revolution Company Under UTHHAN MODEL VILLAGE PROJECT, Salinity ingress issue is well taken with pond deepening, recharge bore well technique and roof top rain water harvesting. Total ground water recharged

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
	development, there could be some stress on the ground water resources in future.						due to this project 1878 ML. Adani foundation has spent approx. INR 3437 lakhs during last two years (i.e. 2018-19 & 2019-20) for CSR activities which also includes water conservation projects as mentioned above.
3.3	It is estimated that about 60,000 m3/day (60 MLD) of sewage will be generated from the APSEZ facility when the project is fully developed.	No Impact	Seven sewage treatment plants with an aggregate capacity of 3.1 MLD have already built at APSEZ. Treated sewage is utilized for greenbelt development and sewage is not discharged into either seasonal natural streams or marine environment.	APSEZ is permitted to develop decentralized sewage treatment plants of total 62 MLD capacities. Existing sewage treatment facilities will be augmented progressively based on the development at APSEZ in future. Similar to existing practices, treated sewage will be utilized for greenbelt development.	APSEZ	As and When Required	Current installed capacity of wastewater treatment plants is 5.6 MLD (ETP, STPs & CETP) for treatment of effluent & sewage generated at various locations. Out of 43 only 3 industries within the SEZ are sending their partially treated industrial as well as domestic effluent to the CETP confirming to CETP inlet norms for further treatment and final disposal. Other SEZ industries have their own STPs / ETPs for treatment of wastewater generated from their industrial operation and discharging the treated water on land for horticulture purpose within their premises as per specific permission granted by SPCB. Presently avg. 1.4 MLD of wastewater (in to ETP, STPs & CETP) is treated and being utilized on land for horticulture purpose within APSEZ premises. Existing wastewater treatment plants are adequate to treat and handle the total effluent / sewage load considering current development.

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
							Existing wastewater treatment facilities will be augmented or new plants will be developed on modular basis considering future requirement.
4	Air quality manag	ement Plan	•			•	
4.1	Although all the regulated activities in the study area will be adopting promulgated emission norms, total air emission mass discharge from the study area would increase.	Level-2	APSEZ and other thermal power plants have obtained valid consent to operate and have been operating the facilities as per the emission norms stipulated in respective consent orders. APSEZ and other two power plants are monitoring the ambient air quality on regular intervals as per GPCB/CPCB guidelines and the data is analyzed and presented to	All existing and new industrial establishments will obtain requisite consents from GPCB and adhere to the stipulated emission norms regulations and guidelines issued by authorities from time to time.	APSEZ And Other Industries	Continual Process	APSEZ has been granted requisite permissions from the concerned authorities with stipulated norms for air emission (flue gas as well as ambient air).Ambient Air Quality monitoring is being carried out by NABL accredited and MoEF&CC authorized agency namely M/s. Pollucon Laboratory Pvt. Ltd. as per NAAQ standards, 2009. Stack emission monitoring is also being carried out on regular basis. Reports of the same are being submitted to the concerned authorities on regular basis.Adani power plant has installed continuous emission and air quality monitoring instruments as per CPCB Directive and submitting the reports also. Another power plant of CGPL is outside APSEZ area.The AAQM summary for last six months (Oct'19 to Mar'20) are as below. Locations: 17 Nos. (APSEZ – 12 + APL – 5 including 3 villages) Frequency: Twice in a weekParamet erUnitMaxMinPerm. Limit\$

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliand	ce			
			GPCB on monthly basis.				PM 10	µg/m³	96.23	46.29	100
			Both the				PM _{2.5}	µg/m³	58.30	17.65	60
			thermal power plants located				SO ₂	µg/m³	29.44	6.34	80
			within the				NO ₂	µg/m³	45.56	13.50 AAQ stand	80
			study area have installed continuous emission and air quality monitoring instruments as per CPCB directive.				Approx. environme FY 2019- quality mo Other ind obtained competer plant ar environme premises granted. as well carries ou within SE March & verificatio also. The mon SEZ are a	INR 21. ental mon 20 which onitoring. ustries lo requisit at author d they ental n to com The same as SPCB it regular Z and last April 20 on. Same itoring re lso being	74 Lak itoring a also ind cated w e perm ities fo are a nonitorin ply wit has beer on reg visits of visit wa 19 for E will be c	h is sp ctivities of cludes an ithin the issions f r their r also car g withi h the p n ensured ular basi- member i s conduct EMS & co continued	SEZ have rom the espective ried out n their ermission by APSEZ s. APSEZ industries ed during ompliance in future

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	
				A common air quality management committee may be framed under the guidance of the State Pollution Control Board and district administration to manage regional level emission inventory data that can help to manage regional level air quality management goals.	APSEZ and Other Industries, Stakeholders, District Administration and GPCB*	Long Term And Continual	 report of EC for Multi Product SEZ. APSEZ will co-operate and comply with the directions from concerned regulatory authorities for air quality management within APSEZ area. However at present, APSEZ has formed Internal Environment Monitoring Committee, involving Sr. Management from APSEZ and Adani Power Limited, with following role and responsibilities:. Identification of sources of air & noise emission and its dispersion in surrounding villages Remedial measures to eliminate, control, reduce or capture air & noise emission Identify available resource to abate the air and noise emission Drinking water and its testing of all the available fresh water sources in surrounding villages Identify any surrounding villages affected by organization's improper waste disposal mechanism.

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
4. 2	Release of particulate emissions from handling and storage of coal at the port and power plants would influence PM 10 and PM2.5 concentration in the background air. This could pose some health impacts such as asthma and COPD etc. among the local communities.	Healt h Impact	APSEZ has been implementing the following management plan to control emissions as per the applicable regulations and similar practices will be adopted in future: Entire bulk material handling facilities are mechanized. Regular water sprinkling on road and other open areas, regular cleaning of roads, dry fog dust suppression systems (DSS) in hoppers, transfer towers and conveyor belts, use of	All industries located in the APSEZ shall adhere to the emissions norms and minimum stack height guidelines issued by CPCB and consent to operate issued by Gujarat Pollution Control Board from time to time.	APSEZ and Other Industries	Continual Process	 Following safeguard measures are taken by APSEZ for abatement of dust emissions. Adequate stack heights to the Boilers, D.G. Sets, TFHs & HWGs for proper dispersion of pollutants within APSEZ Using of liquid & Gaseous fuels instead of solid fuels in Boilers, Thermic fluid heaters and hot water generators. Regular sprinkling on road and other open area Regular cleaning of roads Dry fog Dust Suppression System (DSS) in hopper, transfer towers and conveyor belts Use of water mist canon Closed type conveyor belts Regular sprinkling on coal heaps Covering other types of dry bulk cargo heaps Installation of wind breaking wall Development of greenbelt along the periphery of the storage yards/back up area Mechanized handling system for coal and other dry bulk cargo Wagon loading and truck loading through closed silo

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance				
			water mist canon, covered conveyor belts, regular sprinkling on				within the t The stack months (Oc Total Nos. c Frequency:	monitoring t'19 to Mar of Stacks: 2	g summa '20) are a 22 Nos.	s below.	st six
			coal heaps,				Parameter	Unit	GPCB Limit	Min	Max
							PM	mg/nm ³	150	30.81	10.5
							SO ₂	Ppm	100	7.69	2.64
							NOx	ppm	50	37.46	23.6
							Approx. IN environment FY 2019-2 monitoring. All other in adhere to p pollution dispersion permissions being inspe- as SPCB off	tal monito 20 which provide ade control of polluta granted b cted and e icials on re	Lakh is ring activi include located w equate sta measures ants as p y the boa nsured by gular basi	stan spent fo ities durin s stack vithin SE ack heigh for p per respo rd. The sa v APSEZ a s.	ndards. or all ng the gas Z are at and proper ective ame is s well
	1		covering of				As mentior	ned above	, present	ly, APSEZ	
			other types of					ternal Er			
			dry bulk cargo		APSEZ and		Committee,				
			heaps by	An internal Coal Dust	Other		APSEZ and				
			protective	Management Working	Industries,		role and res	ponsibilitie	s as defin	ed above.	

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
			materials, installation of wind breaking wall, development of greenbelt along the periphery of the storage yards/back up area and mechanized handling system for coal and other dry bulk cargo and Wagon loading and truck loading through closed silo. Both thermal power plants in the study area have installed electrostatic precipitators on the boilers and are meeting the emission norms as per the respective ECs granted. Due to	Group shall be formed by APSEZ to effectively co-ordinate the approach to coal dust management and monitoring	Concerned Stake holders, District Administration *	Long Term	The dry cargo is being handled by mechanized system and transported by covered conveyer system, trucks and rail wagons. Wind breaking wall is provided around the coal storage yards of APSEZ as well as Adani Power Plant. Adequate air pollution control measures like ESPs, FGDs, Bag Filters, etc. and adequate stack heights provisions within the thermal power plant for proper dispersion of pollutants. Green belt / plantation is provided around the periphery of dry cargo storage area and regular water sprinkling is also being done to abate the dust emission from coal hips.

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc. installation of	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
			tall stacks as per CPCB guidelines and EC conditions, the relative air pollution impacts due to release of emissions from two power plants is insignificant.				
4. 3	Ships are one of the significant sources of SO2 and NOX emissions in the study area. Marine diesel engines on the ships often utilize fuel oils that might contain higher sulphur content. As per the international best practices,	Level-2	A Standard Operating Procedure (SOP) has be developed to be included as a part of APSEZ environment management plan to verify that all ships anchored at the port are adopting the	The current global limit for Sulphur content of ships fuel oil is 3.5 % m/m (mass by mass). According to MARPOL, the new global cap on sulphur in the marine vessel fuels will be 0.50% m/m by the 1st January 2025. APSEZ should explore the possibility of providing shore power to the ships at the port to reduce idling stage ship emissions.	APSEZ and Ship Owners	Long Term	The ships coming to the APSEZ is complying with MARPOL and other shipping rules and regulations. APSEZ has already started providing shore power supply to the tugs (11 Nos.), dredgers (2 Nos.) and barges (1 No.). The feasibility of shore power will be explored and implemented on large scale for the visiting vessels to reduce idling stage ship emissions.

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
	these marine diesel engines are designed to meet MARPOL regulations with NOX emissions less than 14.4 gram/Kwhr of engine. Due to lower stack heights of the marine diesel engine, ship emissions often gets dispersed in the local environment and might pose risk of fumigation during the early morning and evening hours due to atmospheric inversion break-up		MARPOL4 regulations.				
	periods.						

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
4. 4	Road vehicle emissions will be other major contributors to the air pollution in the region when the facility is fully developed.	Level-2	Not Applicable	Due to implementation of Bharat VI fuels (MoEF&CC)6 in near future the vehicular and diesel engine emissions will be reduced by about 50% from the current national levels. APSEZ should develop a robust contractor environmental policy to ensure that Bharat Stage VI emission norms are adopted by all their contractors and sub-contractors.	APSEZ and All Industries	Short Term	Presently, cargo evacuation through rail has increased to 30 % thereby reducing the usage of road. Vehicles having valid PUC certificate are only being allowed to enter within APSEZ area. In future, APSEZ will also explore the feasibility of using Electric Vehicles for internal cargo movement.
5	Noise emissions						
5.1	Noise emissions are envisaged from port operations, industrial operations and power plants in the study area.	Level-1	Due to adoption of various mechanized operations at the waterfront development, the noise emissions from the port cargo handling will be minimal. An adequate	APSEZ, all the tenant industries and facilities within APSEZ are required to undertake noise monitoring at their facilities to demonstrate the compliance with the Noise level standards. Continuous noise recording units can be	APSEZ	Continual Process	 Below Safeguard measures are already taken for abatement of noise emissions. Development of greenbelt along the periphery of the operational area. D.G. Sets having Acoustic enclosures. Maintenance of plant machineries and equipments on regular frequency. Noise monitoring is being carried out by NABL accredited and MoEF&CC authorized agency namely M/s. Pollucon Laboratory Pvt. Ltd. as per permission granted and reports are being

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance				
	Any increase in noise levels beyond three decibels from the background levels would be perceived		greenbelt is being developed by APSEZ to further reduce any residual impacts due to noise emissions	installed by APSEZ at facility boundary to address the community grievances, when ever required. To assess the overall site wide compliance and also			submitted regular basi The noise months (Oc Locations: 7 Frequency:	is. monitori t'19 to M 12 Nos.	ing sum Iar'20) ai	mary for re as belo	r last six ow.
	as noise nuisance		from the facility. Periodic	to address any community grievances			Noise	Unit	Max	Min	Perm. Limit ^{\$}
	(USEPA)7.		noise level monitoring programs were	related to noise issues due to operation of APSEZ			Day Time	dB(A)	74.3	52.4	75
			adopted by APSEZ. Predicted noise levels were found to be well within the designated noise standards for Industrial facilities.	facilities.			Night Time Approx. IN environmen FY 20 19-20 All the resu From this impacts on All other in adhere to noise level and same well as SPC Further, till grievances/	IR 21.74 ital moni which ir ults are it can b the surro it can b the surro adustries monitor as per per has been B on regu date AF	Lakh toring ac ncludes r well wit pe inferr ounding located and co ermission n confirn ular basis	is spen ctivities of noise mor hin the s red that communi in the A ntrol the n granted med by s. s not rec	during the hitoring. standards. there no ty. APSEZ are e ambient d by SPCB APSEZ as eived any

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
							the stakeholders.
				In order to address the public grievances related to noise from the facility, an internal Noise Management Committee can be formed by APSEZ to investigate the root cause and to develop and implement noise mitigation plans in the specific zones.	APSEZ	Continual Process	As mentioned above, presently, APSEZ has formed Internal Environment Monitoring Committee, involving Sr. Management of APSEZ and Adani Power Limited, having role and responsibilities as defined above. No grievance received for noise related issues and it is observed that ambient noise level are well within the permissible standards.
6	Surface water qu	ality (Terrestr					
6.1	In general, release of untreated wastewater from industrial facilities would pose threat to water quality	Level -1	As per the master plan of APSEZ, 67 MLD of wastewater is expected to be generated from the fully developed project scenario, for	As per the master plan of APSEZ, the existing CETP shall be augmented to 67 MLD in progressive manner based on the future demand. The facility should limit the marine discharge of treated industrial	APSEZ	As and When Required	APSEZ has installed Common Effluent Treatment Plant (CETP) having 2.5 MLD capacities for treatment of partially treated effluent and sewage generated from industries within SEZ. Currently, CETP receives 350 KLD hydraulic load and considering the current development scenario, existing CETP is adequate to treat and handle the total effluent load coming from industries within SEZ.
	of streams, estuaries and marine water bodies.		which necessary permissions to set up decentralized CETPs of various	wastewater to 16 MLD as per the permits. Remaining treated wastewater shall be utilized for horticulture purpose.			industries within SEZ. Out of 43 only 3 industries within SEZ are sending their partially treated industrial as well as domestic effluent to the CETP confirming CETP inlet norms for further treatment and final disposal. Other industries within SEZ have

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
			capacities are already obtained. Presently a CETP capacity of 2.5 MLD is in place. Presently member units treat their effluents to meet the CETP inlet norms and then send it to CETP. Treated wastewater from CETP meets the stipulated discharge norms for utilization for greenbelt development within the APSEZ areas.				their own STPs / ETPs for treatment of wastewater generated from their industrial operation and discharging the treated water on land for horticulture purpose within their premises as per permission granted by SPCB. The capacities of CETP will be enhanced on modular basis as per future requirement. Presently avg. 1.4 MLD (from CETP, ETP & STPs) of treated water is being utilized on land for horticulture purpose within APSEZ premises and no discharge is made to any other source.
			Online wastewater quality monitoring systems are installed at	Efforts shall be made to recycle complete treated wastewater for port operations and industrial operations of APSEZ	APSEZ	Based on outcome Techno- feasibility Study	Online continuous effluent monitoring system installed at the discharge point of CETP to track any deviation from discharge norms. Presently entire quantity of treated water from CETP is used for gardening / horticulture

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances,	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
			applicable regulations and guidelines etc.				
			CETP to ensure quality of treated effluent meets the requisite discharge norms. No wastewater from CETP is discharged into natural bodies as on date	in future based on a detailed techno- economic feasibility study.			purpose within APSEZ premises.
			Runoff during monsoon from coal storage yards is collected in sedimentation ponds (dump pond) to remove any residual dust particulates for further disposal into sea	Storm water runoff from the facility during the first rain shall be sampled and analyzed for the presence of heavy metals or other criteria pollutants to adopt corrective and preventive actions to protect the marine water quality. All red and hazard category industry within APSEZ shall adopt spill prevention and control program and no effluents shall be discharged into	APSEZ	Continual	There are provision of drains around coal stack yard to carry to runoff water to dump ponds. This water is either used for dust suppression or after sedimentation (to remove residual dust), is allowed disposal to sea. Presently Marine monitoring is being carried out once in a month by NABL and MoEF&CC accredited agency namely M/s. Pollucon Laboratory Pvt. Ltd. The analysis reports of the same are being submitted to the concerned authorities on regular basis. The marine water quality monitoring summary for last six months (Oct'19 to Mar'20) is as per below. Locations: 14 Nos. (APSEZ – 9 + APL – 5) Frequency: Once in a Month

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance					
				storm water-drains.			Parameter	Unit	Surf		Bot	
									Max	Min	Max	Min
							pН		8.34	8.02	8.28	7.88
							TSS	mg/ L	364	26	381	22
							BOD (3 Days @27 °C)	mg/ L	5.3	2.2	4.3	ND*
							DO	mg/ L	8.8	5.1	6.2	4.9
							Salinity	ppt	37.5	32.85	38.2	33.0 3
							TDS	mg/ L	3849 6	3560 2	3879 6	3511 2 etectable
							Approx. IN environment FY 2019-20 monitoring.	tal mo 0 whi	nitoring ich inc) activit ludes I	ies duri narine	ing the water
			Detailed marine hydrodynamic modelling studies revealed that the current and proposed dredged soil disposal practices, sea water intake and outfall facilities and desalination	Good dredging practices shall be adopted by APSEZ: (i).Improving the dredging accuracy (ii).Improving onboard automation and monitoring, (iii). Reduce spill and loss, (iv). evaluating the need for installing silt screens near mangrove areas during the dredging phase	APSEZ	Long Term	No capital of 20 19. Dred maintenanc designated identified by Dredging M carrying ou dredge mate Nos. Cutter dredgers are Marine mon a month by	dged e dree locat y NIO. Manage it dre erial suctio e in op	materia dging is ions w ement p dging a Present on + 1 N eration g is bein	I gene s being rithin c plan is and ma ly there lo. Trail for drec	rated dispo leep s adopt nagem are 3 er suct lging. ed out o	during sed at sea as ed for ent of nos. (2 ion) of

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
			plant outfall etc have shown insignificant impact on the marine eco- system. As part of the comprehensive environmental monitoring program, APSEZ has been adopting marine water and sediment quality monitoring on monthly basis.	operations, (v). Environment friendly dredging activities can be undertaken in such a way that the overall turbidity levels near the mangrove and ecologically sensitive zones shall not exceed 100 NTU or 200 mg/l of TSS (10% lethal level of fish) Existing marine monitoring program shall be continued as per the directions of MoEF&CC and GPCB.			agency namely M/s. Pollucon Laboratory Pvt. Ltd. The analysis reports of the same are being submitted to the concerned authorities on regular basis. Summary of marine water for the last six months is as mentioned above. The same practice will be continued in future also as per direction by MoEF&CC as well as GPCB. Monitoring will be focused near ecological sensitive area in case of need to carryout capital dragging near such areas
7	Groundwater qua	lity and salini			•	•	
7.1	While Mundra block is enjoying safe ground water status as on date (based on the data published by CGWB), due to induced economic and	Level-2	APSEZ is not utilizing ground water for any type of use. APSEZ is meeting the current water demand through Narmada water supply scheme and 47 MLD	A dedicated desalination plant of capacity 4,50,000 m3/day (450 MLD) will be developed in progressive manner to meet the APSEZ requirements.	APSEZ	As and When Required	Present source of water for various project activities is desalination plant of APSEZ and/or Narmada water through Gujarat Water Infrastructure Limited and same is sufficient to meet the present water demand. APSEZ does not draw any ground water. The desalination plant of additional capacities will be installed on modular basis considering future development and requirement.

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
	population growth, use of ground water resources by the local people might increase in Mundra region. This might increase the TDS and chloride levels in the ground water in future.		captive desalination plant at site.				
7.2	Due to induced growth in the region, pressure on the available ground water source would increase and this could pose some threat to salinity ingress.	Level-2	Ground water is not drawn by APSEZ for its operations. Natural streams (seasonal rivers) passing through the APSEZ area will not be disturbed, the micro- watershed in the area will	The Govt. of Gujarat, Narmada, Water Resources, Water Supply & Kalpsar Dept.,(WRD)12 has prevention projects	District Administration *	Long Term	APSEZ will co-operate and comply with the directions from concerned regulatory authorities. APSEZ does not draw any ground water for the fresh water requirement.

S. Identified environmenta no. and social impacts for th fully develope scenario (year 2030)	Magnitude ne 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
		not be disturbed. Due to the above reasons, the possibility of salinity ingress due to APSEZ development is not envisaged. Mundra and Anjar blocks fall under fresh water to medium salinity zones. It can be observed that little variation was observed in the ground water salinity levels from year 2013 to 2016 across the Mundra and Anjar blocks. This aspect confirms that the overall salinity ingress from the shore into the land				

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc. due to existing	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Com	pliance			
			APSEZ facilities and power plant outfalls are less								
			significant.	While the individual industries in the study area will continue to undertake ground water quality monitoring as per the environmental clearances issued for the respective projects, a regional	All Concerned Stakeholders, District Administration and CGWB*	Continual Process	APSEZ is carrying out ground water sar at 8 locations at every six months and r of the same are being submitted t regulatory authorities on regular basis summary of ground water quality mon for last six months (Oct'19 to Mar'20) below. Locations: 8 Nos. Frequency: Half Yearly			d reports to the asis. The onitoring	
				level ground water conservation action committee can be formed under the guidance of state			Sr N o. 1	Parameter pH Salinity	Unit ppt	Max. Valu e 8.1 18.9	Min. Value 7.6 1.72
				ground water board and district Administration.			3	Oil & Grease Hydrocarbon	mg/ L mg/ L	ND*	ND*
							5	Lead as Pb	mg/ L mg/	0.07 2 ND*	ND*
							6 7	Arsenic as As Nickel as Ni	L mg/ L	ND*	ND*

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Com	pliance			
							8	Total Chromium as Cr	mg/ L	0.07 2	0.036
							9	Cadmium as Cd	mg/ L	ND*	ND*
							10	Mercury as Hg	mg/ L	ND*	ND*
							11	Zinc as Zn	mg/ L	3.26	0.068
							12	Copper as Cu	mg/ L	ND*	Not Detect ed
							13	Iron as Fe	mg/ L	5.7	0.098
							14	Insecticides/Pesti cides	mg/ L	Abse nt	Absent
							15	Depth of Water Level from Ground Level	met er	2.6	1.8
							envin FY mon The indu throu encc per auth	rox. INR 21.74 La ronmental monitorin 2019-20 which in itoring. fresh water rec stries within SEZ ugh APSEZ. All puraged to monitor the permissions g orities. mentioned above,	akh is ng act ncludes quireme are the grounc granted	s spent ivities c s groun ent of being indust d water d by c	luring the all the satisfied ries are quality as ompetent

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
							formed Internal Environment Monitoring Committee, involving Sr. Management of APSEZ and Adani Power Limited, having role and responsibilities as defined above. APSEZ will co-operate and comply with the directions from concerned regulatory authorities for ground water management.
8	Waste Manageme	ent	ADCE7 has	ADCE7 will continue to		I	Presently APSEZ has implemented Zero waste
8.1	Solid waste will be generated from industrial activities of APSEZ and other permitted facilities in the study area including Mundra town. These wastes would contain recyclable material, construction debris, organic waste, inert material and e-waste etc. In the absence of	Level-2	APSEZ has been adopting Zero waste Initiatives and the entire waste generated from existing operations is segregated and disposed to recycling vendors, thereby APSEZ has achieved zero landfill status as on date.	APSEZ will continue to adopt Zero Waste Initiative and wastes will be segregated at source and disposed to various recycling vendors, co- processing in cement plants. This initiative helps not only to reduce the waste to landfill significantly, but also to recycle the materials there by avoiding ecological impacts.	APSEZ	Continual Process	Presently APSEZ has implemented Zero waste Initiatives as per 5R (Reduce, Reuse, Recycle, Recover & Reprocess) principles of waste management. At present, APSEZ has developed material recovery facility for 6.0 TPD capacities. A well-established system for segregation of dry & wet waste is in place. All wet waste (Organic waste) is being segregated & utilized for compost manufacturing and/or biogas generation for cooking purpose. The compost is further used by in house horticulture team for greenbelt development. Whereas dry recyclable waste is being sorted in various categories. Presently manual sorting is being done for sorting of different types of solid waste. Segregated recyclable materials such as Paper, Plastic, Cardboard, PET Bottles, Glass etc. are then sent to respective recycling units, whereas remaining non-recyclable waste is bailed and sent to cement plants for Co- processing as RDF (Refused Derived Fuel). The same practice will be continued in future also. APSEZ has also been recognized for Zero

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
	any organized source segregation programs and material recycling strategies and infrastructure facilities, these wastes will enter into environment and would pose long term health impacts.						Waste to Landfill certification from reputed organization. Copy of certificate is attached as Annexure – B . APSEZ will continue proper solid waste management in his operational area.
8.2	Considering an average solid waste generation of 0.25 Kg/person/day , the estimated solid waste from facilities within APSEZ will be in the order of 100	Level-2	APSEZ has made a provision for central waste management facilities within the existing site based on the future needs. As part of the Zero Waste Initiatives, no landfill facilities will be installed at APSEZ.	The existing waste segregation and material recycling facilities will be augmented to dispose safely the wastes generated from APSEZ areas. Solid Waste Management Program shall be adopted and implemented as per Municipal Solid Waste Management Rules 2016 and Construction Waste	APSEZ	Continual Process	

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
	TPD (36,500 TPA).			Management Rules 2016			
8.3	About 35 TPD (13,000 TPA) of solid waste would be generated from the proposed industrial areas located outside the APSEZ area.	Level-2	As per the MSW Rules 2016 all the industrial facilities and SEZs are required to adopt waste segregation facilities at the respective properties and non-recyclable waste shall be disposed to landfill sites.	Solid Waste Management Program shall be adopted and implemented as per Municipal Solid Waste Management Rules 2016 and Construction Waste Management Rules 2016	All Industries	Continual Process	Industries located within the SEZ area are also complying with the waste management rules stipulated by statutory authorities and same has also been confirmed by APSEZ as well SPCB on regular basis.
9	Ecological aspect	s (terrestrial a	and marine)	<u> </u>	1	1	
	About 1576 ha of shrub		It is noted that the designated forest land is free from any	APSEZ has approached concerned authorities for diversion of designated forest land. Suitable compensatory			Stage -1 forest Clearance for about 1576. Ha Forest land has been obtained. Presently APSEZ is in the process of compliance to the stage - 1 Forest Clearance conditions, for further submitting to Govt authorities for issuance of Stage-2 Forest Clearance.

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
9.1	forest land contiguous to APSEZ area is applied for land diversion for various developmenta l activities. This might have certain level of changes in the biodiversity in the study area.	Level -1	native vegetation and comprises of Prosopis juliflora. It is also noted that no endangered species are present at the shrub forests that are applied for land diversion. It is also noted that no forest produce is reported from this designated forest land parcel due to lack of economic importance of plant species reported in the shrub forest. It is also noted that no tribal lands are located in the	afforestation plan shall be adopted based on the recommendations and directions of the concerned authorities. Due to adoption of compensatory afforestation program through a scientific manner, the overall ecological footprint in the district will be increased. Due to plantation of native tree species as part of greenbelt development, the overall biodiversity of the region will increase considerably when the project is fully developed.	APSEZ/State Forest Department*	Long Term	

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
			designated forest land parcel. Hence there will not be any change in biodiversity due to the proposed diversion.				As per study conducted by NCSCM in 2017,
9. 2	Mangrove conservation areas are located adjacent to the APSEZ area. Accidental discharges of industrial effluents into the marine environment would pose certain ecological risk.	Level -1	No development activities will be undertaken within mangrove conservation areas. APSEZ has taken up large scale mangrove afforestation activities in an area of more than 2800 ha at various locations across the coast of Gujarat state in consultation with various	Mangrove footprint and health status shall be monitored annually	APSEZ	Continual Process	As per study conducted by NCSOM III 2017, mangrove cover in and around APSEZ, Mundra has increased from 2094 Ha to 2340 ha (as compared between 2011 to 2017). The analysis has shown an overall growth of 246 ha. The cost for said study was INR 3.15 Cr. Further work has been assigned to NCSCM in March 2020 as part of compliance for the action plan "Monitoring of mangrove cover". The cost of the said work is INR 23.56 Lacs.

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
			guidelines etc. organizations The Adani Foundation introduced 'Mangrove Nursery Development and Plantation' scheme in the area as an alternative income generating activity for the people of the				
9.3	Outfall from the thermal power plants desalination and CETP would pose certain level of impact on the marine environment.	Level-1	region. A detailed marine hydro- dynamic and dispersion modelling of the study area indicates that the background temperature and salinity at mangrove conservation area will not increase from the prevailing	All approved marine outfalls shall be monitored for salinity, temperature and other designated parameters as per consent to establish issued by GPCB. Existing marine environment al monitoring program shall be continued.	APSEZ and Concerned Industry	Continual Process	Presently marine monitoring is being carried out by the Adani power plant at the marine outfall locations and reports are being submitted to the concerned authorities on regular basis. APSEZ is carrying out Marine monitoring once in a month at 9 locations in deep sea by NABL and MoEF&CC accredited agency namely M/s. Pollucon Laboratory Pvt. Ltd. The analysis reports of the same are being submitted to the concerned authorities on regular basis. Adani power plant is also doing marine water quality at 5 locations (2 locations at outfall location) in deep sea by NABL and MoEF&CC

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Complianc	e				
			background levels as the outfalls are located far away. APSEZ and respective power plants in the study area have been				accredited Environme analysis r submitted regular ba quality is s The comp between C as below.	nt & I reports to th sis. Th hown a parison	Resear of e cor ie sun above. of	the sar ncerned nmary of marine	Pvt. ne ar author marir water	e being ities on ie water results
			monitoring the				Paramet	Uni		Max		/lin
			marine water				er	t	CIA	Presen	CIA	Presen
			quality status on monthly				Tomp	٥C	30.	t		t
			basis for the				Temp.	-0	2	30.4	28	29.5
			stipulated environmental				Salinity	ppt	41.	37.8	34. 9	34.6
									8			
			and ecological parameters.				As per abo is no majo parameters are insignif Presently intake as developed Multiprodu discharge of SEZ.	r devia s and ficant. no de well as as a p ict SE	ults, it ation i thus esalina s outf art of Z. Her	in the co indicates ation pla all facilit EC & CF	oncent s that int, se ties ha Z Clea e is no	a water ve been rance of marine
	Terrestrial		and ecological	The compensatory			is no majo parameters are insignif Presently intake as developed Multiprodu discharge	r devia s and ficant. no de well a as a p ict SE from c as dev	ults, it ation i thus esalina s outf art of Z. Her compo	in the co indicates ation pla all facilit EC & CF nce there nents ap d its o	oncent s that ant, se ties ha Z Clea e is no provec 	a water ve been rance of marine as part

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
	have any notified national parks or ecological sanctuaries. Since the area falls under dry deciduous shrubs. Due to scanty rains in the area, the overall natural green- cover/vegetatio n in the area is very small.		area of 550ha as against the committed area of 430ha. A dedicated nursery is set up to promote plantation. APSEZ have undertaken a plantation with about 9.6 Lakh fully grown trees.	be monitored annually to check the survival rate of the plantation.			and Adani Power Plant has developed total 623 ha. area as greenbelt with plantation about 11.6 Lacs saplings within the APSEZ area including SEZ industries & Adani Power Plant. Dedicated horticulture department is maintaining and monitoring the terrestrial green belt development on regular basis to check the survival rate of plantation. Total expenditures of the horticulture dept. during the FY 2019-20 within APSEZ is INR 728 lakh.
10	Socio-economic aspects						
10.1	Population growth in the Mundra region was reported to be in the order of 85% during the past decade (2001-2011). Further expansion of the urban area could be possible due to	Level-1	Dedicated townships are developed within APSEZ area with necessary community infrastructures such as hospital, school, recreational facilities, sewage treatment and waste collection	The existing townships will be expanded to accommodate about 4 lakh people when the project activity is fully developed.	APSEZ	As and When Required	APSEZ has developed two townships (Shantivan and Samudra) accommodating 2180 households and associated infrastructure facilities. Accommodation is made available for all interested employees working within Adani group & SEZ industries. Out of which 86% Occupancies are accommodated within the townships and rest are available for employees working within APSEZ. At present 43 nos. of industries are operating within the SEZ. Township facilities are also

S. Identified environmental No. and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
induced economic growth in the region. Increase in population will have a additional need for public infrastructure in the region.		facilities. Adani Foundation has been undertaking various CSR programs under the principal themes such as education, community health, sustainable livelihood and rural infrastructure. About Rs. 97 Cr has been spent on various CSR activities in the Mundra region since 2010. Similar community development programs (based on need based assessment) will be continued in future as well with allocation of appropriate budget.				 made by SEZ industries within Mundra town for their employees having basic infrastructure facilities and requirements. Most of the employees working in SEZ industries are residing in Mundra township having all basic requirements and associated facilities. The existing social infrastructure facilities are adequate to accommodate the people considering present APSEZ development. The existing townships with associated facilities will be expanded as per requirement. Other infrastructure facilities have been developed for people are as follows. Multi-Specialty Hospital School Commercial complex Religious place APSEZ is actively working with local community (including fishermen community) around the project area and provides required support for their livelihood and other concerns through the CSR arm – Adani Foundation in the main five persuasions is mentioned below. Community Health Sustainability Livelihood – Fisher Folk Education Rural Infrastructures Skill Development About Rs. 34 Cr has been spent on various CSR activities in the Mundra region since April

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
							 20 18 till March 2020 including cost of rural infrastructure projects development. Major works carried out since April 20 18 as a part of CSR activities are as below. Pond Deepening work at Vadala & Mota Bhadiya Artificial recharge borewell in Borana, Mangara & Dhrub village. Under Dignity of Drivers Project, Adani Foundation has constructed Resting Shed for Drivers entering in SEZ Premises. Total 50 beds are constructed, drinking water and sanitation plus recreational – TV Facilities. Construction of 45 Toilet block and proper bathing place for labours. RO Plant – Samaghogha, Siracha village & Vallabh Vidyalaya at Mundra Basic sanitation facility (18 Nos) at Balvadi, medical centre and retiring places at labour settlements
							 Ground recharge activities (pond deepening work for more than 52 ponds) individually and 26 ponds under Sujlam Suflam Jal Abhiyan were built leading to a significant increase in water table and higher returns to the farmers. Roof Top Rain Water Harvesting 54 Nos. and Recharge Bore well 75 Nos. Drip Irrigation 823 Farmers benefitted in

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
10.2	The overall sex ratio was found to reduce by 28% in the Mundra taluk (study area) during the period 2001- 2011. This could be attributed to increase in influx of working men in the region due to rapid economic development. Similar trend might continue in future due to induced economic growth in the	Level-2	Adani foundation is taking up several girl child education programs as part of CSR activities to create awareness about girl child protection.	Suit able regional level awareness programs on the girl child protection and encouragement programs in line with state and national policies shall be adopted under Corporate Social Responsibility programs in association with district authorities.	APSEZ, Other development projects and District Administration*	Long Term	 coordination with Gujrat Green Revolution Company Participatory Ground Water Management in ten villages with holistic approach for Kankavati Sandstone Aquifer Programme. Similar community development programs (based on need based assessment) will be continued in future as well with allocation of appropriate budget. Major works carried out since April 2018 as a part of CSR activities to create awareness about girl child protection are as below. The Adani Foundation provided scholarship support to motivation and encouragement of fishermen boys and girls for higher education under this program. APSEZ provide 100% fees support to girls as a scholarship. This year total 78 students are being facilitated by Adani foundation. Separate sanitation facilities for girl child in schools. Total 8770 haemoglobin screenings of RPA woman and adolescent girls was carried out in year 2017-18. Which helps in controlling anaemia in women and indirectly malnutrition. Beti Vadhavo Programme was organized in 32 Villages in the presence of Village Sarpanch and other leaders in year 2017-

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
	region.						 18. We explained people about the various topics i.e. importance of girl child, Sex Ratio, Gender Equality and laws regarding Child abortion. This initiative was well accepted by community and we have observed a visible change in their mindset. We have facilitated 560 daughters with Kit (Small Bed sheet, Mosquito net, Soap and Cream with nutritious food for mother) To create awareness about health, personal hygiene, child education and nutritional diet in fishermen community, various awareness programs have been organized. Project Suposhan is initiated with the Motive Curb malnutrition amongst Children, Adolescent girls and Women in our CSR villages. To reduce malnutrition and anemia amongst Children 95 % & adolescent girls and pregnant & lactating women by 70 % in three years Reduction IMR and MMR Support Awareness & Cover 100 % Vaccination taken by Child & women. About Rs. 34 Cr has been spent on various CSR activities in the Mundra region since April 2018 till March 2020 including cost of community health and education for woman and girl child.

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
10.4	Due to economic growth leading to rapid urbanization, which prompts the need for healthcare facilities in the region. For an influx of 6 lakh people from APSEZ operations and additional 3 Lakh from induced growth by the year by 2030 (fully developed scenario), total hospitals facilities with about 540 beds would be required.	Level-2	Adani hospitals, Mundra is setup by Adani group near Samudra township with a goal to provide primary and secondary health care services to Adani group employees and the local populace of Mundra. The existing 100 bed Adani hospital at Mundra has been catering the services ranging from wellness and preventative care.	APSEZ will explore other possibilities to augment the primary and secondary healthcare facilities in future depending on the growth scenario at APSEZ development.	APSEZ	Long Term	 Adani hospitals (Multi-specialty), Mundra is having 100 bed facility and same is setup by Adani group near Samudra township. Primary health center and community health center are in place within the Mundra taluka. Other than this Adani foundation is doing various activities as part of community health. The details of last year are as below. Community Health – Mundra 11 Rural Clinic-8 from Mundra & 3 from Anjar block treated; 25142 patients. 31 villages covered through Mobile healthcare unit 20399 patients benefited during the year. The mobile health care unit cover 25 villages and 07 fishermen settlements. Around 90 types of general life saving medicines are available in these units. During the year 2019-20, total 9860 transactions were done by 8672 card holders of 68 villages of Mundra Taluka. They received cash less medical services under the senior citizen project. In the year of 2019-20, Total 3137 people had been benefitted by various kind of camp and needy and screened patients are treated in Adani Hospital.
							• 5398 Patients taken Care and

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
							 Coordination 609 Dead body referred by carry van 3557 Ayushman Gold Card facilitation through Enrollment camp and Mahiti Setu 549 support for Implants and Needy Patients 9896 People helped through Mahiti Setu for various government schemes 816 people benefitted in 6 health awareness camps Adani Foundation organized 52 General Health Camps and Speciality Camps in various interior villages of Kutch in coordination with GKGH which created magical impact and benefitted 4779 patients. Adani Foundation Bhuj Health team has also organized more than six awareness camps. Adani foundation, Adani Hospital and GAIMS have Jointly Celebrated "Arogya Saptah" 8th to 14th August & 20th to 26th January in Respect of Independence and Republic of our country. Celebration included multi-specialty camps, Workshops, truckers health check-up, surgical camp on foundation day and adolescent fair at different part of district. Collector.
							activities in the Mundra region since April 2018 till March 2020 including cost of community health.

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
							Present Hospital facilities are adequate to avail the medical treatment for Mundra region considering present development. Other Occupational Health centres, primary health centers and community health centres are also in place in Mundra to take care the people residing in Mundra. Adani group is also operating high quality health care services to the people of Kutch at G. K. General Hospital, Bhuj having 750 beds facilities on public private partnership (PPP) model, which is 60 km far from Mundra. APSEZ will explore other possibilities to augment the primary and secondary healthcare facilities in future depending on the future development at APSEZ.
10.5	Due to rapid economic development in the region, several employment opportunities can be generated to the local people. When the area is fully developed by the end of		APSEZ has been giving preferences to people from Gujarat for providing employment opportunities based on eligibility and skills. In Mundra, special programmes have been conducted by Adani	APSEZ is committed to provide support for fishermen livelihood activities and has submitted a detailed 5 years plan to MoEF&CC with a total budget of Rs.13.5 Cr.	APSEZ	Short Term	The Adani Foundation has provided employment equivalent to 6261 man-days to fishermen in the year 2019-20. So total employment worth of 42048 man-days has been provided to fishermen till date. The Foundation has also supported Pagadiya fishermen as painting laborers by providing them with employment and job in various fields. Adani Skill Development Centre (ASDC) is playing a pivotal role in implementing sustainable development in the state. The objective of this Centre is to impart different kinds of training to the students of 10 th , 12 th , college or ITI from surrounding areas.

fully de scenari (year 20	mental In sial M s for the 1 eveloped o 030)	ype of npact & lagnitude	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
55,000 high as 4,00,00 which v	y ion of ndra ould e from level of to as 00, vill be the total led ion in a Taluk		Foundation to enhance the employability of youth from fisherfolk communities. Based on the need assessment results, several livelihood options have been introduced by the Adani Skill Development Centre, Mundra. In these centres, youth can join and get vocational training for a number of technical and non-technical skills. An industrial Training Institute is set up at APSEZ, Mundra, to enhance the skill levels of the local youth to maximum possible extent.				 During this year Total 2664 people trained in various trainings to enhance socio economic development. APSEZ is carrying out various initiatives specific to the Fisherfolk community which includes: Vidya Deep Yojana Vidya Sahay Yojana – Scholarship Support Adani Vidya Mandir Fisherman Approach in SEZ Machhimar Arogya Yojana Machhimar Sadhan Sahay Yojana Machhimar Shudhh Jal Yojana Sughad Yojana Machhimar Akshay kiran Yojana Machhimar Akshay kiran Yojana Machhimar Ayivika Uparjan Yojana Bandar Svachhata Yojana These initiatives are planned for the period 2016 – 2021 with a committed expense of INR 13.5 Cr as submitted earlierin detail in the report namely "Silent Transformation of Fisher folk at Mundra", . Till, March 2020 (Since 2016-17) approx. 8.13 Cr. INR, has already been spent in support for

S. No.	Identified environmental and social impacts for the fully developed scenario (year 2030)	Type of Impact & Magnitude 1	Environment management plans adopted or being adopted by APSEZ as per permits, clearances, applicable regulations and guidelines etc.	Additional Risk Mitigation Measures/ESMP	Responsible agency	Timeframe for implementatio n	Compliance
							fishermen livelihood activities.

<u>ANNEXURE – A</u>

Photographs showing Dump Pond and Strom Water Drain near Coal Yard

ANNEXURE – B

ZERO Waste to Landfill Certificate

LIBEROASSURANCE

This is to certify that the Management System of:

Adani Ports and SEZ Ltd (APSEZ) adani

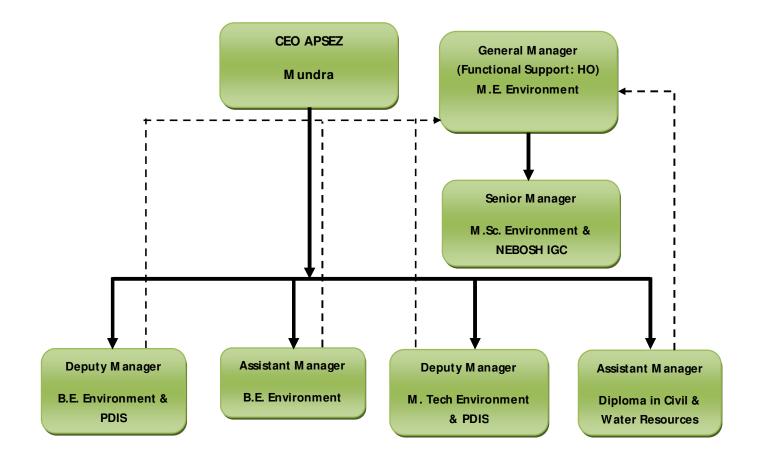
Ports and Logistics

Mundra, Kutch 370421, India

Has been assessed and registered under the certification and inspection scheme of LiberoAssurance for the following standard:

Zero Waste to Landfill

The Management System is applicable to:


Handling, Warehousing, Logistics

Itsues	28/03/2019	at	PIRAEUS, GREECE				
	(Date of issue)		(Place of issue of certificate)				
Expiry	27/03/2020						
	(Expiration date)		For the Issuing Organisation Effhimitos Liberopoulos				
150 17021 Ac	Assurance is: credited Body by IAS ESYD (GREECE)	Pie	This certificate is valid subject to satisfactory completion of annual audits. Certificate ID: IN28135002192WL1 Please Check Validity of this Certificate at: https://liberoassurance.org/verification/				
	LiberoAs	surance (Contact Details				
8 The Green, Sui	it: A Dover, DE 19901 USA (E	nail: pr010	proservices.org (Website: www.liberoassurance.org				
Page 1 from 1			Document ID: WF_	3320			

Annexure–13

Organogram of Environment Management Cell, APSEZ, Mundra

