

APSEZL/EnvCell/2015-16/040

Date: 24.11.2015

पर्यावरण, वन एवं ज्लायु परिवर्तन मंत्रालय,

The Director (S),

Ministry of Environment, Forests & Climate Change,

Ministry of Environment र निकासका (पश्चिम का Office (Western Zone)

Arera Colony, Link Road No Kendriya Paryavaran Bhawan'

Bhopal - 462 016

लिंक रोड नं.-3, ई-5, रविशंकर नगर,

E-mail: rowz.bpl-mef@nic.ink Road No.-3, E-5, Ravishankar Nagar,

Sub

: Half yearly Compliance report of Environment Clearance under CRZ notification for "Port expansion project including dry/break bulk cargo container terminal, railway link and related ancillary and back-up facilities at Mundra Port, Dist. Kutch in Gujarat by M/s. Adani Ports & SEZ Limited."

Ref

: Environment clearance under CRZ notification granted to /s. Adani Ports & SEZ

Limited vide letter dated 20th September, 2000 bearing no. J-16011/40/99-IA.III

Dear Sir,

Please refer to the above cited reference for the said subject matter. In connection to the same, it is to state that copy of the compliance report for the Environmental / CRZ Clearance for the period of Apr'15 to Sep'15 is enclosed here for your records. The stated information is also provided in form of a CD (soft copy).

Thank you,

Yours Faithfully,

For Adani Ports-and Special Economic Zone Limited

-raval Ennarasu Karunesan Chief Executive Officer

Mundra Port

Encl: As above

Copy to:

- 1. The Director (IA Division), Ministry of Environment, Forests & Climate Change, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi-110003
- 2. Zonal Officer, Regional Office, CPCB Western Region, Parivesh Bhawan, Opp. VMC Ward Office No. 10, Subhanpura, Vadodara, Gujarat - 390 023
- 3. Member Secretary, GPCB Head Office, Paryavaran Bhavan, Sector 10 A, Gandhi Nagar, Gujarat - 382 010
- 4. Deputy Secretary, Forests & Environment Department, Block 14, 8th floor, Sachivalaya, Gandhi Nagar, Gujarat – 382 010
- 5. Regional Officer, Regional Office, GPCB Katira Complex-1, Mangalam Char Rasta, Sanskar Nagar, Bhuj (Kutch), Gujarat - 370 001 Tel +91 2838 25 5000

Adani Ports and Special Economic Zone Ltd Adani House PO Box No 1

Fax +91 2838 25 5110 info@adani.com www.adani.com

Mundra, Kutch 370 421 Gujarat, India

Environmental Clearance Compliance Report

of

Port expansion project including dry/break bulk cargo container terminal, railway link and related ancillary and back-up facilities

at Mundra Port, Dist. Kutch, Gujarat

of
Adani Ports and SEZ Limited
for
Period:
April-2015 to September-2015

<u>Index</u>

Sr.	Particulars			
No.			Nos.	
1	Compliance Re	port	1	
2	Annexures			
	Annexure - A	Compliance report of CRZ recommendations	11	
	Annexure - 1	Mangrove's Afforestation Details	13	
	Annexure – 2	Summary of Environment Monitoring	16	
	Annexure – 3	Typical Oil Spill Drill Report	59	
	Annexure – 4	Details on CSR activities by Adani Foundation	64	
	Annexure – 5	Typical Mock Drill Report	77	

Compliance Report

From : April,15

To: September,15

Status of the conditions stipulated in Environment Clearance under CRZ notification

Half yearly Compliance report of Environment Clearance under CRZ notification for "Port expansion project including dry/break bulk cargo container terminal, railway link and related ancillary and back-up facilities at Mundra Port, Dist. Kutch in Gujarat Sr. Compliance Status as on **Conditions** No. 30-09-2015 A. Specific Condition All the conditions stipulated by the Gujarat The project is in operation phase and has Pollution Control Board vide their NOC No. been granted Consent to operate (CC&A) PC/NOC/Kutch/391/18424 dated 10.6.99 vide letter no. AWH 60840 valid till 17th and No. PC/NOC/Kutch/222(2)16880 dated November, 2016 by GPCB. 1.5.99 shall be strictly implemented. The conditions stipulated in the letter No Point wise compliance report of CRZ ii ENV-1098-6477-PI dated October 28, 1999 recommendations issued vide letter No and No. ENV-1099-2702-PI dated 27.12.99 ENV-1098-6477-PI dated October 28, 1999 and No. ENV-1099-2702-PI dated 27.12.99 of shall be strictly implemented. is enclosed as Annexure- A. iii The turning circle should be increased from Complied. Details submitted on 15.12.2008. 550 m to 600 m. A girdle canal with settlement tanks shall Trap drains are provided around the coal be provided around the coal storage area. storage yard. Details of the same is submitted to the All efforts shall be made for water conservation and rain water harvesting. Ministry of Environment and forest along Arrangements shall be made for roof top half yearly compliance dated 02.12.2013. rain water harvesting from various structures. To obviate the problem of coastal erosion During Maintenance dredging in this area due to dredging, the setback distance of at it is ensured that at least 50 m distance is least 50 m from the Chart Datum line of maintained. Bocha island would be maintained. The dredged material shall be disposed of vii The dredged material was utilized in the only in the identified locations outside the level rising in line with the EIA study done CRZ area. While dumping the dredged by NIO. material, sufficient distance should be ensured from the existing mangroves so that there is no damage to the ecology. During dumping of dredged material the mitigative measures as suggested by NIO shall be implemented. It shall be ensured that there is no dumping of dredged material in the CRZ.

From: April,15

To: September,15

Status of the conditions stipulated in Environment Clearance under CRZ notification

ancill	cillary and back-up facilities at Mundra Port, Dist. Kutch in Gujarat				
Sr. No.	Conditions	Compliance Status as on 30-09-2015			
Viii	The mangrove afforestation shall be undertaken at the identified sites and the progress report in this regard shall be submitted to this Ministry regularly. All the recommendations suggested in the NIO report for restoration of the coastal habitat by mangrove afforestation at Navinal island shall be strictly implemented.	Details of the developed mangrove along the west of Navinal creek and green belt details are submitted to the Ministry of Environment and forest along with half yearly compliance dated 02.12.2013. Details on mangroves afforestation carried out by APSEZL till date is annexed as Annexure – 1.			
ix	No ground water shall be withdrawn for this project.	Entire water requirement is sourced from Narmada water and desalination plant of APSEZL.			
х	The project proponent shall ensure that the construction workers do not cut the Mangroves for fuel wood etc.	Construction activity is already completed.			
xi	The project proponent shall ensure that no creeks are blocked and the natural drainage of the area is not affected due to project activities.	Construction activity is already completed. Details of culverts provided and creek system is submitted to the Ministry of Environment and forest along with half yearly compliance dated 02.12.2013.			
xii	The project proponent shall ensure that there will be no disposal of sullage and sewage generated from construction camps, surface run-off from construction sites, and oil and grease spillage from the construction equipments in the creeks.	Construction activity is already completed.			
xiii	The project proponent shall stick to the time bound programme submitted to the Department of Environment, Government of Gujarat for the proposed activities including installation of desalination plant for meeting the entire water requirement. They shall coordinate their construction/operations schedule with the installation schedule of desalination plant.	Entire water requirement is sourced from Narmada water and desalination plant of APSEZL.			

From : April,15

To: September,15

Status of the conditions stipulated in Environment Clearance under CRZ notification

anciii	ncillary and back-up facilities at Mundra Port, Dist. Kutch in Gujarat			
Sr.	Conditions	Compliance Status as on		
No.		30-09-2015		
xiv	The project proponent shall ensure that the commercial fisheries are not hampered due to presence of barges, vessels and other activities in the region. Necessary plan in this regard shall be prepared in consultation with the NIO and submitted within 3 months.			
XV	The project proponent shall bear the cost of the external agency that may be appointed by the Department of Environment, Government of Gujarat for carrying out the supervision and/or the monitoring of the construction activities.	Point noted.		
xvi	The project proponent shall carry out the post-project monitoring of various environmental parameters in consultation with the Department of Environment, Government of Gujarat and Gujarat Pollution Control Board.	 Third party monitoring is being carried out by NABL and MoEF accredited agency. Summary of monitoring reports for duration from April'15 to Sept'15 are enclosed as Annexure-2. 		
xvii	The project proponent shall prepare the detailed traffic control management plan for the port and shall participate in the VTMS to be developed for the Gulf of Kachchh.	 Well defined traffic management procedures are in place. M/s APSEZL has participated in VTMS program. Details submitted on 02.12.2013. 		
xviii	Action plan shall be prepared by the project proponents to prevent damage to marine life and also to the coastline in case of any oil spillage and the same shall be strictly implemented. Regular mock drills shall be carried out to ensure fitness of the equipment in place.	Oil spill contingency plan is in place and implemented. Mock drills are conducted regularly. Typical drill conducted is attached as Annexure - 3 .		

From : April,15

To : September,15

Status of the conditions stipulated in Environment Clearance under CRZ notification

	ary and back-up facilities at Mundra Port, Dis	·	
Sr.	Conditions	Compliance Status as on	
No.	Condicions	30-09-2015	
xix	The project proponents shall work out the maximum quantity of spilled material, which can find its way into the coastal waters, under different accident scenarios, and their impact on aquatic life shall be studied after clearly demarcating the impact zones. On the basis of such studies, the necessary action plan to mitigate the likely impacts shall be prepared before commencement of the operations. Action taken report in this regard shall be submitted to the Ministry.	Oil spill contingency plan is in place and implemented. The same has been submitted to the Ministry along with Half yearly compliance report dated 29.05.2014.	
B. G	eneral Condition		
i	Construction of the proposed structures should be undertaken meticulously conforming to the existing Central / local rules and regulations. All the construction designs / drawings relating to the proposed construction activities must have approvals of the concerned State Government Departments / Agencies.	Construction activities are completed in accordance with the prevailing laws.	
ii	The proponent shall ensure that as a result of the proposed constructions ingress of the saline water into the ground water does not take place. Piezometers shall be installed for regular monitoring for this purpose at appropriate locations on the project site.	Complied, Detail submitted on 02.12.2013. Regular monitoring are being carried out.	
iii	A comprehensive contingency plan in collaboration with the concerned authorities must be formulated to contain in case of any oil spills. Appropriate devices such as oil skimmer, oil monitor, oil water separator must be acquired for strengthening the contingency plan. All the service vessels that required for oil spill operations must be equipped with booms and dispersants. The personal onboard of these vessels must be properly trained in operation of these booms and dispersants.	Oil spill contingency plan is in place and implemented. The same has been submitted to the Ministry along with Half yearly compliance report dated 29.05.2014.	

From : April,15

To: September,15

Status of the conditions stipulated in Environment Clearance under CRZ notification

	ciliary and back-up facilities at Mundra Port, Dist. Kutch in Gujarat				
Sr.	Conditions	Compliance Status as on			
No.	Conditions	30-09-2015			
iv	The operation plan for responding to an oil spill must include clear procedures for notification of a spill, response decision, clean up operations, communications, and termination of cleanup operations, cleanup cost, oil pollution, damage control and disaster management plan.	Oil spill contingency plan with defined procedure and responsibilities is in place and implemented. The same has been submitted to the Ministry along with Half yearly compliance report dated 29.05.2014.			
V	A well-equipped laboratory with suitable instruments to monitor the quality of air and water shall be set up so as to ensure that the quality of ambient air and water conforms to the prescribed standards. The laboratory will also be equipped with qualified manpower including a marine biologist so that the marine water quality is regularly monitored in order to ensure that the marine life is not adversely affected as a result of implementation of the said project. The quality of ambient air and water shall be monitored periodically in all the seasons and the results should be properly maintained for inspection of the concerned pollution Control agencies. The periodic monitoring reports at least once in 6 months must be sent to this Ministry as well as its Regional Office at Bhopal.	 Third party monitoring is being carried out by NABL and MoEF accredited agency. Summary of monitoring reports for duration from April,15 to Sept,15 are enclosed as Annexure – 2. Half yearly compliance reports containing monitoring report is regularly submitted to MoEF, Bhopal. 			
Vi	Adequate provision for infrastructure facilities such as water supply, fuel for cooking, sanitation etc. must be provided for the laborers during the construction period in order to avoid damage to the environment. Colonies for the laborers should not be located in the CRZ area. It should also be ensured that the construction workers do not cut trees including mangroves for fuel wood purpose.	Construction activities are completed.			

From : April,15
To : September,15

Status of the conditions stipulated in Environment Clearance under CRZ notification

ancill	ncillary and back-up facilities at Mundra Port, Dist. Kutch in Gujarat				
Sr.	Conditions	Compliance Status as on			
No.	oonsis.one	30-09-2015			
Vii	To prevent discharge of sewage and other liquid wastes in to the water bodies, adequate system for collection and treatment of the wastes must be provided. No sewage and other liquid wastes without treatment should be allowed to enter into the water bodies. The quality of treated effluents, emissions, solid wastes and noise levels must confirm to the standards laid down by the competent authority including the Central/State Pollution Control Board.	 All the liquid effluent and sewage is being treated in the treatment plant. Third party monitoring of treated water is being carried out by NABL and MoEF accredited agency. Summary of monitoring reports for duration from April,15 to Sept,15 are enclosed as Annexure - 2. 			
viii	Appropriate facility should be created for the collection of solid and liquid wastes generated by the barges/vessels and their safe treatment and disposal should be ensured to avoid possible contamination of the water bodies.	 Ships berthing at Mundra Port comply with MARPOL regulations. No discharge is allowed into marine environment inside port limits and APSEZL does not receive sewage/liquid waste from ship. Oily sludge (a mixture of oil, water and dirt) is disposed through authorized recycler / re-processor. 			
ix	Necessary navigational aids such as channel markers should be provided to prevent accidents. Internationally recognized safety standards shall be applied in case of barge /vessel movements.	Navigational aids such as buoys and leading lights have been provided.			
×	During operation phase proper precautions should be taken to avoid any oil spills and no oily wastes shall be discharged into the water bodies.	 implemented. The same has been submitted to the Ministry along with half yearly compliance report dated 29.05.2014. Oily sludge is being disposed through authorized recycler / re-processor 			
хi	The project authorities should take appropriate community development and welfare measures for the villagers in the vicinity of the project site, including drinking water facilities. A separate fund should be allocated for this purpose.	The CSR Activities are planned out at group level by Adani Foundation. Details of the CSR activity and expenditure from April,15 to Sept,15 is enclosed as Annexure -4.			

From: April,15

To: September,15

Status of the conditions stipulated in Environment Clearance under CRZ notification

ancill	ncillary and back-up facilities at Mundra Port, Dist. Kutch in Gujarat			
Sr.	Onadikina	Compliance Status as on		
No.	Conditions	30-09-2015		
xii	The quarrying material required for the construction purpose shall be obtained only from the approved quarries / borrow areas. Adequate safeguard measures shall be taken to ensure that the overburden and rocks at the quarry site does not find their way into water bodies.	Construction activities are completed.		
xiii	The dredging operations, if any, to be undertaken with the prior approval of this Ministry, shall be executed with appropriate safeguard measures to prevent turbidity conditions in consultation with the expert agencies such as CWPRS / NIO.	Capital dredging is completed and project is in operation phase.		
xiv	For employing unskilled, semi-skilled and skilled workers for the project, preference shall be given to local people.	Preference is given to local people for employment based on their qualification and experience. Approx. 980 locals (Kutchhi) are employed out of 4169 persons employed by Adani group at Mundra.		
xv	To meet any emergency situation, appropriate firefighting system and water pipelines should be installed. Appropriate arrangements for uninterrupted power supply to the environment protection equipment and continuous water supply for the firefighting system should be made.	Details of the firefighting facility has been submitted along with the half yearly compliance report dated 02.12.2013.		
xvi	Regular drills should be conducted to check the effectiveness of the on-site Disaster Management Plan.	Regular drills are being conducted for effectiveness of the system. Typical drill conducted is attached as Annexure - 5.		
xvii	The recommendations made in the Environmental Plan and Disaster Management Plan, as contained in the EIA and Risk Analysis Reports of the project, shall be effectively implemented.	All the recommendations are being implemented.		

From : April,15
To : September,15

Status of the conditions stipulated in Environment Clearance under CRZ notification

anciii	ncillary and back-up facilities at Mundra Port, Dist. Kutch in Gujarat				
Sr. No.	Conditions	Compliance Status as on 30-09-2015			
xviii	A separate Environment Management Cell with suitably qualified staff to carry out various environment related functions should be set up under the charge of a Senior Executive who will report directly to the Chief Executive of the company.	M/s APSEZL has a well structured Environment Management Cell, staffed with qualified manpower for implementation of the Environment Management Plan. The Environment Management Cell is headed by Sr. Executive who directly reports to the top management.			
xix	The project affected people, if any, should be properly compensated and rehabilitated.	Not applicable.			
xx	The funds earmarked for environment protection measures should be maintained in a separate account and there should be no diversion of these funds for any other purpose. A year wise expenditure on environmental safeguards should be reported to this Ministry.	Separate budget for the Environment Protection measures is earmarked every year. All environmental and horticulture activities are considered at group level and budget allocation is also done accordingly. • The plan budget for Environment Cell for the year 2015-16 is 484.11 lacs. • The spent budget for Environment Cell for the financial year 2015-16 (till Sept.'15) is 175.88 lacs. • The allocated budget of Horticulture Cell for the year 2015-16 was 486.83 lacs. • The spent budget of Horticulture Cell for the financial year 2015-16 (till Sept.'15) is 363.29 lacs.			
xxi	Full support should be extended to the officers of this Ministry's Regional office at Bhopal and the officers of the Central and State Pollution Control Boards by the project proponents during their inspection for monitoring purposes, by furnishing full details and action plans including the action taken reports in respect of mitigative measures and other environmental protection activities.	M/s APSEZL is always extending full			

From: April,15

To : September,15

Status of the conditions stipulated in Environment Clearance under CRZ notification

ancili	ncillary and back-up facilities at Mundra Port, Dist. Kutch in Gujarat					
Sr.	Conditions	Compliance Status as on				
No.		30-09-2015				
xxii	In case of deviation or alteration in the project including the implementing agency, afresh reference should be made to this Ministry for modification in the clearance conditions or imposition of new ones for ensuring environmental protection. The project proponents should be responsible for implementing the suggested safeguard measures.	Point Noted.				
xxiii	This Ministry reserves the right to revoke this clearance, if any of the conditions stipulated are not complied with to the satisfaction of this Ministry.					
xxiv	This Ministry or any other competent authority may stipulate any other additional conditions subsequently, if deemed necessary, for environmental protection, which shall be complied with.	Point Noted.				
xxv	A copy of the clearance letter will be marked to concerned Panchayat / local NGO. If any, from whom any suggestion / representation has been received while processing the proposal.	Complied.				
xxvi	State Pollution Control Board should display a copy of the clearance letter at the Regional Office, District Industries centre and Collector's Office/Tehsildar's Office for 30 days	This condition does not belong to project proponent.				
xxvi i	The project proponent should advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned informing that the project has been accorded environmental clearance and copies of clearance letters are available with the State Pollution Control Board and may also be seen at Website of the Ministry of Environment and Forests at http://www.envfor.nic.in/.	Complied.				

From: April,15

To : September,15

Status of the conditions stipulated in Environment Clearance under CRZ notification

• • • • • • • • • • • • • • • • • • • •	tomory one country recommend to memoria and product the contract of the country o			
Sr. No.	Conditions	Compliance Status as on 30-09-2015		
xxvi ii	The Project Proponents should inform the Regional Office as well as the Ministry the date of financial closure and final approval of the project by the concerned authorities and the date of start of Land Development Work.			
xxix	The Project Proponent should make specific arrangements for rainwater harvesting in the project design and the rainwater so harvested should be optimally utilized.	Details of the same is submitted to the Ministry of Environment and forest along with half yearly compliance dated 01.06.2015.		

Annexure - A

From : April,15

To: September,15

Status of the conditions stipulated under CRZ Recommendation

Half yearly Compliance report of CRZ recommendation for "Port expansion project including dry/break bulk cargo container terminal, railway link and related ancillary and back-up facilities at Mundra Port, Dist. Kutch in Gujarat Sr. Compliance Status as on **Conditions** No. 30-09-2015 A. Specific Condition The company shall submit comprehensive Complied. Details submitted on Environmental Impact Assessment Report 29.05.2014. and Risk Assessment Report containing worst case scenario and detailed oil spill control management plan before carrying out the construction activities and shall implement the mitigative all measures/suggestions/recommendations given in the report of NIO and Tata AIG Risk Management Services. 2 The company in no case tap ground water. Entire water requirement is sourced from Narmada water and desalination plant of APSEZL. The company shall not cut mangroves for Complied. Details submitted on 02.12.2013. the project activities except for stray Details on mangroves afforestation carried mangrove seeding required for the railway out by APSEZL till date is annexed as line only after detailed assessment through Annexure - 1. NIO and 25 acre of land shall be planted with mangroves in consultation with NIO. The company shall carry out the mangroves plantation programme in addition to 25acre mangrove plantation to be done with the help of the NIO, in consultation with the forest department. The company shall ensure that Complied. Construction activity is already construction labors do not cut mangroves completed. Details submitted for fuel, etc. 02.12.2013. The company shall ensure that no creek Complied. Construction activity is already are blocked due to the project activities, completed. Details submitted 02.12.2013. The company shall ensure that there will Complied. Construction activity is already be no disposal of sullage and sewage completed. generated from construction surface run-off from construction sites, and grease spillage from construction equipment in the creeks.

From: April,15

To: September,15

Status of the conditions stipulated under CRZ Recommendation

racili	lities at Mundra Port, Dist. Kutch in Gujarat					
Sr. No.	Conditions	Compliance Status as on 30-09-2015				
8	The company shall stick to the time bound programme submitted to this department for the proposed activities including installation of desalination plant for meeting the entire water requirement.	Entire water requirement is sourced from Narmada water and desalination plant of APSEZL.				
9	The company shall ensure that the commercial fisheries are not hampered due to the presence of barges, vessels and other activities in the region. Necessary plan in this regards shall be prepared in consultation with the NIO.	Complied. Fishing boats are having unhindered access to Gulf of Kutch.				
10	The company shall bear the cost of the external agency that may appointed by this department for carrying out the supervision and/or the monitoring of the construction activities.	Point noted. Construction activity is already completed.				
11	The company shall carry out the post project monitoring of various environmental parameters in consultation with this department and Gujarat Pollution Control Board.	Third party monitoring is being carried out by NABL and MoEF accredited agency. Summary of monitoring reports for duration from April'15 to September'15 are enclosed as Annexure-2 .				
12	The company shall prepare the detailed traffic control management plan for the port and shall participate in the VTMS to be developed for the Gulf of Kachchh.	Complied. Details on the same were submitted on 2.12.2013.				
13	In order the eliminate adverse impact on the mangroves of Bocha Island and coastal ecology of the region, the company shall carry out construction activities only after the construction design and methodology is approved by NIO.	Point noted. Construction activity is already completed.				
14	Any other conditions may be stipulated by this department from time to time.	Point noted.				

Annexure – 1

Mangrove Afforestation						
S. NO.	Location	FY	Area (Hectare)	Clearance Reference	Plantation/Gap Filling	Species
A.1	Mundra Port Area (Mundra, Kutch)		24.00	Environment Clearace - Mundra (J-16011/13/95-IA.III dated 25 August 1995)	Plantation	Avicennia marina
	Total Plantation		24.00			
B.1	Mundra Port Area (Mundra, Kutch)		25.00	Environment Clearace - Mundra (J-16011/30/2003-IA.III dated 21 July 2004)	Plantation	Avicennia marina
	Total Plantation		25.00			
C.1		2007-08	40.00		Plantation	
C.2		2009-10	10.00	1	Gap Filling Work	
C.3	Luni/Hamiramora	2010-11	10.00	CRZ Recommendation - Mundra	Gap Filling Work	Avicennia marina
C.4	(Mundra, Kutch)	2011-12	95.40	(Env-10-2005-222-P dated 12 October, 2006)	Plantation	Rhizophora mucronata Ceriops tagal
C.5		2012-13	25.40		Plantation	
C.6		2013-14-15	70.00		Gap Filling Work	
	Total Plantation (C.1+C.4+C.5)		160.80			
D.1	Kukadsar	2012-13	66.50	CRZ Recommendation - Mundra (Env-10-2005-222-P dated 12 October, 2006)	Plantation	Avicennia marina
D.2	(Mundra, Kutch)	2013-14	10.00		Gap Filling Work	Avicennia marina
	Total Plantation (D.1)		66.50			
E.1	Forest Area	2011-12	50.00	Forest Clearance - Mundra	Plantation	Avicennia marina
E.2	(Mundra)	2012-13	248.00	(F.No. 8-2/1999-FC (pt) dated 27 February 2009)	Plantation	Avicennia marina
	Total Plantation (E.1+E.2)		298.00			

S. NO.	Location	FY	Area (Hectare)	Clearance Reference	Plantation/Gap Filling	Species
F.1	Jangi village	2012-13	50.00	CRZ Recommendation - Mundra (Env-10-2005-222-P dated 12 October, 2006)	Plantation	Avicennia marina
F.2	(Bhachau, Kutch)	2013-14	20.00		Gap Filling Work	Avicennia marina
	Total Plantation (F.1)		50.00			
G.1		2007-08	40.10	CRZ Recommendation - Mundra (Env-10-2005-222-P dated 12 October, 2006)	Plantation	
G.2		2008-09	10.00		Gap Filling Work	
G.3		2009-10	10.00		Gap Filling Work	
G.4	4 201'		50.00	Environment Clearance - Dahej (11-37/2007-IA-III dtd 11 November, 2008)	Plantation	- - Avicennia marina
G.5	lakhau Village		20.00		Gap Filling Work	Rhizophora mucronata
G.6		2012-13	30.00		Gap Filling Work	- Ceriops tagal
G.7		2012-13	20.50	CRZ Recommendation - Mundra (Env-10-2005-222-P dated 12 October, 2006)	Plantation	
G.8		2012-13	200.00	Environment Clearance - Mundra (10-47/2008-IA.III dtd. 12th Jan,2009)	Plantation	
G.9		2013-14-15	50.00		Gap Filling Work	
	Total Plantation (G.1 + G.4 + G.7 + G.8)		310.60			
H.1	H.1 Sat Saida Bet (Kutch) 2014-15		250.00	Commitment with KPT for 250 Ha Tuna (By undertaking dated 3 June, 2013)	Plantation	Avicennia marina
	Total Plantation		250.00			

S. NO.	Location	FY	Area (Hectare)	Clearance Reference	Plantation/Gap Filling	Species
I.1		2006-07	200.00	CRZ Recommendation - Mundra	Plantation	
1.2		2007-08	100.00	(Env-10-2005-222-P dated 12 October, 2006)	Plantation	0
1.3	Village Dandi (Navsari)	2007-08	100.00	Environment Clearance - Dahej (11-37/2007-IA-III dtd 11 November, 2008)	Plantation	Avicennia marina Rhizophora mucronata Ceriops tagal
1.4		2008-09	200.00	CRZ Recommendation - Mundra	Plantation	Ceriops tagai
1.5		2010-11	200.00	(Env-10-2005-222-P dated 12 October, 2006)	Plantation	
	Total Plantation (I.1 + I.2 + I.3 + I.4 + I.5)		800.00			
J.1	Village Talaza (Bhavnagar)	2011-12	50.00	Environment Clearance - Dahej (11-37/2007-IA-III dtd 11 November, 2008)	Plantation	Avicennia marina
J.2	Village Narmada (Bhavnagar)	2014-2015	250.00	CRZ Recommendation - Mundra (Env-10-2005-222-P dated 12 October, 2006)	Plantation	Avicennia marina
	Total Plantation (J.1 + J.2)		300.00			
K.1	Village Malpur (Bharuch)	2012-13-14	200.00	CRZ Recommendation - Dahej ENV-10-2006-71-P dtd 29th May, 2007	Plantation	Avicennia marina
K.2	Village Kantiyajal (Bharuch)	2014-15	50.00		Plantation	Avicennia marina
K.3	Village Devla Bharuch	2014-15	50.00	CRZ Recommendation - Hazira ENV-10-2012-30-E dtd 11th May,2012	Plantation	Avicennia marina
K.4	Village Devla Bharuch	2015-16	100.00		In Progress	Avicennia marina
	Total Plantation (K.1 + K.2 + K.3 + K.4)		400.00			
L.1	Village Tada Talav (Khambat, Anand)	2015-16	100.00	Environment and CRZ clearance - Mundra SEZ	In Progress	Avicennia marina
L.2	Village Tada Talav (Khambat, Anand)	2015-16	100.00	(10-138/2008/IA.III dated 15 July 2014)	In Progress	Avicennia marina
	Total Plantation (L.1 + L.2)		200.00			
G.	Total (Plantaion done + In Pr	ogress)	2884.90			

Annexure – 2

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

"HALF YEARLY ENVIRONMENTAL MONITORING REPORT"

FOR

ADANI PORTS AND SPECIAL ECONOMIC ZONE LIMITED TAL: MUNDRA, KUTCH, MUNDRA – 370 421

MONITORING PERIOD: APRIL 2015 TO SEPTEMBER 2015

PREPARED BY:

POLLUCON LABORATORIES PVT.LTD.

544, BELGIUM TOWERS, RING ROAD, SURAT – 395 003
PHONE/FAX – (+91 261) 2455 751, 2601 106, 2601 224.
E-mail: pollucon@gmail.com web: www.polluconlab.com

T 0820 - 821

ISO 9001:2008

ISO 14001:2004

OHSAS 18001:2007

H. T. Shah Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

MARINE WATER MONITORING SUMMARY REPORT

RESULTS OF MARINE WATER [M1 LEFT SIDE OF BOCHA CREEK - N 22°45'183" E 069°43'241"]

S			April	2015	May	2015	June	2015	July	2015	Augus	t 2015	Septemi	per 2015	
R. N O.	TEST PARAMETERS	UNIT	SURFA CE	вотто м	SURFACE	воттом	Test Method								
1	pH		7.9	8.05	8.01	8.12	8.1	8.15	7.98	8.12	7.58	8.06	8.02	8	IS3025(P11)83R e.02
2	Temperature	°C	30	31	29	30	29	30	28	29	28	29	29	30	IS3025(P9)84Re .02
3	Total Suspended Solids	mg/L	22	16	16	22	12	18	20	22	14	20	14	20	IS3025(P17)84R e.02
4	BOD (3 Days @ 27 °C)	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	IS 3025 (P44)1993Re.03 Edition2.1
5	Dissolved Oxygen	mg/L	5.4	4.8	5.8	5	5.4	4.4	5.8	4.4	5.6	4.8	5.6	4.6	IS3025(P38)89R e.99
6	Salinity	ppt	40.3	40.9	41.2	41.7	40.2	40.9	41.6	42.2	40.8	41.8	41.2	42.8	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	0.18	BDL*	0.24	BDL*	BDL*	BDL*	APHA(22 nd Edi)55 20D
8	Nitrate as NO₃	mg/L	0.72	0.89	0.56	0.72	0.34	0.52	0.42	0.58	0.54	0.62	0.532	0.598	IS3025(P34)88
9	Nitrite as NO ₂	mg/L	0.064	0.077	0.021	0.034	0.028	0.046	0.026	0.04	0.022	0.044	0.03	0.047	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	mg/L	0.86	0.96	0.96	1.1	1.2	1.4	1.0	1.2	0.9	1.1	0.924	1.1	IS3025(P34)88C la.2.3
11	Phosphates as PO ₄	mg/L	0.056	0.074	0.084	0.096	0.94	1.04	0.88	0.94	0.72	0.84	1.03	1.215	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	mg/L	4.1	4.7	1.54	1.85	1.31	1.606	1.45	1.84	1.61	1.82	1.486	1.745	IS3025(P34)88
13	Petroleum Hydrocarbon	mg/L	6	BDL*	4	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH
14	Total Dissolved Solids	mg/L	49750	50440	48770	49060	47690	48140	49850	50510	48186	49760	48593	48878	IS3025(P16)84R e.02
15	COD	mg/L	20	28	24	32	22	28	16	24	18	22	19	28	APHA(22 nd Edi) 5520-D Open Reflux

9-2

H. T. Shah Lab Manager

POLICE N LABORATORIES PVT. LTD.

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

December J by Marr 1	Jan Dalle: I Indan Con	10 of Passinguages	(Destantion) Ast 1000
Recognised by Morr. 1	vew Deini Under Sec	. Iz of Environmenta	(Protection) Act-1986

16	Oxidisable Particular Organic Carbon	%	0.68	0.49	0.5	0.4	0.58	0.48	0.56	0.48	0.52	0.44	0.6	0.44	SOP – PLPL - 07
Α	Flora and Fauna		I			I	I		I	I	I				
17	Primary productivity	mgC/L /day	3.2	2.1	2.7	1.575	2.925	0.45	2.25	0.45	1.575	0.563	1.125	0.338	APHA (22nd Edi) 10200-J
В	Phytoplankton														
18 .1	Chlorophyll	mg/m³	3.79	2.99	2.75	0.99	2.857	1.602	1.682	0.134	1.81	0.134	1.28	0.267	APHA (22 nd Edi) 10200-H
18 .2	Phaeophytin	mg/m³	BDL*	BDL*	BDL*	1.54	BDL*	0.98	0.579	1.717	0.128	1.77	0.98	1.39	APHA (22 nd Edi) 10200-H
18 .3	Cell Count	Unit x 10 ³ /L	114	154	248	109	292	110	221	59	158	41	147	52	APHA (22 nd Edi) 10200-H
			Diatom	Diatom	Diatom	Diatom	Bacillariop hyceae								
			Thalass iosira sp.	Thalassi osira sp.	Thalassion ema sp.	Thalassion ema sp.	Biddulphia sp.	Nitzschia sp.	Chaetocer ous sp.	Fragillaria sp.	Nitzschia sp.	Navicula sp.	Nitzschia sp.	Navicula sp.	
			Nitzschi a sp.	Navicula sp.	Nitzschia sp.	Navicula sp.	Gyrosigma sp	Gomphon ema sp.	Rhizosole nia sp.	Navicula sp.	Rhizosole nia sp.	Gyro sigma sp.	Rhizosole nia sp.	Fragillaria sp.	
			Navicul a sp.	Coscino discus sp.	Melosira sp.	Coscinodis cus sp.	Pinnularia sp.	Cyclotella sp.	Pinnularia sp.	Cocconeis sp.	Thallasiosi ra sp	Cyclotella sp.	Navicula sp.	Pinnularia sp.	
			Melosir a sp.		Fragillaria sp.	Rhizosolen ia sp.	Pinnularia sp.	Green Algae	Navicula sp.	Cyanophy ceae	Synedra sp.	Fragillaria sp.	Asterionell a sp.	Biddulphia sp.	
10	Name of Group		Fragilla ria sp.		Green algae		Cyanophy ceae	Chlorella sp.	Gomphon ema sp.	Spirulina sp.	Green Algae	Green Algae	Cymbella sp.	Green Algae	ADUA (22nd E II)
18 .4	Number and name of group				Chlorella sp.		Microcysti s sp.	Pandorina sp.	Cyanophy ceae	Green Algae	Oscillatori a sp.	Chlorella sp.	Synedra sp.	Ulothrix sp.	APHA (22 nd Edi) 10200-H
	species of each group				Ulthrix		Spirulina sp.	,	Anabaena sp.	Hydrodict yon sp.	Green Algae	•	Green Algae	Cyanophy ceae	
							,		Oscillatori a sp.	Spirogyra sp.	Chlorella sp.		Pandorina sp.	Oscillatori a sp.	
									Green Algae	·	Pediastru m sp.		Pediastru m sp.	Spirulina sp.	
									Volvox sp.				Ulothrix sp.		
									Chlorella sp.				Cyanophy ceae		
									Pediastru m sp.				Oscillatori a sp.		

H. T. Shah

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

		ĺ]
С	Zooplanktons		T	1		ı	ı					ı	1		
19 .1	Abundance (Population)	no/m²	380	270	430	190	250	100	150	40	190	70	280	60	APHA (22 nd Edi) 10200-G
			Polycha etes	Polycha etes	Polychaete worms	Polychaete worms	Ctenophor es	Polychaet es	Polychaet es	Crustacea ns	Polychaet e Worms	Isopods	Gastropod s	Copepods	
			Bivlave s	Mollusca n	Bivalves	Molluscans	Gastropod s	Decapods	Krill	Nematode s	Nematode s	Gastropod s	Isopods	Polychaet e worms	
10	Name of Group		Gastrop ods	Branchy urans	Gastropod s	Decapods	Copepods		Copepods	Bivalves	Decapods	Decapods	Decapods	Crustacea ns	ADLIA (22nd E4:)
19 .2	Number and name of group		Copepo ds		Copepods	Branchyur ans			Crustacea ns		Molluscan s		Krill		APHA (22 nd Edi) 10200-G
	species of each group								Isopods		Snail		Namatode s		
									Ostracods				Molluscan s		
													Copepods		
19 .3	Total Biomass	ml/10 0 m ³	29	18	72	48	79	23	41	8	28	9	38	23	APHA (22 nd Edi) 10200-G
D	Microbiological Parar	neters													
20 .1	Total Bacterial Count	CFU/ ml	1522	1481	1620	1500	1740	1460	1824	1320	1740	1260	1130	870	IS 5402:2002
20 .2	Total Coliform	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	APHA(22 nd Edi)92 21-D
20 .3	Ecoli	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS:1622:1981Edi .2.4(2003-05)
20 .4	Enterococcus	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 15186 :2002
20 .5	Salmonella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 5887 (P-3)
20 .6	Shigella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 1887 (P-7)
20 .7	Vibrio	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 5887 (P-5)

(D

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M1 LEFT SIDE OF BOCHA CREEK - N 22°45'183" E 069°43'241"]

SR.			April 2015	May 2015	June 2015	July 2015	August 2015	September 2015	
NO.	TEST PARAMETERS	UNIT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	Test Method
1	Organic Matter	%	0.57	0.64	0.49	0.52	0.54	0.352	FCO:2007
2	Phosphorus as P	mg/kg	137	160	139	154	146	146	APHA(22 nd Edi) 4500 C
3	Texture		Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	
4	Petroleum Hydrocarbon	mg/kg	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	4.8	5	5.2	5	5.4	4.99	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	mg/kg	98	130	176	220	190	189	AAS 3111B
5.3	Manganese as Mn	mg/kg	740	860	910	830	880	789	AAS APHA 3111 B
5.4	Iron as Fe	%	2.05	2.4	2.5	2.08	3.1	2.61	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	mg/kg	59	48	56	60	58	57.96	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	mg/kg	37	54	34	40	36	37.99	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	mg/kg	142	164	156	132	144	143	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	mg/kg	2.6	1.8	1.4	1.02	1.22	1.13	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	mg/kg	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos	1	Polychaete worms Bivalves Crustaceans	Polychaeteworms Crustaceans Isopods Decapods	Amphipods Mysids Echinoderms	Isopods Mysids Echinoderms Polychaete Worms	Echinoderms Isopods Knill Anthozoans	Crabs Anthozoans Isopods Decapods	APHA (22 nd Edi) 10500-C
6.2	MeioBenthos		Gastroriches Smaller Crustaceans	Nematodes Smaller Crustaceans	Copepods	Hydrozoan Copepods	Nematodes Foraminiferans	Copepods Foraminiferans	APHA (22 nd Edi) 10500-C
2	Population	no/m²	308	252	377	440	377	288	APHA (22 nd Edi) 10500-C

(()

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M2 MOUTH OF BOCHA & NAVINAL CREEK - N 22°44'239" E 069°43'757"]

S			April	2015	May 2	015	June	2015	July	2015	Augus	t 2015	Septeml	ber 2015	
R. N O.	TEST PARAMETERS	UNIT	SURFACE	воттом	SURFACE	BOTTO M	SURFAC E	воттом	SURFAC E	воттом	SURFAC E	воттом	SURFAC E	воттом	Test Method
1	pH	-	8.05	8.1	8.1	8.17	7.95	8.02	8.25	8.38	8.14	8.2	7.91	8.03	IS3025(P11)83R e.02
2	Temperature	°C	31	31	30	31	27	28	29	30	29	30	29	30	IS3025(P9)84Re .02
3	Total Suspended Solids	mg/L	24	38	18	20	21	28	24	34	22	30	16	26	IS3025(P17)84R e.02
4	BOD (3 Days @ 27 °C)	mg/L	BDL*	BDL*	BDL*	BDL*	BDL *	BDL *	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	IS 3025 (P44)1993Re.03 Edition2.1
5	Dissolved Oxygen	mg/L	5.6	4.4	5.4	4.8	5.6	4.6	5.4	4.6	5.8	4.8	5.4	4.4	IS3025(P38)89R e.99
6	Salinity	ppt	43.6	44.2	41.8	42.2	42.2	42.7	40.4	41.2	39.8	41.4	40.8	42.6	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	0.84	BDL*	0.52	BDL*	0.3	BDL*	0.4	BDL*	0.4	BDL*	APHA(22 nd Edi)5 520D
8	Nitrate as NO ₃	mg/L	0.64	0.82	0.54	0.66	0.72	0.94	0.54	0.76	0.68	0.82	0.34	0.458	IS3025(P34)88
9	Nitrite as NO ₂	mg/L	0.072	0.054	0.028	0.054	0.021	0.026	0.03	0.05	0.026	0.052	0.018	0.036	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH₃	mg/L	0.32	0.46	0.42	0.51	0.81	0.72	0.8	1.0	0.72	0.9	0.32	0.406	IS3025(P34)88C la.2.3
11	Phosphates as PO ₄	mg/L	0.086	0.062	0.14	0.094	0.18	0.11	0.2	0.14	0.18	0.1	0.36	0.27	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	mg/L	2.1	2.6	1.5	1.2	1.55	1.68	1.4	1.81	1.44	1.82	0.678	0.9	IS3025(P34)88
13	Petroleum Hydrocarbon	mg/L	3.2	BDL*	1.2	BDL*	1.8	BDL*	1.6	BDL*	1.4	BDL*	1.4	BDL*	PLPL-TPH
14	Total Dissolved Solids	mg/L	49750	50400	48210	49170	50710	51240	48930	49900	48580	49990	47990	48380	IS3025(P16)84R e.02
15	COD	mg/L	16	18	12	20	18	20	20	22	16	18	14	19	APHA(22 nd Edi) 5520-D Open Reflux
16	Oxidisable Particular Organic Carbon	%	0.82	0.32	0.62	0.48	0.44	0.48	0.4	0.44	0.56	0.46	0.34	0.38	SOP – PLPL - 07
Α	Flora and Fauna											·			

9-D

Lab Manager

POLLOCON LABORATORIES PVT. LTD.

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Personised by MoFI	Now Dolhi Under Co	a 12 of Environmental	(Protection) Act-1986
Recognised by Morr	. New Deini Under Se	C. 12 of Environmental	Protection Act-1986

17	Primary productivity	mgC/L /dav	3.2	1.0	1.57	0.45	2.02	0.225	2.7	0.675	1.68	0.45	1.238	0.225	APHA (22nd Edi) 10200-J
В	Phytoplankton	, au									Į.	Į.	Į		Edi) 10200 3
18 .1	Chlorophyll	mg/m	5.79	5.17	1.22	0.854	2.59	0.187	2.163	0.561	1.92	0.561	1.095	0.134	APHA (22 nd Edi) 10200-H
18 .2	Phaeophytin	mg/m	BDL*	BDL*	1.37	1.99	BDL*	2.39	BDL*	0.897	0.227	0.897	1.671	1.493	APHA (22 nd Edi) 10200-H
18 .3	Cell Count	Unit x 10 ³ /L	170	110	198	50	245	74	254	67	169	39	155	45	APHA (22 nd Edi) 10200-H
			Diatom	Diatom	Diatom	Diatom	Bacillariop hyceae	Bacillariop hyceae	Bacillariop hyceae	Bacillariop hyceae	Bacillariop hyceae	Bacillariop hyceae	Bacillariop hyceae	Bacillariop hyceae	
			Nitzschia	Nitzschia	Nitzschia	Nitzschia	Coscinodi	Navicula	Coscinodi	Navicula	Nitzschia	Navicula	Navicula	Navicula	
			sp	sp : "	sp.	sp.	scus sp.	sp.	scus sp.	sp.	sp.	sp.	sp.	sp.	
			Melosira	Coscinodis	Biddulphia	Coscinod	Rhizosole	Biddulphia	Rhizosole	Biddulphia	Synedra	Cyclotella	Synedra	Fragillaria	
			sp Asterionell	cus sp Pleurosig	sp. Fragillaria	iscus sp. Synedra	nia sp. Thallasiosi	sp. Nitzschia	nia sp. Gomphon	sp. Pinnularia	sp. Rhizosole	sp. Fragillaria	sp. Coscinodi	sp. Gyrosigm	
			a sp	ma sp.	rrayıllarla Sp.	Syrieura Sp.	ra sp.	SD.	ema sp.	Sp.	nia sp.	sp.	SCUS Sp.	a sp.	
			Coscinodis	,	Coscinodis	Cynophy	Green	Pleurosig	Cymbella	Gyro	Pleurosig	Green	Asterionell	Pinnularia	
			CUS SP		cus sp.	ceae	Algae	ma sp.	sp.	sigma sp.	ma sp.	Algae	a sp.	sp.	
			Thalassion		Thalassion	Oscillato	Ankistrod	Green	Synedra	Green	Coscinodi	Spirogyra	Gyrosigm	cyanophy	
			ema sp		ema sp.	ria sp.	esmus sp.	Algae	sp.	Algae	scus sp.	sp.	a sp.	ceae	
	Name of Croup		Desmids		Desmids		Pandorina	Volvox sp.	Tabellaria	Scenedes	Green	Chlorella	Cocconeis	Lyngbya	
18	Name of Group Number		Desilius		Desilius		sp.	voivox sp.	sp.	mus sp.	Algae	sp.	sp.	sp.	APHA (22 nd Edi)
.4	and name of group		Closterice		Closterium		Chlorella		Green	Spirogyra	Chlorella		Pinnularia	Oscillatori	10200-H
'''	species of each group		m sp		sp.		sp.		Algae	sp.	sp.		sp.	a sp.	10200 11
	openies in anim group						Volvox		Ankistrod		Pediastru		Green		
							sp.		esmus sp.		m sp.		Algae		
									Pediastru m sp.		Desmids		Pandorina sp.		
			-		1	1			Ulothrix		Cosmariu		Chlorella	1	
									sp.		m sp.		sp.		
									Desmids		Cyanophy ceae		Cyanophy ceae		
									Closteriu m sp.		Oscillatori a sp.		Oscillatori a sp.		
													Nostoc sp.		
С	Zooplanktons	_											-	-	
19 .1	Abundance (Population)	no/m²	400	200	370	120	400	150	170	30	200	40	320	100	APHA (22 nd Edi) 10200-G

н. г. Snan Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

			Echinoder ms	Polychaet eworms	Gastropod s	Foramini ferans	Polychaet es Worms	Gastrpods	Krill	Polychaet e Worms	Copepods	Molluscan s	Crustacea ns	Gastropod s	
	Name of Group		Gastropod s	Foraminife rans	Polychaet eworms	Ostracod s	Nematode s	Mysids	Copepods	Ctenophor es	Isopods	Gastropod s	Copepods	Polychaet e worms	
19 .2	Number and name of group		Polychaet eworms		Nematods	-	Echino derms	Snail	Gastropod s	Cyclops	Gastropod s	1	Krill	1	APHA (22 nd Edi) 10200-G
.2	species of each group		Nematode s						Decapods		Polychaet e Worms		Polychaet e worms		10200-G
									Lamellibra nches				Decapods		
19 .3	Total Biomass	ml/10 0 m ³	29	14	30	4	88	34	55	11	62	7	59	6	APHA (22 nd Edi) 10200-G
D	Microbiological Parar	meters													
20 .1	Total Bacterial Count	CFU/ ml	1745	1904	1850	2020	1880	2100	1930	1580	1850	1620	1670	1420	IS 5402:2002
20 .2	Total Coliform	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	APHA(22 nd Edi)9 221-D
20 .3	Ecoli	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS:1622:1981Ed i.2.4(2003-05)
20 .4	Enterococcus	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 15186 :2002
20 .5	Salmonella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 5887 (P-3)
20 .6	Shigella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 1887 (P-7)
20 .7	Vibrio	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 5887 (P-5)

- W-D

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M2 MOUTH OF BOCHA & NAVINAL CREEK – N 22°44'239" E 069°43'757"]

SR.	TECT DADAMETEDS	LINITT	April 2015	May 2015	June 2015	July 2015	August 2015	September 2015	Total Models of
NO.	TEST PARAMETERS	UNIT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	Test Method
1	Organic Matter	%	0.71	0.56	0.48	0.54	0.52	0.366	FCO:2007
2	Phosphorus as P	mg/kg	140	164	210	180	200	141	APHA(22 nd Edi) 4500 C
3	Texture		Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	
4	Petroleum Hydrocarbon	mg/kg	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	6.4	5.6	5.4	5.6	5.2	5.2	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	mg/kg	140	116	128	180	142	135	AAS 3111B
5.3	Manganese as Mn	mg/kg	620	780	810	770	806	609	AAS APHA 3111 B
5.4	Iron as Fe	%	2.8	2.4	2.72	2.16	2.62	2.01	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	mg/kg	48	56	54	58	60	41.99	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	mg/kg	52	39	158	110	158	97.9	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	mg/kg	114	146	163	148	156	157	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	mg/kg	2.1	1.9	1.2	1.16	1.24	1.58	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	mg/kg	0.8	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Polychaete worms Bivalves Crustaceans	Mysids Polychaeteworms Crustaceans	Polychaete Worms Echinoderms Snail Crab	Isopods Echinoderms Decapods Crab Amphipods	Polychaete Worms Anthozoans Echinoderms	Echinoderms Polychaete worms Isopods Prawn Decapods	АРНА (22 nd Edi) 10500-С
6.2	MeioBenthos		Nematodes	Nematodes Copopods	Foraminiferans Hydrozoa	Foraminiferans Copepods	Ostracodes Hydrozoa	Nematodes Copepods	АРНА (22 nd Edi) 10500-С
2	Population	no/m²	240	440	503	503	440	337	APHA (22 nd Edi) 10500-C

()

Lab Manager

Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M3 EAST OF BOCHA ISLAND - N 22°46'530" E 069°41'690"]

SR.			July	2015	Augus	t 2015			
NO.	TEST PARAMETERS	UNIT	SURFACE	воттом	SURFACE	воттом	Test Method		
1	pH		7.62	8.08	7.55	7.92	IS3025(P11)83Re.02		
2	Temperature	°C	29	30	29	30	IS3025(P9)84Re.02		
3	Total Suspended Solids	mg/L	22	25	30	38	IS3025(P17)84Re.02		
4	BOD (3 Days @ 27 °C)	mg/L	BDL*	BDL*	BDL*	BDL*	IS 3025 (P44)1993Re.03Edition2.1		
5	Dissolved Oxygen	mg/L	5.4	4.6	5.6	4.8	IS3025(P38)89Re.99		
6	Salinity	ppt	42.8	43.02	41.66	42.92	APHA (22 nd Edi) 2550 B		
7	Oil & Grease	mg/L	0.2	BDL*	0.3	BDL*	APHA(22 nd Edi)5520D		
8	Nitrate as NO₃	mg/L	0.3	0.42	0.28	0.36	IS3025(P34)88		
9	Nitrite as NO ₂	mg/L	0.019	0.028	0.02	0.026	IS3025(P34)88 NEDA		
10	Ammonical Nitrogen as NH₃	mg/L	0.8	0.9	0.7	0.8	IS3025(P34)88Cla.2.3		
11	Phosphates as PO ₄	mg/L	0.64	0.81	0.58	0.72	APHA(22 nd Edi) 4500 C		
12	Total Nitrogen	mg/L	1.12	1.35	1.08	1.21	IS3025(P34)88		
13	Petroleum Hydrocarbon	mg/L	BDL*	BDL*	BDL*	BDL*	PLPL-TPH		
14	Total Dissolved Solids	mg/L	51288	51492	49920	51430	IS3025(P16)84Re.02		
15	COD	mg/L	18	28	20	26	APHA(22 nd Edi) 5520-D Open Reflux		
16	Oxidisable Particular Organic Carbon	%	0.31	0.2	0.28	0.21	SOP – PLPL - 07		
Α									
17	Primary productivity	mgC/L/day	2.25	0.225	1.46	0.113	APHA (22nd Edi) 10200-J		
В			•	i	i	•			
18.1	Chlorophyll	mg/m ³	2.05	0.053	1.01	0.24	APHA (22 nd Edi) 10200-H		
18.2	Phaeophytin	mg/m ³	0.523	2.52	1.56	2.17	APHA (22 nd Edi) 10200-H		
18.3	Cell Count	Unit x 10 ³ /L	254	25	178	18	APHA (22 nd Edi) 10200-H		
			Bacillariophyceae	Bacillariophyceae	Bacillariophyceae	Bacillariophyceae			
			Synedra sp.	Nitzschia sp.	Cymbella sp.	Fragillaria sp.			
			Nitzschia sp.	Navicula sp.	Pinnularia sp.	Pinnularia sp.			
			Rhizosolenia sp.	Gyro sigma sp.	Coscinodiscus sp.	Navicula sp.			
			Thallasiosira sp	Green Algae	Rhizosolenia sp.	Nitzschia sp.			
	Name of Group Number		Coscinodiscus sp.	Chlorella sp.	Green Algae	Gyro sigma sp.			
18.4	and name of group		Green Algae	Desmids	Chlorella sp.	Green Algae	APHA (22 nd Edi) 10200-H		
10.7	species of each group		Scenedesmus sp.	Closterium sp.	Oedogonium sp.	Chlorella sp.	AITIA (22 Edi) 10200 11		
	Species of each group		Chlorella sp.		Oscillatoria sp.				
			Spirogyra sp.		Anabaena sp.				
			Cyanophyceae						
			Nostoc sp.						
			Oscillatoria sp.						

0-D

H. T. Shah Lab Manager

Recognised by MoE	F. New Delhi Under S	ec. 12 of Environmental	(Protection) Act-1986
-------------------	----------------------	-------------------------	-----------------------

С									
19.1	Abundance (Population)	no/m²	150	30	213	25	APHA (22 nd Edi) 10200-G		
			Polychaete Worms	Gastropods	Copepods	Polychaete Worms			
	Name of Group Number		Echinoderms	Isopods	Ostracods	Decapods			
19.2	and name of group		Molluscans		Crustaceans	Nauplies	APHA (22 nd Edi) 10200-G		
	species of each group				Krill				
					Ctenophores				
19.3	Total Biomass	ml/100 m ³	46	7	54	9	APHA (22 nd Edi) 10200-G		
D									
20.1	Total Bacterial Count	CFU/ml	1840	1550	1680	1375	IS 5402:2002		
20.2	Total Coliform	/ml	Absent	Absent	Absent	Absent	APHA(22 nd Edi)9221-D		
20.3	Ecoli	/ml	Absent	Absent	Absent	Absent	IS:1622:1981Edi.2.4(2003-05)		
20.4	Enterococcus	/ml	Absent	Absent	Absent	Absent	IS: 15186:2002		
20.5	Salmonella	/ml	Absent	Absent	Absent	Absent	IS: 5887 (P-3)		
20.6	Shigella	/ml	Absent	Absent	Absent	Absent	IS: 1887 (P-7)		
20.7	Vibrio	/ml	Absent	Absent	Absent	Absent	IS: 5887 (P-5)		

(D

H. T. Shah Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M3 EAST OF BOCHA ISLAND - N 22°46'530" E 069°41'690"]

CD NO	TECT DADAMETERS	LINITT	July 2015	August 2015	Total Moderal
SR. NO.	TEST PARAMETERS	UNIT	SEDIMENT	SEDIMENT	Test Method
1	Organic Matter	%	0.52	0.58	FCO:2007
2	Phosphorus as P	mg/kg	150	146	APHA(22 nd Edi) 4500 C
3	Texture		Sandy Loam	Sandy Loam	
4	Petroleum Hydrocarbon	mg/kg	BDL*	BDL*	PLPL-TPH
5					
5.1	Aluminum as Al	%	5.4	4.8	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	mg/kg	140	180	AAS 3111B
5.3	Manganese as Mn	mg/kg	890	860	AAS APHA 3111 B
5.4	Iron as Fe	%	2.02	1.88	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	mg/kg	52	50	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	mg/kg	36	38	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	mg/kg	138	140	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	mg/kg	1.6 1.46		AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	mg/kg	BDL*	BDL*	AAS APHA- 3112 B
6				·	
6.1	Macrobenthos		Polychaete Worms Bivalves Anthozoans	Polychaete Worms Echinoderms Bivalves Mysids Decapods	АРНА (22 nd Edi) 10500-С
6.2	MeioBenthos		Foraminiferans Copepods	Nematodes Bryozoans	АРНА (22 nd Edi) 10500-С
2	Population	no/m²	337	385	APHA (22 nd Edi) 10500-C

61-D

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M4 JUNA BANDAR N 22°47'577" E 069°43'620"]

	· T		April 2015		May 2015 Jun			e 2015 July 2015						201F	
S			April 2	2U15	Мау	2015	June	2015	July	2015	Augus	t 2015	Septemi	per 2015	-
R. N O.	TEST PARAMETERS	UNIT	SURFAC E	BOTT OM	SURFAC E	воттом	SURFACE	воттом	SURFACE	воттом	SURFACE	воттом	SURFACE	воттом	Test Method
1	pН		7.95	8.1	8.1	8.2	8.06	8.15	8.26	8.4	8.17	8.34	8.02	8	IS3025(P11)83R e.02
2	Temperature	°C	31	32	29	31	28	30	28	29	29	30	29	30	IS3025(P9)84Re .02
3	Total Suspended Solids	mg/L	18	20	26	30	24	28	26	30	28	30	28	32	IS3025(P17)84R e.02
4	BOD (3 Days @ 27 °C)	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	IS 3025 (P44)1993Re.03 Edition2.1
5	Dissolved Oxygen	mg/L	5.4	4	5.6	5	5.8	4.8	5.4	4.8	5.6	5	5.8	4.8	IS3025(P38)89R e.99
6	Salinity	ppt	43.1	44.2	42.7	43.2	40.2	41.6	40	41.2	41.6	42.8	38.4	39.1	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	APHA(22 nd Edi)55 20D
8	Nitrate as NO₃	mg/L	0.44	0.53	0.32	0.18	0.44	0.28	0.48	0.26	0.4	0.24	0.384	0.222	IS3025(P34)88
9	Nitrite as NO ₂	mg/L	0.052	0.068	0.058	0.08	0.062	0.084	0.058	0.07	0.06	0.082	0.054	0.076	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	mg/L	0.72	0.8	0.96	1.24	1.1	1.26	1.2	1.3	0.76	0.94	1.01	1.29	IS3025(P34)88Cl a.2.3
11	Phosphates as PO ₄	mg/L	0.044	0.058	0.076	0.086	0.094	0.12	0.44	0.56	0.36	0.44	0.54	0.675	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	mg/L	3.1	3.6	1.34	1.8	1.6	1.62	1.74	1.6	1.24	1.28	1.448	1.588	IS3025(P34)88
13	Petroleum Hydrocarbon	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH
14	Total Dissolved Solids	mg/L	52100	53200	55760	52240	53940	54000	53070	53520	54120	55846	45313	46173	IS3025(P16)84R e.02
15	COD	mg/L	20	26	16	20	24	32	22	30	18	22	14	24	APHA(22 nd Edi) 5520-D Open Reflux
16	Oxidisable Particular Organic Carbon	%	0.96	0.32	0.6	0.44	0.52	0.44	0.48	0.46	0.82	0.4	0.5	0.46	SOP – PLPL - 07
Α	Flora and Fauna														
17	Primary productivity	mgC/L /day	3.06	1.9	2.925	0.675	2.475	0.9	1.575	0.225	1.35	0.563	1.575	0.675	APHA (22nd Edi) 10200-J

9-D

Lab Manager

POLICEON LABORATORIES PVT. LT

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

В	Phytoplankton																							
18 .1	Chlorophyll	mg/m³	4.2	3.2	2.62	0.64	2.723	0.107	1.148	0.107	1.6	0.187	1.89	0.16	APHA (22 nd Edi) 10200-H									
18 .2	Phaeophytin	mg/m³	BDL*	BDL*	BDL*	1.94	BDL*	2.472	0.459	1.837	0.36	1.757	0.067	1.69	APHA (22 nd Edi) 10200-H									
18 .3	Cell Count	Unit x 10 ³ /L	218	180	338	88	304	35	196	24	175	29	162	33	APHA (22 nd Edi) 10200-H									
			Diatom	Diatom	Diatom	Diatom	Bacillariop hyceae																	
			Biddulphi a sp.	Biddul phia sp.	Biddulphi a sp.	Cymbella sp.	Synedra sp.	Pleurosig ma sp.	Asterionell a sp.	Cocconeis sp.	Asterionell a sp.	Coscinodis cus sp.	Asterionell a sp.	Tabellaria sp.										
			Nitzschia sp.	Fragilla ria sp.	Thalassio nema sp.	Gyrosigna sp.	Biddulphia sp.	Navicula sp.	Biddulphia sp.	Pinnularia sp.	Biddulphia sp.	Fragillaria sp.	Coscinodis cus sp.	Navicula sp.										
	Name of Group Number and name of group species of each group		Thalassio sira sp.	Gyrosi gma sp.	Fragillari a sp.	Nitzschia sp.	Nitzschia sp.	Skeletone ma sp.	Coscinodis cus sp.	Gyro sigma sp.	Chaetocer ous sp.	Navicula sp.	Navicula sp.	Gyrosigma sp.										
			Fragillari a sp.		Pleurosig ma sp.	Biddulphia sp.	Fragillaria sp.	Pleurosig ma sp.	Pinnularia sp.	Synedra sp.	Coscinodis cus sp.	Synedra sp.	Nitzschia sp.	Coscinodis cus sp.										
			Pleurosig ma sp.		Green algae	Green algae	Cyclotella sp.		Skeletone ma sp.	Green Algae	Gyro sigma sp.	Pinnularia sp.	Fragillaria sp.	Asterionell a sp.										
18			-					Chlorella sp.	Oscillatori a sp.	Green Algae		Green Algae	Spirogyra sp.	Green Algae	Green Algae	Surirella sp.	Cyanophy ceae	APHA (22 nd Edi)						
.4												Pandorina sp.		Pediastru m sp.	Volvox sp.	Pandorina sp.	Chlorella sp.	Thallasion ema sp.	Oscillatori a sp.	10200-H				
								Ulothrix sp.		Chlorella sp.		Pediastru m sp.		Green Algae	Nostoc sp.									
														Volvox sp.		Cyanophy ceae		Desmids		Ankistrode smus sp.				
												Microcysti s sp.		Cosmariu m sp.		Chlorella sp.								
																		Nostoc sp.				Pandorina sp.		
																			Cyanophy ceae					
													Anabaena sp.											
													Oscillatori a sp.											
С	Zooplanktons	, ,																						
19	Abundance	no/m ²	310	198	440	210	230	160	130	20	183	67	267	133	APHA (22 nd Edi)									

- O-D

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

.1	(Population)														10200-G
			Hydrozo ans	Amphi pods	Hydrozo ans	Amphipod s	Chaetogna thes	Polychaet e Worms	Decapods	Ostracods	Copepods	Decapods	Gastropod s	Ctenophor es	
			Anthrozo ans	Polych aetes	Anthrozo ans	Polychaete worms	Copepods	Decapods	Copepods	Lamellibra nches	Krill	Ostracods	Copepods	Gastropod s	
19	Name of Group Number		Gastropo ds		Gastropo ds	Decapods	Krill	Copepods	Krill	Decapods	Polychaet e Worms	Gastropod s	Decapods	Krill	APHA (22 nd Edi)
.2	and name of group species of each group		Foramini ferans		Chaetog naths	Echinoder ms	Daphania		Ostracods		Molluscan s		Ostracods	Nematode s	10200-G
			1			-	Isopods		Gastropod s				Krill		
													Crustacea ns		
													Cyclops		
19 .3	Total Biomass	ml/10 0 m ³	32	10	84	29	56	12	43	7	38	10	75	15	APHA (22 nd Edi) 10200-G
D	Microbiological Paran	neters													
20 .1	Total Bacterial Count	CFU/m I	1613	1554	1710	1625	1820	1740	1810	1285	1880	1310	1850	1680	IS 5402:2002
20 .2	Total Coliform	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	APHA(22 nd Edi)92 21-D
20 .3	Ecoli	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS:1622:1981Edi .2.4(2003-05)
20 .4	Enterococcus	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 15186:2002
20 .5	Salmonella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 5887 (P-3)
20 .6	Shigella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 1887 (P-7)
20 .7	Vibrio	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 5887 (P-5)

()

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M4 JUNA BANDAR N 22°47'577" E 069°43'620"]

SR.	TEST PARAMETERS	UNIT	April 2015	May 2015	June 2015	July 2015	August 2015	September 2015	Test Method
NO.	TEST PARAMETERS	ONII	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	rest Method
1	Organic Matter	%	0.51	0.44	0.53	0.56	0.48	0.495	FCO:2007
2	Phosphorus as P	mg/kg	156	168	192	210	178	172	APHA(22 nd Edi) 4500 C
3	Texture		Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	
4	Petroleum Hydrocarbon	mg/kg	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	5.6	5.3	5.06	5.12	5.22	5.21	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	mg/kg	118	146	174	190	158	127	AAS 3111B
5.3	Manganese as Mn	mg/kg	1020	920	1020	980	890	896	AAS APHA 3111 B
5.4	Iron as Fe	%	2.62	2.5	2.12	2.46	3.02	2.33	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	mg/kg	56	52	46	62	44	49.9	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	mg/kg	42	58	38	44	54	45.9	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	mg/kg	158	174	190	200	186	179	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	mg/kg	2.8	2.4	1.9	1.78	2.06	1.94	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	mg/kg	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Polychaete worms Snails Echinoderms	Polychaeteworms Decapods Amphipods Echinoderms	Polychaete Worms Bivalves Crabs Amphipods	Chaetognathes Bivalves Anthozoans	Amphipods Isopods Decapods Echinoderms Crabs	Polychaete worms Echinoderms Isopods Anthozoans	APHA (22 nd Edi) 10500-C
6.2	MeioBenthos		Copepods Nematodes	Nematodes Copopods	Nematodes Hydrozoa	Nematodes Bryozoans Copepods	Nematodes	Namatodes Foraminiferans Hydrozoa	APHA (22 nd Edi) 10500-C
2	Population	no/m²	336	385	529	337	288	440	APHA (22 nd Edi) 10500-C

T Shah

H. I. Snan Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M5 TOWARDS WESTERN SIDE OF EAST PORT - N 22°46'041" E 069°47'296"]

S			April	2015	May	2015	June	2015	July	2015	Augus	t 2015	Septemb	per 2015	
R. N O.	TEST PARAMETERS	UNIT	SURFA CE	вотто м	SURFA CE	воттом	SURFACE	воттом	SURFACE	воттом	SURFACE	воттом	SURFACE	воттом	Test Method
1	pH		7.95	8.1	8.02	8.15	8.15	8.3	8.22	8.42	8.14	8.28	8.08	8.14	IS3025(P11)83R e.02
2	Temperature	°C	31	32	29	30	30	30	27	28	29	30	28	29	IS3025(P9)84Re .02
3	Total Suspended Solids	mg/L	12	14	10	16	18	21	26	34	20	32	26	30	IS3025(P17)84R e.02
4	BOD (3 Days @ 27 °C)	mg/L	BDL*	BDL*	BDL*	BDL*	BDL *	BDL *	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	IS 3025 (P44)1993Re.03 Edition2.1
5	Dissolved Oxygen	mg/L	5.4	4.6	5.6	4.4	6	5	5.6	4.8	5.4	4.8	5.4	4.6	IS3025(P38)89R e.99
6	Salinity	ppt	40.6	41.4	40.9	41.3	37.8	38.1	37.6	38	38.4	39.2	39.2	40.4	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	0.76	BDL*	0.32	BDL *	0.26	BDL*	0.44	BDL*	BDL*	BDL*	APHA(22 nd Edi)55 20D
8	Nitrate as NO ₃	mg/L	0.72	0.78	0.42	0.46	0.56	0.62	0.5	0.56	0.44	0.5	0.518	0.607	IS3025(P34)88
9	Nitrite as NO ₂	mg/L	0.056	0.044	0.02	0.014	0.034	0.024	0.022	0.02	0.024	0.038	0.036	0.025	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	mg/L	0.28	0.4	0.21	0.34	0.44	0.6	0.54	0.84	0.38	0.46	0.48	0.619	IS3025(P34)88Cl a.2.3
11	Phosphates as PO ₄	mg/L	0.09	0.074	0.11	0.062	0.132	0.094	0.32	0.18	0.26	0.16	0.45	0.27	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	mg/L	1.8	2.4	0.55	0.53	0.13	0.82	1.08	1.4	0.86	0.998	1.034	1.251	IS3025(P34)88
13	Petroleum Hydrocarbon	mg/L	2.2	BDL*	2.8	BDL*	0.914	1.244	0.502	0.618	0.416	0.72	0.42	BDL*	PLPL-TPH
14	Total Dissolved Solids	mg/L	48600	49690	47960	48340	47270	47780	46890	47560	47820	48360	45966	46874	IS3025(P16)84R e.02
15	COD	mg/L	12	14	18	24	12	16	14	18	16	20	9	24	APHA(22 nd Edi) 5520-D Open Reflux
16	Oxidisable Particular Organic Carbon	%	0.64	0.44	0.56	0.44	0.62	0.48	0.52	0.48	0.54	0.5	0.5	0.42	SOP – PLPL - 07
Α	Flora and Fauna											<u>-</u>			
17	Primary productivity	mgC/L /day	2.8	1.1	1.8	0.675	2.7	1.125	1.8	0.675	1.12	0.338	1.688	0.563	APHA (22nd Edi) 10200-J

9-10

Lab Manager

DOLLOCON LABORATORIES PVT. LTD

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

В	Phytoplankton														
18 .1	Chlorophyll	mg/m³	4.4	4	1.44	0.56	3.124	0.267	1.469	0.134	1.7	0.721	1.362	0.294	APHA (22 nd Edi) 10200-H
18 .2	Phaeophytin	mg/m³	BDL*	BDL*	1.13	2.11	BDL *	2.312	0.363	0.951	0.123	0.363	0.806	0.959	APHA (22 nd Edi) 10200-H
18 .3	Cell Count	Unit x 10 ³ /L	330	290	212	56	323	77	184	17	205	35	215	40	APHA (22 nd Edi) 10200-H
			Green algae	Diatom	Green algae	Diatom	Bacillariop hyceae								
			Pandori na sp.	Rhilosol eniass sp.	Scenede smus sp.	Navicula sp.	Biddulphia sp.	Thallasio nema sp.	Gomphon ema sp.	Navicula sp.	Thallasiosi ra sp	Nitzschia sp.	Rhizosolen ia sp.	Nitzschia sp.	
			Scenede smus sp.	Melosira sp.	Diatom	Fragillaria sp.	Cymbella sp.	Pinnularia sp.	Rhizosolen ia sp.	Fragillaria sp.	Rhizosolen ia sp.	Fragillaria sp.	Synedra sp.	Pinnularia sp.	
			Diatom	Navicula sp.	Nitzschi a sp.	Pleurosig ma sp.	Pleurosig ma sp.	Rhizosolen ia sp.	Synedra sp.	Pinnularia sp.	Pleurosig ma sp.	Biddulphia sp.	Navicula sp.	Fragillaria sp.	
	N		Nitzschi a sp		Navicula sp.	Green algae	Cyanophy ceae	Green Algae	Nitzschia sp.	Cyanophy ceae	Nitzschia sp.	Synedra sp.	Coscinodis cus sp.	Biddulphia sp.	
18 .4	Name of Group Number and name of group		Coscino discus sp		Coscino discus sp.	Chlorella sp.	Oscillatori a sp.	Chlorella sp.	Coscinodis cus sp.	Chlorella sp.	Synedra sp.	Green Algae	Skeletone ma sp.	Cyanophy ceae	APHA (22 nd Edi) 10200-H
	species of each group		Fragillari a sp.		Fragillari a sp.		Spirulina sp.	Oedogoni um sp.	Green Algae	Oscillatori a sp.	Coscinodis cus sp.	Chlorella sp.	Green Algae	Anabaena sp.	
					Acanant hes sp.			Pandorina sp.	Chlorella sp.	Anabaena sp.	Green Algae	Pediastru m sp.	Spirogyra sp.	Nostoc sp.	
									Pandorina sp.		Pandorina sp.		Pediastru m sp.		
									Spirogyra sp.		Chlorella sp.		Hydrodicty on sp.		
											Cyanophy ceae		Desmids		
											Nostoc sp.		Cosmariu m sp.		
С	Zooplanktons														
19 .1	Abundance (Population)	no/m²	560	280	250	180	290	110	160	40	150	80	260	60	APHA (22 nd Edi) 10200-G
19	Name of Group Number		Gastrop ods	Ostraco ds	Gastrop ods	Ostracods	Copepods	Gastropod s	Copepods	Gastropod s	Copepods	Decapods	Copepods	Copepods	APHA (22 nd Edi)
.2	and name of group species of each group		Nemato des	Gastrop ods	Nemato ds	Polychaete worms	Decapods	Polychaet e Worms	Cyclops	Ctenophor es	Molluscan s	Bivalves	Cyclops	Polychaet e worms	10200-G

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

			Amphip ods		Chaetog naths	Snails	Ostracods		Ostracods	Decapods	Ostracods	Nematode s	Decapods	Ostracods	
			Chaetog naths				Krill		Krill		Polychaet e Worms		Krill		
									Polychaet e Worms & Gastropod s				Polychaet e worms		
19 .3	Total Biomass	ml/10 0 m ³	31	22	25	11	97	17	35	4	57	11	69	11	APHA (22 nd Edi) 10200-G
D	Microbiological Paran	neters													
20 .1	Total Bacterial Count	CFU/m I	1495	1318	1586	1227	1886	1430	1580	1140	1650	1390	1830	1630	IS 5402:2002
20 .2	Total Coliform	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	APHA(22 nd Edi)92 21-D
20 .3	Ecoli	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS:1622:1981Edi .2.4(2003-05)
20 .4	Enterococcus	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 15186:2002
20 .5	Salmonella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 5887 (P-3)
20 .6	Shigella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 1887 (P-7)
20 .7	Vibrio	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 5887 (P-5)

LT Shah

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M5 TOWARDS WESTERN SIDE OF EAST PORT - N 22°46'041" E 069°47'296"]

SR.	TECT DAD AMETERS	LINITT	April 2015	May 2015	June 2015	July 2015	August 2015	September 2015	To at Mathad
NO.	TEST PARAMETERS	UNIT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	Test Method
1	Organic Matter	%	0.81	0.71	0.61	0.64	0.66	0.546	FCO:2007
2	Phosphorus as P	mg/kg	110	138	162	200	198	148	APHA(22 nd Edi) 4500 C
3	Texture		Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	
4	Petroleum Hydrocarbon	mg/kg	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	6.8	6.2	5.7	5.2	5.4	5.39	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	mg/kg	110	98	114	128	118	131	AAS 3111B
5.3	Manganese as Mn	mg/kg	580	690	824	990	788	789	AAS APHA 3111 B
5.4	Iron as Fe	%	2.9	2.7	2.94	2.14	2.56	2.09	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	mg/kg	38	50.2	44.6	52.4	48.44	46.77	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	mg/kg	64	44	32.8	40.2	36.68	36.39	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	mg/kg	140	153	174	210	196	161	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	mg/kg	2.6	2.1	1.62	1.02	1.44	1.8	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	mg/kg	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Polychaete worms Snails Crustaceans	Polychaeteworms Crustaceans Echinoderms	Bivalves Isopods Mysids Polychaete Worms Anthozoans Lobsters	Amphipods Decapods Crustaceans Lobsters	Polychaete Worms Decapods Crustaceans Crabs	Crabs Mysids Decapods Bivalves Polychaete worms	АРНА (22 nd Edi) 10500-С
6.2	MeioBenthos		Foraminiferans Nematodes	Nematodes Forminiferans	Bryozoan Copepods Ciliates	Nematods Ostracodes Hydrozoa	Nematods Foraminiferans	Gastrotriches Ostracods	АРНА (22 nd Edi) 10500-С
2	Population	no/m²	288	377	476	385	433	385	APHA (22 nd Edi) 10500-C

61-0

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M7 EAST PORT N 22°47'120" E 069°47'110"]

S			April 2	2015	May 20)15	June	2015	July	2015	Augus	t 2015	Septeml	ber 2015	
R. N O.	TEST PARAMETERS	UNIT	SURFA CE	BOTT OM	SURFACE	BOTT OM	SURFACE	воттом	SURFACE	воттом	SURFACE	воттом	SURFACE	воттом	Test Method
1	рН		8.07	8.17	8.15	8.17	8.05	8.18	8.19	8.23	7.95	8.14	8.1	8.18	IS3025(P11)83R e.02
2	Temperature	°C	31	32	30	31	29	30	28	29	28	29	29	30	IS3025(P9)84Re. 02
3	Total Suspended Solids	mg/L	14	21	20	26	14	18	18	24	16	22	18	22	IS3025(P17)84R e.02
4	BOD (3 Days @ 27 °C)	mg/L	BDL*	BDL*	BDL*	BDL*	BDL *	BDL *	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	IS 3025 (P44)1993Re.03E dition2.1
5	Dissolved Oxygen	mg/L	5.6	4.4	5.8	5	5.4	4.8	5.4	4.6	5.6	4.6	5.6	4.8	IS3025(P38)89R e.99
6	Salinity	ppt	37.5	38.4	38.6	39.2	38.1	38.6	37.8	38	37.8	38.3	38.1	39.2	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	BDL*	BDL*	0.44	BDL *	0.16	BDL*	0.12	BDL*	BDL*	BDL*	APHA(22 nd Edi)55 20D
8	Nitrate as NO₃	mg/L	0.58	0.84	0.68	0.79	0.36	0.48	0.48	0.62	0.52	0.78	0.681	0.784	IS3025(P34)88
9	Nitrite as NO ₂	mg/L	0.066	0.052	0.023	0.018	0.014	0.026	0.022	0.03	0.046	0.032	0.063	0.05	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH₃	mg/L	0.18	0.32	0.11	0.28	0.32	0.58	0.34	0.46	0.26	0.5	0.295	0.554	IS3025(P34)88Cl a.2.3
11	Phosphates as PO ₄	mg/L	0.058	0.084	0.081	0.102	0.13	0.15	0.15	0.18	0.14	0.16	0.54	0.585	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	mg/L	1.6	2.7	0.81	1.1	0.69	1.08	0.86	1.12	0.826	1.32	1.039	1.189	IS3025(P34)88
13	Petroleum Hydrocarbon	mg/L	1.8	BDL*	BDL*	BDL*	BDL*	BDL*	2.6	BDL*	2.4	BDL*	1.4	BDL*	PLPL-TPH
14	Total Dissolved Solids	mg/L	43621	44511	44860	45380	43660	44270	43880	44220	43860	44428	43186	43828	IS3025(P16)84R e.02
15	COD	mg/L	18	12	16	20	24	30	24	28	22	28	24	28	APHA(22 nd Edi) 5520-D Open Reflux
16	Oxidisable Particular Organic Carbon	%	0.88	0.56	0.66	0.52	0.64	0.48	0.58	0.5	0.66	0.54	0.82	0.58	SOP – PLPL - 07
Α	Flora and Fauna														
17	Primary productivity	mgC/L	4.0	2.6	2.25	1.12	2.25	0.675	2.02	0.9	1.68	0.113	1.35	0.45	APHA (22nd Edi)

H. T. Shah Lab Manager

DOLLOCON LABORATORIES PVT. LTD

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

		/day													10200-J
В	Phytoplankton	1 - 1	l .	1									•		
18 .1	Chlorophyll	mg/m³	3.87	3.6	1.55	1.34	2.99	0.347	1.469	0.133	1.28	0.187	1.682	0.107	APHA (22 nd Edi) 10200-H
18 .2	Phaeophytin	mg/m³	BDL*	BDL*	1.03	1.24	BDL*	2.232	0.849	2.44	1.03	2.39	0.598	2.02	APHA (22 nd Edi) 10200-H
18 .3	Cell Count	Unit x 10 ³ /L	210	190	285	68	312	42	204	31	215	20	227	29	APHA (22 nd Edi) 10200-H
			Diatom	Diato m	Diatom	Diato m	Bacillariop hyceae								
			Thalassi asira sp.	Biddul phia sp.	Thalassion ema sp.	Biddul phia sp.	Nitzschia sp.	Fragillaria sp.	Nitzschia sp.	Fragillaria sp.	Nitzschia sp.	Navicula sp.	Nitzschia sp.	Navicula sp.	
			Nitzschi a sp.	Navicu la sp.	Nitzschia sp.	Fragill aria sp.	Fragillaria sp.	Coscinodis cus sp.	Fragillaria sp.	Biddulphia sp.	Coscinodis cus sp.	Nitzschia sp.	Synedra sp.	Fragillaria sp.	
			Fragillar ia sp.	Melosi ra sp.	Fragillaria sp.	Cyclot ella sp.	Pinnularia sp.	Pleurosigm a sp.	Asterionell a sp.	Pinnularia sp.	Synedra sp.	Biddulphia sp.	Coscinodis cus sp.	Cyclotella sp.	
			Amphor a sp.		Coscinodis cus sp.		Coscinodis cus sp.	Cyanophyc eae	Gyrosigma sp.	Thallasiosi ra sp.	Pleurosigm a sp.	Fragillaria sp.	Pleurosigm a sp.	Tabellaria sp.	
18	Name of Group Number		Green algae		Green algae		Cymbella sp.	Oscillatoria sp.	Green Algae	Green Algae	Navicula sp.	Skeletone ma sp.	Thallasiosi ra sp.	Cyanophyc eae	ADLIA (22nd E.I.)
.4	and name of group species of each group		Pediastr um sp.		Pediastrum sp.		Green Algae		Pandorina sp.	Pandorina sp.	Thallasiosi ra sp	Pandorina sp.	Pinnularia sp.	Oscillatoria sp.	APHA (22 nd Edi) 10200-H
					Cynophyce ae		Ankistrode smus sp.		Spirogyra sp.	Pediastru m sp.	Green Algae	Desmids	Green Algae	Nostoc sp.	
					Oscillatoria sp.		Pediastru m sp.		Desmids	Volvox sp.	Chlorella sp.		Chlorella sp.	Green Algae	
									Cosmariu m sp.		Pandorina sp.		Pandorina sp.	Chlorella sp.	
									·		Cyanophyc eae		Ulothrix sp.	,	
											Oscillatoria sp.		Desmids		
													Closterium sp.		
С	Zooplanktons														
19 .1	Abundance (Population)	no/m²	320	220	310	130	240	90	210	70	167	50	280	40	APHA (22 nd Edi) 10200-G

- O-D

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

			Copepo ds	Bivalv es	Copepods	Bivalv es	Gastropod s	Polychaete Worms	Gastropod s	Cyclops	Gastropod s	Molluscans	Copepods	Copepods	
			Gastrop ods	Copep ods	Gastropod s	Copep ods	Copepods	Bivalves	Copepods	Krill	Bivalves	Platinelmin thes	Krill	Gastropod s	
19	Name of Group Number		Polycha etes		Polychaete worms	Mollus cans	Mysids	Molluscans	Decapods	Ostracods	Copepods	Ostracods	Decapods		APHA (22 nd Edi)
.2	and name of group species of each group		Fish larvae		Decapods		Ostracods		Polychaete Worms	Copepods	Cyclops		Crustacea ns		10200-G
							Krill		Cyclops & Ctenophor es		Polychaete Worms		Ostracods		
													Fish egg		
19 .3	Total Biomass	ml/100 m ³	22	11	69	19	86	21	66	19	48	12	56	5	APHA (22 nd Edi) 10200-G
D	Microbiological Param	eters													
20 .1	Total Bacterial Count	CFU/m I	2331	1895	2077	1981	2100	1850	2130	1620	2210	1870	1760	1580	IS 5402:2002
20 .2	Total Coliform	/ml	Absent	Absen t	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	APHA(22 nd Edi)92 21-D
20 .3	Ecoli	/ml	Absent	Absen t	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS:1622:1981Edi. 2.4(2003-05)
20 .4	Enterococcus	/ml	Absent	Absen t	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 15186:2002
20 .5	Salmonella	/ml	Absent	Absen t	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 5887 (P-3)
20 .6	Shigella	/ml	Absent	Absen t	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 1887 (P-7)
20 .7	Vibrio	/ml	Absent	Absen t	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 5887 (P-5)

61-D

н. г. Snan Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M7 EAST PORT N 22°47'120" E 069°47'110"]

No. TEST PARAMETERS UNIT April 2015 May 2015 SEDIMENT SEDIMENT						LO LIIV EAGI		, <u> </u>	.,	
No.	SR.	TEST DADAMETERS	LINITT		May 2015		July 2015			Tost Mothed
Phosphorus as P	NO.	IESI PAKAMETEKS	ONTI	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	rest Method
Texture	1	Organic Matter	%	0.64	0.44	0.52	0.5	0.48	0.554	FCO:2007
Petroleum Hydrocarbon mg/kg BDL* BDL	2	Phosphorus as P	mg/kg	90	156		110	144	145	APHA(22 nd Edi) 4500 C
Petroleum Hydrocarbon mg/kg BDL* BDL				Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam		Sandy Loam	
5.1 Aluminum as Al % 5.4 5.8 5.24 5.86 5.36 5.71 AAS APHA 3111 B 5.2 Total Chromium as Cr³³ mg/kg 128 112 129 142 136 137 AAS 3111 B 5.3 Manganese as Mn mg/kg 840 810 936 1020 960 919 AAS APHA 3111 B 5.4 Iron as Fe % 2.6 2.5 2.8 2.92 2.74 2.25 AAS APHA(22™Edi)3111 B 5.5 Nickel as Ni mg/kg 28 41.6 32.4 36.4 38.7 34.35 AAS APHA(22™Edi)3111 B 5.6 Copper as Cu mg/kg 48 40 48.6 50.1 44.24 44.36 AAS APHA(22™Edi)3111 B 5.7 Zinc as Zn mg/kg 156 162 193 162 186 181 AAS APHA(22™Edi)3111 B 5.8 Lead as Pb mg/kg BDL* BDL* BDL* BDL* BDL* BDL* BDL*	4	Petroleum Hydrocarbon	mg/kg		BDL*	BDL*		BDL*	BDL*	PLPL-TPH
S.1 Alumnum as Al % S.4 S.8 S.24 S.86 S.11 AAS APHA 3111 B	5	Heavy Metals								
19	5.1	Aluminum as Al	%	5.4	5.8	5.24	5.86		5.71	AAS APHA 3111 B
Signature Sign	5.2	Total Chromium as Cr ⁺³	mg/kg	128	112	129	142		137	AAS 3111B
100 as Fe	5.3	Manganese as Mn	mg/kg	840	810	936	1020		919	AAS APHA 3111 B
5.5 Nickel as NI mg/kg 28 41.6 32.4 36.4 34.35 AAS APHA(22**Ecli)3111 B 5.6 Copper as Cu mg/kg 48 40 48.6 50.1 44.24 44.36 AAS APHA(22**Ecli)3111 B 5.7 Zinc as Zn mg/kg 156 162 193 162 186 181 AAS APHA(22**Ecli)3111 B 5.8 Lead as Pb mg/kg 2.7 2.5 1.96 1.22 1.38 1.07 AAS APHA(22**Ecli)3111 B 5.9 Mercury as Hg mg/kg BDL* BDL* BDL* BDL* BDL* BDL* AAS APHA-3112 B 6 Benthic Organisms Crabs Snails Crustaceans Chaetognathes Decapods Bivalves Crabs Turbellaria Echinoderms Echinoderms Echinoderms Echinoderms Isopods Decapods Decapods APHA (22**d Edi) 10500-C 6.2 MeioBenthos Copepods Nematodes Ostracods Ostracods Poraminiferans Hydrozoa Copepods Poraminiferans Hydrozoa Nematodes Copepods Nematodes Copepods Nematodes Ostracods Poraminiferans Hydrozoa APHA (22**d Edi) 10500-C	5.4	Iron as Fe	%	2.6	2.5	2.8	2.92		2.25	AAS APHA(22 nd Edi)3111 B
5.6 Copper as Cu mg/kg 48 40 48.6 50.1 44.36 AAS APHA(22**Edi)3111 B 5.7 Zinc as Zn mg/kg 156 162 193 162 186 181 AAS APHA(22**Edi)3111 B 5.8 Lead as Pb mg/kg 2.7 2.5 1.96 1.22 1.38 1.07 AAS APHA(22**Edi)3111 B 5.9 Mercury as Hg mg/kg BDL* BDL* BDL* BDL* BDL* BDL* BDL* BDL*	5.5	Nickel as Ni	mg/kg	28	41.6	32.4	36.4	38.7	34.35	AAS APHA(22 nd Edi)3111 B
5.7 Zinc as 2n mg/kg 156 162 193 162 181 AAS APHA(22 nd Edi)3111 B 5.8 Lead as Pb mg/kg 2.7 2.5 1.96 1.22 1.38 1.07 AAS APHA(22 nd Edi)3111 B 5.9 Mercury as Hg mg/kg BDL* BDL* BDL* BDL* BDL* BDL* BDL* BDL*	5.6	Copper as Cu	mg/kg	48	40	48.6	50.1	44.24	44.36	AAS APHA(22 nd Edi)3111 B
5.8 Lead as Pb mg/kg 2.7 2.5 1.96 1.22 1.07 AAS APHA(22"Edi)3111 B 5.9 Mercury as Hg mg/kg BDL* BDL* BDL* BDL* BDL* BDL* BDL* BDL*	5.7	Zinc as Zn	mg/kg	156	162	193	162	186	181	AAS APHA(22 nd Edi)3111 B
6.1 Macrobenthos Crabs Snails Crustaceans Copepods Nematodes Copopods Nematodes Copopods Ostracods Nematodes Copepods Nem	5.8	Lead as Pb	mg/kg	2.7	2.5	1.96	1.22	1.38	1.07	AAS APHA(22 nd Edi)3111 B
6.1 Macrobenthos Crabs Snails Crustaceans Chaetognathes Decapods Bivalves Crab Snails Crustaceans Chaetognathes Decapods Bivalves Crab Isopods Turbellaria Chaetognathes Decapods Bivalves Crab Isopods Turbellaria Crabs Snails Crustaceans APHA (22 nd Edi) 10500-C Ostracods Foraminiferans Copepods Nematodes Ostracods Hydrozoa APHA (22 nd Edi) 10500-C	5.9	Mercury as Hg	mg/kg	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA- 3112 B
6.1 Macrobenthos Crabs Snails Crustaceans Snails Snails Crustaceans Snails	6	Benthic Organisms								
6.2 MeioBenthos copepods Nematodes Copopods Nematodes Ostracods Hydrozoa Ostracods Hydrozoa Copepods Hydrozoa Copepods Copepod Copep	6.1	Macrobenthos		Snails	Snails	Decapods Bivalves	Decapods Bivalves Crabs	Bivalves Crab	Échinoderms Isopods	АРНА (22 nd Edi) 10500-С
2 Population no/m ² 251 314 411 357 397 377 APHA (22 nd Edi) 10500-C	6.2	MeioBenthos			Copopods		Foraminiferans			АРНА (22 nd Edi) 10500-С
	2	Population	no/m²	251	314	411	357	397	377	APHA (22 nd Edi) 10500-C

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M8 RIGHT SIDE OF BOCHA CREEK N 22°45'987" E 069°43'119"]

S			April			2015		2015	July	2015	Augus			per 2015	
R. N O.	TEST PARAMETERS	UNIT	SURFA CE	BOTT OM	SURFAC E	воттом	SURFACE	воттом	SURFACE	воттом	SURFACE	воттом	SURFACE	воттом	Test Method
1	рН		7.9	8.03	7.95	8.05	7.9	8.01	7.85	7.98	7.82	8.1	8.04	8	IS3025(P11)83R e.02
2	Temperature	°C	30	31	30	30	28	29	29	30	29	30	28	29	IS3025(P9)84Re. 02
3	Total Suspended Solids	mg/L	16	22	18	20	12	14	18	22	14	16	16	20	IS3025(P17)84R e.02
4	BOD (3 Days @ 27 °C)	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	IS 3025 (P44)1993Re.03 Edition2.1
5	Dissolved Oxygen	mg/L	5.8	4.6	6	4.8	5.2	4.6	5.4	4.8	5.6	4.6	5.4	4.6	IS3025(P38)89R e.99
6	Salinity	ppt	45.9	46.1	43.9	44.2	42.8	43.4	43.6	44.4	42.6	43.2	38.8	39.6	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	APHA(22 nd Edi)55 20D
8	Nitrate as NO₃	mg/L	0.42	0.5	0.52	0.6	0.44	0.68	0.48	0.66	0.46	0.58	0.325	0.399	IS3025(P34)88
9	Nitrite as NO ₂	mg/L	0.48	0.62	0.036	0.054	0.021	0.027	0.018	0.028	0.024	0.036	0.044	0.019	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	mg/L	0.64	0.73	0.81	0.96	0.58	0.62	0.42	0.52	0.34	0.42	0.554	0.591	IS3025(P34)88Cl a.2.3
11	Phosphates as PO ₄	mg/L	0.038	0.062	BDL*	BDL*	0.12	0.16	0.14	0.18	0.14	0.16	0.495	0.585	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	mg/L	2.8	5.2	1.36	1.61	1.04	1.32	0.92	1.2	0.84	0.99	0.923	1.009	IS3025(P34)88
13	Petroleum Hydrocarbon	mg/L	BDL*	BDL*	BDL*	BDL*	2.1	BDL*	1.8	BDL*	0.8	BDL*	1.2	BDL*	PLPL-TPH
14	Total Dissolved Solids	mg/L	54690	54980	52440	52980	53600	54100	51920	52890	53548	53990	42750	43320	IS3025(P16)84R e.02
15	COD	mg/L	16	26	24	32	24	26	20	24	18	22	24	28	APHA(22 nd Edi) 5520-D Open Reflux
16	Oxidisable Particular Organic Carbon	%	0.72	0.52	0.6	0.43	0.72	0.32	0.68	0.44	0.7	0.58	0.54	0.62	SOP - PLPL - 07

- O-D

Lab Manager

POLLOCON LABORATORIES PVT. LTD

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

Α	Flora and Fauna														
17	Primary productivity	mgC/L /day	2.92	1.06	2.475	0.99	2.925	0.45	2.47	1.125	1.463	0.337	1.463	0.113	APHA (22nd Edi) 10200-J
В	Phytoplankton														
18 .1	Chlorophyll	mg/m³	3.8	2.11	2.78	0.83	3.151	0.774	1.92	0.748	1.38	0.427	1.922	0.427	APHA (22 nd Edi) 10200-H
18 .2	Phaeophytin	mg/m³	BDL*	BDL*	BDL*	1.75	BDL*	1.805	0.395	1.98	0.742	1.42	0.021	1.479	APHA (22 nd Edi) 10200-H
18 .3	Cell Count	Unit x 10 ³ /L	308	220	306	143	358	95	294	75	189	28	202	33	APHA (22 nd Edi) 10200-H
			Diatom	Diato m	Diatom	Diatom	Bacillariop hyceae								
			Biddulp	Melosi	Biddulphi	Biddulphia	Nitzschia	Navicula	Nitzschia	Fragillaria	Coscinodis	Coscinodis	Asterionell	Fragillaria	
			hia sp.	ra sp.	a sp.	sp.	sp.	sp.	sp.	sp.	cus sp.	cus sp.	a sp.	sp.	
			Pleurosi gma sp.	Biddul phia sp.	Pleurosig ma sp.	Nitzschia sp.	Navicula sp.	Biddulphia sp.	Synedra sp.	Synedra sp.	Pinnularia sp.	Pinnularia sp.	Fragillaria sp.	Navicula sp.	
			Nitzschi	Nitzsc	Thalassio	Pleurosigm	Rhizosolen	Thallasiosi	Rhizosolen	Cyclotella	Gyro	Nitzschia	Navicula	Nitzschia	
			a sp.	hia sp.	nema sp.	a sp.	ia sp.	ra sp.	ia sp.	sp.	sigma sp.	sp.	sp.	sp.	
			Thalassi osira sp.		Fragillari a sp.	Thalassion ema sp.	Asterionell a sp.	Green Algae	Coscinodis cus sp.	Cheatocer ous sp.	Thallasiosi ra sp	Synedra sp.	Synedra sp.	Gyrosigma sp.	
	Name of Group		Fragillar ia sp.		Green algae		Synedra sp.	Chlorella sp.	Biddulphia sp.	Green Algae	Navicula sp.	Skeletone ma sp.	Coscinodis cus sp.	Cyanophy ceae	
18 .4	Number and name of group		Melosir a sp.		Chlorella sp.		Cyclotella sp.	Scenedes mus sp.	Cocconeis sp.	Chlorella sp.	Green Algae	Desmids	Cymbella sp.	Oscillatori a sp.	APHA (22 nd Edi)
	species of each group						Gyrosigma sp.		Skeletone ma sp.	Hydrodicty on sp.	Chlorella sp.	Cosmariu m sp.	Pleurosig ma sp.	Desmids	10200-H
							Cyanophy ceae		Green Algae	Spirogyra sp.	Pandorina sp.		Cyanophy ceae	Closterium sp.	
							Oscillatori a sp.		Chlorella sp.		Cyanophy ceae		Oscillatori a sp.		
							Spirulina sp.		Volvox sp.		Oscillatori a sp.		Nostoc sp.		
							Green Algae		Pandorina sp.				Green Algae		
							Chlorella sp.		Pediastru m sp.				Chlorella sp.		
							Volvox sp.						Pediastru m sp.		
С	Zooplanktons														

H. T. Shah

H. T. Shah Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

19 .1	Abundance (Population)	no/m²	298	198	370	120	210	80	240	60	217	83	240	80	APHA (22 nd Edi) 10200-G
			Echinod erms	Polych aete	Echinode rms	Polychaete worms	Bivalves	Polychaete Worms	Decapods	Polychaete	Copepods	Molluscans	Nematode s	Polychaete worms	
	Name of Group		Copepo ds	Bivalv es	Copepod S	Bivalves	Nematode s	Copepods	Copepods	Lamellibra nches	Decapods	Iospods	Copepods	Isopods	
19 .2	Number and name of group		Isopods		Isopods	Gastropod s	Gastropod s		Ostracods	Gastropod s	Polychaete Worms	Decapods	Krill		APHA (22 nd Edi) 10200-G
.2	species of each group		Gastrop ods		Gastropo ds		Mysids		Krill	Crustacea ns	Gastropod s		Molluscans		10200-G
				1					Ctenophor es		Cyclops				
									Fish egg						
19 .3	Total Biomass	ml/10 0 m ³	18	12	78	26	44	11	81	14	74	15	61	9	APHA (22 nd Edi) 10200-G
D	Microbiological Paran	neters													
20 .1	Total Bacterial Count	CFU/m	1531	1677	1610	1740	1700	1880	1880	1522	1800	1390	1470	1110	IS 5402:2002
20 .2	Total Coliform	/ml	Absent	Absen t	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	APHA(22 nd Edi)92 21-D
20 .3	Ecoli	/ml	Absent	Absen t	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS:1622:1981Edi .2.4(2003-05)
20 .4	Enterococcus	/ml	Absent	Absen t	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 15186:2002
20 .5	Salmonella	/ml	Absent	Absen t	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 5887 (P-3)
20 .6	Shigella	/ml	Absent	Absen t	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 1887 (P-7)
20 .7	Vibrio	/ml	Absent	Absen t	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 5887 (P-5)

(()

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M8 RIGHT SIDE OF BOCHA CREEK – N 22°45'987" E 069°43'119"]

SR.	TECT DADAMETERS	LINITT	April 2015	May 2015	June 2015	July 2015	August 2015	September 2015	Test Method
NO.	TEST PARAMETERS	UNIT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	Test Method
1	Organic Matter	%	0.59	0.44	0.64	0.4	0.62	0.441	FCO:2007
2	Phosphorus as P	mg/kg	134	160	240	190	210	187	APHA(22 nd Edi) 4500 C
3	Texture		Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	
4	Petroleum Hydrocarbon	mg/kg	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	5.4	5.1	4.9	5.26	5	5.59	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	mg/kg	84	92	104	80	98	99.98	AAS 3111B
5.3	Manganese as Mn	mg/kg	940	784	810	684	720	879	AAS APHA 3111 B
5.4	Iron as Fe	%	2.6	2.3	2.32	2.48	2.52	2.12	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	mg/kg	48	33	56	42	52	35.9	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	mg/kg	56	48	52	50	58	45.9	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	mg/kg	172	156	172	150	166	1.62	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	mg/kg	2.9	2.1	1.7	2	1.96	1.88	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	mg/kg	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Snails Amphipods Polychaete worms Crabs	Bivalves Mysids Chaetognathes	Polychaete Worms Crabs Decapods Isopods	Polychaete Worms Bivalves Decapods Echinoderms	Polychaete Worms Bivalves Echinoderms Crabds Isopods	Polychaete worms Isopods Decapods Prawn	АРНА (22 nd Edi) 10500-С
6.2	MeioBenthos		Copepods Nematodes	Nematodes Copopods	Nematodes Foraminiferans Ciliates	Nematodes Foraminiferans Copepods	Nematods Foraminiferans	Namatodes Foraminiferans	APHA (22 nd Edi) 10500-C
2	Population	no/m ²	503	481	485	433	337	433	APHA (22 nd Edi) 10500-C

J T Shah

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M11 MPT T1 JETTY N 22°42'278" E 069°43'450"]

					JAISTILE										1
S			April	2015	May	2015	June	2015	July	2015	Augus	t 2015	Septem	ber 2015	
R. N O.	TEST PARAMETERS	UNIT	SURFA CE	BOTTO M	SURFACE	воттом	SURFAC E	воттом	SURFAC E	воттом	SURFAC E	воттом	SURFAC E	воттом	Test Method
1	pH		8.05	8.13	8.11	8.24	8.15	8.22	8.1	8.28	8.05	8.18	8	8.09	IS3025(P11)83R e.02
2	Temperature	°C	31	31	29	30	30	30	29	30	28	29	28	29	IS3025(P9)84Re .02
3	Total Suspended Solids	mg/L	12	22	16	20	12	16	18	22	20	26	16	20	IS3025(P17)84R e.02
4	BOD (3 Days @ 27 °C)	mg/L	BDL*	BDL*	BDL*	BDL*	BDL *	BDL *	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	IS 3025 (P44)1993Re.03 Edition2.1
5	Dissolved Oxygen	mg/L	5.6	4.8	6	5.2	5.4	5	5.6	4.8	5.8	5	5.4	4.8	IS3025(P38)89R e.99
6	Salinity	ppt	42.7	44.1	42.4	42.9	40.6	41.1	43.8	44.6	41.2	42.5	39.6	40.2	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	BDL*	BDL*	0.6	BDL *	BDL*	BDL*	0.2	BDL*	0.4	BDL*	APHA(22 nd Edi)5 520D
8	Nitrate as NO ₃	mg/L	0.81	0.99	0.66	0.94	0.84	0.88	0.78	0.96	0.58	0.72	0.34	0.414	IS3025(P34)88
9	Nitrite as NO ₂	mg/L	0.081	0.086	0.041	0.056	0.024	0.042	0.038	0.068	0.03	0.054	0.026	0.011	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	mg/L	0.4	0.56	0.56	0.7	0.72	0.86	0.66	0.7	0.5	0.62	0.221	0.351	IS3025(P34)88C la.2.3
11	Phosphates as PO ₄	mg/L	0.056	0.077	0.096	0.11	0.11	0.13	0.092	0.1	0.088	0.096	0.495	0.63	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	mg/L	2.1	3.8	1.26	1.69	1.58	1.78	1.478	1.728	1.2	1.394	0.587	0.776	IS3025(P34)88
13	Petroleum Hydrocarbon	mg/L	BDL*	BDL*	BDL*	BDL*	12.4	BDL*	8.6	BDL*	6.4	BDL*	6.2	BDL*	PLPL-TPH
14	Total Dissolved Solids	mg/L	52105	52640	51610	51740	50680	51120	53200	53880	51240	51630	46326	47880	IS3025(P16)84R e.02
15	COD	mg/L	24	28	18	24	26	30	20	28	16	22	9	19	APHA(22 nd Edi) 5520-D Open Reflux
16	Oxidisable Particular Organic Carbon	%	0.98	0.38	0.72	0.48	0.54	0.32	0.64	0.4	0.48	0.66	0.55	0.43	SOP – PLPL - 07
Α	Flora and Fauna														
17	Primary productivity	mgC/L /day	2.1	0.8	2.02	0.9	2.925	0.225	2.25	0.45	1.8	0.563	1.125	0.338	APHA (22nd Edi) 10200-J

9-D

Lab Manager

POLLOCON LABORATORIES PVT. LTD

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

В	Phytoplankton														
18 .1	Chlorophyll	mg/m³	5.2	3.57	2.46	2.67	3.284	0.374	2.1	0.267	1.97	0.107	1.44	0.32	APHA (22 nd Edi) 10200-H
18 .2	Phaeophytin	mg/m³	BDL*	BDL*	0.12	BDL*	BDL *	2.205	0.246	2.31	0.155	1.762	0.689	1.511	APHA (22 nd Edi) 10200-H
18 .3	Cell Count	Unit x 10 ³ /L	270	205	312	169	364	87	278	69	220	55	196	42	APHA (22 nd Edi) 10200-H
			Diatom	Diatom	Diatom	Diatom	Bacillariop hyceae	Bacillariop hyceae	Bacillariop hyceae	Bacillariop hyceae	Bacillariop hyceae	Bacillariop hyceae	Bacillariop hyceae	Bacillariop hyceae	
			Gyrosig	Fragillari	Gyrosigre	Fragillaria	Rhizosole	Biddulphia	Fragillaria	Nitzschia	Asterionell	Fragillaria	Rhizosole	Fragillaria	
			ma sp.	a sp.	a sp.	sp.	nia sp.	sp.	sp.	sp.	a sp.	sp.	nia sp.	sp.	
			Navicula	Nitzschia	Thalassion	Gyrosigna	Skeletone	Pinnularia	Rhizosole	Melosira	Nitzschia	Nitzschia	Nitzschia	Nitzschia	
			sp.	sp.	ema sp.	sp.	ma sp.	sp.	nia sp.	sp.	sp.	sp.	sp.	sp.	
			Thalassi	Melosira	Synedra	Thalassion	Synedra	Pleurosig	Nitzschia	Pleurosig	Navicula	Navicula	Navicula	Navicula	
			osira sp.	sp.	sp.	ema sp.	sp.	ma sp.	sp.	ma sp.	sp.	sp.	sp.	sp.	
			Synedra		Green		Navicula	Green	Synedra	Cymbella	Coscinodis	Gyro	Coscinodis	Gyrosigm	
			sp.		algae		sp.	Algae	sp.	sp.	cus sp.	sigma sp.	cus sp.	a sp.	
18 .4	Name of Group Number and name of group species of each group		Green algae	1	Spirogyra sp.	-	Cyanophy ceae Navicula sp. Spirulina sp. Lyngbya sp.	Volvox sp.	Pleurosig ma sp.	Green Algae	Pleurosig ma sp.	Cyanophy ceae	Pleurosig ma sp.	Green Algae	АРНА (22 nd Edi) 10200-Н
			Spirogyr	-	Chlorella		Green		Green	Chlorella	Fragillaria	Oscillatori	Thallasion	Chlorella	
			a sp.		sp.		Algae		Algae	sp.	sp.	a sp.	ema sp.	sp.	
					Ankistrode		Microcysti		Chlorella	Pandorina	Pinnularia	Spirulina	Cyanophy	Pandorina	
					smus sp.		s sp.		sp.	sp.	sp.	sp.	ceae	sp.	
							Chlorella sp.		Pandorina sp.		Green Algae		Oscillatori a sp.		
							Pandorina sp.		Ulothrix sp.		Ankistrod esmus sp.		Nostoc sp.		
							•		Hydrodict		Chlorella		Green		
									yon sp.		sp.		Algae		
											Volvox sp.		Chlorella sp.		
L											Hydrodicly on sp.		Pediastru m sp.		
С	Zooplanktons														
19	Abundance	no/m ²	400	300	350	260	270	120	190	50	210	60	325	75	APHA (22 nd Edi)

- O-D

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

.1	(Population)														10200-G
			Copepod s	Decapod larvae	Copepods	Decapods	Nematode s	Foraminif erans	Polychaet e Worms	Foraminif erans	Copepods	Copepods	Polychaet e worms	Copepods	
	Name of Group		Polychae tes	Polychae tes	Polychaet eworms	Polychaet eworms		Polychaet e Worms	Decapods	Nematode s	Molluscan s	Ostracods	Krill	Nematode s	
19 .2	Number and name of group		Gastropo ds	Ostracod s	Gastropod s	Ostracods			Cyclops	Lamellibra nches	Polychaet e Worms	Crustacea ns	Isopods		APHA (22 nd Edi) 10200-G
	species of each group		Foramini ferans		Decapods				Chaetogn athes		Knill		Gastropod s		
			Ctenoph ores		Mysids				Molluscan s		Gastropod s				
19 .3	Total Biomass	ml/10 0 m ³	30	18	89	22	48	20	37	12	82	14	72	11	APHA (22 nd Edi) 10200-G
D	Microbiological Parameters														
20 .1	Total Bacterial Count	CFU/ ml	1927	2177	2130	2410	2250	2500	1925	1350	1850	1430	1470	1180	IS 5402:2002
20 .2	Total Coliform	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	APHA(22 nd Edi)9 221-D
20 .3	Ecoli	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS:1622:1981Ed i.2.4(2003-05)
20 .4	Enterococcus	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 15186 :2002
20 .5	Salmonella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 5887 (P-3)
20 .6	Shigella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 1887 (P-7)
20 .7	Vibrio	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	IS: 5887 (P-5)

LT Shah

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M12 SPM N 22°40'938" E 069°39'191"]

SR	1	l		2015	May 2		June		Augus	+ 2015		ber 2015	
SK			Aprii	2015	May 2	012	June	2015	Augus	L 2015	Septemi	Der 2015	-
N O.	TEST PARAMETERS	UNIT	SURFAC E	воттом	SURFACE	воттом	SURFACE	воттом	SURFACE	воттом	SURFACE	воттом	Test Method
1	pH		7.99	8.11	8.06	8.17	8.1	8.13	8.14	8.2	7.99	8.05	IS3025(P11)83Re.0 2
2	Temperature	°C	30	31	29	30	29	30	29	30	29	30	IS3025(P9)84Re.02
3	Total Suspended Solids	mg/L	16	21	14	18	22	28	18	26	20	26	IS3025(P17)84Re.0 2
4	BOD (3 Days @ 27 °C)	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	IS 3025 (P44)1993Re.03Edit ion2.1
5	Dissolved Oxygen	mg/L	5.4	4.6	5.6	4.4	5.4	4.6	5.6	4.8	5.8	4.6	IS3025(P38)89Re.9 9
6	Salinity	ppt	41.4	41.8	41.6	42	39.8	40.4	40.2	41.8	39.6	40.1	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	BDL*	BDL*	BDL *	BDL *	BDL*	BDL*	BDL*	BDL*	APHA(22 nd Edi)5520 D
8	Nitrate as NO ₃	mg/L	0.56	0.69	0.36	0.51	0.52	0.58	0.48	0.54	0.458	0.888	IS3025(P34)88
9	Nitrite as NO ₂	mg/L	0.081	0.102	0.072	0.096	0.048	0.072	0.12	0.18	0.037	0.063	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	mg/L	0.56	0.62	0.69	0.72	0.84	0.63	0.74	0.82	0.887	1.06	IS3025(P34)88Cla.2 .3
11	Phosphates as PO ₄	mg/L	0.094	0.098	0.14	0.16	0.18	0.2	0.16	0.18	0.585	0.675	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	mg/L	3.8	4.1	1.12	1.32	1.42	1.3	1.34	1.54	1.382	2.011	IS3025(P34)88
13	Petroleum Hydrocarbon	mg/L	4	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	1.56	BDL*	PLPL-TPH
14	Total Dissolved Solids	mg/L	49608	51210	48710	49810	47480	48120	48020	51308	47310	47738	IS3025(P16)84Re.0 2
15	COD	mg/L	18	24	24	31	18	20	16	20	24	28	APHA(22 nd Edi) 5520-D Open Reflux
16	Oxidisable Particular Organic Carbon	%	0.76	0.42	0.46	0.3	0.49	0.24	0.68	0.4	0.52	0.32	SOP - PLPL - 07
Α	Flora and Fauna									-			
17	Primary productivity	mgC/L/ day	3.1	1.2	1.35	0.45	2.475	1.013	1.91	0.675	1.575	0.225	APHA (22nd Edi) 10200-J
В	Phytoplankton												
18.	Chlorophyll	mg/m³	3.39	3.81	1.28	0.67	2.67	0.481	1.7	0.427	1.362	0.187	APHA (22 nd Edi)

9-D

Lab Manager

POLICEN LABORATORIES PVT. LTD

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

1									I				10200-H
18. 2	Phaeophytin	mg/m³	BDL*	BDL*	1.3	1.91	BDL*	2.099	1.65	1.23	0.844	1.77	APHA (22 nd Edi) 10200-H
18. 3	Cell Count	Unit x 10 ³ /L	225	182	179	93	321	40	245	47	225	31	APHA (22 nd Edi) 10200-H
			Diatom	Diatom	Diatom	Diatom	Bacillariophy ceae	Bacillariophy ceae	Bacillariophy ceae	Bacillariophy ceae	Bacillariophy ceae	Bacillariophy ceae	
			Coscinodi scus sp.	Coscinodis cus sp.	Coscinodiscu s sp.	Coscinodi scus sp.	Nitzschia sp.	Cymbella sp.	Gyro sigma sp.	Amphora sp.	Rhizosolenia sp.	Thallasione ma sp.	
			Melosira sp.	Asterionall a sp.	Nitzschia sp.	Asterionel la sp.	Gomphone ma sp.	Nitzschia sp.	Pinnularia sp.	Coscinodisc us sp.	Nitzschia sp.	Fragillaria sp.	
			Nitzschia sp.	Navicula sp.	Synedra sp.	Navicula sp.	Pleurosigma sp	Synedra sp.	Synedra sp.	Navicula sp.	Navicula sp.	Synedra sp.	
			Synedra sp.	Cyanophy ceae	Thalassione ma sp.	Nitzschia sp.	Rhizosolenia sp.	Green Algae	Nitzschia sp.	Synedra sp.	Thallasione ma sp.	Pleurosigma sp.	
18.	Name of Group Number and name of group		Thalassio sira sp.	Oscillatori a sp.	Biddulphia sp.		Cyanophyce ae	Chlorella sp.	Thallasiosira sp	Fragillaria sp.	Coscinodisc us sp.	Asterionella sp.	APHA (22 nd Edi)
4	species of each group		Biddulphi a sp.		Cynbella		Oscillatoria sp.		Pleurosigma sp.	Green Algae	Fragillaria sp.	Cyanophyce ae	10200-H
							Desmids		Cyanophyce ae	Chlorella sp.	Cyanophyce ae	Oscillatoria sp.	
							Cosmarium sp.		Oscillatoria sp.	Pandorina sp.	Oscillatoria sp.	Desmids	
							Closterium sp.		Spirulina sp.	Pediastrum sp.	Nostoc sp.	Closterium sp.	
										Green Algae	Green Algae		
										Chlorella sp.	Chlorella sp.		
										Volvox sp.	Volvox sp.		
С	Zooplanktons												
19. 1	Abundance (Population)	no/m²	620	460	480	280	210	130	250	100	280	150	APHA (22 nd Edi) 10200-G
			Polychaet es	Bivalves	Polychaetew orms	Bivalves	Nematodes	Polychaete Worms	Copepods	Copepods	Copepods	Isopods	
	Name of Group Number		Chaetogn aths	Snails	Chaetognath s	Isopods	Gastropods	Bryozoans	Krill	Polychaete Worms	Decapods	Hydrozoans	
19. 2	and name of group species of each group		Gastropo ds	Molluscan s	Gastropods	Hydrozoa ns	Muds Skipper	Snail	Gastropods	Crustaceans	Nematodes	Namatodes	APHA (22 nd Edi) 10200-G
	species of each group		Bivalves	Hydrozoan s	Bivalves		Bivalves	Hydrozoans	Decapods		Isopods		
				Isopods	Decapods				Polychaete Worms		Krill		

9-10

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

									& Ostracods				
19. 3	Total Biomass	ml/100 m ³	27	12	36	17	102	28	89	16	75	9	APHA (22 nd Edi) 10200-G
D	Microbiological Parameters												
20. 1	Total Bacterial Count	CFU/ml	2009	1927	2800	1825	2560	2240	1710	1280	1590	1320	IS 5402:2002
20. 2	Total Coliform	/ml	Absent	Absent	Absent	Absent	APHA(22 nd Edi)9221 -D						
20. 3	Ecoli	/ml	Absent	Absent	Absent	Absent	IS:1622:1981Edi.2. 4(2003-05)						
20. 4	Enterococcus	/ml	Absent	Absent	Absent	Absent	IS: 15186:2002						
20. 5	Salmonella	/ml	Absent	Absent	Absent	Absent	IS: 5887 (P-3)						
20. 6	Shigella	/ml	Absent	Absent	Absent	Absent	IS: 1887 (P-7)						
20. 7	Vibrio	/ml	Absent	Absent	Absent	Absent	IS: 5887 (P-5)						

I T Shah

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF ETP WATER OUTLET

SR.					Liquid Termir	nal ETP Outlet			
NO.	PARAMETERS	UNIT	April 2015	May 2015	June 2015	July 2015	August 2015	September 2015	TEST METHOD
1	Colour	Co-pt	50	40	20	30	30	20	IS3025(P4)83Re.02
2	pН		6.7	7.1	6.56	6.92	7.08	7.17	IS3025(P11)83Re.02
3	Temperature	°C	32	31	30	30	30	30	IS3025(P9)84Re.02
4	Total Suspended Solids	mg/L	40	38	20	28	24	26	IS3025(P17)84Re.02
5	Total Dissolved Solids	mg/L	1890	1890	1562	1909	1960	2024	IS3025(P16)84Re.02
6	COD	mg/L	84	92	98	82	92	96	APHA(22 nd Edi) 5520-D Open Reflux
7	BOD (3 Days @ 27 °C)	mg/L	30	26	28	18	20	24	IS 3025 (P44)1993Re.03Edition2.1
8	Chloride as Cl	mg/L	589	587	560	390	540	584	IS3025(P32)88Re.99
9	Oil & Grease	mg/L	0.8	0.4	BDL*	0.6	0.2	1	APHA(22 nd Edi)5520D
10	Sulphate as SO ₄	mg/L	174	160	150	220	190	167	APHA(22 nd Edi)4500 SO ₄ E
11	Ammonical Nitrogen as NH ₃	mg/L	2.1	3.1	4.4	5.6	3	1.75	IS3025(P34)88Cla.2.3
12	% Sodium as Na	%	42	45.56	46.19	48.44	44.8	49.26	AAS APHA(22 nd Edi) 3500 NA B/ Flame Photometer
13	Nickel as Ni	mg/L	0.014	BDL*	BDL*	BDL*	BDL*	0.018	AAS APHA(22 nd Edi)3111 B
14	Phenolic Compound	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	IS3025(P43)92Re.03
15	SAR		4.6	6.02	5.4	5.8	BDL*	8.88	By Calculation
16	Total Chromium as Cr ⁺³	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS 3111B
17	Hexavalent Chromium as Cr ⁺⁶	mg/L	BDL*	BDL*	0.018	BDL*	BDL*	BDL*	APHA(22 nd Edi)3500Cr B Colorimetric method
18	Copper as Cu	mg/L	0.018	0.011	BDL*	0.012	0.01	0.01	AAS APHA(22 nd Edi)3111 B
19	Lead as Pb	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA(22 nd Edi)3111 B
20	Sulphide as S	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	APHA(22 nd Edi) 4500-S
21	Mercury as Hg	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA- 3112 B
22	Zinc as Zn	mg/L	0.066	0.031	0.026	0.042	0.03	0.024	AAS APHA(22 nd Edi)3111 B
23	Cadmium as Cd	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA(22 nd Edi)3111 B
24	Cyanide as CN	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	APHA(22 nd Edi)4500CN E
25	Arsenic as As	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA 3114 B
26	Fluoride as F	mg/L	0.72	0.8	0.62	0.74	0.66	BDL*	APHA(22 nd Edi) 4500 F D SPANDS
27	Insecticides/Pesticides	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	GC MS

^{*}Below detection limit

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

Location & Parameter	Unit	April 2015	May 2015	June 2015	July 2015	August 2015	September 2015	Test Method
T1 TERMINAL								
Respirable Particulate Matter (PM ₁₀)	μg/m³	75.26	72.81	76.16	79.38	82.88	75.96	IS:5182(P23):Gravimetric CPCB - Method (Vol.I,May-2011)
Particulate Matter (PM _{2.5})	μg/m³	41.80	36.60	41.73	40.87	40.29	38.96	Gravimetric- CPCB - Method (Vol.I,May-2011)
Sulphur Dioxide as SO ₂	μg/m³	14.27	15.20	15.32	15.45	14.66	11.62	IS:5182(PII):Improved West and Gaeke
Oxides of Nitrogen as NO ₂	μg/m³	32.09	33.41	34.85	33.22	33.14	30.58	IS:5182(PVI): Jacob & Hochheiser modified (NaOH-NaAsO2) Method
Carbon Monoxide as CO	mg/m ³	0.45	0.51	0.55	0.53	0.51	0.44	NDIR Digital Gas Analyzer
Hydrocarbon as CH ₄	mg/m³	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	SOP: HC: GC/GCMS/Gas analyzer
Benzene as C ₆ H ₆	μg/m³	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	IS 5182 (Part XI):2006/CPCB Method
NEAR FIRE STATION								
Respirable Particulate Matter (PM ₁₀)	μg/m³	67.9 4	70.59	75.37	86.26	85.74	80.70	IS:5182(P23):Gravimetric CPCB - Method (Vol.I,May-2011)
Particulate Matter (PM _{2.5})	μg/m³	39.10	35.73	40.87	46.72	44.57	41.56	Gravimetric- CPCB - Method (Vol.I,May-2011)
Sulphur Dioxide as SO ₂	μg/m³	17.40	18.77	18.84	19.35	17.37	15.52	IS:5182(PII):Improved West and Gaeke
Oxides of Nitrogen as NO ₂	μg/m³	31.13	34.23	34.21	34.67	34.31	32.53	IS:5182(PVI): Jacob & Hochheiser modified (NaOH-NaAsO2) Method
Carbon Monoxide as CO	mg/m³	0.27	0.30	0.32	0.35	0.32	0.33	NDIR Digital Gas Analyzer
Hydrocarbon as CH ₄	mg/m³	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	SOP: HC: GC/GCMS/Gas analyzer
Benzene as C ₆ H ₆	μg/m³	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	IS 5182 (Part XI):2006/CPCB Method
PUB /ADANI HOUSE								
Respirable Particulate Matter (PM ₁₀)	μg/m³	67.29	68.65	62.39	70.67	68.94	67.06	IS:5182(P23):Gravimetric CPCB - Method (Vol.I,May-2011)
Particulate Matter (PM _{2.5})	μg/m³	39.34	36.37	29.82	33.80	31.35	30.89	Gravimetric- CPCB - Method (Vol.I,May-2011)
Sulphur Dioxide as SO ₂	μg/m³	14.54	15.30	17.00	16.95	16.68	12.08	IS:5182(PII):Improved West and Gaeke
Oxides of Nitrogen as NO ₂	μg/m³	29.05	31.77	31.45	29.89	29.83	28.03	IS:5182(PVI): Jacob & Hochheiser modified (NaOH-NaAsO2) Method
Carbon Monoxide as CO	mg/m³	0.37	0.44	0.42	0.40	0.40	0.42	NDIR Digital Gas Analyzer
Hydrocarbon as CH ₄	mg/m ³	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	SOP: HC: GC/GCMS/Gas analyzer
Benzene as C ₆ H ₆	μg/m³	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	IS 5182 (Part XI):2006/CPCB Method

000

H. I. Snan Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

Location & Parameter	Unit	April 2015	May 2015	June 2015	July 2015	August 2015	September 2015	Test Method
AIR STRIP								
Respirable Particulate Matter (PM ₁₀)	μg/m³	71.09	71.08	65.95	69.93	70.38	69.70	IS:5182(P23):Gravimetric CPCB - Method (Vol.I,May-2011)
Particulate Matter (PM _{2.5})	μg/m³	33.14	35.41	30.67	31.55	30.69	29.85	Gravimetric- CPCB - Method (Vol.I,May-2011)
Sulphur Dioxide as SO ₂	μg/m³	13.19	14.08	12.28	12.21	13.98	11.70	IS:5182(PII):Improved West and Gaeke
Oxides of Nitrogen as NO ₂	μg/m³	29.83	31.34	28.26	28.06	29.70	27.84	IS:5182(PVI): Jacob & Hochheiser modified (NaOH-NaAsO2) Method
Carbon Monoxide as CO	mg/m³	0.29	0.24	0.24	0.26	0.27	0.26	NDIR Digital Gas Analyzer
Hydrocarbon as CH ₄	mg/m³	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	SOP: HC: GC/GCMS/Gas analyzer
Benzene as C ₆ H ₆	μg/m³	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	IS 5182 (Part XI):2006/CPCB Method
NEAR SHANTIVAN COLONY'S STP								
Respirable Particulate Matter (PM ₁₀)	μg/m³	62.36	63.99	58.03	64.40	62.50	67.60	IS:5182(P23):Gravimetric CPCB - Method (Vol.I,May-2011)
Particulate Matter (PM _{2.5})	μg/m³	33.13	32.74	28.50	32.12	31.60	32.27	Gravimetric- CPCB - Method (Vol.I,May-2011)
Sulphur Dioxide as SO ₂	μg/m³	12.61	13.56	13.09	16.63	14.03	14.31	IS:5182(PII):Improved West and Gaeke
Oxides of Nitrogen as NO ₂	μg/m³	28.60	26.92	29.13	29.87	28.02	29.29	IS:5182(PVI): Jacob & Hochheiser modified (NaOH-NaAsO2) Method

Note: Monthly average is calculated from result of 24 hourly &twice in a week monitoring.

(D

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF NATIONAL AMBIENT AIR QUALITY MONITORING

WEST PORT		T1 TERMINAL	NEAR FIRE STATION	PUB /ADANI HOUSE	AIR STRIP	NEAR SHANTIVAN COLONY'S STP	METHOD OF
TEST PARAMETER	UNIT	08/04/2015	08/04/2015	08/04/2015	09/04/2015	07/04/2015	MEASUREMENT
Respirable Particulate Matter (PM10)	μg/m³	92.92	78.82	55.50	73.11	57.50	IS:5182(Part 23):Gravimetric CPCB - Method (Vol.I,May-2011)
Particulate Matter (PM 2.5)	μg/m³	51.45	45.03	44.14	35.54	36.23	Gravimetric- CPCB - Method (Vol.I,May-2011)
Lead as Pb	μg/m³	BDL*	BDL*	BDL*	BDL*	BDL*	CPCB Method (Vol.I,May-2011)
Benzo (a) Pyrene (BaP)- particulate phase only	ng/m³	BDL*	BDL*	BDL*	BDL*	BDL*	CPCB Method (Vol.I,May-2011)
Arsenic as As	ng/m³	BDL*	BDL*	BDL*	BDL*	BDL*	CPCB Method (Vol.I,May-2011)
Nickel as Ni	ng/m³	BDL*	BDL*	BDL*	BDL*	BDL*	CPCB Method (Vol.I,May-2011)
Carbon Monoxide as CO	mg/m³	0.34	0.16	0.44	0.34	0.48	NDIR Digital Gas Analyzer
Benzene as C ₆ H ₆	μg/m³	BDL*	2.16	BDL*	BDL*	BDL*	IS 5182 (Part XI):2006/CPCB Method
Ammonia (NH3)	μg/m³	46.54	28.44	34.53	44.73	25.52	CPCB Method (Vol.I,May-2011)
Sulphur Dioxide (SO ₂)	μg/m³	15.34	19.70	16.70	10.68	12.52	IS:5182(Part 2): Improved West and Gaeke
Oxides of Nitrogen (NO2)	μg/m³	41.36	30.20	36.41	24.54	26.48	IS:5182(Part 6):Modified Jacob & Hochheiser (Na-Arsenite)
Ozone as O ₃	μg/m³	21.47	25.38	22.35	19.52	18.08	IS 5182 (PART IX) 1974 / CPCB Method (Vol.I,May-2011)
Hydrocarbon as CH4	ppm	BDL*	BDL*	BDL*	BDL*	BDL*	SOP: HC: GC/GCMS/Gas analyzer

61-D

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF NATIONAL AMBIENT AIR QUALITY MONITORING

WEST PORT		T1 TERMINAL	NEAR FIRE STATION	PUB /ADANI HOUSE	AIR STRIP	NEAR SHANTIVAN COLONY'S STP	METHOD OF
TEST PARAMETER	UNIT	17/07/2015	17/07/2015	17/07/2015	18/07/2015	16/07/2015	MEASUREMENT
Respirable Particulate Matter (PM10)	μg/m³	86.63	79.63	54.89	67.47	62.63	IS:5182(Part 23):Gravimetric CPCB - Method (Vol.I,May-2011)
Particulate Matter (PM 2.5)	μg/m³	48.54	32.52	24.57	27.60	39.14	Gravimetric- CPCB - Method (Vol.I,May-2011)
Lead as Pb	μg/m³	BDL*	BDL*	BDL*	BDL*	BDL*	CPCB Method (Vol.I,May-2011)
Benzo (a) Pyrene (BaP)- particulate phase only	ng/m³	BDL*	BDL*	BDL*	BDL*	BDL*	CPCB Method (Vol.I,May-2011)
Arsenic as As	ng/m³	BDL*	BDL*	BDL*	BDL*	BDL*	CPCB Method (Vol.I,May-2011)
Nickel as Ni	ng/m³	BDL*	BDL*	BDL*	BDL*	BDL*	CPCB Method (Vol.I,May-2011)
Carbon Monoxide as CO	mg/m³	0.70	0.46	0.58	0.41	0.60	NDIR Digital Gas Analyzer
Benzene as C ₆ H ₆	μg/m³	BDL*	BDL*	BDL*	BDL*	BDL*	IS 5182 (Part XI):2006/CPCB Method
Ammonia (NH3)	μg/m³	58.51	36.39	46.74	40.63	21.69	CPCB Method (Vol.I,May-2011)
Sulphur Dioxide (SO ₂)	μg/m³	18.80	11.23	22.78	13.73	13.58	IS:5182(Part 2): Improved West and Gaeke
Oxides of Nitrogen (NO2)	μg/m³	41.66	36.46	39.52	30.42	35.36	IS:5182(Part 6):Modified Jacob & Hochheiser (Na-Arsenite)
Ozone as O ₃	μg/m³	24.50	28.39	26.58	21.72	21.48	IS 5182 (PART IX) 1974 / CPCB Method (Vol.I,May-2011)
Hydrocarbon as CH4	ppm	BDL*	BDL*	BDL*	BDL*	BDL*	SOP: HC: GC/GCMS/Gas analyzer

61-D

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF STACK MONITORING

SR. NO.	TEST PARAMETERS	Unit	*Thermic Fluid Heater (Bitumen)	#Hot Water System-1 (Liquid Terminal)	#Hot Water System-2 (Liquid Terminal)	Test Method
	April 2015					
1	Particulate Matter	mg/Nm ³	28.58	42.53	36.58	IS:11255 (Part-I):1985
2	Sulfur dioxide	ppm	4.68	7.42	8.34	IS:11255 (Part-II):1985
3	Oxides of Nitrogen	ppm	28.52	32.76	26.54	IS:11255 (Part-VII):2005
				May 2015		
1	Particulate Matter	mg/Nm ³	41.62	35.58	28.45	IS:11255 (Part-I):1985
2	Sulfur dioxide	ppm	6.64	8.65	5.36	IS:11255 (Part-II):1985
3	Oxides of Nitrogen	ppm	31.33	34.74	29.05	IS:11255 (Part-VII):2005
				June 2015		
1	Particulate Matter	mg/Nm ³	32.75	44.56	36.74	IS:11255 (Part-I):1985
2	Sulfur dioxide	ppm	7.67	6.67	8.61	IS:11255 (Part-II):1985
3	Oxides of Nitrogen	ppm	35.60	32.56	37.80	IS:11255 (Part-VII):2005
				August 2015		
1	Particulate Matter	mg/Nm ³		26.80	30.61	IS:11255 (Part-I):1985
2	Sulfur dioxide	ppm		8.74	6.28	IS:11255 (Part-II):1985
3	Oxides of Nitrogen	ppm		38.56	35.70	IS:11255 (Part-VII):2005
	September 2015					
1	Particulate Matter	mg/Nm ³		18.93	24.51	IS:11255 (Part-I):1985
2	Sulfur dioxide	ppm		6.83	5.55	IS:11255 (Part-II):1985
3	Oxides of Nitrogen	ppm		36.24	32.85	IS:11255 (Part-VII):2005

^{*}Below detection limit

Results on 11 % O₂ Correction when Oxygen is greater than 11 %

U T Shah

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF DG STACK MONITORING

					April 2015			
SR. NO.	TEST PARAMETERS	Unit	D.G. Set-1* (500 KVA)	D.G. Set-2* (500 KVA)	D.G. Set-3* (500 KVA)	D.G. Set-4* (500 KVA)	D.G. Set-5* (500 KVA)	Test Method
1	Particulate Matter	mg/Nm ³	24.58	32.59	29.84	21.53	36.57	IS:11255 (Part-I):1985
2	Sulphur Dioxide	ppm	5.86	7.85	4.34	6.74	7.5	IS:11255 (Part-II):1985
3	Oxides of Nitrogen	ppm	24.4	26.38	34.04	30.54	32.23	IS:11255 (Part-VII):2005
					July 2015			
SR. NO.	TEST PARAMETERS	_	D.G. Set-1*	D.C. C-+ 3*		D.G. Set-4*		
	ILSTTAKAPETEKS	Unit	(500 KVA)	D.G. Set-2* (500 KVA)	D.G. Set-3* (500 KVA)	(500 KVA)	D.G. Set-5* (500 KVA)	Test Method
1	Particulate Matter	Unit mg/Nm ³						Test Method IS:11255 (Part-I):1985
			(500 KVA)					

^{*}DG sets are used as standby, so stack monitoring is done on quarterly basis.

Results on 11 % O₂ Correction when Oxygen is greater than 11 %

J T Shah

Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

MINIMUM DETECTION LIMIT [MDL]

Water para	Water parameter(mg/L)					
Sr. No.	Test parameter	MDL				
1	Total Suspended Solids	1				
2	Oil & Grease	1				
3	BOD	10				
. 4	COD	5				
6	Total Dissolved Solids	3				
7	Sulphate	0.3				
8	Ammonical Nitrogen	0.05				
9	Nickel	0.01				
10	Phenolic Compound	0.001				
11	Fluoride	0.01				
12	Copper	0.013				
13	Sulphide	0.01				
15	Cyanide	0.0001				
16	Residual Chlorine	0.1				
17	Boron	0.02				
. 17	Insecticides/Pesticides	0.01				
19	Nitrate Nitrogen	0.15				
20	Phosphorous	0.15				
21	Petroleum Hydrocarbon	0.01				
22	Lead	0.005				
23	Mercury	0.0005				
24	Zinc	0.022				
25	Cadmium	0.001				
26	Arsenic	0.00015				
Sediment pa	arameter(mg/kg)					
1	Petroleum Hydrocarbon	0.2				

Stack parameter					
Sr. No.	Test parameter	MDL			
1	Particulate Matter (mg/Nm³)	10			
2	Sulphur Dioxide(ppm)	1.52			
3	Oxides of Nitrogen (ppm)	2.65			

(1) (1)

H. T. Shah Lab Manager

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

MINIMUM DETECTION LIMIT [MDL]

Ambient Air Parameter				
Sr. No.	Test parameter	MDL		
1	Particulate Matter (PM10)	10		
2	Particulate Matter (PM 2.5)	10		
3	Lead as Pb (μg/m³)	0.5		
4	Benzo (a) Pyrene (BaP)- particulate phase only(ng/m³)	0.5		
5	Arsenic as As (ng/m³)	2		
6	Nickel as Ni (ng/m³)	10		
7	Carbon Monoxide as CO (mg/m³)	1		
8	Benzene as C_6H_6 (µg/m ³)	2		
9	Ammonia (NH ₃) (μ g/m ³)	10		
10	Sulphur Dioxide (SO ₂) (μg/m ³)	5		
11	Nitrogen Dioxide (NO ₂) (μg/m ³)	5		
12	Ozone as O ₃ (μg/m³)	5		
13	Hydrocarbon (µg/m³)	150		

(1) (1)

H. I. Shan Lab Manager

Annexure – 3

Section 7: Data Directory

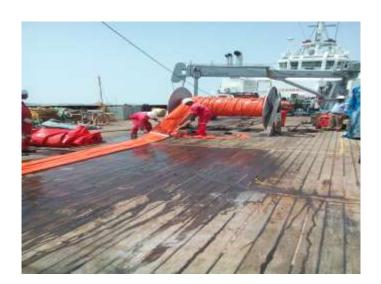
	INITIAL OIL SPILL REPORT	ANNEXURE 1		
Particulars of person, office reporting		UBE , HOD MARINE APSEZ UNDRA		
Tel No.	9925223674			
Date & time of incident	29.05.2015			
Spill location	1 NM NW of IOCL SPM			
Likely cause of spill	CARGO HOSE BURST	Witness –Tanker Seaman		
Initial response action	Stopped pumping and valve closed	By- bunker barge		
Any other information	Spilla	ge is stopped		
This FIR is to be sent to Marine Manager by oil pollution incident. This FIR is to be followed by company's incompany's incompany, and incompany incompan	-	ossible. It is an offence not to report		
Following POLREP report to the Governme	ent through nearest CG information	will also be required:		
Identity of informant		GM MARINE (APSEZ)		
Time of FIR	29 / 1000 HRS	29 / 1000 HRS		
Source of spill	CARGO LINE (HO	CARGO LINE (HOSE)		
Cause of spill	Hose burst	Hose burst		
Type of spill	Crude Oil	Crude Oil		
Colour code information (from CG)	Brown	Brown		
Radius of slick	300 mtr	300 mtr		
Tail	600 mtr	600 mtr		
Volume	3.6 m3 approx	3.6 m3 approx		
Quantity	4.5 Ton Appx	4.5 Ton Appx		
Weather	NW'ly x 16-18 knts	NW'ly x 16-18 knts		
Tide / current	Flooding / 1 knt	Flooding / 1 knt		
Density				
Layer thickness	2.5 mm approx.	2.5 mm approx.		
Air / Sea temp.	32 C / 27 C			
Predicted slick movement	Easterly	Easterly		
Size of spill classification (Tier 1, 2 or 3)	Tier 1			

Reviewed By :	Capt. Anubhav Jain	Issue No.	: 01	Issued On : 01/12/2014
Approved By :	Capt. Sansar Chaube	Revision No.	: 02	Page 72 of 90

POLREP ANNEXURE 2

In case of an oil spill, MPSEZ will provide information to Commandant Coast Guard District 1 Porbandar COMDIS 1 and Coast Guard Station Vadinar CGS Vadinar in the following format:

SN.	Parameter	Data				
1.	Identity of the informant	Capt Sansar Chaube				
2.	Time of information receipt	29/1115				
3.	Source of Spill	BUNKERING LINE (HOSE)				
4.	Cause of Spill	Hose burst				
5.	Type of oil	HSD				
6.	Colour code information	Brown				
7.	Configuration	Circular				
8.	Radius	300 mts				
9.	Tail	600 mts				
10.	Volume	3.6 m3				
11.	Quantity	4.5 Ton Appx				
12.	Weathered or Fresh	fresh				
13.	Density	@15 ⁰ C 0.8271				
14.	Viscosity					
15.	Wind	NW'ly x 16-18 knts				
16.	Wave Height	0.5 mtr				
17.	Current	1 knt				
18.	Layer Thickness	2.5 mm approx.				
19.	Ambient air temperature	32 c				
20.	Ambient sea temperature	27 с				
21.	Predicted slick movement	Easterly x 0.5 knts				
22.	Confirm Classification of spill size	Tier 1				


Reviewed By :	Capt. Anubhav Jain	Issue No.	: 01	Issued On : 01/12/2014
Approved By :	Capt. Sansar Chaube	Revision No.	: 02	Page 72 of 90

Page Number: 1	of 1	Date: 29.05.2015			
Name: Santosh	Ojha	Position: Radio Officer			
Contact Number: 8758896747		Signature:			
Time	Activity Completed:				
1000	Oil Spill reported near 1 mile N	W of IOCL SPM			
1002	Informed to HOD/ HOS Marine				
1005	SPM vessel informed to stop ca	rgo operation and close all valves			
1014	Informed to IOCL terminal.				
1025	Dol 11 cast off from anchor.				
1023	Dol 8 and Dol 16 casted off fro	m Tug Berth.			
1036	Dol 11 reported reached in area				
1040	Dol 11 started lowering Candyi	ne Fence Boom			
1055	Dol 11 Canadyine Fence boom	rigged and Skimmer lowered and			
1130	Dol 11 reported continue recovering oil through skimmer				
1145	Dol 11 reported recovered 8.10	Dol 11 reported recovered 8.10 m3 of oil spill			
1200	Oil spillage is under control all	normal			
1215	Drill Called off				

Reviewed By :	Capt. Anubhav Jain	Issue No.	: 01	Issued On : 01/12/2014
Approved By :	Capt. Sansar Chaube	Revision No.	: 02	Page 72 of 90

Reviewed By :	Capt. Anubhav Jain	Issue No.	: 01	Issued On : 01/12/2014
Approved By :	Capt. Sansar Chaube	Revision No.	: 02	Page 72 of 90



Reviewed By :	Capt. Anubhav Jain	Issue No. :	01	Issued On : 01/12/2014
Approved By :	Capt. Sansar Chaube	Revision No. :	02	Page 72 of 90

Annexure – 4

<u>Education</u>

- M-KEN Project: The main aim of this pilot project is to provide quality education in the primary schools of Mundra block with help of Education Volunteers. We have total 28 Education Volunteers and 10 Community Mobilizers for 26 Government Schools of Mundra Taluka.
- Disha Project: Under this Programme, the students of Class 9th to 12th are guided to
 give them proper director towards progress. The students pass through a process of 3
 hours that emphasizes on psychometric aptitude and career counseling
- Scinece 8 Maths on Wheel: This Programme is aimed at removing the fear of subjects
 like Math Science and including curiosity in them for the same. The models of Math
 and Science are displayed in a small vehicle such as a Van. This van remains in the
 school for 3 hours and provides relevant guidance.
- Parvarish Project: It is Five days Residential camp for High Schools Students. Topics like Communication, Mind Power, Team Management, Leadership and other Soft Skills are the mainly focused activities of the Camp
- Saara Samachar: The Significance of this programme lies in developing a positive
 attitude in the society. This news paper contains the smallest of the inspirational
 events of Mundra and the surrounding areas. The newspaper is published once in
 every two months. The purpose behind publishing the newspaper rests upon the ideal
 that if one gets to know about something good.

Education

Sr No	Project Name	No of School	No of Students	Level of Students
1	M-KEN Project	27	7582	1st to 8th
2	Disha Project	21	2797	9 th to 12 th
3	SOW and Math Fair	35	2524	5 th to 8 th
4	Parvarish Project	16	300	9 th to 12 th
5	Material support to Govt School	105	2245	1 st and 9 th to 12 th

Adani Vidhya Mandir Bhadreshwar: Shaping Lives

- Quiz competition of Learning delight & Second semester exam in April 2015.
- Teachers of Navchetan Vidyalaya Visited School. & Interaction in April 2015.
- Remedial classes for Std.- 6,7, & 8 started from 22nd April 2015.
- Std.9th permission granted. (new secondary school.)
- Distribution of Uniform, Notebooks & Textbooks in June 2015.
- Environment Day Celebration on 13th June 2015. and " International Yoga day Celebration" on 19th & 20th June 2015.
- Demonstrated about Solar System through Sun & Moon by PPT.
- Parents Meeting for Std.:- 8 & 9 in August
- Celebration of Anand Mela by all students
 Adani foundation & D.E.O. Office Bhuj (Kutch) , organized "Education quality improvement workshop" on 12th August 2015.
- 69th Independence day Celebration
- Celebration of Sports Day on 25th August 2015.
- Rakhi Making Competition in August 2015.
- Demonstrated about "force & Speed" through the game Carom board to the Students of Std.-09 Sub.
- International Ozone day celebration
- Teachers & Students of Std:-5,6,7,8,9 participated in " Swachhta Abhyan Karyakram" organized
- During science week demonstrated the students of Std:-09 about experiments in the laboratory
- Students gave speech & Exhibition on "Gandhi Jayanti".
- School internal examination From 28th September to 03rd October 2015.

Community Health: Mundra

Mobile dispensary and Rural Clinic New initiative Pathological instant test kits

1. Malaria antigen card(for malaria detection in blood) 2. Uristix strip (for urine sugar and protein detection) 3. Urine pregnancy test card.

Initiating Public Partnership

we have received room facility for our mobile van OPD at Pratappar, N. Bhujpur, M. Khakhar, Sadau, Chhasara, Hamiramora and Gundala villages.

Dialysis Support

9 beneficiaries have been receiving support 4 patient weekly 2 dialysis and 2 patient weekly 3 Dialysis, 1 patient weekly 1 Dialysis. (283 times)

Malnourishment Camp

We have organised six medical examination-Mal nourishment camps. Total 56 children benefited and now only 11 remained under malnourishment.

Poor Patient Support

204 Poor Patients have been extended financial support for treatment

Physiotherapy Camps for CP Children

We have started physiotherapy service to disabled children in coordination with BRC-Mundra. total 11 children identified & they receive physiotherapy weekly at our hospital.

Mobile Dispensaries & Rural Clinics

During this month, total 34740 patients were provided with free Health Care Services by Mobile Dispensaries, 33647 patients benefitted by the medical services at Rural Clinics.

Health Cards to Senior Citizens

During the month, total 9546 transactions were done out of 7380 card holders by beneficiaries Sr. Citizens of 65 Villages Mundra Taluka and they received cash less medical services Under this project.

Awareness Generation session

- Dr. Jagruti Patel in Samaghogha Village "Women Health". Total 30 women participated in it.
- Awareness Generation session by Dr. Jagruti Patel in ICDS Unit Mundra "Women Health".
- We had organised a seminar on "woman health awareness and world population day" in collaboration with ICDS and Taluka Health
- Awareness Generation session by Dr. Goswami in Adani Hospital for "Child Health Care". Total 25 women, Child, Anganwadi worker participated in it.
- Personal Sanitation & Higgin Awareness Session By Dr. Piludiya in Navinal High School for Total 61 Student participated in it.

Sr.Citizen Card Distribution

Old Village:- 36 New Village:-29

Green Card:- 4293 Green Card:- 2051 Blue Card:- 581 Blue Card:- 209

Total Card:- 2260

Total villages :-65

Total Green cards :- 6344

Total Blue cards: - 790

Total Cards :- 7134

Phase New 29 Villages Added Total 65 Villages Covered

GAIMS: Health is Wealth.

- Smooth coordination between Adani foundation staff and Hospital staff by introduction of various department as well as doctors. During Six Months Patients Special Care and Coordination. Hospital Level both are Lab, OPD Department, Ward and Pharmacy Service Regarding.
- Death Body Carrier Van Service Start on 6 May 2015, During Six months total dead body to farther Different places put in Kutch District
- Total Health Camps organized in different Villages. Total No of Beneficiaries
- GAIMS AF Staff has initiated to synchronize with Sarpanch, Grampanchayt members, Leaders and local stakeholders. During this Period Total Village Level Meeting organized with Sarpanch, Leader, Women Groups and other Stakeholders . We had discussion of Hospital Services and Initiatives of Adani Foundation

Fisherman Amenities: Coordination and Meetings

- Meeting was organized with CEE For Samwad program and 40 fishermen from Luni, Shekhadia, Zarpara, Navinal, Bhadreshwar were involved for betterment and other benefits
- Meeting was organized between Adani Marine Dept and fishermen community from Navinal for solving an issue of vessel approach of West Port.
- Meeting at Navinal for discussion the Progress work of Sanitation & Meeting at Modhava for discussing about Cricket Ground
- Meeting with the fisheries department, Bhuj for Government Scheme of Machhimar Community.

Income Generation Activities

- We have supported 21 Pagadiya Fisherman as a painting Labour.
- Mangroves plantation and maintenance, Total 1472 man days employment provided

Fee Support - SMJ High School Luni

With the objective of - Fees can't be constraint to the study for Girl Child and Reduction in Drop out of Fishermen students as they cannot continue their studies We have supported 34 students for further studies at SMJ High School, Luni

Net Support


Fishing Net Distribution to the 6 Pagadiya Fishermen who lost their fishing net, Rope in Cyclone by the Corporate Affairs.

Exposure Visit

Organized visit Port , Power & Willmar with 105 Fishermen From Luni to aware them for Surrounding Industrial Environment and Inspired them for his Children Education

Inauguration

- Community Centre at Navinal.
- Computer Training Centre at Juna Bandar Community Toilets at Navinal
- Shelters and Electricity at Luni Bandar

Fisherman Amenities

- "Pagadiya maachmaar no medavo" was organized for the foot fishermen on 30th June at Adani House where fishermen from Luni, Shekhadia Bhadreshwar, Mundra, Navinal and Zarpara village were invited.
- The main objective of this meet was to spread awareness and message of "De-Addiction" "Savings". Govt. Fisheries Officers given information about Govt Scheme related activities for Fishermen by Power Point Presentation.
- The Chief guests present were K.B. Thakkar(Assistant director of Rajkot), Vishnu Brahmane (Officer-Fisheries) and Mayii bhai Bariya Director -VRTI ,Mandvi and Mukesh Saxena Sir ,Head -Adani Foundation
- It is great pleasure to share that many students from Fisherman community secured very good percentage in board examination. The parents of the students of class 10th and 12th were felicitated as their children scored high percentage.
- Moreover all the present Pagadiya fishermen were greeted with First-aid Box kit and Rechargeable torch which can be used daily in their fishing activity.

Fisherman Amenities

- Adani Foundation has arranged "Cricket tournament "Adani Premiere Leaque" for Ten Days for Fishermen Community in which, Total 36 Teams of Fishermen participated mainly from Village Zarpara, Navinal, Shekhadia, Luni, Bhadreshwar Vandi(Tuna), Tragdi & Modhava.
- Cricket Tournament was started on 05 06-2015 at Shantivan Colony Crickel Ground.
- Nasib Eleven Modhava and Samrat Eleven- Navinal has given great competition and entered into Finals.
- Final was held on 14-06-15 Sunday at 10.00 am. Between Nasib Eleven – Modhava & Samrat Eleven- Navinal toss won by the Samrat Eleven- Navinal decided to field First, Nasib Eleven – Modhava made 125 Runs in 15 Overs and Samrat Eleven- Navinal reached to the target and in 13 Overs they all out by Nasib Eleven- Modhava and won the tournament by 8 Wickets.
- Adani Foundation has awarded Trophy and Prize to the Winner Team and runners up Team. Adani Foundation has Given Trophy and Prize to the "Man of the Match" and "Man of the series".

Government Pension Scheme - Widows, senior Citizens and Handicapped

- We are playing the role of facilitator in case of tie up with Government Scheme of Widows, Senior Citizens and Handicapped people
- The identity cards issued to two persons for the handicapped in coordination with Bhuj Samaj Suraksha Khata by regular visit and follow up.
- Six month 38 widows and 27 Senior Citizens, total 147 members benefitted the approval of pension certificate. One senior citizen widow will get Rs. 400 monthly and other will get Rs. 950 per month.

Category	Total forms	Comp.	Under Process
Widows	38	38	0
Snr Citizens	27	8	19
Handicapped	82	47	35
Total	147	93	54

Beti Vadhavo programme was organized 24 Villages in presence of Village Sarpanch and other leaders. We explain about the Various topics i.e. Importance about girl child, Sex Ratio, Gender Equality and Law regarding Child abortion.

This initiative is well accepted by community and we have observed visible change in mindset of them. We greet daughters with Kit (Small Bed sheet, Mosquito net, Soap and Cream with nutrition food for mother)

Sr.no	No of Village	No of Daughters
1	24	169

Various Trainings

Women Empowerment Training

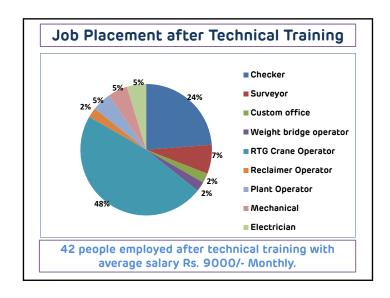
- Objective: Women Group Leadership and group strengthen
- Point Discussed: Leadership of Group, Difficulties arrived in group, How to Improvement leader and Strenathen Social Position
- Venue: Ahinsadham, Pragpar
- Partner : VRTI, Mandvi
- Participant Details: 35 women from Siracha, Navinal and Kandagra and 32 women from Shekhadia and Sadau village.

Monsoon Relief Work

- It is very sad to share that due to heavy rain, may cows and goats died in Beraja, Kukadsar and other villages.
- At village Fachariya, Maldhari Community is residing. They lost 82 cows in heavy rain. We had provided Feed bags to them to save other cows.

Sr. no	Type of Trainings	No of Women	No of Women
1	Group Strengthens	2	38
2	Savings Trainings	2	32
3	Leadership Trainings	1	28
4	Business Dev. Trainings	1	30
		6	128

Farmer's Training


We have initiated Programme for Awareness of Farmers in collaboration of KVK. Outreach is approximate 30 farmers at 3 villages Objective: Farmer group formation and issue Related agriculture

Topic Discussed:

- Group Formation: Rules and regulations
- Requirement discussion
- KVK and Adani Foundation collaboration and discussion of the work done together.
- Discussion and coming up with solution of the problems faced by the farmers.

to the	pjective of Adani Skill Development students of 10 th , 12 th or ITI from ed programmes are organized to o guidance and direction.	surrounding area	s. Thus v	/arious en	nploymer
Cours	se wise Status: Mundra				
Sr.No.	Course Name	Location	М	F	Total
1	IT -Basic Computer	ASDC	44	25	69
2	Tally ERP 9	ASDC	11	0	11
3	Beauty parlor	Gundala	0	12	12
4	Basic Embroidery Work	Desalpur	0	25	25
5	Tailoring	Desalpur	0	15	15
6	IT - Basic Computer (Fisher men)	Navinal	12	10	22
7	Beautyparlour	Mundra	0	27	27
8	Checker	APSEZ	8	0	8
9	Checker Cum RTG Crane Operator	APSEZ	23	0	23
10	IT - Basic Computer	Siracha	57	46	103
11	Tailoring	Shekhdiya	0	14	14
12	Febric Work	Mundra	0	5	5
13	Glass Printing	Mundra	0	5	5
14	Mahendi	Mundra	0	10	10
15	IT - Basic Computer	Navinal	10	22	32
16	Mobile Repairing	ASDC	14	0	14
17	Mechanical & Electrical training	CT, APSEZ	11	0	11
18	IT - Basic Computer	Motabhadiya	13	6	19
19	Tailoring	Vadala	0	60	60
	Total		203	282	485

Work Completed during six months Extension of Adani DAV School 1. Water conservation and ground water recharge Pond deepening work, Mota Kandagara 2. Drinking water related activity Repairing of RO plant in school at Dhrub New RO plant in school at Tunda Wandh 3. Education Related Projects Extension of Adani DAV School 4. Health Related activity Medical center at Tragadi village Toilet for widow woman at Luni village = 1 Nos

Toilet for widow woman at Baroi village = 1 Nos
Toilet blocks at Dhrub village = 8 Nos
5. Other projects - corporate related activity
Atithi bhavan at Tunda Wandh
Over head tank at Modhava
Crematorium wall at Tragadi
Construction of rooms in Madrasa at Luni
Sai sutar comm hall at mundra
Approach road for Pagadiya, Shekhadia

	Financial Budget Adani Foundation, CSR Budget - Mundra				
	Budget Utilization 2015-16 (April to Septemb	ber 2015)			
Sr. No.	Program	Budget 2015-16 In Lacs	Expenditure April to Sept.2015 In Lacs		
A.	Admin Expense	161.21	52.49		
В.	Education				
(i)	Education Initiative	48.30	37.96		
(ii)	Adani Vidya Mandir-Bhadreshwar	124.06	44.56		
(iii)	Shanti Vihar	351.16	147.89		
	Sub Total	523.52	230.4		
C.	Community Health	332.52	161.2		
D.	Fisher Folk, Sustainable Livelihood Development & Agriculture	160.00	98.04		
E.	Rural Infrastructure Development	338.49	75.2		
	Other Expenditure		88.90		
	BUDGET 2015-16: GRAND TOTAL	1515.74	706.36		

<u>"Gadhpan me Ji Dikro kam aye te khare tane adani foundation kam aayoo"...</u> Mariyam Ben, Bhuj

કેસ સ્ટડી

ભુજ શહેરના જુના રેલવે સ્ટેશન વિસ્તારમાં રહેતા મરીયમબેન જુસબની વાત છે. મરીયમબેનને બે પુત્રો અને બે પુત્રીઓ છે અને પોતે વિધવા છે. હાલમા બન્ને પુત્રો અલગ રહે છે અને દિકરીઓના લગ્ન થઈ ગયા છે.

મરીયમભેન પોતે એકલા રહે છે અને સવારે વહેલા ઉઠીને પોતાની દિનચર્યા ચાલુ કરે છે. અજે પણ તે ટ્રીન મુજબ વહેલા ઉઠીને પોતાનું કામ કરવા લાગ્યા તેમને ખબર નહોતી કે આજનો દિવસ કાયમી કરતા તેમના માટે જુદો હશે પોતાના કામમાં વ્યસ્ત હતા અને અચાનક તેમનો પગ લપસી ગયો અને તે પડી ગયા પડતાની સાથે જ તેમના ડાબા પગનું હાટકું ભાગી ગયું. તેમની બાજુવાળાને આ બાબતની જાણ થતા તેમને અદાણી જી.કે. જનટલ હોસ્પિટલમાં લઈ આવ્યા ત્યાં તેમના પગનું ઓપરેશન થયું પરંતુ સાથે સાથે કરમની નબળાઈ ગણવી કે શું તેમને હાઈ ડાયાબીટીસ પણ છે. આ બધી જ પીડા તો મરીયમભેન

મુંગા મોએ સહન કરે છે. પરંતુ વધારે તો તેમને એ વાતનું દુ:ખ છે કે જેમને નવ નવ મહિના પોતાના કોઠામાં રાખીને ખુબજ વ્હાલથી પાલન પોપણ કરી ને મોટા કર્યો છે તેવા કહેવાના દિકરાઓ આજ સુધી પુછવા પણ નથી આવતા કે બા તમને કેમ છે ? કહેવાય છે ને કે 'માં તે માં બીજા વગડાના વા' મે કે જે બીજા કોઈ પણ નું સ્થાન લઈ શકે છે પરંતુ બીજુ કોઈ માનું સ્થાન લઈ માને છે પરંતુ બીજુ કોઈ માનું સ્થાન લઈ માને છે પરંતુ બીજુ કોઈ માનું સ્થાન લઈ માને છે હવા ૨૮ દિવસથી હોસ્પિટલમાં દાખલ હોવા છતા પણ દિકરાઓ પુછવા પણ નથી આવ્યા આ માની સારવાર તો ખુબ જ બરાબર થતી હતી પરંતુ જેટલો પગનો દુ:ખાવો નહોતો એટલો દુ:ખાવો એ વાતનો હતો કે પોતાના દિકરાઓ આવીને કહેશે કે બા તમને કેમ છે ? પરંતુ તે તન્યું નહી પણ અને વાતની ખોટ અદાણી કાઉન્સેશનના સટકો પુરી કરી મરીયમબેન પાસે જઈને કીશુ બનને કેમ છે ? બા તમાને કેમ છે ત્યા તમને કેમ છે ત્યા તમને આ માને કે માને કેમ છે ત્યા તમને કેમ છે ત્યા તમને કેમ છે આ તમાને કેમ છે ત્યા તમને કેમ છે તમારે તમાં તમારે કે તમારે કે લઈ કે તમારે કે તમારે કે સ્થારના તમારે તમારે કે સ્થારના સ્થારન

Media Corner મુંદરાની અદાણી ડી.એ.વી. પબ્લિક નાના કપાયાની શાળામાં વિદ્યાર્થીઓએ સ્કલને બ્રિટિશ કાઉ.નો એવોર્ડ તૈયાર કરેલી કૃતિઓ પ્રદર્શનમાં મૂકાઈ હાત્રોએ વ્યવહારિક છવનમાં ઉપયોગી કૃતિઓ તૈયાર કરી 9)શ્રેએ વ્યવસારિક જીવનમાં ઇપવાનન વૃત્તિ યુવ્ય વ. 10 બદાલી કઈ-નેત્રન દારા સંચોલિત શિક્ષાકોએ જૂટી માર્કદર્યન પૂર્વ પાણું તાર્તું, ક્યુપર એક્સપ્લોર ચ્લોબલ હેન્દ્ર કર્યા કરી હતી. આ પ્રોલામ પ્રત્યાનિયા કરી હતી. આ પ્રોલામ અંતર્યને યુ-નિલાદાન્ય પ્રતિકા રહૂલ સાથે વિવિધ પ્રોલેક્ટલની આપ-શે ક્લાઇ હતી. યુદ્ધાની સામાનો કેલ્લા પ્રતિ કાળ કેલ્લ મુન્દ્ર તાલુકાના નાના કપાયા ગામે આવેલી અદાલી ડી.એ.વી. સ્કૂલમાં અભ્યાસ કરતા વિદ્યાર્થીઓમાં રહેલી આંતરિક શક્તિને ખીલવવા માટે કાર્યક્રમનું આયોજન કરવામાં આવ્યું હતું. વિદ્યાર્થીઓ એ પોતાની કોઠાસૂઝથી તૈયાર કરેલી અને વ્યસ્તારિક જીવનમાં ઉપયોગી ધૂનિઓ સંસ્થાના ક્રાર્યકરોએ સતકાર આપ્યો પ્રદર્શનમાં ચૂકવામાં આવી તતી. તતો, બતોળી સંખ્યામાં ઉપસ્થિત વિદ્યાર્થીઓએ વર્ષ દરમિયાન શાળામાં વાલીઓએ પ્રદર્શન નિરાણી, શાળામાં આઇ.એલ.એ. કો-બો પ્રીતિ પહેતાને શૂમેલા હતી. Adani Foundation, Mundra

Media Corner

વિરાયતન અને અદાણી વચ્ચે કેમ્પસ ઇન્ટરવ્યૂના થયા કરાર

छन्डनेरीना छेट्टा वर्षना છાત્રોને અપાશે રોજગાર એજ્યુકેશનરિપોર્ટર,માંડવી

કચ્છમાં ભૂકંપ પછી કાર્યરત સંસ્થા સાથે જોડાવાનો નિવ થયેલી અને ઉચ્ચ શિક્ષણ આપતી MOUના માધ્યમથી કર્યો હતો. પરાયતન વિશાપીઠ અને અઠાશી ઈંજનેરી કોલેજ અનેજ વિશાપત ત્રુપ વચ્ચે કેપ્પસ ઇન્ટરલ્યુ અનેના ઇન્ટિસ્ટ્યુટ ઓઠ એન્જિનિયરિંગ મહત્વના કરાર થયા હતા, જેમાં ટેકનોલોજ એન્ડ રિસર્ચમાં રહ્યી મહત્વના કેવાર થયા હતા, જેમાં અનેજનિયારિયામાં અંદિય વર્ષોમાં અદિય વર્ષોમાં વધુ કંપની સંસ્થા સાથે જોઢાવેલી ભલાતા વિદ્યાર્થીઓને રોજગાર અને છે. કોલેજમાં ચાલતા ટ્રેનિંગ એન્ડ તાલીમ અપાતે તેવું નક્કી થયું હતું. વિદ્યાર્થીઓની કેક્સની એક ઉજ્જવળ કારોકર્દીના પહેરાર માટે

માત્ર સંસ્થા અને કોલેજ છે, વિષિવત કોચિંગ અને ટ્રેનિંગ પૂરી જેતા જોડ અકાશી ગ્રુપના સાથ-જેતા જોડ અકાશી ગ્રુપના સાથ-સાતકારથી વિદ્યાર્થીઓના હિતને હાલ સુધીમાં 4 ઓન-કેમ્પસ, 3 પ્યાનમાં લેતા આવા MOU ઉપર ઓફ-કેમ્પસ તેમજ 1 પૂલ કેમ્પસ

વિચાર થયો હતો. પણ પોજાઇ ચૂક્યા છે. ઈન્સ્ટિટ્યૂટના અદ્દાલીના અધિકારી અને વિરાયતનના શિલાપીજીએ આ સહેરોમાં હાલ રોજગાર મેળવી રહ્યા મુદ્રા વિચારવા સંસ્થાની મુલાકાત હોવાનું એક યાદીમાં જણાવાયું હતું.

કરી હતી અને ત્યારબાદ વીરાયતન વિવાપીઠમાં ચાવતા વિવિષ અભ્યાસક્રમો અને સેવાના કાર્યોથી

પ્રભાવિત થઈને તેઓએ વીરાયતન સંસ્થા સાથે જોડાવાનો નિર્ણય

વિદ્યાર્થીઓને રોજગારી આપવા અદાણી-વીરાયતનનું જોડાણ

જપ શિયા, તા. ૨૩ : વીરાયતન ઇન્સ્ટિટ્યુટ ઓક એન્જિનીયરિંગ, દેકનો લોજ એન્ડ સ્ત્રિયા દેવા દેવની ટ્રોપ સેવલની ક્રેપનીઓમાં નામાંકિત અદાલી ગ્રુપ એક ઇન્ડ્રસ્ટ્રીઝ સ્ત્રેદ વિશાર્થીઓના જીવનને

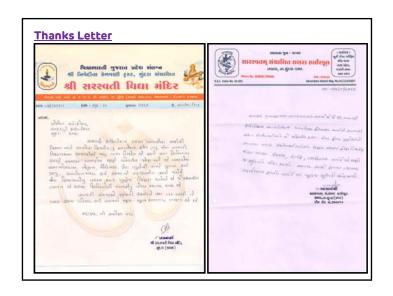
સ્વીકાર્ય સાથે અને અંતર્કાર સુધા સાથે કરવાના સ્વાના સ્વાન

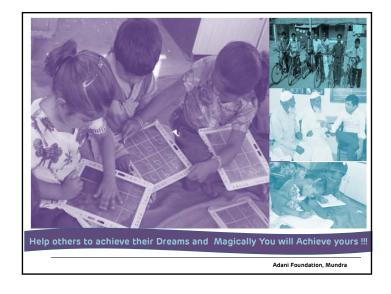
ઇજનેરી છાત્રો માટે ઉદ્યોગ એ ક્રમ સાથે એમ.ઓ.યુ. થયા

૨૦થી વધુ કંપનીઓ સંસ્થા સાથે જોડાયેલી છે, જે કંપનીઓ સાથે જોડાવેલી છે, જે કંપાનીઓ આવતા વર્ષમાં ઇજનીઓ આવતો વર્ષમાં ઇજનીઓ બીજીએ, બીજીએ ત્યા હાર્યસી કોલેજમાં અભ્યાસ કર્યકા દિલ્હામાં આ દિલ્હા હોજકારોની તહે પૂરી પાઠવામાં સહેર આપણે કોલેજમાં ચલાતા ટ્રે(મેંગ એના જોડા મેન્ટ ચેલ દારા દિલ્હામાં અને કોલેજમાં દાડા દિલ્હામાં અને હોય સાથે હોલેજમાં દાડા દિલ્હામાં હોતા અને

ટ્રેનિંગ પૂરી પાડવામાં આવે છે જેના અંતર્ગત હાલ શુધીમાં ૧ ઓન કેમ્પશ, ૩ ઓંક કેમ્પશ ભારત વાયર, એન્કર સૂપ અદાશી, કોર્સ, નવનીત જોડાઇ ચૂક્યા છે.

Adani Foundation, Mundra





Annexure - 5

DATE : 07th April2015 **TIME** : 15:00 Hrs **LOCATION** : (CT-3)

SCENARIO: Evacuation Mock drill In case of any emergency.

INTRODUCTION:

Assuming that Mr. Bhavesh Dave (Shift incharge) got a Message from POC, there is emergency and Ct-3 likely needs to be vacated. He informed immediately the emergency situation to CT -3 towers Control @ 1500 Hrs. Simultaneously informed to OHC, Fire, and Safety & Security. POC subsequently intimates the same through message or telephonic to all concern departments.

LOCATION (WITH PHOTOGRAPH): CT-3

SEQUENCE OF EVENTS (WITH PHOTOGRAPHS AND TIME):

Person coming out from the jetty to assembly point by bus:

k

d

i

Evacuated person assembled at the assembly point

Instruction given at the assembly point:

Action carried out by bhavesh Dave:

CALLING TIME OF THE DRILL

Drill commenced : 15:00 Hrs
Informed Port Control : 15:01 Hrs
Called OHC Assistance : 15:03 Hrs
Called to fire service assistance : 15:04 Hrs
ERT assistance : 15:04 Hrs
Safety : 15:05 Hrs
Engineering Ct-3 : 15:05Hrs

Responding:

Shift Manager rushed the spot : 15:05Hrs

Ambulance arrived at the spot : 15:09 Hrs

QHS Department : 15:10 Hrs

Fire tender reached at the scene : 15:03 Hrs

Security personnel : 15:07 Hrs

All Man Power assembled : 15:23 Hrs

All clear (inform to POC control room) : 15:30 Hrs

Total number of person working inside the AICTPL-CT-3:

Concern Person work inside	Actual Man power of	Assembled man power
the CT-3	CT-3	CT-3
Superintendent	1	1
Wharf and yard supervisor.	1	1
Driver LMV/HMV	22	22
Security	7	7
RTGC Opt.	21	21
QC	2	2
Checker	22	22
Gate operator	08	08
Surveyor	4	4
Canteen	10	10
ITV supervisors	2	2
Engineering person	52	52
Lasher	15	15
Total	167	167

AREA OF IMPROVEMENT:

 One QC boom was in down condition. (Action to be taken by the operation by imparting training to the concern person).

 No siren facility available inside the Ct-3 wharf and office area. (Action to be taken by the K.P.parmar)

GOOD OBSERVATION:

- Quick response of yard checker and yard supervisor.
- Good response and immediate action by the Fire team and medical team
- Good response and immediate action by the Security team.

VOTE OF THANKS:

Vote of the thanks by Mr. Bhavesh Dave & Mr Nitin Mehta, Mr. Cherian and Mr. Sunder pal and Vinod Rajput given to the special thanks to all team members of mock drill participants.

SUPPORTING STAFF:

Operation & egg CT-3 : Mr. Bhavesh Dave

Paulson joseph Hari deshani

Fire Team : Mr. Viren Arya (In charge) & Firemen Staff

Medical Team : Mr. Gulam (Medical Assistant)

Security Team : Mr. Sanjay rathod (ERT) and Security Guards

QHSE Team : Mr. Vinod Rajput (Shift In charge)

Observation Team : Mr. Manan Bhatt (QHSE)

Mr. Nitin N. Mehta (Head QHSE)

Drill Organized By : Mr. Paulson joseph
Drill guided By : Mr. Vinod Rajput
Exercise Performance Assessor : Mr. Vinod Rajput
Site incident controller : Mr. Cherian abhram

Report prepared By : Mr. Vinod Rajput/ Paulson joseph

SUMMARY (OPTIONAL - BUT FOR INTERNAL REFERENCE): Action to be carried out as per our EAP. Is as below.

Expected action As per the EAP Detailed Event.	Action taken	Remarks
Site Main Controller: - Shall ensure all possible assistance to personnel affected for medical attention and hospitalization as appropriate	Has been informed by site incident controller	Done and very well performed
Site Incident Controller Shall immediately assess the scale of emergency and report to Site Main Controller for instructions/ directions and Shall liaise with other heads of department for their support	We informed to authority for assistance.	Performed very well - Informed the concern for mitigation action

	Г	Т
and assistance and shall		
ensure continual reporting of		
situation to Site Main		
Controller and shall		
recommend calling for		
external resources as		
appropriate.		
HOS - Administration Shall	2 nos.of buses reported at the	transport facility
report to Site Incident	side Bus reported from the	provided by the admin
Controller immediately and	adani. House.	team.
assist him as directed.		
HOD - Human Resources Shall		Head count by the shift in
report immediately to Site		charge.
Incident Controller and assist		
him as directed.		
HOD - Corporate Affairs Shall		
report immediately to Site		
Incident Controller and assist		
him as directed.		
HOD/ HOS - Engineering	Good response of shift in	Every one participated in
Services Shall report	charge and engineering team	the drill.
immediately to Site Incident		circ orini
Controller and assist him as		
directed.		
HOD/ HOS - Commercial shall		
ensure availability of materials		
1		
required by the Site Incident		
Controller.		
HOD/ HOS - Finance &		
Accounts shall report		
immediately to Site Incident		
Controller and assist him as		
directed.	Chall along the	
HOD/ HOS - Security shall	Shall close the gate and	Security restricted entry of
instruct the security	control the man & vehicle	the gate for labors and
personnel to occupy pre-	movement.	vehicles movement
determined post for		assembly point near Ct-3
controlling security of		main gate.
installation.		
HOS - Fire Services will	Fire staff shall reached to site	Done – reached
normally function as an	for attending emergency.	immediately and attend the
advisor to the Site Incident		emergency.
Controller.		
HOD/ HOS - Safety shall	Shall assist Site Main	Safety officer reached at
report at Emergency Control	Controller with necessary	site and guided the
Center	information, support and	situation.
	resources.	
HOS - Occupational Health	Reported at site.	Medical staff immediately
Center Contact Site Main	·	reached with ambulance.
Controller.		
223.00		