

APSEZ/EnvCell/2018-19/007

Date: 16.05.2018

Τo,

Additional Principal Chief Conservator of Forests (C),

Ministry of Environment, Forest and Climate Change, Regional Office (WZ), E-5, Kendriya Paryavaran Bhawan, Arera Colony, Link Road No. – 3, Bhopal – 462 016. E-mail: <u>rowz.bpl-mef@nic.in</u>

- Sub : Half yearly Compliance report of Environment and CRZ Clearance for "Handling facility of General Cargo / LPG /Chemicals and their storage terminal at Navinal Island, Mundra taluka of Kutch district, Gujarat"
- **Ref** : Environment and CRZ clearance granted to M/s Adani Ports & SEZ Limited vide letter dated 25th August, 1995 bearing no. J-16011/13/95-IA.III

Dear Sir,

Please refer to the above cited reference for the said subject matter. In connection to the same, it is to state that copy of the compliance report for the Environmental and CRZ Clearance for the period of October – 2017 to March - 2018 is enclosed here for your records. The stated information is also provided in form of a CD (soft copy).

Thank you, Yours Faithfully, For, **M/s Adani Ports and Special Economic Zone Limited**

Avinash Rai Chief Executive Officer Mundra & Tuna Port

Encl: As above

Copy to:

- 1) The Director (IA Division), Ministry of Environment, Forests & Climate Change, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi-110003
- 2) Zonal Officer, Regional Office, CPCB Western Region, Parivesh Bhawan, Opp. VMC Ward Office No. 10, Subhanpura, Vadodara – 390 023
- 3) Member Secretary, GPCB Head Office, Paryavaran Bhavan, Sector 10 A, Gandhi Nagar 382 010
- Deputy Secretary, Forests & Environment Department, Block 14, 8th floor, Sachivalaya, Gandhi Nagar 382
 010
- 5) Regional Officer, Regional Office GPCB (Kutch-East), Gandhidham, 370201

Environmental Clearance Compliance Report

Multi-Purpose Jetty and Storage Facilities at Navinal Island, Mundra, Dist. Kutch, Gujarat

of

Adani Ports and Special Economic Zone Limited

For the Period of: October-2017 to March-2018

adani™

<u>Index</u>

Sr. No.	Particulars				
1	Compliance Report				
2	Annexures	nnexures			
	Annexure - 1	Half Yearly Environment Monitoring Report	12		
	Annexure - 2	Green Belt Development and Mangroves Afforestation Details	65		
	Annexure - 3	Organogram of Environment Cell	67		
Annexure - 4 Environmental		Environmental Protection Expenditures	68		
	Annexure – 5	Adani Skill Development Initiatives Report	69		

Compliance Report

Half yearly Compliance report of Environment and CRZ Clearance for "Handling facility of General Cargo / LPG /Chemicals and their storage terminal at Navinal Island, Mundra taluka of Kutch district, Gujarat" issued vide letter no. J-16011/13/95-IA.III dated 25th Aug., 1995

Sr. No.	Conditions	Compliance Status as on 31-03-2018			
2(i)	All construction designs / drawings relating to various project activities should have the approval of the concerned State Government departments / Agencies.	Complied. All construction and operation activities are being carried ou in line with the CRZ recommendation and permissions granted.			
2(ii)	To prevent discharge of bilge wastes, sewage and other liquid wastes from the oil tankers / ships into marine environment, adequate system for collection, treatment and disposal of liquid wastes including shore line installation and special hose connections for ships to allow for discharge of sewage	 Ships berthing at Mundra Port comply with MARPOL regulations. No discharge such as bilge wastes, sewage or any other liquid wastewater is allowed into marine environment inside port limits APSEZL does not receive sewage/liquid waste from ship. As a general practice APSEZ provide facility for receiving slop oil from vessels through hose connection with oil tankers. These tankers divert slop oil to Oil water separator system where water and oil particles are separated. Separated oil is 			
2(iii)	must be provided. The quality of treated effluents, solid wastes, emissions and noise levels etc. must confirm to the standards laid down by the competent authorities including	Complied.ETP is provided to treat the wastewater/wash water. Also the sewage generated from port is being treated in designated ETP. Treated water is used for horticultural purposes. Quality o treated water confirm to the standard laid down by Gujara Pollution Control Board.LocationCapacityQuantity of WastewaterType of ETP / STP			
	the central and State Pollution Control Boards under the	LT 265 KLD 85 KLD Sludge			

Sr. No.	Conditions	Compliance Status as on 31-03-2018					
	Environment (Protection) act, 1986 whichever are more stringent.	Third party analysis of the treated water is being carried out once in a month by NABL accredited and MoEF&CC approved agency namely M/s. Pollucon Laboratory Pvt. Ltd. Summary of the same for duration from Oct'17 to Mar'18 is mentioned below.					
		Parameter	Unit	Max	Min	Perm. Limit ^{\$}	
		рН		7.75	6.19	6.5 – 8.5	
		TSS	mg/L	90	22	100	
		TDS	mg/L	2060	1032	2100	
		COD	mg/L	96	72	100	
		BOD (3 Days @ 27 °C)	mg/L	27	19	30	
		Ammonical Nitrogen as NH3	mg/L	BDL	BDL	50	
		 Waste Management – A environmentally sound m & liquid wastes. Please re of each type of waste. <u>Municipal Solid Waste</u> segregation of dry & w (Organic waste) is being manufacturing. The com horticulture team for g recyclable waste is be Presently manual sorting types of solid waste. Seg Paper, Plastic, Cardboard to respective recycling un waste is bailed and so Industries Ltd.) for Co-p Fuel). <u>Hazardous Waste</u>: • E – Waste & Used registered recyclers na • Solid Hazardous Waste 	anagem efer bel et wasl g segre npost i greenbel eing so is bein gregated , PET Be nits, whe ent to processi Batteri imely M,	nent of d ow detai well-esta ce is in gated & s furthe t develo orted in g done fo d recycla ottles, Gl ereas rem cement ng as R es are /s. e-Proc	ifferent ty Is about n blished place. All utilized f r used b pment. V various or sorting ble mater ass etc. an aining no plant (<i>I</i> DF (Refu being sol cessing Ho	vpes of s nanagem system wet wa for comp y in ho Vhereas categor of differ ials such re then s n-recycla W/s. Sar sed Deri d to Gl ouse.	olid nent for aste oost dry ries. rent assent able nghi ived

Sr. No.	Conditions			nce Status as on 1-03-2018	
		 facility i.e. M/s. Recycling Solutions Pvt. Ltd., Panoli and/or co-processing at Sanghi Industries Ltd., Kutch. Used/Waste Oil is being sold to GPCB authorized recyclers / re-processors namely M/s.Western India Petrochem Industry, Bhavnagar. Downgrade chemicals generated from cleaning of storage tanks / pipelines are being sold to authorized solvent recovery facilities namely M/s. Acquire Chemicals, Ankleshwar however during the compliance period, there was no disposal of downgrade chemicals. Slop Oil received from vessels is treated to separate water and oil particles in Oil Water Separator system. Separated oil from the same is being sold to authorized recycler / reprocessor namely M/s.Western India Petrochem Industry, Bhavnagar and water is sent to ETP for further treatment. However during the compliance period, there was no disposal of Slope Oil. The following table summarizes the waste management practice (for Oct'17 to March'18) for different types of wastes 			
		at APSEZ: Waste	Quantity in MT	Disposal method	
		Hazardous Was			
		Pig Waste	5.4	Co-processing at common facility and/or cement industry	
		Tank Bottom Sludge	33.4	Co-processing at common facility	
		Oily Cotton waste	55.2	Co-processing at Cement Industry	
		Used / Spent Oil	86.1	Sell to GPCB approved recycler	
		Discarded Containers	8.7	Sell to GPCB approved recycler	
		E-Waste	2.32	Sell to GPCB approved recycler	
		Municipal Solid			
		Dry Waste	105.6	After recovery sent for recycling	
		Wet Waste	467.4	Converted to Manure for horticultural use	
	Ambient Air Quality (twice in a week) and Noise (once in a month) monitoring are being carried out by NABL accredited and MoEF&CC approved agency namely M/s. Pollucon Laboratories Pvt. Ltd. Quality of Ambient Air and Noise level confirm to the standard laid down by Gujarat Pollution Control Board. Summary of the same for duration from Oct'17 to Mar'18				

Sr. No.	Conditions	Compliance Status as on 31-03-2018								
			entioned be I Ambient A		oling	Locations	: 4 Nos	•		
		P	arameter	Uni	t	Max		Min	Pern Limil	
			PM ₁₀	µg/n	n ³	95	.6	41.7	100)
			PM _{2.5}	µg/n	n³	55	.4	18.7	60	
			SO ₂	µg/n		27	'.2	5.0	80	
			NO ₂	µg/n	n ³	45		15.1	80	
						° as p	er NAA	Q standa	ards, 20	009
		Tota	l Noise Mo	nitoring	Loc	ations: 4 N	los.	Per	~	
			Noise	Unit		Min	Max	Lin		
			Day Time	dB(A)		58.1	73.4	75	5	
			Night Time	dB(A)		57.2	69.4	70)	
2(iv)	Adequate provision for infrastructure facilities such as water supply, roads, sanitation etc. should be ensured so as to avoid environmental degradation in the surrounding areas. These facilities should be brought into existence during the construction phase and will remain in existence thereafter as part of	spen 2017 attac Com Cons infra cons The provi the s	MoEF&CC a t for all env -18. The s ched as Anr plied. truction structure truction ph facility fo ded for th same were ne duration	vironmen six mon nexure - activity facility nase and r drinki e dignit provideo	ntal thly 1 . is wa tho ng y of d alo	already already as provid se are in e water, toi operation ong with th	comp ent mo comp ed to xistence let and labour	ies durin nitoring leted. labou e. rest s s. Photo	ng the repor Adequ rs du helter	F.Y. t is Jate ring are s of
	the infrastructure build up in the area									

Sr. No.	Conditions	Co		ice Status -03-2018	as on		
	for local developmental purposes.						
2(v)	Adequate noise control measures should be ensured in various project activities and due to increase in the traffic which is likely to take place during construction and operational phases.	Complied. Construction phase is For operation phase taken: All DG sets are insi Green Belt has bee Traffic control me traffic guides etc. honking by cargo	, follov alled w en deve asures are in	wing nois vith acoust loped at ro such as si place to	ic enclos bad sides gnage, s	sure. 5. speed reg	gulation,
2(vi)	The water quality parameters such as dissolved oxygen, ammonical nitrogen and other nutrients etc. should be measured at regular intervals to ensure adherence to the prescribed standards of water qualities. Suitable ground water monitoring should also be undertaken around the sludge lagoons and regular reports to be submitted to the Ministry for	ETP is provided for treatment of wastewater. Treated water is used for horticulture purpose. The watery sludge is transferred to sludge drying bed, where the excess wastewater is recirculated to ETP. Third party analysis of the treated water is being carried out twice in a month by NABL accredited and MoEF&CC approved agency namely M/s. Pollucon Laboratories Pvt. Ltd. Summary of the same for duration of Oct'17 to Mar'18 is mentioned in compliance condition no. 2(iii) above. <u>Marine Monitoring:</u> Marine monitoring is being carried out once in a month by NABL accredited and MoEF&CC approved agency namely M/s. Pollucon Laboratory Pvt. Ltd. Summary of the same for duration from Oct'17 to Mar'18 is mentioned below. Monitoring Reports					
	evaluation.			Surfa	асе	Bot	tom
		Parameter	Unit	Max	Min	Max	Min
		рН		8.47	7.52	8.29	7.28
		TSS	mg/L	412	142	390	29
		BOD (3 Days @ 27 °C)	mg/L	5.6	1.2	4.6	1
		DO	mg/L	6.8	4.8	6.6	4.8
		Salinity TDS	mg/L	40.96 41030	34.2 34940	40.8 40760	34.1 34720
		COD	ppt mg/L	24	4.8	18	4.4
			mg/L	24	4.8	18	4.4

Sr. No.	Conditions	Comp	liance State 31-03-201			
		<u>Ground Water Monitoring:</u> There are no sludge lagoons however, to monitor the ground water quality, bore wells are provided at various location in the port and SEZ areas. Third party analysis of the ground water is being carried out twice a year by NABL accredited and MoEF&CC approved agency namely M/s. Pollucon Laboratories Pvt. Ltd. Summary of the same for duration of Oct'17 to Mar'18				
		is mentioned below. <i>M</i> Annexure – 1 for the same	•	Reports are	attached as	
		Sampling Locations: 4 No				
		Parameter	Unit	Minimum	Maximum	
		рН	-	7.09	8.12	
		Salinity	ppt	0.56	11.3	
		Oil & Grease	mg/L	1.2	4.4	
		Hydrocarbon	mg/L	BDL*	BDL*	
		Lead as Pb	mg/L	BDL*	22.2	
		Arsenic as As	mg/L	BDL*	BDL*	
		Nickel as Ni	mg/L	BDL*	BDL*	
		Total Cromium as Cr	mg/L	BDL*	BDL*	
		Cadmium as Cd	mg/L	BDL*	0.17	
		Mercury as Hg	mg/L	BDL*	BDL*	
		Zinc as Zn	mg/L	BDL*	2.74	
		Copper as Cu	mg/L	0.08	50.4	
		Iron as Fe	mg/L	0.99	16.3	
		Insecticides/Pesticides	mg/L	BDL*	BDL*	
		Depth of Water Level from GL	meter	1.94	2.66	
		Approx. INR 27 Lakh is s activities during the F.Y. 2	pent for al		tectable Limit al monitoring	
2(vii)	Adequate culverts should be provided	Complied.				
	for smaller creeks so that breeding grounds for crabs, mud snappers and	Adequate culverts are p named as (1) Kotdi (2) E Mundra (Oldest port (Juna	Baradimata	(3) Navinal ((4) Bocha (5)	
	other marine organisms are not cut off by road construction activities.	All above creeks are in e and there is no filling or r has so far constructed approx. 1100 m with tot that three RCC Bridges ha	eclamation 19 culver al cost of	of any creek ts having to INR 20 Crore	area. APSEZL tal length of s. Apart from	

Sr. No.	Conditions	Compliance Status as on 31-03-2018
		with total length of 230 m and cost of INR 10 Crores. Photographs of the same were submitted as part of compliance report submission for the duration of Apr'17 to Sep'17.
2(viii)	A hundred meter wide mangrove belt should be created all along the west of Navinal Creek till its junction up to new road. Green belt of 50 M width should also be provided all along the periphery of the plant site and along the roads, storage tanks etc. at 1500 trees per hectare. All details regarding the Mangrove belt and other afforestation work must be worked out in consultation with the State Forest Department, and details sent to the Ministry.	Complied. 24 hectare of Mangrove afforestation was carried out with a cost of INR 25.00 Lac at west of Navinal creek. All Mangrove plantations were done in consultation with Dr. Maity, Mangrove consultant of India. Green belt was developed in 15.15 ha. Total 51605 trees were planted with the density of 3406 trees per hectare. Green belt Location: Liquid terminal & bitumen area (5.85 ha.) and along main road & Navinal creek (5.7 + 3.60 Ha.) of MPT. To enhance the marine biodiversity, till date APSEZ has carried out mangrove afforestation in more than 2800 ha. area across the coast of Gujarat. Total expenditure for the same till date is INR 782 lakh. So, far APSEZ has developed more than 400 ha. area as greenbelt with plantation of more than 8.0 Lacs saplings within the APSEZ area. Details on mangroves afforestation & Green belt development carried out by APSEZ till date is annexed as Annexure – 2 .
2(ix)	Arrangements should be made for ensuring fresh water availability for various project related activities. Special water harvesting programs should be undertaken in the project impact area. Details of these activities should be reported to the Ministry.	• • • •

Sr. No.	Conditions	Compliance Status as on 31-03-2018
2(x)	While filling the storage tanks, compatibility of the chemicals should be ensured for chemical safety. Since 5000 MT capacity is proposed to be created for cryogenic conditions, necessary HAZOP study should be initiated and submitted to the Ministry within three months. Calculations carried out on the basis of EFFECT MODEL for this storage should be rechecked for various accident scenarios. Keeping in view the safety aspects, Horton spheres of 1250 MT capacity each should be preferred.	3. QRA for LPG Tank farm
2(xi)	The measures suggested by the Gujarat State Pollution Control Board in February, 1995 while according "No Objection Certificate" should be strictly followed and authorization certificate required for converting NOC into "consent to operate" should be	Consent to operate (CC&A) has been renewed from GPCB vide

Sr. No.	Conditions	Compliance Status as on 31-03-2018
	submitted within three months.	
2(xii)	For ensuring the acceptance of the project by the local people, a Resolution of the Official Panchayat of the Region should be obtained offering their concurrence in writing by the project proponents and submitted to the Ministry by 31st October, 1995.	Complied. Resolution from the Panchayat has been obtained and submitted to the Ministry of Environment, Forest & Climate Change on 31 st July, 2012.
2(xiii)	A permanent staff structure should be created with latest R&D facilities and suitable equipments for environmental and forestry activities through creation of Environmental cell. Adequate funds should be earmarked for this cell.	Complied. APSEZL has a well structured Environment Cell, staffed with permanent qualified manpower for implementation of the Environmental Management Plan. The organogram is attached as Annexure - 3 Budget for environmental management measures (including horticulture) for the FY 2017-18 was to the tune of INR 957 lakh. Out of which, INR 890 lakhs were spent Detailed breakup of the expenditures is attached as Annexure - 4 .
2(xiv)	Landsat imagery should be obtained	Mar'18.
2(xv)	With a view to providing adequate job opportunities to local people, facilities for	 Complied. Adani Skill Development Center (ASDC), Mundra is providing skill development training to the locals for Soft Skill, Technical Training and Carrier Guidance & knowledge based

Sr. No.	Conditions	Compliance Status as on 31-03-2018
	technical training and development of skills should be made available in consultation with the state Harbour Department, and to this end it must be ensured that there is allocation of adequate funds. The local people should be involved in the afforestation program proposed for the scheme to ensure public participation and success of vegetation programmes.	 training. Total 959 students were enrolled as per above topics during financial year of 2017-18 Allocation of fund for education is availed by Adani Foundation. Total INR 534 Lacs are allotted for community education & skill development out of which INR 475 Lacs are spent for the purpose. Preference is given to local people for employment based on their qualification and experience. All Mangrove plantations are done in consultation with GUIDE and Local forest dept. 24 hectare of mangrove afforestation at Mundra was done through active participation of local fishermen at the cost of INR 25.0 Lac Details on skill development training imparted during financial year of 2017-18 by Adani Foundation are enclosed as Annexure – 5.
2(xvi)	Prior clearance must be taken under the Hazardous Chemicals (manufacture, import and storage) Rules 1989, as amended up to date, from the competent authority. Such clearance will have to be taken prior to the	Complied. Permissions for storage of Hazardous Chemicals were obtained from MSIHC against the application made on 01.05.1999 through letter reference no. Kutch-HAZ/CHEM-23(2)/9713 while chemical storage permission against application made on 18.09.1999 was provided through letter reference no. Kutch- HAZ/CHEM-23 (2)/9711. Approval from the PESO is taken for import of hazardous chemicals as per License No. P/HQ/GJ/15/2050 (P12369) dated 18/07/2016 which is valid up to 31/12/2024 for Class A & Class C petroleum. A copy of the same was submitted along with the compliance report submission for the period of Oct'16 to Mar'17 and there is no further change. Please refer point no. 2 (xi) regarding GPCB permissions. License under Factories Act is taken dated 07.10.1998 and last renewed vide license no. 0102 on 20.04.2017 (Sr. No. 70707) is valid up to 31.12.2018. The same was submitted along with the compliance report submission for the period of Oct'16 to Mar'17.

Sr. No.	Conditions	Compliance Status as on 31-03-2018
2(xvii)	A detailed progress report should be submitted to the Ministry on each of the conditions stipulated above in respect of the follow-up action taken every six months. The first of these two reports	Environment, Forest & Climate Change and other concerned government agencies / offices vide our letter reference No. APSEZL/EnvCell/2017-18/035 dated 22.11.2017 in soft as well as hard copy.
	should be sent in by 31.3.1996.	
2(xviii)	Financial requirements for implementation of the above indicated environmental mitigative measures should be worked out and included in the total cost of the project. Provision for enhancing this allocation in future should also be made.	Complied. Separate budget for the Environment protection measures is earmarked every year. All the expenses are recorded in advanced accounting system of the organization. Details regarding environmental expenditures are as per compliance condition no. 2(xiii) above.

Annexure – 1

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

"HALF YEARLY ENVIRONMENTAL MONITORING REPORT"

FOR

ADANI PORTS AND SPECIAL ECONOMIC ZONE LIMITED TAL: MUNDRA, KUTCH, MUNDRA – 370 421

MONITORING PERIOD: OCTOBER 2017 TO MARCH 2018

PREPARED BY:

POLLUCON LABORATORIES PVT.LTD.

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE/FAX – (+91 261) 2455 751, 2601 106, 2601 224. E-mail: pollucon@gmail.com web: www.polluconlab.com

TC - 5945

ISO 9001:2015

ISO 14001:2015

OHSAS 18001:2007

12

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

MARINE WATER MONITORING SUMMARY REPORT

RESULTS OF MARINE WATER [M1 LEFT SIDE OF BOCHA CREEK - N 22°45'183" E 069°43'241"]

SR.	TEST		ОСТОВ	ER 2017	NOVEMB	ER 2017	DECEMB	ER 2017	JANUAF	RY 2018	FEBRUA	RY 2018	MARCH	1 2018	
NO.	PARAMETERS	UNIT	SURFACE	воттом	SURFACE	воттом	SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	воттом	TEST METHOD
1	рН		8.4	8.23	8.39	8.13	8.29	8.19	8.35	8.28	8.17	8.09	8.27	8.17	IS3025(P11)83Re.02
2	Temperature	оС	28.6	28.2	28	27.6	28.5	28.7	28.6	28.4	29.8	29.2	30.4	29.7	IS3025(P9)84Re.02
3	Total Suspended Solids	mg/L	340	318	340	335	298	272	340	312	220	192	260	242	IS3025(P17)84Re.02
4	BOD (3 Days @ 27 °C)	mg/L	2.8	2.4	1.9	1.7	2.2	1.8	2.9	2	4	2.8	5.6	4.6	IS 3025 (P44)1993Re.03Editi on2.1
5	Dissolved Oxygen	mg/L	6.4	5.8	6.2	5.6	5.9	5.5	6.3	5.7	5.8	5.5	6.2	5.7	IS3025(P38)89Re.99
6	Salinity	ppt	39.76	39.3	39.8	38.5	38.4	37.9	38	37.5	35.4	35.1	35.2	34.9	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	APHA(22 nd Edi)5520 D										
8	Nitrate as NO ₃	µmol/L	23.2	19.6	25.4	20.3	27.8	21.4	31.6	26.2	17.8	12.2	22.6	18.8	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	1.8	1.34	2.6	2.2	1.3	0.9	1.5	1.2	1.4	1.1	1.6	1	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH₃	µmol/L	3.6	2.1	2.7	2.3	3.1	2.4	3.7	2.9	4.8	3.5	5.2	3.9	IS3025(P34)88Cla.2. 3
11	Phosphates as PO ₄	µmol/L	1.71	1.66	2.3	2	2.1	1.8	2.5	1.4	2.14	1.5	2.7	2.4	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	5.5	3.5	5.7	4.9	4.40	3.30	5.20	4.10	6.2`	4.6	6.8	4.9	IS3025(P34)88
13	Petroleum Hydrocarbon	µg/L	13	11	15	12	19	16	24	17	23	6	18	12	PLPL-TPH
14	Total Dissolved Solids	mg/L	39480	38550	38880	37660	37680	37210	37782	37510	36200	35990	36840	36310	IS3025(P16)84Re.02
15	COD	mg/L	14	12	20	16	10.4	15	17	13	10	6	15	8	APHA(22 nd Edi) 5520-D Open Reflux
Α	Flora and Fauna														,
16	Primary productivity	mgC/L /day	1.6	0.4	1.45	0.34	1.3	0.5	1.7	0.8	2.15	0.56	1.78	0.7	APHA (22nd Edi) 10200-J
В	Phytoplankton														and coorder to
17.1	Chlorophyll	mg/m ³	1.15	0.35	1.19	0.324	1.36	3.6	1.72	0.54	2.57	0.44	2.68	0.33	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m ³	1.6	2	2.04	1.24	1.98	1.34	4.1	2.69	3.1	2.6	2.94	2.7	APHA (22 nd Edi) 10200-H

-O-D

H. T. Shah Lab Manager

forción

Dr. ArunBajpai Lab Manager (Q)

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.).

 DOLLOCON LABORATORIES PVT. LTD
Environmental Auditors, Consultants & Analysts

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

17.3	Cell Count	No. x 10 ³ /L	190	50	210	72	120	32	190	42	318	90	304	88	APHA (22 nd Edi) 10200-H
17.4	Name of Group Number and name of group species of each group		Bacillariop hyceae Amphipro ra sp. Asterionel la sp. Cyclotella sp. Gyrosigm a sp. Nitzschia sp. Navicula sp. Bacillariop hyceae Rhizosole nia sp. Dianoflagl lates Peridinize m sp.	Bacillariop hyceae Melosira sp. Fragillaria sp. Nitzschia sp. 	Bacillariop hyceae Navicula sp. Nitzschia sp. Coscinodi scus sp. Tabellaria sp. Skeletone ma sp. Melosira sp. Cyclotella sp. Pinnularia sp. Fragillaria sp.	Bacillariop hyceae Fragillaria sp. Nitzschia sp. Melosira sp. Synedra sp. 	Naviculle Synedra Gyrosigm a Coscinodi scus Asterionel la Melrsia Syrirella Skeletone mel Certaium	Nitishia Naviculle 	Bacillariop hyceae Biddulphi a sp. Fragillaria sp. Thallasios ira sp. Coscinodi scus sp. Cyclotella sp. Melosira sp. Synedra sp.	Bacillariop hyceae Cyclotella sp. Gyrosigm a sp. Nitzschia sp. Navicula sp. Pinnularia sp. Rhizosole nia sp. 	Bacillariop hyceae Nitzschia sp. Navicula sp. Fragillaria sp. Cyclotella sp. Cyclotella sp. Melosira sp. Synedra sp. Biddulphi a sp. 	Bacillariop hyceae Melosira sp. Fragillaria sp. Nitzschia sp. 	Bacillariop hyceae Navicula sp. Synedra sp. Coscinodi scus sp. Asterionel la sp. Gyrosigm a sp. Cocconeis sp. Pinnularia sp. Green Algae Pandorina sp. Chlorella sp.	Bacillariop hyceae Fragillaria sp. Gyrosigm a sp. Pinnularia sp. Cyanophy ceae Lyngbya sp. Oscillatori a sp. Navicula sp. 	АРНА (22 nd Edi) 10200-Н
С	Zooplanktons														
18.1	Abundance (Population)	noX10 ³ / 100 m ³	3	4	38	8	3	6	3	30	1	6	1	4	APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		Mollu	pods	Deca Gastro 	pods -	Nema Cnsta - -	aeen - -	Biva Polychae Fish	pods alves ete worms a egg iopods	Polychae Deca Mollu -	pods scans -		opods te worms -	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	2.	.3	3.	8	1.	8	2	.4	7	.5	9	.6	APHA (22 nd Edi) 10200-G
D	Microbiological Para	ameters													
19.1	Total Bacterial Count	CFU/ml	18	20	162	20	13	80	20)20	15	60	16	20	IS 5402:2002
19.2	Total Coliform	/ml	Abs	sent	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	sent	APHA(22 nd Edi)9221- D

0-0-

H. T. Shah Lab Manager

forción

Dr. ArunBajpai Lab Manager (Q)

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.).

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

19.3 Ecoli	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS:1622:1981Edi.2.4 (2003-05)
19.4 Enterococcus	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS: 15186:2002
19.5 Salmonella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 5887 (P-3)
19.6 Shigella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 1887 (P-7)
19.7 Vibrio	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 5887 (P-5)

-O-D

H. T. Shah Lab Manager

forin

Dr. ArunBajpai Lab Manager (Q)

LABORATORIES PVT. LTD. Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M1 LEFT SIDE OF BOCHA CREEK - N 22°45'183" E 069°43'241"]

SR.	TECT DADAMETERS	LINITT	OCTOBER 2017	NOVEMBER 2017	DECEMBER 2017	JANUARY 2018	FEBRUARY 2018	MARCH 2018	
NO.	TEST PARAMETERS	UNIT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	TEST METHOD
1	Organic Matter	%	0.72	0.672	0.82	0.65	0.68	0.55	FCO:2007
2	Phosphorus as P	µg/g	174	184	198	152	172	196	APHA(22 nd Edi) 4500 C
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy	
4	Petroleum Hydrocarbon	µg/g	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	5.5	5.2	5.3	4.95	5.1	5.46	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	µg/g	210	242	152	206	240	180	AAS 3111B
5.3	Manganese as Mn	µg/g	1870	1790	1260	1510	1740	1950	AAS APHA 3111 B
5.4	Iron as Fe	%	5.84	5.13	4.4	5.1	4.9	5.3	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	µg/g	62	65	49.6	56.2	72.4	56.2	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	µg/g	78	71	86	65	48.9	62.4	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	µg/g	156	147	172	120	211	190	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	µg/g	23	27	16.8	12.6	10.4	15.2	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	µg/g	0.7	0.8	0.56	0.32	0.44	0.29	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Isopods Echinoderms Mysids	Echinoderms Foraminiferans 	Copepods Decapods 	Polychaete worms Bivalves	Isopods Polychaete worms 	Crabs Anthozoans Isopodes Decapodes	APHA (22 nd Edi) 10500-C
6.2	MeioBenthos		Nematodes Foraminiferans	Mysids 	Copepods Foraminiferans	Nematodes	Nematodes Foraminiferans	Foraminiferans Mysids	APHA (22 nd Edi) 10500-C
6.3	Population	no/m2	210	230	250	190	320	290	APHA (22 nd Edi) 10500-C

the to

H. T. Shah Lab Manager

forción

Dr. ArunBajpai Lab Manager (Q)

Environmental Auditors, Consultants & Analysts.

Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M2 MOUTH OF BOCHA & NAVINAL CREEK - N 22°44'239" E 069°43'757"]

SR.	TEST PARAMETERS	UNIT	ОСТОВ	R 2017	NOVEMB	ER 2017	DECEMB	ER 2017	JANUAF	RY 2018	FEBRUA	RY 2018	MARCI	H 2018	TEST
NO.	IESI PARAMETERS	UNIT	SURFACE	BOTTOM	SURFACE	воттом	SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	BOTTOM	METHOD
1	рH		8.4	8.1	8.3	8.2	8.35	8.15	8.27	8.12	8.16	8.06	8.20	8.18	IS3025(P11)83 Re.02
2	Temperature	oC	28.5	28.2	28.4	28.3	28.7	28.1	28.9	28.5	29.8	29.2	30.1	29.7	IS3025(P9)84R e.02
3	Total Suspended Solids	mg/L	322	308	290	262	298	326	312	344	290	308	272	293	IS3025(P17)84 Re.02
4	BOD (3 Days @ 27 °C)	mg/L	2.4	2	1.8	1.6	1.5	1.2	1.4	3	2.2	1.8	1.9	1.5	IS 3025 (P44)1993Re.03 Edition2.1
5	Dissolved Oxygen	mg/L	6.2	5.2	5.8	5.4	6.4	5.8	6.6	5.5	6.5	5.9	6.3	5.1	IS3025(P38)89 Re.99
6	Salinity	ppt	40.96	39.4	39.6	38.6	38.8	38.1	38.3	37.9	36.2	35.8	35.9	35.7	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	APHA(22 nd Edi)5 520D
8	Nitrate as NO ₃	µmol/L	28.4	20	29.4	24.6	26.8	21.2	31.4	30.8	18.2	15.8	21.6	19.7	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	1.6	1.4	2.4	2.1	2.9	1.7	2.6	1.4	2.5	2	2.4	1.8	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	µmol/L	3.5	2.1	2.8	2.2	1.8	1.5	2.3	1.9	3.2	2.9	2.5	2.1	IS3025(P34)88 Cla.2.3
11	Phosphates as PO ₄	µmol/L	1.64	1.59	2.8	2.1	2.3	1.6	3.1	2.7	1.75	1.7	2.1	1.8	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	5.2	3.8	5.3	4.4	4.70	3.20	4.90	3.30	5.70	4.90	5.1	4.0	IS3025(P34)88
13	Petroleum Hydrocarbon	µg/L	12	10	14	13	16	11	18	14	15.15	3.2	10	8	PLPL-TPH
14	Total Dissolved Solids	mg/L	40020	39220	37670	36880	37930	37122	36880	36140	37210	36980	37470	36912	IS3025(P16)84 Re.02
15	COD	mg/L	13	11	10	7	5.2	4.8	8.4	6.6	5.2	4.4	6.8	4.9	APHA(22 nd Edi) 5520-D Open Reflux
Α	Flora and Fauna														
16	Primary productivity	mgC/ L/day	1.55	0.338	1.63	0.33	1.8	0.45	1.57	0.338	2.35	0.7	1.9	0.52	APHA (22nd Edi) 10200-J
В	Phytoplankton														
17.1	Chlorophyll	mg/ m ³	2.24	1.3	1.16	0.381	1.36	0.16	2.72	1.22	1.98	0.25	2.1	0.52	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/ m ³	1.56	0.9	1.6	2	1.34	1.98	2.69	4.1	2.8	3.1	3.2	3.8	APHA (22 nd Edi) 10200-H
17.3	Cell Count	No. x 10 ³ /L	185	43	175	56	118	23	236	124	312	140	290	130	APHA (22 nd Edi) 10200-H

~

H. T. Shah Lab Manager

forción

Dr. ArunBajpai Lab Manager (Q)

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.).

2		
	POLLOCON LABORATORIES	PVT. LTD
	Environmental Auditors, Consultants & Analysts	

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

17.4	Name of Group Number and name of group species of each group		Bacillariop hyceae Navicula sp. Bacillariop Nitzschia hyceae sp. Melosira Biddulphi sp. a sp. Fragillaria Fragillaria sp. sp. Nitzschia Thallasios sp. ira sp Coscinodi scus sp Cyclotella sp Melosira sp Synedra sp	Bacillariop hyceae Navicula sp. Bacillariop Synedra hyceae sp. Fragillaria Coscinodi sp. scus sp. Nitzschia Asterionel sp. la sp. Melosira Gyrosigm sp. a sp. Synedra Cocconeis sp. sp Pinnularia sp. sp Green Algae Pandorina sp. chlorella sp.	Bacillariop hyceae Gyrosigm a sp. Nitzschia Rhizosole sp. nia sp. Navicula Nitishia sp. Naviculle Pinnularia sp Melosira sp Navicula sp Navicula sp Nitzschia sp Nitzschia sp. Coscinodi scus sp.	Bacillariop hyceae Amphipro ra sp. Bacillariop Asterionel hyceae la sp. Coscinodi Cyclotella scus sp. Asterionel Gyrosigm la a sp. Melrsia Nitzschia Syrirella sp. Skeletone Navicula mel sp. Certaium Pinnularia Naviculle sp. Synedra Rhizosole Gyrosigm nia sp. a Dianoflagl lates Peridinize m sp.	Bacillariop hyceae Coscinodi Bacillariop scus sp. hyceae Tabellaria Melosira sp. sp. Skeletone Fragillaria ma sp. sp. Cyanophy Nitzschia ceae sp. Cyclotella sp Pinnularia sp Fragillaria sp. sp.	Bacillariop hyceae Tabellaria sp. Skeletone ma sp. Cyclotella sp. Pinnularia sp. Fragillaria sp. Fragillaria sp. Fragillaria sp. Fragillaria sp. Sp. Gyrosigm Pinnularia sp. Fragillaria Sp. Sp. Cyclotella sp. Sp. Fragillaria Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp.	АРНА (22 nd Edi) 10200-Н
С	Zooplanktons					iii sp.			
18.1	Abundance (Population)	noX10 ³ / 100 m ³	36	40	42	38	37	26	APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		Isopods Bivalves Polychaete worms Fish eggs Brachiopods Copepods	Copepods Decapods Polychaetes Gastropods 	Copepods Nematedoes Polycleate Cnstaeen Foraminiferus	Bivalves Gastropods Nematodes Krill Fish egg 	Crustaceans Copepods Krill Polychaete worms Decapods	Krill Decapods Crustaceans Nematodes 	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/10 0 m ³	2.1	2.9	2.6	2.2	3.5	4.6	APHA (22 nd Edi) 10200-G
D	Microbiological Param	eters							
19.1	Total Bacterial Count	CFU/ml	1810	1750	1560	1720	1540	1540	IS 5402:2002
19.2	Total Coliform	/ml	Absent	Absent	Absent	Absent	Absent	Absent	APHA(22 nd Edi)9 221-D
19.3	Ecoli	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS:1622:1981Ed i.2.4(2003-05)
19.4	Enterococcus	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 15186
	Н. Т.	Shah anager			SURATOR SURAT-3			Arring Dr. ArunBajpai Lab Manager (Q)	

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.). Tele-Fax: (0261)2455751, 2601106, 2601224. E-Mail: <u>pollucon@gmail.com</u>. Website: <u>www.pollucon.com</u>

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

									:2002
19.5	Salmonella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS: 5887 (P-3)
19.6	Shigella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS: 1887 (P-7)
19.7	Vibrio	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 5887 (P-5)

-O-D

H. T. Shah Lab Manager

forin

Dr. ArunBajpai Lab Manager (Q) Environmental Auditors, Consultants & Analysts

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M2 MOUTH OF BOCHA & NAVINAL CREEK - N 22°44'239" E 069°43'757"]

SR. NO.	TEST PARAMETERS	UNIT	OCTOBER 2017 SEDIMENT	NOVEMBER 2017 SEDIMENT	DECEMBER 2017 SEDIMENT	JANUARY 2018 SEDIMENT	FEBRUARY 2018 SEDIMENT	MARCH 2018 SEDIMENT	TEST METHOD
1	Organic Matter	%	0.631	0.62	0.44	0.61	0.82	0.59	FCO:2007
2	Phosphorus as P	µg/g	306	230	177	210	192	175	APHA(22 nd Edi) 4500 C
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy	
4	Petroleum Hydrocarbon	µg/g	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	6.4	6.1	5.65	5.2	5.32	5.6	AAS APHA 3111 B
5.2	Total Chromium as Cr+3	µg/g	197	188	122	186	132	164	AAS 3111B
5.3	Manganese as Mn	µg/g	1510	1600	1440	1910	1720	1590	AAS APHA 3111 B
5.4	Iron as Fe	%	5.22	5.1	5.15	4.76	5.4	5.6	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	µg/g	64	68.2	71.4	63.2	81.6	64.2	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	µg/g	72	66	62.7	67.9	56.8	40.6	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	µg/g	144	154	240	268	296	302	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	µg/g	21	19	17	21	13.2	9.8	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	µg/g	0.9	0.6	0.55	0.72	BDL*	BDL*	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Mysids Echinoderms Isopods	Bivalves Echinoderms	Isopods Decapods	Polychaete worms Bivalves	Mysids Polychaete worms Isopods	Anthozoans Isopodes Decapodes Crabs	APHA (22 nd Edi) 10500-C
6.2	MeioBenthos		Nematodes Foraminiferans	Mysids	Copepods Foraminiferans	Nematodes	Copepods 	Copepodes Foraminiferans	APHA (22 nd Edi) 10500-C
6.3	Population	no/m ²	270	290	360	172	340	310	APHA (22 nd Edi) 10500-C

D

H. T. Shah Lab Manager

forin

Dr. ArunBajpai Lab Manager (Q)

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.). Tele-Fax: (0261)2455751, 2601106, 2601224. E-Mail: <u>pollucon@gmail.com</u>. Website: <u>www.pollucon.com</u>

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M3 EAST OF BOCHAISLAND - N 22°46'530" E 069°41'690"]

SR. NO.	TEST PARAMETERS	UNIT	OCTOBI SURFACE	ER 2017 BOTTOM	NOVEMB SURFACE	ER 2017 BOTTOM	DECEMB SURFACE	ER 2017 BOTTOM	JANUAF SURFACE	RY 2018 BOTTOM	FEBRUA SURFACE	RY 2018 BOTTOM	MARCH SURFACE	H 2018 BOTTOM	TEST METHOD
1	рН		7.52	7.28	8.42	8.17	8.23	8.18	8.15	8.08	8.21	8.13	8.22	8.23	IS3025(P11)83Re. 02
2	Temperature	oC	30.1	29.6	28.3	28.1	28.9	28.5	28.7	28.6	28.5	28.2	29.7	29.4	IS3025(P9)84Re.0 2
3	Total Suspended Solids	mg/L	324	294	334	316	312	292	302	272	290	185	308	296	IS3025(P17)84Re. 02
4	BOD (3 Days @ 27°C)	mg/L	2.9	2.4	2.6	2.2	3.3	3	2.8	2.1	3.4	3	2.7	2	IS 3025 (P44)1993Re.03Ed ition2.1
5	Dissolved Oxygen	mg/L	6.3	5.9	6.4	5.6	6.5	6.2	6	5.1	6.6	6	5.8	5.1	IS3025(P38)89Re. 99
6	Salinity	ppt	40.22	39.1	39.6	38.3	38.6	38.2	38.4	38	35.1	34.9	34.7	34.2	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	BDL*	APHA(22 nd Edi)552 0D									
8	Nitrate as NO ₃	µmol/L	25.1	23.8	28.2	20.3	23.8	21.6	25.2	18.9	12.8	7.4	14.2	10.2	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	1.77	1.52	1.7	1.5	2.1	1.4	3.2	2.4	0.9	0.65	1.1	0.8	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	µmol/L	3.94	2.31	3.6	2.1	2.7	2.4	2.2	1.8	3.1	2.4	3.5	3.3	IS3025(P34)88Cla .2.3
11	Phosphates as PO ₄	µmol/L	1.73	1.42	1.65	1.58	1.9	1.56	1.4	1.2	1.85	1.4	2.1	1.87	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	5.84	3.91	5.44	3.72	4.80	3.80	5.40	4.20	4.00	3.05	4.6	4.1	IS3025(P34)88
13	Petroleum Hydrocarbon	µg/L	18	14	12	10	17	11	24	16	14	5	17	10	PLPL-TPH
14	Total Dissolved Solids	mg/L	40220	39740	38770	37520	37640	35810	37310	36930	35870	35210	35480	35310	IS3025(P16)84Re. 02
15	COD	mg/L	18	14	13	11	13.8	12	15.2	11.8	16	14	18	12	APHA(22 nd Edi) 5520-D Open Reflux
А	Flora and Fauna														
16	Primary productivity	mgC/L /day	2	0.45	1.59	0.63	1.8	0.65	2.4	1.3	2.8	0.65	2.5	0.42	APHA (22nd Edi) 10200-J
В	Phytoplankton														
17.1	Chlorophyll	mg/m ³	1.159	0.354	1.671	0.35	1.56	3.6	2.92	1.44	1.95	0.38	2.2	0.6	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m ³	2.2	2.4	2.12	2.5	2.34	2.98	3.2	4.6	2.4	2.35	2.96	2.8	APHA (22 nd Edi) 10200-H
17.3	Cell Count	No. x 10 ³ /L	194	55	223	114	148	53	266	134	252	60	310	80	APHA (22 nd Edi) 10200-H

- O- D

H. T. Shah Lab Manager

forin

Dr. ArunBajpai Lab Manager (Q)

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.).

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

17.4	Name of Group Number and name of group species of each group		Melosira hy Melosira Co sp. sc synendra Gy sp. sc Tabellaria syr Cheatocer Pin Green G algae G Ulothrix Ul Pediastru Pei m sp. Pei Melosira (Callor) Cyanophy Cyra Oscillatori Ana a sp. Ana	yceae scinodi cus sp. rosigm a sp. nendra sp. sp. Sreen sp. Green diagae lothrix sp. diastru n sp. anophy ceae	Bacillariop hyceae Navicula sp. Nitzschia sp. Coscinodi scus sp. Tabellaria sp. Skeletone ma sp. Melosira sp. Cyclotella sp. Pinnularia sp. Fragillaria sp.	Bacillariop hyceae Fragillaria sp. Nitzschia sp. Melosira sp. Synedra sp. 	Gyrosigm a Naviculle Synedra Coscinodi scus Asterionel la Melrsia Syrirella Skeletone mel Certaium	Coscinodi scus Naviculle Nitishia 	Bacillariop hyceae Navicula sp. Nitzschia sp. Biddulphi a sp. Fragillaria sp. Thallasios ira sp. Coscinodi scus sp. Cyclotella sp. Melosira sp. Synedra sp.	Bacillariop hyceae Amphipro ra sp. Asterionel la sp. Cyclotella sp. Gyrosigm a sp. Nitzschia sp. Navicula sp. Pinnularia sp. Rhizosole nia sp.	Bacillariop hyceae Coscinodi scus sp. Navicula sp. Gyrosigm a sp. Synedra sp. Asterionel la sp. Green Algae Chlorella sp. Pandorina sp.	Bacillariop hyceae Melosira sp. Fragillaria sp. Nitzschia sp. 	Bacillariop hyceae Navicula sp. Synedra sp. Coscinodi scus sp. Asterionel la sp. Gyrosigm a sp. Cocconeis sp. Pinnularia sp. Green Algae Pandorina sp. 	Bacillario phyceae Pinnulari a sp. Cyanoph yceae Lyngbya sp. Oscillator ia sp. Navicula sp. Fragillari a sp. Gyrosigm a sp. 	АРНА (22 nd Edi) 10200-Н
С	Zooplanktons														
18.1	Abundance (Population)	noX10 ³ / 100 m ³	32		28	3	2	9	2	25	2	2	15	5	APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		decapods Echinodern Fish egg Foraminifera 	ns	Cope Deca Polych Gastrc 	oods aetes opods	Cope Nemat Polyc Cnsta Foramin	edoes leate aeen	Isor Polychae Fish Brach	alves bods te worms egg iopods epods	Cope Kr Deca Polychaet Crusta	ill pods e worms	Gastro Decaj Bival Copej 	pods lves	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	2.7		2.	9	3.	2	2	.8	10	.2	9.	5	APHA (22 nd Edi) 10200-G
D	Microbiological Parar	neters													
19.1	Total Bacterial Count	CFU/ml	1910		203	30	14	80	18	320	16	38	147	70	IS 5402:2002
19.2	Total Coliform	/ml	Absent		Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abse	ent	APHA(22 nd Edi)922 1-D
19.3	Ecoli	/ml	Absent		Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	IS:1622:1981Edi.2 .4(2003-05)
19.4	Enterococcus	/ml	Absent		Abse	ent	Abs	ent	Abs	sent	Abs	ent	Abse	ent	IS: 15186:2002
		 . Shah Nanager					ALCON ,	SURATOR SURAT-3						unBajpai nager (Q)	

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.).

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

19.5 Salmonella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 5887 (P-3)
19.6 Shigella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 1887 (P-7)
19.7 Vibrio	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 5887 (P-5)

-O-D

H. T. Shah Lab Manager

forción

Dr. ArunBajpai Lab Manager (Q) Environmental Auditors, Consultants & Analysts.

Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M3 RIGHT SIDE OF BOCHA CREEK - N 22°46'530" E 069°41'690"]

SR.		LINITT	OCTOBER 2017	NOVEMBER 2017	DECEMBER 2017	JANUARY 2018	FEBRUARY 2018	MARCH 2018	TECT METHOD
NO.	TEST PARAMETERS	UNIT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	TEST METHOD
1	Organic Matter	%	0.59	0.53	0.74	0.88	0.68	0.59	FCO:2007
2	Phosphorus as P	µg/g	710	660	214	186	228	162	APHA(22 nd Edi) 4500 C
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy	
4	Petroleum Hydrocarbon	µg/g	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	6.25	5.45	4.7	5.4	5.36	4.9	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	µg/g	220	245	198	172	152	188	AAS 3111B
5.3	Manganese as Mn	µg/g	1680	1820	1640	1820	1140	1320	AAS APHA 3111 B
5.4	Iron as Fe	%	5.66	5.24	5.6	5.25	4.9	4.6	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	µg/g	68	62	36	44	35.6	44.9	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	µg/g	75	81	65	46	42.6	52.8	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	µg/g	151	120	156	182	240	252	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	µg/g	27	21	9.8	13.2	17.3	12.6	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	µg/g	0.5	0.7	0.44	0.22	BDL*	BDL*	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Polychaete worms Mysids	Isopods Echinoderms Nematodes	Decapods Isopods	Polychaete worms Bivalves	Isopods Polychaete worms 	Decapodes Isopodes Anthozoans Crabs	APHA (22 nd Edi) 10500-C
6.2	MeioBenthos		Foraminiferans 	Foraminiferans 	Foraminiferans Copepods	Nematodes	Isopods Gastrotriches	Foraminiferans Copepodes	APHA (22 nd Edi) 10500-C
6.3	Population	no/m ²	236	252	208	232	256	188	APHA (22 nd Edi) 10500-C

the to

H. T. Shah Lab Manager

forción

Dr. ArunBajpai Lab Manager (Q)

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.). Tele-Fax: (0261)2455751, 2601106, 2601224. E-Mail: <u>pollucon@gmail.com</u>. Website: <u>www.pollucon.com</u>

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M4 JUNA BANDAR N 22°47'577" E 069°43'620"]

SR.	TEST PARAMETERS	UNIT	ОСТОВ	ER 2017	NOVEMB	ER 2017	DECEMB	ER 2017	JANUAF	RY 2018	FEBRUA	RY 2018	MARCI	H 2018	TEST
NO.	IESI PAKAMETERS	UNIT	SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	BOTTOM	METHOD
1	рН		8.27	8.19	8.39	8.15	8.23	8.17	8.29	8.2	8.19	8.12	8.25	8.21	IS3025(P11)83R e.02
2	Temperature	oC	28.4	28	28.7	28.1	28.6	28.2	28.8	28.4	28.7	28.5	29.1	28.9	IS3025(P9)84Re .02
3	Total Suspended Solids	mg/L	292	260	334	316	298	270	312	29	207	185	227	188	IS3025(P17)84R e.02
4	BOD (3 Days @ 27 °C)	mg/L	1.7	1.5	2.7	2.2	3.2	2.4	2.8	2.6	3.4	3.1	2.8	2	IS 3025 (P44)1993Re.03 Edition2.1
5	Dissolved Oxygen	mg/L	5.8	5.4	6.5	5.6	6.4	5.8	6.3	5.2	6.1	5.5	5.8	5	IS3025(P38)89R e.99
6	Salinity	ppt	39.6	39.4	38.6	37.8	38.1	37.9	38.4	38.2	35.3	35.1	34.9	34.8	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	APHA(22 nd Edi)5 520D
8	Nitrate as NO ₃	µmol/L	29.5	24.7	28.3	20.3	17.8	13.2	21.9	26.4	18.6	15.2	14.7	13.8	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	2.4	2.1	1.68	1.5	1.80	1.5	2.30	1.7	0.98	0.6	1.4	1.3	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	µmol/L	2.9	2.3	3.5	2.1	1.70	1.1	1.50	0.9	4.40	3.8	3.1	2.8	IS3025(P34)88C la.2.3
11	Phosphates as PO ₄	µmol/L	2.8	2.1	1.59	1.58	2.4	2.1	1.9	1.4	2.02	1.75	1.96	1.86	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	5.4	4.6	5.3	3.8	3.50	2.60	3.80	2.60	5.38	4.40	4.7	4.1	IS3025(P34)88
13	Petroleum Hydrocarbon	µg/L	15	12	16	10	12	11	17	13	14	7	10	5	PLPL-TPH
14	Total Dissolved Solids	mg/L	39750	39430	38550	37660	37612	37428	37980	37520	34940	34720	35080	34812	IS3025(P16)84R e.02
15	COD	mg/L	12	10	14	11	15	13	19	14	13	7	16	10	APHA(22 nd Edi) 5520-D Open Reflux
А						I	Flora and Fau	na							
16	Primary productivity	mgC/L/d ay	1.53	0.32	1.61	0.61	1.8	0.65	1.63	0.54	2.8	0.9	3.1	1.1	APHA (22nd Edi) 10200-J
В		·					Phytoplankto	n							
17.1	Chlorophyll	mg/m ³	1.15	0.31	1.72	0.33	2.56	0.28	2.72	0.44	2.95	0.48	2.65	0.22	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m ³	1.7	1.8	2.13	1.9	1.96	1.75	2.2	1.92	3.5	3.3	3.14	2.96	APHA (22 nd Edi) 10200-H
17.3	Cell Count	No. x 10 ³ /L	174	52	192	112	228	35	206	25	380	92	340	72	APHA (22 nd Edi) 10200-H
	0							DAT							

-O-D

H. T. Shah Lab Manager

forción

Dr. ArunBajpai Lab Manager (Q)

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.).

 DOLLOCON LABORATORIES PVT. LTD.
Environmental Auditors Consultants & Analysts

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

17.4	Name of Group Number and name of group species of each group		Bacillariop hyceae Melosira sp. synendra sp. Tabellaria sp. Cheatocer ous sp. Green algae Ulothrix sp. Pediastru m sp. Cyanophy ceae Oscillatori a sp. Spirulina sp.	Bacillariop hyceae Navicula sp. Nitzschia Bacillariop sp. hyceae Coscinodi Fragillaria scus sp. sp. Tabellaria sp. sp. Skeletone Melosira ma sp. sp. Melosira Synedra sp. sp. Cyclotella sp. Pinnularia sp.	Naviculle Synedra Gyrosigm a Coscinodi scus Naviculle Asterionel Nitishia la Melrsia Syrirella Skeletone mel Certaium	Bacillariop hyceae sp. Amphipro Navicula sp. Asterionel Biddulphi a sp. Cyclotella Fragillaria sp. Gyrosigm Thallasios ira sp. Nitzschia Coscinodi scus sp. Navicula Cyclotella sp. Pinnularia Melosira sp. Rhizosole Synedra sp. sp.	Bacillariop hyceae Fragillaria Bacillariop sp. hyceae Navicula Melosira sp. sp. Pinnularia Fragillaria sp. sp. Cyanophy Nitzschia ceae sp. Gyrosigm a sp Oscillatori a sp Lyngbya sp. 	Bacillariop hyceae Synedra phyceae sp. Asterionel sp. Fragillari Coscinodi sp. Fragillari Coscinodi a sp. Fragillari Coscinodi a sp. Scus sp. Gyrosig Cocconeis sp. Pinnulari Gyrosig a sp. Cyanoph Pinnularia yceae sp. Lyngbya Green sp. Algae Oscillator Chlorella sp. Pandorina sp.	АРНА (22 nd Edi) 10200-Н
С	Zooplanktons		551						
18.1	Abundance (Population)	noX10 ³ / 100 m ³	28	22	29	24	27	25	APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		Polychaete worms Chaetognaths Copepods Nematodes Nauplius larvae Cyclops	Copepods Decapods Polychaetes Gastropods	Copepods Nematedoes Polycleate Cnstaeen Foraminiferus	Bivalves Gastropods Nematodes Krill Fish egg	Polychaete worms Decapods Molluscans	Foraminiferus Gastropods Decapods	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	2.6	2.1	2.4	2.9	10.4	11.2	APHA (22 nd Edi) 10200-G
D	Microbiological Parar								
19.1	Total Bacterial Count	CFU/ml	1870	1750	1810	1820	1790	1650	IS 5402:2002
19.2	Total Coliform	/ml	Absent	Absent	Absent	Absent	Absent	Absent	APHA(22 nd Edi)9 221-D IS:1622:1981Edi
19.3	Ecoli	/ml	Absent	Absent	Absent	Absent	Absent	Absent	.2.4(2003-05)
19.4	Enterococcus	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 15186 :2002

-0-10-

H. T. Shah Lab Manager

forción

Dr. ArunBajpai Lab Manager (Q)

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.).

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

19.5	Salmonella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 5887 (P-3)
19.6	Shigella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS: 1887 (P-7)
19.7	Vibrio	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 5887 (P-5)

-01-0-

H. T. Shah Lab Manager

forción

Dr. ArunBajpai Lab Manager (Q)

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M4 JUNA BANDAR N 22°47'577" E 069°43'620"]

SR.	TEST PARAMETERS	UNIT	OCTOBER 2017	NOVEMBER 2017	DECEMBER 2017	JANUARY 2018	FEBRUARY 2018	MARCH 2018	TEST METHOD
NO.		UNIT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	TEST METHOD
1	Organic Matter	%	0.65	0.57	0.58	0.75	0.35	0.59	FCO:2007
2	Phosphorus as P	µg/g	710	650	204	167	176	199	APHA(22 nd Edi) 4500 C
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy	
4	Petroleum Hydrocarbon	µg/g	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	6.4	5.9	4.6	5.8	5.1	5.7	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	µg/g	200	247	166	198	126	151	AAS 3111B
5.3	Manganese as Mn	µg/g	1470	1610	1740	1442	1372	1540	AAS APHA 3111 B
5.4	Iron as Fe	%	4.99	4.33	5.35	4.96	4.8	5.1	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	µg/g	59	62	32.4	48.9	32.6	24.9	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	µg/g	75	61	118	90	65.4	56.2	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	µg/g	149	172	132	156	172	188	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	µg/g	21.5	23	17.8	14.2	20.2	16.8	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	µg/g	0.8	0.3	0.44	0.29	0.12	0.09	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Isopods Echinoderms Mysids	Anthozoans Echinoderms	Bivalves Decapods	Polychaete worms Bivalves	Bivalves Polychaete worms 	Crabs Mysids Isopodes Decapodes	APHA (22 nd Edi) 10500-C
6.2	MeioBenthos		Nematodes Foraminiferans	Copepods Foraminiferans	Nematodes	Nematodes	Foraminiferans Decapods	Nematodes Foraminiferans	APHA (22 nd Edi) 10500-C
6.3	Population	no/m ²	225	282	198	226	240	175	APHA (22 nd Edi) 10500-C

-A

H. T. Shah Lab Manager

forción

Dr. ArunBajpai Lab Manager (Q)

MOCON LABORATORIES PVT. LTD. Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M5 TOWARDS WESTERN SIDE OF EAST PORT - N 22°46'041" E 069°47'296"]

SR.	TEST PARAMETERS	UNIT	ОСТОВ	ER 2017	NOVEMB	ER 2017	DECEMB	ER 2017	JANUAF	RY 2018	FEBRUA	RY 2018	MARC	H 2018	TEST
NO.	IESI PARAMETERS	UNIT	SURFACE	BOTTOM	SURFACE	BOTTOM	METHOD								
1	рH		8.18	8.22	8.4	8.25	8.22	8.16	8.09	7.98	8.14	7.98	8.15	7.95	IS3025(P11)83Re .02
2	Temperature	оС	30	29	28.5	28.3	28.4	28.2	28.7	28.3	28.7	28	28.9	28.6	IS3025(P9)84Re. 02
3	Total Suspended Solids	mg/L	350	342	325	318	258	242	283	262	170	152	150	128	IS3025(P17)84Re .02
4	BOD (3 Days @ 27 °C)	mg/L	3.8	2.6	2.8	2.4	2.2	2	2.7	2.5	1.5	1.2	1.8	1	IS 3025 (P44)1993Re.03E dition2.1
5	Dissolved Oxygen	mg/L	5.9	5.2	6.4	5.8	6.3	5.8	6.1	5.1	6.5	6.2	6.8	6.6	IS3025(P38)89Re .99
6	Salinity	ppt	37.9	37.1	40.1	40.8	37.4	37.1	37.9	37.5	34.8	34.6	34.2	34.1	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	APHA(22 nd Edi)55 20D										
8	Nitrate as NO ₃	µmol/L	26.7	24.3	23.2	19.6	19.5	17.1	23.9	24.7	10.4	9.8	8.2	6.4	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	1.66	1.53	1.8	1.3	2.1	1.6	1.8	1.1	0.8	0.6	0.44	0.28	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	µmol/L	3.8	3.1	3.6	2.1	2.9	2.5	2.2	1.9	1.5	1.2	0.98	0.72	IS3025(P34)88Cl a.2.3
11	Phosphates as PO ₄	µmol/L	2.9	2.5	1.71	1.66	1.78	1.52	2.11	1.98	1.4	1.1	1.72	1.52	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	5.68	4.71	5.55	3.57	5.00	4.10	4.00	3.00	2.3	1.8	1.42	1.2	IS3025(P34)88
13	Petroleum Hydrocarbon	µg/L	16	13	15	12	17	13	21	19	8	6	4	2	PLPL-TPH
14	Total Dissolved Solids	mg/L	38270	37880	40120	40760	38200	37190	37960	37512	35890	35360	35110	34950	IS3025(P16)84Re .02
15	COD	mg/L	18	14	16	12	13.4	12.2	14.3	11.9	12	7	9	6	APHA(22 nd Edi) 5520-D Open Reflux
Α	Flora and Fauna														
16	Primary productivity	mgC/L /day	1.74	0.555	1.84	0.471	1.92	0.65	2.14	0.84	3.4	1.1	3.6	1.3	APHA (22nd Edi) 10200-J
В	Phytoplankton														
17.1	Chlorophyll	mg/m ³	1.247	0.504	1.67	0.45	1.63	0.79	2.56	0.63	2.95	0.75	3.1	0.9	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m ³	1.72	1.93	1.15	0.35	1.96	1.75	2.4	1.79	3.7	3.1	2.5	2.4	APHA (22 nd Edi) 10200-H
17.3	Cell Count	No. x 10 ³ /L	242	38	192	54	240	50	217	45	310	70	360	110	APHA (22 nd Edi) 10200-H

-O-D

H. T. Shah Lab Manager

forin

Dr. ArunBajpai Lab Manager (Q)

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.).

PL	
	DOLLOCON LABORATORIES PVT. LTD
	Environmental Auditors Consultants & Analysts

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

17.4	Name of Group Number and name of group species of each group		Bacillariop hyceae Nitzschia sp. Surirella sp. Rhizosole nia sp. Pinnularia sp. Green algae Ankistrod esmus sp. Hydrodict yon sp. Pandorina sp. Closteriu m sp. Pinnularia sp. Britzschia dreen algae Sp. Costeriu Sp. Sp. Nitzschia Sp. Nitzschia Sp. Nitzschia Green algae Sp. Cyanophy ceae Sp. Cyanophy ceae Sp. Cyanophy ceae Sp. Sp. Costeriu Sp. Sp. Nitzschia Sp. Sp. Nitzschia Sp. Sp. Nitzschia Sp. Sp. Chlorella Sp. Sp. Cyanophy ceae Sp. Sp. Sp. Costeriu Sp. Sp. Costeriu Sp. Sp. Costeriu Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp.	Bacillariop hyceae Navicula sp. Nitzschia sp. Coscinodi scus sp. Tabellaria sp. Skeletone ma sp. Skeletone ma sp. Skeletone ma sp. Skeletone ma sp. Synedra sp. Cyclotella sp. Sp. Cyclotella sp. Sp. Sp. Cyclotella sp. Sp. Sp. Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Synedra Sp. Sp. Synedra Sp. Synedra Sp. Synedra Sp. Sp. Synedra Sp. Sp. Synedra Sp. Sp. Synedra Sp. Sp. Synedra Sp. Sp. Synedra Sp. Sp. Synedra Sp. Sp. Sp. Sp. Synedra Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp.	Melrsia Syrirella Skeletone Naviculle mel Nitishia Coscinodi scus Asterionel la Naviculle Synedra Gyrosigm a Certaium	Bacillariop hyceae Navicula sp. Nitzschia sp. Biddulphi a sp. Fragillaria sp. Thallasios ira sp. Coscinodi scus sp. Cyclotella sp. Thallasios sp. Cyclotella sp. Cyclotella sp. Sp. Thallasios sp. Sp. Cyclotella sp. Nitzschia sp. Sp. Thallasios sp. Sp. Cyclotella sp. Nitzschia sp. Thallasios sp. Sp. Cyclotella sp. Sp. Nitzschia sp. Sp. Cyclotella sp. Sp. Nitzschia sp. Sp. Cyclotella sp. Sp. Nitzschia sp. Sp. Cyclotella sp. Sp. Nitzschia sp. Sp. Nitzschia sp. Sp. Cyclotella sp. Sp. Nitzschia sp. Sp. Cyclotella sp. Sp. Nitzschia sp. Sp. Sp. Sp. Sy. Cyclotella sp. Sp. Sp. Sp. Sp. Sp. Sy. Sy. Sp. Sy. Sp. Sy. Sp. Sy. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp	Bacillariop hyceae Cyclotella sp. Amphipro ra sp. Gyrosigm a sp. Asterionel la sp. Rhizosole pinnularia sp. Navicula sp. Nitzschia sp. Nitzschia sp. Nitzschia sp. Nitzschia sp.	BacillariophyceaeNaviculasp.Synedrasp.Synedrasp.Coscinodiscus sp.Asterionella sp.Gyrosigma sp.Cocconeissp.Cocconeissp.GreenAlgaePandorinasp.Chlorellasp.Sp.Sp.Sp.Sp.Corconeissp.Sp.Chlorellasp.	АРНА (22 nd Edi) 10200-Н
C 18.1	Zooplanktons Abundance (Population)	noX10 ³ / 100 m ³	21	33	23	17	25	30	APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		Echinoderms Snail Brachiopods Copepods 	Copepods Decapods Polychaetes Gastropods	Copepods Nematedoes Polycleate Cnstaeen Foraminiferus	Bivalves Gastropods Nematodes Krill Fish egg	Decapods Copepods Crustaceans Polychaete worms Krill	Polychaete worms Decapods Molluscans 	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	3.1	2.9	2.7	2.4	11.2	10.4	APHA (22 nd Edi) 10200-G
D	Microbiological Parar								10200 0
19.1	Total Bacterial Count	CFU/m I	1790	1970	1540	1820	1950	2020	IS 5402:2002
19.2	Total Coliform	/ml	Absent	Absent	Absent	Absent	Absent	Absent	APHA(22 nd Edi)92 21-D
19.3	Ecoli	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS:1622:1981Edi. 2.4(2003-05)
19.4	Enterococcus	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 15186 :2002
	- 57	-0-			ABORATOR			forción	

Dr. ArunBajpai Lab Manager (Q)

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.).

H. T. Shah

Lab Manager

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

19.5	Salmonella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 5887 (P-3)
19.6	Shigella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 1887 (P-7)
19.7	Vibrio	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 5887 (P-5)

- Ol-D

H. T. Shah Lab Manager

forción

Dr. ArunBajpai Lab Manager (Q)

LABORATORIES PVT. LTD. Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M5 TOWARDS WESTERN SIDE OF EAST PORT - N 22°46'041" E 069°47'296"]

SR.	TEST PARAMETERS	UNIT	OCTOBER 2017	NOVEMBER 2017	DECEMBER 2017	JANUARY 2018	FEBRUARY 2018	MARCH 2018	TEST METHOD
NO.	TEST PARAMETERS	UNIT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	
1	Organic Matter	%	0.614	0.524	0.44	0.62	0.88	0.49	FCO:2007
2	Phosphorus as P	µg/g	318	644	416	512	270	380	APHA(22 nd Edi) 4500 C
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy	
4	Petroleum Hydrocarbon	µg/g	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	6.82	6.49	5.1	5.35	5.55	5.3	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	µg/g	250	239	127	179	110	137	AAS 3111B
5.3	Manganese as Mn	µg/g	1760	1599	1540	1990	1012	1270	AAS APHA 3111 B
5.4	Iron as Fe	%	6.12	6.09	5.1	5.95	4.95	5.3	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	µg/g	73	69	40	56	32.6	47.8	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	µg/g	84	72	95	72	51.4	67.4	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	µg/g	166	196	185	152	213	244	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	µg/g	29	21	19	24	21.9	27.8	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	µg/g	0.3	0.7	0.5	0.35	BDL*	BDL*	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Ostracods Nematodes Polychaete worms	Mysids Echinoderms	Isopods Decapods	Polychaete worms Bivalves	Isopods Polychaete worms 	Mysids Anthozoans Decapodes Isopodes	APHA (22 nd Edi) 10500- C
6.2	MeioBenthos		Nematodes Foraminiferans	Copepods Foraminiferans	Foraminiferans	Nematodes	Ostracodes Nematodes	Copepods Foraminiferans	APHA (22 nd Edi) 10500- C
6.3	Population	no/m2	230	282	270	292	302	268	APHA (22 nd Edi) 10500- C
	-67~	す			BORATOR	N		forcie	in the second se

forción Dr. ArunBajpai

Lab Manager (Q)

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.).

H. T. Shah Lab Manager

Tele-Fax: (0261)2455751, 2601106, 2601224. E-Mail: pollucon@gmail.com. Website: www.pollucon.com

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M7 EAST PORT N 22°47'120" E 069°47'110"]

SR.	TEST PARAMETERS	UNIT	ОСТОВ	ER 2017	NOVEMB	ER 2017	DECEMB	ER 2017	JANUAF	RY 2018	FEBRUA	RY 2018	MARCH	H 2018	TEST METHOD
NO.	IESI PARAMETERS	UNIT	SURFACE	BOTTOM	SURFACE	BOTTOM									
1	рH		8.04	7.79	7.52	7.28	8.15	8.09	8.27	8.25	8.05	8.03	8.19	8.13	IS3025(P11)83Re. 02
2	Temperature	оС	30	29	30.1	29.6	28.4	28	28.9	28.5	28.6	28.2	29.1	29.8	IS3025(P9)84Re.0 2
3	Total Suspended Solids	mg/L	372	316	324	294	198	156	232	213	150	145	142	112	IS3025(P17)84Re. 02
4	BOD (3 Days @ 27°C)	mg/L	3.3	3	2.9	2.4	2.8	2.5	1.8	1.4	1.8	1.6	1.5	1.2	IS 3025 (P44)1993Re.03Ed ition2.1
5	Dissolved Oxygen	mg/L	6.4	5.7	6.3	5.9	6	4.8	5.9	5.5	6.6	6.3	6.5	6.4	IS3025(P38)89Re. 99
6	Salinity	ppt	40.2	38.9	38.4	38.5	37.9	37.5	37.1	36.8	35	34.7	34.6	34.4	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	APHA(22 nd Edi)552 0D										
8	Nitrate as NO ₃	µmol/L	27.7	28.9	25.1	23.8	32.4	24.2	26.8	32.2	11.8	10.6	9.8	7.5	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	2.31	2.54	1.77	1.52	1.85	1.44	1.56	1.34	0.6	0.5	0.48	0.39	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	µmol/L	4.94	5.27	3.94	2.31	4.52	3.9	3.38	2.22	1.4	0.8	0.88	0.65	IS3025(P34)88Cla .2.3
11	Phosphates as PO ₄	µmol/L	1.8	1.99	1.73	1.42	2.4	2.1	1.7	1.5	1.52	1.38	1.62	1.58	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	7.32	7.93	5.88	4.01	6.37	5.34	4.94	3.56	2.10	1.30	1.5	1.2	IS3025(P34)88
13	Petroleum Hydrocarbon	µg/L	15	13	17	12	13	11	17	14	7.4	5.2	9	7	PLPL-TPH
14	Total Dissolved Solids	mg/L	39920	38870	38090	38430	37140	36920	37780	37210	36100	35700	35810	35470	IS3025(P16)84Re. 02
15	COD	mg/L	24	18	18	14	16	15	12	10	10	8	14	6	APHA(22ndEdi) 5520-D Open Reflux
Α	Flora and Fauna														
16	Primary productivity	mgC/L /day	1.72	0.41	2	0.45	1.85	0.35	2.1	0.72	3.1	1.8	4	1.8	APHA (22nd Edi) 10200-J
В	Phytoplankton														
17.1	Chlorophyll	mg/m ³	1.41	0.426	1.159	0.354	1.58	0.28	1.72	0.65	2.75	0.7	2.98	0.8	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m ³	1.51	2.04	2.2	2.4	2.1	2.8	1.5	2.6	4	3.5	3.6	2.7	APHA (22 nd Edi) 10200-H
17.3	Cell Count	No. x 10 ³ /L	252	64	196	58	217	56	290	72	295	60	305	95	APHA (22 nd Edi) 10200-H

-A-D

H. T. Shah Lab Manager

forin

Dr. ArunBajpai Lab Manager (Q)

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.).

Tele-Fax: (0261)2455751, 2601106, 2601224. E-Mail: pollucon@gmail.com. Website: www.pollucon.com

/-5	DOLLOCON LABORATORIES PVT LTD
	LABORATORIES PVT. LTD.
	Environmental Auditors, Consultants & Analysts

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

17.4	Name of Group Number and name of group species of each group		Bacillariop hyceae Cocconeis sp. Fragillaria sp. Sp. Sp. Navicula sp. Green algae Chlorella sp. Sp. Sp. Green algae Chlorella sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. S	 Bacillariop hyceae Navicula sp. Sp. Sp. Scus sp. Tabellaria sp. Skeletone ma sp. Skeletone ma sp. Skeletone sp. Sp. Sp. Sp. Sp. Sp. Sp. Skeletone sp. Sp. Sp. Sp. Sp. Skeletone sp. 	Skeletone mel Synedra Gyrosigm a Naviculle Coscinodi Nitishia scus Asterionel la Melrsia Syrirella Naviculle Certaium	Bacillariop hyceae hyceae Navicula sp. Asterionel Nitzschia Biddulphi a sp. Sp. Cyclotella Biddulphi a sp. Sp. Thallasios sp. Nitzschia Thallasios sp. Nitzschia Sp. Nitzschia Sp. Nitzschia Sp. Nitzschia Sp. Nitzschia Sp. Nitzschia Sp. Nitzschia Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp.	Bacillariop hyceae Synedra Bacillariop sp. hyceae Navicula Melosira sp. sp. Coscinodi Fragillaria scus sp. sp. Cocconeis Nitzschia sp. sp. Gyrosigm a sp Green Algae Chlorella sp	Bacillariop hyceae Navicula sp. Synedra sp. Synedra sp. Coscinodi scus sp. Asterionel la sp. Gyrosigm a sp. Cocconeis sp. Pinnularia sp. Green Algae pandorina sp. Chlorella sp. Cyanoph yceae Sp. Cyanoph yceae sp. Cyanoph yceae sp. Cyanoph sp. Sp. Cyanoph sp. Sp. Cyanoph sp. Sp. Cyanoph sp. Sp. Cyanoph sp. Sp. Cyanoph sp. Sp. Sp. Sp. Cyanoph sp. Sp. Sp. Cyanoph sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. S	АРНА (22 nd Edi) 10200-Н
С	Zooplanktons								
18.1	Abundance (Population)	noX10 ³ / 100 m ³	26	20	23	28	29	22	APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		Polychaete worms Bivalves Fish eggs Brachiopods Copepods	Gastropods Decapods Decapods Gastropods 	Nematodes Nematedoes Polycleate Cnstaeen Foraminiferus	Gastropods Nematodes Krill Fish egg Bivalves	Crustaceans Copepods Krill Polychaete worms Decapods	Brachiopods Polychaete worms Nematodes Fish egg Copepods	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	2.7	1.7	1.8	2.4	10.2	11.6	APHA (22 nd Edi) 10200-G
D	Microbiological Parar								
19.1	Total Bacterial Count	CFU/ml	2110	1970	1840	2120	1820	2090	IS 5402:2002
19.2	Total Coliform	/ml	Absent	Absent	Absent	Absent	Absent	Absent	APHA(22 nd Edi)922 1-D
19.3	Ecoli	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS:1622:1981Edi.2 .4(2003-05)
19.4	Enterococcus	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 15186 :2002
	Н. Т	 . Shah Nanager			SURATOR SURAT-3 BO SURAT-3 CO SURAT-3 CO SURAT-3 CO SURATOR SU			المستقلم Dr. ArunBajpai Lab Manager (Q)	

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.). Tele-Fax: (0261)2455751, 2601106, 2601224. E-Mail: <u>pollucon@gmail.com</u>. Website: <u>www.pollucon.com</u>

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

19.5 Salmonella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 5887 (P-3)
19.6 Shigella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 1887 (P-7)
19.7 Vibrio	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 5887 (P-5)

- Cl-D

H. T. Shah Lab Manager

forción

LABORATORIES PVT. LTD. σ Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M8 RIGHT SIDE OF BOCHA CREEK N 22°45'987" E 069°43'119"]

SR.	TEST	UNIT		ER 2017	NOVEMB	-	DECEMB	ER 2017	JANUAF		FEBRUA	RY 2018	MARCH		TEST
NO.	PARAMETERS	UNIT	SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	BOTTOM	METHOD
1	рН		8.47	8.25	8.08	8.13	8.28	8.19	8.1	7.96	8.35	8.25	8.22	8.16	IS3025(P11)83Re .02
2	Temperature	oC	28.5	28.3	29	28.6	28.4	28	28.8	28.6	28.9	28.5	29.4	29.1	IS3025(P9)84Re. 02
3	Total Suspended Solids	mg/L	325	319	314	298	322	296	280	256	340	280	312	298	IS3025(P17)84Re .02
4	BOD (3 Days @ 27 °C)	mg/L	2.8	2.4	3.1	2.9	3.5	2.8	2.4	1.6	3.4	3.2	2.4	2.1	IS 3025 (P44)1993Re.03E dition2.1
5	Dissolved Oxygen	mg/L	6.4	5.8	6	5.2	6.6	5.7	6.1	5.3	6.2	5.9	6.4	5.8	IS3025(P38)89Re .99
6	Salinity	ppt	39.7	38.9	40.4	39.8	37.7	37.1	38.2	37.6	35.8	35.7	35.3	35.2	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	APHA(22 nd Edi)552 0D
8	Nitrate as NO ₃	µmol/L	23.2	19.4	23.6	24.3	19.2	17.4	21.6	16.8	14.8	13.2	16.4	11.8	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	1.8	1.3	1.9	2	1.8	1.5	2.4	2.1	1.6	0.8	1.3	0.4	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH₃	µmol/L	3.6	2.2	3.5	3.6	2.2	1.8	3.1	2.5	2.3	1.9	1.6	0.8	IS3025(P34)88Cla .2.3
11	Phosphates as PO_4	µmol/L	1.71	1.66	1.4	1.1	1.53	1.48	2.74	2.25	1.95	1.65	1.84	1.72	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	3.74	3.58	5.36	5.41	4.00	3.30	5.50	4.60	3.90	2.70	3.1	1.2	IS3025(P34)88
13	Petroleum Hydrocarbon	µg/L	15	12	19	14	17.7	13.2	15.9	12.7	14	10	18	12	PLPL-TPH
14	Total Dissolved Solids	mg/L	40040	39540	41030	40370	38100	37970	37840	37520	36400	36210	36140	35920	IS3025(P16)84Re .02
15	COD	mg/L	18	12	17	13	15	10	9.6	8.2	14.4	12	10	8	APHA(22 nd Edi) 5520-D Open Reflux
Α							Flora and Fa	una							
16	Primary productivity	mgC/L /day	1.84	0.471	1.553	0.338	2.1	0.64	1.85	0.48	2.2	0.8	2.9	1.5	APHA (22nd Edi) 10200-J
В							Phytoplank	ton							and the second second
17.1	Chlorophyll	mg/m ³	1.67	0.45	1.14	0.347	2.1	0.58	2.68	0.75	2.5	0.65	3.1	0.8	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m ³	1.15	0.35	1.56	1.8	2.34	0.63	1.95	0.38	3.1	2.6	3.5	2.9	APHA (22 nd Edi) 10200-H
17.3	Cell Count	No. x 10 ³ /L	192	54	170	46	230	48	196	52	280	90	320	100	APHA (22 nd Edi) 10200-H

- toto

H. T. Shah Lab Manager

formin

Dr. ArunBajpai Lab Manager (Q)

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.).

Tele-Fax: (0261)2455751, 2601106, 2601224. E-Mail: pollucon@gmail.com. Website: www.pollucon.com

P	
	DOLLOCON LABORATORIES PVT. LTD
	Environmental Auditors Consultants & Analysts

Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

17.4	Name of Group Number and name of group species of each group		Bacillariop hyceae Coscinodi scus sp. Pinnularia sp. Synendra sp. Green algae Volvox sp. Chlorella sp. Ulothrix sp. Cyanophy ceae Oscillatori a sp. Sp. Cyanophy ceae Sp. Cyanophy ceae Sp. Cyanophy ceae Sp. Cyanophy ceae Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp.	hyceae A Navicula sp. Nitzschia sp. Coscinodi scus sp. Tabellaria sp. Skeletone ma sp. A Melosira sp. Synedra sp. Synedra sp. Synedra sp. Synedra sp. A Cyclotella sp. Sp. Mitzschia sp. Skeletone sp. Synedra sp. Synedra sp. Synedra sp. Sp. Melosira sp. Sp. Melosira sp. Sp. Synedra Sp. Synedra Sp. Sp. Melosira Sp. Synedra Sp. Sp. Melosira Sp. Synedra Sp. Sp. Sp. Synedra Sp. Sp. Sp. Synedra Sp. Sp. Sp. Synedra Sp. Sp. Sp. Sp. Synedra Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp.	Syrirella Gyrosigm a Coscinodi scus Asterionel la Melrsia Skeletone mel Certaium	Bacillariop hyceae hyceae Amphipro Navicula Sp. Asterionel Nitzschia Biddulphi a sp. Cyclotella Biddulphi sp. Gyrosigm Fragillaria a sp. Gyrosigm Fragillaria a sp. Nitzschia Thallasios sp. Nitzschia Thallasios sp. Navicula Coscinodi Sp. Sp. Sp. Rhizosole Melosira Sp. Synedra Sp.	Bacillariop hyceae Biddulphi a sp. Fragillaria sp. Thallasios ira sp. Coscinodi scus sp. Synedra sp. Cyclotella sp. Cyclotella sp. Sp. Cyclotella sp. Sp. Cyclotella sp. Sp. Cyclotella sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. S	BacillariophyceaeBacillariopNaviculahyceaesp.NaviculaSynedrasp.sp.FragillariaCoscinodisp.scus sp.GyrosigmAsterionela sp.la sp.PinnulariaGyrosigmsp.a sp.CyanophyCocconeisceaesp.LyngbyaPinnulariasp.sp.OscillatoriGreena sp.Algaechlorellasp.Sp.	АРНА (22 nd Edi) 10200-Н
C 18.1	Abundance	noX10 ³ /	29	33	Zooplanktons 24	28	18	24	APHA (22 nd Edi)
10.1	(Population)	100 m ³	25	22			10	27	10200-G
18.2	Name of Group Number and name of group species of each group		Crustaceans Nematodes Nauplius Iarvae Gastropods	Copepods Decapods Polychaetes Gastropods	Copepods Nematedoes Polycleate Cnstaeen Foraminiferus Krill	Polychaete worms Brachiopods Fish egg Isopods Bivalves Copepods	Polychaete worms Decapods Krill Copepods Crustaceans	Isopods Bivalves Polychaete worms Fish egg Brachiopods	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	3.4	2.7	3.1	2.8	8.8	11.8	APHA (22 nd Edi) 10200-G
D	Microbiological Para								10200 0
19.1	Total Bacterial Count	CFU/ml	2030	1910	1770	2012	1520	1710	IS 5402:2002
19.2	Total Coliform	/ml	Absent	Absent	Absent	Absent	Absent	Absent	APHA(22 nd Edi)922 1-D
19.3	Ecoli	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS:1622:1981Edi. 2.4(2003-05)
19.4	Enterococcus	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS: 15186:2002
19.5	Salmonella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS: 5887 (P-3)

-O-D

H. T. Shah Lab Manager

forción

Dr. ArunBajpai Lab Manager (Q)

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.).

Tele-Fax: (0261)2455751, 2601106, 2601224. E-Mail: pollucon@gmail.com. Website: www.pollucon.com

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

19.6 Shigella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 1887 (P-7)
19.7 Vibrio	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 5887 (P-5)

- CI-D

H. T. Shah Lab Manager

forción

LABORATORIES PVT. LTD.

OVEDN

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M8 RIGHT SIDE OF BOCHA CREEK - N 22°45'987" E 069°43'119"]

SR.	TEST PARAMETERS	UNIT	OCTOBER 2017	NOVEMBER 2017	DECEMBER 2017	JANUARY 2018	FEBRUARY 2018	MARCH 2018	TEST METHOD	
NO.	IESI PAKAMETEKS	UNIT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	TEST METHOD	
1	Organic Matter	%	0.627	0.537	0.39	0.51	0.92	0.61	FCO:2007	
2	Phosphorus as P	µg/g	813	710	570	495	412	510	APHA(22 nd Edi) 4500 C	
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy		
4	Petroleum Hydrocarbon	µg/g	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH	
5	Heavy Metals									
5.1	Aluminum as Al	%	6.08	6.12	4.96	5.28	5.39	5.05	AAS APHA 3111 B	
5.2	Total Chromium as Cr ⁺³	µg/g	224	239	198	185	208	223	AAS 3111B	
5.3	Manganese as Mn	µg/g	1882	1756	1720	1885	1420	1610	AAS APHA 3111 B	
5.4	Iron as Fe	%	5.27	6.01	5.64	5.36	4.9	5.1	AAS APHA(22 nd Edi)3111 B	
5.5	Nickel as Ni	µg/g	67	72	33	49	23.2	37.6	AAS APHA(22 nd Edi)3111 B	
5.6	Copper as Cu	µg/g	80	58	56	67	56.8	42.2	AAS APHA(22 nd Edi)3111 B	
5.7	Zinc as Zn	µg/g	174	196	132	175	182	206	AAS APHA(22 nd Edi)3111 B	
5.8	Lead as Pb	µg/g	31	28	17	12	10.4	13.2	AAS APHA(22 nd Edi)3111 B	
5.9	Mercury as Hg	µg/g	0.5	0.8	0.29	0.12	BDL*	BDL*	AAS APHA- 3112 B	
6	Benthic Organisms									
6.1	Macrobenthos		Nauplius larvae Nematodes	Mysids Echinoderms	Isopods Decapods	Polychaete worms Bivalves	Decapods Polychaete worms 	Bivalves Mysids Isopodes Nauplius larvae	APHA (22 nd Edi) 10500- C	
6.2	MeioBenthos		Daphnia Mysids	Nematodes Foraminiferans	Copepods Foraminiferans	Nematodes	Foraminiferans Daphnia	Daphnia Foraminiferans	APHA (22 nd Edi) 10500- C	
6.3	Population	no/m ²	258	234	226	258	290	198	APHA (22 nd Edi) 10500- C	
	- 0 ~	か			LEORATOR			forcie	in	
H. T. Shah Lab Manager					SURAT-3			Dr. ArunBajpai Lab Manager (Q)		

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.).

Tele-Fax: (0261)2455751, 2601106, 2601224. E-Mail: pollucon@gmail.com. Website: www.pollucon.com

Environmental Auditors, Consultants & Analysts.

Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M11 MPT T1 JETTY N 22°42'278" E 069°43'450"]

SR.	TEST PARAMETERS	UNIT	ОСТОВ	-	NOVEMB	-	DECEMB	-		RY 2018	-	RY 2018	MARCI		TEST
NO.	ILSI FARAMLILKS	UNIT	SURFACE	воттом	SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	BOTTOM	METHOD
1	рH		8.43	8.16	8.05	7.77	8.02	7.93	8.33	8.17	8.07	8.03	8.11	8.09	IS3025(P11)83Re .02
2	Temperature	oC	28.3	28.1	30.1	29.3	28.8	28.5	28.9	28.7	29	28	29.8	29.1	IS3025(P9)84Re. 02
3	Total Suspended Solids	mg/L	334	320	350	310	293	262	318	281	198	172	230	202	IS3025(P17)84Re .02
4	BOD (3 Days @ 27 °C)	mg/L	2.6	2.3	3.4	2.9	4.4	2.9	3.6	3.1	3.8	3.2	2.9	2.6	IS 3025 (P44)1993Re.03E dition2.1
5	Dissolved Oxygen	mg/L	6.4	5.6	6.4	5.7	6.3	5.5	5.9	4.9	6	5.8	5.9	5.3	IS3025(P38)89Re .99
6	Salinity	ppt	39.6	38.3	40.2	38.9	37.7	37.3	37.4	37	36.8	36.1	36.2	35.7	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	APHA(22 nd Edi)552 0D
8	Nitrate as NO ₃	µmol/L	28.2	20.3	27.7	28.9	17.4	15.2	21.2	18.3	14.8	12.6	17.2	14.4	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	1.8	1.6	2.33	2.47	1.58	1.44	2.6	2.3	1.2	0.9	1.35	1.2	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	µmol/L	3.5	2.4	4.94	5	3.8	3.6	4.5	4.1	2.8	2.3	3.1	2.7	IS3025(P34)88Cla .2.3
11	Phosphates as PO_4	µmol/L	1.65	1.58	1.8	1.99	2.15	1.82	1.74	1.56	1.68	1.59	1.98	1.82	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	5.44	3.72	7.32	7.93	5.38	5.04	7.10	6.40	4.00	3.20	4.45	3.9	IS3025(P34)88
13	Petroleum Hydrocarbon	µg/L	12	10	15	14	17	11	22	18	19	8	14	6	PLPL-TPH
14	Total Dissolved Solids	mg/L	38760	37610	39770	38550	37100	36820	37640	37210	37110	36840	37920	37580	IS3025(P16)84Re .02
15	COD	mg/L	15	11	22	18	14	10	17	12	15	10	18	16	APHA(22 nd Edi) 5520-D Open Reflux
А	Flora and Fauna														
16	Primary productivity	mgC/L /day	1.57	0.63	1.72	0.41	1.84	0.69	2.1	0.58	2.52	0.72	1.98	0.52	APHA (22nd Edi) 10200-J
В	Phytoplankton														
17.1	Chlorophyll	mg/m ³	1.74	0.37	1.52	0.412	2.36	0.46	2.62	0.65	2.21	0.34	2.54	0.29	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m ³	2.22	2.5	1.51	2.04	2.96	2.6	1.84	1.63	2.68	2.48	2.95	2.72	APHA (22 nd Edi) 10200-H

Jarrin Dr. ArunBajpai

Lab Manager (Q)

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.).

-O-D

H. T. Shah

Lab Manager

Tele-Fax: (0261)2455751, 2601106, 2601224. E-Mail: pollucon@gmail.com. Website: www.pollucon.com

	DOLLOCON LABORATORIES PVT. LTD
-	Environmental Auditors, Consultants & Analysts,

Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

17.3	Cell Count	No. x 10 ³ /L	202 114	248 64	318 123	256 88	290 78	306 98	APHA (22 nd Edi) 10200-H
17.4	Name of Group Number and name of group species of each group		Bacillario phyceae Navicula sp. Synedra sp. Coscinodi scus sp. Asterionel la sp. Gyrosigm a sp. Cocconeis sp. Sp. Synedra sp. Melosira sp. Green Algae Pandorina sp. Chlorella sp.	sp. Bacillariop Biddulphi hyceae a sp. Melosira	Bacillario phyceae Peridinize m sp. Amphipro ra sp. Asterionel la sp. Cyclotella sp. Gyrosigm a sp. Nitzschia sp. Navicula sp. Pinnularia sp. Rhizosole nia sp. Cyclotella sp. Navicula sp. Cyclotella sp. Navicula sp. Cyclotella sp. Navicula sp. Cyclotella sp. Navicula sp. Cyclotella sp. Navicula sp. Cyclotella sp. Navicula sp. Cyclotella sp. Navicula sp. Cyclotella sp. Navicula sp. Cyclotella sp. Navicula sp. Cyclotella sp. Navicula sp. Cyclotella sp. Navicula sp. Cyclotella sp. Navicula sp. Cyclotella sp. Navicula sp. Cyclotella sp. Navicula sp. Cyclotella sp. Navicula sp. Cyclotella sp. Navicula sp. Cyclotella sp. Navicula sp. Cyclotella Sp. Cyclotella Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp.	Bacillariop hyceae Skeletone ma sp. Melosira sp. Cyclotella sp. Pinnularia sp. Fragillaria sp. Navicula sp. Sp. Navicula sp. Navicula sp. Navicula sp. Navicula sp. Navicula sp. Navicula sp. Nitzschia sp. Sp. Navicula sp. Navicula sp. Nitzschia sp. Navicula sp.	Bacillariop hyceae Sp. Biddulphi a sp. Nitzschia sp. Navicula sp. Asterionel la Syrirella Skeletone mel	Bacillariop hyceae Naviculle Synedra a sp. Gyrosigm Fragillaria a sp. Coscinodi scus sp. Amphipro Asterionel Cyanophy la sp. Ceae Cyclotella sp. Sp. Gyrosigm Sp. sp. Synedra ra sp. sp. Cyanophy a sp. sp. Sp. Synedra ra sp. sp. Synedra ra sp. sp. Synedra ra sp. sp. Synedra ra sp. sp. Synedra ra sp. sp. Synedra ra sp. sp. sp. sp. sp. sp. sp. sp. sp. sp.	АРНА (22 nd Edi) 10200-Н
С	Zooplanktons Abundance	noX10 ³ /							APHA (22 nd Edi)
18.1	(Population)	100 m ³	16	18	20	23	19	17	10200-G
18.2	Name of Group Number and name of group species of each group		Bivalves Gastropods Nematodes Krill Fish egg	Polychaete worms Decapods Molluscans 	Krill Polycleate Nematedoes Cnstaeen Foraminiferus Copepods	Decapods Gastropods 	Bivalves Isopods Copepods Polychaete worms Crustaceans	Nematodes Cnstaeen 	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	8.9	8.3	7.1	9.3	8.4	9.6	APHA (22 nd Edi) 10200-G
D	Microbiological Parar								10200 0
19.1	Total Bacterial Count	CFU/ml	2020	1980	1540	1780	1710	1580	IS 5402:2002
19.2	Total Coliform	/ml	Absent	Absent	Absent	Absent	Absent	Absent	APHA(22 nd Edi)922 1-D
19.3	Ecoli	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS:1622:1981Edi.
	н. т	 . Shah Manager			SURAT-3			Dr. ArunBajpai Lab Manager (Q)	

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.). Tele-Fax: (0261)2455751, 2601106, 2601224. E-Mail: <u>pollucon@gmail.com</u>. Website: <u>www.pollucon.com</u>

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

									2.4(2003-05)
19.4	Enterococcus	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS: 15186:2002
19.5	Salmonella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS: 5887 (P-3)
19.6	Shigella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS: 1887 (P-7)
19.7	Vibrio	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 5887 (P-5)

-O-D

H. T. Shah Lab Manager

forción

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M12 SPM N 22°40'938" E 069°39'191"]

SR.	TEST	UNIT		ER 2017	NOVEMB	-	DECEMB	-		RY 2018	FEBRUA		MARC		TEST
NO.	PARAMETERS		SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	BOTTOM	SURFACE	BOTTOM	METHOD
1	рН		7.82	7.93	8.08	8.11	8.23	8.05	8.35	8.29	8.1	7.95	7.92	7.85	IS3025(P11)83Re .02
2	Temperature	оС	30.6	30.6	29.8	29.6	28.7	28.6	28.8	28.5	28.8	28.7	29.6	29.1	IS3025(P9)84Re. 02
3	Total Suspended Solids	mg/L	310	336	320	390	372	317	288	262	398	340	412	360	IS3025(P17)84Re .02
4	BOD (3 Days @ 27°C)	mg/L	2	2.1	2.6	2.2	3	2	4	3	4.4	3.8	3.2	2.8	IS 3025 (P44)1993Re.03E dition2.1
5	Dissolved Oxygen	mg/L	5.8	5.2	6	5.2	6.6	5.8	5.4	4.9	6.1	5.3	5.5	5.2	IS3025(P38)89Re .99
6	Salinity	ppt	36.6	37.8	40.2	39.7	37.2	36.9	37.5	37.1	36.3	36.1	36.5	35.9	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	APHA(22 nd Edi)552 0D
8	Nitrate as NO ₃	µmol/L	26.2	28.4	27.4	29.1	23.7	19.2	16.6	13.8	24.4	20.2	28.6	25.9	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	2.12	2.44	2.27	2.39	1.8	1.5	2.3	1.9	1.52	1.1	1.3	0.9	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	µmol/L	5.2	4.94	5.71	4.13	2.8	2.4	3.5	3.2	1.95	1.2	1.73	1.35	IS3025(P34)88Cla .2.3
11	Phosphates as PO_4	µmol/L	1.7	1.82	1.5	1.93	1.96	1.56	1.84	1.6	1.9	1.65	2.1	1.9	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	7.582	7.676	7.98	6.52	4.60	3.90	5.80	5.10	3.80	2.30	3	2.2	IS3025(P34)88
13	Petroleum Hydrocarbon	µg/L	16	14	17	12	15	11	17	13	17	14	21	16	PLPL-TPH
14	Total Dissolved Solids	mg/L	36090	35230	39350	38760	37700	37100	37940	37270	36940	36250	37010	36570	IS3025(P16)84Re .02
15	COD	mg/L	20	13	18	11	15	7	20	16	18	14	22	18	APHA(22 nd Edi) 5520-D Open Reflux
А	Flora and Fauna														
16	Primary productivity	mgC/L /day	1.66	0.369	1.553	0.338	1.85	0.58	1.48	0.35	2.9	1.4	3.4	1.8	APHA (22nd Edi) 10200-J
В	Phytoplankton														
17.1	Chlorophyll	mg/m ³	1.354	0.366	1.14	0.347	1.9	0.36	1.5	0.28	3.5	0.85	2.4	0.7	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m ³	1.48	1.99	1.56	1.8	1.6	1.4	1.7	1.35	3.2	2.4	2.1	1.8	APHA (22 nd Edi) 10200-H

- to - to

H. T. Shah Lab Manager

forción

Dr. ArunBajpai Lab Manager (Q)

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.).

Tele-Fax: (0261)2455751, 2601106, 2601224. E-Mail: pollucon@gmail.com. Website: www.pollucon.com

 DOLLOCON LABORATORIES PV1
Environmental Auditors Consultants & Analysts

LTD.

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

17.3	Cell Count	No. x 10 ³ /L	210	54	170	46	260	65	310	72	270	50	240	60	APHA (22 nd Edi) 10200-H
17.4	Name of Group Number and name of group species of each group		Bacillariop hyceae Asterionel la Cyclotella sp. Gyrosigm a sp. Skeletone mel Certaium Gyrosigm a sp. Pinnularia sp. Cyanophy ceae 	Bacillariop hyceae Nitishia Naviculle Nitzschia sp. 	Bacillariop hyceae Navicula sp. Nitzschia sp. Tabellaria sp. Skeletone ma sp. Skeletone ma sp. Cyclotella sp. Cyclotella sp. Pinnularia sp. Fragillaria sp.	Bacillariop hyceae Cyclotella sp. Nitzschia sp. Melosira sp. Synedra sp. Melosira sp. 	Bacillariop hyceae Peridinize m sp. Gyrosigm a Nitzschia sp. Amphipro ra sp. Asterionel la sp. Naviculle Synedra	Bacillariop hyceae Fragillaria sp. Melosira sp. Melrsia Syrirella	Bacillariop hyceae Navicula sp. Gyrosigm a sp. Biddulphi a sp. Fragillaria sp. Coscinodi scus sp. Synedra sp.	Bacillariop hyceae Pinnularia sp. Asterionel la sp. Synedra sp. Gyrosigm a sp. Nitzschia sp. Dianoflagl lates Pinnularia sp. Rhizosole nia sp. 	Bacillariop hyceae Fragillaria sp. Thallasios ira sp. Coscinodi scus sp. Cyclotella sp. Pinnularia sp. Rhizosole nia sp. 	Bacillariop hyceae Melosira sp. Fragillaria sp. Nitzschia sp. Nitzschia sp. 	Bacillariop hyceae Navicula sp. Amphipro ra sp. Navicula sp. Asterionel la sp. Gyrosigm a sp. Cocconeis sp. Nitzschia sp. Green Algae Pandorina sp. Chlorella sp.	Bacillariop hyceae Pinnularia sp. Cyanophy ceae Lyngbya sp. Oscillatori a sp. Oscillatori a sp. Coscinodi scus sp. Navicula sp. Fragillaria sp. Coscinodi scus 	АРНА (22 nd Edi) 10200-Н

-O-D

H. T. Shah Lab Manager

forin

Dr. ArunBajpai Lab Manager (Q)

DOLLOCON LABORATORIES PVT. LTD.

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

С	Zooplanktons								
18.1	Abundance (Population)	noX10 ³ / 100 m ³	23	17	28	32	18	15	APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		Molluscans Gastropods Polychaete worms	Gastropods Polychaetes Decapods	Cnstaeen Nematedoes Polycleate Copepods	Isopods Bivalves Polychaete worms Fish egg Brachiopods Copepods	Molluscans Polychaete worms Decapods 	Fish eggs Cnstaeen Polychaete worms Foraminiferus	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	5.8	6.2	6.6	5.2	9.8	11.6	APHA (22 nd Edi) 10200-G
D	Microbiological Pa	rameters							
19.1	Total Bacterial Count	CFU/m I	2000	1640	1760	1940	1530	1580	IS 5402:2002
19.2	Total Coliform	/ml	Absent	Absent	Absent	Absent	Absent	Absent	APHA(22 nd Edi)922 1-D
19.3	Ecoli	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS:1622:1981Edi. 2.4(2003-05)
19.4	Enterococcus	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 15186 :2002
19.5	Salmonella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS: 5887 (P-3)
19.6	Shigella	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 1887 (P-7)
19.7	Vibrio	/ml	Absent	Absent	Absent	Absent	Absent	Absent	IS : 5887 (P-5)

- CI-D

H. T. Shah Lab Manager

forción

Dr. ArunBajpai Lab Manager (Q)

Environmental Auditors, Consultants & Analysts.

Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF ETP WATER OUTLET

SR.	PARAMETERS	UNIT			RESULTS OF ETP	WATER OUTLET			GPCB Limit	TEST METHOD
NO.	PARAMETERS	UNIT	04/09/2017	07/11/2017	05/12/2017	08/01/2018	06/02/2018	06/03/2018		
1	Colour	Co-pt	30	30	20	30	30	40	100	IS3025(P4)83Re.02
2	рН		6.52	7.24	7.75	6.19	6.25	6.8	6.5 TO 8.5	IS3025(P11)83Re.02
3	Temperature	°C	30	30	29	29	29	31	40	IS3025(P9)84Re.02
4	Total Suspended Solids	mg/L	34	22	56	90	22	48	100	IS3025(P17)84Re.02
5	Total Dissolved Solids	mg/L	1564	1032	1372	1608	1204	1860	2100	IS3025(P16)84Re.02
6	COD	mg/L	96	96	80	94	72	88	100	APHA(22 nd Edi) 5520-D Open Reflux
7	BOD (3 Days @ 27 °C)	mg/L	27	22	19	24	24	24	30	IS 3025 (P44)1993Re.03Edition2.1
8	Chloride as Cl	mg/L	489	505	499	434	434	580	600	IS3025(P32)88Re.99
9	Oil & Grease	mg/L	BDL*	BDL*	BDL*	1.06	BDL*	2.4	10	APHA(22 nd Edi)5520D
10	Sulphate as SO ₄	mg/L	112	122	342	108	105	146	1000	APHA(22 nd Edi)4500 SO ₄ E
11	Ammonical Nitrogen as NH ₃	mg/L	4.15	5.4	2.26	3.2	2.55	2.6	50	IS3025(P34)88Cla.2.3
12	Phenolic Compound	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	0.018	1	IS3025(P43)92Re.03
13	Copper as Cu	mg/L	0.014	0.015	0.19	0.023	0.017	BDL*	3	AAS APHA(22 nd Edi)3111 B
14	Lead as Pb	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	0.1	AAS APHA(22 nd Edi)3111 B
15	Sulphide as S	mg/L	<0.01	BDL*	0.82	< 0.01	BDL*	BDL*	2	APHA(22 nd Edi) 4500-S
16	Cadmium as Cd	mg/L	BDL*	BDL*	0.13	BDL*	BDL*	BDL*	2	AAS APHA(22 nd Edi)3111 B
17	Fluoride as F	mg/L	BDL*	BDL*	0.29	0.17	BDL*	1.9	2	APHA(22 nd Edi) 4500 F D SPANDS

*Below detection limit

Ch-D

H. T. Shah Lab Manager

forción

Dr. ArunBajpai Lab Manager (Q)

ABORATORIES PVT. LTD.

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF STP WATER OUTLET

					ADANI HOUSE STP OUTLET								
SR. NO	TEST PARAMETERS	Unit	Octob			ber-17	December-17		GPCB	TECT METHOD			
			04/10/ 2017	24/10/ 2017	06/11/ 2017	23/11/ 2017	05/12/ 2017	21/12/ 2017	Permissible Limit	TEST METHOD			
1	рН		7.17	7.03	7.28	7.20	7.02	7.25		IS3025(P11)83Re.02			
2	Total Suspended Solids	mg/L	26	26	24	14	26	16	100	IS3025(P17)84Re.02			
3	BOD (3 days @ 270 C)	mg/L	16	18	18	13	18	19	30	IS 3025 (P44)1993Re.03Edition 2.1			
4	Fecal Coliform	MPN/ 100 mL							< 1000	APHA (22ndEdi) 9221 C&E			

	TECT			ADANI HOUSE STP OUTLET										
SR. NO	TEST PARAMETERS	Unit	Janua 08/01/	22/01/	06/02/	ary-18 22/02/	Marc 06/03/	20/03/	GPCB Permissible Limit	TEST METHOD				
1	рН		2018 7.16	2018 7.09	2018 7.01	2018 7.03	2018 6.95	2018 6.56		IS3025(P11)83Re.02				
2	Total Suspended Solids	mg/L	18	22	23	26	16	14	100	IS3025(P17)84Re.02				
3	BOD (3 days @ 270 C)	mg/L	20	18	15	12	18	12	30	IS 3025 (P44)1993Re.03Edition 2.1				
4	Fecal Coliform	MPN/ 100 mL	84	110	430	920	350	920	< 1000	APHA (22ndEdi) 9221 C&E				

 \mathcal{T}

H. T. Shah Lab Manager

forción

DOULOCON LABORATORIES PVT. LTD.

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

			ADANI PORT	– T1 TERMINAL	NR.MARINE BU	ILDING		
Sr. No	Date of Sampling	Particulate Matter (PM10) μg/m ³	Particulate Matter (PM 2.5) µg/m ³	Sulphur Dioxide (SO2) µg/m ³	Oxides of Nitrogen (NO2) μg/m ³	Carbon Monoxide as CO mg/m ³	Hydrocarbon as CH4 mg/m ³	Benzene as C ₆ H ₆ µg/m³
1	03/10/2017	68.52	32.43	9.58	20.44	0.41	BDL*	BDL*
2	06/10/2017	57.81	28.68	11.90	26.52	0.53	BDL*	BDL*
3	10/10/2017	84.65	39.49	14.47	35.36	0.69	BDL*	BDL*
4	13/10/2017	55.35	23.70	5.59	15.72	0.11	BDL*	BDL*
5	17/10/2017	91.70	53.67	25.44	31.44	0.44	BDL*	BDL*
6	20/10/2017	88.41	37.41	13.02	19.34	0.17	BDL*	BDL*
7	24/10/2017	72.40	40.32	16.13	28.73	0.48	BDL*	BDL*
8	27/10/2017	53.19	26.61	12.93	34.07	0.77	BDL*	BDL*
9	31/10/2017	60.58	29.52	15.86	37.33	0.61	BDL*	BDL*
10	03/11/2017	63.78	41.57	8.87	31.34	0.61	BDL*	BDL*
11	07/11/2017	46.79	20.37	15.48	37.77	0.99	BDL*	BDL*
12	10/11/2017	54.61	24.53	20.41	41.38	0.79	BDL*	BDL*
13	14/11/2017	77.57	33.67	13.71	39.29	0.88	BDL*	BDL*
14	17/11/2017	68.58	40.74	10.15	17.66	0.15	BDL*	BDL*
15	21/11/2017	83.42	38.66	23.47	34.21	0.58	BDL*	BDL*
16	24/11/2017	70.37	29.52	12.10	26.21	0.22	BDL*	BDL*
17	28/11/2017	62.61	32.43	7.10	22.99	0.55	BDL*	BDL*
18	01/12/2017	68.59	27.83	7.03	18.28	0.40	BDL*	BDL*
19	05/12/2017	59.39	30.20	12.33	28.17	0.48	BDL*	BDL*
20	08/12/2017	63.40	23.46	9.85	15.12	0.21	BDL*	BDL*
21	12/12/2017	73.40	41.35	11.64	24.21	0.23	BDL*	BDL*
22	15/12/2017	48.40	19.55	13.52	35.02	0.86	BDL*	BDL*
23	19/12/2017	57.23	26.83	20.75	38.54	0.71	BDL*	BDL*
24	22/12/2017	80.62	38.32	8.87	29.88	0.45	BDL*	BDL*
25	26/12/2017	66.30	35.53	5.04	25.53	0.30	BDL*	BDL*
26	29/12/2017	78.28	43.39	14.09	34.25	0.74	BDL*	BDL*
27	02/01/2018	86.80	48.64	14.25	32.58	0.27	BDL*	BDL*
28	05/01/2018	76.80	41.35	5.65	16.71	0.39	BDL*	BDL*
29	09/01/2018	81.49	36.53	11.86	26.41	0.63	BDL*	BDL*
30	12/01/2018	79.33	45.43	13.07	30.61	0.95	BDL*	BDL*

Continue ...

61 3

H. T. Shah Lab Manager

forción

LABORATORIES PVT. LTD.

6

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

			ADANI PORT -	T1 TERMINAL	IR. (MARINE BU	ILDING)		
Sr.N o.	Date of Sampling	Particulate Matter (PM10) μg/m ³	Particulate Matter (PM 2.5) µg/m ³	Sulphur Dioxide (SO2) µg/m ³	Oxides of Nitrogen (NO2) µg/m ³	Carbon Monoxide as CO mg/m³	Hydrocarbon as CH4 mg/m ³	Benzene as C₀H₀ µg/m³
31	16/01/2018	84.57	32.37	6.15	19.16	0.55	BDL*	BDL*
32	19/01/2018	73.40	39.40	19.23	34.49	0.93	BDL*	BDL*
33	23/01/2018	94.30	47.60	21.51	35.46	0.53	BDL*	BDL*
34	26/01/2018	82.29	46.39	10.42	22.36	0.40	BDL*	BDL*
35	30/01/2018	92.41	55.38	17.75	25.44	0.87	BDL*	BDL*
36	02/02/2018	67.84	29.75	15.31	33.26	0.40	BDL*	BDL*
37	06/02/2018	82.48	47.84	12.66	29.29	0.19	BDL*	BDL*
38	09/02/2018	95.62	53.42	10.71	22.24	0.48	BDL*	BDL*
39	13/02/2018	74.33	39.40	11.47	40.98	0.74	BDL*	BDL*
40	16/02/2018	93.40	50.59	18.15	30.37	0.60	BDL*	BDL*
41	20/02/2018	72.41	41.52	9.98	17.84	0.42	BDL*	BDL*
42	23/02/2018	62.41	26.46	13.27	35.25	0.39	BDL*	BDL*
43	27/02/2018	83.52	44.39	16.17	31.34	0.64	BDL*	BDL*
44	02/03/2018	81.43	37.86	15.25	29.83	0.54	BDL*	BDL*
45	06/03/2018	90.38	53.42	13.73	26.41	0.63	BDL*	BDL*
46	09/03/2018	84.57	35.70	20.32	32.57	0.17	BDL*	BDL*
47	13/03/2018	67.78	40.48	12.64	37.41	0.38	BDL*	BDL*
48	16/03/2018	79.39	33.70	9.77	35.21	0.68	BDL*	BDL*
49	20/03/2018	62.10	29.37	7.24	16.72	0.27	BDL*	BDL*
50	23/03/2018	82.41	45.35	11.95	42.36	0.37	BDL*	BDL*
51	27/03/2018	70.38	34.74	18.39	34.48	0.50	BDL*	BDL*
52	30/03/2018	88.59	48.64	10.84	31.36	0.40	BDL*	BDL*
	TEST METHOD	IS:5182(Part 23):Gravimetric CPCB - Method (Vol.I,May-2011)	Gravimetric- CPCB - Method (Vol.I,May-2011)	IS:5182(Part II):Improved West and Gaeke	IS:5182(Part VI):Modified Jacob & Hochheiser (NaOH-NaAsO2)	NDIR Digital Gas Analyzer	SOP: HC: GC/GCMS/Gas analyzer	IS 5182 (Part XI):2006/CPCB Method

*Below detection limit

61 \sim

H. T. Shah Lab Manager

forción

BOULOCON LABORATORIES PVT. LTD.

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

				NEAR FIRE S	TATION			
Sr. No.	Date of Sampling	Particulate Matter (PM10) µg/m ³	Particulate Matter (PM 2.5) µg/m ³	Sulphur Dioxide (SO2) µg/m ³	Oxides of Nitrogen (NO2) µg/m ³	Carbon Monoxide as CO mg/m³	Hydrocarbon as CH4 mg/m ³	Benzene as C₀H₀ µg/m³
1	03/10/2017	75.41	34.57	11.27	40.33	0.65	BDL*	BDL*
2	06/10/2017	81.59	42.49	18.45	23.48	0.74	BDL*	BDL*
3	10/10/2017	92.08	51.65	21.18	33.70	0.32	BDL*	BDL*
4	13/10/2017	66.20	28.32	9.80	21.18	0.19	BDL*	BDL*
5	17/10/2017	85.52	44.55	17.53	37.43	0.58	BDL*	BDL*
6	20/10/2017	76.50	30.41	23.74	42.36	0.42	BDL*	BDL*
7	24/10/2017	83.41	47.49	27.18	34.62	0.38	BDL*	BDL*
8	27/10/2017	79.41	35.41	15.04	25.37	0.40	BDL*	BDL*
9	31/10/2017	68.68	26.66	20.72	41.44	0.78	BDL*	BDL*
10	03/11/2017	84.62	47.49	20.12	35.31	0.50	BDL*	BDL*
11	07/11/2017	72.32	32.49	13.82	28.69	0.52	BDL*	BDL*
12	10/11/2017	64.62	39.57	18.23	45.80	1.04	BDL*	BDL*
13	14/11/2017	81.23	36.66	22.21	36.78	0.42	BDL*	BDL*
14	17/11/2017	90.38	51.65	7.17	23.45	0.26	BDL*	BDL*
15	21/11/2017	78.68	35.41	16.15	40.00	0.79	BDL*	BDL*
16	24/11/2017	87.47	38.74	23.41	38.42	0.55	BDL*	BDL*
17	28/11/2017	67.29	28.74	9.77	33.51	0.85	BDL*	BDL*
18	01/12/2017	74.48	31.65	9.62	28.46	0.64	BDL*	BDL*
19	05/12/2017	67.60	37.22	19.81	32.24	0.37	BDL*	BDL*
20	08/12/2017	85.63	44.38	7.90	21.25	0.27	BDL*	BDL*
21	12/12/2017	92.39	53.28	17.77	35.21	0.36	BDL*	BDL*
22	15/12/2017	76.49	33.56	15.21	25.33	0.53	BDL*	BDL*
23	19/12/2017	69.43	29.41	23.01	41.14	0.85	BDL*	BDL*
24	22/12/2017	72.29	35.60	14.86	37.06	0.66	BDL*	BDL*
25	26/12/2017	52.07	32.40	16.59	22.24	0.48	BDL*	BDL*
26	29/12/2017	89.28	50.33	18.01	31.13	0.60	BDL*	BDL*
27	02/01/2018	68.39	32.52	10.41	19.16	0.36	BDL*	BDL*
28	05/01/2018	82.40	45.88	15.86	25.33	0.65	BDL*	BDL*
29	09/01/2018	78.50	33.19	18.39	37.51	0.48	BDL*	BDL*
30	12/01/2018	85.32	41.43	16.66	42.40	0.78	BDL*	BDL*

Continue ...

61 to-

H. T. Shah Lab Manager

forción

Dr. ArunBajpai Lab Manager (Q)

50

LABORATORIES PVT. LTD.

6

Cleaner Floduction / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

				NEAR FIRE ST	ATION			
Sr.N o.	Date of Sampling	Particulate Matter (PM10) µg/m ³	Particulate Matter (PM 2.5) µg/m ³	Sulphur Dioxide (SO2) µg/m ³	Oxides of Nitrogen (NO2) μg/m ³	Carbon Monoxide as CO mg/m³	Hydrocarbon as CH4 mg/m ³	Benzene as C ₆ H ₆ µg/m ³
31	16/01/2018	74.73	29.53	22.51	31.74	0.85	BDL*	BDL*
32	19/01/2018	62.48	26.66	24.83	39.34	0.57	BDL*	BDL*
33	23/01/2018	76.81	34.34	14.12	26.45	0.73	BDL*	BDL*
34	26/01/2018	51.58	28.82	19.26	29.46	0.50	BDL*	BDL*
35	30/01/2018	84.29	49.45	14.20	34.33	0.66	BDL*	BDL*
36	02/02/2018	61.51	26.41	13.22	21.69	0.49	BDL*	BDL*
37	06/02/2018	76.49	41.26	9.77	18.68	0.26	BDL*	BDL*
38	09/02/2018	89.52	48.62	15.41	34.71	0.36	BDL*	BDL*
39	13/02/2018	79.17	46.58	19.60	37.06	0.58	BDL*	BDL*
40	16/02/2018	85.63	43.63	21.56	32.54	0.44	BDL*	BDL*
41	20/02/2018	68.57	33.56	17.18	28.32	0.62	BDL*	BDL*
42	23/02/2018	67.48	29.41	10.58	23.14	0.53	BDL*	BDL*
43	27/02/2018	75.21	40.34	14.19	20.89	0.46	BDL*	BDL*
44	02/03/2018	92.33	40.93	18.22	26.41	0.41	BDL*	BDL*
45	06/03/2018	85.63	47.37	11.13	23.38	0.44	BDL*	BDL*
46	09/03/2018	90.80	52.61	22.53	36.97	0.25	BDL*	BDL*
47	13/03/2018	73.63	43.38	20.11	44.01	0.47	BDL*	BDL*
48	16/03/2018	86.72	37.56	16.87	29.57	0.55	BDL*	BDL*
49	20/03/2018	78.38	46.83	13.77	22.69	0.39	BDL*	BDL*
50	23/03/2018	89.22	51.66	8.85	33.01	0.52	BDL*	BDL*
51	27/03/2018	79.60	39.64	12.90	31.79	0.34	BDL*	BDL*
52	30/03/2018	83.37	45.38	16.04	24.45	0.58	BDL*	BDL*
	TEST METHOD	IS:5182(Part 23):Gravimetric CPCB - Method (Vol.I,May-2011)	Gravimetric- CPCB - Method (Vol.I,May-2011)	IS:5182(Part II):Improved West and Gaeke	IS:5182(Part VI):Modified Jacob & Hochheiser (NaOH-NaAsO2)	NDIR Digital Gas Analyzer	SOP: HC: GC/GCMS/Gas analyzer	IS 5182 (Part XI):2006/CPCB Method

*Below detection limit

() 3

H. T. Shah Lab Manager

forción

LABORATORIES PVT. LTD.

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

				ADANI HO	DUSE			
Sr. No	Date of Sampling	Particulate Matter (PM10) μg/m ³	Particulate Matter (PM 2.5) µg/m ³	Sulphur Dioxide (SO2) µg/m ³	Oxides of Nitrogen (NO2) µg/m ³	Carbon Monoxide as CO mg/m ³	Hydrocarbon as CH4 mg/m ³	Benzene as C ₆ H ₆ µg/m ³
1	03/10/2017	70.29	38.73	16.62	24.86	0.33	BDL*	BDL*
2	06/10/2017	64.59	33.73	13.21	29.47	0.64	BDL*	BDL*
3	10/10/2017	76.37	36.64	8.97	30.50	0.96	BDL*	BDL*
4	13/10/2017	60.13	25.40	11.77	28.29	0.23	BDL*	BDL*
5	17/10/2017	74.49	40.74	22.28	44.80	0.52	BDL*	BDL*
6	20/10/2017	85.73	35.40	15.00	32.54	0.25	BDL*	BDL*
7	24/10/2017	66.89	28.73	20.59	38.46	0.62	BDL*	BDL*
8	27/10/2017	72.59	30.40	7.95	22.71	0.82	BDL*	BDL*
9	31/10/2017	53.37	23.74	18.55	26.52	0.71	BDL*	BDL*
10	03/11/2017	55.48	22.49	18.29	43.59	0.81	BDL*	BDL*
11	07/11/2017	65.58	27.48	11.08	28.51	1.09	BDL*	BDL*
12	10/11/2017	71.72	18.74	13.47	35.31	0.92	BDL*	BDL*
13	14/11/2017	69.61	30.40	10.97	32.37	1.26	BDL*	BDL*
14	17/11/2017	78.60	35.40	12.92	26.36	0.30	BDL*	BDL*
15	21/11/2017	62.42	28.73	17.49	37.40	0.68	BDL*	BDL*
16	24/11/2017	82.63	43.72	21.79	29.57	0.33	BDL*	BDL*
17	28/11/2017	53.19	25.40	15.85	25.52	0.44	BDL*	BDL*
18	01/12/2017	57.49	21.38	9.88	22.24	0.31	BDL*	BDL*
19	05/12/2017	61.12	34.30	17.21	39.84	0.62	BDL*	BDL*
20	08/12/2017	78.60	26.55	14.88	24.46	0.32	BDL*	BDL*
21	12/12/2017	88.59	48.63	8.61	17.79	0.18	BDL*	BDL*
22	15/12/2017	70.37	29.63	11.89	20.15	0.94	BDL*	BDL*
23	19/12/2017	52.28	23.71	15.86	30.58	0.79	BDL*	BDL*
24	22/12/2017	63.42	31.21	18.50	33.36	0.55	BDL*	BDL*
25	26/12/2017	58.57	20.59	6.15	15.57	0.63	BDL*	BDL*
26	29/12/2017	84.29	46.84	10.76	28.46	0.78	BDL*	BDL*
27	02/01/2018	83.38	38.47	13.36	24.25	0.41	BDL*	BDL*
28	05/01/2018	62.69	32.46	9.58	15.27	0.82	BDL*	BDL*
29	09/01/2018	72.37	28.34	15.87	36.41	0.81	BDL*	BDL*
30	12/01/2018	65.41	35.63	11.42	26.35	0.97	BDL*	BDL*

Continue ...

- (-) to-

H. T. Shah Lab Manager

forción

52

6

LABORATORIES PVT. LTD.

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

				ADANI HO	USE			
Sr. No.	Date of Sampling	Particulate Matter (PM10) µg/m ³	Particulate Matter (PM 2.5) µg/m ³	Sulphur Dioxide (SO2) µg/m ³	Oxides of Nitrogen (NO2) μg/m ³	Carbon Monoxide as CO mg/m ³	Hydrocarbon as CH4 mg/m ³	Benzene as C₅H₅ µg/m³
31	16/01/2018	58.39	22.46	18.97	37.19	0.40	BDL*	BDL*
32	19/01/2018	78.30	33.42	12.65	29.64	1.04	BDL*	BDL*
33	23/01/2018	64.20	26.42	19.46	38.32	0.60	BDL*	BDL*
34	26/01/2018	74.49	39.42	7.91	18.19	0.24	BDL*	BDL*
35	30/01/2018	68.62	42.26	10.87	28.26	0.94	BDL*	BDL*
36	02/02/2018	57.43	24.71	8.95	15.19	0.61	BDL*	BDL*
37	06/02/2018	70.50	38.30	10.51	20.97	0.31	BDL*	BDL*
38	09/02/2018	64.81	35.84	13.57	26.47	0.63	BDL*	BDL*
39	13/02/2018	59.42	30.34	9.64	18.22	0.69	BDL*	BDL*
40	16/02/2018	74.49	33.59	11.32	24.71	0.82	BDL*	BDL*
41	20/02/2018	54.52	29.34	15.96	31.46	0.38	BDL*	BDL*
42	23/02/2018	82.42	40.38	17.73	29.83	0.45	BDL*	BDL*
43	27/02/2018	61.48	36.76	12.77	25.08	0.73	BDL*	BDL*
44	02/03/2018	74.61	32.63	9.84	21.46	0.80	BDL*	BDL*
45	06/03/2018	66.68	40.38	10.36	29.34	0.71	BDL*	BDL*
46	09/03/2018	77.58	33.26	16.76	18.04	0.29	BDL*	BDL*
47	13/03/2018	62.51	36.76	7.92	15.40	0.57	BDL*	BDL*
48	16/03/2018	72.37	30.38	14.79	22.56	0.64	BDL*	BDL*
49	20/03/2018	57.61	24.84	5.61	19.26	0.18	BDL*	BDL*
50	23/03/2018	76.61	42.55	13.46	36.19	0.42	BDL*	BDL*
51	27/03/2018	65.59	28.59	8.79	20.36	0.60	BDL*	BDL*
52	30/03/2018	59.30	34.34	13.03	27.51	0.36	BDL*	BDL*
	TEST METHOD	IS:5182(Part 23):Gravimetric CPCB - Method (Vol.I,May-2011)	Gravimetric- CPCB - Method (Vol.I,May-2011)	IS:5182(Part II):Improved West and Gaeke	IS:5182(Part VI):Modified Jacob & Hochheiser (NaOH-NaAsO2)	NDIR Digital Gas Analyzer	SOP: HC: GC/GCMS/Gas analyzer	IS 5182 (Part XI):2006/CPCB Method

*Below detection limit

61 \sim

H. T. Shah Lab Manager

forción

DOLLOCON LABORATORIES PVT. LTD.

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

				CT-3 DG H	OUSE			
Sr. No.	Date of Sampling	Particulate Matter (PM10) µg/m ³	Particulate Matter (PM 2.5) µg/m ³	Sulphur Dioxide (SO2) µg/m ³	Oxides of Nitrogen (NO2) µg/m ³	Carbon Monoxide as CO mg/m³	Hydrocarbon as CH ₄ mg/m ³	Benzene as C ₆ H ₆ µg/m ³
1	03/10/2017	53.62	26.63	13.96	27.63	0.63	BDL*	BDL*
2	06/10/2017	73.60	37.44	15.69	20.44	0.94	BDL*	BDL*
3	10/10/2017	68.61	32.45	18.89	36.60	0.85	BDL*	BDL*
4	13/10/2017	48.50	18.72	7.85	18.65	0.15	BDL*	BDL*
5	17/10/2017	80.58	48.64	20.15	38.59	0.36	BDL*	BDL*
6	20/10/2017	69.40	29.54	17.49	23.74	0.31	BDL*	BDL*
7	24/10/2017	78.48	42.44	24.68	34.99	0.26	BDL*	BDL*
8	27/10/2017	58.37	23.30	8.78	31.31	0.73	BDL*	BDL*
9	31/10/2017	46.43	20.39	10.50	28.55	0.45	BDL*	BDL*
10	03/11/2017	70.62	30.37	24.25	39.73	0.35	BDL*	BDL*
11	07/11/2017	53.07	24.55	6.19	34.33	0.96	BDL*	BDL*
12	10/11/2017	41.68	27.46	8.08	31.45	0.60	BDL*	BDL*
13	14/11/2017	60.50	25.38	18.49	42.49	1.11	BDL*	BDL*
14	17/11/2017	83.60	45.35	5.60	20.42	0.20	BDL*	BDL*
15	21/11/2017	72.39	32.45	20.08	25.75	0.46	BDL*	BDL*
16	24/11/2017	61.60	26.63	16.96	33.11	0.40	BDL*	BDL*
17	28/11/2017	47.53	22.47	12.41	29.43	0.84	BDL*	BDL*
18	01/12/2017	62.40	24.34	11.82	25.35	0.73	BDL*	BDL*
19	05/12/2017	52.40	27.52	21.22	36.07	0.22	BDL*	BDL*
20	08/12/2017	72.40	30.41	5.91	18.53	0.14	BDL*	BDL*
21	12/12/2017	68.50	39.57	14.18	29.19	0.26	BDL*	BDL*
22	15/12/2017	57.28	23.38	8.90	30.58	0.80	BDL*	BDL*
23	19/12/2017	45.63	20.29	18.45	28.72	0.50	BDL*	BDL*
24	22/12/2017	66.30	28.23	10.54	22.98	0.34	BDL*	BDL*
25	26/12/2017	71.18	41.28	13.88	19.46	0.70	BDL*	BDL*
26	29/12/2017	67.28	37.27	16.91	38.71	0.96	BDL*	BDL*
27	02/01/2018	76.80	44.17	5.54	16.29	0.18	BDL*	BDL*
28	05/01/2018	62.40	37.43	12.35	19.40	0.89	BDL*	BDL*
29	09/01/2018	55.39	24.34	19.04	32.87	0.29	BDL*	BDL*
30	12/01/2018	70.33	32.41	15.18	36.38	0.77	BDL*	BDL*

3

H. T. Shah Lab Manager

forción

544, BelgiumTowers, Ring Road, Opp. Linear Bus Stand, Surat-395003. (Guj.). Tele-Fax: (0261)2455751, 2601106, 2601224. E-Mail: <u>pollucon@gmail.com</u>. Website: <u>www.pollucon.com</u>

DOLLOCON LABORATORIES PVT. LTD.

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

	CT-3 DG HOUSE										
Sr. No.	Date of Sampling	Particulate Matter (PM10) µg/m ³	Particulate Matter (PM 2.5) µg/m ³	Sulphur Dioxide (SO2) µg/m ³	Oxides of Nitrogen (NO2) μg/m ³	Carbon Monoxide as CO mg/m³	Hydrocarbon as CH4 mg/m ³	Benzene as C₅H₅ µg/m³			
31	16/01/2018	64.90	25.85	10.52	23.58	0.96	BDL*	BDL*			
32	19/01/2018	52.40	22.17	17.29	25.55	0.64	BDL*	BDL*			
33	23/01/2018	71.50	42.43	16.75	31.46	0.47	BDL*	BDL*			
34	26/01/2018	60.20	35.30	15.00	26.41	0.33	BDL*	BDL*			
35	30/01/2018	58.31	30.37	8.88	17.96	0.74	BDL*	BDL*			
36	02/02/2018	51.18	22.71	11.57	26.47	0.66	BDL*	BDL*			
37	06/02/2018	66.67	35.38	5.07	15.62	0.14	BDL*	BDL*			
38	09/02/2018	56.30	25.85	17.25	29.29	0.21	BDL*	BDL*			
39	13/02/2018	64.47	33.25	13.58	33.22	0.47	BDL*	BDL*			
40	16/02/2018	78.63	36.35	15.97	25.49	0.65	BDL*	BDL*			
41	20/02/2018	61.42	29.32	10.42	20.79	0.71	BDL*	BDL*			
42	23/02/2018	76.31	32.41	19.36	28.20	0.33	BDL*	BDL*			
43	27/02/2018	69.42	39.36	9.01	16.27	0.55	BDL*	BDL*			
44	02/03/2018	66.49	29.36	11.88	32.28	0.65	BDL*	BDL*			
45	06/03/2018	75.52	43.50	8.86	20.69	0.53	BDL*	BDL*			
46	09/03/2018	62.40	26.22	14.00	15.40	0.13	BDL*	BDL*			
47	13/03/2018	55.63	23.38	9.90	23.23	0.62	BDL*	BDL*			
48	16/03/2018	65.51	28.40	5.39	28.20	0.46	BDL*	BDL*			
49	20/03/2018	51.48	32.75	10.30	26.59	0.23	BDL*	BDL*			
50	23/03/2018	68.50	37.81	16.63	39.43	0.32	BDL*	BDL*			
51	27/03/2018	59.23	25.43	14.30	24.07	0.19	BDL*	BDL*			
52	30/03/2018	70.33	41.37	6.93	18.75	0.30	BDL*	BDL*			
	TEST METHOD	IS:5182(Part 23):Gravimetric CPCB - Method (Vol.I,May-2011)	Gravimetric- CPCB - Method (Vol.I,May-2011)	IS:5182(Part II):Improved West and Gaeke	IS:5182(Part VI):Modified Jacob & Hochheiser (NaOH-NaAsO2)	NDIR Digital Gas Analyzer	SOP: HC: GC/GCMS/Gas analyzer	IS 5182 (Part XI):2006/CPCB Method			

*Below detection limit

¢, $\overline{\mathbf{x}}$

H. T. Shah Lab Manager

forción

LABORATORIES PVT. LTD.

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF NOISE LEVEL MONITORING

Result of Noise level monitoring [Day Time]

			T1	TERMINAL NR.	ARINE BUILDIN	IG	
SR. NO.	Name of Location			Result [L	eq dB(A)]		
no.	Sampling Date & Time	06/10/2017	21/11/2017	12/12/2017	19/01/2018	09/02/2018	02/03/2018
1	6:00-7:00	63.1	62.0	64.1	65.2	69.4	62.8
2	7:00-8:00	68.4	68.9	68.8	62.7	62.4	63.4
3	8:00-9:00	62.4	70.1	65.1	73.4	65.1	61.8
4	9:00-10:00	69.7	71.2	72.1	73.1	71.4	69.4
5	10:00-11:00	71.8	71.0	71.4	70.6	73.4	64.7
6	11:00-12:00	68.4	68.0	68.9	71.4	69.4	67.2
7	12:00-13:00	63.1	68.9	66.1	68.4	65.1	60.4
8	13:00-14:00	61.8	67.2	68.8	62.8	62.8	68.0
9	14:00-15:00	65.6	68.1	68.2	63.2	65.4	70.8
10	15:00-16:00	62.4	65.2	66.1	66.4	69.4	72.4
11	16:00-17:00	68.4	61.6	62.4	66.9	61.4	65.9
12	17:00-18:00	65.2	68.8	64.5	69.4	60.4	69.8
13	18:00-19:00	63.4	65.2	65.3	65.8	63.4	62.8
14	19:00-20:00	61.4	67.8	63.8	66.4	62.8	68.7
15	20:00-21:00	61.8	69.5	68.1	63.8	62.8	62.9
16	21:00-22:00	63.4	60.8	62.5	67.6	68.1	69.7
	Day Time Limit*			75 Leo	dB(A)		

Result of Noise level monitoring [Night Time]

SR.	Name of Location		tT	L TERMINAL NR.	MARINE BUILDIN	IG				
NO.		Result [Leq dB(A)]								
1	Sampling Date & Time	06/10/2017 & 07/10/2017	21/11/2017 & 22/11/2017	12/12/2017 & 13/12/2017	19/01/2018 & 20/01/2018	09/02/2018 & 10/02/2018	02/03/2018 & 03/03/2018			
2	22:00-23:00	69.1	60.8	63.1	65.5	65.4	68.4			
3	23:00-00:00	65.6	63.9	60.4	68.4	62.8	65.5			
4	00:00-01:00	65.1	58.7	59.1	64.1	62.9	62.4			
5	01:00-02:00	62.4	62.3	65.4	63.4	65.1	63.1			
6	02:00-03:00	66.2	60.0	63.1	65.1	61.3	61.4			
7	03:00-04:00	61.2	59.3	64.4	61.8	63.7	68.4			
8	04:00-05:00	68.4	57.3	64.9	62.4	65.1	64.2			
9	05:00-06:00	61.8	59.0	62.8	61.4	62.9	63.1			
	Night Time Limit*			70 Leo	ן dB(A)					

61 3

H. T. Shah Lab Manager

forción

LABORATORIES PVT. LTD.

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF NOISE LEVEL MONITORING

Result of Noise level monitoring [Day Time]

	Name of Location			NEAR FIRE	STATION		
SR. NO.	Name of Location			Result [L	eq dB(A)]		
nor	Sampling Date & Time	13/10/2017	10/11/2017	05/12/2017	12/01/2018	16/02/2018	20/03/2018
1	6:00-7:00	70.8	62.8	62.4	60.1	65.1	60.3
2	7:00-8:00	69.4	61.0	64.2	63.4	62.7	62.8
3	8:00-9:00	69.1	68.7	62.8	62.1	68.4	68.4
4	9:00-10:00	65.4	67.5	68.2	68.4	64.1	64.1
5	10:00-11:00	62.8	69.8	65.1	64.7	63.7	66.1
6	11:00-12:00	66.4	65.3	66.1	67.6	65.9	72.1
7	12:00-13:00	62.8	67.9	72.1	69.1	62.4	70.4
8	13:00-14:00	65.1	70.1	70.1	62.8	61.8	70.6
9	14:00-15:00	66.8	71.2	69.1	68.4	63.4	68.1
10	15:00-16:00	63.4	69.7	65.1	62.5	69.4	62.7
11	16:00-17:00	66.4	63.8	68.1	68.8	70.4	65.4
12	17:00-18:00	59.8	63.5	62.4	68.2	63.4	61.8
13	18:00-19:00	61.8	68.2	66.3	68.1	62.8	62.8
14	19:00-20:00	63.7	65.1	63.4	63.4	61.4	64.7
15	20:00-21:00	61.8	65.3	61.4	65.3	62.4	63.1
16	21:00-22:00	62.8	69.1	62.8	63.7	61.8	61.5
	Day Time Limit*			75 Leo	dB(A)		

Result of Noise level monitoring [Night Time]

SR.	Name of Location			NEAR FIRE	STATION					
NO.		Result [Leq dB(A)]								
1	Sampling Date & Time	13/10/2017 & 14/10/2017	10/11/2017 & 11/11/2017	05/12/2017 & 06/12/2017	12/01/2018 & 13/01/2018	16/02/2018 & 17/02/2018	20/03/2018 & 21/03/2018			
2	22:00-23:00	68.1	64.2	68.4	68.4	68.4	65.1			
3	23:00-00:00	65.2	67.9	65.5	65.1	62.4	62.4			
4	00:00-01:00	62.4	65.3	62.4	66.1	60.4	67.2			
5	01:00-02:00	67.1	57.2	63.1	62.1	61.8	63.4			
6	02:00-03:00	62.4	62.2	60.4	60.4	59.4	60.5			
7	03:00-04:00	64.1	61.3	61.8	60.7	65.4	68.4			
8	04:00-05:00	65.1	64.8	63.7	63.1	61.8	65.2			
9	05:00-06:00	62.8	60.4	62.8	61.1	63.4	62.1			
	Night Time Limit*			70 Leo	q dB(A)					

61 to-

H. T. Shah Lab Manager

forción

LABORATORIES PVT. LTD.

Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF NOISE LEVEL MONITORING

C D	Name of Location			ADANI	HOUSE					
SR. NO.		Result [Leq dB(A)]								
	Sampling Date & Time	10/10/2017	07/11/2017	08/12/2017	23/01/2018	13/02/2018	13/03/2018			
1	6:00-7:00	68.4	63.9	58.1	65.1	62.4	59.4			
2	7:00-8:00	62.3	67.2	63.4	62.4	63.8	65.1			
3	8:00-9:00	63.1	70.6	62.8	64.3	68.1	62.7			
4	9:00-10:00	61.8	71.2	68.4	68.8	60.1	63.8			
5	10:00-11:00	73.4	70.8	65.2	70.3	62.8	68.4			
6	11:00-12:00	65.1	68.0	71.4	70.1	65.1	64.1			
7	12:00-13:00	62.8	64.3	68.8	69.1	61.4	62.1			
8	13:00-14:00	68.4	69.1	65.5	65.5	63.8	61.7			
9	14:00-15:00	68.2	68.1	63.4	63.1	69.4	69.1			
10	15:00-16:00	68.4	63.1	69.1	62.8	64.7	70.5			
11	16:00-17:00	65.1	65.2	66.1	65.1	70.4	65.2			
12	17:00-18:00	61.8	69.9	62.4	61.9	70.5	62.8			
13	18:00-19:00	60.4	67.2	68.4	68.4	68.1	65.6			
14	19:00-20:00	67.1	64.8	65.1	65.3	62.4	63.2			
15	20:00-21:00	63.4	58.1	62.8	62.1	65.5	61.8			
16	21:00-22:00	65.1	67.9	62.1	62.9	63.4	68.4			
Day Time Limit*				75 Leo	dB(A)					

Result of Noise level monitoring [Day Time]

Result of Noise level monitoring [Night Time]

SR.	Name of Location			ADANI	HOUSE					
NO.		Result [Leq dB(A)]								
1	Sampling Date & Time	10/10/2017 & 11/10/2017	07/11/2017 & 08/11/2017	08/12/2017 & 09/12/2017	23/01/2018 & 24/01/2018	13/02/2018 & 14/02/2018	13/03/2018 & 14/03/2018			
2	22:00-23:00	60.4	63.1	65.5	65.7	63.4	68.4			
3	23:00-00:00	68.4	63.9	62.1	67.1	68.1	64.2			
4	00:00-01:00	65.2	65.8	63.4	61.5	59.4	62.1			
5	01:00-02:00	63.4	58.2	68.1	60.4	60.4	62.1			
6	02:00-03:00	61.4	65.3	62.7	60.3	62.4	60.4			
7	03:00-04:00	63.4	62.8	60.1	62.8	60.7	64.8			
8	04:00-05:00	68.1	64.2	60.9	64.1	61.8	63.1			
9	05:00-06:00	64.1	58.3	63.1	62.9	63.7	61.7			
	Night Time Limit*			70 Leo	q dB(A)					

-07 to

H. T. Shah Lab Manager

forción

58

LABORATORIES PVT. LTD.

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF NOISE LEVEL MONITORING

Result of Noise level monitoring [Day Time]

	Name of Location			CT-3 DG	HOUSE		
SR. NO.	Name of Location			Result [L	eq dB(A)]		
no.	Sampling Date & Time	23/10/2017	17/11/2017	15/12/2017	09/01/2018	20/02/2018	09/03/2018
1	6:00-7:00	58.1	63.1	62.2	61.5	59.1	58.4
2	7:00-8:00	60.2	63.8	59.1	59.4	63.4	60.4
3	8:00-9:00	68.4	65.9	63.1	63.4	68.4	69.7
4	9:00-10:00	62.4	64.0	62.4	65.5	65.4	64.0
5	10:00-11:00	61.9	68.8	62.8	62.3	61.4	61.5
6	11:00-12:00	63.4	60.1	65.3	63.8	62.8	62.4
7	12:00-13:00	68.4	65.3	63.4	64.1	62.4	61.8
8	13:00-14:00	68.1	68.5	61.1	62.8	61.8	64.7
9	14:00-15:00	61.8	61.7	62.8	69.2	68.7	62.8
10	15:00-16:00	59.4	62.3	68.4	67.2	65.3	61.8
11	16:00-17:00	60.7	68.9	67.1	66.1	63.4	63.4
12	17:00-18:00	63.4	60.2	69.2	68.4	62.8	61.8
13	18:00-19:00	61.8	65.2	69.1	68.3	62.8	67.4
14	19:00-20:00	65.7	67.9	63.1	62.4	63.4	61.9
15	20:00-21:00	66.7	67.1	65.4	64.3	61.8	65.1
16	21:00-22:00	65.1	65.3	62.8	63.8	65.2	62.4
	Day Time Limit*			75 Leo	ן dB(A)		

Result of Noise level monitoring [Night Time]

SR.	Name of Location		CT-3 DG HOUSE					
NO.				Result [Le	eq dB(A)]			
1	Sampling Date & Time	23/10/2017 & 24/10/2017	17/11/2017 & 18/11/2017	15/12/2017 & 16/12/2017	09/01/2018 & 10/01/2018	20/02/2018 & 21/02/2018	09/03/2018 & 10/03/2018	
2	22:00-23:00	66.1	60.8	67.5	65.2	63.4	60.4	
3	23:00-00:00	68.4	67.9	65.2	60.4	64.8	62.4	
4	00:00-01:00	62.4	62.8	63.1	61.4	60.8	60.4	
5	01:00-02:00	64.7	60.1	60.4	60.8	61.8	65.2	
6	02:00-03:00	63.8	59.3	65.1	60.7	63.4	63.1	
7	03:00-04:00	69.4	64.3	62.8	58.4	61.8	64.5	
8	04:00-05:00	62.7	64.8	61.2	62.4	61.7	68.4	
9	05:00-06:00	67.1	61.7	62.8	60.3	60.8	62.1	
	Night Time Limit* 70 Leq dB(A)							

61 3

H. T. Shah Lab Manager

forción

LABORATORIES PVT. LTD.

Environmental Auditors, Consultants & Analysts. Cleaner Production / Waste Minimization Facilitator

Ø

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF STACK MONITORING

SR NO	TEST PARAMETERS	UNIT	STD. LIMIT	THERMIC FLUID HEATER (BITUMEN-01)	THERMIC FLUID HEATER (BITUMEN-02)	HOT WATER SYSTEM-1	HOT WATER SYSTEM-2	TEST METHOD	
OCTOBER 2017									
1	Particulate Matter	mg/Nm ³	150	10.15		15.54	19.48	IS:11255 (Part-I):1985	
2	Sulfur dioxide	ppm	100	4.20		5.62	7.51	IS:11255 (Part-II):1985	
3	Oxides of Nitrogen	ppm	50	29.29		38.67	33.67	IS:11255 (Part- VII):2005	
			NOVEMBER 2017						
1	Particulate Matter	mg/Nm ³	150	14.57	19.83	20.53	23.80	IS:11255 (Part-I):1985	
2	Sulfur dioxide	ppm	100	3.46	4.64	7.37	6.42	IS:11255 (Part-II):1985	
3	Oxides of Nitrogen	ppm	50	25.57	27.16	36.07	30.88	IS:11255 (Part- VII):2005	
					DECEMB	ER 2017			
1	Particulate Matter	mg/Nm ³	150	17.52	12.92	27.63	20.87	IS:11255 (Part-I):1985	
2	Sulfur dioxide	ppm	100	4.91	3.56	6.62	7.91	IS:11255 (Part-II):1985	
3	Oxides of Nitrogen	ppm	50	28.26	24.43	38.90	36.30	IS:11255 (Part- VII):2005	
					JANUAR	Y 2018			
1	Particulate Matter	mg/Nm ³	150	14.58	11.85	19.56	24.51	IS:11255 (Part-I):1985	
2	Sulfur dioxide	ppm	100	3.55	2.45	7.51	6.81	IS:11255 (Part-II):1985	
3	Oxides of Nitrogen	ppm	50	26.11	20.96	34.02	32.70	IS:11255 (Part- VII):2005	
					FEBRUAR	RY 2018			
1	Particulate Matter	mg/Nm ³	150	12.63	15.75	22.52	18.36	IS:11255 (Part-I):1985	
2	Sulfur dioxide	ppm	100	2.07	3.36	6.69	8.78	IS:11255 (Part-II):1985	
3	Oxides of Nitrogen	ppm	50	23.60	26.03	35.53	32.46	IS:11255 (Part- VII):2005	
					MARCH 2	018			
1	Particulate Matter	mg/Nm ³	150	18.67	20.82	28.45	23.72	IS:11255 (Part-I):1985	
2	Sulfur dioxide	ppm	100	5.04	4.11	8.54	6.58	IS:11255 (Part-II):1985	
3	Oxides of Nitrogen w detection limit	ppm	50	27.01	23.71	38.15	35.00	IS:11255 (Part- VII):2005	

*Below detection limit

Results on 11 % O_2 correction when Oxygen is greater than 11 %. And 12% CO_2 correction when CO_2 is less than 12%

¢, 5

H. T. Shah Lab Manager

forción

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF D.G. STACK MONITORING

19/02/2018 South Basin CT-3 DG STACK SR. **TEST PARAMETERS** Unit **Test Method** NO. D.G. Set-1* D.G. Set-2* D.G. Set-3* (1500 KVA) (1500 KVA) (1500 KVA) mg/Nm³ IS:11255 (Part-I):1985 1 Particulate Matter 33.47 24.38 29.53 7.50 2 Sulphur Dioxide 3.46 5.36 IS:11255 (Part-II):1985 ppm 3 Oxide of Nitrogen 32.53 38.92 35.57 IS:11255 (Part-VII):2005 ppm 4 Carbon Monoxide 2.63 2.34 Digital Gas Analyzer mg/m3 4.58 BDL* BDL* BDL* 5 Hydro Carbon NMHC Gas Chromatography ppm

*DG sets are used as standby, so stack monitoring is done on quarterly basis. Results on 15 % O2 Correction when Oxygen is greater than 15 %

17/02/2018

SR.			Adan			
NO.	TEST PARAMETERS	Unit —	D.G. Set-1* (1500 KVA)	D.G. Set-2* (1500 KVA)	D.G. Set-3* (1500 KVA)	 Test Method
1	Particulate Matter	mg/Nm ³	18.64	15.32	21.75	IS:11255 (Part-I):1985
2	Sulphur Dioxide	ppm	7.59	6.60	5.73	IS:11255 (Part-II):1985
3	Oxide of Nitrogen	ppm	38.17	34.77	31.77	IS:11255 (Part-VII):2005
4	Carbon Monoxide	mg/m3	5.04	5.93	5.12	Digital Gas Analyzer
5	Hydro Carbon NMHC	ppm	BDL*	BDL*	BDL*	Gas Chromatography

*DG sets are used as standby, so stack monitoring is done on quarterly basis. Results on 15 % O2 Correction when Oxygen is greater than 15 %

H. T. Shah Lab Manager

forción

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

12/02/2018

LABORATORIES PVT. LTD.

SR.	TEST PARAMETERS	11-24	Adan			
NO.		Unit —	D.G. Set-3* (500 KVA)	D.G. Set-4* (500 KVA)	D.G. Set-5* (500 KVA)	 Test Method
1	Particulate Matter	mg/Nm ³	22.42	19.62	20.33	IS:11255 (Part-I):1985
2	Sulphur Dioxide	ppm	3.45	4.51	7.47	IS:11255 (Part-II):1985
3	Oxide of Nitrogen	ppm	27.91	38.05	31.75	IS:11255 (Part-VII):2005
4	Carbon Monoxide	mg/m3	2.94	2.43	3.14	Digital Gas Analyzer
5	Hydro Carbon NMHC	ppm	BDL*	BDL*	BDL*	Gas Chromatography

*DG sets are used as standby, so stack monitoring is done on quarterly basis. Results on 15 % O2 Correction when Oxygen is greater than 15 %

			12/02/2018		25/02/2018	
SR.	TECT DADAMETERS	11 14	Adani Mu	ndra Port	Adani House	Toot Mathad
NO.	TEST PARAMETERS	Unit —	D.G. Set-1* (500 KVA)	D.G. Set-2* (500 KVA)	D.G. Set* (750 KVA)	Test Method
1	Particulate Matter	mg/Nm ³	18.71	13.86	15.62	IS:11255 (Part-I):1985
2	Sulphur Dioxide	ppm	5.67	6.55	4.53	IS:11255 (Part-II):1985
3	Oxide of Nitrogen	ppm	34.56	29.81	31.72	IS:11255 (Part-VII):2005
4	Carbon Monoxide	mg/m3	4.87	3.58	5.80	Digital Gas Analyzer
5	Hydro Carbon NMHC	ppm	BDL*	BDL*	BDL*	Gas Chromatography

*DG sets are used as standby, so stack monitoring is done on quarterly basis. Results on 15 % O2 Correction when Oxygen is greater than 15 %

() \sim

H. T. Shah Lab Manager

forción

Dr. ArunBajpai Lab Manager (Q)

Ľ

ABORATORIES PVT. LTD.

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

Minimum Detection Limit [MDL]

	Ambient Air Parameters					
Sr. No.	Test Parameter	MDL				
1	Particulate Matter (PM10) (µg/m ³)	10				
2	Particulate Matter (PM 2.5) (µg/m ³)	10				
3	Sulphur Dioxide (SO ₂) (µg/m ³)	5				
4	Oxides of Nitrogen (µg/m ³)	5				
5	Hydrogen Sulphide as H2S (µg/m ³)	6				

	Stack Parameters					
Sr.No.	Test Parameter	MDL				
1	Particulate Matter (mg/Nm ³)	10				
2	Sulphur Dioxide (ppm)	1.52				
3	Oxides of Nitrogen (ppm)	2.65				
4	Carbon Monoxide (mg/Nm ³)	0.1				
5	Haydro Carbon NMHC (ppm)	1.0				

Sea Water Parameters						
SR. NO.	TEST PARAMETERS	UNIT	MDL			
1	рН		2			
2	Temperature	°C	2			
3	Total Suspended Solids	mg/L	2			
4	BOD (3 Days @ 27 °C)	mg/L	1			
5	Dissolved Oxygen	mg/L	0.1			
6	Salinity	ppt	1			
7	Oil & Grease	mg/L	2			
8	Nitrate as NO ₃	µmol/L	0.5			
9	Nitrite as NO ₂	µmol/L	0.01			
10	Ammonical Nitrogen as NH ₃	µmol/L	0.2			
11	Phosphates as PO ₄	µmol/L	0.5			
12	Petroleum Hydrocarbon	µg/L	1			
13	Total Dissolved Solids	mg/L	10			
14	COD	mg/L	3			
15	Primary productivity	mgC/L/day	0.1			
16	Chlorophyll	mg/m ³	0.1			
17	Phaeophytin	mg/m ³	0.1			
18	Cell Count	No. x 10 ³ /L	1			

	Sea Sediment Parameter	s	
SR. NO.	TEST PARAMETERS	UNIT	MDL
1	Organic Matter	%	0.1
2	Phosphorus as P	µg/g	1
3	Petroleum Hydrocarbon	µg/g	1
4	Aluminum as Al	%	0.1
5	Manganese as Mn	µg/g	1
6	Mercury as Hg	hð\ð	0.1

61 \sim

H. T. Shah Lab Manager

forción

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

	STP Water parameter(mg/L)					
Sr. No.	Test parameter	MDL				
1	рН	2				
2	Total Suspended Solids (mg/L)	2				
3	BOD (3 days @ 270 C) (mg/L)	1				
4	Residual Chlorine (mg/L)	0.2				
5	Fecal Coliform (MPN INDEX/100 mL)	1.8				

ETP Water Parameters						
SR. NO.	TEST PARAMETERS	UNIT	MDL			
1	Colour	Co-pt	2			
2	рН		2			
3	Temperature	°C	2			
4	Total Suspended Solids	mg/L	2			
5	Total Dissolved Solids	mg/L	10			
6	COD	mg/L	3			
7	BOD (3 Days @ 27 °C)	mg/L	1			
8	Chloride as Cl	mg/L	1			
9	Oil & Grease	mg/L	2			
10	Sulphate as SO ₄	mg/L	1			
11	Ammonical Nitrogen as NH ₃	mg/L	0.2			
12	Phenolic Compound	mg/L	0.005			
13	Copper as Cu	mg/L	0.01			
14	Lead as Pb	mg/L	0.01			
15	Sulphide as S	mg/L	0.1			
16	Cadmium as Cd	mg/L	0.002			
17	Fluoride as F	mg/L	0.05			

¢, $\overline{\mathbf{x}}$

H. T. Shah Lab Manager

forción

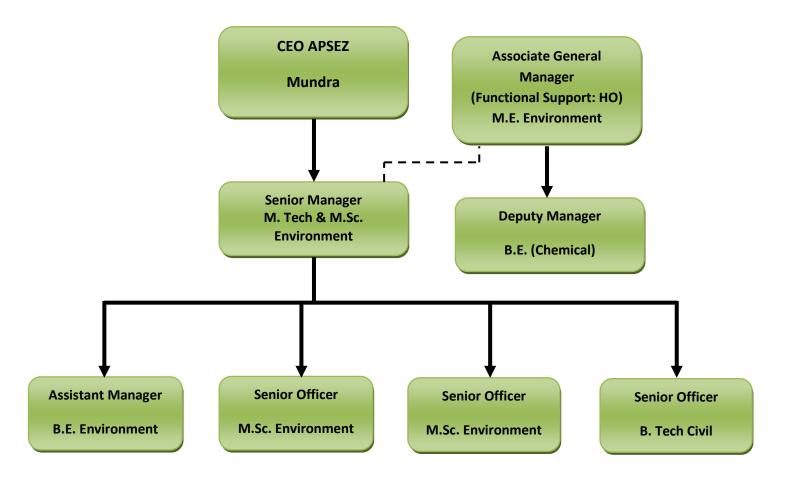
Dr. ArunBajpai Lab Manager (Q)

64

Annexure – 2

Details of Greenbelt development at APSEZ, Mundra

	Total Green Zone Detail					
LOCATION	Area (In Ha.)	Trees (Nos.)	Palm (Nos.)	Shrubs (SQM)	Lawn (SQM)	
SV COLONY	65.34	30051.00	6965.00	51138.00	80069.00	
PORT & NON SEZ	77.52	131942.00	18613.00	68166.78	58455.18	
SEZ	99.52	227135.00	15924.00	220449.60	27462.03	
MITAP	2.48	8168.00	33.00	1670.00	4036.00	
WEST PORT	83.20	182118.00	50221.00	24112.00	22854.15	
AGRI PARK	7.63	17244.00	1332.00	5400.00	2121.44	
SOUTH PORT	14.08	25150.00	3430.00	3882.00	4826.97	
Samudra Township	38.72	44872.00	11818.00	19978.07	35071.67	
Productive Farming (Vadala Farm)	23.79	27976.00	0.00	0.00	0.00	
TOTAL (APSEZL)	412.27	694656.00	108336.00	394796.45	234896.44	
		8029.	92.00		•	


Details of Mangrove Afforstation done by APSEZ

SI. no.	Location	Area (ha)	Duration	Species	Implementation agency
1	Mundra Port	24.0	-	Avicennia marina	Dr. Maity, Mangrove consultant of India
2	Mundra Port	25.0	-	Avicennia marina	Dr. Maity, Mangrove consultant of India
3	Luni/Hamirmora (Mundra, Kutch)	160.8	2007 - 2015	Avicennia marina, Rhizophora mucronata, Ceriops tagal	GUIDE, Bhuj
4	Kukadsar (Mundra, Kutch)	66.5	2012 - 2014	Avicennia marina	GUIDE, Bhuj
5	Forest Area (Mundra)	298.0	2011 - 2013	Avicennia marina	-
6	Jangi Village (Bhachau, Kutch)	50.0	2012 - 2014	Avicennia marina	GUIDE, Bhuj
7	Jakhau Village (Abdasa, Kutch)	310.6	2007-08 & 2011-13	Avicennia marina, Rhizophora mucronata, Ceriops tagal	GUIDE, Bhuj
8	Sat Saida Bet (Kutch)	255.0	2014-15 & 2016-17	Avicennia marina & Bio diversity	GUIDE, Bhuj
9	Dandi Village (Navsari)	800.0	2006 - 2011	Avicennia marina, Rhizophora mucronata, Ceriops tagal	SAVE, Ahmedabad
10	Talaza Village (Bhavnagar)	50.0	2011-12	Avicennia marina	SAVE, Ahmedabad
11	Narmada Village (Bhavnagar)	250.0	2014 - 2015	Avicennia marina	SAVE, Ahmedabad
12	Malpur Village (Bharuch)	200.0	2012-14	Avicennia marina	SAVE, Ahmedabad
13	Kantiyajal Village (Bharuch)	50.0	2014-15	Avicennia marina	SAVE, Ahmedabad
14	Devla Village (Bharuch)	150.0	210-16	Avicennia marina	SAVE, Ahmedabad
15	Village Tala Talav (Khambhat, Anand)	100.0	2015 - 2016	Avicennia marina	SAVE, Ahmedabad
16	Village Tala Talav (Khambhat, Anand)	38.0	2015 - 2016	Avicennia marina	GEC, Gandhinagar
	Total Mangrove Plantation:	2827.9	0 Ha		

Annexure – 3

adani

Organogram of Environment Management Cell, APSEZ, Mundra

Annexure – 4

Sr.	Activity		Budgeted Cost (INR in Lakh)		
No.	Activity	2014 – 15	2015 – 16	2016 – 17 (Till Date)	2016 – 17
1.	Environmental Study / Audit and Consultancy	29.87	45.45	158.14	146.86
2.	Legal & Statutory Expenses	11.26	3.30	7.39	7.88
3.	Environmental Monitoring Services	23.76	26.80	15.48	32.82
4.	Hazardous Waste Management & Disposal	9.56	34.56	7.50	11.04
5.	Environment Day Celebration	7.01	7.18	6.54	12.00
6.	Treatment and Disposal of Bio- Medical Waste	1.00	1.22	0.69	1.39
7.	Mangrove Plantation	127.97	53.28	30.00	30.00
8.	Mangrove Monitoring & Conservation	36.75	20.36	20.26	40.00
9.	Horticulture Expenses	380.27	434.72	498.00	518.58
10.	O&M of Sewage Treatment Plant and Effluent Treatment Plant (including STP, ETP of Port & SEZ & Common Effluent Treatment Plant)	30.78	18.18	41.43	48.38
11.	Expenditure of Environment Dept. (Apart from above head)	184.91	135.90	112.47	178.01
	Total	843.14	837.73	897.90	1026.96

Cost of Environmental Protection Measures

Further year wise breakup of the cost is mentioned in table below:

Year	Env.	Horticulture	Total
2012-2013	150.00	200.00	350.00
2013-2014	250.00	433.75	683.75
2014-2015	462.87	380.27	843.14
2015-2016	346.23	434.72	780.95
2016-2017	399.90	498.00	897.90
Total	1609.00	1946.74	3555.74

Annexure – 5

ANNUAL REPORT 2017-18 Adani Foundation, Mundra

Adani Foundation Adani House, Port Road, Mundra – Kutch 370 421 [info@adanifoundation.com] [www.adanifoundation.com]

Your Hard Work and Team Effort Will Speak Louder Than Voice – This has been the core philosophy enlivened by Adani Act over the years, on its path of sustainable community development. Adani Group also firmly believes that growth is possible only by working together with and for the community, and enriching the environment – ecoloav.

Year 2017-18 witnessed many major milestones achieved by Adani Foundation, Mundra that brought national fame and big laurels to the organization for its high standard CSR projects aiming at sustainable development of the community at large. The unit was crowned with coveted CII Sustainability Recognition, Gold Award for "EK Kam Desh K Nam" and the First Position in Gujarat CSR Authority Award in "Sustainable and Impactful" CSR category.

Besides, the last fiscal was also a year of new development initiatives for AF, Mundra. In the first quarter, the unit initiated fodder cultivation and individual fodder development projects in five periphery villages along with rejuvenating of check dams and deepening of major ponds. The initiatives were successfully implemented through community participatory approach in the line of sustainable development.

With the greater objective to make our healthcare services more sustainable and value-added, in the second quarter we introduced token charges from the beneficiaries for community medical facilities such as, MHCU and Rural Clinic. Here also the idea of injecting community ownership feeling worked very well for long-term good health of the people-welfare project.

Even as the third quarter was full of achievements, awards and

ANNUAL REPORT 2017-18

(2)

Community health

It is said that "health is wealth" Health is the basic need for development of community. Adani Foundation understands this fact and its committed to improve health care facilities in every corner of Mundra region. Following motto of "Health for All" the Foundation runs Mobile Dispensaries, Rural Clinics, Special Innovative Projects i.e. Health Card to Senior Citizens, "SuPoshan"- Fighting to Mal nourishment in Mundra and support to dialysis patients projects. Adani Foundation also organizes special medical camps during disease outbreak.

Index

1	COMMUNITY HEALTH			Bio Gas suppor
	Mobile Van and Rural Clinics			Beti Vadhavo A
	Health Card to Senior Citizen			Women Empow
	Kidney Stone : Awareness n Treatment			Coordination w Citizen
	"SuPoshan" - Mundra			Participatory 0
	"SuPoshan" - Bitta		3	RURAL INFRAS
	Health Camps			Water Conserv
	Gujrat Adani Institute of Medical Sciences			Drinking Water
	Jedal Jo Jatan			Education Rela
2	SUSTAINABLE LIVLIHOOD DEVELOPMENT – FISHERFOLK			Health Related
	Vidya Deep Yojana			Fisherman Rel
	Vidya Sahay Yojana – Scholarship Support			Other Projects
	Machhimar Arogya Yojana		3	EDUCATION
	Machhimar Ajivika Uparjan Yojana			UDAAN
	Machhimar Kausalya Vardhan Yojana			Adani Vidya M
	Machhimar Shudhh Jal Yojana			Material Supp
	Polyculture			Shala Pravesho
	Cage Culture			Adani Educatio
	Community Engagement : Cricket league			VatVruksh * Te
	SUSTAINABLE LIVLIHOOD DEVELOPMENT - FARMERS			Swachhagraha
	AND WOMEN EMPOWERMENT		5	ADANI SKILL D
	Drive for Technology to use in agriculture		6	EVENTS
	Fodder Cultivation		8	MEDIA NOTE

	Bio Gas support	
	Beti Vadhavo Abhiyan	
	Women Empowerment Projects	
	Coordination with Government for Widow and Senior Citizen	
	Participatory Ground Water Management	
3	RURAL INFRASTRUCTURE DEVELOPMENT	
	Water Conservation Projects	
	Drinking Water Related Projects	
	Education Related Projects	
	Health Related Projects:	
	Fisherman Related Projects:	
	Other Projects	
3	EDUCATION	
	UDAAN	
	Adani Vidya Mandir, Bhadreshwar	
	Material Support to Govt. Schools	
	Shala Praveshotsav	
	Adani Education Development Centre	
	VatVruksh * Teacher's Training Programme*	
	Swachhagraha	
5	ADANI SKILL DEVLOPMENT CENTRE	
6	EVENTS	
8	MEDIA NOTE	

recognitions with independent evaluation teams visiting the site

and highly praising our initiatives and objectives post physical

verification of the projects, the last quarter was furthermore meaningful with regard to our key infrastructure projects with

Dignity of Labour, a project close to the heart of our promoters

and the senior management was carried out very efficiently by

AF, Mundra team. Apart from creating basic healthcare and

hypiene education infrastructures for large number of labour

families in the project surroundings, a Rest-Shed for Drivers in

the SEZ area of the port was constructed by the RID. This is

Participatory Ground Water Management, which has been a buzz

word in all major civil society and CSR conclaves, seminars and

workshops in Kutchh district, was taken up as a sustainable

project AF, Mundra. With involvement of expert bodies in the

field, the project work has kick-started with the objective of

All our above achievements were not possible without the

valuable inputs and continued support and guidance of Mr.

Mukesh Saxena (Site Head, CSR-Mundra), Mr. Rakshit Shah

(Executive Director - APSEZ), PNR Sir (ED-AF) and the plentiful

faith and passionate support by Dr. (Mrs.) Priti G Adani,

remarked as a stand-alone infrastructure project by AF.

ground water recharge in Kankavati Sandstone Aguifer.

Managing Trustee – Adani Foundation.

a long-term vision of nation development.

Community health Mobile Van and Rural Clinic

The population of Mundra block is spread over various villages. There is no strong transportation facility available to reach for getting basic medical care. The patients have to spend minimum 200-500 INR for their common ailments like-cough, cold, fever, diarrhea etc.

The medical expenses and zero earning per day add surplus to their hardships.

To help the community in their medical needs, the service of mobile medical van has been started by the Adani Foundation in Mundra block. In big villages, rural dispensaries have been started considering their population and area.

The Main objective of Mobile Van is to reduce travel time, hardships and expenses. one mobile health care unit cover 25 villages and 07 fishermen settlements at Mundra. Another unit cover 8 villages at Bitta. Around 90 types of general and life saving medicines are available in these units. It has turned out to be a boon for women and children as the service is availed at their door - step. Total OPD for MHCU – Bitta is 6400 for year 2017-18.

The Adani Foundation operates Rural Dispensaries in 8 villages of Mundra block, 03 villages of Anjar block and 2 clinics at SEZ area. Mobile dispensary and rural clinics provide health services with token charge of 10/- rupees per patient daily by a doctor and a volunteer.

Project name	17-Apr	17-May	17-Jun	17-Jul	17-Aug	17-Sep	17-Oct	17-Nov	17-Dec	18-Jan	18-Feb	18-Mar	Total
Mobile van - Mundra	2758	2460	2157	1751	2024	1921	1642	2291	1932	2352	2213	1890	25391
Rural clinic	2999	2811	3034	2275	2390	2490	1929	2026	2127	2363	2097	1825	28366
Total	5757	5271	5191	4026	4414	4411	3571	4317	4059	4715	4310	3715	53757

Community health Vadil Swasthya Yojana

When people become old, they start living a life of remoteness and isolation. The needs of old people are less looked after. Therefore, the Adani Foundation has started the Adani Health Programme for the aged to look after their health. To address the health care issues related to ageing, AF launched a 3 years long pilot project - 'Adani Vadil Swasthya Yojna' on 20th February 2011 at Mundra and further extended the same for the next three years i.e. up to 2017. Under this Programme, the individuals aged 60 years and above are benefitted. Health Cards are issued to them with the purpose of providing adequate and timely treatment. The families consisting of aged ones with a yearly income of Rs. 2 lacs or more get a Blue Card. The Blue Card holders can avail diagnosis facility and treatment at a subsidized rate in the Adani hospitals. Mundra. The families with a yearly income of less than Rs. 2 lacs are issued a Green Card, Green Card holder aged people get treatment for illness in Adani hospitals, Mundra

with an aid up to the limit of Rs. 50,000/- within a period of 3 years.

During the year 2017-18, total 9950 transactions were done by 8518 card holders of 66 villages of Mundra Taluka. They received cash less medical services under this project. In Green Card category, 6139 aged people got treated for various illness & diseases at Adani hospitals, Mundra with an aid up to a limit of Rs. 50,000/- within the period of 3 years.

The 763 Blue Card Holders can avail diagnosis facility and treatment at a subsidized rate in the Adani hospitals, Mundra. Scheme is continue since seven years The third phase of this scheme was started in last year. The limit for the beneficiary was set to 30000/- within a period of 3 vears, the senior citizens get emergency medical care at Adani Hospital, Mundra and they are referred to GAIMS, Bhui for further treatment.

Dialysis Project

adani

Drinking water of Mundra contains high Fluoride (amount of salt). Hence, the proportion of patients with urinary stone and kidney failure is more. A project for patients who need dialysis is thus initiated so that the poor patients can receive the treatment at Adani hospitals. The main objective of providing dialysis treatment is to help the extremely needy patients to live a healthy life

Total 5 Patients were being supported for regular dialysis (twice in a week) during this year.

Awareness Sessions

Awareness sessions at various schools conducted to sensitize the future generations and teachers regarding importance of personal hygiene and cleanliness. We had included health issues related with personal hygiene such as worms, skin diseases, various infections etc. to promote awareness among the people. During this year more than 1500 students are benefitted by awareness sessions

C		Awareness Session	
Sr.no.	Month	Place	Villages Name
1	May-17	Sadipani Vidhaylay school - pratappar	Pratapar
2	Jun-17	Sukhpar vas Pra school - Maleria	Mundra
3	Jul-17	Seth R.D. High School Mundra- Swain Flu	Mundra
4	Jul-17	Adani Vidhya mandir-Bhadreshwar- Swain Flu	Bhadreshwar
5	Dec-17	Primry School Moti Bhujpur	Moti Bhujpur
6	Dec-17	Vanki- Primary School - Gaynec	Vanki
7	Dec-17	Dhrub- Primary School - Gaynec	Dhrub
8	Jan-18	Nari Samalan - Rotaray Club - Wonam Health	Mundra
9	Feb-18	Adani Hospital - Suposhan Sagini Meeting- Gaynec	Mundra
10	Feb-18	Samaghogha Kumar Sala	Sama Ghogha
11	Feb-18	Dhrub- High School - Gaynec	Dhrub
12	Feb-18	Baroi Aganvadi - Gaynec	Baroi
13	Feb-18	Patri - Aganvadi - Gaynec	Patri
14	Feb-18	Dakhan Faliyu Moti Bhujpur- Gaynec	Moti Bhujpur

ANNUAL REPORT 2017-18

ANNUAL REPORT 2017-18

(6)

This octogenarian will always greet you with take away her inner happiness and the desire to live vound.

> in Mundra locality is one important case study for the Senior Citizen Project of Adani Foundation. The elderly lady would teach you how life should be lived and how physical deformities can't be spoilsport for your healthy living in the true sense.

Adani Foundation feels it a great privilege to stand by such jovial and energetic senior citizens in their journey of old-age life and aims to extend all possible medical and emotional care to retain the invaluable smile on their faces. In return to our dedicated services for the elderly ones, we seek their blessings which would take our mission of selfless service to the society and attain sustainable development to greater heights.

an innocent smile no matter how she is physically and mentally. Age-related ailments like hypertension and osteoarthritis couldn't Javerben Dayaram Rajgor of Pratappar village

As if luck has turned cruel to her, Bhagirathi Ben (72) has a heart-throbbing story of never-ending struggle and misery. Married at 19, she was widowed at just 32 with the challenge of raising her son and making a livelihood for the two. Toiling hard in local

serve a company in Mumbai.

factories and working as housemaid for long years, she had harrowing times discharging her responsibility as a true parent. In this long journey of life, countless times she had to starve, but never did she allow a situation when her son would remain empty stomach. Moreover, she educated her son to become a graduate and

As she is left behind in the village, again the loneliness and miseries of life haunt this elderly widow. Since she became a part of the senior citizen healthcare project of Adani Foundation since six years, taking care of her health and giving her the emotional support like a member of the family, has become an honor for the organization. Standing by her in the forward journey of life we strive to bring a sigh of relief and smile in the face of Bhagirathi Ben

Community health Suposhan

Malnutrition amongst Children, Adolescent girls and Women in India is an alarming phenomenon. (In India: 48 % or 54 million children under-five years were stunted. India accounted for 33 % of stunted children in the world. As per Global Nutrition Report released recently, Children below five years- 38.7 % Stunted and 15.1% are wasted. 69.5% children 6-59 months old, 55.8% adolescent girls aged 15-18 years, 55.3% women aged 15-49 years have Anaemia. Moreover anaemia prevalence in pregnant women is as high as 58.7%) Curbing Malnutrition was part of Millennium Development Goals and again focussed through second and third Sustainable Development Goals on Zero hunger and Good Health & Wellbeing respectively.

* During this year, anthropometry study done for 7202 children. Total 86 children became free of malnutrition due to efforts under "Suposhan" Project. Additionally, 1557 FGD were conducted during this year.

* Total 8770 haemoglobin screenings of RPA woman and adolescent girls was carried out. Which helps in controlling anaemia in women and indirectly malnutrition

Worth Results of "SuPoshan"

Standing on her lush green kitchen garden in Zarpara village. Manek Gadhavi smiles herself thinking about her past conversations with a representative of Adani Foundation who was the source behind his motivation for the profitable vegetable farming. When the AF official had suggested her to experiment vegetable farming in some portion of 12-acre land, Manek bai had instantly rejected the idea and laughed at him thinking that he was talking something meaningless and unnecessary.

After repeated motivation and AF support of a 15x15 feet kitchen garden kit containing water tank, drip line, vegetable seed and fertilizer, the villager had ventured into vegetable farming last year. Continued support of AF remained in the form of extending technical support, knowledge sharing on pest control and possible market linkages for the farm produces.

Manek Gadhavi is quite happy that her kitchen garden could cater to all the vegetable and green leaf requirements for her large-size joint family round-the-year.

This is the story of "Veerbai"- 13 years adolescent girl living in vadi Vistar in Zarpara village. She was in the grip of an invisible enemy until she got lucky because her school teacher flagged her condition with help of Hemoglobin check up by Adani Foundation. With the objective to get most feasible solution, We have motivated adolescent girls and their mothers to develop kitchen garden at the back of their house. Total 22 Kitchen garden developed in Zarpara and Navinal villages. Kitchen garden has brought worth results for "Suposhan" in Adolescent girls. All the vegetables grown at the garden are consumed by their own house

adani%

ANNUAL REPORT 2017-18

(10)

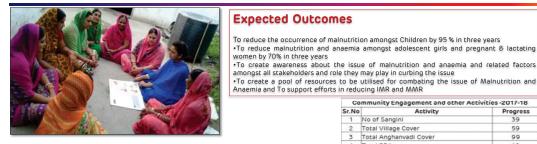
SaHil : Our Ray of Hope!!"

Sahil- a ten month boy, the other name of boundless excitement, vigor and happiness, always smiling and bubbling with enthusiasm

Four months back, the picture was all different. Four months back, when Sahil was six months old, he was extremely thin and weak. He weighed only 4 kg and his M.A.U.C. was 8.5 cm. He appeared to be an extremely malnourished child.

Suposhan- a project run by the Adani foundation for children, adolescent girls, pregnant women and mothers feeding their new born. To spread this project to the innermost and remote areas, there is a team of well trained, dedicated members and they are known as Sangini workers.

One such Sangini worker – Sahemaben works on this activity in Baroi village. She met Sahil and Fatmaben during one health checkup camp for children. While talking to her in detail, Sahemaben came to know that Sahil had not been able to get mother's milk in the initial days. Mother's milk is the most powerful and must food for any child and its absence may cause malnutrition to children.


Later on, Sahemaben went to meet her at her place. There she observed and very mildly drew her attention towards the importance of cleanliness of the household and the utensils used for cooking. She also asked her about the food intake of Sahil. She informed her about 'Balbhog' (ready to eat therapeutic food RUTF by Amul). Convincing Fatemaben about her child's health was a herculean task but after a series of logical arguments, Sahemaben could convince her.

Sahil gradually started consuming the baby food (balbhog) and could show a noticeable improvement in his health.

Along with the improvement in Sahil's health, the household witnessed many positive changes like cleanliness and Fatemaben herself stopped consuming Tobacco.

The household is now surrounded with cleanliness and the small plants of Neem, chilly, pomegranate, lemon etc. embellish the household.

And Sahil is now hale and hearty. He weighs 6 kg and 700 grams. The vibrant smile of health and happiness on his face is the reward of Sahemaben's dedicated and sincere work.

Community health Suposhan

Base line data was provided for Mundra Taluka in initial phase of Project.

Total Number Anganwadi in the selected area

 Information on Sub-centers/ Primary Health Centres/ Community Health centres/ Referral Hospitals

 Availability of Healthy worker- male & female both, ANMs, LHVs, Doctors, specialists such as Gynaecologist, Paediatricians, Pharmacist, Dietician Lab. Technician, Nursing Staff etc. at above centres (Number & names with contact details)

 Selected areas' Birth rate, Death rate, Infant Mortality Rate, Mother Mortality Rate, Sex ratio, Child Sex ratio against district, state and national average
 Total number of beneficiaries and against that enrolled beneficiaries at Anganwadi/ICDS: 0-6

vear children, Adolescent girls, pregnant women and lactating mothers ·Identified malnourished and anaemic children/ adolescent airls and women (numbers & name

as well as current level of mainutrition & anaemia with dates. Base Line data) • Current Inputs provided through the Government machineries

•Other services available through CBOs, NGOs etc.- Details of inputs and contact details of those organizations

•Understanding & Listing of area specific cultural and behavioural barriers

adani

(11)

Holistic Intervention to tackle malnutrition!!"

When we talk about Kutch, we get two pictures - Kutch, before the earthquake and after the earthquake. After the earthquake, Kutch has witnessed green revolution along with industrial revolution. The crops which were earlier not possible to be cultivated here are now grown successfully because of the modern agricultural equipment and the methods like drip irrigation. This is one of the reasons why many labourers from outside Kutch come here to work and earn.

One such family is that of Deepika ben and Dinesh Bhai who have come here from Halol to earn their daily bread. They have settled themselves in Nani Bhujpur. The family consists of the couple and their five daughters. The couple in expectation of a baby boy gave birth to five daughters, thanks to the rigid and orthodox mentality of Indians! Probably it would take years to eradicate this mentality.

The family which could barely manage hand to mouth was to welcome one more member in the family. The situation was really crucial for Deepika ben as after delivering five children, her body had lost its ability to bear anymore. She started remaining unwell. Who would take care of this lady in the village which was far from her own village? But it is truly said that every dark night is followed by a bright morn. Deepika ben too got such a warm ray of hope in form of a Sangini worker.

Sangini workers are those workers who are the active harbingers of the good work of Adani Foundation and the Project Suposhan. The Project Suposhan aims at fighting the malnutrition prevalent in many states across India. These female workers are known as 'Sangini Bahen'. One such is Sangini Deval Ben. Deval Ben was once busy surveying the condition of the expecting mothers and how would Deepika Ben's condition stay out of her attention? She met her, talked to her and made her aware about her condition. She brought it to her notice that it would be dangerous for her to have a child in such a frail physical condition. It may be fatal for both- the baby and the mother. She motivated her to attend meetings of the Suposhan Project. She took her to Bhujpur PHC and got her tests done. To her great shock, she came to know that Deepikaben's hemoglobin level was just 4.2% which was really fatal for a pregnant woman. The doctor prescribed certain injections of Iron and bottles of blood for her body. Deval Ben

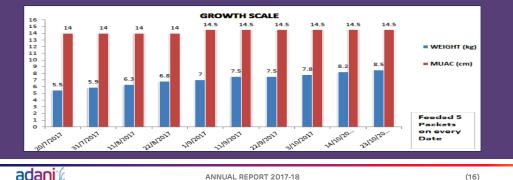
As a result of Deval ben's efforts, Deepika ben's HB level went up to 10.5%. At the end of the ninth month, she gave birth to a completely normal and healthy baby girl weighing three kg. Thus, Deval Ben saved not only Deepika Ben's life but also the lives of the whole family.

stood by her in all her testing times.

Community health "Suposhan" - Bitta

A child's entire life is determined in large measures by the food given to him/her during his/her first five years because childhood is the period of rapid growth and development. Nutrition is one of the most influencing factors in this period.

Project Suposhan is initiated at Bitta also with the objectives to Curb malnutrition amongst Children and Adolescent girls and Women in our CSR villages


 Total 18 Adolescent and 23 RPA groups are already formed. HB Testing completed for 766 RPA and 612 girls. During this year, anthropometry study done for 400 children. Total 6 children became free of malnutrition due to efforts under "Suposhan" Project.

Priyanshi's mother told the Sangini worker that Priyanshi is a pampered child and gets what she wanted. Thus she got into the habit of eating packet food and would eat two packet per day. Due to these packets, she consumed less of homemade nutritious food. She was taken to the doctor at the Adani Foundation and was given the packets of baby Amul food according to her weight. Every week the Sangini worker would go to measure her height and weight. The parents also started paying proper attention and giving her the baby Amul food regularly. Desired improvement could be noticed within the first week. For three months, every week she

was given the baby Amul food and her improvement was constantly monitored. She also started consuming the homemade food. A very constant improvement could be seen in her weight. She was given as many as 50 packets and it was noticed that she had gained 3 kg. She is now 8.5 kg. Her height is now 75 cm. Every month, the Sangini worker goes to visit her and monitor her progress. Priyanshi's parents thank Adani Foundation and tell the villagers about the good work done by the team of Suposhan worker

adani

ANNUAL REPORT 2017-18

(14)

ANNUAL REPORT 2017-18

My Daughter is glowing now !!

The village Nani Dhufi is situated in Abdasa taluka on Bhuj- Naliya highway. The village is 20 kilometers from Naliya and 67 kilometer from Bhuj. It is inhabited by many different communities like Darbar, Muslims, Koli, Dalits etc. who all are involved in various professions like driving, agriculture, cattle breeding etc. The population of the village is 800 but the level of education is very low. The reasons for the same may be poor financial conditions and some wrong beliefs. When the Adani Foundation started its SuPoshan Project in this village, a survey was conducted in the primary school and the Anganwadi. Later on, the Sangini surveyed the health condition of 50 children of the village in the age group of 0 to 5 years. Their height, weight and the other health criteria were assessed and based on this assessment, children were divided in the categories 'malnourished'. 'less malnourished' and 'healthy'. The workers of Adani Foundation working in the SuPoshan Project had previously informed about the importance of nutritious food, its importance and the diseases caused when such food is not consumed. The people of the village were made aware about the harms caused by eating fast food or packet food readily available in shops. They got to know that the reason behind the malnutrition of their children is lack of nutritious food. Working of the Project:

During the survey, it came to the notice of the workers that Priyanshi Rajeshbhai Yadav was one such malnourished child. She was 1 year, 7 months old but her weight was 5.5 kg. , her height was 75 cm and her M.U.A.C. was 14 cm. As Priyanshi was an underweight child, the worker talked to her parents, informed them about malnourishment and also the Suposhan project being run by the Adani Foundation.

Community health : Health Camps

Various health camps are organized at regular intervals to meet the specific requirements of the community. We organize special health camps during the season of disease outbreak. We also organize medical camps to provide primary medical care during various public events. We organized total 21 such health camps during this year.

General Health Camp					
Sr.no.	Month	Villages Name	Total Patients		
1	Apr-17	Baroi	192		
2	May-17	Mundra	139		
3	May-17	Mundra	141		
4	Jun-17	Nana Kapaya	51		
5	Jun-17	Mundra	48		
6	Jun-17	Luni	55		
7	Aug-17	Navinal	71		
8	Aug-17	Baroi	32		
9	Aug-17	Luni	85		
10	Aug-17	Mundra	90		
11	Aug-17	Dhrub	34		
12	Sep-17	Nana Kapaya	1200		
13	Sep-17	Nana Kapaya	110		
14	Sep-17	Zarpara	4000		
15	Sep-17	Bhadreshwar	410		
16	Oct-17	Tharad	155		
17	Oct-17	Luni	519		
18	Dec-17	Mundra	118		
19	Feb-18	Mundra	119		
20	Mar-18	Luni	59		
21	Mar-18	Bharapar	104		
	Total		7732		

adani

(17) 73

Community Health

It is not a coincidence that the first four letters of health is "Heal". Instilling health pursuing activities and ensuring availability of quality health care services to the remote areas is the objective of this sector. Committed to "Health for All" the Foundation runs Mobile Health Care Units, Rural Clinics, Special Innovative Projects i.e. Senior Citizens priority card for GKGH, School health and Variety of Health Related Camps.

ANNUAL REPORT 2017-18

(18)

ANNUAL REPORT 2017-18

JEDLE JO JATAN (WOMAN HEALTH)

Adani Foundation organized one district level workshop for creating

awareness for breast cancer and survival cancer and preventive measures. Guidance given by five gynecologists doctors. Total 530 women from various

villages of Kutch District took active part in this workshop. They also visited

GKGH hospital and got knowledge about mammography and pep test.

(20)

Guiarat Adani Institute of Medical Science is the first Medical College of Kutch region. It started in partnership with Adani Group and Government of Gujrat in the year 2009. This college was affiliated by the Medical council of India in the year 2014 for the MBBS with 150 seats per year. Gujarat Adani Institute of Medical Science is affiliate with the first digital university "Krantiguru Shyamji Krishna Verma Kutch University". In GAIMS, currently 750 students are studying, The GAIMS Medical College is situated in heart of Bhuj city on a large plot of 27 acres.

- · Adani Foundation Team has initiated coordination with GKGH hospital since last year and established a reception area for the smooth patient coordination and preparation for the social networking Programme.
- · Adani Foundation organized General Health Camps and Specialty Camps in various interior villages of Kutch in coordination with GKGH which created magical impact and benefitted 3483patients. Adani Foundation Bhuj Health team has also organized more than ten awareness camps and village level meetings at 293 villages of Kutch regarding services of GKGH.
- · Dead body medical van Dignity to death is one of the noble initiatives taken up by the Adani Foundation. If any death occurs in GKGH, dead bodies are shifted to the native village of the concerned in the Kutch District free of cost. Total 625 dead bodies privileged till now to different locations in Kutch.
- · It is not always possible to predict the medical expenses. Moreover, those who are economically not so sound, become indebted for lifetime in case of certain illnesses. Therefore, Adani Foundation provides primary health care and financial assistance for ailments such as kidney related problems. paralysis, cancerous and tumor surgeries, neurological and heart problems, blood pressure diabetes etc.
- · In current year we have Supported 610 People from all over district -Kutch

Gujarat Adani Institute of Medical Sciences

અદાણી જી કે જનરલ હોસ્પિટલમાંઅદાણી ફાઉન્ડેશનના આર્થિક સહયોથી૧૧૦ વર્ષના માજી પર સફળતા પુર્વક સાથળના ભાગના હાડકાનો ગોળો બદવાનું ઓપરેશન હાથ ધરાયું.

શું તમે કયારેય વિચાયુ છે કે ૧૧૦ વર્ષની વ્યક્તિના હાડકાના ઓપરેશન કરાયું હોય અને તે પણ સંકળતા પૂર્વક સંભવત સામાન્ય માણસ માટે અચરજ પમાડે તેમ અને મડિકલમાં પણ અધર કહી શકાય તેવું ઓપરેશન તાજેતરમાં અદાણી સ્થિર જી.કે જનરલ હોસ્પિટલમાં મુળ ગાગોદર હાલે મોટી હમીપર કુભારામ આશ્રમના ૧૧૦ વર્ષના લાછીબેન મહાદેવભાઈ પ્રજાપતિ પર સફળતા પુર્વક હાથ ધરવામાં આવ્યું હતુ આ આખી ઘટનાની વિગત કાઈક અમવી છે. પોતાનું કામ જાતે કરવું એવા સિધ્ધાતવાદી ૧૧૦ વર્ષના લાછીબેન થોડાક મહિનાઅગાઉદિવસ અસાનક લપસી પડયા હતા જેને કારલે તેમને થાપાના ભાગમાં ગંભીર ઈજાઓ થઈ હતી સખત દુઃખાવાના કારલે તેમનાથી સામાન્ય હલન ચલન થઈ શકતી ન હતી એટલે તેમના દિકરા કરશન મહાદેવ પ્રજાપતિ ત્યાના સ્થાનિક દવાખાનામાં લઈ ગયા પરંતુ આખો કેસ તથા દર્દીની ઉમર જોતા તે હોસ્પિટલના તેમજ શહેરના અન્ય ડોકટરોએ તેમની આગવી સારવાર આપવા ઈન્કાર કરી દીધો જો કે અગાઉના સારા અનંભવો બાદ તેમના દિકરા વધુ સમય ના બગાડતા માજીને હોસ્પિટલથી સીધા ભુજ સ્થિત અદાણી જી.કે જનરલ કોસ્પિટલ સલાહ સારવાર માટે હાડકા વિભાગમાં લઈ આવ્યા.

આ આખા કેસની વાત કરતા હાડકા વિભાગના ડોકટર પારસ મોટવાની ડોકટર સંગીન મુડીયા એ જણાવ્યું હતું કે આ આખો કેસ બહુ અધરો હતો અલ્બત ૧૧૦ વર્ષની ઉમર હોય અને વળી તેમના પર હાડકાનું ઓપરેશન હાથ ધરવાનું હોય એટલે બહુ સાવચેતી રાખવી પડે અસહય પીડા સહન કરતા માજીને થાપાના ભાગમાં ફેકચર થયું હત જેના કારણે તેઓ સામાન્ય હલન ચલન પણ કરી કશતા ન હતા સામાન્ય હલન ચલન વખતે તેમને ખુબ પીડા થતી હતી અલ્બત ઉંમરના હીસારથી તેમના પર ઓપરેશન હાથ ધરવું જોખમી હતું જો કે આ છતાએ હોસ્પિટલના હાડકા વિભાગનાતબિબો ડો.પારસ મોટવાની ડો.સંગીન ભાડીયા.ડો.ગૌરવ કાલરીયા ડો.નવીન ગાગલ ડો.સત્યજીત ભારડ ડો.આનંદ હિરાલી એ અદાલી ફાઉન્ડેશનના આર્થિક સહયોગથી **થાપાનો ગોળો બદલવાનું**આખુ ઓપરેશન ખુબ સફળતા પુર્વક હાથ ધર્યુ.

આ આખા કેસમા નોધ પાત્ર બાબત તો એ હતી કે ઓપરેશન દરમ્યાન તેમને ન તો લોહી ચડાવવું પડધું કે ન તો તેમને આઈ.સી.યુ મા રાખવા પડયા દર્દી ત્રીજા દિવસથી જ પથારીમાં હલન ચલન કરી શકયા અને વધુમાં ઉમેરતા તેમના દિકરા એ જણાવ્યું હતુ કે મોટા ભાગના ડોકટરોએ ના જ પાડી હતી જો કે અમે લોકો અદાણી ફાઉન્ડેશનના કિશોર ભાઈ ચાવડા સલાહ સુચનથી સમય સુચકતા વાપરીને ભુજ સ્થિર હોસ્પિટલમાં આવી ગયા હતા હને મારી માતાજી પેલાની જેમજ સરળતાથી ચાલી શકે છે. ભુજ અદાલી જી.કે જનરલ હોસ્પિટલનો આભાર વ્યક્ત કરીએ છીએ.

૮૦૦ ગ્રામ વજન ધરાવતા નવજાત શિશુનેઅદાશી જી.કે.જનરલ હોસ્પિટલ માં મોતના મુખેથી બચાવાયું.

સામાન્ય રીતે બાળકનુ જન્મ થતા તેનુ વજન ૨.૫ થી ૩ કી.ગ્રા હોવુ જોઈએ તેવા બાળકને શારીરિક રીતે સ્વસ્થ માનવા માં આવે છે. ભુજ ની અદાલી જી.કે.જનરલ હોસ્પીટલ મા માત્ર ૮૦૦ ગ્રામ વજન ધરાવતા બાળકનુ બાળ રોગના નિષ્યાંત ડો. હરદાસ ચાવડા અને એન.આઈ.સી.યુ વિભાગના ઈનચાર્જ ડો. હસમુખ ચૌહાલ અને સ્ટાક ખુબ જ કાળજી પુર્વક સારવાર આપવામા આવી હતી જેથી બાળક ગંભીર બીમારીઓથી બહાર આવી ગયું

આજથી ૨૭ દિવસ પહેલા મિરઝાપરના નર્સ બહેન જયશ્રીબેન ચાવડા દ્વારાનોરમલ પ્રસુતિ કરવામા આવી હતી આ સમય દરમિયાનજન્મેલ નવજાત બેબી નુ વજન માત્ર ૮૦૦ ગ્રામ હોતા નવજાત શિશુનો જીવજોખમમા હતુ આથી ગભરાયેલામાતા–પિતા ગીતાબેન અરવિંદ કોલી નવજાત શિશુની સારવાર માટેભુજ ની અદાશી જી.કે.જનરલ હોસ્પીટલ મા લઈ આવ્યાજયા તેમને લાબા સમય સુધી વેન્ટીલેટર મશીન પર રાખવામાં આવ્યુ હતુ ત્યારબાદ તેમની તબિયતમાં સુધારો થતા તેમને સી પેપ પર રાખવામાં આવ્યુ ઘીરે ઘીરે તેમની લભિયતમાં સુધારો થતા લાગ્યો આ બાળકની જીદગી ડોકટર અને નર્સિંગ સ્ટાકના અથાગ પ્રયત્નથી નવજાત શિશુનો જીવ બચાવામા આવ્યો.

૧૪/૦૪/૧૭ ના હોસ્પિટલમા આવેલા નવજાત શિશુને ૧૦/૦૫/૧૭ ના રોજ રજા આપવામા આવી ત્યારે નવજાત શિશુનુ વજન ૮૦૦ ગ્રામ થી વધીને ૧કિલો ને ૩૫ ગ્રામ થયુ મહત્વની બાબતતો એ ગણવામાં આવે છે કે આટલા લાબા સમય સુધી તેમના માતા પિતાએ ઘીરજ રાખી તેમને ડોકટર અને સ્ટાફ ની સારવાર ઉપર વિશ્વાસ હતો આ હોસ્પિટલના મેડીકલ ડારેકટર ડો. જ્ઞાનેશ્વર રાવ સાહેબે જણાવ્યું હતુ આટલા દિવસ સારી સારવાર કરાવી અને કરી એ બદલ બાળકના વાલીઓ અને હોસ્પિટલના સ્ટાક અભિનંદને પાત્ર ગણાવ્યા હતા અને આ ઉપરાત અદાશી જી.કે જનરલ હોસ્પિટલમાં વધારે સારી સારવાર મળી રહેશે એવુ જણાવ્યું હતું. અદાશી ફાઉન્ડેશનના સહયોગથી ડો. હરદાસ ચાવડા, ડો. હસમુખ ચોહાણ અન કિશોર ચાવડા ના હસ્તે શુભેચ્છારૂપે નવજાત શિશુને બેબી હેલ્ય કીટ આપવામાં આવી હતી.

ANNUAL REPORT 2017-18

(22)

M

lea

. .

Sustainable Livelihood Development

In the villages at Mundra Taluka, several communities are economically side-lined and weaker that depend on a sole income source or are unemployed. Sustainable livelihood projects have been launched to cater financial independence through building local partnerships, providing diverse livelihood avenues, inculcate the attitude to establish savings, equipping to earn and updating local skills by making use of existing resources to encourage self-reliant lifestyles. Participation is encouraged by launching specific projects for fishermen communities, farmers and cattle owners, youth and women.

Fisherman : Education Initiatives Education is a strong building block in building a stronger and healthier community. Adani Foundation,

through its surveys and assessments with fishermen community came to know that only education can make change in the status of fishermen community so we have started education intervention work from pre primary to college level under various project which are as below

Fisherman Vidya deep Yojana

Adani foundation has been working restless to strengthen to pre-primary level education as "BALWADI" and to achieve this goal foundation has constructed four balwadi center at different fishermen helmet for 2.5 to 5 years group children. This Programme focuses on the development of basic age-appropriate learning concepts, discipline, regularity, awareness about health, hygiene, cleanliness and also provides nutritious food. Total beneficiaries of Vidya deep Yojana are 138 of four fisherman vasahat

Fisherman Vidya Sahay Yojana

Adani foundation implement various program to improve higher education level of fishermen children through various support.

Scholarship Support (80%) to 50 students studying in $10^{\rm th}$ standard in SMJ High School, Luni. Book Support : Total 57 students benefitted by book

support for standard 9th to 12th. Ramotsav organized at five fisher folk settlement to motivate young children for developing sportsman spirit

adani

Dares to dream of a bright future

The otherwise hopeless eyes of Isak Bhai are today filled with great hopes of prosperity and wellness. Sitting near his wretched house in the Luni fisher folk hamlet, this poor fisherman dares to dream of a bright future for his family surrounding his minor son Samir.

A school-goer of Balwadi run by Adani Foundation, Samir has undergone a varied transformation which has brought in the belief in Isak Bhai that "Future Good" is waiting to happen with his family. The small boy who couldn't even utter his name properly, today speaks clear English lines with much confidence.

Thanks to the Balwadi teaching process, Samir knows lot about basic hygiene, public speaking, table manners and what all. The change in Samir has highly impressed the parents and showed them a ray of hope for better tomorrow.

adanı

A Story of Transformation of Life

A woman is called a divinity of power and lame at the same time. She is called a deity of power because there are many conflicts in life and she fights back to any circumstances and survives. And she is called lame because though society trumpets about the rights and respects for the women but still she suffers and society, may be unintentionally, do not care about her problems.

Even today in remote areas she is stopped from going to school as soon as she becomes literate enough to read and write. Unless this thinking will not change we have no rights to worship the delty of power. It is not responsibility of government only to change the mind-set. Contribution from each one of us can only bring the change and will get good results.

This is a story of such inimitable change. The story of Muslim daughter Husenal Husena is a brilliant girl who was studying in class 7th in Bavadi Vasahat in Bhadreshwar. Village in Adani Vidya Mandir Bhadreshwar. Suddenly she stopped going school. Teachers visited her home and tried a lot to convince her parents but they did not agree to give permission. Next day Ishwar Bhai reached to her house. Her father Isak Bhai opposed him in the beginning but after some time his anger calm down with ending the conversation Isak Bhai just spoke ,"if Husena want to study she can go to school".

ANNUAL REPORT 2017-18

(26)

Machhimar Ajivika Uparjan Yojana

The 'Ajivika Uparjan Yojana' was implemented to promote and support alternative livelihoods among the Fisher folk communities during the non-fishing months. The Foundation introduced 'Mangrove Nursery Development and Plantation' in the area as an alternate income generating activity for the people of the region. Both men and women received training on Mangrove plantation, moss cleaning, etc. as per requirements. The Foundation provided them with employment equivalent to 4526 man-days. In addition to this, employment worth of 29526 man-days has been provided till date. The Foundation has also supported Pagadiya fishermen as painting labourers by providing them with employment and job in various field.

Alternate Livelihood for Fisherman

Fishing is only source to earn livelihood. There is uncertainty in fishing business so Adani foundation support them to provide alternate livelihood like contract work and painting work in Adani. due to this intervention we awarded painting job in port as well as colonies and SEZ. In addition, After successful completion of technical training by Adani skill development center, provided job to 19 fishermen and contract work to 28 fishermen.

(28)

adani

Fisherman : Health Initiatives

A person of perfect health does not shirk his duties. He can work properly and leaves nothing undone As a student, he shines in his examinations though the important mobile dispensary has been started by Adani foundation at different vasahat since 2009 to provide medical facilities and primary treatment of diseases, this year its reached to patients At different vasahat.

- Due lack of health awareness in fishermen community there are some dominant diseases found hence apart dispensary facility we also organized health awareness camps, women meeting at frequent intervals,.
- Medical Financial Support -Adani Foundation has extended financial assistance to more than 1519 financially challenged patients from the Fisher Folk Community in case of medical urgency during this year.
- 3. Health Card for Senior Citizen Project This is one of the major and prominent and the most innovative project of the Adani Foundation. Under this scheme Health Cards were given to the to Senior Poverty Stricken Citizens to provide them financial support to combat with their health related needs. The project for the senior citizens is popularly known as Vadil Swasthya Yojana and till date 219 senior citizens from fisher folk community are enrolled in the scheme. They are getting cash less medical services upto Rs. 30,000 for three years. Besides this, follow up with the card holders is a regular activity. It has been observed that card holders treat the card as an important document. Most of them keep these cards in their wallets with other important documents and cards.

ANNUAL REPORT 2017-18

Machhimar Kausalya Vardhan Yojana

Skill building is a powerful tool to empower individuals and improve their social acceptance hence skill development program has been started by Adani foundation as per fishermen youth need assessment to create employability by ASDC at Mundra and from this year we have started Dori work and sewing training program for fisherwomen at their vasahat to make them self reliant.

Year	2017-18	
lasic Computer	20	
oring Training	20	
Crane Operator	2	
Work Training	60	
Total	102	

adani

Machhimar Shudhh Jal Yojana

Pure water play important role for good health hence reduce water scarcit and ultimately reduce load over women , potable water was provided to the fishermen communities at different vasahat through water tanker A total o (1,18000 Litre/Day) liters of water was supplied to 983 households from different settlements on a daily basis

Sr.	Vasahat	family	Requirement Per day	Remarks
1	Luni Bandar	110	15000	9th Month
2	Bavdi Bandar	88	15000	9th Month
2	Kutdi Bandar	140	15000	9th Month
. 4	Virabandar	80	10000	9th Month
5	Randh Bandar	250	23000	9th Month
6	Ghavarvaro Banadar	60	10000	9th Month
7	Junabandar	165	30000	9th Month
8	Zarapra Vasahat	35		As per
9	Chhachh vadi Zarapra	55		requirement
	Total	983	118000	

Fisherman Cricket League

Adani Foundation, Mundra organized Cricket Tournament, "Adani Premiere League" among fishermen community to promote healthy sportsmanship ,and harmonically transparent community relationship among fisher folk of Mundra and Anjar Taluka The Adani Premiere League by Adani Foundation started on 13.07.2016 at Shantivan Colony Cricket Ground. Total 58 Teams of 15 villages and 696 Fisherman participated. Teams from Villages Zarpara, Navinal, Shekhadiya, Modhava, Salaya, Mundra, Tragadi, Luni, Sanghad, Gundiyali, Bhadreshwar ,Vandi (Tuna),Layja and kathada participated with great enthusiasm. we took 786Rs registration fees from all participated teams.

ANNUAL REPORT 2017-18

ANNUAL REPORT 2017-18

(30)

Cage Culture

Fishing occupation and Port business coexists. When we started port operations, condition of Fisherfolk community was deprived. After inception of CSR arm of Adani Group - Adani Foundation in 1996, strategy was planned based on priorities for socioeconomic development of Fisher folk community. The fishers of the Shekhadiya fishing village (Juna Bandar) are one of the stakeholders of the Adani Port Ltd. Mundra.

Cage culture mean The production method for raising aquatic species using enclosures made of wire or netting around rigid frames which are placed in water.

Technology change is an important instrument in the continuous process of socioeconomic development toward this path Adani foundation has started cage culture project with two beneficiary with consultancy of CMFRI for technical guide line.in this culture system 619 tiny lobster were stocked in to two 6x6 meter square cage. the growth and health of lobster were being monitored after seven month culture period 125 kg lobster and 80 kg native fish were harvested which create 1.10 lakh Rs income over fishermen, we organized grand harvesting inauguration and cage culture awareness program in presence of Mrs. Emleda Joseph (principal scientist of CMFRI).and 6 fishermen were facilitated by CMFRI training certificate.

It was reported that about big numbers of fisher folks are willing to change their occupation; therefore, Cage culture aimed to provide alternative employment and encouraging them to shift from full-time to part-time fishing.

ANNUAL REPORT 2017-18

(32)

Journey for career building and shaping a golden future !!

A journey for career building and shaping a golden future in the game of cricket has begun for Fakir Ahmed. An extraordinary talent with astonishing batting and bowling skills, the 21-year old from Luni fishermen community has taken his road to stardom at the right time and age.

Due to the sincere efforts of Adani Foundation, Fakir has been enrolled into the prestigious Yusuf Bamaniya Academy, Rajkot for able mentoring and high standards of coaching. Like few other maestros emerging from the Academy to play for India in the national team, Fakir may become a shining star of Indian cricket tomorrow, bringing laurels to his community and the nation as a whole.

Born to economically poor parents of the fishing community in Kathda village of Mandvi Taluka, the cricket talent of Fakir and his passion for game was well noticed by his father even when the boy was at the tender of 9 years only. With his limited ability and resources, the father would encourage Fakir to take part in village and district level tournaments and appreciate his series of wins and victories.

Till November 2017, Fakir was just another face in the crowd when he had come to Mundra to play among 696 youths of his fishermen community representing 58 different teams for a mega cricket tournament organised by Adani Foundation. Throughout the tournament his consistent performance and unique style of playing was vividly noticed by the audience as well as the organisers.

However, Fakir's one-man show and struggle to save his team from a miserable defeat in the final match was worth viewing. In his sincere efforts for victory he was shining like a lone star in the dark sky. Heart beats fastened and the curiosity kept on rising with Fakir intelligently facing each ball of the deciding match with utmost calmness. With his awesome playing, Fakir literally made all the audience and the organisers his fans and became the star attraction of the entire tournament.

Subsequently, with the intervention and counselling of AF. Fakir has got into the Yusuf Bamani Academy where he will have One year of rigorous training in the game. Realising the fact very well that Fakir was an active member of the family and the residential cricket coaching would cease that running income, AF has facilitated a stipend of Rs. 10,000/- a month to the budding cricketer which would prevent his family from financial crunch

Poly Culture

Polyculture is the practice of culturing more than one species of aquatic organisms in the same unit area (marine, pond and rivers). The principle of Polyculture is that production of more organisms in the particular unit area having different food habits in one unit.

The main objectives for promotion of alternative livelihood to raise the economic standard of fisher folk, second is to reduce the pressure on fishing effort.AF has started poly culture project with consultancy of GUIDE In this system we stocked 6000 fingerlings fishes of 3gm weight in six different cages. There was 80% survival with 100 to 150 gm each weight after 5 month culture period

The activities involved i.e. capacity building, expert inputs, machineries, seeds of fish and fish food. We have identified feasible sites for the Polyculture and implement the activities with participation of fisher folk committees who has taken whole responsibilities. These Polyculture will add value to the fishing occupation of the local fisher folk community.

Thanks AF for Guiding me to Success !!

It's a complete paradigm shift for Altaf Jakub Manjaliya. From a small fisherman to a salaried employee in Airlines company, the college-educated fisher youth has made a noteworthy journey in life.

Altaf Bhai of Luni village was compelled to get into the traditional fishing profession of the family after employment seemed a distance dream for his 12th pass qualification. Frustration had loomed large and he had no hope of ever getting into a salaried profession as had dreamt during studies.

However, Adani Foundation lend him a helping hand and made the dream come true. With necessary guidance and coaching by Adani Foundation, Altaf had appeared an interview in Odisha Airlines against a vacancy in Mundra location. Luck shined, he got selected for the position, and today earns a monthly salary of Rs 8500/- leading a contended life.

Expressing his heartfelt gratitude to Adani Foundation, Altaf reacts, "Now I have got a status in the society and could help my family financially. Today I realized the value of education and sincerely thank Adani Foundation for guiding me to success."

SLD Fodder Cultivation NB21

The organization provides fodder during the time of scarcity and the last 3 months of summer every year. During this period, fodder is regularly sent to every village with the help of the local people. This has given stability to the families who earn their livelihood through animal husbandry. In order to meet the demand of fodder, the Adani Foundation purchases it from the regional farmers. This gives them fair rates in return.

This year we have given 60,000 man fodder $\underline{worth \ Rs. \ 170.00} \ Lacs$ approximately.

Additionally, to bring sustainable approach in fodder cultivation – two strategies has been work out.

Participatory approach

1. Fodder cultivation in common land provided by Gram Panchayat

Kutch is famous for animal husbandry business specially for banni buffaloes.as Kutch is a dry and scanty rainfall region so scarcity of fodder is always remain major issue in Kutch and Mundra region. Though to solve this challenge and make village fodder sustainable Adani foundation has begin from FGD approach in different village to run this program in participatory manner. Mr. kalyanji from bareja village had taken lead to start sorghum fodder development in 25 acre land the security and fodder cutting responsibility had done by villagers and after the one cycle of crop total 90 ton fodder was harvested even after low rainfall. The villagers are ready to go with 100 acre land in next year for fodder development.

2. Individual Farmer fodder cultivation NB21

We have promoted cultivation of green fodder in the operational four villages (Siracha, Zarpara under public private partnership mode. Our endeavor is also to improve the production of milk in this area. Green fodder has its own nutritional values as it helps in the growth of cattle and increases the quality and quantity of milk. We are promoting green fodder cultivation with the help of Krishi Vigyan Kendra. Beneficiaries : 105 farmers and quantity of 3 Lac Kgs will be cultivated. Upto next year we are planning to increase our outreach upto 200 farmers by participatory approach. AF will provide Cuttings of NB21 and KVK will provide their expertise.

ANNUAL REPORT 2017-18

(34)

adanı

ANNUAL REPORT 2017-18

(36)

SLD Agriculture initiatives

Adani Foundation puts efforts in Mundra block for consistent betterment in livelihood sector. The organization has carried out remarkable activities in the agricultural and animal husbandry sectors.

Drive for Technology to use in agriculture

We have initiated Programme for Awareness of Farmers in collaboration with KVK. The outreach is approximate 105 farmers of 5 villages The purpose of this project is to initiate village wise integrated agricultural & allied development for sustaining agriculture and socio economic situation of farming community of Mundra block.

This year Main Focused Activities

- Biogas Support to 10 Nos of farmers (AF, Beneficiaries and Govt support)
- Participatory Fodder Development Programme Individual 105 Farmer 45 Acer 5 Village
- Participatory Fodder Development Programme Group wise 1 Village
- Organic Farming 7 Farmers Wheat and Bajara
- Soil Health cards analysis : 27 individual farmers
- Organic farming Related 15 Demonstration for "Jivamrut" at Zarpara
- Marketing Linkages Work : Dates

Sustainability is not only about making projects self-reliant, but also about adding value to existing projects or activities for its long-term viability.

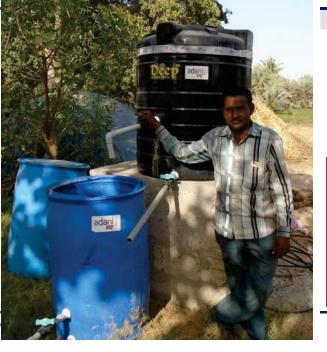
The story of Kamalaben Sheda's encounter with Adani Foundation is something of this sort. The village woman was running a small dairy farm with 11 cows and earned from selling milk in the local market. And, whatever she earned from selling milk, about 40 percent of the amount she had to spent on procuring cattle feed which squeezed the income majorly.

AF in coordination with Krishi Vigyan Kendra has been doing demonstration farming of NB-21 fodder with an idea of minimizing the cost of cattle feed for milk producers in Kutchh district. The linkage of AF helped Kamalaben immensely and her adoption of NB-21 farming technique drastically reduced the fodder expenses. As a result, she has today higher profit margin and a better scope of her business sustainability. She demonstrated the technique in 0.75 acres of land and the harvesting of first year stood above 8000 kgs. While doing a considerable cost-saving on her cattle feed procurement, the association of Kamilaben also made AF proud as she was the first lady farmer to adopt NB-21 technique and succeed.

Kutchh is dried and arid region and there is always shortage of fodder in Kutchh as well as in Mundra region. Abdul Latif Suleman is from Dhrub village however he is mainly depended on dates farming but due to expanding dairy Udyog he is also engaging in animal husbandry business.

Whenever we met him, He always discussed and worry about the fodder as main part of animal husbandry business and requested to find out the technology to solve of fodder scarcity ,so we organize exposure tour for NB2O as well as meetings with parijnya and KVK to make them familiar about NB2O. After all this Mr. Abdul Bhai inspired and has started NB 20 farming in his 0.5 acre land with AF financial and technical support. The total production was 4000kg after first cutting and consequently it will be harvested as its multi crop nature.

Abdul Bhai says that He has total 7 animal and now he don't need to purchase fodder. its also nutritive fodder for cattle which make milk more nutritive hence ultimately save his money and increase his income. he also add that NB21 grows up to 12 to 13 feet and as its multi crop effect farmer can reach their fodder requirement even in small area land hence they can be use more land in other crop.



SLD Bio gas

Biogas is a clean, non-polluting and low cost fuel. It contains about 55 to 75 percent methane, which is inflammable. Bio gas can be produced from cattle dung, human waste and other organic matter by a process called "Anaerobic digestion" which takes place in a biogas plant. The digested effluent, which comes out of the plant, is enriched manure.

The Multiple benefits of the biogas have changed many lives in rural areas. During the last year 11 plants have been constructed and process for 10 more plants is going on. We are providing support addition to Government support to the beneficiary. (Under bio-gas scheme of government, the total cost is Rs.33, 500 out of which Rs.15, 000 will be granted by the government and out of the pending amount of Rs.18, 500 sum of Rs.10, 000 will be contributed by the Adani Foundation. The beneficiary will have to pay only Rs. 8, 500). Beneficiary women use the time, saved from cooking and fuelwood collection, to take up an additional economic activities.

Self Dependency brings confidence !!

A lady Narmadaben 38 year old from Shekhadiya village. She has started her journey though joining in Sonal Krupa Mandal in which they save Rs.100 per month.

As a part of women empowerment we always remain in touch with all SHG Groups even provide various training for saving, Account and entrepreneurship.

Narmadaben has business oriented mind and she always think about to start business. Though as her strong desire she started to washing powder preparation Gruh Udyog with Saheli Gruh Udyog support. Now a day she and their group Members earns minimum 2000Rs per month as optional livelihood with AF market linkage support. She says: I get status in my society and I am able to support my Family and I realize that women can do anything.

This all come true due to AF support and notivational, she become inspirable for other women .

A lady Dhanbai Ravji chuiya 28 year old from Baroi village. Her husband has been working in private company. Her empowering journey is started from joining in Adhar Saheli Mandal which is our initiative for women empowerment. Each women saved Rs.100 per month in this saving group than We had organized training program to create entrepreneurship and motivation among them though as a result of it she started khakhara Udyog on small scale with support of Saheli Gruh Udyog (Supported by Adani Foundation) for training and marketing meanwhile we also organized some training as per their need like account and Rasoi, Papad at VRTI and other center. After all they earn well to meet their day end but Dhanbai has burning desire to start her own business hence she has started to sell dresses, cutlery items and sewing work in their rental shop at Mundra. now she earn more than 4000Rs/month. Additionally, She appeared for HSC boar examination and could able to clear 12th standard with support and motivation of Adani Foundation team.

he says: I get status in my society and support my husband to earn this all happened due to AF strong effort

ANNUAL REPORT 2017-18

(40)

SLD - Women empowerment

adani

Encouraging women, to take control of their lives and building their confidence whether they are single, married or a widow; is one of the initiatives under the sustainable livelihood development program.

- Considering this situation, We have started our training programme with two major women's group of Villages near Adani Power and Adani Ports. Both the groups of women (90 women in total) successfully completed their training for preparing washing powder, phenyl, liquid for cleaning utensils and hand wash etc.
- We have selected 6 women groups having 15 members each, as per their ability for different work i.e. accounting, banking, leadership, marketing, administration etc.
- Before two years we have started shop "Saheli Mahila Gruh Udyog" at Shantivan Colony and started coordinating with various companies for orders of perishable as well as non perishable items.
- "Saheli Mahila Gruh Udyog "has annual turn over of Rs.8.00Lacs.

SLD – Beti Vadhavo

Beti Vadhavo Programme was organized in 32 Villages in the presence of Village Sarpanch and other leaders. We explained people about the various topics i.e. importance of girl child, Sex Ratio, Gender Equality and laws regarding Child abortion.

This initiative was well accepted by community and we have observed a visible change in their mindset.

We have facilitated 560 daughters with Kit (Small Bed sheet, Mosquito net, Soap and Cream with nutritious food for mother)

Messages of Women's Day !!

International Women's Day has been celebrated by the Adani Foundation, Mundra with Integrated Child Development Scheme. On this momentous occasion the supervisors of ICDS were felicitated and honoured for their noble work including the five women entrepreneurs who were supported by the Adani Foundation, Mundra for income generation. The Head of Sarswatam trust was also honoured for his/er remarkable contribution in the upliftment of women. The Staff of AF, Mundra was also facilitated by the ICDS for their remarkable work in field of women empowerment. The SDM, Mamalatdar and the TDO remained present on the occasion. Total 250 women attended the programme followed with a lunch which was prepared by Saheli Mahila Gruh Udyog.

ANNUAL REPORT 2017-18

Coordination with Government for Widow and Senior Citizen Scheme

- We are playing the role of facilitator in case of tie up with Government Scheme for Widows, Senior Citizens and Handicapped people.
- The identity cards are issued to two persons for the handicapped in coordination with Bhuj Samaj Suraksha Khata for regular visit and follow up.
- Last year, 71 widows and 47 Senior citizens and 733 handicapped total 853 members got benefitted from the approval
 of pension certificate. The financial benefit of the senior citizen Yojana is Rs. 400 per month and the widow scheme is of
 Rs. 900 per month.

No	Linkages Detail	Beneficiaries	Source	SANGULAR S
1	Handicap medical certificate	180	Under medical camp and G.k -Bhuj	The second secon
2	Handicap Buss pass and I card	196	Samaj surxa khata at Bhuj	A DES OWN
3	Sadhan sahay munent	47	By Jilla samaj surxa khatu at : Bhuj	
4	Physiotherapy – students	30	Coordination with B.R.C and Adani hospital	Star A Contraction of the second seco
5	I.G sadhan sahay	51	Sewing machine, hand cart, computer kit 1	
	I.G sadhan sahay and widow	48	By adani foundation	
6	Sadhan sahay	38	By adani foundation- tricycle, wheelchair	
7	Handicap pension	3	Sant surdas Yojana – samaj suraxa - Bhuj	
8	Widows pension	71	Mamlatdar Office Mundra	STRE/AB -
9	Snr Citizens pension	47	Mamlatdar Office Mundra	
10	Centeral govat shadhan shay	142	With Taluka health programs	
	Total benefits	853		

Pond Deepening work : Vadala

Sans irrigation facilities and the drastic fall in water level in dug wells as well as bore wells in the non-monsoon seasons, several big farmers of Vadala village in Mundra locality were deprived of a second crop, thereby keeping their large patches of cultivable land barren post the Ravi crop harvest. Apart from ceasing good income possibility, the water-scarcity scenario had frustrated the farmers who remained helpless and hopeless of getting any solution to the crisis.

This was a situation during 2014-15, when Vadala village had irrigation facility for hardly 30 percent of the agricultural land and the rest patches of land were depending on water availability from dug wells and bore wells surrounding the age-old Radhan Peer Pond located on the northern side of the village. But, the poor storage level accompanied by seepage at many points of the pond resulted negligible ground water recharge in the locality.

The then Sarpanch of Vadala gram panchayat, Manjibhai Paradhi, who requested Adani Foundation, Mundra for a permanent solution to the issue, informed that during monsoon season not more than <u>3 mcft of water could be stored in the pond</u>, which used to vanish and totally wasted within days due to the prominent seepages. The village with a population of 2871 had around 718 households and majority of them were earning livelihood from cultivation of bajra and castor and animal husbandry. Hence, the poor ground water recharge and faulty pond storage had impacted heavily on the economic condition of the villagers.

Before	
Village Name	:Vadala
Village Population	: 2871
Village HH	: 718
Pond Storage	: 3 Mcft
Study area	: 15 acre – 6 farmers

Сгор	: Bajra : Castor		
After			
Pond Storage Study area Total earning Crop	: 3.25 Mcft : 15 acre – 6 farmers : 2.25 Lacs : Bajra : Castor : Cotton : Wheat		
Depends on irrigation facility two times			

Depends on irrigation facility two times summer and winter

Impact

Annual increase of Rs.15,000 per Acre after Pond Deepening

ANN

ANNUAL REPORT 2017-18

(42)

ANNUAL REPORT 2017-18

Rural Infrastructure Development

Global Problem-Local Solution

Water Conservation Work : Impact Study

At the turn of millennium, the state watched with growing alarm the steady depletion of its ground water and launched massive drive to achieve water security in Mundra region. A large number of water harvesting structure (18 Nos. of check dams in coordination with salinity department) and ground recharge activities (pond deepening work for more than 15 ponds) were built leading to a significant increase in water table and higher returns to the farmers.

Many of these check dams are now in need of repair. Problems such as silting, damaged gates or broken structures have to be attended to for optimal water harvesting.

Adani Foundation has studied impact of Check Dam Strengthening carried out in two villages before two years period.

- 1. Pond Deepening work at Vadala
- 2. Pond Deepening work at Mota Bhadiya

In Both the villages post survey has been carried out and impact on surrounding agriculture is measured.

After carrying out a preliminary survey of the area and identification of the issues, the RID team of AF, Mundra had taken up a project to deepen the pond through silt excavation and close the seepages by erecting RCC protection wall. With a rich experience of working on water recharge in Mundra locality for over a decade benefitting large number of farmers, AF had undertaken the project at Vadala in the year 2015-16 at an expenditure of Rs 8 lakh, and handed over the same to village panchayat for community ownership.

On the very year of project completion itself, good results spoke about the quality of work. While the pond storage level had gone up to 3.25 mcft, the total check in seepage caused water to remain in store for months together allowing the natural recharging of ground water. Again to the excitement of the surrounding farmers, all the dug wells and bore wells remained water-filled for several months facilitating a winter crop to six major farmers in an approximate farming land of 15 acres.

Manjibhai, who is the ex-sarpanch today says, "per acre a farmer makes an additional earning of Rs 15,000/- which comes to a total rise in earning of Rs 2.25 lakh for 15 acres of land belonging to the six major farmers." Apart from improving the socio-economic status of the agricultural farmers, the RID initiative of AF has also benefited large number of other villagers practising animal husbandry due to round-the-year availability of ground water in the locality, added further a local farmer Parbatbhai Vasubhai.

Pond Deepening work : Mota Bhadiya

Sigh of relief has come to the large number farmers and residents of Mota Bhadia village in Mundra taluka who were struggling with perennial woes of water crisis. Adani Foundation acted as a change-agent to facilitate better storage of rain water, further recharge of ground water and rise in water table of the locality.

Even though a check dam existed in the village, yet the storage of water during monsoon was very negligible due to faulty upstream level and excess deposition of silt on the water storage area. After doing a field survey, Adani Foundation had taken up the project of excavation of silt on the upstream of the check dam about two years back. While in 2016-17 financial year around 8535 CMT of sand was excavated, another about 13278 CMT sand was excavated during 2017-18, which deepened the storage space increasing its capacity substantially.

And the result, water recharging takes place automatically improving the ground water condition and maintain a healthy water table. Above 100 acres of agricultural land today give better yield due to water availability and the quality of drinking water from nearly 12 tube wells sunk in the area for public use has improved considerably. The efforts have resulted in ending up a long-standing worry to the farmers.

(46)

Demonstration of Conversion of Non used bore well into Artificial Recharge Bore well Program: Participatory Groundwater Management on Kankavati Sandstone Aquifer Project Area: Adani Foundation CSR Villages of Mundra Taluka

village

economy

Coastal region of Kutchh has potential aguifer known as Kankavati sandstone speeded over 04 coastal talukas. The aquifer is backbone for entire region and groundwater extracted for this aquifer is being used for various purposes like drinking, domestic use, irrigation and others. The groundwater resource is under threat of water table depletion and quality deterioration. Therefore, it is required to manage the resource for long term sustainability with approach of Participatory Groundwater Management (PGWM). PGWM program is being implemented on Kankavati sandstone aquifer by Arid Communities and Technologies (ACT) with multi partners. With the support of Adani Foundation, the program is being implemented in 10 villages of Mundra Taluka jointly by ACT. Geo Science Services (GSS) and PARAB water management.

It is aim to maintain balance between demand and

ANNUAL REPORT 2017-18

supply based on groundwater resource characteristics For supply side management, various techniques designed for groundwater recharge augmentation. As a part of this, demonstration has been designed to convert non used bore well into artificial recharge

A very positive and active farmer Muliibhai savs-'in Jharpara village, there are 2 to 3 bore wells in each farm If we convert one bore well in recharge bore well. aroundwater condition will improve and lush green past of the village can be seen again. This is direct benefit to farmer with low expenditure. I am sur<u>e that</u> each farmer will adopt this technology with your guidance and support.'

adani

ANNUAL REPORT 2017-18

Farmer Karsanbhai says-

'Through diversion of

rainwater in this non L

bore well, groundwate

Recharge plan and estimates have been prepared for each farm. Depth of bore well ranges from 380 to 450 feet. While groundwater table stands at 280 feet. Catchment area has been calculated for each bore well to estimate rainwater. Catchment area may be upstream farm land, own farm land or small tributary. Rainwater will get accumulated in low laving area and then diverted through underground pipeline to the bore well. Recharge chamber has been constructed around bore well by arranging filter media to prevent blockage. Through filter chamber, rain water will directly replenish groundwater resource. In this demonstration, farmers have contributed through labor work required at farm level.

bore well. This demonstration activity has been

implemented at farm level with 06 farmers of Jharpara

To set demonstration, series of discussion have been

made with farmers, village Sarpanch and PGWM

committee. At primary state, O6 farmers have been

selected having different farmland situations. Each

farm has one none use bore well and another in use

for irrigation. By diverting rainwater and recharging

aquifer through non used bore well, groundwater

condition will get improve and that will increase and

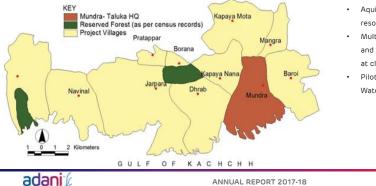
secure crop production and successively farmer's

Estimated rainwater for each bore well is more than irrigation requirement for one season crop in respective farm. Through this demonstration, balance could be set between recharge and discharge. Such demonstration can be replicate in entire region and that will improve groundwater condition in term of salinity dilution, water quality improvement and increase in water storage.

	Basic	details of the demonstration	n activity
ise	Sr.	Farmer's Name	Location
r	No.		
in	1	Karsanbhai	N 22º 50' 20.73"
se		Lakhamanbhai Gagiya	E 69º 36' 36.47"
	2	Muljibhi Visrambhai Gelva	N 22º 50' 25.3"
			E 69º 36' 31.1"
5	3	Lakhamanbhai	N 22º 50' 13.2"
		Manshibhai Gagiya	E 69º 36' 42.7"

Depth of Catchment Farm Received Rainfall Cum area Nonuse hore Area well Feet 700 17,600 . . 10 acre 8 acre 14.080 14.080 8 acre

condition will improve in	1	Karsanbhai	N 22º 50' 20.73"	4	380	10 acre
bore well which is in use		Lakhamanbhai Gagiya	E 69º 36' 36.47"			
for irrigation. Overall	2	Muljibhi Visrambhai Gelva	N 22º 50' 25.3"	8	450	8 acre
			E 69º 36' 31.1"			
groundwater quality is	3	Lakhamanbhai	N 22º 50' 13.2"	4	400	8 acre
poor but through this		Manshibhai Gagiya	E 69º 36' 42.7"			
activity I can secure my	4	Joshi Ashariyabhai	N 22º 50' 37.3"	5	450	4 sqkm
		Ranshibhai	E 69º 36' 35.74"			
one season crop with good	5	Kalyanbhai Karsanbhai	N 22º 51' 4.6"	18	415	24 acre
production'		Sheda	E 69º 37' 3.2"			
	6	Bharubhai Dada Lakhani	N 22º 50' 20.73"	7	460	4 sqkm
			E 69º 36' 36.47"			


Participatory Ground Water Management In Region Kutchh, in many cases, groundwater or surface water may be unavailable for drinking water. The objective of the project was to reduce

the salinity ingress in and around the coastal regions of Mundra, Kutchh and mitigate the ill-effects of this manmade problem to improve the livelihoods of the rural people. The Project will help to get water table high, also it will help in agricultural activities. MAIN AIM OF THE PROJECT : Participatory groundwater management of Kankavati sandstone aguifer to create water secure future. Due to

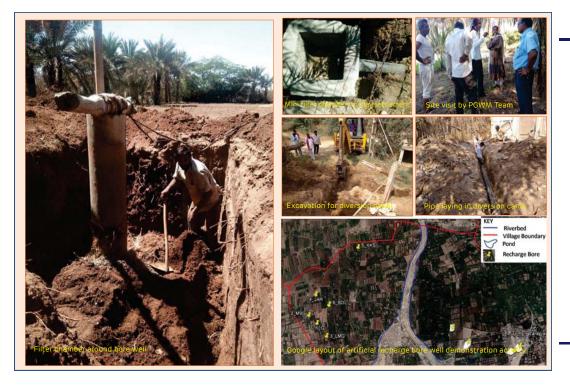
problem of Salinity ingress, we received many issues regarding water scarcity during our village meetings, Public hearings and GRI related meetings.

Expected outcome : If we will start this initiative the issue can be sorted out upto some extent. This is not a corporate requirement but environment compliances - Eco friendly project for the business. This Project will also help agricultural activities also

ANNUAL REPORT 2017-18

- · Aquifer level Institution working on resource management
- Multi Stakeholder Engagement for sharing and learning of groundwater management at cluster / block level
- Pilots to demonstrate Participatory Ground Water Management Framework for Use

(47)


ANNUAL REPORT 2017-18

17.60.000

17,60,000

42.240

Workshop : Participatory Ground Water Management

Every stage of implementation is initiated by advocacy workshop at block level to share experiences of various partners including farmers, village committees, CSR foundations, researchers, Bhujal Jankars and local experts. One such workshop has been organized on 22 March 2018 by Adani Foundation, (AF) Arid Communities and Technologies, (ACT) Geo Sciences Services (GSS) and Parab Water Management Pvt Itd. at Mundra. The aim of workshop is to inform about PGWM project planned jointly by AF and ACT and to create awareness among various stakeholders about PGWM activities on other part of kankavati Sandstone area by different CSR and community interventions. One of the objectives of the workshop is to sensitize stakeholders about groundwater use by users and educate about kankavati sandstone issues and potential. Considering aim and objectives workshop sessions were planned for sharing of learning and characteristics of Kankavati sandstone by experts of ACT and GSS., experiences sharing by CSR foundations, AF, CGPL and IL&FS, regarding their interventions on PGWM and activities and impact of different activities. In this workshop special focus has given to role of Media on raising awareness and how they can be helpful developing sensitization towards water management with special focus on groundwater management within and outside the project areas.

The workshop has also planned to develop platform for discussions, suggestions by farmers, village committees and Bhujal jankars and to discuss what should be done at village level, cluster level and aquifer levels for developing protocols for demand side and supply management.

The workshop has been attended by 107 participants from 29 villages including 10 village partners of AF project areas, three CSR foundations, KVK, five organizations, four main media i.e. Kachchh Mitra, Divya Bhaskar, Maa News, all India radio and immanent citizens of Mundra town.

The workshop way forward

- 09 village water security plan have given to respective villages
 Village community people have highly appreciated Adani foundations attempts on PGWM and promise to cooperate for PGWM activities and agreed to develop protocols based on PGWM principle.
- KVK should be involved in monitoring of PGWM activities carried out in villages and document changes in agriculture and water conservations due to change in water quality and quality

ANNUAL REPORT 2017-18

Water Conservation Projects: Scarcity of potable water in Kutch has led to acute problems in its coastal region. In Mundra, people mostly use ground water for drinking. Unfortunately this water has a high level of TDS which causes bone and kidney diseases. To alleviate this situation, the Adapi Foundation has taken initiatives for water conservation including construction of check dams and nond deepening

This year Adani foundation carried out pond deepening in Bhuipur and Mota Bhadiya Village and Canal Repairing work across the river at Zarpara village. Also repaired check dam at kandagara to rejuvenate the same.

adani

Education Related Projects: Education is the most powerful weapon which you can use to change the world." To improve the quality of education and to improve school environment, the Adani Foundation supports for infrastructure development on request basis. Adani Foundation carries out the construction of assembly hall, classrooms, computer labs, space for midday meal, playground, school walls, washrooms etc. as per the needs and preferences of the school. It is aimed at providing facilities in education sector to the present neneration We have constructed Prayer Shed at Govt Primary

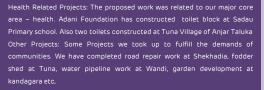
School at Ragha and Bhadreshwar. Also grill work done in Kumar Shala Zarpara.

Rural Infrastructure Development

Drinking Water Related Projects: Potable drinking water is basic requirement of any village. For better health and hygiene of village drinking water should be clean and pure. So, this project will create positive and effective social impact. Adani Foundation has installed RO Plant at Samaghogha and Siracha village. Also RO installation at Vallabh Vidyalaya at Mundra

RID – Dignity of Workforce

Present condition of migrated labour community of Adani port, power and Wilmar is really matter of concern. They are living in pathetic condition. It is true that we cannot achieve our goal of development unless and until we support to bring up the lives of this community. Basic needs of this labour force need to be addressed. In labour Vasahats they were not getting even the facility of pure drinking water, proper living condition, sanitation or in one go we can say "NO" proper living conditions.


With the objective to build up trust and transparency in labour community, union Labours and Smooth business operations, Adani foundation has constructed and provided basic sanitation facility (18 Nos), Balvadi, medical center and retiring places at labour settlements near Adani Wilmar Ltd. The provided facilities may lead them to live happy, healthy, secure and hygienic conditions and will definitely make them happy and will boost the efficiency and commitment of the people

ANNUAL REPORT 2017-18

ANNUAL REPORT 2017-18

(54)

Other Projects: Some Projects we took up to fulfill the demands of communities. We have completed road repair work at Shekhadia, fodder shed at Tuna, water pipeline work at Wandi, garden development at kandagara etc,

A step towards Swachh Bharat : School Sanitation Adani Foundation has brought smiles to large number of girl students of Sadau primary school in Mundra locality, who were otherwise unhappy with the poor toilet and sanitation facilities available in their premises. The construction of three new urinals, two toilet blocks and one wash basin exclusively for girls has largely changed the scenario and

created much impact on the hygiene conditions as well as psychology of the female students. Even the parents and quardians are a relaxed lot with the improved facility and privacy for toilet use to their children.

Earlier, there were only two toilets each for boys and girls which was insufficient considering the large number of about 243 girl students. Besides, the boys and girls toilets were adjoined, thereby causing psychological impact on the users.

Citing lack of fund, the school authorities had requested Adani Foundation to support the construction of exclusive toilet facilities for girls. As per prescribed designed of government, the toilets, urinals and wash basin for girl students were constructed

Apart from playing a key role in Swachh Bharat Abhiyan, this RID project of Adani Foundation also contributed towards Girl Child Education.

RID – Dignity of Drivers

It is very difficult to achieve a healthy lifestyle for truck drivers. It's no secret that truck drivers are strapped to their seats for long periods of time. Poor sleep and busy life style leads to many diseases i.e. blood pressure, diabetic, obesity and this leads to heart attack sometimes. With reference to the above stated issue Adani Foundation decided to provide resting shed with water and sanitation facility for truckers near SEZ parking areas. We can reach upto truckers and help them to be comfortable after long tiring journey, Which will useful to create trust among vendors and union Labours.

With objective to build up trust and transparency in Truckers community and Smooth business operations. In long term it will help us in trust building for the group and necessary for the business relations with stakeholders.

Size of shed is 24.10 Mtr x 12.40 Mtr and total 50 platform is constructed for resting. Other facilities are drinking water, sanitation, LCD for recreation purpose and canteen facility nearby

ANNUAL REPORT 2017-18

Summary of School Visits at Shanti Vihar from December-2010 to March-2018

Financial Year	No Of Schools / Institutes	No Of Visitors
FY 2010-11 (December 2010 to March 2011)	99	4145
FY 2011-12	318	22652
FY 2012-13	364	27704
FY 2013-14	375	36744
FY 2014-15	423	28310
FY 2015-16	343	27926
FY 2016-17	327	23804
FY 2017-18	487	32024
Total	2736	203309

adanı

ANNUAL REPORT 2017-18

(60)

Education

Education is a strong building block in building a stronger and healthier community. Adani Foundation, through its surveys and assessments with fishermen community came to know that only education can make change in the status of fishermen community so we have started education intervention work from pre primary to college level under various project which are as below

adani

ANNUAL REPORT 2017-18

Project UDAAN

Udaan is a learning based initiative focused on the youth coming from various schools across the state of Gujarat. Under this project, a two day free of cost exposure tour is organized wherein students are given a chance to visit the Adani Port, Adani Power & Adani Willmar facilities to get an insight upon the large scale business activity carried out at each of them.

Specifically students from high school (9th to 11th grade) are encouraged to take part in the exposure tours. It is believed that students of this age would be able to absorb the learning in a better way which could help them shape their lives by aspiring for big. The spread of the schools extends to various districts in Gujarat. There is a specific effort to reach out to schools in the rural areas. Other than schools even colleges where the exposure visit seems to be helping the curriculum are encouraged.

Till Date Total 2736 Schools and 203309 students have been part of project UDAAN

Adani Vidya Mandir

About School :-

Adani Vidya mandir (AVM-B), a GSEB affiliated school is the first of its kind initiative, under the support of Adani Foundation.

Mission :- To fulfill the quality base education for economically poor family & Fisherman Students, so that no children can drop primary education.

students coming from challenging economic background,

who have priceless treasures but have been under achievers due to situation. The school was established to realize the dreams of those

parents who owing to financial constraints are not in a position to provide quality education. School also provides them free uniform, textbooks,

Notebooks, Breakfast, Lunch and refreshments.

School Provides "cost-free" education to meritorious

	Students strength Year wise (2013-18)							
Class	2012-13	2013-14	2014-15	2015-16	2016-17	2017-18		
1 st	53	40	45	41	38	40		
2 nd	26	68	46	41	39	37		
3 rd	27	40	73	45	37	39		
4 th	-	39	48	70	44	36		
5 th	-	-	37	46	58	39		
6 th	-	-	37	36	46	58		
7 th	-	-	34	37	35	44		
8 th	-	-	39	34	36	34		
9 th	-	-	-	38	38	30		
10 th	-		-		23	27		
Total	106	187	359	387	394	384		

key Activities: Science Fair – Block level Drawing Competition under the P.C.R.A. National level competition International Yoga Day Celebration Guru Purnima celebration Teacher's day Celebration Children's Day Celebration Educational Tour for each standard Festival Celebration Awareness Street Play organized at various villages

		AD	ANI VIDY	A MANDIF	R, BHADRE	SHWAF	2	
			ANALYZE	D GRADE OF	THE STUDEN	ITS		
	A1	A	В	С	D	E		
CLASS	90% ABOVE	80%-89	65%-79%	50%-64%	33%-49%		ABSENT	TOTAL
1	7	13	9	11	0	0	0	40
2	2	10	14	8	3	0	0	37
3	3	11	7	9	9	0	0	39
4	1	13	10	3	9	0	0	36
5	0	6	14	13	7	0	1	41
6A	0	1	8	12	8	0	0	29
6B	0	2	4	17	6	0	0	29
7	0	1	8	17	19	0	0	45
8	0	1	8	12	12	0	1	34
9	0	0	3	22	0	5	0	30
10	0	0	4	12	0	11	0	27
TOTAL	13	58	89	136	73	16	2	387

Shala Praveshotsav

To motivated children for schooling by providing the welcome kit / education kit and to create conducive children for " joyful learning" Environment for children for Learning during shala Praveshotsav Govt, has wide spread network of 111 Govt. primary schools in total 62 villages of Mundra Taluka, 3 villages of in Anjar taluka and two villages of Mandvi Taluka every year on an average 2550 to 2700 children gets enrolled in 1st std in Taluka For 2017-2018 total 2500 children got enrolled & Adani foundation provided the "Enrollment kit" to all new enrollee in Taluka

Adani Education Development Center

Kutchh District is very poor in case of Primary Education. Educational Standards of Govt. School is considerably depraved. It continuously destroying our young generation in absence of proper direction and base, keeping this situation in view, We have initiated Coaching center at Zarpara and Sharda Mandir, Mundra. More than 85 students has benefitted by coaching center. (22 students were in D Grade who secured C Grade and rest 63 students were in C Grade among them secured 21 students got B Grade this year.

- Key Focus of center:
- Éfforts to Improve Quality of Education
- Child Education & Nurturing
- Propagate Child Friendly Environment at schools
- Community Participation
- Maximum [100%] enrollment and retention in Schools

ANNUAL REPORT 2017-18

(62)

ada

ANNUAL REPORT 2017-18

Vatvruksha : Come, Let Us Walk Together on the Path of Development'

Education has the power to transform the social landscape. With its progressive approach and ideas, the Foundation has been carrying out innovative activities to improve the scenario of primary education in the Mundra taluka for many years. Its unique initiatives are aimed at making education more effective and interesting for the children to ensure that no child remains bereft of primary education. These initiatives target children, teachers as well as schools. With these objectives, education camps are organized regularly.

'Come, Let Us Walk Together on the Path of Development' - With this idea, the Foundation organized a teacher's camp named 'Vatvruksha'. Hon'ble Collector Shri Remya Mohanji, DEO Shri Vaghela, DPEO Shri Suvarnakar, Adani Foundation Advisors Shri Vasant Gadhvi, Shri Rakshit Shah and Shri Mukesh Saxena, TDO Shri Mamlatdar, DPEO Shri Haresh bhai, Mundra Taluka CRC as well as invited teachers attended the camp.

Mohan Vaghela, Nisha Trivedi, Viraj Vohra, Alka Chavda, Sanjay Mehta, Rashida Hussain and other experts also participated. Important topics like teaching methods and evaluation, classroom arrangements, life skills, positive attitude, lesson planning and personality development were covered in the camp.

Material Support

Adani foundation is supporting for improving quality of education under the teaching learning material schools for teachers and students. Role on infrastructure is must to achieve quality of education. Many studies highlight that lack of infrastructure is also affected the school dropout ratio. Good and proper infrastructure attracting children for school. Adani foundation is also trying to full fill need of infrastructure in schools. Where there is no provision of Govt. grant & school's required support AF is there. During this period AF provided green board support at Tuna, Taluka shala Mundra, Lalji Sumar Mundra, Teacher's table support to Mota bhadiya vadi school number 2 & 3, fan at Shekhadiya, science equipment at Luni high school, Girls sanitation at Sadau primary school, water tank renovation at Shekhadiya and Mahesh nagar school.

(63)

Adani Foundation Launches 'Swachhagraha' to create a culture of cleanliness

Swachhagraha, a Behavior Change Education Programme, is an initiative of the Adani Foundation. 'Swachhagraha' draws inspiration from 'Satyagraha' led by Mahatma Gandhi during the freedom struggle movement, which catalyzed action through tremendous patience and perseverance, instilling in the Indian mind, dignity and self-respect. It aims at engaging people and bringing about a change, similar in scale to India's freedom movement, where people get involved to take action for 'Creating a culture of Cleanliness'.

The programme was launched in Mundra, Bhuj District, Gujarat with participation of over 32 schools in Swachhagraha Prerak's training with support of District Education Officer, Bhuj & Taluka Primary Education Officer, Mundra. The programme was launched by Shri Bhupendra Sinh Vaghela, DEO, Bhuj, Shri Haresh bhai Patel, TPEO, Mundra and Jignesh R. Vibhandik, Project Coordinator, Adani Foundation, on 20th January at Adani House, Mundra Port Road, Mundra with full day Swachhagraha training workshop of principals & teachers. Mrs. Pankti Shah, Unit head CSR, Adani Foundation, said, "The Swachhagraha project is perfectly aligned with the 'Swachh Bharat Abhiyan'. At the heart of this project is the idea of 'creating a culture of cleanliness' in the upcoming generations of India.

adanı

ANNUAL REPORT 2017-18

(66)

Adani Skill Development Center

- · ASDC's approach to skill development is holistic and aimed at making each candidate a well-developed individual hence, the team goes to each and every area for making the initiative, a success.
- ASDC reaches out to various communities by leaflet and other advertisements.
- · The team holds various meetings with women and youth of the villages to explain them the objective of ASDC.
- · ASDC maintains all the records, follow-up with candidates meticulously during the entire training period.

OUR IMPACT

Success of a project is defined by the fulfillment of its objectives. And ASDC's succeeds when the trainees get suitable employment

A total of 378 trained students from ASDC has been suitably placed with an average income minimum of Rs.9000pm

ASDC has proven to be a major catalyst in igniting the fire of self-employment and entrepreneurship amongst women. A total of 138 women are now earning at home after getting trained at ASDC in various exclusive courses.

ANNUAL REPORT 2017-18

Students trained over years

SAKSHAM

Adani Skill Development Centre (ASDC) is playing a pivotal role in implementing sustainable development in the state.

Adani Skill Development Centre has initialized in the Mundra block so that the needs of these industries are fulfilled, the local youth is enrolled in various training/ skill courses and the distance between both is minimized.

- The objective of this center is to impart different kinds of training to the students of 10th, 12th, college or ITI from surrounding areas. Thus, various employment-oriented trainings are organized to optimize the skills, art and knowledge through proper guidance and direction.
- Due to social and cultural traditions, various training Programme are organized at school OR village level for youth and women so that they can gain its benefits in the future as well.
- In the year 2017-18, ASDC trained 953 candidates at Mundra.
- · Soft skills training was imparted to 675 students in total, while technical training have been given to 278 students

adani

Jaru Devabhai Arianbhai, an RTG crane operator at skill development training ensuing employability. ust couple of years back a much stressed Jaru ohai had approached Adani Skill Development employment somewhere to support his economically poor family. After passing ITI post his

unemployed like hundreds and thousands of youths of his age and locality. additional knowledge and skill upgradation would bring him a bright future and good days for his family in Vaghura village of Mundra. Soon after completion of his 3 months duration course, Jaru bhai got a job in AK Maharashtra. His current earning per month is Rs 43,000/- with company

He is now a big support for his father, who is a local farmer and his two brothers and sisters, who are continuing their studies to follow the steps of Bhand Navin Devjibhai is very fond of financial autonomy and self-sufficiency, a principle of life which he has got by virtue of his skill development training at Adani Skill Development Centre (ASDC). Mundra Commerce graduate from Mundra village, in the year 201 Navin had enrolled himself at

(68)

ASDC for the IT-Basic Computer training. He was unemployed and lacked the minimum confidence of facing any job interview as per his qualification.

As part of the well-designed training curriculum at ASDC, the 21-year old youth learnt skills of public speaking, professional manners, facing interviews etc. along with core subject of IT basic computer. The training helped he immensely and fetched him a company job with lucrative Rs. 10,000/- per month salary. Happy with his financial autonomy, he is now in a comfortable position to support his parents and three brothers

Self Employed women

Namda on revival path : Adani Skill Development Centre launches artisan training

Even as a breakthrough is waiting to happen, five trainees were enrolled in Dec 17 by Adani Skill Development Centre (ASDC) for the age-old Namda craft, a dying art form of Kutchh district in Gujarat. First initiative of its kind, the skill development training on Namda is aimed at preparing a future generation of artisans for the historic art form.

Adani Foundation, the CSR wing of Adani Group had vowed to save Namda from extinction and bring back its past glory. Originally innovated by an artisan of Mughal Era in the 11th Century India, Namda craft was primarily practiced by the Pinjara and Mansuri communities and Sama Muslims native to Kutchh. Sans proper encouragement, marketing avenues and promotion, the art suffered a major setback with artisans gradually switching over to other professions for livelihood earning.

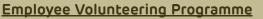
Till recently, when the Adani Foundation, Mundra team members approached Mansuri Karimbhai Umarbhai, perhaps the sole survivor of the craft in Kutchh, Namda was dying a natural death. As a good corporate citizen, the Adani Group initiated a move to protect the art form, as well to make it popular and sustainable.

The first step towards the enormous goal of reviving Namda, the training programme kicked started with lots of positivity and enthusiasm among the trainees, who are committed to put best efforts for bringing back the past glory for this craft. And the best part of the initiative is that, the Namda survivor himself would train the future-artisans.

The trainees comprised of two male and three female artisans, who would be given stipend by Adani Foundation during the three-month training duration.

And what sounds quite favourable about the revival-attempt for Namda is that many important people from the related fields of art promotion and marketing attended the inaugural function of the training programme to witness and support the big effort by Adani Foundation.

The assistant director, Handicrafts Marketing and Service Extension Centre, Development Commissioner Handicrafts, Shri Archit Sahare, Manager, Gujarat State Handloom and Handicraft Corporation Shri MK Parmar, Guide and Retired Profession of NID Shri Vinay Kumar, Director of VRTI Shri Mavjibhai Baraiya, Director of Qasab Shri Pankaj Soni and the local marketing head of Amazon Shri Viraj Thaker were among the key persons present on the occasion to support and encourage the initiative.


ANNUAL REPORT 2017-18

(70)

Always spreading the warmth of concern and care for members of its community in and around Mundra through its sustainable CSR projects, we made yet another endeavor by taking the warmth to labour habitants in the APSEZ Mundra periphery. As the part of "Employees Volunteering Programme "JOY OF GIVING WEEK" Warm cloth distribution was arranged at all three residential colonies of Adani group.

As part of the 2nd phase of Dignity of Labour drive by Adani Group, nearly 350 Labour families were distributed warm clothes by AF, Mundra on Monday. Nearly 150 blankets, 100 sweaters and jackets along with winter caps and shocks were given away to Labour families in view of the already prevalent winter. The warm clothes were donated by employee families, company associates and residents of Mundra under a drive initiated by the company

Swachhata Abhiyan – Village cleaning campaign was organized by Adani ports and SEZ Limited (Baroi, Luni and Sadau), Adani Power Limited (Siracha), Adani Wilmar Limited (Dhrub) and Mundra Solar Private Limited (Tunda Wandh)

adani

ANNUAL REPORT 2017-18

(72)

"AWAZ DE : Voice for the Community"

Small farmers and Fisherfolk remain vulnerable to weather conditions and lack of access to necessary knowledge that enables better decision making related to livelihood activities, health and disaster preparedness. Adani Foundation reaches out to the farming and fishing community of Mundra through multiple knowledge dissemination – AWAZ DE (Voice messages) which provides reliable information at the right time from the right source.

Note : "AWAZ DE" is the software by which AF reaches out to the various target groups by voice messages. AF Mundra is using this software since five years and got a very good result to communicate the same message to more than 5000 people.

Making Community Partners

We do not treat community as a receipt of charity. In fact, people are active partners in development process. The community participates in the work and people own the programs. "Ownership helps make the change Sustainable." It also gives birth to social leaders within the community.

Recognition

The Gujrat CSR Authority launched the CSR Awards'18 with an aim to recognize exemplary work in integrating and internalizing CSR. We are honored to receive the "Sustainable and Impactful CSR Project" Award in the presence of Shri O.P.Kohli. Such recognitions inspire us to continue on our journey. Award received by Shri Mukesh Saxena (COO, SEZ) and Pankti Shah (CSR Head, Adani Foundation) Glad to announce our latest accolade-the Eminent Award 2017 presented at the Ek Kaam Desh Ke Naam award ceremony on 15th January, 2018 at New Delhi. The Award was bestowed upon Adani Ports and SEZ Ltd, Mundra, for outstanding achievement in CSR, specifically for "Sustainable Livhihood for Fisherman Community". Award was presented by Thavar Chand Gehlot, Hon'ble ,minister of social justice and empowerment, GOI and received by shri TT Mehta and Vijay Gosai of CSR Mundra Team.

Pleased to announce a milestone for APSEZ Mundra, as it receives the "CII ITC Excellence in sustainable business" commendation award - CSR for the year 2017. The award was presented by Shri C K Mishra, Secretary Ministry of Environment and Climate to *Capt. Unmesh Abhyankar, Jt. President - APSEZ* and Ms. Pankti Shah, Mundra CSR Head, Adani Foundation. Our endeavor towards sustainability strengthens with every achievement unlocked

			Rs. In lac:
Sr. No.	Program	Budget 2017-18 Rs.	Budget Utilization Rs.
Α.	Admin Expense	152.05	128.06
В.	Education		
(i)	Education Initiative	59.70	50,51
(ii)	Adani Vidya Mandir- Bhadreshwar	142.08	125.35
(iii)	Project Udaan- Mundra	332.33	298.93
	Sub Total	534.11	474.79
C.	Community Health	214.49	187.26
D.	Sustainable Livelihood Development	289.20	285.00
E.	Rural Infrastructure Development	374.70	323.40
	GRAND TOTAL	1564.55	1398.51

adani Act