

APSEZ/EnvCell/2018-19/051

Τo

Additional Principal Chief Conservator of Forests (C),

Ministry of Environment, Forest and Climate Change, Regional Office (WZ), E-5, Kendriya Paryavaran Bhawan, Arera Colony, Link Road No. – 3, Bhopal – 462 016.

E-mail: rowz.bpl-mef@nic.in

Sub : Half yearly Compliance report of Environment and CRZ Clearance for "Handling

facility of General Cargo / LPG /Chemicals and their storage terminal at Navinal

Date: 23.11.2018

Island, Mundra taluka of Kutch district, Gujarat"

Ref : Environment and CRZ clearance granted to M/s Adani Ports & SEZ Limited vide

letter dated 25th August, 1995 bearing no. J-16011/13/95-IA.III

Dear Sir,

Please refer to the above cited reference for the said subject matter. In connection to the same, it is to state that copy of the compliance report for the Environmental and CRZ Clearance for the period of April – 2018 to September – 2018 is enclosed here for your records. The stated information is also provided in form of a CD (soft copy).

Thank you, Yours Faithfully,

For, M/s Adani Ports and Special Economic Zone Limited

Avinash Rai Chief Executive Officer Mundra & Tuna Port

Encl: As above Copy to:

- 1) The Director (IA Division), Ministry of Environment, Forests & Climate Change, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi-110003
- Zonal Officer, Regional Office, CPCB Western Region, Parivesh Bhawan, Opp. VMC Ward Office No. 10, Subhanpura, Vadodara – 390 023
- 3) Member Secretary, GPCB Head Office, Paryavaran Bhavan, Sector 10 A, Gandhi Nagar 382 010
- 4) Deputy Secretary, Forests & Environment Department, Block 14, 8th floor, Sachivalaya, Gandhi Nagar 382 010
- 5) Regional Officer, Regional Office GPCB (Kutch-East), Gandhidham, 370201

Environmental Clearance Compliance Report

Multi-Purpose Jetty and Storage Facilities at Navinal Island, Mundra, Dist. Kutch, Gujarat

of

Adani Ports and Special Economic Zone Limited

For the Period of:

April-2018 to September-2018

From: Apr'18 To: Sep'18

Status of the Conditions Stipulated in Environment and CRZ Clearance

<u>Index</u>

Sr. No.	Particulars				
1	Compliance Report				
2	Annexures				
	Annexure - 1	Half Yearly Environment Monitoring Report	13		
	Annexure - 2	Permissions of Hazardous waste handling authorized vendors	63		
	Annexure - 3	Green Belt Development and Mangroves Afforestation Details	91		
	Annexure - 4	CSR Activity Report	93		
	Annexure – 5	Environmental Protection Expenditures	111		

Compliance Report of Environmental and CRZ Clearance

From: Apr'18 To: Sep'18

Status of the Conditions Stipulated in Environment and CRZ Clearance

Half yearly Compliance report of Environment and CRZ Clearance for "Handling facility of General Cargo / LPG /Chemicals and their storage terminal at Navinal Island, Mundra taluka of Kutch district, Gujarat" issued vide letter no. J-16011/13/95-IA.III dated 25th Aug., 1995

Sr. No.	Conditions		•	ce Status as or 09-2018	n		
2(i)	All construction designs	Complied.	30-	03-2010			
2(1)	/ drawings relating to	Complica.					
	various project activities	All construc	tion and opera	tion activities	are being carried		
	should have the approval				n and permissions		
	of the concerned State	granted.			·		
	Government						
	departments / Agencies.						
2(ii)	To prevent discharge of	Complied.					
	bilge wastes, sewage			_			
	and other liquid wastes	•	ing at Mundr	a Port comp	ly with MARPOL		
	from the oil tankers /	regulations.					
	ships into marine environment, adequate	No dischare	o such as bilo	o wastos sow	vage or any other		
	system for collection,				rine environment		
	treatment and disposal	inside port li		WCG 111CG 111C	inine environment		
	of liquid wastes						
	including shore line	APSEZL does	s not receive se	wage/liquid w	aste from ship.		
	installation and special						
	hose connections for	As a general practice APSEZ provide facility for receiving					
	ships to allow for	•		-	nnection with oil		
	discharge of sewage			•	Oil water separator		
	must be provided.	•		•	s are separated.		
		•	-		ized recycler /re- ceived during the		
		compliance (ppe on was re	ceived during the		
2(iii)	The quality of treated	Complied.	JC1100.				
_(,	effluents, solid wastes,						
	emissions and noise	ETP is provi	ded to treat th	ne wastewater	/wash water. Also		
	levels etc. must confirm	the sewage	generated f	rom port is	being treated in		
	to the standards laid	•			for horticultural		
	down by the competent	•	•		m to the standard		
	authorities including the	laid down by	Gujarat Polluti	on Control Bo	ard.		
	central and State			Quantity of	Type of ETP /		
	Pollution Control Boards under the Environment	Location	Capacity	Wastewater	STP		
	(Protection) act, 1986	LT	265 KLD	75 KLD	Activated		
	whichever are more		203 1125	, , , , , ,	Sludge		
	stringent.	Third party	analysis of the	troated wate	er is being carried		
		•	•		EF&CC accredited		
		JUL OILCE III	o month by i	** *PE 0110 14101	LI JOO GCOIEGILEG		

From: Apr'18 To: Sep'18

Sr. No.	Conditions	Compliance Status as on 30-09-2018				
		agency namely M/s.			•	
		of the same for	duration	from A	.pr'18 t	o Sep'18 is
		mentioned below.				
						0
		Parameter	Unit	Max	Min	Perm. Limit ^{\$}
		Industrial Effluent / S	Sewage			2
		рН		7.58	6.64	6.5 to 8.5
		TSS	mg/L	65	34	100
		TDS	mg/L	1502	1060	2100
		COD	mg/L	92	77	100
		BOD (3 Days @ 27°C)	mg/L	28	20 s net CC&A	30 A granted by GPCB
					3 pc1 0007	r granted by or ob
		The quality of marine and noise levels are accredited and Most Annexure – 1 from accreditation certificall environmental moderate (Till Sep'18). Waste Management environmentally sous solid & liquid waste management of each Municipal Solid Wastegregation of dry & (Organic waste) is be manufacturing. The horticulture team for recyclable waste is Presently manual solifferent types of materials such as Forestells such as Forestell	re being reference or detail cate. Appropriate Appropr	egularly proved a ed and ext. INR ctivities has ado ement o refer raste. vell-esta te is in gated & is furth t develo reted in being o ste. Se tic, Car respec able was hi Indu	analyzagency. alysis in the last of difference of the last of the	Please referreports and his spent for the FY 2018- Concept for ent types of details about system for compost by in house Whereas dry categories. The sorting of decyclable PET Bottles, cycling units, iled and sent atd.) for Co-
		E – Waste & Us registered recycleSolid Hazardous	rs namely	M/s. e-P	rocessir	ng House.

From: Apr'18 To: Sep'18

Sr. No.	Conditions	•	liance Sta 30-09-20		
		common facility i.e. M/s. Recycling Solutions Pvt. Ltd., Panoli and/or co-processing at Sanghi Industries Ltd., Kutch. Used/Waste Oil is being sold to GPCB authorized recyclers / re-processors namely M/s. Western India Petrochem Industry, Bhavnagar. • Downgrade chemicals generated from cleaning of storage tanks / pipelines are being sold to authorized solvent recovery facilities namely M/s. Acquire Chemicals, Ankleshwar however during the compliance period, there was no disposal of downgrade chemicals. • Slop Oil received from vessels is treated to separate water and oil particles in Oil Water Separator system. Separated oil from the same is being sold to authorized recycler / reprocessor namely M/s. Western India Petrochem Industry, Bhavnagar and water is sent to ETP for further treatment. However during the compliance period, there was no disposal of Slope Oil. Dates of validity of all the vendors and copy of agreement are attached as Annexure – 2 Necessary approvals from GPCB for disposal of hazardous wastes are obtained. The following table summarizes the waste management practice (for Apr'18 to Sep'18) for different types of wastes at APSEZ:			
		Waste	Quantity in MT	Disposal method	
		Hazardous Waste			
		Pig Waste	3.66	Co-processing at cement industries	
		Tank Bottom Sludge	9.38	Co-processing at cement industries	
		Oily Cotton waste	72.22	Co-processing at Cement Industries	
		Used / Spent Oil	83.03	Sell to registered recycler	
		Downgrade chemicals	4.7	Sell to registered recycler	
		Discarded Drums & Containers	11.07	Sell to registered recycler	
		Oil contaminated filter 0.7 Sell to registered recycler			
		Municipal Solid Waste			
		Recyclables	82.42	After recovery sent for recycling	
		Refuse Derived Fuel	108	Co-processing at Cement Industries	

From : Apr'18 To : Sep'18

Sr. No.	Conditions			iance Stat 30-09-20		
		Wet Waste (fo Organic waste		490.56	Converted to Horticulture use	
		month) mo accredited a Pollucon La Noise level Pollution Co from Apr'18	onitoring a and MoEF8 boratories f confirm to ontrol Board to Sep'18 is	re being PCC appro Pvt. Ltd. Q the stand . Summary mentione		t by NABL namely M/s. pient Air and n by Gujarat for duration
					ng Locations:	Perm.
		Parameter	Unit	Max	Min	Limit ^{\$}
		PM ₁₀	μg/m ³	95.31	42.70	100
		PM _{2.5}	µg/m ³	55.67	16.35 5.2	60
		SO ₂	μg/m ³ μg/m ³	26.58 44.64	16.27	80
		Noise	Unit	Max	Min	Perm. Limit
		Day Time	dB(A)	74.1	56.1	75
		Night Time	dB(A)	69.6	57.7	70
			Valu	ies recorded co	s as per NAAQ onfirms to the stip	standards, 2009 ulated standards.
2(iv)	Adequate provision for infrastructure facilities such as water supply, roads, sanitation etc. should be ensured so as to avoid environmental degradation in the surrounding areas. These facilities should be brought into existence during the construction phase and will remain in existence thereafter as	Construction activity is already completed. Adequate infrastructure facility was provided to labours during construction phase and those are in existence. The facility for drinking water, toilet and rest shelter are provided for the dignity of operation labours. Photographs of the same were submitted along with the compliance report submission for the period Oct'16 to Mar'17.				
2(v)	part of the infrastructure build up in the area for local developmental purposes. Adequate noise control measures should be	Complied.				

From: Apr'18 To: Sep'18

Sr. No.	Conditions	Compliance Status as on 30-09-2018					
	ensured in various	Construction phase is	comp	leted.			
	project activities and						
	due to increase in the traffic which is likely to	For operation phase, following noise control measures taken:					ures are
	take place during	All DG sets are inst	talled v	with aco	ustic en	closure	
	construction and	Green Belt has been seen belt has been been belt has been been belt has been been been been belt has been been been been been been been bee					
	operational phases.	Traffic control r		•			. speed
		regulation, traffic				-	•
		unnecessary honki	ing by	cargo ve	hicles.		
2(vi)	The water quality	Complied.					
	parameters such as						
	dissolved oxygen,	ETP is provided for tr					
	ammonical nitrogen and other nutrients etc.	is used for horticul transferred to slud					
	should be measured at	wastewater is recircu	-		u, wiie	ie tile	excess
	regular intervals to	Wastewater is recired	10000	O LIII.			
	ensure adherence to the	Third party analysis	of the	treated	water i	is beind	carried
	prescribed standards of	out twice in a mont				-	
	water qualities. Suitable	approved agency na	-				
	ground water monitoring	Ltd. Summary of the				•	•
	should also be	is mentioned in comp	liance	conditio	n no. 2(iii) abov	e.
	undertaken around the						
	sludge lagoons and regular reports to be	Marine Monitoring: Marine monitoring is	boing	carried	out onc	o io a o	nooth by
	submitted to the	NABL accredited and					
	Ministry for evaluation.	M/s. Pollucon Laborat		•	•		-
	,	duration from Apr'1					
		Monitoring Reports a	are att	ached a	s Annex	ture - 1	for the
		same.					
		Total Sampling Locat	ions: 0	9 Nos. Surf	£	Dat	
		Parameter	Unit	Max	Min	Max	Min
		рН		8.26	8.01	8.27	7.95
		TSS	mg/L	348	190	390	130
		BOD (3 Days @ 27 °C)	mg/L	5	2	5.2	1
		DO	mg/L	8	5.6	6.6	5.2
		Salinity	mg/L	36 37940	33.8	36 37110	33.4
		TDS ppt 37940 34210 37110 34096					
		Ground Water Monitoring:					
		There are no sludge lagoons however, to monitor the					
		ground water quality					
		location in the port a					
		the ground water is b	eing c	arried ou	ut twice	a year	by NABL

From: Apr'18 To: Sep'18

Ca		Compliance Status as on				
Sr. No.	Conditions		ance Stati 30-09-201			
IVO.					l AA/-	
		accredited and MoEF&			•	
		Pollucon Laboratories P		•		
		duration of Apr'18 to Sep		ntioned belov	N.	
		Sampling Locations: 5 Nos.				
		Parameter	Unit	Minimum	Maximum	
		рН	-	7.46	7.94	
		Salinity	ppt	0.69	11	
		Oil & Grease	mg/L	0.8	3.1	
		Hydrocarbon	mg/L	0	0	
		Lead as Pb	mg/L	0.018	0.24	
		Arsenic as As	mg/L	0	0	
		Nickel as Ni	mg/L	0.12	0.12	
		Total Chromium as Cr	mg/L	0.008	0.08	
		Cadmium as Cd	mg/L	BDL*	BDL*	
		Mercury as Hg	mg/L	BDL*	BDL*	
		Zinc as Zn	mg/L	0.018	0.46	
		Copper as Cu Iron as Fe	mg/L	BDL* 0.098	0.07 0.95	
		Insecticides/Pesticides	mg/L 	Absent	Absent	
		Depth of Water Level from			Ausent	
		GL	meter	2	3	
			I	*BDL = Below (Detectable Limit	
2(vii)	Adequate culverts should be provided for smaller creeks so that breeding grounds for crabs, mud snappers and other marine organisms are not cut off by road construction activities.	Adequate culverts are provided on prominent creek system or named as (1) Kotdi (2) Baradimata (3) Navinal (4) Bochand Mundra (Oldest port (Juna Bandar) leading to Bhukhi rivers				
2(viii)	A hundred meter wide mangrove belt should be created all along the	24 hectare of Mangrove afforestation was carried out with				
	west of Navinal Creek till	a cost of INR 25.00 L				
	its junction up to new	Mangrove plantations v	vere dolle	III CONSUICA	CIOH WICH Dr.	

From: Apr'18 To: Sep'18

Sr. No.	Conditions	Compliance Status as on 30-09-2018
	road. Green belt of 50 M width should also be provided all along the periphery of the plant site and along the roads, storage tanks etc. at 1500 trees per hectare.	Maity, Mangrove consultant of India. Green belt was developed in 78.98 ha. Total 156037 trees were planted with the density of 1975 trees per hectare within the port area. To enhance the marine biodiversity, till date APSEZ has
	All details regarding the Mangrove belt and other afforestation work must be worked out in consultation with the State Forest Department, and details sent to the Ministry.	carried out mangrove afforestation in more than 2800 ha. area across the coast of Gujarat. Total expenditure for the same till date is INR 782 lakh. So, far APSEZ has developed more than 450 ha. area as greenbelt with plantation of more than 8.0 Lacs saplings within the APSEZ area. Details on mangroves afforestation & Green belt development carried out by APSEZ till date is annexed as Annexure – 3 .
2(ix)	Arrangements should be made for ensuring fresh water availability for various project related activities. Special water harvesting programs should be undertaken in the project impact area. Details of these activities should be reported to the Ministry.	Complied. During the project phase, GWIL was the source of water to ensure fresh water availability. Present source of water for various project activities is desalination plant of APSEZ and/or Narmada water through Gujarat Water Infrastructure Limited. Average water consumption for entire APSEZ area is 4.7 MLD. Groundwater recharge cannot be done at the project site since the entire project is in the intertidal / sub tidal areas. Rain water within project area is managed through storm water drainage. During current year approx. 24 KL of rain water from storm water collected and utilized on land for gardening / plantation purpose. We have also connected roof top rain water duct of operational buildings with u/g water tank for utilization of collected rain water for gardening / horticulture purpose. However, APSEZ has carried out rainwater harvesting activities in the nearby villages for benefit of the locals. Following measures are taken for the same during the year 2011 – 13 and the same have benefited to the local farmers. 1. Pond deepening activities at villages 2. 18 check dams were constructed under the 'Sardar Patel Sahbhagi Jalsanchay Yojna'

From: Apr'18 To: Sep'18

Sr. No.	Conditions	Compliance Status as on 30-09-2018
140.		Total cost of these efforts was approx. INR 320 lakh.
		Under Sujlam Suflam project Adani Foundation has successfully completed pond deepening work in Mundra & Abdasa Taluka in record time. 26 pond deepening in Mundra and 7 pond deepening in Abdasa accomplished with all parameters calculated. In Mundra taluka 51723 cum excavation work has been done which increase storage capacity of 51 ML. In Naliya taluka 14550 cum excavation work has been done which increase storage capacity of 15 ML. Total 66 ML storage capacity will be increased.
		Participatory Ground Water Management: Adani foundation has started participatory ground water management project. The objective of the project was to reduce the salinity ingress in and around the coastal regions of Mundra, Kutchh and mitigate the ill-effects of this manmade problem to improve the livelihoods of the rural people. The Project will help to get water table high, also it will help in agricultural activities.
		As a part of pre monsoon activities with ACT (Arid Communities and Technologies – NGO) under this program, we have carried out following work. But, due to negligible rainfall we are not able to find out outcome of this project. i. Borana – Artificial bore well recharge (work completed) ii. Mangara – Artificial bore well recharge (work completed) iii. Dhrub – Pond deepening work (work completed) iv. Mota Kapaya – abended bore well recharge (work completed)
		Please refer Annexure – 4 for full details of CSR activities carried out by Adani Foundation in the Mundra region. Budget for CSR Activity for the FY 2018-19 is to the tune of INR 1666 lakh. Out of which, Approx. INR 651 lakh are spent during the year 2018-19 (Till Sep'18).
2(x)	While filling the storage tanks, compatibility of the chemicals should be ensured for chemical safety. Since 5000 MT capacity is proposed to	Complied. Risk assessment study was carried out by M/s. Comet Consultancy Services in January 1995 as a part of EIA for storage of various chemicals in tanks for chemical safety and the same was submitted to MoEF&CC while processing

From : Apr'18 To : Sep'18

Sr. No.	Conditions		Compliance 3		
	be created for cryogenic conditions, necessary HAZOP study should be initiated and submitted to the Ministry within three months. Calculations carried out on the basis of EFFECT MODEL for this storage should be rechecked for various accident scenarios. Keeping in view the safety aspects, Horton spheres of 1250 MT capacity each should be preferred.	Engineering as mentione 1. QRA f 2. QRA f 3. QRA f	sment study wa for handling and	storage of LPG i	n three parts
2(xi)	The measures suggested by the Gujarat State Pollution Control Board in February, 1995 while according "No Objection Certificate" should be strictly followed and authorization certificate required for converting NOC into "consent to operate" should be submitted within three	Consent to operate (CC&A) has been renewed from GPC vide consent no. AWH-88317 valid till 20 th November, 202 The same was submitted along with compliance submission for the period of Oct'16 to Mar'17. Consent to Establish (CtE) and Consent to Operate (CtC are obtained from GPCB and renewed/amended from time to time as per the progress of the project activity. The			
	months.	Permission	Project	Ref. No. / Order No.	Valid till
		CtO – Renewal	Mundra Port Terminal	AWH-83561	20.11.2021
		CtO - Amendment	Mundra Port Terminal	WH-88317	20.11.2021
		conditions.	anted based on	the compliance	of the CtE
2(xii)	For ensuring the acceptance of the project by the local people, a Resolution of the Official Panchayat of the Region should be obtained offering their concurrence in writing	Complied. Resolution from the Panchayat has been obtained and submitted to the Ministry of Environment, Forest & Climate Change on 31st July, 2012.			

From: Apr'18 To: Sep'18

Sr. No.	Conditions	Compliance Status as on 30-09-2018
	by the project proponents and submitted to the Ministry by 31st October, 1995.	
2(xiii)	A permanent staff structure should be created with latest R&D facilities and suitable equipments for environmental and forestry activities through creation of Environmental cell. Adequate funds should be earmarked for this cell.	APSEZL has a well structured Environment Cell, staffed with permanent qualified manpower for implementation of the Environmental Management Plan. Environment cell organogram was submitted along with last Half yearly compliance report i.e. Oct'17 to Mar'18. And there is no further change. Budget for environmental management measures (including horticulture) for the FY 2018-19 is to the tune of INR 1080 lakh. Out of which, Approx. INR 516 lakh are spent during the FY 2018-19 (Till Sep'18). Detailed breakup of the expenditures for the past 3 years as well as a summary of expenditures for the past 5 years is attached
2(xiv)	Landsat imagery should be obtained on a continuous basis covering various seasons to study the change in the land use pattern due to the project and project related activities.	as Annexure - 5 . Complied. Project is in operation phase since many years and there is no change in the land use pattern during the period from Oct'17 to Mar'18.
2(xv)	With a view to providing adequate job opportunities to local people, facilities for technical training and development of skills should be made available in consultation with the state Harbour Department, and to this end it must be ensured that there is allocation of adequate funds. The local people should be involved in the	 Adani Skill Development Center (ASDC), Mundra is providing skill development training to the locals for Soft Skill, Technical Training and Carrier Guidance & knowledge based training. Total 762 students were enrolled as per above topics during financial year of 2018-19 (Till Sep'18) Allocation of fund for education is availed by Adani Foundation. Total INR 554 Lacs are allotted for community education & skill development out of which INR 189 Lacs are spent for the purpose. Preference is given to local people for employment based on their qualification and experience. All Mangrove plantations are done in consultation with GUIDE and Local forest dept.

From: Apr'18 To: Sep'18

Sr. No.	Conditions	Compliance Status as on 30-09-2018
	afforestation program proposed for the scheme to ensure public participation and success of vegetation programmes.	 24 hectare of mangrove afforestation at Mundra was done through active participation of local fishermen at the cost of INR 25.0 Lac. During this compliance period, the foundation provided employment to the fishermen equivalent to 5201 mandays for mangrove plantation, moss cleaning, etc. In addition to this, employment worth of 34727 mandays has been provided till date. The Foundation has also supported Pagadiya fishermen as painting labors by providing them with employment and job in various fields. Details on skill development training imparted during financial year of 2018-19 (Till Sep'18) by Adani Foundation are enclosed as Annexure - 4.
2(xvi)	Prior clearance must be taken under the Hazardous Chemicals (manufacture, import and storage) Rules 1989, as amended up to date, from the competent authority. Such clearance will have to be taken prior to the commissioning of the project.	Complied. Permissions for storage of Hazardous Chemicals were obtained from MSIHC against the application made on 01.05.1999 through letter reference no. Kutch-HAZ/CHEM-23(2)/9713 while chemical storage permission against application made on 18.09.1999 was provided through letter reference no. Kutch-HAZ/CHEM-23 (2)/9711. Approval from the PESO is taken for import of hazardous chemicals as per License No. P/HQ/GJ/15/2050 (P12369) dated 18/07/2016 which is valid up to 31/12/2024 for Class A & Class C petroleum. A copy of the same was submitted along with the compliance report submission for the period of Oct'16 to Mar'17 and there is no further change. Please refer point no. 2 (xi) regarding GPCB permissions. License under Factories Act is taken dated 07.10.1998 and last renewed vide license no. 0102 on 20.04.2017 (Sr. No. 70707) is valid up to 31.12.2018. The same was submitted along with the compliance report submission for the period of Oct'16 to Mar'17.
2(xvii)	A detailed progress report should be submitted to the Ministry on each of the conditions stipulated above in respect of the follow-up action taken every six months. The	Compliance report of EC conditions is uploaded regularly. Last compliance report including results of monitoring data for the period of Oct'17 to Mar'18 was submitted to Regional Office of MoEF&CC @ Bhopal, Zonal Office of CPCB @ Baroda, GPCB @ Gandhinagar & Gandhidham and Dept. of Forests & Env., Gandhinagar vide our letter dated

From: Apr'18 To: Sep'18

Sr. No.	Conditions			Compliance State 30-09-201	
	first of these two reports should be sent in by 31.3.1996.	site	https:// by of the	www.adaniports.com/ same was also subn	also available on our web ports-downloads. A soft nitted through e-mail on Please refer below for the
		det		ding past six complian	
			Sr. no.	Compliance period	Date of submission
			1	Apr'15 to Sep'15	30.11.2015
			2	Oct'15 to Mar''16	30.05.2016
			3	Apr'16 to Sep'16	01.12.2016
			4	Oct'16 to Mar'17	30.05.2017
			5	Apr'17 to Sep'17	01.12.2017
			6	Oct'17 to Mar'18	29.05.2018
2(xviii)	Financial requirements for implementation of the above indicated environmental mitigative measures should be worked out and included in the total cost of the project. Provision for enhancing this allocation in future should also be made.	Sep is e adv reg	earmarked vanced ad arding	d every year. All the e	•

Annexure – 1

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

"HALF YEARLY ENVIRONMENTAL MONITORING REPORT"

FOR

ADANI PORTS AND SPECIAL ECONOMIC ZONE LIMITED TAL: MUNDRA, KUTCH, MUNDRA – 370 421

MONITORING PERIOD: APRIL 2018 TO SEPTEMBER 2018

PREPARED BY:

POLLUCON LABORATORIES PVT.LTD.

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007.

PHONE/FAX – (+91 261) 2455 751, 2601 106, 2601 224.

E-mail: pollucon@gmail.com web: www.polluconlab.com

TC - 5945

ISO 9001:2015

ISO 14001:2015

OHSAS 18001:2007

Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

MARINE WATER MONITORING SUMMARY REPORT

RESULTS OF MARINE WATER [M1 LEFT SIDE OF BOCHA CREEK - N 22°45'183" E 069°43'241"]

SR.	TEST		APRIL	2018	MAY	2018	JUNE	2018	JULY	2018	AUGUS	T 2018	SEPTEME	BER 2018	
NO.	PARAMETERS	UNIT	SURFACE	воттом	TEST METHOD										
1	pН		8.05	8.02	8.12	8.09	8.17	8.09	8.12	7.98	8.25	8.18	8.17	8.14	IS3025(P11)83Re.02
2	Temperature	οС	30.7	30.1	31.1	30.8	30.6	30.3	31.4	30.8	30.5	30.2	30.8	30.6	IS3025(P9)84Re.02
3	Total Suspended Solids	mg/L	210	246	292	218	281	240	302	274	344	290	312	289	IS3025(P17)84Re.02
4	BOD (3 Days @ 27 °C)	mg/L	3	2	4	3	4	2	3	2	4	3	3.0	2.0	IS 3025 (P44)1993Re.03Editi on2.1
5	Dissolved Oxygen	mg/L	8	6	6.8	6	6	5.4	6.2	5.4	6.6	6.4	6.2	6	IS3025(P38)89Re.99
6	Salinity	ppt	34.6	34.4	35.1	34.8	36	35.8	34	33.8	33.8	33.5	34.1	33.7	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	APHA(22 nd Edi)5520 D										
8	Nitrate as NO ₃	μmol/L	10.8	8.2	13.8	9.6	14	11.4	6	3	9.8	7.5	7.5	6.8	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	1.1	0.9	1.7	0.8	1.63	1.12	1.8	1.3	1.5	1.1	1.1	0.8	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	µmol/L	6.24	5.54	5.2	4.8	3.8	3.12	4	3.4	3.4	2.8	2.8	2.2	IS3025(P34)88Cla.2.
11	Phosphates as PO ₄	µmol/L	1.6	1.3	2.1	1.5	2.14	1.93	2.08	1.8	2.25	1.6	2.3	1.8	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	μmol/L	8.5	8.2	8.4	7.8	5.30	4.40	11.80	7.70	14.7	11.4	11.4	9.8	IS3025(P34)88
13	Petroleum Hydrocarbon	μg/L	18	4	19	8	16	4	6.8	3.2	7.2	4.4	10	3	PLPL-TPH
14	Total Dissolved Solids	mg/L	36210	36090	37940	35210	36208	35756	34912	34118	34210	34108	34510	34392	IS3025(P16)84Re.02
15	COD	mg/L	10	8	11	10	15	6	10	8	12	9	9	8.0	APHA(22 nd Edi) 5520-D Open Reflux
Α	Flora and Fauna														·
16	Primary productivity	mgC/L /day	2.13	0.76	2.4	2.1	2.03	1.17	2.6	0.8	1.75	1.3	1.21	1.1	APHA (22nd Edi) 10200-J
В	Phytoplankton														ADLIA (220dE-12)
17.1	Chlorophyll	mg/m³	1.11	0.929	1.6	1.2	2.68	1.12	1.9	1.2	2.26	2.03	1.811	1.63	APHA (22 nd Edi) 10200-H

H. T. Shah

Lab Manager

Dr. Arun Bajpai

			6.0	_								_			
				Recogn	ised by Mol	EF. New De	thi Under S	Sec. 12 of E	nvironment	tal (Protecti	on) Act-198	6			
17.2	Phaeophytin	mg/m³	3.2	2.9	3.9	2.8	1.74	0.87	3.4	2.6	1.72	1.40	1.37	1.21	APHA (22 nd Edi) 10200-H
17.3	Cell Count	No. x 10³/L	228	76	298	90	264	112	240	130	184	156	123	104	APHA (22 nd Edi) 10200-H
17.4	Name of Group Number and name of group species of each group		Biddulph ia sp. Melosira sp. Navicula sp. Nitzschia sp. Skeletone ma sp.	Melosira sp. Navicula sp. Nitzschia sp. Fragillaria sp. 	Nitzschi a sp. Rhizosole nia sp. Navicula sp. Asterionel la sp. pediastru m sp Synedra sp.	Navicula sp. Fragillaria sp. Biddulphi a sp. 	Rhizosole nia sp. Navicula sp. Chaetogn athes Nitzschia sp. Thallasios ira sp. Surirella Ceratium	Nitzschia sp. Navicula sp. Melosira sp. 	Rhizosol enia Nitzschia Navicula Biddulphi a Coscinodi scus Cheatocer ous	Synedra Navicula Thallasiosi ra 	Melosira Thallasion ema Navicula Nitzschia Rhizosole nia	Navicula Nitzschia 	Nitzschia Peridiniu m Navicula Biddulphi a 	Thallassio nema Nitzschia Navicula 	APHA (22 nd Edi) 10200-H
С	Zooplanktons														
18.1	Abundance (Population)	noX10 ³ / 100 m ³	20 18 Copepods Crustaceans				7	' 0	6	8	54	1	4	3	APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		Cope Deca Foramir Ostrad	pods niferans			Moll Crusta Ostra	haete usan aceans acods niferans	Gastro	•	Cope Foramin Polych Mys Lamellib	iferans naete ids	Chaeto Cope Gastro	pods pods	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	4.5	58	9.	4	10).7	8	.4	7.	6	6.0	08	APHA (22 nd Edi) 10200-G
D	Microbiological Para	ameters													
19.1	Total Bacterial Count	CFU/ml	17.	50	19	50	18	350	19	000	170	00	20	50	IS 5402:2002
19.2	Total Coliform	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abs	ent	APHA(22 nd Edi)9221- D
19.3	Ecoli	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abs	ent	IS:1622:1981Edi.2.4 (2003-05)
19.4	Enterococcus	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abs	ent	IS: 15186:2002
19.5	Salmonella	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abs	ent	IS: 5887 (P-3)
19.6	Shigella	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abs	ent	IS: 1887 (P-7)
19.7	Vibrio	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abs	ent	IS: 5887 (P-5)

H. T. Shah

Lab Manager

hosin

Dr. Arun Bajpai

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M1 LEFT SIDE OF BOCHA CREEK - N 22°45'183" E 069°43'241"]

SR.	TECT DADAMETERS	LINITT	APRIL 2018	MAY 2018	JUNE 2018	JULY 2018	AUGUST 2018	SEPTEMBER 2018	TECT METUOD
NO.	TEST PARAMETERS	UNIT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	TEST METHOD
1	Organic Matter	%	0.84	0.72	0.75	0.66	0.54	0.68	FCO:2007
2	Phosphorus as P	μg/g	180	205	210	240	224	218	APHA(22 nd Edi) 4500 C
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy	
4	Petroleum Hydrocarbon	μg/g	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	5.8	5.4	5.2	5.5	5.15	5.4	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	μg/g	212	260	118	146	120	230	AAS 3111B
5.3	Manganese as Mn	μg/g	1680	1780	1760	1880	1750	1650	AAS APHA 3111 B
5.4	Iron as Fe	%	5.2	5.8	4.7	5.1	4.9	5.3	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	μg/g	80.6	42.8	66.4	56.8	41.6	64	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	μg/g	70.8	80.6	72	67.9	43.8	56	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	μg/g	240	180	278	312	290	242	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	μg/g	8.2	7.2	9.9	6.5	3.2	7.5	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	μg/g	0.12	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Decapods Amphipods 	Crabs Anthozoans Isopodes Decapodes	Polychaete Anthozoans Decapods	Gastropods Polychaete Decapods	Bivalves Decapods Polychaete	Polychaete Echinoderms 	APHA (22 nd Edi) 10500-C
6.2	MeioBenthos		Copepods Hydrozoa	Copepodes Foraminiferans 	Nematodes Hydroza	Bryozoans Hydrozoa	Hydrozoa 	Copepods Ostracodes 	АРНА (22 nd Edi) 10500-С
6.3	Population	no/m2	372	260	382	441	353	614	APHA (22 nd Edi) 10500-C

0-0

H. T. Shah

Lab Manager

Lessin

Dr. Arun Bajpai

Council Froduction / Waste Millimation Facilitation

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M2 MOUTH OF BOCHA & NAVINAL CREEK - N 22°44'239" E 069°43'757"]

SR.	TECT DADAMETEDS	UNIT	APRIL	2018	MAY	2018	JUNE	2018	JULY	2018	AUGUS	T 2018	SEPTEME	BER 2018	TEST
NO.	TEST PARAMETERS	ONTI	SURFACE	воттом	METHOD										
1	рН		8.15	8.11	8.17	8.15	8.23	8.16	8.2	8.15	8.24	8.09	8.26	8.15	IS3025(P11)83 Re.02
2	Temperature	оС	30.5	30.2	31.3	30.8	30.7	30.3	30.8	30.2	30.7	30.4	31	30.6	IS3025(P9)84R e.02
3	Total Suspended Solids	mg/L	258	278	310	262	282	246	296	272	308	290	284	252	IS3025(P17)84 Re.02
4	BOD (3 Days @ 27 °C)	mg/L	4	3	3	2	3	2	2	BDL*	3.0	BDL*	3.0	BDL*	IS 3025 (P44)1993Re.03 Edition2.1
5	Dissolved Oxygen	mg/L	6.6	6	6	5.8	5.8	5.6	6.6	6	6.4	6.2	6.6	6.1	IS3025(P38)89 Re.99
6	Salinity	ppt	34.9	34.6	35.4	35.1	35.2	35	33.8	33.4	34.2	33.5	34.3	34	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	APHA(22 nd Edi)5 520D										
8	Nitrate as NO₃	µmol/L	13.6	10.2	26.2	23.8	10.4	8.2	3.3	3	10.4	5	6.2	4.4	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	1.5	1.1	2.2	1.7	1.12	0.66	2.2	1.6	1.8	1.2	0.95	0.6	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	µmol/L	5.87	5.53	3.2	2.4	3.23	2.4	3.4	2.9	4.0	3.0	2.8	2.1	IS3025(P34)88 Cla.2.3
11	Phosphates as PO ₄	µmol/L	1.5	1.3	1.8	1.1	1.77	1.42	1.95	1.74	2.4	2.1	2.56	2.2	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	7.5	7.2	5.1	4	4.50	3.20	8.90	7.50	16.2	9.2	9.95	7.1	IS3025(P34)88
13	Petroleum Hydrocarbon	μg/L	17	7	12	4	18	8	16	4	10	4.0	8	3.0	PLPL-TPH
14	Total Dissolved Solids	mg/L	37128	36720	37610	37108	35992	35872	34712	34218	34312	34116	34416	34319	IS3025(P16)84 Re.02
15	COD	mg/L	12	10	6	5	11	8	8	6	11.0	6.0	8.0	5.0	APHA(22 nd Edi) 5520-D Open Reflux
Α	Flora and Fauna														
16	Primary productivity	mgC/ L/day	1.35	0.67	1.8	1.12	1.62	1.01	2.2	1.6	1.23	0.72	1.32	1.05	APHA (22nd Edi) 10200-J
В	Phytoplankton														
17.1	Chlorophyll	mg/ m³	2.2	0.97	2.6	1.23	2.42	1.32	3.58	2.3	1.69	0.94	1.35	0.753	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/ m³	3.5	4.4	2.4	1.5	1.6	0.86	2	1.9	1.0	0.47	0.8	0.379	APHA (22 nd Edi) 10200-H

0-0

H. T. Shah

Lab Manager

Lessin

Dr. Arun Bajpai

			0	Recognis	ed by MoEl	. New Dell	ni Under Se	c. 12 of En	vironmenta	l (Protectio	n) Act-1986	8	- 9		
17.3	Cell Count	No. x 10³/L	285	140	270	80	380	124	310	190	210	148	140	99	APHA (22 nd Edi) 10200-H
17.4	Name of Group Number and name of group species of each group		Biddulph ia sp. Cyclotella sp. Nitzschia sp. Peridiniu m Coscinodi scus sp.	Thallasio nema sp. Skeletone ma sp. Navicula sp. 	Navicula sp. Synedra sp. Coscinodi scus sp. Asterionel la sp.	Navicula sp. Fragillaria sp. Biddulphi a sp 	Rhizosol enia sp. Navicula sp. Nitzschia sp. Biddulphi a sp. Melosira sp.	Navicula sp. Biddulphi a sp. Nitzschia sp. 	Navicula Nitzschia rhizosoleri a Biddulphi a 	Biddulph ia Fragillaria sp. Navicula sp	Navicula Nitzschia Coscinodi scus Thallasiosi ra Frugillaria Cyclotella	<i>Melosira</i> <i>Nitzschia</i> 	Thallassio nema Nitzschia Biddulphi a Gyrosigm a Rhizosole nia	Peridiniu m Biddulphi a Navicula 	АРНА (22 nd Edi) 10200-Н
С	Zooplanktons														
18.1	Abundance (Population)	noX10 ³ / 100 m ³	3	32	2	22 Gastropods Copenads		1	4	18	40)	38	3	APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		Cope Polychae	otriches epods ete worms alves	Cope Deca Ostra			oponds usan alves haete	Biva Cteno _l	chaete alves phores sids	Gastro Chaeto Siphono Lamellib	naths phores	Decap Gastro Polych Copep	pods aetes	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/10 0 m ³	4	.2	7.	8	3	.8	6	.4	4.9)4	3.9	5	APHA (22 nd Edi) 10200-G
D	Microbiological Param	eters													
19.1	Total Bacterial Count	CFU/ml	16	550	19	95	17	50	16	550	195	50	185	50	IS 5402:2002
19.2	Total Coliform	/ml	Abs	sent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abse	ent	APHA(22 nd Edi)9 221-D
19.3	Ecoli	/ml	Abs	sent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abse	ent	IS:1622:1981Ed i.2.4(2003-05)
19.4	Enterococcus	/ml	Abs	sent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abse	ent	IS: 15186 :2002
19.5	Salmonella	/ml	Abs	sent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abse	ent	IS: 5887 (P-3)
19.6	Shigella	/ml	Abs	sent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abse	ent	IS: 1887 (P-7)
19.7	Vibrio	/ml	Abs	sent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abse	ent	IS: 5887 (P-5)

H. T. Shah

Lab Manager

Dr. Arun Bajpai

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M2 MOUTH OF BOCHA & NAVINAL CREEK - N 22°44'239" E 069°43'757"]

SR.	TECT DADAMETERS	LINITT	APRIL 2018	MAY 2018	JUNE 2018	JULY 2018	AUGUST 2018	SEPTEMBER 2018	TEST METHOD
NO.	TEST PARAMETERS	UNIT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	TEST METHOD
1	Organic Matter	%	0.75	0.9	0.9	0.8	0.64	0.74	FCO:2007
2	Phosphorus as P	μg/g	202	222	160	198	210	188	APHA(22 nd Edi) 4500 C
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy	
4	Petroleum Hydrocarbon	μg/g	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	5.45	5.3	5.1	5.35	5.3	5.2	AAS APHA 3111 B
5.2	Total Chromium as Cr+3	μg/g	124	142	148	112	102	132	AAS 3111B
5.3	Manganese as Mn	μg/g	1940	1620	1650	1580	1440	1350	AAS APHA 3111 B
5.4	Iron as Fe	%	5.1	5.5	4.9	5.1	4.9	4.85	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	μg/g	94.6	72.8	82	65	58	48	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	μg/g	62.8	48.6	43	82	64	52	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	μg/g	256	290	310	360	290	210	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	μg/g	10.7	8.1	7.4	5.5	3.4	2.6	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	μg/g	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Polychaete worms Amphipods Gastropods	Echinoderms Polychaete worms Isopods	Echinoderms Decapods Isopods	Polychaete Gastropods Bivalves	Gastropods Polychaete Crustaceans	Polychaete Isopods Decapods	APHA (22 nd Edi) 10500-C
6.2	MeioBenthos		Hydrozoa 	Foraminiferans Nematodes Copepods	Nematodes Copepods	Nematodes Foraminiferans 	Copepods 	Foraminiferans Copepods 	APHA (22 nd Edi) 10500-C
6.3	Population	no/m²	298	240	353	471	324	471	APHA (22 nd Edi) 10500-C

0

H. T. Shah

Lab Manager

hosin

Dr. Arun Bajpai

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M3 EAST OF BOCHAISLAND - N 22°46'530" E 069°41'690"]

SR. NO.	TEST PARAMETERS	UNIT	APRIL SURFACE	. 2018 BOTTOM	MAY SURFACE	2018 BOTTOM	JUNE SURFACE	2018 BOTTOM	JULY SURFACE	2018 BOTTOM	AUGUS SURFACE	T 2018 BOTTOM	SEPTEME SURFACE	BER 2018 BOTTOM	TEST METHOD
1	pН		8.19	8.13	8.12	8.09	8.13	8.05	8.25	8.15	8.17	8.11	8.21	8.14	IS3025(P11)83Re. 02
2	Temperature	оС	30.2	30.3	31.1	30.8	31	30.5	30.6	30.2	30.9	30.6	30.7	30.5	IS3025(P9)84Re.0 2
3	Total Suspended Solids	mg/L	252	220	268	208	296	244	318	284	332	298	348	272	IS3025(P17)84Re. 02
4	BOD (3 Days @ 27°C)	mg/L	4	3	5	4	3	2	3	BDL*	4.0	BDL*	BDL*	BDL*	IS 3025 (P44)1993Re.03Ed ition2.1
5	Dissolved Oxygen	mg/L	6.2	5.8	6.2	6	6.2	6	6.2	5.6	6.4	5.8	6.6	6.2	IS3025(P38)89Re. 99
6	Salinity	ppt	35	34.6	35.2	34.8	35.6	35.2	34.2	33.8	34.4	33.8	34.1	34	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	APHA(22 nd Edi)552 0D
8	Nitrate as NO ₃	µmol/L	13.8	8	17.8	10.2	15.8	11.3	9	5	7.5	4.0	5.6	3.2	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	1.2	0.6	1.8	1.1	2.4	1.63	2.8	1.9	2.1	1.8	2.1	1.6	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	µmol/L	2.7	2.2	3.4	2.8	1.7	1.2	2	1.6	3.0	2.0	1.7	1.1	IS3025(P34)88Cla .2.3
11	Phosphates as PO ₄	µmol/L	1.6	1.4	2.6	2.1	2.25	1.87	2.4	1.7	2.04	1.80	2.31	2.10	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	μmol/L	3.8	2.7	4.8	4.2	3.10	2.40	13.80	8.50	12.6	7.8	9.4	5.9	IS3025(P34)88
13	Petroleum Hydrocarbon	μg/L	18	12	10	4	12	4	10	6	16	10	18	8	PLPL-TPH
14	Total Dissolved Solids	mg/L	36208	35712	36940	35910	36117	35756	34972	34318	34408	34096	34312	34106	IS3025(P16)84Re. 02
15	COD	mg/L	10	8	12.6	10.2	11	8	6	BDL*	10	BDL*	7	BDL*	APHA(22 nd Edi) 5520-D Open Reflux
Α	Flora and Fauna														
16	Primary productivity	mgC/L /day	1.71	0.47	1.78	1.14	2.21	1.49	3.1	2.18	1.55	0.81	1.3	0.945	APHA (22nd Edi) 10200-J
В	Phytoplankton														4 DL 14 (22 nd = 42)
17.1	Chlorophyll	mg/m³	2.5	0.65	2.8	1.8	2.11	1.45	2.6	1.8	1.72	1.11	1.38	0.88	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m³	2.4	1.8	3.4	2.9	1.78	1.16	3.4	3	0.894	0.4	0.806	0.3	APHA (22 nd Edi) 10200-H

H. T. Shah

Lab Manager

Lessin

Dr. Arun Bajpai



			A STATE OF THE STA												
				Recognis	sed by MoE	F. New Del	hi Under Se	ec. 12 of En	vironment	al (Protection	on) Act-198	6			
17.3	Cell Count	No. x 10 ³ /L	264	96	280	110	348	100	316	220	198	92	132	61	APHA (22 nd Edi) 10200-H
17.4	Name of Group Number and name of group species of each group		Nitzschi a sp. Navicula sp. Coscinodi scus sp. Rhizosole nia sp. Biddulphi a sp.	Fragillari a sp. Navicula sp. Melosira sp	Amphipr ora sp. Asterionel la sp. Biddulphi a sp. Cocconeis sp. Pleurosig ma sp. Nitzschia sp.	Navicula sp. Nitzschia sp. Pleurosig ma sp. 	Rhizosole nia sp. Coscinodi scus sp. Thallasios ira sp. Nitzschia sp. Pleurosiq ma	Nitzschia Navicula Melosira 	Cosmari um Rhizosole nia Thallasios ira Biddulphi a Coscinodi scus Melosira	Melosira Biddulphi a Rhizosole nia 	Frugillaria Melosira Nitzschia Thallasios ira Gylnardia 	<i>Melosira</i> <i>Nitzschia</i> <i>Navicula</i> 	Rhizosole nia Thallasion ema Nitzschia Coscinodi scus Fragillaria	Navicula Synedra Nitzschia 	APHA (22 nd Edi) 10200-H
С	Zooplanktons														
18.1	Abundance (Population)	noX10 ³ / 100 m ³	2	20	10	16		2	7	2	5!	5	44	1	APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		Nema	epods atodes ete worms	Copepods Cyclops Decapods Krill Polychaete worms		Gastro		Polycl Biva Ostra Echino Deca	ilves codes oderms	Cope Deca Foramin Mys Gastro	oods iferans ids	Amphi Cope _t Mys Polych	oods ids	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	5.	.28	7.	8	11	6	10).4	5.	1	7.9)2	APHA (22 nd Edi) 10200-G
D	Microbiological Parar	meters													
19.1	Total Bacterial Count	CFU/ml	16	580	19	10	16	50	18	00	20:	10	185	50	IS 5402:2002
19.2	Total Coliform	/ml	Abs	sent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abse	ent	APHA(22 nd Edi)922 1-D
19.3	Ecoli	/ml	Abs	sent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abse	ent	IS:1622:1981Edi.2 .4(2003-05)
19.4	Enterococcus	/ml	Abs	sent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abse	ent	IS: 15186:2002
19.5	Salmonella	/ml	Abs	sent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abse	ent	IS: 5887 (P-3)
19.6	Shigella	/ml	Abs	sent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	Abse	ent	IS: 1887 (P-7)
19.7	Vibrio	/ml	Abs	sent	Abs		Abs	ent	Abs	ent	Abs	ent	Abse	ent	IS: 5887 (P-5)
						SORAT	00								

H. T. Shah

Lab Manager

Dr. Arun Bajpai

Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M3 RIGHT SIDE OF BOCHA CREEK - N 22°46'530" E 069°41'690"]

SR.	TECT DADAMETEDS	LINITT	APRIL 2018	MAY 2018	JUNE 2018	JULY 2018	AUGUST 2018	SEPTEMBER 2018	TECT METHOD
NO.	TEST PARAMETERS	UNIT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	TEST METHOD
1	Organic Matter	%	0.65	0.62	0.75	0.82	0.6	0.64	FCO:2007
2	Phosphorus as P	μg/g	140	198	242	266	272	240	APHA(22 nd Edi) 4500 C
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy	
4	Petroleum Hydrocarbon	μg/g	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	5.2	5.5	5.4	5.1	4.9	5.14	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	μg/g	140	182	139	178	160	144	AAS 3111B
5.3	Manganese as Mn	μg/g	1570	1440	1680	1710	1580	1450	AAS APHA 3111 B
5.4	Iron as Fe	%	5.12	5.75	5.1	4.8	4.6	4.75	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	μg/g	50.2	34.2	79.2	52.8	60.6	68.2	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	μg/g	40.6	60.4	50.4	58.6	41.6	53.2	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	μg/g	218	256	262	298	272	308	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	μg/g	11.6	5.4	11.2	8.8	4.6	2.8	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	μg/g	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Polychaete worms Isopods Decapods	Polychaete worms Bivalves Anthozoans	Polychaete Isopods Decapods	Polychaete Bivalves Sponges	Polychaete Amphipods Echinoderms	Isopods Polychaetes Decapods	АРНА (22 nd Edi) 10500-С
6.2	MeioBenthos		Nematodes 	Foraminiferans Copepodes	Hydroza 	Nematodes Bryozoans <i>Foraminiferans</i>	Copepods Foraminiferans 	Bryozoans Hydrozoa 	АРНА (22 nd Edi) 10500-С
6.3	Population	no/m²	343	310	338	529	559	440	APHA (22 nd Edi) 10500-C

H. T. Shah

Lab Manager

Lessin

Dr. Arun Bajpai

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M4 JUNA BANDAR N 22°47'577" E 069°43'620"]

SR.	TEST PARAMETERS	UNIT	APRIL	2018	MAY	2018	JUNE	2018	JULY	2018	AUGUS	T 2018	SEPTEME	BER 2018	TEST
NO.	IESI PAKAMETEKS	ONTI	SURFACE	воттом	METHOD										
1	рН		8.18	8.1	8.07	8.02	8.11	8.06	8.09	8.01	8.17	8.06	8.19	8.15	IS3025(P11)83R e.02
2	Temperature	оС	30.2	30	31.1	30.8	30.5	30.2	30.8	30.2	30.1	29.8	30.6	30.5	IS3025(P9)84Re .02
3	Total Suspended Solids	mg/L	288	223	262	210	308	267	390	296	342	270	317	284	IS3025(P17)84R e.02
4	BOD (3 Days @ 27 °C)	mg/L	2.5	1.8	3.4	3	2	1	3	BDL*	BDL*	BDL*	BDL*	BDL*	IS 3025 (P44)1993Re.03 Edition2.1
5	Dissolved Oxygen	mg/L	5.8	5.2	6.2	5.9	5.6	5.4	6.6	6.2	6.4	6.0	6.5	6.2	IS3025(P38)89R e.99
6	Salinity	ppt	35	34.2	35.4	34.8	35.4	35	34.4	34	34.3	34.1	33.9	33.8	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	3	BDL*	BDL*	BDL*	BDL*	BDL*	APHA(22 nd Edi)5 520D
8	Nitrate as NO ₃	μmol/L	20.6	17.4	12.4	8.2	17.2	14.4	8.5	5.3	12.4	6.2	7.4	3.4	IS3025(P34)88
9	Nitrite as NO ₂	μmol/L	1.2	0.8	0.9	0.6	1.38	0.61	1.40	0.8	1.8	1.2	2.1	1.1	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH₃	μmol/L	2.2	1.8	3.2	2.4	2.53	2	3.00	2	4.0	3.0	2.8	2.4	IS3025(P34)88C la.2.3
11	Phosphates as PO ₄	μmol/L	1.7	1.4	2.2	1.6	2.09	1.87	2.3	1.96	2.18	2.1	2.21	2.04	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	7	6	5.2	3.1	3.50	2.90	12.90	8.10	18.2	10.4	12.3	6.9	IS3025(P34)88
13	Petroleum Hydrocarbon	μg/L	14	8	20	6	16	5	16	4	10	6.0	8	3.0	PLPL-TPH
14	Total Dissolved Solids	mg/L	36840	36320	37110	36242	36118	35914	34812	34610	34756	34612	34216	34104	IS3025(P16)84R e.02
15	COD	mg/L	8	6	11.4	9.2	8	5	8	6	6.0	BDL*	6.0	5.0	APHA(22 nd Edi) 5520-D Open Reflux
Α	Flora and Fauna														
16	Primary productivity	mgC/L/d ay	2.56	0.67	2.4	1.6	2.7	1.03	2.78	1.4	3.1	1.6	2.2	1.46	APHA (22nd Edi) 10200-J
В	Phytoplankton														
17.1	Chlorophyll	mg/m³	3.1	0.7	2.52	2.1	3.93	1.21	2.9	1.8	1.32	1.09	1.06	0.874	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m³	2.4	1.7	3.1	2.8	2.85	1.69	2.4	1.6	1.13	0.86	0.908	0.694	APHA (22 nd Edi) 10200-H

H. T. Shah

Lab Manager

Lessin

Dr. Arun Bajpai

		61		Recognise	d by MoEF.	New Delhi	Under Sec	. 12 of Env	ironmental	Protection	n) Act-1986		•2		
17.3	Cell Count	No. x 10 ³ /L	310	80	280	60	344	104	380	130	134	122	136	21	APHA (22 nd Edi) 10200-H
17.4	Name of Group Number and name of group species of each group	-	Fragillari a sp. Melosira sp. Pinnularia sp. Rhizosole nia sp. Skeletone ma sp.	Nitzschi a sp. Amphora sp. Biddulphi a sp. 	Asterion ella sp. Coscinodi scus sp. Navicula sp. Nitzschia sp. Fragillaria sp. Surirella sp.	Navicula sp. Gyrosigm a sp. Coscinodi scus sp. Asterionel la sp. 	Navicula sp. Nitzschia sp. Coscinodi scus sp. Cheatocer ous sp. Skeletone ma sp.	Navicula sp. Bacteriast rum Nitzschia sp. 	Navicul a Nitzschia Rhizosol enia Coscinod iscus Cyclotell a	Biddulp hia Nitzschia Surirella 	Coscinod iscus Navicula Biddulph ia Thallasio nema Frugillari a	Nitzschia Melosira 	Biddulphi a Nitzschia Cyclotella Peridiniu m Thallassio nema	Peridiniu m Cyclotell a Fragillari a 	АРНА (22 nd Edi) 10200-Н
С	Zooplanktons				υρ.										
18.1	Abundance (Population)	noX10 ³ / 100 m ³	1	7	2	2	3	8	5	8	6-	4	51	l	APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		Cope Ostrac Mollus Ostra	codes scans	Copepods Krill Decapods Crustaceans Ostracodes		Hydro Polyc Biva Gastro	lves opods	Mollus Polycl Biva Deca	naete Ives	Cope Foramir Ostrac Fish L	iferans codes	Foramin Polych Gastro Cope	aetes pods	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	10	.2	13	.2	9.	.5	11	.8	5.8	34	4.6	57	APHA (22 nd Edi) 10200-G
D	Microbiological Paran		4.5		4=			00	40		200	70	100		
19.1	Total Bacterial Count	CFU/ml	15		17		16		18		20		189		IS 5402:2002 APHA(22 nd Edi)9
19.2	Total Coliform	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abse	ent	221-D
19.3	Ecoli	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abse	ent	IS:1622:1981Edi .2.4(2003-05)
19.4	Enterococcus	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abse	ent	IS: 15186 :2002
19.5	Salmonella	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abse	ent	IS: 5887 (P-3)
19.6	Shigella	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abse	ent	IS: 1887 (P-7)
19.7	Vibrio	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abse	ent	IS: 5887 (P-5)

H. T. Shah

Lab Manager

Dr. Arun Bajpai

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M4 JUNA BANDAR N 22°47'577" E 069°43'620"]

SR.	TECT DADAMETEDS	LINITT	APRIL 2018	MAY 2018	JUNE 2018	JULY 2018	AUGUST 2018	SEPTEMBER 2018	TECT METHOD
NO.	TEST PARAMETERS	UNIT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	TEST METHOD
1	Organic Matter	%	0.98	0.88	0.8	0.75	0.7	0.55	FCO:2007
2	Phosphorus as P	μg/g	187	158	190	202	184	210	APHA(22 nd Edi) 4500 C
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy	
4	Petroleum Hydrocarbon	μg/g	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	5.44	4.9	5.4	5.22	5.1	5.35	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	μg/g	178	144	136	158	142	165	AAS 3111B
5.3	Manganese as Mn	μg/g	1940	1770	1910	1845	1760	1680	AAS APHA 3111 B
5.4	Iron as Fe	%	5.35	5.4	5.3	5.1	4.9	5.1	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	μg/g	38.6	44.6	84.4	72.8	63	52	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	μg/g	72.2	66.2	70.2	56.1	48	64	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	μg/g	222	210	276	298	240	272	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	μg/g	10.2	7.1	11.2	9.2	6.2	5.9	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	μg/g	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Polychaete worms Isopods Decapods	Polychaete worms Echinoderms Anthozoans	Amphipods Polychates 	Polychaete Bivalves	Polychaete Bivalves	Decapods Polychaetes 	АРНА (22 nd Edi) 10500-С
6.2	MeioBenthos		Bryozoans 	Nemotodes Foraminiferans <i>Hydrozoa</i>	Hydroza Branchyurans	Copepods Ostracodes <i>Hydrozoans</i>	Foraminiferans Copepods 	Hydrozoa Foraminiferans Ostracodes	АРНА (22 nd Edi) 10500-С
6.3	Population	no/m²	294	270	324	441	412	559	APHA (22 nd Edi) 10500-C

H. T. Shah

Lab Manager

Lessin

Dr. Arun Bajpai

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M5 TOWARDS WESTERN SIDE OF EAST PORT – N 22°46'041" E 069°47'296"]

SR.	TECT DADAMETERS	LINITT	APRIL	2018	MAY	2018	JUNE	2018	JULY	2018	AUGUS	T 2018	SEPTEME	BER 2018	TEST
NO.	TEST PARAMETERS	UNIT	SURFACE	воттом	METHOD										
1	pН		8.07	8.03	8.18	8.12	8.15	8.1	8.24	8.09	8.27	8.2	8.25	8.19	IS3025(P11)83Re .02
2	Temperature	оС	30.6	30.2	31.4	30.8	30.4	30.1	30.8	30.6	30.5	30.2	30.7	30.4	IS3025(P9)84Re. 02
3	Total Suspended Solids	mg/L	212	175	308	282	312	260	298	244	318	284	352	306	IS3025(P17)84Re .02
4	BOD (3 Days @ 27 °C)	mg/L	4	3	3	2	3	2	3	2	4.0	BDL*	3.0	BDL*	IS 3025 (P44)1993Re.03E dition2.1
5	Dissolved Oxygen	mg/L	6.2	5.8	6.4	5.8	6.2	6	6.6	5.8	6.4	6.2	6.2	6.0	IS3025(P38)89Re .99
6	Salinity	ppt	34.8	34.5	35.1	34.6	35.6	35	34.8	34.2	34.6	34.4	34.2	34.1	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	APHA(22 nd Edi)55 20D										
8	Nitrate as NO ₃	µmol/L	14.2	12.4	15.2	10.8	14	10.2	7.4	3.2	9.8	4.6	6.1	3.2	IS3025(P34)88
9	Nitrite as NO ₂	μmol/L	1.3	1.1	1.7	0.9	1.53	0.87	0.85	0.6	0.75	0.4	1.1	0.45	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	µmol/L	1.9	1.5	2.1	1.4	5.1	3.61	2.4	2.1	3.4	2	2.6	1.8	IS3025(P34)88Cl a.2.3
11	Phosphates as PO ₄	µmol/L	1.7	1.4	1.95	1.72	1.82	1.55	2.18	1.45	2.3	2.1	2.15	1.9	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	2.8	2.4	2.8	1.5	8.10	7.00	10.65	5.90	13.95	7.0	9.8	5.45	IS3025(P34)88
13	Petroleum Hydrocarbon	μg/L	18	7	10	4	18	3	10	4	12	6	14	6	PLPL-TPH
14	Total Dissolved Solids	mg/L	35720	35230	35642	35108	36208	35814	35218	34948	34942	34618	34572	34328	IS3025(P16)84Re .02
15	COD	mg/L	12	10	8	6.4	12	8	8	6	12.0	6.0	10.0	BDL*	APHA(22 nd Edi) 5520-D Open Reflux
Α	Flora and Fauna														
16	Primary productivity	mgC/L /day	1.84	0.83	3.2	1.5	2.14	0.99	3.9	2.8	2.13	1.68	1.91	1.01	APHA (22nd Edi) 10200-J
В	Phytoplankton														and the same of
17.1	Chlorophyll	mg/m ³	1.16	0.97	2.4	2.2	2.85	1.71	3.4	1.6	2.04	1.92	1.63	1.53	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m³	2.2	1.6	3.6	3	2.76	1.25	2.8	1.3	1.26	1.6	1.01	0.646	APHA (22 nd Edi)

0-0

H. T. Shah

Lab Manager

hosein

Dr. Arun Bajpai

D	D 11 . TT 1 0		1 (D
Recognised by MoFF New	Delni Under Sec. 17	of Environmenta	Protection Act-1986

				10.000000000000000000000000000000000000					11930-11930-11931			150			10200-H
17.3	Cell Count	No. x 10 ³ /L	340	90	290	70	292	152	380	268	210	148	140	99	APHA (22 nd Edi) 10200-H
17.4	Name of Group Number and name of group species of each group		Amphor a sp. Fragillaria sp. Melosira sp. Rhizosole nia sp. Coscinodi scus sp.	Fragillari a sp. Melosira sp. Nitzschia sp. 	Rhizosol enia sp. Synedra sp. Navicula sp. Coscinodi scus sp. Skeletone ma sp.	Nitzschi a sp. Melosira sp. Fragillaria sp. 	Navicula sp. Nitzschia sp. Skeletone ma sp. Coscinodi scus sp. Pleurosig ma sp. Biddulphi a sp.	Navicula sp. Nitzschia sp. Melosira sp. 	Rhizoso lenia Navicula Nitzschia Coscinod iscus Skeleton ema Surirella	Melosir a Thallasio sira Nitzschia 	Coscinod iscus Nitzschia Navicula Thallasio sira 	Frugillari a Guinardi Synedra 	Thallasion ema Cyclotella Nitzschia Biddulphi a Rhizosole nia	Cyclotella Nitzschia Melosira 	АРНА (22 nd Edi) 10200-Н
С	Zooplanktons						·								APHA (22 nd Edi)
18.1	Abundance (Population)	noX10 ³ / 100 m ³	1	5	2	25		26		30		48		41	
18.2	Name of Group Number and name of group species of each group		Polychae Amph Gastro Cope	triches	Nematodes Copepods Copepods		Gastro Biva Nema Crusta	Ives todes	Hydr Polycl Biva Foramir	haete Ilves	Polycl Deca Biva Gastro	pods Ives	Polych Deca Cope Fish	pods pods	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	5.0	69	8.4		6.6		9.8		9.9		7.68		APHA (22 nd Edi) 10200-G
D	Microbiological Para														
19.1	Total Bacterial Count	CFU/m I	18	40	17	20	1680		1850		2100		2070		IS 5402:2002
19.2	Total Coliform	/ml	Abs	sent	Abs	ent	Abs	ent	Absent		Absent		Absent		APHA(22 nd Edi)92 21-D
19.3	Ecoli	/ml	Abs	sent	Abs	ent	Abs	ent	Abs	sent	Absent		Absent		IS:1622:1981Edi. 2.4(2003-05)
19.4	Enterococcus	/ml	Abs	sent	Abs	Absent		ent	Abs	sent	Absent		Absent		IS: 15186:2002
19.5	Salmonella	/ml	Abs	ent	Absent		Abs	ent	Abs	sent	Absent		Abs	ent	IS: 5887 (P-3)
19.6	Shigella	/ml	Abs	bsent		ent	Absent		Abs	ent	Absent		Absent		IS: 1887 (P-7)
19.7	Vibrio	/ml	Abs	sent	Abs	ent	Abs	ent	Abs	sent	Absent		Absent		IS: 5887 (P-5)

H. T. Shah

Lab Manager

Lessin

Dr. Arun Bajpai

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M5 TOWARDS WESTERN SIDE OF EAST PORT - N 22°46'041" E 069°47'296"]

SR.	TEST PARAMETERS	UNIT	APRIL 2018	MAY 2018	JUNE 2018	JULY 2018	AUGUST 2018	SEPTEMBER 2018	TEST METHOD
NO.	ILSI PARAPILILAS	OMI	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	TEST METHOD
1	Organic Matter	%	0.88	0.58	0.62	0.98	0.69	0.58	FCO:2007
2	Phosphorus as P	μg/g	260	310	243	298	202	196	APHA(22 nd Edi) 4500 C
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy	
4	Petroleum Hydrocarbon	μg/g	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	5.25	5.15	5.26	5.36	5.1	4.8	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	μg/g	162	186	176	144	118	132	AAS 3111B
5.3	Manganese as Mn	μg/g	1380	1560	1428	1480	1610	1540	AAS APHA 3111 B
5.4	Iron as Fe	%	5.4	5.5	5.3	5.12	4.96	478	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	μg/g	21.8	33.2	22.8	44.8	30.8	51.4	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	μg/g	60.6	78.4	65.2	72.9	60	49	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	μg/g	172	210	184	218	590	410	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	μg/g	17.2	5.9	12.2	14.6	9.6	3.4	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	μg/g	0.18	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Polychaete worms Isopods Mysids	Crabs Mysids Decapods Bivalves	Echinoderms Decapods 	Polychaete Mysids Isopods	Polychaete Amphipods Mysids	Bivalves Ostracodes Chaetognaths	APHA (22 nd Edi) 10500- C
6.2	MeioBenthos		Hydrozoa 	Gastrotriches Ostracodes	Copepods Hydroza	Nematodes 	 Hydrozoa 	Copepods Bryozoans 	APHA (22 nd Edi) 10500- C
6.3	Population	no/m2	362	340	265	382	471	643	APHA (22 nd Edi) 10500- C

0

H. T. Shah

Lab Manager

Lessin

Dr. Arun Bajpai

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M7 EAST PORT N 22°47'120" E 069°47'110"]

SR.	TEST PARAMETERS	UNIT	APRII	2018	MAY	2018	JUNE	2018	JULY	2018	AUGUS	T 2018	SEPTEME	ER 2018	TEST METHOD
NO.	IESI PAKAMETEKS	ONTI	SURFACE	воттом											
1	pH		8.2	8.12	8.25	8.15	8.19	8.08	8.13	8.07	8.19	8.11	8.16	8.15	IS3025(P11)83Re. 02
2	Temperature	оС	30.1	29.6	31.4	30.9	30.2	30.4	30.6	30.1	30.7	30.5	30.6	30.5	IS3025(P9)84Re.0 2
3	Total Suspended Solids	mg/L	190	152	248	130	310	256	317	272	368	311	384	304	IS3025(P17)84Re. 02
4	BOD (3 Days @ 27°C)	mg/L	2.2	1.6	5	4	5	2	4	2	3.0	2.0	4.0	2.0	IS 3025 (P44)1993Re.03Ed ition2.1
5	Dissolved Oxygen	mg/L	6.2	5.8	6.6	6.2	6.3	5.8	6.2	5.6	6.6	6.2	6.4	6	IS3025(P38)89Re. 99
6	Salinity	ppt	34.8	34.5	35.2	34.8	35.6	35	35	34.8	34.6	34.2	34.4	34.3	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	APHA(22 nd Edi)552 0D										
8	Nitrate as NO ₃	µmol/L	7.8	5.2	4.4	2.9	10.2	7.4	5.9	4.7	9.6	5.4	4	2.5	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	1.1	0.8	0.8	0.5	1.33	1.02	1.48	0.75	1.3	0.8	1.1	0.75	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH ₃	μmol/L	3.1	1.9	2.1	1.4	2.19	1.78	2.45	1.9	2.1	1.6	2.6	1.9	IS3025(P34)88Cla .2.3
11	Phosphates as PO ₄	µmol/L	1.43	2.24	1.72	1.58	2.46	2.09	1.8	1.6	2.06	1.8	2.14	1.7	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	4.3	2.8	4.8	3.9	2.60	1.90	9.83	7.35	13	7.8	7.7	5.15	IS3025(P34)88
13	Petroleum Hydrocarbon	μg/L	15	10	6	2	14	4	18	6	14	8.0	16	10.0	PLPL-TPH
14	Total Dissolved Solids	mg/L	35602	35112	35972	35212	36512	36214	35208	34984	34996	34810	34872	34564	IS3025(P16)84Re. 02
15	COD	mg/L	7	6	16	12	18	10	12	8	14	8	12	10	APHA(22ndEdi) 5520-D Open Reflux
Α	Flora and Fauna														
16	Primary productivity	mgC/L /day	1.6	1.3	2.4	1.8	6.98	4.95	3.6	3.1	1.57	0.94	1.55	1.26	APHA (22nd Edi) 10200-J
В	Phytoplankton														ADHA (SSNdEdi)
17.1	Chlorophyll	mg/m ³	1.15	0.97	2.6	2.4	4.54	2.78	3.9	2.4	1.59	1.32	1.27	1.06	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m³	2.4	1.9	3.4	3.2	2.14	1.33	2.6	2.1	1.2	0.97	0.961	0.774	APHA (22 nd Edi) 10200-H

H. T. Shah

Lab Manager

Lessin

Dr. Arun Bajpai

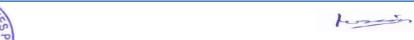
	Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986														
17.3	Cell Count	No. x 10 ³ /L	270	65	320	90	304	196	340	240	212	136	141	91	APHA (22 nd Edi) 10200-H
17.4	Name of Group Number and name of group species of each group		Amphor a sp. Cyclotella sp. Rhizosole nia sp. Navicula sp. Thallasio nema sp. Coscinodi scus sp.	Biddulph ia sp. Melosira sp. Rhizosole nia sp. 	Nitzschi a sp. Synedra sp. Coscinodi scus sp. Pleurosig ma sp. Thallasios ira sp. Pinnularia sp.	Navicula sp. Fragillaria sp. Thalassio nema sp. 	Navicula sp. Nitzschia sp. Rhizosole nia sp. Coscinodi scus sp. Melosira sp. Thallasios ira sp.	Nitzschia sp. Melosira sp. Pleuzesim a 	Rhizosol enia Pleurosig ma Nitzschia Navicula Biddulphi a Thallasios ira	Melosira Nitzschia Biddulphi a 	Biddulphi a Rhizosole nia Nitzschia sp. Navicula sp. Thallasios ira	Melosira Nitzschia sp. Fragillaria 	Rhizosole nia Nitzschia Coscinodi scus Navicula Thallasios ira	Navicula Thallasio sira Nitzschia 	АРНА (22 nd Edi) 10200-Н
С	Zooplanktons														
18.1	Abundance (Population)	noX10 ³ / 100 m ³	1	8	2	4	3	39		2	4	7	37	7	APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		, Amph Gastro	te worms nipods otriches acods	Copepodes Gastropodes Crustaceans Cyclops Polychaetes		Gastr Nema	opods opods otodes opods	Biva Hydro Polycl Nema Deca	haete Itodes	Gastro Nema Deca Polycl	todes pods naete	Polych Cope _l Lamellibi 	oods ranches	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	8.	.2	7.	4	7.1		11.2		8.9		6.2	24	APHA (22 nd Edi) 10200-G
D	Microbiological Parar	neters													
19.1	Total Bacterial Count	CFU/ml	19	60	20	50	17	50	19	50	20	40	208	30	IS 5402:2002
19.2	Total Coliform	/ml	Abs	sent	Abs	ent	Abs	sent	Absent		Absent		Absent		APHA(22 nd Edi)922 1-D
19.3	Ecoli	/ml		sent		Absent		sent	Abs		Absent		Absent		IS:1622:1981Edi.2 .4(2003-05)
19.4	Enterococcus	/ml		sent		Absent		ent	Abs		Abs	ent	Abs		IS: 15186:2002
19.5	Salmonella	/ml	Abs	sent	Abs	Absent		sent	Abs	sent	Absent		Abse	ent	IS: 5887 (P-3)
19.6	Shigella	/ml	Abs	sent	Abs	Absent		Absent		sent	Absent		Abse	ent	IS: 1887 (P-7)
19.7	Vibrio	/ml	Abs	sent	Abs	ent	Abs	sent	Abs	sent	Absent		Absent		IS: 5887 (P-5)

H. T. Shah

Lab Manager

Dr. Arun Bajpai

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986


RESULTS OF MARINE WATER [M8 RIGHT SIDE OF BOCHA CREEK N 22°45'987" E 069°43'119"]

SR.	TEST	UNIT		L 2018	MAY		JUNE		JULY		AUGUS		SEPTEME		TEST
NO.	PARAMETERS	OMI	SURFACE	воттом	SURFACE	BOTTOM	SURFACE	воттом	SURFACE	BOTTOM	SURFACE	воттом	SURFACE	BOTTOM	METHOD
1	рН		8.28	8.18	8.21	8.13	8.2	8.14	8.21	8.16	8.17	8.12	8.19	8.11	IS3025(P11)83Re .02
2	Temperature	оС	29.8	29.5	31.4	30.9	30.7	30.3	30.6	30.4	30.9	30.5	30.8	30.7	IS3025(P9)84Re. 02
3	Total Suspended Solids	mg/L	212	172	318	282	272	236	301	254	337	296	313	297	IS3025(P17)84Re .02
4	BOD (3 Days @ 27 °C)	mg/L	3.4	2.8	5.2	3.8	3	2	3	2	4.0	3.0	3.0	2.0	IS 3025 (P44)1993Re.03E dition2.1
5	Dissolved Oxygen	mg/L	6	5.6	6.4	6	6.4	5.8	6.1	5.5	6.4	6	6.5	6.1	IS3025(P38)89Re .99
6	Salinity	ppt	35.1	34.8	35.4	34.9	35.6	35.1	35.2	34.8	34.8	34.2	34.6	34.3	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	APHA(22 nd Edi)552 0D										
8	Nitrate as NO ₃	µmol/L	9.6	7.4	7.9	5.2	14.3	10.6	4.7	3.1	7.4	5	3.9	2.8	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	1.5	0.7	2.3	1.1	0.92	0.51	0.62	0.48	0.84	0.6	1.6	1.1	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH₃	µmol/L	3.8	3.2	4.2	2.8	1.8	1.46	1.5	1.3	2.4	1.6	1.9	1.5	IS3025(P34)88Cla .2.3
11	Phosphates as PO ₄	μmol/L	2.1	0.612	2.4	1.3	1.87	1.71	1.99	1.82	2.16	2.04	2.36	2.18	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	μmol/L	4.9	3.7	5.8	4.4	2.60	2.00	6.82	4.88	10.64	7.2	7.4	5.4	IS3025(P34)88
13	Petroleum Hydrocarbon	μg/L	16	11	10	8	20	6	18	10	14	8.0	18	10.0	PLPL-TPH
14	Total Dissolved Solids	mg/L	35710	35470	35918	35423	36218	35877	35810	35320	35410	34910	34972	34578	IS3025(P16)84Re .02
15	COD	mg/L	14	10	18	13	10	6	12	10	14	10	12	10	APHA(22 nd Edi) 5520-D Open Reflux
Α	Flora and Fauna														
16 B	Primary productivity Phytoplankton	mgC/L /day	2.43	0.74	3.15	2.6	2.39	0.88	3.1	2.6	1.48	0.83	1.35	0.923	APHA (22nd Edi) 10200-J
17.1	Chlorophyll	mg/m³	1.2	0.93	2.2	1.8	3.06	1.67	3.98	2.1	1.89	1.03	1.51	0.83	APHA (22 nd Edi) 10200-H
17.2	Phaeophytin	mg/m³	1.5	0.4	1.7	1.4	2.76	0.36	2.6	1.8	1.73	0.73	1.38	0.58	APHA (22 nd Edi) 10200-H

0-0

H. T. Shah

Lab Manager

Dr. Arun Bajpai

				Recogn	ised by Mol	EF. New De	lhi Under S	Sec. 12 of Er	nvironment	al (Protecti	ion) Act-198	6			
17.3	Cell Count	No. x 10 ³ /L	290	90	260	40	368	88	340	270	222	116	144	83	APHA (22 nd Edi) 10200-H
17.4	Name of Group Number and name of group species of each group		Synedra sp. Skeletone ma sp. Biddulphi a sp. Navicula sp. Nitzschi a sp.	Fragillari a sp. Nitzschia sp. Thallasios ira sp. 	Fragillari a sp. Navicula sp. Synedra sp. Coscinodi scus sp. Oscillatori a sp.	Navicula sp. Nitzschia sp. Gyrosigm a sp. Oscillatori a sp.	Rhizosole nia sp. Chaetogn athes Coscinodi scus sp. Nitzschia sp. Navicula sp.	Chaetogn athes Thallasios ira sp. Rhizosole nia sp. 	Coscinod iscus Rhizosole nia Thallasios ira Biddulphi a Melosira Cyclotella	Nitzschi a Biddulphi a 	Frugillaria Thallasios ira Nitzschia Coscinodi scus Navicula Guinardia Rhizosole nia	Melosira Nitzschia sp. Synedra 	Thallasios ira Cyclotella Coscinodi scus Navicula 	Biddulphi a Gyrosigm a Navicula 	АРНА (22 nd Edi) 10200-Н
С							Zooplankto	ons							
18.1	Abundance (Population)	noX10 ³ / 100 m ³	2	1	1	6	4	8	4	6	44	1	3	5	APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		Gastro Polychaet Biva Cope	es worms lves	Mys Polychaet Gastroi Nauplius Deca	te worms triches s larvae	Biva Gastr Mollu	ozoans ilues opods scans codes	Hydro: Polych Biva Foramir Deca	naete lues niferans	Cope Ostrac Deca Foramin Fish L	codes oods iferans	Polyci Cope Gastro Decaj	pods pods	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	7.	5	10	.2	8.	25	9.	4	6.	8	5.4	14	APHA (22 nd Edi) 10200-G
D	Microbiological Para	meters													
19.1	Total Bacterial Count	CFU/ml	16	60	18	80	18	50	17:	50	20!	50	22	50	IS 5402:2002
19.2	Total Coliform	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	Abs	ent	APHA(22 nd Edi)922 1-D
19.3	Ecoli	/ml	Abs		Abs			sent	Abs		Abs		Abs		IS:1622:1981Edi. 2.4(2003-05)
19.4	Enterococcus	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	Abs	ent	IS: 15186:2002
19.5	Salmonella	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	Abs	ent	IS: 5887 (P-3)
19.6	Shigella	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	Abs	ent	IS: 1887 (P-7)
19.7	Vibrio	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	Abs	ent	IS: 5887 (P-5)

H. T. Shah

Lab Manager

Dr. Arun Bajpai

Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF SEDIMENT ANALYSIS [M8 RIGHT SIDE OF BOCHA CREEK - N 22°45'987" E 069°43'119"]

SR. NO.	TEST PARAMETERS	UNIT	APRIL 2018 SEDIMENT	MAY 2018 SEDIMENT	JUNE 2018 SEDIMENT	JULY 2018 SEDIMENT	AUGUST 2018 SEDIMENT	SEPTEMBER 2018 SEDIMENT	TEST METHOD
1	Organic Matter	%	0.75	0.8	0.76	0.85	0.68	0.6	FCO:2007
2	Phosphorus as P	μg/g	402	380	370	340	392	340	APHA(22 nd Edi) 4500 C
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy	
4	Petroleum Hydrocarbon	μg/g	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	PLPL-TPH
5	Heavy Metals								
5.1	Aluminum as Al	%	5.5	5.6	5.2	5.4	5.25	5.45	AAS APHA 3111 B
5.2	Total Chromium as Cr ⁺³	μg/g	240	212	238	268	210	236	AAS 3111B
5.3	Manganese as Mn	μg/g	1890	1760	1685	1744	1650	1560	AAS APHA 3111 B
5.4	Iron as Fe	%	5.3	5.6	5.3	5.15	5.05	5.02	AAS APHA(22 nd Edi)3111 B
5.5	Nickel as Ni	μg/g	56.1	44.2	42	34	26	40	AAS APHA(22 nd Edi)3111 B
5.6	Copper as Cu	μg/g	78.8	68.3	58	44.8	38	58	AAS APHA(22 nd Edi)3111 B
5.7	Zinc as Zn	μg/g	282	310	262	296	240	322	AAS APHA(22 nd Edi)3111 B
5.8	Lead as Pb	μg/g	14.8	8.1	12.2	7.5	8.1	6.4	AAS APHA(22 nd Edi)3111 B
5.9	Mercury as Hg	μg/g	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA- 3112 B
6	Benthic Organisms								
6.1	Macrobenthos		Bivalves Mysids	Polychaete worms Isopods Decapods Prawns	Polychaete Decapods Mysides	Polychaete Bivalves Isopods	Polychaete Bivalves Gastropods	Polychaetes -	APHA (22 nd Edi) 10500- C
6.2	MeioBenthos		Nematodes Copepods	Nematodes Foraminiferans	Nematodes Foraminiferans	Gastropods Ostracodes 	 Ostracods <i>Copepods</i>	Copepods Hydrozoa 	APHA (22 nd Edi) 10500- C
6.3	Population	no/m²	290	270	279	250	353	382	APHA (22 nd Edi) 10500- C

0

H. T. Shah

Lab Manager

Lossin

Dr. Arun Bajpai

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M11 MPT T1 JETTY N 22°42'278" E 069°43'450"]

SR.	TEST PARAMETERS	UNIT	APRIL	2018	MAY	2018	JUNE	2018	JULY	2018	AUGUS	T 2018	SEPTEME	BER 2018	TEST
NO.	IESI PAKAMETEKS	ONTI	SURFACE	воттом	SURFACE	воттом	SURFACE	BOTTOM	SURFACE	воттом	SURFACE	BOTTOM	SURFACE	воттом	METHOD
1	pН		8.17	8.08	8.09	7.95	8.12	8.03	8.17	8.03	8.09	8.05	8.16	8.05	IS3025(P11)83Re .02
2	Temperature	оС	30.1	29.5	31.6	30.9	30.5	29.8	30.3	30	30.8	30.2	30.6	30.4	IS3025(P9)84Re. 02
3	Total Suspended Solids	mg/L	308	242	332	192	272	228	296	264	328	298	302	285	IS3025(P17)84Re .02
4	BOD (3 Days @ 27 °C)	mg/L	3.4	3	2.8	2.4	4	3	3	2	3.0	BDL*	4.0	BDL*	IS 3025 (P44)1993Re.03E dition2.1
5	Dissolved Oxygen	mg/L	6.2	5.8	6.6	6.4	6	5.2	6.6	6	6.4	6.1	6.2	6	IS3025(P38)89Re .99
6	Salinity	ppt	35.7	35.2	35.4	35.1	35.8	35.2	34.8	34.2	34.6	34.2	34.1	34	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	APHA(22 nd Edi)552 0D										
8	Nitrate as NO ₃	µmol/L	15.7	10.2	10.8	7.4	35.2	34.85	7.4	5.1	11.6	6.2	9.8	5.4	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	2.2	1.6	1.1	0.8	13.17	8.27	3.8	1.4	2.1	1.6	1.6	1.1	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH₃	µmol/L	1.7	1.4	2.1	1.8	1.59	1.09	2.4	0.9	1.8	1.4	1.4	0.5	IS3025(P34)88Cla .2.3
11	Phosphates as PO ₄	µmol/L	1.2	0.9	1.75	1.24	2.14	1.82	2.56	1.9	2.36	2.1	2.18	2.08	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	2.38	2.25	3.4	2.8	1.96	1.88	13.60	7.40	15.5	9.2	12.8	7	IS3025(P34)88
13	Petroleum Hydrocarbon	μg/L	20	8	16	6	14	8	18	10	20	8.0	15	5.0	PLPL-TPH
14	Total Dissolved Solids	mg/L	36792	36160	35672	35312	36140	35812	35712	35194	34940	34224	34518	34272	IS3025(P16)84Re .02
15	COD	mg/L	11	8	10	6	14	11	14	8	10	< 5.0	14	BDL*	APHA(22 nd Edi) 5520-D Open Reflux
Α	Flora and Fauna														
16	Primary productivity	mgC/L /day	1.93	1.01	2.42	2.3	2.12	1.71	2.88	2	1.31	0.518	1.46	0.968	APHA (22nd Edi) 10200-J
В	Phytoplankton														APHA (22 nd Edi)
17.1	Chlorophyll	mg/m ³	2.1	0.5	3.4	1.8	2.96	1.46	3.69	2.17	1.97	1.73	1.58	1.38	10200-H
17.2	Phaeophytin	mg/m³	2.5	2.1	2.1	1.6	1.87	1.78	2.05	1.78	1.6	0.73	1.28	0.58	APHA (22 nd Edi) 10200-H

H. T. Shah

Lab Manager

hosin

Dr. Arun Bajpai

				Recognis	ed by MoE	F. New Dell	hi Under S	ec. 12 of En	vironment	al (Protecti	on) Act-198	6			
17.3	Cell Count	No. x 10 ³ /L	290	86	240	80	308	92	330	110	220	152	147	91	APHA (22 nd Edi) 10200-H
17.4	Name of Group Number and name of group species of each group		Navicula sp. Rhizosole nia sp. Thallasios ira sp. Coscinodi scus sp. Skeletone ma sp.	Navicula sp. Thallasios ira sp. Biddulphi a sp. 	Skeleton ema sp. Synedra sp. Navicula sp. Rhizosole nia sp. Coscinodi scus sp.	Biddulph ia sp. Pinnularia sp. Pleurosig ma sp. 	synedra sp. Rhizosole nia sp. Nitzschia sp. Biddulphi a sp. Navicula sp.	Navicula sp. Nitzschia sp. Skeletone ma sp.	Peridiriz um Gyrosiam a Thalassio sira ThalassiOt hrix Biddulphi a	Thallasi ossira Nitzschia Cyclotella 	Coscinodi scus Navicula Nitzschia sp. Thallasios ira Frugillaria	Navicula Nitzschia sp. Thallasios ira 	Gyrosigm a Thallasios ira Navicula Biddulphi a Peridiniu m	Nitzschia Navicula Cyclotella 	АРНА (22 nd Edi) 10200-Н
С	Zooplanktons														
18.1	Abundance (Population)	noX10 ³ / 100 m ³	2	2	1	6	2	.4	4	2	4	3	3	4	APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		Cope Foramir Ostra Gastro	niferans acods	Crusta Cope Foramir Nema Polychae	pods niferans todes	Biva Ostra Deca	haete alves codes apods	Biva Gastro Crusta	ozoans olues opods aceans oderms	Polycl Nema Deca Mys	todes pods	Deca Gastro Polycl Cope	ppods naete	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	8.	.8	5	.4	6.	25	9.	.4	5.	6	4.4	18	APHA (22 nd Edi) 10200-G
D	Microbiological Para	meters													
19.1	Total Bacterial Count	CFU/ml	17	80	15	10	19	50	20	50	21	50	20	00	IS 5402:2002
19.2	Total Coliform	/ml	Abs	sent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abs	ent	APHA(22 nd Edi)922 1-D
19.3	Ecoli	/ml	Abs	ent	Abs	ent		sent	Abs	sent	Abs	ent	Abs	ent	IS:1622:1981Edi. 2.4(2003-05)
19.4	Enterococcus	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abs	ent	IS: 15186:2002
19.5	Salmonella	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abs	ent	IS: 5887 (P-3)
19.6	Shigella	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abs	ent	IS: 1887 (P-7)
19.7	Vibrio	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abs	ent	IS: 5887 (P-5)

01-0

H. T. Shah

Lab Manager

Lesin

Dr. Arun Bajpai

Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF MARINE WATER [M12 SPM N 22°40'938" E 069°39'191"]

SR.	TEST	UNIT	APRII	2018	MAY	2018	JUNE	2018	JULY	2018	AUGUS	T 2018	SEPTEME	BER 2018	TEST
NO.	PARAMETERS		SURFACE	воттом	METHOD										
1	рН		8.01	7.95	8.07	8.03	8.07	8.02	8.13	8.09	8.21	8.17	8.24	8.19	IS3025(P11)83Re .02
2	Temperature	оС	29.8	29.6	31.4	31	30.9	30.6	30.8	30.2	30.6	30.5	30.8	30.5	IS3025(P9)84Re. 02
3	Total Suspended Solids	mg/L	286	252	312	290	242	210	272	251	306	271	218	190	IS3025(P17)84Re .02
4	BOD (3 Days @ 27°C)	mg/L	4	3	5	2	5	4	4	3	3.0	2.0	2.0	BDL*	IS 3025 (P44)1993Re.03E dition2.1
5	Dissolved Oxygen	mg/L	5.8	5.4	6	5.5	6	5.6	6.4	5.8	6.6	6.4	6.4	6	IS3025(P38)89Re .99
6	Salinity	ppt	36.1	35.7	35.9	35.4	36	35.8	35	34.6	34.8	34.5	34.3	34	APHA (22 nd Edi) 2550 B
7	Oil & Grease	mg/L	BDL*	BDL*	APHA(22 nd Edi)552 0D										
8	Nitrate as NO ₃	µmol/L	21.8	14.6	14.2	10.8	18.4	12.2	7.4	4.7	13.8	6.4	10.4	5.2	IS3025(P34)88
9	Nitrite as NO ₂	µmol/L	1.7	1.2	2.1	1.7	2.14	1.43	2.4	1.6	1.8	1.1	2	1.5	IS3025(P34)88 NEDA
10	Ammonical Nitrogen as NH₃	μmol/L	3.4	2.8	4.8	3.1	3.1	2.3	2.9	2	1.6	1.4	3	2.2	IS3025(P34)88Cla .2.3
11	Phosphates as PO ₄	µmol/L	1.5	1.4	2.3	1.8	2.14	1.87	2.35	1.99	2.16	2.1	2.4	2	APHA(22 nd Edi) 4500 C
12	Total Nitrogen	µmol/L	5.1	3.8	5.8	4.4	3.10	2.30	12.70	8.30	17.2	8.9	15.4	8.9	IS3025(P34)88
13	Petroleum Hydrocarbon	μg/L	12	7	18	10	18	10	14	6	25	10	20	14	PLPL-TPH
14	Total Dissolved Solids	mg/L	36772	35980	36240	35912	36912	36080	35918	35216	35072	34764	34852	34316	IS3025(P16)84Re .02
15	COD	mg/L	12	10	16	12	18	14	14	10	14	10	16	12	APHA(22 nd Edi) 5520-D Open Reflux
Α	Flora and Fauna														Rendx
16	Primary productivity	mgC/L /day	2.47	0.74	3.1	2.8	11.7	7.42	5.8	3.4	1.82	1.46	1.59	1.12	APHA (22nd Edi) 10200-J
В	Phytoplankton	,													,
17.1	Chlorophyll	mg/m³	2.2	1.02	2.1	1.8	3.78	2.4	3.84	2.9	2.3	1.6	1.84	1.28	APHA (22 nd Edi) 10200-Ḥ
17.2	Phaeophytin	mg/m ³	1.6	1.2	2.2	1.4	2.94	2.31	3.6	2.1	1.4	1.28	1.12	1.02	APHA (22 nd Edi) 10200-H

H. T. Shah

Lab Manager

Lossin

Dr. Arun Bajpai

				Recogn	ised by Mol	EF. New De	lhi Under S	ec. 12 of E	nvironmen	tal (Protecti	on) Act-198	6			
17.3	Cell Count	No. x 10 ³ /L	224	75	290	65	364	128	340	110	242	126	161	84	APHA (22 nd Edi) 10200-H
17.4	Name of Group Number and name of group species of each group		Fragillari a sp. Peridiniu m Melosira sp. Thallasios ira sp. Skeletone ma sp.	Melosira sp. Navicula sp. Nitzschia sp. 	Navicula sp. Synedra sp. Skeletone ma sp. Biddulphi a sp. Rhizosole nia sp.	Synedra sp. Nitzschia sp. Coscinodi scus sp. 	Navicula sp. Nitzschia sp. Coscinodi scus sp. Thallasios ira sp. Melosira sp.	Nitzschi a sp. Thallasios ira sp. Rhizosole nia sp. 	Thalassi Othrix Navicula Nitzschia Surirella Peridiniu m	Plerosim a Navicula Cyclotella 	Navicula Thallasios ira Nitzschia sp. Coscinodi scus Rhizosole nia	Synedra Navicula Melosira 	Biddulphi a Nitzschia Coscinodi scus Thallasios ira Gyrosigm a	Peridiniu m Navicula Thallasiosi ra 	АРНА (22 nd Edi) 10200-Н
С	Zooplanktons														
18.1	Abundance (Population)	noX10³/ 100 m³	1	2	1	6	2	8	3	32	3	9	3	1	APHA (22 nd Edi) 10200-G
18.2	Name of Group Number and name of group species of each group		Foramir Ctenop Polych Cope	ohores naetes	Cope Crusta Gastro Ostra Nema	ceans opods cods			amphir Deca	haetes neurans apods niferans 	Deca Nema Polycl Cope Mys	todes naete pods	Polycl Chaetog Foramir Cope	gnathes niferans	APHA (22 nd Edi) 10200-G
18.3	Total Biomass	ml/100 m ³	1	0	8.	4	5	.6	7	'.8	5.	0	4.	1	APHA (22 nd Edi) 10200-G
D	Microbiological Pa														
19.1	Total Bacterial Count	CFU/m I	14	50	15	90	15	50	17	750	19	50	18	50	IS 5402:2002
19.2	Total Coliform	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abs	ent	APHA(22 nd Edi)922 1-D
19.3	Ecoli	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abs	ent	IS:1622:1981Edi. 2.4(2003-05)
19.4	Enterococcus	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	IS: 15186:2002
19.5	Salmonella	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abs	ent	IS: 5887 (P-3)
19.6	Shigella	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent	IS: 1887 (P-7)
19.7	Vibrio	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	ent	Abs	ent	IS: 5887 (P-5)

H. T. Shah

Lab Manager

Lessin

Dr. Arun Bajpai

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULTS OF ETP WATER OUTLET

SR.	PARAMETERS	UNIT 04/04/2018			RESULTS OF ETF	WATER OUTLET			GPCB Limit	TEST METHOD
NO.	PARAMETERS	ONII	04/04/2018	02/05/2018	05/06/2018	11/07/2018	04/08/2018	05/09/2018		
1	Colour	Co-pt	50	50	60	60	70	50	100	IS3025(P4)83Re.02
2	рН		6.64	7.12	7.2	7.58	7.4	7.5	6.5 TO 8.5	IS3025(P11)83Re.02
3	Temperature	°C	33	33	31.6	33	31.2	31	40	IS3025(P9)84Re.02
4	Total Suspended Solids	mg/L	34	42	52	48	65	48	100	IS3025(P17)84Re.02
5	Total Dissolved Solids	mg/L	1146	1060	1146	1078	1502	1104	2100	IS3025(P16)84Re.02
6	COD	mg/L	92	80	77	86	90	84	100	APHA(22 nd Edi) 5520-D Open Reflux
7	BOD (3 Days @ 27 °C)	mg/L	28	24	20	28	26	28	30	IS 3025 (P44)1993Re.03Edition2.1
8	Chloride as Cl	mg/L	419	499	429	418	490	440	600	IS3025(P32)88Re.99
9	Oil & Grease	mg/L	3.2	2.4	4.1	2.4	1.4	2.2	10	APHA(22 nd Edi)5520D
10	Sulphate as SO ₄	mg/L	110	96	84	72	82	60	1000	APHA(22 nd Edi)4500 SO ₄ E
11	Ammonical Nitrogen as NH ₃	mg/L	3.2	2.4	0.5	0.8	1.2	1.8	50	IS3025(P34)88Cla.2.3
12	Phenolic Compound	mg/L	0.014	0.021	BDL*	BDL*	BDL*	BDL*	1	IS3025(P43)92Re.03
13	Copper as Cu	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	3	AAS APHA(22 nd Edi)3111 B
14	Lead as Pb	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	0.1	AAS APHA(22 nd Edi)3111 B
15	Sulphide as S	mg/L	BDL*	0.8	1.2	0.8	1.0	1.6	2	APHA(22 nd Edi) 4500-S
16	Cadmium as Cd	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	2	AAS APHA(22 nd Edi)3111 B
17	Fluoride as F	mg/L	1.6	1.2	1.5	1.2	0.8	0.6	2	APHA(22 nd Edi) 4500 F D SPANDS

*Below detection limit

H. T. Shah

Lab Manager

homen

Dr. Arun Bajpai

RESULT OF AMBIENT AIR QUALITY MONITORING

			ADANI PORT	– T1 TERMINAL	. NR.MARINE BU	ILDING		
Sr. No	Date of Sampling	Particulate Matter (PM10) μg/m³	Particulate Matter (PM 2.5) µg/m³	Sulphur Dioxide (SO2) µg/m³	Oxides of Nitrogen (NO2) µg/m³	Carbon Monoxide as CO mg/m ³	Hydrocarbon as CH ₄ mg/m ³	Benzene as C ₆ H ₆ μg/m³
1	03/04/2018	87.60	48.34	13.58	30.56	0.37	BDL*	BDL*
2	06/04/2018	70.75	32.58	19.36	41.04	0.39	BDL*	BDL*
3	10/04/2018	90.62	50.17	17.58	33.96	0.53	BDL*	BDL*
4	13/04/2018	71.49	29.62	20.28	38.32	0.50	BDL*	BDL*
5	17/04/2018	65.68	26.21	22.27	29.59	0.27	BDL*	BDL*
6	20/04/2018	79.42	44.54	15.15	33.41	0.62	BDL*	BDL*
7	24/04/2018	89.33	49.30	14.98	36.38	0.64	BDL*	BDL*
8	27/04/2018	94.27	39.40	12.43	32.75	0.40	BDL*	BDL*
9	01/05/2018	71.36	30.20	20.09	38.25	0.26	BDL*	BDL*
10	04/05/2018	65.87	27.25	12.84	32.76	0.74	BDL*	BDL*
11	08/05/2018	82.66	38.69	10.61	29.39	0.42	BDL*	BDL*
12	11/05/2018	74.33	48.76	15.51	36.56	0.61	BDL*	BDL*
13	15/05/2018	69.45	31.49	18.52	34.25	0.46	BDL*	BDL*
14	18/05/2018	88.53	37.61	21.28	44.59	0.73	BDL*	BDL*
15	22/05/2018	73.65	43.68	13.42	37.38	0.82	BDL*	BDL*
16	25/05/2018	62.41	28.46	14.27	27.54	0.36	BDL*	BDL*
17	29/05/2018	77.66	40.40	17.57	40.41	0.39	BDL*	BDL*
18	01/06/2018	88.59	38.44	23.46	42.66	0.86	BDL*	BDL*
19	05/06/2018	93.46	55.67	11.47	33.25	0.56	BDL*	BDL*
20	08/06/2018	81.24	45.43	17.40	39.21	0.78	BDL*	BDL*
21	12/06/2018	90.25	49.59	18.65	44.28	0.52	BDL*	BDL*
22	15/06/2018	75.87	30.37	22.42	41.87	0.38	BDL*	BDL*
23	19/06/2018	86.86	46.85	15.24	30.45	0.82	BDL*	BDL*
24	22/06/2018	70.50	32.78	19.55	38.55	0.61	BDL*	BDL*
25	26/06/2018	65.44	37.53	13.58	36.78	0.97	BDL*	BDL*
26	29/06/2018	78.34	29.54	16.28	28.55	0.53	BDL*	BDL*
27	03/07/2018	83.40	43.31	16.52	37.84	0.37	BDL*	BDL*
28	06/07/2018	67.60	30.62	19.57	34.52	0.27	BDL*	BDL*
29	10/07/2018	90.56	52.34	15.57	32.48	0.60	BDL*	BDL*
30	13/07/2018	85.62	36.49	21.55	28.34	0.38	BDL*	BDL*

Continue ...

H. T. Shah

Lab Manager

Dr. Arun Bajpai

RESULT OF AMBIENT AIR QUALITY MONITORING

			ADANI PORT -	T1 TERMINAL N	IR. (MARINE BU	ILDING)		
Sr.N o.	Date of Sampling	Particulate Matter (PM10) μg/m³	Particulate Matter (PM 2.5) μg/m³	Sulphur Dioxide (SO2) µg/m³	Oxides of Nitrogen (NO2) µg/m³	Carbon Monoxide as CO mg/m³	Hydrocarbon as CH ₄ mg/m ³	Benzene as C ₆ H ₆ μg/m³
31	17/07/2018	54.45	22.84	10.29	26.56	0.24	BDL*	BDL*
32	20/07/2018	70.56	40.44	14.56	33.47	0.34	BDL*	BDL*
33	24/07/2018	69.30	29.53	13.86	30.85	0.71	BDL*	BDL*
34	27/07/2018	87.66	48.39	17.40	35.29	0.41	BDL*	BDL*
35	31/07/2018	73.52	44.56	9.60	25.23	0.70	BDL*	BDL*
36	03/08/2018	65.68	37.53	19.58	36.55	0.29	BDL*	BDL*
37	07/08/2018	81.86	34.24	12.61	39.20	0.37	BDL*	BDL*
38	10/08/2018	69.20	42.35	10.38	28.66	0.62	BDL*	BDL*
39	14/08/2018	77.54	40.19	14.58	37.64	0.45	BDL*	BDL*
40	17/08/2018	62.41	25.46	11.21	22.64	0.16	BDL*	BDL*
41	21/08/2018	86.18	35.41	17.21	32.43	0.53	BDL*	BDL*
42	24/08/2018	76.67	46.22	23.55	26.23	0.34	BDL*	BDL*
43	28/08/2018	89.70	50.72	13.68	38.52	0.63	BDL*	BDL*
44	31/08/2018	52.78	22.34	21.54	35.63	0.31	BDL*	BDL*
45	04/09/2018	86.36	34.53	25.64	44.64	0.48	BDL*	BDL*
46	07/09/2018	90.44	50.38	15.79	40.21	0.89	BDL*	BDL*
47	11/09/2018	58.65	24.67	13.63	26.75	0.44	BDL*	BDL*
48	14/09/2018	92.35	52.38	19.57	38.37	0.52	BDL*	BDL*
49	18/09/2018	83.59	36.24	16.33	41.20	0.63	BDL*	BDL*
50	21/09/2018	77.54	32.58	12.51	19.30	0.86	BDL*	BDL*
51	25/09/2018	84.20	48.30	14.54	36.84	0.42	BDL*	BDL*
52	28/09/2018	74.51	39.44	22.39	39.21	0.40	BDL*	BDL*
	TEST METHOD	IS:5182(Part 23):Gravimetric CPCB - Method (Vol.I,May-2011)	Gravimetric- CPCB - Method (Vol.I,May-2011)	IS:5182(Part II):Improved West and Gaeke	IS:5182(Part VI):Modified Jacob & Hochheiser (NaOH-NaAsO2)	NDIR Digital Gas Analyzer	SOP: HC: GC/GCMS/Gas analyzer	IS 5182 (Part XI):2006/CPCB Method

*Below detection limit

H. T. Shah

Lab Manager

herein

Dr. Arun Bajpai

Lab Manager (Q)

RESULT OF AMBIENT AIR QUALITY MONITORING

				NEAR FIRE S	TATION			
Sr. No.	Date of Sampling	Particulate Matter (PM10) µg/m³	Particulate Matter (PM 2.5) µg/m³	Sulphur Dioxide (SO2) µg/m³	Oxides of Nitrogen (NO2) µg/m³	Carbon Monoxide as CO mg/m³	Hydrocarbon as CH ₄ mg/m ³	Benzene as C ₆ H ₆ μg/m³
1	03/04/2018	93.48	52.41	9.76	36.68	0.63	BDL*	BDL*
2	06/04/2018	78.62	36.39	21.23	39.57	0.48	BDL*	BDL*
3	10/04/2018	81.61	46.33	19.09	31.53	0.44	BDL*	BDL*
4	13/04/2018	76.49	32.48	15.02	35.47	0.30	BDL*	BDL*
5	17/04/2018	60.41	28.57	24.51	25.47	0.38	BDL*	BDL*
6	20/04/2018	56.78	24.57	22.21	29.36	0.82	BDL*	BDL*
7	24/04/2018	94.52	54.69	12.46	26.20	0.46	BDL*	BDL*
8	27/04/2018	86.11	35.48	18.45	30.02	0.58	BDL*	BDL*
9	01/05/2018	66.87	20.46	23.71	22.79	0.37	BDL*	BDL*
10	04/05/2018	86.54	44.67	10.90	40.29	0.65	BDL*	BDL*
11	08/05/2018	76.49	33.36	16.62	25.41	0.56	BDL*	BDL*
12	11/05/2018	95.31	54.61	21.65	33.45	0.38	BDL*	BDL*
13	15/05/2018	82.58	34.56	13.25	30.27	0.29	BDL*	BDL*
14	18/05/2018	93.48	50.45	18.39	38.79	0.55	BDL*	BDL*
15	22/05/2018	79.66	46.75	20.73	23.56	0.79	BDL*	BDL*
16	25/05/2018	88.37	38.76	8.89	29.23	0.66	BDL*	BDL*
17	29/05/2018	70.46	35.44	19.29	34.54	0.47	BDL*	BDL*
18	01/06/2018	93.73	42.26	20.89	38.63	0.74	BDL*	BDL*
19	05/06/2018	82.40	45.71	18.23	28.44	0.34	BDL*	BDL*
20	08/06/2018	66.56	30.28	24.29	42.77	0.48	BDL*	BDL*
21	12/06/2018	86.78	46.71	22.90	40.27	0.60	BDL*	BDL*
22	15/06/2018	70.22	27.62	26.58	25.43	0.47	BDL*	BDL*
23	19/06/2018	92.51	51.20	19.85	35.34	1.00	BDL*	BDL*
24	22/06/2018	80.39	36.48	14.51	30.14	0.37	BDL*	BDL*
25	26/06/2018	75.46	44.25	11.25	39.47	0.85	BDL*	BDL*
26	29/06/2018	84.29	38.56	9.60	32.52	0.84	BDL*	BDL*
27	03/07/2018	77.65	40.64	19.61	35.63	0.42	BDL*	BDL*
28	06/07/2018	63.58	27.45	22.90	22.28	0.61	BDL*	BDL*
29	10/07/2018	83.56	49.83	10.56	36.75	0.50	BDL*	BDL*
30	13/07/2018	79.41	34.60	15.41	25.61	0.23	BDL*	BDL*

Continue ...

H. T. Shah

Lab Manager

Dr. Arun Bajpai

RESULT OF AMBIENT AIR QUALITY MONITORING

				NEAR FIRE ST	TATION			
Sr.N o.	Date of Sampling	Particulate Matter (PM10) µg/m³	Particulate Matter (PM 2.5) µg/m³	Sulphur Dioxide (SO2) µg/m³	Oxides of Nitrogen (NO2) µg/m³	Carbon Monoxide as CO mg/m³	Hydrocarbon as CH ₄ mg/m³	Benzene as C ₆ H ₆ µg/m³
31	17/07/2018	59.50	24.62	12.86	23.52	0.22	BDL*	BDL*
32	20/07/2018	85.02	47.62	8.72	30.30	0.56	BDL*	BDL*
33	24/07/2018	76.80	32.65	17.59	26.83	0.92	BDL*	BDL*
34	27/07/2018	82.89	42.59	20.26	32.54	0.25	BDL*	BDL*
35	31/07/2018	68.51	37.39	18.28	29.31	0.73	BDL*	BDL*
36	03/08/2018	80.94	46.83	14.31	33.27	0.50	BDL*	BDL*
37	07/08/2018	73.57	30.53	19.46	36.45	0.22	BDL*	BDL*
38	10/08/2018	90.50	50.41	22.56	31.86	0.71	BDL*	BDL*
39	14/08/2018	69.37	36.73	16.41	41.80	0.39	BDL*	BDL*
40	17/08/2018	67.36	28.53	13.31	26.59	0.32	BDL*	BDL*
41	21/08/2018	92.45	53.45	11.38	40.27	0.46	BDL*	BDL*
42	24/08/2018	71.56	41.55	15.29	29.21	0.21	BDL*	BDL*
43	28/08/2018	81.24	46.37	18.52	42.62	0.79	BDL*	BDL*
44	31/08/2018	59.32	25.66	24.81	32.78	0.54	BDL*	BDL*
45	04/09/2018	79.48	31.73	17.59	38.65	0.29	BDL*	BDL*
46	07/09/2018	84.59	45.58	21.23	34.25	1.13	BDL*	BDL*
47	11/09/2018	66.44	28.62	11.25	33.26	0.31	BDL*	BDL*
48	14/09/2018	87.64	48.62	13.32	30.27	0.79	BDL*	BDL*
49	18/09/2018	77.65	33.40	18.40	29.32	0.55	BDL*	BDL*
50	21/09/2018	91.29	38.72	23.40	37.20	1.00	BDL*	BDL*
51	25/09/2018	72.65	35.48	12.69	27.48	0.66	BDL*	BDL*
52	28/09/2018	89.28	50.24	16.45	35.74	0.45	BDL*	BDL*
	TEST METHOD	IS:5182(Part 23):Gravimetric CPCB - Method (Vol.I,May-2011)	Gravimetric- CPCB - Method (Vol.I,May-2011)	IS:5182(Part II):Improved West and Gaeke	IS:5182(Part VI):Modified Jacob & Hochheiser (NaOH-NaAsO2)	NDIR Digital Gas Analyzer	SOP: HC: GC/GCMS/Gas analyzer	IS 5182 (Part XI):2006/CPCB Method

*Below detection limit

H. T. Shah

Lab Manager

,

Dr. Arun Bajpai

Cleaner Production / Waste Minimization Facilitator

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

RESULT OF AMBIENT AIR QUALITY MONITORING

ADANI HOUSE Particulate Oxides of **Particulate** Sulphur Hydrocarbon Sr. Carbon Benzene as Date of Matter Matter (PM Dioxide Nitrogen No Monoxide as as CH₄ C₆H₆ Sampling (NO2) (PM10) 2.5) (SO2) CO mg/m³ mg/m³ μg/m³ <u>μg</u>/m³ μg/m³ μg/m³ μg/m³ 03/04/2018 80.60 43.76 15.82 39.57 0.42 BDL* BDL* 1 2 06/04/2018 29.34 BDL* 65.41 18.46 30.56 0.60 BDL* 0.80 BDL* 3 10/04/2018 79.39 36.72 11.31 26.63 BDL* 64.20 9.40 22.70 BDL* 13/04/2018 27.63 0.61 BDL* 4 17/04/2018 52.58 19.42 19.46 35.47 0.18 BDL* 5 BDL* 0.73 20/04/2018 72.47 41.56 10.42 34.71 BDL* BDL* 6 24/04/2018 82.72 46.72 16.70 31.53 0.29 BDL* BDL* 7 25.24 BDL* 8 27/04/2018 62.51 26.38 14.73 0.36 BDL* 9 01/05/2018 56.76 23.84 18.45 31.83 0.17 BDL* BDL* 80.78 37.72 27.63 0.27 BDL* 04/05/2018 15.64 BDL* 10 50.47 12.49 22.69 0.34 BDL* 11 08/05/2018 21.30 BDL* 44.55 7.34 25.74 0.77 BDL* 11/05/2018 79.33 BDL* 12 13 15/05/2018 60.45 25.63 9.78 19.63 0.58 BDL* BDL* 16.79 18/05/2018 76.37 30.71 33.65 0.53 BDL* BDL* 14 22/05/2018 55.37 33.42 11.85 30.58 0.70 BDL* BDL* 15 0.40 BDL* 25/05/2018 82.78 35.63 5.64 35.63 BDL* 16 26.70 29/05/2018 65.47 29.76 8.67 0.57 BDI* BDL* 17 01/06/2018 72.43 32.55 16.37 35.61 0.65 BDL* BDL* 18 05/06/2018 53.61 23.21 13.92 25.30 0.44 BDI* BDL* 19 39.22 21.57 0.96 BDL* 08/06/2018 60.81 8.69 BDL* 20 12/06/2018 75.64 42.55 11.53 31.21 0.41 BDL* BDL* 21 17.23 0.23 15/06/2018 64.26 24.55 36.57 BDL* BDL* 22 19/06/2018 81.63 46.26 9.53 19.63 0.87 BDL* BDL* 23 29.26 10.92 22.59 0.54 BDL* 22/06/2018 66.86 BDL* 24 25 26/06/2018 58.39 34.26 18.58 29.53 0.39 BDL* BDL* 70.50 26.26 6.58 39.55 BDL* BDL* 26 29/06/2018 0.46 03/07/2018 69.53 38.67 10.33 27.75 0.26 BDL* BDL* 27 28 06/07/2018 56.76 24.84 14.50 31.54 0.15 BDL* BDL* 77.58 25.33 10/07/2018 43.63 6.50 0.44 BDL* BDL* 29 12.64 13/07/2018 62.69 21.57 0.29 BDL* BDL* 31.34 30

Continue ...

H. T. Shah

Lab Manager

Dr. Arun Bajpai

RESULT OF AMBIENT AIR QUALITY MONITORING

				ADANI HO	USE			
Sr. No.	Date of Sampling	Particulate Matter (PM10) μg/m³	Particulate Matter (PM 2.5) µg/m³	Sulphur Dioxide (SO2) µg/m³	Oxides of Nitrogen (NO2) µg/m³	Carbon Monoxide as CO mg/m³	Hydrocarbon as CH ₄ mg/m ³	Benzene as C ₆ H ₆ µg/m³
31	17/07/2018	48.83	19.71	5.37	18.35	0.18	BDL*	BDL*
32	20/07/2018	65.84	37.30	11.58	28.55	0.31	BDL*	BDL*
33	24/07/2018	54.60	23.42	7.55	30.64	0.48	BDL*	BDL*
34	27/07/2018	76.79	45.76	9.63	38.46	0.58	BDL*	BDL*
35	31/07/2018	59.60	33.67	7.53	16.46	0.32	BDL*	BDL*
36	03/08/2018	59.72	33.21	12.68	29.51	0.33	BDL*	BDL*
37	07/08/2018	67.23	27.51	10.53	25.50	0.52	BDL*	BDL*
38	10/08/2018	76.85	45.43	8.40	18.80	0.27	BDL*	BDL*
39	14/08/2018	61.48	30.46	11.53	28.51	0.47	BDL*	BDL*
40	17/08/2018	55.67	22.46	6.86	16.27	0.30	BDL*	BDL*
41	21/08/2018	74.55	29.92	9.69	36.75	0.40	BDL*	BDL*
42	24/08/2018	65.84	37.67	13.51	27.59	0.26	BDL*	BDL*
43	28/08/2018	72.55	42.84	17.56	32.78	0.44	BDL*	BDL*
44	31/08/2018	48.35	18.55	16.57	21.58	0.13	BDL*	BDL*
45	04/09/2018	72.55	26.88	15.67	30.76	0.25	BDL*	BDL*
46	07/09/2018	65.72	39.34	12.61	22.39	0.62	BDL*	BDL*
47	11/09/2018	53.25	22.59	9.38	26.26	0.18	BDL*	BDL*
48	14/09/2018	76.43	43.47	10.54	29.63	0.74	BDL*	BDL*
49	18/09/2018	68.26	28.38	13.18	33.58	0.67	BDL*	BDL*
50	21/09/2018	88.29	35.72	16.54	20.52	0.52	BDL*	BDL*
51	25/09/2018	56.82	31.63	8.70	25.60	0.58	BDL*	BDL*
52	28/09/2018	63.29	36.55	14.69	23.63	0.34	BDL*	BDL*
	TEST METHOD	IS:5182(Part 23):Gravimetric CPCB - Method (Vol.I,May-2011)	Gravimetric- CPCB - Method (Vol.I,May-2011)	IS:5182(Part II):Improved West and Gaeke	IS:5182(Part VI):Modified Jacob & Hochheiser (NaOH-NaAsO2)	NDIR Digital Gas Analyzer	SOP: HC: GC/GCMS/Gas analyzer	IS 5182 (Part XI):2006/CPCB Method

^{*}Below detection limit

H. T. Shah

Lab Manager

here's

Dr. Arun Bajpai

RESULT OF AMBIENT AIR QUALITY MONITORING

				CT-3 DG H	OUSE			
Sr. No.	Date of Sampling	Particulate Matter (PM10) µg/m³	Particulate Matter (PM 2.5) µg/m³	Sulphur Dioxide (SO2) µg/m³	Oxides of Nitrogen (NO2) µg/m³	Carbon Monoxide as CO mg/m ³	Hydrocarbon as CH ₄ mg/m ³	Benzene as C ₆ H ₆ µg/m³
1	03/04/2018	73.62	38.56	18.87	42.57	0.33	BDL*	BDL*
2	06/04/2018	55.63	26.31	10.48	26.20	0.65	BDL*	BDL*
3	10/04/2018	70.39	40.61	12.86	37.52	0.22	BDL*	BDL*
4	13/04/2018	59.41	24.43	15.72	29.11	0.21	BDL*	BDL*
5	17/04/2018	45.63	18.65	17.64	30.02	0.24	BDL*	BDL*
6	20/04/2018	62.57	27.55	11.30	25.53	0.55	BDL*	BDL*
7	24/04/2018	67.59	43.46	9.77	22.74	0.41	BDL*	BDL*
8	27/04/2018	75.58	32.41	7.99	18.80	0.31	BDL*	BDL*
9	01/05/2018	50.63	17.61	15.42	26.61	0.23	BDL*	BDL*
10	04/05/2018	74.91	36.35	9.54	23.39	0.44	BDL*	BDL*
11	08/05/2018	56.36	25.76	6.85	16.60	0.50	BDL*	BDL*
12	11/05/2018	65.76	29.57	11.38	33.33	0.33	BDL*	BDL*
13	15/05/2018	59.35	20.33	14.13	24.76	0.19	BDL*	BDL*
14	18/05/2018	71.49	34.34	12.69	29.49	0.48	BDL*	BDL*
15	22/05/2018	69.35	40.24	10.68	20.63	0.64	BDL*	BDL*
16	25/05/2018	52.58	22.75	16.21	38.23	0.25	BDL*	BDL*
17	29/05/2018	60.08	33.67	5.20	19.78	0.63	BDL*	BDL*
18	01/06/2018	80.58	35.84	14.25	30.28	0.57	BDL*	BDL*
19	05/06/2018	63.44	27.56	7.67	18.68	0.76	BDL*	BDL*
20	08/06/2018	71.67	31.75	12.75	36.44	0.42	BDL*	BDL*
21	12/06/2018	67.34	37.85	15.48	22.64	0.81	BDL*	BDL*
22	15/06/2018	56.30	18.53	19.22	29.67	0.30	BDL*	BDL*
23	19/06/2018	75.76	42.62	11.66	26.49	0.94	BDL*	BDL*
24	22/06/2018	60.20	25.47	16.57	33.47	0.25	BDL*	BDL*
25	26/06/2018	50.32	29.45	10.74	25.81	0.55	BDL*	BDL*
26	29/06/2018	65.33	26.56	18.44	42.94	0.32	BDL*	BDL*
27	03/07/2018	62.71	34.38	13.68	32.68	0.47	BDL*	BDL*
28	06/07/2018	51.42	23.46	17.57	25.48	0.19	BDL*	BDL*
29	10/07/2018	73.69	40.40	19.24	29.53	0.39	BDL*	BDL*
30	13/07/2018	68.44	28.65	10.61	18.65	0.55	BDL*	BDL*

Lab Manager

Dr. Arun Bajpai

RESULT OF AMBIENT AIR QUALITY MONITORING

				CT-3 DG H	OUSE			
Sr. No.	Date of Sampling	Particulate Matter (PM10) μg/m³	Particulate Matter (PM 2.5) µg/m³	Sulphur Dioxide (SO2) µg/m³	Oxides of Nitrogen (NO2) µg/m³	Carbon Monoxide as CO mg/m³	Hydrocarbon as CH ₄ mg/m ³	Benzene as C ₆ H ₆ μg/m³
31	17/07/2018	42.70	16.48	8.32	21.33	0.14	BDL*	BDL*
32	20/07/2018	76.31	44.88	16.44	37.55	0.21	BDL*	BDL*
33	24/07/2018	59.60	20.82	9.41	22.42	0.64	BDL*	BDL*
34	27/07/2018	61.30	35.51	14.24	28.66	0.16	BDL*	BDL*
35	31/07/2018	55.45	29.36	11.46	20.20	0.63	BDL*	BDL*
36	03/08/2018	71.67	42.41	18.39	20.81	0.18	BDL*	BDL*
37	07/08/2018	56.42	24.55	16.45	34.48	0.25	BDL*	BDL*
38	10/08/2018	60.81	38.40	12.58	23.28	0.55	BDL*	BDL*
39	14/08/2018	53.68	26.81	7.66	31.69	0.41	BDL*	BDL*
40	17/08/2018	48.25	19.20	9.14	19.33	0.23	BDL*	BDL*
41	21/08/2018	68.44	29.40	13.37	28.74	0.36	BDL*	BDL*
42	24/08/2018	58.25	32.62	11.70	21.86	0.48	BDL*	BDL*
43	28/08/2018	70.27	37.81	15.72	25.86	0.56	BDL*	BDL*
44	31/08/2018	42.70	16.35	19.23	29.51	0.17	BDL*	BDL*
45	04/09/2018	66.67	23.42	19.39	24.75	0.68	BDL*	BDL*
46	07/09/2018	80.27	41.62	13.53	28.35	0.82	BDL*	BDL*
47	11/09/2018	48.74	19.24	6.81	32.82	0.25	BDL*	BDL*
48	14/09/2018	63.44	35.64	17.31	35.61	0.36	BDL*	BDL*
49	18/09/2018	58.31	25.60	10.39	38.19	0.60	BDL*	BDL*
50	21/09/2018	67.22	28.44	14.35	26.44	0.81	BDL*	BDL*
51	25/09/2018	77.47	45.63	7.34	20.35	0.52	BDL*	BDL*
52	28/09/2018	52.46	30.66	12.30	19.49	0.27	BDL*	BDL*
	TEST METHOD	IS:5182(Part 23):Gravimetric CPCB - Method (Vol.I,May-2011)	Gravimetric- CPCB - Method (Vol.I,May-2011)	IS:5182(Part II):Improved West and Gaeke	IS:5182(Part VI):Modified Jacob & Hochheiser (NaOH-NaAsO2)	NDIR Digital Gas Analyzer	SOP: HC: GC/GCMS/Gas analyzer	IS 5182 (Part XI):2006/CPCB Method

^{*}Below detection limit

Lab Manager

here's

Dr. Arun Bajpai

Lab Manager (Q)

RESULTS OF NOISE LEVEL MONITORING

Result of Noise level monitoring [Day Time]

	Name of Leasting		T1	TERMINAL NR.	MARINE BUILDIN	IG				
SR. NO.	Name of Location	Result [Leq dB(A)]								
110.	Sampling Date & Time	03/04/2018	25/05/2018	19/06/2018	06/07/2018	07/08/2018	07/09/2018			
1	6:00-7:00	68.4	65.4	66.1	65.8	64.2	68.3			
2	7:00-8:00	65.2	60.1	62.1	69.4	62.3	64.4			
3	8:00-9:00	66.8	73.1	60.7	61.4	66.8	62.4			
4	9:00-10:00	70.2	70.4	69.1	62.5	69.4	68.4			
5	10:00-11:00	62.8	69.4	73.4	68.4	71.5	64.4			
6	11:00-12:00	68.3	68.1	74.1	65.2	63.1	64.2			
7	12:00-13:00	63.7	70.1	69.1	60.4	62.5	68.5			
8	13:00-14:00	62.9	68.4	70.2	67.4	65.8	68.4			
9	14:00-15:00	68.5	66.2	68.1	63.4	68.4	68.9			
10	15:00-16:00	65.1	65.2	65.1	62.4	61.2	72.5			
11	16:00-17:00	70.3	61.8	60.4	68.1	63.4	65.3			
12	17:00-18:00	71.8	69.4	69.2	61.4	64.1	63.9			
13	18:00-19:00	69.4	72.1	70.1	60.8	68.1	66.8			
14	19:00-20:00	62.8	71.4	63.1	69.4	60.2	65.4			
15	20:00-21:00	65.1	69.8	62.5	70.6	62.9	68.3			
16	21:00-22:00	62.5	66.1	61.4	72.4	65.3	67.3			
	Day Time Limit*			75 Lec	վ dB(A)					

Result of Noise level monitoring [Night Time]

SR.	Name of Location	T1 TERMINAL NR.MARINE BUILDING								
NO.	Name of Location	Result [Leq dB(A)]								
1	Sampling Date & Time	03/04/2018	25/05/2018	19/06/2018	06/07/2018	07/08/2018	07/09/2018			
2	22:00-23:00	67.2	62.4	68.4	63.2	65.1	68.4			
3	23:00-00:00	65.1	65.1	65.1	65.4	62.7	65.5			
4	00:00-01:00	63.4	61.4	62.4	67.8	66.4	62.4			
5	01:00-02:00	61.7	68.4	66.8	62.1	66.9	63.1			
6	02:00-03:00	66.2	63.4	62.5	64.2	60.1	61.4			
7	03:00-04:00	62.8	60.4	65.4	64.2	62.4	68.4			
8	04:00-05:00	66.2	62.7	63.4	68.3	62.8	64.2			
9	05:00-06:00	68.4	60.2	60.4	65.2	63.7	63.1			
	Night Time Limit*			70 Le	q dB(A)					

H. T. Shah

Lab Manager

hersen

Dr. Arun Bajpai

Lab Manager (Q)

RESULTS OF NOISE LEVEL MONITORING

Result of Noise level monitoring [Day Time]

	Name of Location			NEAR FIRE	STATION					
SR. NO.	Name of Location	Result [Leq dB(A)]								
1101	Sampling Date & Time	06/04/2018	11/05/2018	22/06/2018	13/07/2018	17/08/2018	14/09/2018			
1	6:00-7:00	65.1	68.4	68.4	68.4	62.5	65.4			
2	7:00-8:00	62.8	64.1	65.1	62.1	68.4	66.3			
3	8:00-9:00	63.1	60.1	62.1	65.4	72.4	66.9			
4	9:00-10:00	70.4	62.8	63.4	73.1	74.1	67.4			
5	10:00-11:00	72.1	70.4	68.4	64.1	70.4	63.2			
6	11:00-12:00	69.9	73.4	65.1	68.1	69.9	62.4			
7	12:00-13:00	68.1	65.1	63.1	62.4	63.4	67.4			
8	13:00-14:00	62.4	69.4	60.4	68.4	60.4	65.3			
9	14:00-15:00	63.4	65.4	60.9	62.4	62.4	62.5			
10	15:00-16:00	61.8	66.1	68.4	69.4	64.5	68.4			
11	16:00-17:00	60.4	66.8	62.1	61.4	65.1	68.3			
12	17:00-18:00	62.4	63.1	63.4	60.4	63.4	68.7			
13	18:00-19:00	68.1	61.4	68.1	62.7	62.5	64.3			
14	19:00-20:00	68.4	65.1	67.1	68.4	63.4	62.7			
15	20:00-21:00	65.2	62.8	62.1	64.3	65.2	65.8			
16	21:00-22:00	62.8	65.2	60.5	61.5	66.8	63.5			
	Day Time Limit*			75 Lec	dB(A)					

Result of Noise level monitoring [Night Time]

SR.	Name of Location		NEAR FIRE STATION								
NO.	Name of Location	Result [Leq dB(A)]									
1	Sampling Date & Time	06/04/2018	11/05/2018	22/06/2018	13/07/2018	17/08/2018	14/09/2018				
2	22:00-23:00	68.4	68.4	62.4	67.4	64.1	65.1				
3	23:00-00:00	63.1	65.3	60.7	69.3	63.4	62.4				
4	00:00-01:00	60.4	61.5	61.4	66.3	62.1	67.2				
5	01:00-02:00	65.4	62.9	59.4	62.1	60.4	63.4				
6	02:00-03:00	62.4	68.7	54.7	66.2	68.4	60.5				
7	03:00-04:00	67.1	63.1	62.1	63.2	63.4	68.4				
8	04:00-05:00	66.1	62.8	63.1	67.3	65.4	65.2				
9	05:00-06:00	62.4	63.8	62.8	69.6	67.1	62.1				
	Night Time Limit*			70 Lec	q dB(A)						

H. T. Shah

Lab Manager

-

Dr. Arun Bajpai

RESULTS OF NOISE LEVEL MONITORING

Result of Noise level monitoring [Day Time]

	Name of Location			ADANI	HOUSE					
SR. NO.	Name of Location	Result [Leq dB(A)]								
110.	Sampling Date & Time	10/04/2018	01/05/2018	15/06/2018	17/07/2018	21/08/2018	04/09/2018			
1	6:00-7:00	63.1	60.1	66.1	62.4	58.4	64.3			
2	7:00-8:00	60.4	63.4	65.7	56.1	63.1	68.8			
3	8:00-9:00	69.1	68.4	68.1	63.1	61.5	65.7			
4	9:00-10:00	72.4	62.1	62.1	61.8	62.5	70.1			
5	10:00-11:00	70.1	68.7	63.4	68.4	69.4	72.4			
6	11:00-12:00	65.1	70.5	65.1	70.4	72.1	63.4			
7	12:00-13:00	68	63.4	68.1	71.8	70.1	60.4			
8	13:00-14:00	67.2	68.1	70.1	68.8	68.4	67.9			
9	14:00-15:00	62.4	68.5	70.6	66.1	65.4	67.5			
10	15:00-16:00	62.4	66.4	69.4	69.4	60.4	62.4			
11	16:00-17:00	65.3	62.1	65.1	62.5	68.5	70.3			
12	17:00-18:00	68.1	69.4	62.1	63.4	65.2	71.9			
13	18:00-19:00	63.4	64.2	60.4	60.4	64.8	68.8			
14	19:00-20:00	65.1	62.9	64.1	65.4	63.1	62.1			
15	20:00-21:00	62.5	63.4	70.1	68.1	61.4	60.1			
16	21:00-22:00	63.1	61.8	68.1	66.8	62.8	64.1			
	Day Time Limit*			75 Lec	ղ dB(A)					

Result of Noise level monitoring [Night Time]

SR.	Name of Location			ADANI	HOUSE					
NO.	Name of Location	Result [Leq dB(A)]								
1	Sampling Date & Time	10/04/2018	01/05/2018	15/06/2018	17/07/2018	21/08/2018	04/09/2018			
2	22:00-23:00	65.1	62.4	68.4	67.3	60.4	68.4			
3	23:00-00:00	68.4	66.2	65.1	59.5	65.1	64.2			
4	00:00-01:00	68.2	66.8	60.4	63.1	65.4	62.1			
5	01:00-02:00	65.4	63.4	62.4	61.0	61.8	62.1			
6	02:00-03:00	62.4	61.5	58.1	61.3	63.4	60.4			
7	03:00-04:00	66.1	65.9	60.8	63.4	62.4	64.8			
8	04:00-05:00	60.4	67.1	60.7	68.3	65.7	63.1			
9	05:00-06:00	63.1	65.6	61.8	66.2	67.1	61.7			
	Night Time Limit*			70 Le	q dB(A)					

H. T. Shah

Lab Manager

homen

Dr. Arun Bajpai

Lab Manager (Q)

RESULTS OF NOISE LEVEL MONITORING

Result of Noise level monitoring [Day Time]

	Name of Location			CT-3 DG	HOUSE		
SR. NO.	Name of Location			Result [L	eq dB(A)]		
110.	Sampling Date & Time	17/04/2018	15/05/2018	05/06/2018	24/07/2018	24/08/2018	04/09/2018
1	6:00-7:00	62.7	62.4	59.4	65.3	60.1	56.3
2	7:00-8:00	65.2	65.4	62.1	67.2	63.5	60.4
3	8:00-9:00	61.4	61.4	60.4	70.2	69.5	59.4
4	9:00-10:00	60.8	68.4	65.8	66.4	62.4	62.6
5	10:00-11:00	65.2	62.4	63.4	62.6	62.8	65.4
6	11:00-12:00	63.1	61.7	69.5	60.3	68.1	68.4
7	12:00-13:00	61.8	68.4	62.4	65.2	61.4	68.9
8	13:00-14:00	65.9	64.1	65.7	68.3	64.3	67.3
9	14:00-15:00	68.2	62.4	63.1	66.4	63.5	65.5
10	15:00-16:00	67.4	69.4	60.1	61.4	60.8	62.3
11	16:00-17:00	64.3	65.1	62.4	65.2	65.5	65.3
12	17:00-18:00	63.5	61.8	68.4	68.3	69.2	64.2
13	18:00-19:00	65.5	66.1	63.4	66.2	62.1	62.3
14	19:00-20:00	66.1	62.4	67.1	72.6	61.4	65.4
15	20:00-21:00	61.4	69.1	62.8	70.2	65.6	61.3
16	21:00-22:00	65.2	65.2	63.4	69.3	63.8	66.2
	Day Time Limit*			75 Lec	ղ dB(A)		

Result of Noise level monitoring [Night Time]

SR.	Name of Location		CT-3 DG HOUSE								
NO.	Name of Location	Result [Leq dB(A)]									
1	Sampling Date & Time	17/04/2018	15/05/2018	05/06/2018	24/07/2018	24/08/2018	04/09/2018				
2	22:00-23:00	63.4	65.4	65.1	64.2	61.4	60.4				
3	23:00-00:00	59.4	62.4	60.4	69.3	62.8	62.4				
4	00:00-01:00	60.4	68.4	62.1	67.3	65.1	60.4				
5	01:00-02:00	62.1	62.7	58.7	65.3	63.4	65.2				
6	02:00-03:00	60.4	59.1	55.1	69.2	59.4	63.1				
7	03:00-04:00	60.7	59.7	62.4	64.3	60.4	64.5				
8	04:00-05:00	62.5	63.1	60.4	60.3	60.8	68.4				
9	05:00-06:00	64.7	60.4	59.4	63.1	62.4	62.1				
	Night Time Limit*			70 Le	q dB(A)						

H. T. Shah

Lab Manager

homen

Dr. Arun Bajpai

Lab Manager (Q)

RESULT OF STACK MONITORING

SR								
NO	TEST PARAMETERS	UNIT	STD. LIMIT	THERMIC FLUID HEATER (BITUMEN-01)	THERMIC FLUID HEATER (BITUMEN-02)	HOT WATER SYSTEM-1	HOT WATER SYSTEM-2	TEST METHOD
					APRIL	2018		
1	Particulate Matter	mg/Nm ³	150	14.83	12.75	24.61	19.57	IS:11255 (Part-I):1985
2	Sulfur dioxide	ppm	100	3.55	2.92	6.61	5.36	IS:11255 (Part-II):1985
3	Oxides of Nitrogen	ppm	50	24.31	21.82	34.07	32.29	IS:11255 (Part- VII):2005
					MAY			
1	Particulate Matter	mg/Nm ³	150	21.72	19.54	32.65	26.36	IS:11255 (Part-I):1985
2	Sulfur dioxide	ppm	100	4.84	3.61	8.48	6.56	IS:11255 (Part-II):1985
3	Oxides of Nitrogen	ppm	50	29.41	25.72	39.38	35.47	IS:11255 (Part- VII):2005
					JUNE	2018		
1	Particulate Matter	mg/Nm ³	150	23.82		27.52	16.57	IS:11255 (Part-I):1985
2	Sulfur dioxide	ppm	100	3.46		6.76	4.39	IS:11255 (Part-II):1985
3	Oxides of Nitrogen	ppm	50	26.71		33.81	30.32	IS:11255 (Part- VII):2005
					JULY	2018		
1	Particulate Matter	mg/Nm ³	150		13.80	23.54		IS:11255 (Part-I):1985
2	Sulfur dioxide	ppm	100		2.84	4.76		IS:11255 (Part-II):1985
3	Oxides of Nitrogen	ppm	50		29.37	36.71		IS:11255 (Part- VII):2005
					AUGUS	T 2018		
1	Particulate Matter	mg/Nm ³	150	18.75	22.39	28.40		IS:11255 (Part-I):1985
2	Sulfur dioxide	ppm	100	2.84	3.43	6.44		IS:11255 (Part-II):1985
3	Oxides of Nitrogen	ppm	50	21.86	24.62	39.61		IS:11255 (Part- VII):2005
					SEPTEMB	SER 2018		
1	Particulate Matter	mg/Nm ³	150	14.45		17.51	12.63	IS:11255 (Part-I):1985
2	Sulfur dioxide	ppm	100	3.78		4.71	6.69	IS:11255 (Part-II):1985
3	Oxides of Nitrogen	ppm	50	26.86		35.64	37.49	IS:11255 (Part- VII):2005

*Below detection limit

Results on 11 % O₂ Correction when Oxygen is greater than 11 %. And 12% CO₂ correction when CO₂ is less than 12%

Lab Manager

Lessin

Dr. Arun Bajpai

RESULTS OF D.G. STACK MONITORING

				14/06/2018			
SR.	T-07 DADAMETEDS		South	Basin CT-3 DG	STACK		
NO.	TEST PARAMETERS	Unit —	D.G. Set-1* (1500 KVA)	D.G. Set-2* (1500 KVA)	D.G. Set-3* (1500 KVA)	 Test Method 	
1	Particulate Matter	mg/Nm ³	25.71	18.35	14.83	IS:11255 (Part-I):1985	
2	Sulphur Dioxide	ppm	5.72	6.60	3.52	IS:11255 (Part-II):1985	
3	Oxide of Nitrogen	ppm	29.66	33.40	38.57	IS:11255 (Part-VII):2005	
4	Carbon Monoxide	mg/m3	11.45	BDL*	BDL*	Digital Gas Analyzer	
5	Hydro Carbon NMHC	ppm	BDL*	BDL*	BDL*	Gas Chromatography	

^{*}DG sets are used as standby, so stack monitoring is done on quarterly basis. Results on 15 % O2 Correction when Oxygen is greater than 15 %

			05/07/2018		14/06/2018		
SR.	TEST	Unit —	South Basin		Adani Port CT-4 DG STACK	Tost Mothed	
NO.	PARAMETERS	Onic —	D.G. Set-2* (1500 KVA)	D.G. Set-1* (1500 KVA)	D.G. Set-1* (1500 KVA)	 Test Method 	
1	Particulate Matter	mg/Nm ³	25.72	23.71	23.71	IS:11255 (Part-I):1985	
2	Sulphur Dioxide	ppm	5.65	5.38	5.38	IS:11255 (Part-II):1985	
3	Oxide of Nitrogen	ppm	39.56	30.71	30.71	IS:11255 (Part-VII):2005	
4	Carbon Monoxide	mg/m3	BDL*	BDL*	BDL*	Digital Gas Analyzer	
5	Hydro Carbon NMHC	ppm	BDL*	BDL*	BDL*	Gas Chromatography	

^{*}DG sets are used as standby, so stack monitoring is done on quarterly basis. Results on 15 % O2 Correction when Oxygen is greater than 15 %

H. T. Shah

Lab Manager

hersen

Dr. Arun Bajpai

				16/08/2018			
SR.			Adan				
NO.	TEST PARAMETERS	Unit —	D.G. Set-3* (500 KVA)	D.G. Set-4* (500 KVA)	D.G. Set-5* (500 KVA)	Test Method	
1	Particulate Matter	mg/Nm ³	14.56	12.34	10.43	IS:11255 (Part-I):1985	
2	Sulphur Dioxide	ppm	5.65	6.83	4.16	IS:11255 (Part-II):1985	
3	Oxide of Nitrogen	ppm	32.76	33.62	36.85	IS:11255 (Part-VII):2005	
4	Carbon Monoxide	mg/m3	5.2	8.4	3.7	Digital Gas Analyzer	
5	Hydro Carbon NMHC	ppm	BDL*	BDL*	BDL*	Gas Chromatography	

^{*}DG sets are used as standby, so stack monitoring is done on quarterly basis. Results on 15 % O2 Correction when Oxygen is greater than 15 %

	16/08/2018					
SR.	TEGT DAD AMETEDS		Adani Mundra Port			
NO.	TEST PARAMETERS	Unit —	D.G. Set-1* (500 KVA)	D.G. Set-2* (500 KVA)	 Test Method 	
1	Particulate Matter	mg/Nm³	12.83	16.76	IS:11255 (Part-I):1985	
2	Sulphur Dioxide	ppm	3.91	4.63	IS:11255 (Part-II):1985	
3	Oxide of Nitrogen	ppm	28.43	36.56	IS:11255 (Part-VII):2005	
4	Carbon Monoxide	mg/m3	6.4	4.1	Digital Gas Analyzer	
5	Hydro Carbon NMHC	ppm	BDL*	BDL*	Gas Chromatography	

^{*}DG sets are used as standby, so stack monitoring is done on quarterly basis. Results on 15 % O2 Correction when Oxygen is greater than 15 %

H. T. Shah

Lab Manager

herein

Dr. Arun Bajpai

			16/08/2018	
SR.	TEGT DAD AMETEDS		Adani Port	
NO.	TEST PARAMETERS	Unit —	D.G. Set-6, 7 & 8 (1250 KVA, each)	Test Method
1	Particulate Matter	mg/Nm³	19.61	IS:11255 (Part-I):1985
2	Sulphur Dioxide	ppm	4.46	IS:11255 (Part-II):1985
3	Oxide of Nitrogen	ppm	30.74	IS:11255 (Part-VII):2005
4	Carbon Monoxide	mg/m3	2.5	Digital Gas Analyzer
5	Hydro Carbon NMHC	ppm	BDL*	Gas Chromatography

^{*}DG sets are used as standby, so stack monitoring is done on quarterly basis. Results on 15 % O2 Correction when Oxygen is greater than 15 %

H. T. Shah

Lab Manager

home

Dr. Arun Bajpai

Lab Manager (Q)

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

Minimum Detection Limit [MDL]

Ambient Air Parameters						
Sr. No.	Test Parameter	MDL				
1	Particulate Matter (PM10) (μg/m³)	10				
2	Particulate Matter (PM 2.5) (μg/m³)	10				
3	Sulphur Dioxide (SO ₂) (μg/m ³)	5				
4	Oxides of Nitrogen (µg/m³)	5				
5	Hydrogen Sulphide as H2S (µg/m³)	6				

Stack Parameters						
Sr.No.	Test Parameter	MDL				
1	Particulate Matter (mg/Nm³)	10				
2	Sulphur Dioxide (ppm)	1.52				
3	Oxides of Nitrogen (ppm)	2.65				
4	Carbon Monoxide (mg/Nm³)	0.1				
5	Haydro Carbon NMHC (ppm)	1.0				

Sea Water Parameters								
SR. NO.	TEST PARAMETERS	UNIT	MDL					
1	pH		2					
2	Temperature	°C	2					
3	Total Suspended Solids	mg/L	2					
4	BOD (3 Days @ 27 °C)	mg/L	1					
5	Dissolved Oxygen	mg/L	0.1					
6	Salinity	ppt	1					
7	Oil & Grease	mg/L	2					
8	Nitrate as NO ₃	μmol/L	0.5					
9	Nitrite as NO ₂	μmol/L	0.01					
10	Ammonical Nitrogen as NH ₃	μmol/L	0.2					
11	Phosphates as PO ₄	μmol/L	0.5					
12	Petroleum Hydrocarbon	μg/L	1					
13	Total Dissolved Solids	mg/L	10					
14	COD	mg/L	3					
15	Primary productivity	mgC/L/day	0.1					
16	Chlorophyll	mg/m³	0.1					
17	Phaeophytin	mg/m³	0.1					
18	Cell Count	No. x 10 ³ /L	1					

Sea Sediment Parameters								
SR. NO.	TEST PARAMETERS	UNIT	MDL					
1	Organic Matter	%	0.1					
2	Phosphorus as P	μg/g	1					
3	Petroleum Hydrocarbon	μg/g	1					
4	Aluminum as Al	%	0.1					
5	Manganese as Mn	μg/g	1					
6	Mercury as Hg	μg/g	0.1					

H. T. Shah

Lab Manager

home

Dr. Arun Bajpai

Lab Manager (Q)

	STP Water parameter(mg/L)					
Sr. No.	Test parameter	MDL				
1	pH	2				
2	Total Suspended Solids (mg/L)	2				
3	BOD (3 days @ 270 C) (mg/L)	1				
4	Residual Chlorine (mg/L)	0.2				
5	Fecal Coliform (MPN INDEX/100 mL)	1.8				

ETP Water Parameters							
SR. NO.	TEST PARAMETERS	UNIT	MDL				
1	Colour	Co-pt	2				
2	pH		2				
3	Temperature	°C	2				
4	Total Suspended Solids	mg/L	2				
5	Total Dissolved Solids	mg/L	10				
6	COD	mg/L	3				
7	BOD (3 Days @ 27 °C)	mg/L	1				
8	Chloride as Cl	mg/L	1				
9	Oil & Grease	mg/L	2				
10	Sulphate as SO ₄	mg/L	1				
11	Ammonical Nitrogen as NH ₃	mg/L	0.2				
12	Phenolic Compound	mg/L	0.005				
13	Copper as Cu	mg/L	0.01				
14	Lead as Pb	mg/L	0.01				
15	Sulphide as S	mg/L	0.1				
16	Cadmium as Cd	mg/L	0.002				
17	Fluoride as F	mg/L	0.05				

Lab Manager

H. T. Shah

home

Dr. Arun Bajpai

Cleaner Floduction / Waste Williamization Fachitator

Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

"HALF YEARLY ENVIRONMENTAL MONITORING REPORT"

FOR

ADANI PORTS AND SPECIAL ECONOMIC ZONE LIMITED TAL: MUNDRA, KUTCH, MUNDRA – 370 421 BORE HOLE WATER

MONITORING PERIOD: APRIL 2018 TO SEPTEMBER 2018

PREPARED BY:

POLLUCON LABORATORIES PVT.LTD.

PLOT NO.5/6 "POLLUCON HOUSE", OPP. BALAJI INDUSTRIAL SOCIETY, OLD SHANTINATH SILK MILL LANE, NEAR GAYTRI FARSAN MART, NAVJIVAN CIRCLE, UDHANA MAGDALLA ROAD, SURAT-395007. PHONE/FAX – (+91 261) 2455 751, 2601 106, 2601 224.

E-mail: pollucon@gmail.com

Web: www.polluconlab.com

TC - 5945

ISO 9001:2015

ISO 14001:2015

OHSAS 18001:2007

SR.	R. TEST UNIT				RESU	JLTS			
NO	PARAMETERS	UNII	РИМР Н	IOUSE-2	PUMP HOUSE-1		PUMP H		
	GPS Location		N 22° 44.554′	E 069° 41.453′	N 22° 44.554′	E 069° 41.453′	N 22° 44.554′ E 069° 41.453′		TEST METHOD
	Sampling Date		20/04/2018	16/08/2018	20/04/2018	16/08/2018	20/04/2018	16/08/2018	
	Sampling Time		12:00	11:30	12:20	11:50	12:45	12:20	
1	рН		7.74	7.64	7.46	7.56	7.72	7.58	IS3025(P11)83Re.02
2	Salinity	ppt	1.26	7.2	9.92	11	7.7	6.4	APHA 2520B
3	Oil & Grease	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	APHA(22ndEdi)5520D
4	Hydrocarbon	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	GC/GC-MS
5	Lead as Pb	mg/L	BDL*	0.018	0.049	0.03	0.24	0.16	AAS APHA(22ndEdi)3111 B
6	Arsenic as As	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA 3114 B
7	Nickel as Ni	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA(22ndEdi)3111 B
8	Total Chromium as Cr	mg/L	BDL*	BDL*	BDL*	BDL*	0.041	BDL*	AAS 3111B
9	Cadmium as Cd	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA(22ndEdi)3111 B
10	Mercury as Hg	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA- 3112 B
11	Zinc as Zn	mg/L	BDL*	BDL*	0.46	0.4	BDL*	BDL*	AAS APHA(22ndEdi)3111 B
12	Copper as Cu	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	AAS APHA(22ndEdi)3111 B
13	Iron as Fe	mg/L	0.95	0.7	0.75	0.45	0.82	0.59	AAS APHA(22ndEdi)3111 B
14	Insecticides/Pestic ides	mg/L	Absent	Absent	Absent	Absent	Absent	Absent	GC/GC-MS
15	Depth of Water Level from Ground Level	meter	2.4	2	2.5	2.2	2.6	2.4	

- O-D

H. T. Shah

Lab Manager

Lossin

Dr. Arun Bajpai

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

			R	ESULTS		
SR. NO	TEST PARAMETERS	UNIT	Tank No. 40	NEAR ET	P OFFICE	
	GPS Location			N 22° 44.549′	E 069° 41.464′	TEST METHOD
	Sampling Date	Sampling Date		20/04/2018	16/08/2018	
	Sampling Time		12:45	11:30	11:05	
1	pH		7.94	7.83	7.49	IS3025(P11)83Re.02
2	Salinity	ppt	0.69	8.48	11	APHA 2520B
3	Oil & Grease	mg/L	BDL*	2.1	3.1	APHA(22ndEdi)5520D
4	Hydrocarbon	mg/L	BDL*	BDL*	BDL*	GC/GC-MS
5	Lead as Pb	mg/L	BDL*	0.042	0.03	AAS APHA(22ndEdi)3111 B
6	Arsenic as As	mg/L	BDL*	BDL*	BDL*	AAS APHA 3114 B
7	Nickel as Ni	mg/L	BDL*	0.12	BDL*	AAS APHA(22ndEdi)3111 B
8	Total Chromium as Cr	mg/L	0.08	BDL*	BDL*	AAS 3111B
9	Cadmium as Cd	mg/L	BDL*	BDL*	BDL*	AAS APHA(22ndEdi)3111 B
10	Mercury as Hg	mg/L	BDL*	BDL*	BDL*	AAS APHA- 3112 B
11	Zinc as Zn	mg/L	BDL*	0.072	BDL*	AAS APHA(22ndEdi)3111 B
12	Copper as Cu	mg/L	BDL*	0.07	BDL*	AAS APHA(22ndEdi)3111 B
13	Iron as Fe	mg/L	BDL*	0.28	0.42	AAS APHA(22ndEdi)3111 B
14	Insecticides/Pesticides	mg/L	Absent	Absent	Absent	GC/GC-MS
15	Depth of Water Level from Ground Level	meter	3	2.8	2.6	

- WI-D

H. T. Shah

Lab Manager

Lessin

Dr. Arun Bajpai

Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

	Borehole Water Parameters				
SR. NO.	TEST PARAMETERS	UNIT	MDL		
1	pH		2		
2	Salinity	mg/L	0.5		
3	Oil & Grease	mg/L	2		
4	Hydrocarbon	mg/L	0.01		
5	Lead as Pb	mg/L	0.01		
6	Arsenic as As	mg/L	0.001		
7	Nickel as Ni	mg/L	0.02		
8	Total Chromium as Cr	mg/L	0.025		
9	Cadmium as Cd	mg/L	0.002		
10	Mercury as Hg	mg/L	0.005		
11	Zinc as Zn	mg/L	0.06		
12	Copper as Cu	mg/L	0.01		
13	Iron as Fe	mg/L	0.1		
14	Insecticides/Pesticides	mg/L	0.1		

H. T. Shah

Lab Manager

Dr. Arun Bajpai

National Accreditation Board for Testing and Calibration Laboratories

(A Constituent Board of Quality Council of India)

CERTIFICATE OF ACCREDITATION

POLLUCON LABORATORIES PVT. LTD.

has been assessed and accredited in accordance with the standard

ISO/IEC 17025:2005

"General Requirements for the Competence of Testing & Calibration Laboratories"

for its facilities at

5/6 "Pollucon House", Old Shantinath Mill Lane, Navjivan Circle, Udhana Magdalla Road, Surat, Gujarat

in the field of

TESTING

Certificate Number

TC-5945 (In lieu of T-0821 & T-0820)

Issue Date

28/05/2017

Valid Until

27/05/2019

This certificate remains valid for the Scope of Accreditation as specified in the annexure subject to continued satisfactory compliance to the above standard & the relevant requirements of NABL.

(To see the scope of accreditation of this laboratory, you may also visit NABL website www.nabl-india.org)

Signed for and on behalf of NABL

N. Venkateswaran Program Director Anil Relia Chief Executive Officer

असाधारण

EXTRAORDINARY

भाग II-खण्ड 3-उप-खण्ड (ii)

PART II-Section 3-Sub-section (ii)

प्राधिकार से प्रकाशित

PUBLISHED BY AUTHORITY

सं. 1357] No. 1357] नई दिल्ली, शुक्रवार, जून 3, 2016/ज्येष्ठ 13, 1938

NEW DELHI, FRIDAY, JUNE 3, 2016/JYAISTHA 13, 1938

पर्यावरण, वन एवं जलवायु परिवर्तन मंत्रालय

अधिसूचना

नई दिल्ली, 2 जून, 2016

का.आ. 1953(अ).—केन्द्रीय सरकार के साथ पठित पर्यावरण (संरक्षण) नियम, 1986 के नियम 10 पर्यावरण (संरक्षण) अधिनियम, 1986 (1986 का 29) की धारा 12 की उपधारा (1) के खंड (ख) और धारा 13 द्वारा प्रदत्त शक्तियों का प्रयोग करते हुए और भारत सरकार के तत्कालीन पर्यावरण और वन मंत्रालय की अधिसूचना सं. का.आ. 1174(अ), तारीख 18 जुलाई, 2007 में निम्नलिखित संशोधन और करती है, अर्थात् :—

उक्त अधिसूचना मं सलंन तालिका में,-

(क) क्रम संख्यांक 5, 9,13 से 15, 20, 79, 80 और 83 से 85 तथा उससे संबंधित प्रविष्टयों के स्थान पर निम्नलिखित क्रमशः क्रम संख्यांक और प्रविष्टियां रखी जाएंगी, अर्थात :—

(1)	. (2)	(3)	(4)
" 5	मैसर्स विमता लैबस लिमिटेड 142 आई डी ए, फेस – 2, चेरालापलई, हैदराबाद, आध्रांप्रदेश-500051	(1) डा. सुब्बा रेड्डी मालामपति, (2) श्री एस वी श्रीनिवास रेड्डी, (3) श्री अरनूरी चन्ना रमेश कुमार	02.06.2016 से 01.06.2021
14	मैसर्स अश्वमेध इंजीनियर्स एंड कंसलटैंट, सर्वे न. 102, प्लाट सं. 26, वडाला पार्थाडी रोड, इंदिरा नगर, नासिक, महाराष्ट्र – 422009	(1) सुश्री अर्पणा सुनील फारंडे, (2) सुश्री शाह शुभांगी प्रकाश कांबले (3) श्री निनांद अरविंद साउदानकर	02.06.2016 से 01.06.2021
20	मैंसर्स पोलूकोन लेबोरटरीस प्रा. लि., 544, बेलिजयम टावर्स, रिंग रोड, लिनियर बस स्टैंड के पीछे, सूरत, गुजरात-395006	(1) डा. अरुण कुमार बाजपेई (2) श्री देवांग मधुकर गांधी (3) श्री हर्शल मधुकर गांधी	02.06.2016 से 01.06.2021
84	मैसर्स डेटाक्स कोरपोरेशन प्रा. लि., 3 तल, के जी चैंबरस, गुजरात समाचार प्रेस के पीछे, रिंग रोड, सूरत, गुजरात - 395002	(1) श्री अमीत बल कृष्णा रिनोस (2) श्री खासाकिया जितेंद्र कुमार दाहयाभाई (3) सुश्री दिव्यालक्ष्मी आर पटेल	02.06.2016 से 01.06.2021

2805 GI/2016

Annexure – 2

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector 10-A, Gandhinagar 382 010

Phone : (079) 23226295 Fax : (079) 23232156

Website: www.gpcb.gov.in

BY R.P.A.D

In exercise of the power conferred under section-25 of the Water (Prevention and Control of Pollution) Act-1974, under section-21 of the Air (Prevention and Control of Pollution)-1981 and Authorization under rule 6(2) of the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016 & as amended from time to time framed under the Environment (Protection) Act-1986.

And whereas Board has received consolidated consent application Inward LD.NO. 115518 dated 28/11/2016 for the Consolidated Consent and Authorization (CC & A) of this Board and under the provisions/rules of the aforesaid acts. Consents & Authorization are hereby granted as under

CONSENTS AND AUTHORISATION:

(Under the provisions /rules of the aforesaid environmental acts)

M/s Recycling Solution Pvt Ltd. Plot no.-223, GIDC Estate, Panoli Ankleshwar-394116 Dist-Ankleshwar

1. Consent Order No: AWH - 83687, Date of Issue-16/01/2017

Hazardous and Act-1981 Act-1974, Air Other Wastes (M&TM) Rules - 2016 shall be valid up to 31/12/2021 for the following activities Water at Plot No. 223, GIDC Estate, Panoli, and Dist. Ankleshwar - 394116.

n	o. 223, GIDC Estate, Panoli, and Dist. Ankleshwar - 394110.				
	Sr	Facility	Capacity		
1	-	1 1111111111111111111111111111111111111			
	No	(Solid ,Semi Solid & Liquid)	240MT/Day		
	1.	(Solid , Semi Solid & Elquid)			
		Waste Mix Pre-Processing Facility			

2. SUBJECT TO THE FOLLOWING SPECIFIC CONDITIONS

- 2.1 Applicant shall have to obtain trial/regular permission from SPCB / CPCB prior to send the prepare fuel to Cement industry.
- 2.2 Pre-processing of hazardous and other wastes shall be carried out only after making the entry into the passbook issued by the SPCB.
- 2.3 Unit shall maintain and submit monthly records of waste received and pre processed to the Board.
- 2.4 Applicant shall operate the processing facility in such a way so that stored volume of Hazardous waste/prepared fuel shall not exceed the storage time of 90 days from date of receipt and in case of exceeding the time limit, applicant shall stop immediately receiving hazardous waste from member units until prepared fuel from such stored hazardous waste is sent to cement industries for co-processing.
- 2.5 Applicant shall operate the processing facility in such a way so that stored volume of Hazardous waste/prepared fuel shall not exceed the storage capacity at any point of time, Once the stored volume reaches to the storage capacity, facility shall stop immediately receiving hazardous waste from member units.

2.6 Applicant shall have to strictly comply and adhered to the MOU signed and legal undertaking submitted to the board in letter and spirit.

Clean Gujarat Green Gujarat

ISO-9001-2008 & ISO-14001 - 2004 Certified Organisation

- 2.7 Applicant shall have to obtain the membership of Common Hazardous Waste TSDF and Incineration facility.
- 2.8 Applicant shall carry out only Collection, Storage and transportation of Hazardous waste from Member Units to their processing facility and processing (blending) for the preparation of fuel for co-processing (Co-Incineration).
- 2.9 Applicant shall not send prepared fuel for co-processing (Co-Incineration) without obtaining prior CCA amendment of the Board.
- 2.10 Applicant shall have to comply with all the recommendations, suggestions and Environmental stipulations given by Hon. Supreme Court of INDIA, Ministry of Environment & Forests New Delhi, Central Pollution Control Board Delhi and Gujarat Pollution Control Board from time to time.
- 2.11 In case of deviation or alteration in the project including the implementing agency, a fresh reference shall be made to GPCB and MoEF, New Delhi for modification in the Clearance conditions or imposition of new one for ensuring environmental protection. The applicant shall be responsible for implementing the suggested safe guards.
- 2.12 Applicant shall follow the Guidelines of CPCB for labeling, transportation, storage and disposal of hazardous wastes in an environmental sound manner.
- 2.13 Applicant shall have to take all the precautions to control fugitive emission and Odour control from the different operations of your site as per the Guideline of CPCB.
- 2.14 The Project proponent shall make necessary arrangement for online monitoring of below shown parameters and display it online on XGN of Common Hazardous waste Incineration facility.
- 2.15 The project proponent shall use Hazardous waste tracking system of X tended Green Node (XGN) for on line real time data updation on Transportation of Hazardous waste by them. The compilation of real time data for preparing online manifest by the generator, Transporter and receptor shall have to be maintained on daily basis & submitted by the generator and receptor of the facility to the concerned Regional Office, and Head Office, GPCB.
- 2.16 The project proponent shall have to transport Hazardous waste through dedicated Vehicles with GPS (Global Positioning System) enabled system and in line with Hazardous and other wastes (Management and Transboundary Movement) Rules-2016.
- 2.17 Applicant shall carry out TCLP test in and around the processing facility and submit the report at regular interval.
- 2.18 Applicant shall furnish the copy of insurance policy as per Public Liability Insurance act 1991 to the Board.
- 2.19 Applicant shall prepare on site emergency plan and Disaster management plan as per the various guidelines published by competent authority and also conduct mock drill in coordination with local district co-ordination and Regional office GPCB.
- 2.20 Applicant shall submit the plan in accordance with the Chemical Accidents (Emergency Planning, preparedness and response) Rules, 1996 published by MOEF New Delhi.
- 2.21 It shall be the responsibility/duty of the applicant to take adequate steps while handling hazardous wastes to contain contaminants and prevent accidents and their consequences on human and environment, and prevent person working on the site with information, training and equipment necessary to ensure their safety.
- 2.22 Applicant shall be liable for all damage caused to the environment or third party due to improper handling and storage of the hazardous wastes or disposal of the hazardous wastes.
- 2.23 Applicant shall be liable to pay financial penalties as levied for any violation of the provisions under Hazardous Wastes (Management, Handling and Trans Boundary Movement) Rules, 2008 by the State Pollution Control Board with the prior approval of the Central Pollution Control Board.
- 2.24 In case of transportation of hazardous wastes through a State other than the State of origin or destination the occupier shall intimate the concerned State Pollution Control Boards before, he hands over the hazardous wastes to the transporter (if applicable).

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector 10-A, Gandhinagar 382 010

Phone : (079) 23226295 Fax : (079) 23232156 Website : www.gpcb.gov.in

3. CONDITIONS UNDER WATER ACT:

- 3.1 The Discharge of industrial effluent from the common facilities and other related operations of the site shall be "ZERO" KLD.
- 3.2 The quantity of the domestic waste water (Sewage) shall not exceed 2.9KLD.
- 3.3 Sewage shall be disposed of through septic tank and soak pit system.

4. CONDITION UNDER AIR ACT:

- 4.1 There is no Flue Gas and process gas emission from the process and other ancillary operation.
- 4.2 The Stack of 14 meter height is attached to the AFRF Plant for air replenishment system,
- 4.3 The Applicant shall take all necessary measure to curb the foul odour and shall submit the monthly report of ODC 50consumption.
- 4.4 There shall be wheel washing facility at the site to avoid dusting while transportation of
- 4.5 Ambient air quality within the premises of the facility shall conform to the following Standards:

PARAMETER	Concentration in Ambient Air		Method of Measurement	
	Annual	24 hrs. Average		
Particulate matter-10 (PM 10)	60 μg/m3	100 μg/m3	Gravimetric, TOEM Beta attenuation	
Particulate matter-2.5 (PM 2.5)	40 μg/m3	60 μg/m3	Gravimetric, TOEM Beta attenuation	
Sulphur Dioxide(SO ₂)	50 μg/m3	80 μg/m3	Improved West and Gacke Ultraviolet fluorescene	
Nitrogen Dioxide (NO ₂)	40 μg/m3	80 μg/m3	Modified Jacob & Hoechheiser (Na-Arsenite) Chemiluminescence	
Benzene	5 μg/m3		Gas chromatography based continuous analyzer Adsorption and Desorption followed by GC analysis	
Benzo (a) pyrene (BaP)- Particulate Phase only	01 ng/m3		Solvent extraction followed by HPLC/GC analysis	
Arsenic(As)	06 ng/m3		AAS/ICP method after sampling on EPM 2000 or equivalent filter paper	
Nickel (Ni)	20 ng/m3		AAS/ICP method after sampling on EPM 2000 or equivalent filter paper	
Lead (Pb)	0.50µg/m3	1.0 µg/m3	AAS/ICP method after sampling on EPM 2000 or equivalent filter paper ED-XRF using Teflon filter	
Ammonia	100 µg/m3	400 μg/m3	Chemiluminescence Indophenol blue method	

Clean Gujarat Green Gujarat

ISO-9001-2008 & ISO-14001 - 2004 Certified Organisation

Ozone	100 μg/m3 8 hours	180 µg/m3 1 hour	UV photometric Chemiluminescence Chemical Method
Carbon Monoxide (CO)	02 μg/m3 8 hours	04 μg/m3 1 hour	Non dispersive Infra Red (NDIR) spectroscopy

5. CONDITIONS UNDER HAZARDOUS WASTE MANAGEMENT RULES:

A. General condition:

- 1. Number of authorization: AWH 83687 Date of issue: 16/01/2017
- 2. M/s. RECYCLING SOLUTION PRIVATE LIMITED is hereby granted an authorization to operate facility for following hazardous waste on the premises situated at Plot No. 223, GIDC Estate, Panoli, Dis!. Ankleshwar 394116.

Sr. No.	Waste	Quantity	Schedule	Facility
1	Incinerable Hazardous waste(Solid/Liquid/ Semi Solid)	240 MTPA		Reception from member units through dedicated vehicle, storage, and blending within premises.
2	Distillation Residues from contaminated organic solvents	24 MT/Day	37.3	Collection, Storage, Transportation, disposal at CHWIF.
3.	Empty Drums/container /Barrels/Carboy contaminated with Hazardous chemicals/ waste	1080MTA	33.1	Receiving drums from member unit, Collection, Storage, Decontamination within premises and selling to authorized Recycler
4.	ETP Sludge from waste water treatment	60MTA	35.3	Collection ,Storage, Transportation, Disposal to TSDF

- 3. The authorization is granted to operate processing facility to prepare fuel for co-incineration (Co-processing) by reception of Hazardous waste from member units.
- 4. The authorization shall be force for a period up to Five years valid up to 31/12/2021
- 5. The applicant shall have to regularly monitor ground water, ambient air quality and shall submit reports to GPCB and CPCB regularly.
- 6. The applicant shall submit monthly report with details of Hazardous waste received, treatment given, stock lying and disposal of at landfill site.
- 7. The Authorized person shall comply with the provisions of the Environment (Protection) Act, 1986, and the rules made there under.
- 8. The Authorization or its renewal shall be produced for inspection at the request of an officer Authorized by the State Pollution Control Board.
- 9. The person Authorized shall not rent, lend, sell, transfer or otherwise transport the hazardous and other wastes except what is permitted through this authorization.
- 10. Any unauthorized change in personnel, equipment or working conditions as mentioned in the application by the person authorized shall constitute a breach of his authorization.
- 11. The person authorized shall implement Emergency Response Procedure (ERP) for which this authorization is being granted considering all site specific possible scenarios such as spillages,

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector 10-A, Gandhinagar 382 010

Phone : (079) 23226295 Fax : (079) 23232156 Website : www.gpcb.gov.in

leakages, fire etc. and their possible impacts and also carry out mock drill in this regard at regular interval of time;

- 12. The person authorized shall comply with the provisions outlined in the Central Pollution Control Board guidelines on "Implementing Liabilities for Environmental Damages due to Handling and Disposal of Hazardous Waste and Penalty"
- 13. It is the duty of the authorized person to take prior permission of the State Pollution Control Board to close down the facility.
- 14. The imported hazardous and other wastes shall be fully insured for transit as well as for any accidental occurrence and its clean-up operation.
- 15. The record of consumption and fate of the imported hazardous and other wastes shall be maintained.
- 16. The hazardous and other waste which gets generated during recycling or reuse or recovery or pre-processing or utilization of imported hazardous or other wastes shall be treated and disposed of as per specific conditions of authorisation.
- 17. The importer or exporter shall bear the cost of import or export and mitigation of damages if any.
- 18. An application for the renewal of an authorisation shall be made as laid down under these Rules.
- 19. Any other conditions for compliance as per the Guidelines issued by the Ministry of Environment, Forest and Climate Change or Central Pollution Control Board from time to time.
- 20. Annual return shall be filed by June 30th for the period ensuring 31st March of the year.

B. Specific Conditions:

- In case of renewal of authorisation, a self-certified compliance report in respect of effluent, emission standards and the conditions specified in the authorization for hazardous and other wastes shall be submitted to SPCB.
- 2. The occupier of the facility shall comply Standard operating procedure/ guidelines published by MoEF&CC or CPCB or GPCB form time to time.
- 3. Unit shall comply provisions of E-Waste Management Rules-2016.
- 4. The disposal of Hazardous Waste shall be carried out as per the waste Management hierarchy.

6. GENERAL CONDITION:

- 6.1 Adequate plantation shall be carried out all along the periphery of the TSDF premises in such a way that the density of plantation is at least 1000 trees per acre of land and a green belt of 5meters width is developed.
- 6.2 The applicant shall have to submit the returns in prescribed form regarding water consumption and shall have to make payment of water cess to the Board under the Water Cess Act- 1977.
- 6.3 Applicant shall have to comply with Risk Assessment and Disaster management Plan.

Clean Gujarat Green Gujarat

ISO-9001-2008 & ISO-14001 - 2004 Certified Organisation

- 6.4 Applicant shall have to carry out mock drill both on site and off site for all the possible eventualities at a regular interval of time. For any of the disastrous situation escape route shall have to be predefined properly marked and shall be brought to the knowledge of all the concerned.
- 6.5 Applicant shall have to comply with the Environmental Audit Scheme introduced by Hon'ble High Court and shall submit the Environment Audit Report every year in accordance with directions given in the High Court Order dated 16/09/1999 in Environmental Audit Scheme.
- 6.6 The concentration of Noise in ambient air within the premises of industrial unit shall not exceed following levels:

Between 6 A.M. and 10 P.M.: 75 dB (A) Between 10 P.M. and 6 A.M.: 70 dB (A)

- 6.7 You shall comply with the manufacturing, Storage and Import of Hazardous Chemicals Rules-1989 framed under the Environment (Protection) Act-1986.
- 6.8 The owner/facility operator is fully responsible for compliance of all the directions issued by the Apex Court and High court from time to time.
- 6.9 Full support shall be extended to the officers of MoEF, CPCB, GPCB and all other relevant authorities by the project proponents during their inspection for monitoring purposes by furnishing full details and action plans including the action taken reports in respect of initiative measures and other environmental protection activities.
- 6.10 GPCB reserves the right to stipulate additional condition if found necessary. The company shall implement these conditions in a time bound manner.

FOR AND ON BEHALF OF GUJARAT POLLUTION CONTROL BOARD

(K.C.MISTRY)

Dy. Chief Environment Scientist Unit head, Hazardous waste cell

Issued to:

No. GPCB/HAZ-CCA-Ank-1375(5)/ID-13376/ M/s Recycling Solution Pvt Ltd. Plot no.-223, GIDC Estate, Panoli Ankleshwar-394116 Dist-Ankleshwar

Date:

REGIONAL OFFICE

GUJARAT POLLUTION CONTROL BOARD PLOT NO: 1616-1617, 1st FLOOR, SWASTIC COMPLEX, NEAR VEER MOKHADAJI CIRCLE, GHOGHA ROAD

BHAVNAGAR-364 001 PHONE: 2566108

In exercise of the power conferred under section-25 of The Water (Prevention and Control of pollution) Act-1974, Section-21 of The Air (Prevention and Control of Pollution) Act-1981, and authorization under Rule 3(3)&6(2) of The Hazardous and other solid Wastes (Management & Transboundary Movement) Rules, 2016 and as amended from time to time, framed under The Environmental (Protection)Act-1986.

And, whereas Board has received consolidated consent and authorization application vide Inward ID-131457, Inward Date-18/12/2017, under the provisions/rules of the aforesaid acts/rules, Consents & Authorization are hereby granted as under:

CONSENTS & AUTHORISATION

(Under the provisions/rules of aforesaid environmental Acts/Rules)

To,

M/S Western India Petrochem Ind (16250),

Plot No -62, 63,

GIDC- Vartej,

Bhavnagar-364002

Tal: Bhavnagar, Dist: Bhavnagar.

- 1 Consolidated Consent and Authorization Order No: AWH- 27313, Date of Issue: 31/01/2018.
- 2 The validity period of the order shall be up to 31/12/2022.
- 3 The list of the products to be manufacture is as below:

Sr. No.	PRODUCT	QUANTITY
1.	Re refined of used oil	2745 KL/Annum
2.	Recycling of waste oil	8325 KL/Annum

> Specific Condition:

Unit shall comply the Conditions given in the Minutes of Meeting under Rule-9 of HoWR-2016 Dt: 03/01/2018 regarding production capacity.

4 CONDITIONS UNDER THE WATER ACT:

- **4.1** The quantity of discharge of trade effluent from the factory shall be **NIL**.
- **4.2** Generated wastewater will be reuse after adequate treatment hence there shall be "Zero Liquid Discharge" from the industry.
- **4.3** The applicant shall provide adequate effluent treatment system in order to achieve the quality of the treated effluent as per GPCB norms mentioned below:-

5
nits
ng/l
g/L
g/L
g/L
ng/L
ng/L
mg/L
mg/L
L

(All efforts to be made to remove Color and Unpleasant Odour as far as Practicable.)

- 4.4 The quantity of sewage effluent from the factory shall not exceed 0.16 kL/Day.
- **4.5** Domestic effluent shall be disposed off through septic tank/soak pit system.

5 CONDITIONS UNDER THE AIR ACT:

5.1 The following shall use as fuel:

Sr No	Fuel	Quantity
1.	Light Diesel Oil/LC	30 Ltr/hr
2.	Wood	500 kg/day

5.2 The applicant shall install & operate air pollution control system in order to achieve norms prescribed below.

Sr No	Stack attached to	Common stack Height in Meters	APCM	Parameters	Permissible Limits
1.	Boiler	30	-		
2.	Thermic Fluid Heater	30	-	Particulate Matters	150 mg/NM ³
3.	Furnace			SO_2	100 ppm
4.	Incinerator	30	Scrubber	NO_X	50 ppm

- 5.3 There shall be no any process emission from the manufacturing process and other ancillary industrial operations.
- 5.4 Stack monitoring facilities as porthole, platform/ladder etc shall provide with stack/vents chimney in order to facilitate sampling of gases being emitted in to the atmosphere.
- 5.5 The concentration of the following substances in the ambient air within the premises of the industry and at a distance of 10 meters from the source (other than the stack/vent) with the height of more than 9 meter from the ground level) shall not exceed the following levels:

Sr. No.	Pollution Parameters	Time weighted Average	Concentration Ambient Air
1.	Sulphur dioxide (SO2), μg/M ³	Annual 24 Hours	50 80
2.	Nitrogen dioxide (NO2), μg/M³	Annual 24 Hours	40 80
3.	Particulate Matter (Size less than 10µm)OR PM 10 µg/M³	Annual 24 Hours	60 100
4.	Particulate Matter (Size less than 2.5m) OR PM2.5 µg/M³	Annual 24 Hours	40 60

5.6 The applicant shall provide proper ventilation and exhaust facilities to maintain healthy working atmosphere within the factory premises.

6 CONDITIONS UNDER HAZARDOUS WASTE:

Number of Authorization: **AWH-27313**, Date of issue: **31/01/2018 M/S Western India Petrochem Ind** is hereby granted an authorization to operate facility for following hazardous wastes on the premises situated at **Plot No-62**, **63**, **GIDC-Vartej**, **Bhavnagar**.

Sr. No.	Waste	Category	Quantity after expansion	Facility
1.	Chemical sludge from waste water treatment	I-35.3	6 MT/yr	Collection, Storage, Transportation, Disposal
2.	Used or Spent Oil	I-5.1	3600 Kl/yr	Collection, Recycling, Reception, Storage, Transportation & Refining
3.	Waste or Residue containing Oil	I-5.2	11100.00 KL/yr	Collection, Reception, Storage, Transportation & Refining.
4.	Empty barrels/ containers/liners contaminated with hazardous chemicals /wastes	I-33.1	90 MT/yr	Storage, Collection, Transportation, Decontamination & selling to Authorised Recycler.
5.	Any process or distillation residue	I-36.1	476 KL/yr	Collection, Storage, Transportation Incineration at Common Hazardous Waste Incineration Facility
6.	Filters & Filters Medium	I-35.1	3 Mt/Yr	Collection, Storage, Disposal, Incineration at Common Hazardous Waste Incineration Facility
7.	Spent clay Containing Oil	I-4.5	94 MT/yr	Collection, Storage, Transportation & Incineration at Common Hazardous Waste Incineration Facility
8.	Ash From incinerator and flue gas cleaning residue	I-37.2	NIL	Collection, Incineration, Storage, Treatment

6.2 The applicant shall provide temporary storage facilities for each type of Hazardous Waste as per Hazardous and other solid waste (Management & Transboundary Movement) Rules-2016 as amended from time to time.

7 GENARAL CONDITION:

- 7.1 Unit shall develop green belt within premise as per the CPCB guidelines. However, if the adequate land is not available within premises, the unit shall tie up with local agencies like gram panchayat, school, and social forestry office etc. for the plantation at suitable open land in nearby locality and submit an action plan of plantation for next three years to GPCB.
- 7.2 Plantations should be started along with constitution activity. For plantation within the premises, a spacing of at Least 4 m x 4 m shall be kept i.e. to say 250 plants per acre shall be plantation. For plantation outside the premises a spacing of 2mx 2m will be kept i.e. to say 1000 plants per acre.
- 7.3 Adequate plantation shall be carried out all along the periphery of premises in such a way that the density of plantation is at least 1000 tree per acre of land and a green belt of 10 meters width is developed.
- **7.4** In case of change of ownership/management the name and address of the new Owners/partners/directors/proprietor should immediately be intimated to the board.
- 7.5 The applicant shall however, not without the prior consent of the board bring into use any new or altered outlet for the discharge of effluent or gaseous emission or swage waste from the proposed industrial plant. The applicant is required to make application to this board for this purpose in the prescribed forms under the provisions of the Water Act-1974, the Air Act-1981 and the Environment (Protection) Act-1986.
- 7.6 The overall noise level in and around the plant area shall be kept well within the standard by providing noise control measure including engineering control like acoustic insulation hood, silencers, enclosures etc on all source of noise generation. The ambient noise level shall conform to the standards prescribed under the Environment (Protection) Act-1986 & Rules.
- The concentration of noise in ambient air within the premises of industrial unit shall not exceed following levels:

Between 6A.M. and 10P.M.: 75dB (A) Between 10P.M. and 6A.M.: 70dB (A)

- 7.8 If it has established by any competent authority that the damage has caused due to their industrial activities to any Person or his property, in that case they are obliged to pay the compensation as determined by the competent authority.
- **7.9** Applicant shall have to comply with the guidelines/directive issued/being issued by MoEF & CC/CPCB/DoEF from Time to time.
- **7.10** Monitoring in respect to Air, Water, and Noise level shall carry out regularly and results shall submit to this Board.

FOR AND BEHALF OF GUJARAT POLLUTION CONTROL BOARD

(F. M. Modi) Regional Officer, Bhavnagar

No. GPCB/RO/BHV-548/ID-16250/

M/s Western India Petrochem Ind (16250), Plot No - 62, 63, GIDC- Vartej, Bhavnagar-364002 Tal: Bhavnagar, Dist: Bhavnagar Copy To:

1) Member Secretary GPCB, Gandhinagar.....For your information & necessary action please.

0.3.Emara 3.0°. 15602,02104,12018

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector 10-A, Gandhinagar 382 010

Phone (079) 23226295 Fax (079) 23232156

Website: www.gpcb.gov.in

By. R.P.AD

In exercise of the power conferred under section-25 of the Water (Prevention and Control of Pollution) Act-1974, under section-21 of the Air (Prevention and Control of Pollution)-1981 and Authorization under rule 5(4) of the Hazardous Waste (Management, Handling and Transboundary Movement) Rules' 2008 & as amended from time to time framed under the Environment (Protection) Act-1986.

And whereas Board has received consolidated consent application Inward LD.NO. 56132 dated 20/04/2012 for the amendment in Consolidated Consent and Authorization (CC & A) of this Board and under the provisions/rules of the aforesaid acts. Consents & Authorization are hereby granted as under

CONSENTS AND AUTHORISATION:

(Under the provisions /rules of the aforesaid environmental acts)

To.

M/S SAURASHTRA ENVIRO PROJECTS PVT LTD,

PLOT NO/SURVEY NO. 415, 417 & 418,

VILLAGE: JUNA KATARIYA/LAKADIYA,

TALUKA: BHACHAU, DIST: KUTCH-370 150

Consent Order No: AWH - 60703, Date of Issue 18/11/2013.

The consents shall be valid up to 05/11/2018 for use of outlet for the discharge of trade effluent and emission due to operation of industrial plant for following activities at PLOT NO/SURVEY NO. 415, 417 & 418, VILLAGE: JUNA KATANYA/LAKADIYA, TALUKA: BHACHAU, DIST: KUTCH-370190.

SR. NO.	PRODUCTS	Capacity	
1.	Secured Landfill Site	3,95,000 MT (Cell no.1 - 1,20,000 MT(Capacity Exhaussed and Closed) (Cell no.2 - 2,73,000 MT(Operational)	
2.	Incineration Facility	7.50 Million Keal/Hour	
3.	Forced Evaporation System	500.00 KL	
4.	Blender Operation	6.00 T/Hour	

Clean Gujarat Green Gujarat of 10

ISO - 9001 - 2008 & ISO - 14001 - 2004 Certified Organisation

केन्द्रीय प्रदूषण नियंत्रण बोर्ड CENTRAL POLLUTION CONTROL BOARD (पर्यावरण एवं वन मंत्रालय, भारत सरकार)

(MINISTRY OF ENVIRONMENT & FORESTS, GOVT. OF INDIA)

2014/AT-CP/RP/PCI-II/

Date: 31.03.2015

To

M/s Sanghi Industries Ltd., P.O. Sanghipuram - 370 511 Taluka: Abadasa, Dist. Kutch, Gujarat.

Subject: -Permission for regular co-processing of oily rags/cotton waste (Adani Port & Special Economic Zone Ltd, Mundra, Kutch, Gujarat), in cement kiln of M/s Sanghi industries Ltd., Gujarat – Reg.

Ref: -Gujarat Pollution Control Board letter no. GPCB/HAZ-GEN-379(1)/220586 dated 01.08.2014

-Adani Ports & special Economic Zone Ltd. letter dated 03.02.2015

Sir.

In reference to above cited letter, permission is hereby accorded for coprocessing of oily rags/cotton waste of Adani Port & Special Economic Zone Ltd., Mundra, Kutch, Gujarat, in Cement kiln of M/s Sanghi Industries Ltd., Sanghipuram, Kutch, Gujarat, under the Rule 11 of the Hazardous Waste (Management, Handling and Transboundary Movement) Rules, 2008, subject to compliance of various provisions of the Environment (Protection) Act, 1986 including the following:

- The permission is valid only for co-processing of above specified waste. The
 waste characteristics should be similar to that for which trial run has been
 conducted by CPCB/SPCB. The details are enclosed in **Annexure**. Prior
 permission has to be obtained for co-processing of any other hazardous waste.
- 2. The cement plant shall obtain the authorization from the concerned State Pollution Control Boards as required under Hazardous Waste (Management, Handling and Transboundary Movement) Rules, 2008 for storage, handling, transportation and co-processing of hazardous waste.
- For transportation of proposed hazardous wastes for co-processing in cement kiln, manifest system as per Hazardous Waste (Management, Handling and Transboundary Movement) Rules, 2008 and guidelines of CPCB shall be followed.
- 4. The generator of hazardous waste shall obtain authorization from the State Pollution Control Board as required under Hazardous Waste (Management, Handling and Transboundary Movement) Rules, 2008 for storage, handling, transportation and co-processing of hazardous waste in cement plant.

'परिवेश भवन' पूर्वी अर्जुन नगर, दिल्ली—110032

'Parivesh Bhawan', East Arjun Nagar, Delhi - 110032

दूरभाष / Tel. : 43102030, फैक्स / Fax : 22305793, 22307078, 22307079, 22301932, 22304948

ई-मेल / e-mail :cpcb@nic.in वेबसाईट / Website : www.cpcb.nic.in

- 5. The cement plant shall estimate the quantity of hazardous waste required to be co-processed. Cement industry shall provide adequate covered storage space for the hazardous waste in accordance with Hazardous Waste Rules and guidelines for storage of hazardous waste. The occupier shall also ensure that there is no leaching of any pollutant. The actual quantity of hazardous waste co-processed in each calendar year shall be reported to CPCB and SPCB.
- The cement plant shall ensure the compliance of the conditions stipulated in the consents issued under the Air Act, 1981 and Water Act, 1974 during the coprocessing of hazardous waste.
- 7. The emission standards for particulate matter prescribed for cement kiln by the concerned State Pollution Control Board shall be applicable during coprocessing in cement kiln also. For other pollutants i.e.; CO, TOC, NOx, HCI, SO₂, HF, total dioxins and furans, Cd + Tl + their compounds, Hg and its compounds, Sb + As + Pb + Co + Cr + Cu + Mn + Ni + V + their compounds, the emission values during co-processing shall not exceed the base line emissions i.e. during pre co-processing phase of trial run. Continuous measurement of particulate matter emission shall be carried out at co-processing plant and the emission data shall be submitted to CPCB and the concerned SPCB/PCC. As per direction of CPCB monitoring of dioxins and furans including other parameters will be done by the cement plant.
- 8. The cement plant shall take the hazardous waste only from the authorized generator.
- A log book of the waste co-processed shall be maintained including emission monitoring result during co-processing.
- 10. During co-processing of hazardous waste in cement kiln, the cement plant shall comply with all the requirements in accordance with the Public Liability Insurance Act, 1991 as amended.
- 11. Cement plant shall install continuous emission monitoring system with the SPCB monitoring the emission level.
- 12. Cement plant shall have to explore the possibilities for transportation of Hazardous Waste for the co-processing purpose through dedicated tankers with GPS enabled system in line with Hazardous Waste Rules 2008.
- 13. The occupier/generator shall use Hazardous Waste tracking system of Xtended Green Node (XGN) for online real time data for preparing online manifest system for regular updation retrieval and maintain record thereof by generator as well as receptor. The compiled data shall be submitted at the end of the year after due verification by facility operator/receptor to the concerned GPCB, Regional Office & Head Office, Gandhinagar.
- 14. In case of any violation in the conditions stipulated, the permission can be withdrawn at any time.
- 15.CPCB reserves the right to review / impose additional conditions or revoke, change or alter any of the terms and conditions.

Yours faithfully

S. S. Bala)

Director & I/c PCI-II Div

Encl.: As above

Characteristics of Oily rags /Cotton waste

The Characteristics of oily rags/cotton waste of M/s Adani Port & Special Economic Zone Ltd., Mundra, Kutch, is given below which is permitted for use @ 0.27 % (maximum) for co-processing in cement kiln.

Analysis of the Oily rags/cotton waste

PARAMETER	RESULT	
Antimony (mg/kg)	<5	
Arsenic (mg/kg)	<0.5	
Cadmium (mg/kg)	<1	
Chromium (mg/kg)	<1	
Cobalt (mg/kg)	<1	
Copper (mg/kg)	10.34	
Lead (mg/kg)	<1	
Manganese (mg/kg)	147.32	
Nickel (mg/Kg)	7.37	
Mercury (mg/Kg)	<0.5	
Thallium (mg/kg)	<1	
Vanadium (mg/kg)	2.17	
Zinc (mg/kg)	405.59	
TPH (%)	19.89	
Tin ((mg/kg))	<5	
Selenium ((mg/kg))	<5	
Iron (%)	0.12	
PCB ((mg/kg))	<0.1	
PCP (mg/Kg)	<0.5	
Calorific Value (Kcal/kg)	7960	
Moisture (%)	1.8	
Ash (%)	22.13	
Volatile Matter (%)	74	
Fixed Carbon (%)	0.2	
Carbon (%)	47.37	
Sulphur (%)	0.29	
Nitrogen (%)	1.08	
Oxygen (O ₂) (%)	24.02	
Hydrogen (%)	5.11	
TOC (%)	44.7	
SVOC	ND(DL 0.1 mg/kg)	
VOC	ND(DL 0.1 mg/kg)	
PAH	ND(DL 0.1 mg/kg)	
A.	1	

GILIARAT POLLUTION CONTROL BOARD

Sector 10-A, Gandhinagar 382010

Phone : (079) 23226295
Fax : (079) 23232156
website : www.poch.gov.in

in exercise to power conferred under section 25 of the Water (Prevention & Control of Poliution) Act-1974, under section 21 of the Air (Prevention & Control of Poliution) Act-1981 and Authorization under the rule 5441 of the Nazardown Water (Management, Handleig & Transhoundary Movement) Mats 2008 framed under the Engineering Projection Act – 1986.

And softwarea Neutral has greened Consolidated Consent & Authorization (CCCA) order No. AVM-11171 Admit 24 Jan 2016 Neutral of the letter in ... PCCCA, NO-42-470700 AVM-in was valid us in CLL 107-27000 & valid consent was extended up to 0.0 07.0200, vide OPCB letter no. PCCCA INC-289(1)/22431 Admit 207 10.7 2010. Feeting the valid consent order substanda to in 57.08, 021, vide GPCB letter no. GPCBCA (No. 248)(107.17) PSCCO. AVM 107.000. JCCCA INC-CAS INC. AVM 107.000. JCCCA INC. AVM 107.000. AVM 107.0000. AVM 107.000. AVM 107.000

And whereas Board has received consolidated consent application No. 68965 dated 31.06.2013. application No. 67818 dated 14.05.2013. A application No. 68802 dated 12.04.2013 for the creawal & amendment of Consolidated Consent & Authorization (CCRA) of this board under the provisions/vales of the attenual Acts. Consents & Authorization are faire by grunted as under:

CONSENT AND AUTHORISATION:

(Linder the provision/rules of the aforesaid environmental acts)

9874

M/S. AMBUJA CEMENTS LTD. SURVEY NO. 315 TO 320, 351 TO 352, 395 TO 410 PO: IAMBUJANAGAR-362715 TALUKA, KODINAR

DISTRICT JUNAGADH

- Consent Order No. AWH 57342 date of issue 26/09/2013
- The convent shall be valid by to 12.06.2018 for the use of outlet for the discharge of trade effluents emission due to operation of industrial plant for manufacture of the following items/products:

5r.No.	Product	Quantity
1	Cement	1.5
		Million Tonnes/Annum

I. CONDITIONS UNDER THE WATER ACT :

3.1 The quantity of the trade effluent from the factory shall be nil

Clean Gujarat Green Gujarat

ISO - 9001 - 2008 & ISO - 14001 - 2004 Certified Organisation

- The quantity of sewage from the factory and from township shall not exceed \$400 kL/day.
- \$.3 Sewage shall be treated at Sewage Treatment Plant to confirm to the Schowing standards.

800 (3 days at 2700) Less than 20 mg/l Suspended solids Less than 30 mg/l

Posidual chicrina Merimum 0.5 mg/l

- 3.4 Treated water from Sewage Treatment Plant shall be utilized for following purpose:
 - Plant cooling for Arribuja & Gajambuja plant
 Dust suppression on hauf roads
 - Dust suppression on hauf roads
 Horticulture and green belt development
 - Horticulture and green belt de On land for irrigation
 - Fire fighting purpose

4. CONDITIONS UNDER THE AIR ACT :

4.1. The following shall be used as main fuel for cement plant.

Sr.No.	Fuel	Quantity
1	Coal/Reprite/percusian	55 Tams/ Hour

- 4.2 HSD shall be used as a secondary fuel for start up of kilo.
- 4.3 Any other non-hazardous & high calorific value material shall be used as alternative funl of co-processing in cement kin.
- 4.4 The applicants shall install and operate following air pollution control system in order to achieve norms penulished below.

Sr NO	Stack attached to	Stack height in Metre	Air Pallutian Control Equipment Installed	Parameter	Permissibili limit
1	Raw mit Klin exit	95	Glass flag. House	Farticulate matters	50 mg/Nei
2	Clinker Cooler	53	ESP	Particulate matters	150 mg/tim
3	Coal Mill	30.	Bag Filter:		
4	Cement mili-1	34:	ESP		
5	Cement mill-II	34	Bag Filter		
6	Packing Plant +1	30	Reg Filter		
7	Packing Plant - II	30	Bag Filter		
18.	Crystier	20	Bag Filter		

GUJARAT POLLUTION CONTROL BOARD

Sector 10-A, Gandhinagar 382010 Phone (079) 23226795

Fax : (079) 2323215

Website: Www.gpcb.gov.in
Ambient Air quality with the premises of the industry shall conform to the following

PARAMETERS	PERMISSIBLE LIMIT		
	Annual	24 Hrs Average	
Particulate Matter-10 (PM ;)	60 Microgram/M	300 Microgram/N	
Particulate Matter 2.5 (PM	40 Microgram/M	50 Microgram/M	
50,	50 Microgram/M	80 Microgram/M	
NO	40 Microgram/M	80 Microgram/M	

- 4.6 The applicant shall provide portholes, ledders, plateform att. at channey(i) for monitoring the are emission and the same shall be open for impertion to/and for ince of Sound's staff. The channey(s) were attached to various sources of emission shall be designed by numbers such as \$1, \$2 etc. and these shall be named/discoursed to licitate indentification.
- 4.7 The industry shall take adequate measures for control of noise levels from its pain sources within the premiers so as to maintain ambient air quality standards in respect of most to less than 7550(b) airong ago three and 705(b) ultiming path time. Day time is reckned in between 6 a.m. and 10 p.m. and might time is reckned between 10 p.m. and 6 p.m. and 6
- AUTHORISATION FOR THE MANAGEMENT & HANDLING OF HAZARDOUS WASTE Form-2 (See rule 5(4))
- Form for grant of authorization for occupier or operator handling hazardous waste)
- M/s. Ambuja Cement Lld., in hereby grained an authorization to operate facility for indioxing hazardous waste on the premises strated at 5. No. 315to 320, 351 to 352 8, 195 to 450, P.O. Ambugaragor, Fall Kodiner, Oht, Junejath.

Sr. No.	Hazardous Waste	Metric Fons/Annum	Schedule	Mode of Osposal
1	Used/Speet all	93.50	5.1 5cb i	Collection, Storage, Tramportonial Disposal by selling to Registronial Refiners units.
2	Wastes/residiers containing oil/Oil soaked cotton	1.0	5.2 Sch-l	Collection, Storage, Transported to Disposal by selling to Registered to Refiners unit OR Co., processing

Opzwin

Clean Gujarat Gr 99 Gujarat

ISO - 9001 - 2008 & ISO - 14001 - 2004 Certified Organisation

3	Discarded	15.0	33:3 Sch-J	Collection, Storage, framportonic Disposal by selling to Registering
	/ barrelu/liners contaminated with histordous wastes/ chemicals		3,111	Recycler.
1	Process waste studge/residue containing acid or other toxic metals or organic complexes (i.e. Chemical Gypsum)	237250	26.1 5ch-)	Reception, Collection, Standard Transportation, Oligonal By cement manufacturing
5	Tarry Residue (L= TDI Tar)	3650	1.2 Schil	Reception, Collection, Stream Transportation, Disposal By In Processing in Coment Man
16	Spent Catalyst/Spent Carbon	3428.27	28.2	Reception, Collection, Monager Transportation, Disposal By In- Processing in Cement Kirl (List of Industries as per Annex-A)
30	Process waite, residues & studges (i.e. Plastic Waste)	79200	21.1 5(h)	Reception, Collection, Mississipportation, Disposal By Processing in Cement kills
	Tyre chips (Shredded Tyres)	5000		Recoption, Collection, Semi- Transportation, Disposal By Processing in Cement Allin
9	CFL lamps & tube lights , other mercury containing compounds	0.5	A S Sch II.	Collection, Storage, Transport. Disposal through registered (, Wallercycler/ TSDF site.
10	Asbestos	.15	Z-16 5ch-Z	Collection, Storage, Tramporture Dispusal at TSDF Gte.
-11	Glass wool	15	2-22 5ch-2	Collection, Storage, Transportulis- Disposal at TSOF site.

5.3 The validity of authorization for above mentioned waste is up to 12.06.2018.
 5.4 Unit shall strictly fellow the guideline for co-processing published by CPCR.

5.3 Onit shall strictly follow the guideline particularly with respect to:
 The transportation of Hazardous waste.

Adequate storage facility

Feeding in kiln as per Haz. Waste characterstic.

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector 10-A, Gandhinagar 382010 Phone (079) 23226295

Fax (079) 23232156

- Characteristic of Hag. Waste as per acceptance criteria.
- Emission Norms & NAA(2)
- . Haz. Waster Analysis & Seliety Audit.
- 5.6 Unit shall carry out Has Waste analysis prior to co-processing to ensure that the characteristic of Has Waste as per acceptance criteria and submit the analysis report to the Beard.
- 5.7 Unit shall have to submit the time bound programme for implementation of adequate measures as per guideline.
 - 5.8 Livit shall comply all the conditions mentioned in CPCs letter dated 29.07.2009 & 94.10.2012.
 - 5.9 The industry should give top priority for waste minimization and cleaner production partition.
 - 5.30 The industry should not store hazardous waste for more than 90 days as per the Hazardous Waste (Managament and Transboordry Movement) Rules, 2008 and amendments thereof.
- amendments thereof.

 5.11 The institutes should carry and co-processing of incinerable hazarstoon/high CV waste in intary skim as per Lapud/Sobid/Sodige AFR feeding and on site starage facility.
- 5.12 The industry should take excessory steps for prevention of any spillage/leaching etc. in respect of hazardous waste from the province.
- 5.13. Cement plant shall have to explore the possibilities for transportation of Nazardous Waste for the co-processing purpose through dedicated tankers with GPS enabled system in the with Nazardous Waste Rules-2006.
- 5.14 The industry shall are Hazardous Waste tracking DWT) system of Intended Green Nude (KGH) for ordine roal time data for propuring online maintest system for regular upstation retrieval and maintain viscoid thereof and to furnish details to the concerned GMCR, Repoinal Office & Head Office, Gandhinagar at regular interval.
 - 5.15 The industry should maintain good housekeeping & maintain proper records for therardous Wastes mentioned in Authorization.
- 5.16 In industry should maintain proper recents for Hazardous Wardes mentioned in Authorisation in FORM-3 [Rule 22(3)], i.e. quantity of incinerable weate, [mod disposal weater, recyclibile weate at c. and the areasal natures in FORM-4 as per fluor 32(2) of the Hazardous Waste (Managament, hazarding & Tramboundary Managament/fillnes). 2008 und amendments thereof.
- 5.17 The industry should obtain prior regular permission of CPCB for en-processing of hazardous wastes in cement kiln (if applicable).
- 5.18 The industry should take all precautionary measures to prevent odor ruisance and spillage during handling of hazardous wastes.
 5.19 The quideline pullshed to ECRS in February-2010 on co-processing in caroont
- plants should be strictly followed.

 5.20 The indistry should obtain prior permission of trial run for co-processing of westers for which results permission is not issued to any connent plant.

Clean Gujarat Gree**8 G**ujarat

ISO - 9001 - 2008 & ISO - 14001 - 2004 Certified Organisation

- 5.21 The industry should follow the guideline of CPCB for labeling, transportation. storage and disposal of hazardous wastes in a enginemental yound manner
- 5.22 The industry should adhere with stipulation/conditions mentioned by CPCB while granting regular permission for co-processing of waste as per order no. 8-33014/H-18/2509/PCI-II/5050 duted 29:07:2009 & order no. 8-33014/H-17/2009/PCI-II/2586dated Of 30 2012 under the Rules 11 of Hazardous Waste (M. H&TM) Rules 2006. road with various provision of CPA, 1986.
- 5.23 The industry should dispose the E-woste/Used Oil Waste Oil/Lead acid Batteries to authorized recyclers/re-processors only and also implement the fly ash rules and

SPECIFIC CONDITIONS [Whichever is applicable]

- 5.24 It shall be the responsibility /duty of the occupier or operator of a facility to take adequate steps while handling hazardous waste to contain contaminants and prevent accidents and their consequences on human and environment, and prevent person working on the site with information, training and equipment necessary to ensure their safety.
- 5.25 The occupier, importer, transporter and operator of the facility shall be liable for all damage caused to the evvironment or third party due to improper handling of the hazardous waste or disposal of the hazardous wastes.
- 5.26 The occupier and the operator of the facility shall be kable to pay financial penalties as levied for any violation of the provisions under Harardous Waste (Management, Handling and Transboundary Movement) Rues 2008 by the state pullution control board with the prior approval of the central pollution control board.
- 5.27 In case of transportation of hazardous waste through a state other than the state of origin or destination the occupier shall intimate the concerned state pollution
- 5.28 in case of Transport of Haz. Wastes for final disposal to a facility for treatment. storage and disposal existing in a state other than the state where he Hazardoux waste is generated, the occupier shall obtain "No Objection Certificate" from the State Pollution Control Board of both the states.

5.29 GENERAL CONDITIONS:

- 5.30 Adequate plantation shall be carried out all along the periphery of the industrial premises
- 5.31 The applicant shall have to submit the returns in prescribed form regarding water consumption and shall have to make payment of water cess to the Scard under the
 - 5.82 to use of charge of comership/management, the name and address of the new inwners/partners/directors/proprietor should ammediately be intimated to the
 - 5.33 The applicant shall however, not without the prior consent of the Board bring into use any new or altered outlet for the discharge of effluent or generous emission or De Blumana Barrina amunin de B

GUJARAT POLLUTION CONTROL BOARD

Sector 10-A. Gandhinagar 382010

Phone (079) 23226295

Fax (079) 23232158

tewage waste from the proposed isolaritial plant. The applicant is required to make applications to this Board for this purpose in the proposed in the propose

- provisions of the Water Att, 1976 the Air Art, 1981 and the Severement IProtection) Act, 1986.

 The concentration of Noise in Andrews Air within the premises of industrial unit.
- 5.34 The contentration of Noise in Assistant Air within the premises of industrial in thall not exceed following levels: Between B. MA area TD PM 25 dB (A)
- Between TII PM and 6 AM: 70 c8 (A)

 5.35 Applicant is required to comply with the manufacturing, Storage and import of Hazardous Chemicals Bules-1999 framed under the Environment (Protection) Act-
- 5.36 If it is established by any competent authority that the damage is caused due to their industrial activities to any person or his property, in that case they are obtiged to pay the consequentation at determined by the competent authority.
- 5.37 The applicant shall not carry out any activities or projects listed in schedule of the new EIA Notification dated 14/05/06 requiring prior Environment Clearance.
- 5.38 Industry shall have to display on-line data outside the main factory gate with regard to quantify and nature of learnedous chemicals being handled in the plant, including wastewater and air emissions and colid hazardous waste goodrafed within the factory premises.
- 5.39 Unit shall comply the Environmentally Sound Mercury Management in respect of compact fluorescent Trabe lightly with stringered measures should be followed by the units at the sene of disposal of Haz Waste motalning mercury in consunance with the standards and satisfactors.

For & On behalf of

(OD 3hima

(CHIRAG BHIMANI)

DY: ENVIRONMENTAL ENGINEER & UNIT HEAD G.PEB/CCA/ING-24(10)/ID 17221/ | 6.1 5 3 5 5 15 15 15 15 17

Issued to: M/s. AMBUIA CEMENTS LTD; SURVEY NO. 315 TO 320, 351 TO 352, 395 TO 410

PO :AMBUJANAGAR-362715 TALUKA- KODINAR DISTRICT JUNAGADH

Copy to: The Regional Offices, G.P.C.Bolard, Junapadh - With a request to carry-out monitoring sampling and inspection under the provisions of the Water Act. 1974, Air Act. 19816-LP Act 1986.

Clean Gujarat Green Gujarat

ANNEXURE A

List of Pharma Industry from which Spent Carbon/Spent Catalyst will be received by Amduja Cementi, Ltd. for Co-Processing in Cament 80n.

Sr.N O.	Source of Generation	Generation Quantity of Spent Earton Tons/Annum	Haz. Waste Category
1	Vital Heolth Care Plot No. 1416-31, GIDC Phase-31, Vapi	180	28.3
1	Mangalam Drus & Organics Unit - 1 Plot No. 187, 2" Phase, GIDL, Vap	156.6	28.2
3	Amusi Chem Pyt. Ltd. 8, 1/401-402-403- GGC Anklimhwai	48	28.2
4	Alembia Limited Alembia Road, Baroda	11	26.7
5	Wockhardf List. Plot No. 258 - GIDC Additional	24	28.2
6	Lupin Ltd., 124,GIDC Finally, Ankleshwai	1200	28.2
7	Glesmark Generics Ltd. Plet No. 3109 , GIOC Estate, Ankleshwar.		28.2
9	Bakul Pharma Private Limited, 6202 - GIOC Estate, AMbighted (993007	56.0	28.1
3.	Uninurk Remotiss Ltd. 45/43 GIDE, 1 ^{rt} Phase, Vapr. 396195, Dec. Vanset, Gujaras	22.0	26.3
30	Anuli Degenics Pvt. Ltd. Hut No. 322/4,40 Shed Area, ILIDC, Vapl 396/395	46.0	28.7
11	M/s Adem Pharmacounciès Block Scil A, ECPI, Road, Village -Gudhovia, Tal- Patra, Discfamula	5.0	29.3
17	Validations Pt. III., Pin No. 1730, Phase engine some Vape 196195, Out. Value. Govern	101-4	39.3
13	MVs Cadde Hosglecon Ltd., Plot No. 11. Ohabbase Lumoya Road: Valage-Dhabasa 3924-81, Tal. Padra Disk. Vadudara	5.4	28.7
54	MJs Alember Pharmacourteal Ltd., Plot No. S.No. 115,122,132,133 Village - Panelay, PO Tajouro, Tal. Habri 1993/50	AKO	28.2
15	M/LANJESS ALS POST-Aton, Dist Vivided, 396020	490.0	29.2
18.	M/s Cedils Healthhoare Ltd Plot No. 291 , Ltnll 1 GIDC Estatu, Arksteinum, Dist. Shanuch	15.7	38.2
Į.į	M/s CadRa Healthcare Ltd. Plot Ac. 5/1/8 ; Vine- II, GOC Estate Amileshwar, Disc. Rharuch	12.0	28.2
LB -	CTX Life Science Colourtee Industries Ltd. Block No. 272/P. GDC, Suchry, Surpl	163.67	26.2
	Tatal	3426.27	28.2

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector 10-A, Gandhinagar 382 010

Phone : (079) 23226295

Fax : (079) 23232156 Website : www.gpcb.gov.in

By R.P.A.D.

In exercise of the power conferred under section-25 of the Water (Prevention and Control of Pollution) Act-1974, under section-21 of the Air (Prevention and Control of Pollution)-1981 and Authorization under rule 5(4) of the Hazardous Waste (Management, Handling & Transboundry Movement) Rules-2008, framed under the Environmental (Protection) Act-1986.

And whereas Board has received CC& A application inward -no:105110 dated: 19/03/2016 for the Consolidated Consent and Authorization (CC & A) of this Board under the provisions / rules of the aforesaid Acts. Consents & Authorization are hereby granted as under:

CONSENTS AND AUTHORISATION:

(Under the provisions /rules of the aforesaid environmental acts)

To,
M/S. E-PROCESS HOUSE,
PLOT NO. 136/P-1, PHASE-II,
GIDC ESTATE, VAPI-396 195,
DIST: VALSAD.

- Consent Order No.: WH-78936, Date of issue: 16/05/2016.
- The consents shall be valid up to 31/12/2020 for use of outlet for the discharge of trade effluent & emission due to operation of industrial plant for manufacture of the following items/products:

Product	Quantity
Recycling & Refurbishing of E-Waste comprising of CPU, Monitor, Keyboard, Mouse, UPS, Power Chord etc.	350 MT/Year

3. CONDITIONS UNDER THE WATER ACT:

- 3.1 The quantity of trade effluent from the industry shall be Nil.
- 3.2.1 The quantity of Sewage effluent from the industry shall not exceed 400 lits/day.
- 3.3 Domestic effluent shall be disposed off through septic tank/soak pit system.
- 3.3 Unit shall be zero discharge. There shall be no GIDC drainage connection.

4 CONDITIONS UNDER THE AIR ACT:

- 4.1 There shall be no any flue gas emission.
- 4.2 There shall be no any process emission & any other ancillary from industrial process.

Clean Gujarat Green Gujarat

ISO-9001-2008 & ISO-14001 - 2004 Certified Organisation

4.3 The concentration of the following substances in the ambient air within the premises of the industry and at a distance of 10 meters from the source (other than the stack / vent with height of more than 9 meters from the ground level) shall not exceed the following levels:

Sr. No.	Pollutant	Time Weighted Average	Concentration in Ambient air in Microgram/m3
1.	Sulphur Dioxide (SO2)	Annual 24 Hours	50 80
2.	Nitrogen Dioxide (NO2)	Annual 24 Hours	40 80
3.	Particulate Matter (Size less then 10 mg) OR PM10	Annual 24 Hours	60 100
4.	Particulate Matter (Size less than 2.5 mg) OR PM2.5	Annual 24 Hours	40 60

- The industry shall take adequate measures for control of noise levels from its own sources within the premises so as to maintain ambient air quality standards in respect of noise to less than 75dB(a) during day time and70 dB (A)during night time. Daytime is reckoned in between 6a.m. and10 p.m. and nighttime is reckoned between 10 p.m. and 6 a.m.
- 5 GENERAL CONDITIONS:-
- Any change in personnel, equipment or working conditions as mentioned in the consents form/order should immediately be intimated to this Board.
- 6. AUTHORISATION FOR THE MANAGEMENT & HANDLING OF HAZARDOUS WASTES Form-2 (See rule 5 (4))
- 6.1 Number of authorization: WH-78936, Date of issue: 16/05/2016.
- 6.2 M/S. E-PROCESS HOUSE is hereby granted an authorization to operate facility for following hazardous wastes on the premises situated at Plot No. 136/P-1, PHASE-II, GIDC Estate, Vapi-396 195, DIST: VALSAD.

Sr. No.	Waste	Quantity	Schedule-I Process No.	Facility for disposal
1	Mercury -		II-A6	Collection, storage,
2	Halogenated Compounds of Aromatic Rings, E.G. Polychlorinated Biphenyls	1.45	II-A16	transportation, disposal at Common TSDF
3	Halogenated Aliphatic Compounds(Plastic mixture-PVC)	MT/Month	II-B11	Facility.

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector 10-A, Gandhinagar 382 010

Phone : (079) 23226295 Fax : (079) 23232156

Website: www.gpcb.gov.in

4	Lead and Lead Compounds		II-B4	Separation, Collection, Storage, Sell to Authorized smelters.
5	Ferrous Metals Scrap (Steel & Iron)	4.90 MT/Month		Separation, Collection, Storage, Sell to Authorized registered recyclers.
6	Non-Ferrous Metals Scrap (Copper & Aluminium)	4.60 MT/Month	parel barn	Separation, Collection, Storage, Sell to Authorized smelters.
7	Plastic Waste	4.35 MT/Month	21.1	Separation, Collection, Storage, Sell to Authorized registered recyclers/Co- processing in Cement Industry.

- 6.2 The authorization is granted to operate a facility for collection, storage within factory premises transportation and ultimate disposal of Hazardous wastes as mentioned in column 5 of above mentioned table.
- 6.3 The authorization shall be in force for a period up to 31/12/2020.
- 6.4 (a) The authorization is subject to the conditions stated below and such other conditions as may be specified in the rules from time to time under the Environment (Protection) Act-1986.
 - (b) Industry shall obtain registration for recycling/reprocessing.

6.5 TERMS AND CONDITIONS OF AUTHORISATION:

- a). The applicant shall comply with the provisions of the Environment (Protection) Act
 1986 and the rules made there under.
- b). The authorization shall be produced for inspection at the request of an officer authorized by the Gujarat Pollution Control Board.
- c). The persons authorized shall not rent, lend, sell, transfer of otherwise transport the hazardous wastes without obtaining prior permission of the Gujarat Pollution Control Board.
- d). Any unauthorized change in personnel, equipment or working conditions as mentioned in the authorization order by the persons authorized shall constitute a breach of this authorization.
- e). It is the duty of the authorized person to take prior permission of the Gujarat Pollution Control Board to close down the facility.
- f). An application for the renewal of an authorization shall be made as laid down in rule 7
- g). Industry shall submit annual report within 15 days and subsequent by 31st January every year.

Clean Gujarat Green Gujarat

- 6.6 Industry shall have to manage waste oil, discarded containers etc as per Amended Rules-2008 and shall apply Authorization for all applicable Waste as per Amended Rules-2008.
- 6.7 In addition to above terms and conditions Industry shall also comply following directives issued by the Supreme Court of India dated. 14.10.2003.
 - a) Industry shall have to display the relevant information with regard to hazardous waste as indicated in the Court's order in W.P. No.657 of 1995 dated 14th October 2003.
 - b) Industry shall have to display on-line data outside the main factory gate with regard to quantity and nature of hazardous chemicals being handled in the plant, including wastewater and air emissions and solid hazardous wastes generated within the factory premises.

For and on behalf of **Gujarat Pollution Control Board**

oppour

(Smt.D.P.Shah) **Environmental Engineer**

Dute: 06/06/2016

NO: GPCB/NOC-VSD-1658/ID:26984/35 8.2.37

Issued to: M/S. E-PROCESS HOUSE, PLOT NO. 136/P-1, PHASE-II, GIDC ESTATE, VAPI-396 195, DIST: VALSAD.

Saurashtra Enviro Projects Pvt. Ltd.

Integrated Common Hazardous Waste Management Facility

-Site: R. S. No. 415,417 & 418, Village: Juna Katariya. B/h. Gail Pump Station, Samakhiyali-Randhanpur Highway, Taluka: Bhachau, Dist - Kutch.

Ph.: +91-261-2351248, 2346181, 6452205 Fax: +91-261-2354068 E-mail: info@sepplindia.com Website: www.sepplindia.com

Certificate

Certificate No: CSA140

To Whomsoever it may concern

This is to certify that

ADANI PORTS & SPECIAL ECONOMIC ZONE LTD

PORT, AT.MUNDRA

KUTCH

is a valid member of

SAURASHTRA ENVIRO PROJECTS PVT. LTd.

for Integrated Common Hazardous Waste Management Facility.

This membership is valid for a period of

5 Years

Date of issue

06/02/2014

For, Saurashtra Enviro Projects Pvt. Ltd.

Date of expiration

05/02/2019

Place of issue : Surat

Director/Authorised signatory

SUBJECT TO SURAT JURISDICTION

Certificate

Certificate No:

CPAW1A0048

To Whomsoever it may concern
This is to certify that
ADANI PORTS AND SEZ LIMITED

3RD FLOOR ADANI HOUSE, P.O.BOX NO.1, MUNDRA,

is a valid member of

Recycling Solutions Private Limited

for Alternate Fuel Resource Facility.

This membership is valid for a period of

10 Years

Date of issue

14/04/2016

Date of expiration

Place of issue

13/04/2026

Panoli

For, Recycling Solutions Private Limited

Director Ayetiorised signatory

Waste Information :			
SrNo Type Of Waste	Sign Qty (TPA)	SrNo Type Of Waste	Sign Qty (TPA)
1 OILY SLUDGE	200.000	2 PIG WASTE	24 .000
		Total Sign Qty (TPA) :	224.000

SUBJECT TO BHARUCH JURISDICTION

Annexure – 3

Details of Greenbelt development at APSEZ, Mundra

	Total Green Zone Detail Till Up to Sep - 2018				
	Area (In Ha.)	Trees (Nos.)	Palm (Nos.)	Shrubs (SQM)	Lawn (SQM)
SV COLONY	69.43	32480.00	7298.00	68327.00	95019.00
PORT & NON SEZ	78.98	137642.00	18395.00	76666.78	58905.18
SEZ	114.70	227835.00	17302.00	220449.60	27462.03
MITAP	3.47	8622.00	66.00	3340.00	8072.00
WEST PORT	86.04	186827.00	51342.00	24112.00	22854.15
AGRI PARK	8.94	17244.00	1332.00	5400.00	2121.44
SOUTH PORT	14.25	25530.00	3470.00	3882.00	3327.26
Samudra Township	53.39	44872.00	11818.00	19978.07	35071.67
Productive Farming (Vadala Farm)	23.79	27976.00	0.00	0.00	0.00
TOTAL (APSEZL)	452.98	709028	111023	422155.45	252832.73
		820	0051		

Details of Mangrove Afforstation done by APSEZ

SI. no.	Location	Area (ha)	Duration	Species	Implementation agency
1	Mundra Port	24.0	-	Avicennia marina	Dr. Maity, Mangrove consultant of India
2	Mundra Port	25.0	-	Avicennia marina	Dr. Maity, Mangrove consultant of India
3	Luni/Hamirmora (Mundra, Kutch)	160.8	2007 - 2015	Avicennia marina, Rhizophora mucronata, Ceriops tagal	GUIDE, Bhuj
4	Kukadsar (Mundra, Kutch)	66.5	2012 - 2014	Avicennia marina	GUIDE, Bhuj
5	Forest Area (Mundra)	298.0	2011 - 2013	Avicennia marina	-
6	Jangi Village (Bhachau, Kutch)	50.0	2012 - 2014	Avicennia marina	GUIDE, Bhuj
7	Jakhau Village (Abdasa, Kutch)	310.6	2007-08 & 2011-13	Avicennia marina, Rhizophora mucronata, Ceriops tagal	GUIDE, Bhuj
8	Sat Saida Bet (Kutch)	255.0	2014-15 & 2016-17	Avicennia marina & Bio diversity	GUIDE, Bhuj
9	Dandi Village (Navsari)	800.0	2006 - 2011	Avicennia marina, Rhizophora mucronata, Ceriops tagal	SAVE, Ahmedabad
10	Talaza Village (Bhavnagar)	50.0	2011-12	Avicennia marina	SAVE, Ahmedabad
11	Narmada Village (Bhavnagar)	250.0	2014 - 2015	Avicennia marina	SAVE, Ahmedabad
12	Malpur Village (Bharuch)	200.0	2012-14	Avicennia marina	SAVE, Ahmedabad
13	Kantiyajal Village (Bharuch)	50.0	2014-15	Avicennia marina	SAVE, Ahmedabad
14	Devla Village (Bharuch)	150.0	210-16	Avicennia marina	SAVE, Ahmedabad
15	Village Tala Talav (Khambhat, Anand)	100.0	2015 - 2016	Avicennia marina	SAVE, Ahmedabad
16	Village Tala Talav (Khambhat, Anand)	38.0	2015 - 2016	Avicennia marina	GEC, Gandhinagar
	Total Mangrove Plantation:	2827.9	0 Ha		

Annexure - 4

SIX MONTHLY REPORT 2018-19

Adani Foundation, Mundra

Adani Foundation

Adani House, Port Road, Mundra – Kutch 370 421 [info@adanifoundation.com] [www.adanifoundation.com]

	CORE AREA	
1	COMMUNITY HEALTH	3
	Mobile Van and Rural Clinics Health Card to Senior Citizen Suposhar Suport for Medical Aid to Deprived Health Camps Gujrat Adani Institute of Medical Sciences Shakti Raksha Project Arogya Saptah	
2A	SUSTAINABLE LIVLIHOOD DEVELOPMENT - FISHERFOLK	17
	Vidya Deep Yojana Vidya Sahay Yojana – Scholarship Support Machhimar Arogya Yojana Machhimar Kaushalya Vardhan Yojana Machhimar Shudhh Jal Yojana Machhimar Ajivika Uparjan Yojana Solar Tent Dryer Event (Cricket league) Drive for Technology to use in agriculture Food for cattle –Towards Sustainability Women Empowerment Projects Project Savavlamban	

	CORE AREA	
3	EDUCATION	30
	Project UTHHAN Praveshotsav and other events Mothers meet UDAAN Adani Vidya Mandir Bhadreshwar	
4	Sujiam Sufiam Jal Abhiyan Participatory Ground Water Management Project "Sanrakshan" Project "Drip Irrigation"	39
4	RURAL INFRASTRUCTURE DEVELOPMENT	46
5	ADANI SKILL DEVLOPMENT CENTRE	48
6	SWACHHAGRAHA	52
7	EVENTS	53
8	CASE LEADS	57
9	BENEFICIARIES DETAIL	61
10	BUDGET UTILIZATION	64
9	MEDIA NOTE	64

2

Adani Foundation has pioneered several innovations under its Health Programme in Mundra, Kutch. These innovations comprise of new methodologies to address the different aspects of health needs among the most marginalized communities, especially Malnourished Children, Women and Senior Citizens.

Committed to "Health for All" the Foundation runs Mobile Health Care Units, Rural Clinics, Special Innovative Projects i.e. Health Card to Senior Citizens, Fighting to Malnourishment Suposhan" Project, Dialysis Project and Variety of Health Related Camps.

elistra

eli

ity Health

Mobile Dispensaries & Rural Clinics

The population of Mundra block is spread over various villages. Due to inadequate transportation facilities, the villagers have to face many hardships even for reaching to the doctor in case of common diseases. The medical expenses and zero earning per day add surplus to their

To help them in the above mentioned health related problems, the service of mobile medical van has been started by the Adani Foundation in Mundra block. In big villages, rural dispensaries have been started

considering their population and area.

The Adani Foundation runs two mobile health care units. Main objective of Mobile Van is to reduce travel time, hardships and expenses. Two mobile health care units cover 34 villages and 05 fishermen settlements. Around 113 types of general and life saving medicines are available in these units. It has turned out to be a boon for women and children as the service is availed at their door - step.

	MHCU Month wise Data-2018/19		
1	April	1508	
2	May	1397	
3	June	1236	
4	July	1523	
5	Aug.	1512	
6	Sep.	1796	
	Total	8972	

4

Vi	Village wise OPD Data-2018/19		
1	Tunda wandh	699	
2	Siracha	1928	
3	Navinal	896	
4	Luni	3283	
5	Vadala	503	
6	Bhadreshwar	716	
7	Labour colony	53	
8	Tunda	394	
9	Tuna anjar	135	
10	Wandi	780	
11	Rampar	292	
12	Tragadi Bandar	428	
13	Rangoli	378	
	Total	10485	

The Adani Foundation operates Rural Dispensaries in 08 villages of Mundra block, 03 villages of Anjar block and 01 village of Mandvi block along with one at Rangoli gate. At these dispensaries, health services are provided free of charge for two hours daily by a doctor and a volunteer.

Details of transaction		
1	April	828
2	May	840
3	June	809
4	July	962
5	Aug.	836
6	Sep.	862
	Total	5137

Health Cards to Senior Citizens

The major junctures of human life are - childhood, adulthood and old age. The first phase is well looked after by the parents and second phase is of self-reliant but the last phase is a dependent one. The needs of old people are less looked after. When people become old, they start living a life of aloofness and solitude. Therefore, the Adani Foundation has started the Adani Health Programme for the aged to look after their health. To address the health care issues related to ageing, AF launched a 3 year long pilot project – 'Adani Vadil Swasthya Yojna' on 20th February 2011 at Mundra and further extended the same for the next three years i.e. up to 2017. Under this Programme, the individuals aged 60 years and above are benefitted. Health Cards are issued to them with the purpose of providing adequate and timely treatment. The families consisting of aged ones with a yearly income of Rs. 2 lacs or more get a Blue Card. The Blue Card holders can avail diagnosis facility and treatment at a subsidized rate in the Adani hospitals, Mundra. The families with a yearly income of less than Rs. 2 lacs are issued a Green Card. Green Card holder aged people get treatment for illness in Adani hospitals, Mundra with an aid up to the limit of Rs. 50,000/- within a period of 3 years.

<u>During the six months 2018-19, total 5137 transactions were done by 8518 card holders of 66 villages of Mundra Taluka</u>. They received cash less medical services under this project. In Green Card category, 6139 aged people got treated for various illness & diseases at Adani hospitals, Mundra with an aid up to a limit of Rs. 50,000/- within the period of 3 years.

The 763 Blue Card Holders can avail diagnosis facility and treatment at a subsidized rate in the Adani hospitals, Mundra. Scheme is continue since seven years The third phase of this scheme was started in last year. The limit for the beneficiary was set to 30000/within a period of 3 years, the senior citizens get emergency medical care at Adani Hospital, Mundra and they are referred to GAIMS

6

Implementation Strategy

Base line data was provided for Mundra Taluka in initial phase of Project.

Total Number Anganwadi in the selected area

- Information on Sub-centers/ Primary Health Centers/ Community Health centers/ Referral Hospitals
- Availability of Healthy worker- male & female both, ANMs, LHVs, Doctors, specialists such as Gynecologist, Pediatricians, Pharmacist, Dietician Lab. Technician, Nursing Staff etc. at above centers (Number & names with contact details)
- Selected areas' Birth rate, Death rate, Infant Mortality Rate, Mother Mortality Rate, Sex ratio, Child Sex ratio against district, state and national average
- Total number of beneficiaries and against that enrolled beneficiaries at Anganwadi/ICDS: 0-6 year children, Adolescent girls, pregnant women and lactating mothers
- Identified malnourished and anemia children/ adolescent girls and women (numbers & name as well as current level of malnutrition & anemia with dates- Base Line data)
- Current Inputs provided through the Government machineries
- Other services available through CBOs, NGOs etc.- Details of inputs and contact details of those organizations
- Understanding & Listing of area specific cultural and behavioral barriers

Role and Responsibility of Adani Foundation

Health Checkup camp

- Awareness activity : Focused Group Discussion
- · Capacity Building of Sangini
- · Home visit
- · Health related sessions
- Financial support provide for better treatment
- Doctor services provided (Pediatric, Gynec, Dietitian)
- · AF provides Nutritional Food Support

Suposhan

Malnutrition amongst Children, Adolescent girls and Women in India is an alarming phenomenon. (In India: 48 % or 54 million children under-five years were stunted. India accounted for 33 % of stunted children in the world. As per Global Nutrition Report released recently, Children below five years- 38.7 % Stunted and 15.1% are wasted. 69.5% children6-59 months old, 55.8% adolescent girls aged 15-18 years, 55.3% women aged 15-49 years have Anemia. Moreover anemia prevalence in pregnant women is as high as 58.7%) Curbing Malnutrition was part of Millennium Development Goals and again focused through second and third Sustainable Development Goals on Zero hunger and Good Health & Wellbeing respectively.

During this half year, anthropometry study done for 2020 children. Total 6 children became free of malnutrition due to efforts under "Suposhan" Project. Additionally, 6288 FGD were conducted during this year.

Total 8770 hemoglobin screenings of RPA woman and adolescent girls was carried out. Which helps in controlling anemia in women and indirectly malnutrition.

Suposhan Saptah

The birth of a healthy newborn child is determined by the health of the mother. Mother's health, in turn, has its basis on her health status during adolescence. The health of a society, as a whole, thus depends on the health of the women, in all stages of their lives. Adani Foundation acknowledges this field of health and aims to address women's health, through their entire life cycle. These efforts have culminated in Project Suposhan, Adani Foundation Health initiative. Project aims to generate awareness in communities and facilitate the strengthening of the health systems and healthcare delivery platforms, with a specific focus on the mother and child. Project focuses on increasing health literacy in communities for mothers, child and adolescent health services through trained community health workers (Sangini), creating effective referral linkages to higher services. SuPoshan "Food Guidance Week" celebration systematized in all 61 villages in Mundra Taluka from 13th Nov - 20th Nov. Suposhan Food competition was organized in coordination with ICDS block and Supervisors, Sarpanch, ASHA workers and women leaders. The reason behind celebrating "Suposhan Food Guidance Week" is to make people aware about the importance of nourishment so that everyone is able to live healthy life. It involves community by . The importance of Nutrition and Balanced Diet · Importance of locally available food. · Preparing own variety nutritious dishes, · Folk songs on nutritious, · Slogans with actions, · Spreading awareness on different schemes, · Vaccination · Kitchen garden and · Exclusive Beast Feeding

Support for Medical Aid to Deprived

The scope of the organization extended up to providing best health care facilities to the needy, poor, challenged and not so well-to-do families for the treatment of illness and diseases. It is not always possible to predict the medical expenses. Moreover, those who are economically not so sound, become indebted for lifetime in case of certain illnesses. Therefore, Adani Foundation provides primary health care and financial assistance for ailments such as kidney related problems, paralysis, cancerous and tumor surgeries, neurological and heart problems, blood pressure, diabetes etc.

During six months, month we organized two medical examination camps in which Medical Support was given to 485 People from Mundra, Bhadreshwar, Zarpara, Shekhadia Nana Mota Kapaya, Bhujpur, Vadala, Wandi and other villages under our work area.

	Medical Supports		
1	April	103	
2	May	65	
3	June	54	
4	July	65	
5	Aug.	97	
6	Sep.	101	
	Total	485	

Gujarat Adani Institute of Medical Sciences

Gujarat Adani Institute of Medical Science is the first Medical College of Kutch region. It started in partnership with Adani Group and Government of Gujrat in the year 2009. This college was affiliated by the Medical council of India in the year 2014 for the MBBS with 150 seats per year. Gujarat Adani Institute of Medical Science is affiliate with the first digital university "Krantiguru Shyamji Krishna Verma Kutch University". In GAIMS, currently 750 students are studying, The GAIMS Medical College is situated in heart of Bhuj city on a large plot of 27 acres.

A teaching hospital (G K General Hospital) with 700 beds is established with GAIMS in which patients of Kutch are getting subsidized medical facilities. The Hostel facility is also available for the students in the campus only. The accommodation facility is given to the staff of GAIMS.

12

Health Camps

Various health camps are organized at regular intervals to meet the specific requirements of the community. Screening camps are organized regularly as per the route map planned in coordination with Adani Hospitals. During the year 2018-19, 11 Specialty camps were organized and 1636 Patients were benefitted.

10

	General Health Camp & Surgical Camp				
Sr.no.	Month	Date	Place	Villages Name	Total Patinets
1	Apr-18	28.04 to 29.04.2018	Jat Malek Muslim & Maheshari Samuha Sadi At Mundra	Mundra	178
2	Jun-18	26.06.2018	Malaria Camp Sukhpar Mundra	Mundra	36
3	Jul-18	17.07.2018	Karva E Mustfa Hospital Health Camp	Mundra	50
4	Jul-18	21.07.2018	Mahesh Nagar Primary School	Mundra	190
5	Jul-18	30.06.2018	Muslim Jamat Samuh Sadi, Luni	Luni	40
6	Aug-18	11.08.2018	Rotary Hall, Mundra Surgical Mega Camp	Mundra	185
7	Aug-18	28.08.2018	Mithani Labour colony Health camp	Dhrub	80
8	Sep-18	22.09.2018	Shri Swaminarayan Mandir-Baroi Boad	Baroi	191
9	Sep-18	24.09.2018	Mithani Labour colony Health camp	Dhrub	105
10	Sep-18	26.09.2018	Jain Derasar, Oshwal Seri	Mundra	56
11	Oct-18	02.10.2018	Bava Gor Pir Uras Luni	Luni	525
	Total 1636				

Urinary stone – Dialysis Treatment

Drinking water of Mundra contains high Fluoride (amount of salt). Hence, the proportion of patients with urinary stone and kidney failure is more. A project for patients who need dialysis is thus initiated so that the poor patients can receive the treatment at subsidized rates in the nearby, well-equipped hospitals. The main objective of providing dialysis treatment is to help the extremely needy patients to live a healthy life. Total 3 Patients were being supported for regular dialysis (twice in a week) by participatory approach.

	Mpw's Village Meeting		
Sr. No	Month	C.M. Meeting	MPW Meeting
1	April	0	0
2	May	7	18
3	June	6	13
4	July	5	12
5	August	4	16
6	September	3	11
	Total	25	70

	Death Body Van Data			
Sr. No	Month No. of Deatl			
		Body		
1	April	34		
2	May	55		
3	June	42		
4	July	46		
5	August	30		
6	September	50		
	Total	257		

- Adani Foundation Team has initiated coordination with GKGH hospital since 2014 and established a reception area for the smooth patient coordination and preparation for the social networking program.
- Adani Foundation organized General Health Camps and Speciality Camps in various interior villages of Kutch in coordination with GKGH which created magical impact and benefitted 3335 patients. Adani Foundation Bhuj Health team has also organized more than ten awareness camps and village level meetings at 293 villages of Kutch regarding services of GKGH.
- Dead body medical van Dignity to death is one of the noble initiatives taken up by the Adani Foundation. If any death occurs in GKGH, dead bodies are shifted to the native village of the concerned in the Kutch District free of cost. Total 257 dead bodies privileged till now to different locations in Kutch.

Shakti Raksha - Preventive and Curative Breast and Survical Cancer

Adani hospital Mundra, Taluka health office, Indian Red Cross society and Adani foundation has initiated Shakti Raksha Project in which special gynecologist camp for detection of breast n survival camp and thalassemia testing for pregnant women at CHC MUNDRA. In first phase we have covered all PHC and susceptible cases has been referred for pep test and mammogram at CKGH, Bhuj.

In this project we have covered 103 villages of Mundra and Bhuj this year with curative measures. Most medicine will provided by Taluka health office.

We have covered total 569 patients and 106 cases were referred to GKGH Bhuj. In which one case diagnosed with breast lump (not malignant).

Brest & Cervical Cancer screening and Thalassemia testing camp Thalassemia Total Referred Date Gynec Beneficiary testina Patients 1 09-06-2018 Mundra CHC 62 34 118 25 2 12-06-2018 Zarpara PHC 26 6 32 5 3 | 14-06-2018 | Moti Bhujpur PHC 54 15 86 18 42 11 53 4 21-06-2018 Mota Kandagara PHC 10 12 5 | 25-06-2018 | Nani Tumbadi PHC 14 69 6 28-06-2018 Vanki PHC 48 55 8 7 03-07-2018 Ratadiya PHC 79 11 90 17 11 8 05-07-2018 Bhadreshwar PHC 52 14 66

418

Total

112

Glimpse of Arogya Saptah

16

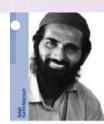
14

569

106

Arogya Saptah (8th - 14th August 2018)

Adani foundation, Adani Hospital and GAIMS have Jointly Celebrated "Arogya Saptah" 8th to 14th August-2018 in Respect of 72th Independence of our country. Celebration included multi specialty camps, Workshops, truckers health check up, surgical camp on foundation day and adolescent fair at different part of district. Collector, DDO, Minister, MLA and other dignitaries from NGOs had remained present. Objective of the program was to avail health benefits at GKGH and also at Adani Hospital Mundra and Approximately 4500 people will be direct beneficiaries of the program.


Day	Date	Event Name	Detail about Event	Beneficiaries
1	8 th August 2018	Specialty Mega Camp	Specialist doctors i.e. Gynaecologist, Paediatrician, Nephrologists and general surgeon from GKGH had extended their services.	218
2	9 th August 2018	Cervical/Brest cancer Screening & Awareness camp	In SOS gada village screening camp organize with preventive awareness session. 17 women critically suggested for further check up at GKGH.	113
3	10 th August 2018	Haemoglobin Testing camp	Haemoglobin testing and awareness for de warming of 917 adolescent girls at Rapar village.	917
4	11 th August 2018	Surgical Mega Camp, Mundra Roa accident Awareness programme, Nakhtrana	Specialist Doctors from Adani hospital Mundra and Medical officers of Adani foundation had extended their services. On occasion of Adani foundation ay session for Road accident awareness and safety including primary health check up camp was organized at Nakhatrana.	223 172
5	12 th August 2018	Class-4 Staff CPR and first aid training	Class-4 Staff CPR and first aid training was organize in campus of G K general hospital for capacity building of staff and their motivation.	181
6	13 th August 2018	Adolescent fair, Gadhashisha	Adolescent fair was organized at Gadhashisha high school in which lady gynaecologist had cleared doubts of the adolescent girls and given information.	170
7	14 th August 2018	Asha Worker workshop	Capacity building workshop was organized for ASHA workers of urban and rural bhuj.	150

Empowering lives and broadening their scope for economic opportunities, Adani Foundation's initiatives introduced under 'Sustainable Livelihood Development Program', have been founded on community based approaches.

Under this programme, we associated our self with Fisherman community, Farmers and Women groups.

Adani Ports and SEZ Limited started its business in 1996. When APSEZ started port operations, fishing community was found deprived and in a perpetual state of poverty. They were living a scattered life. Unavailability of roads, pure drinking water and unhygienic living conditions had made their lives tragic and miserable. We thought we could not achieve our goal of development unless and until we support them to uplift the living standard of the people of this community. After inception of CSR arm of the Adani Group – Adani Foundation in 1996, a strategy based on priorities and continuous and comprehensive socio-economic development and reforms for the fishing community was planned.

With the Foremost objective to improve living standards of Fisher-folk, Adani Foundation protracted support in Education, Health, Sustainable Livelihood and Rural Infrastructure Development Sectors.

Namda is a sheep wool feiting craft which is one of the oldest crafts of Inc.

There is only one artisan currently practicing this craft in Mundra, Gujarat.

97

Education

Education is one of the most important stepping stones to bring about a unified development in any community. The Adani Foundation, through its rigorous surveys and assessments, could understand that it was education which should be taken up to bring about a real change in the status of the fisher folk communities. Following are some of the major education initiatives taken up by the foundation:

	Balvadi		
Sr.	Village & Bandar	Children	
1	Juna bandar	55	
2	Luni	25	
3	Zapara-Chhacha	28	
4	Bavadi bandar	30	
	Total	138	

Vidya Deep Yojana

Vidya Sahay Yojana-

Scholarship Support

Participatory scholarship support for fisherman children studying in SMJ high

school Luni and to above 12th standards

Students . 80 percentage support given

by Adani foundation and 20 percentage

support by parents! They willingly agree

for the same.. We also encourage them

for technical education for good job

opportunities.. Total 66 students has

been benefitted, among them 51

students from 9 to 12 standard and 15

students from BA,B.ed,LLB. On this

occasion more than 300 students &

were

present

parents

A great amount of efforts were put in developing school preparedness programmes by empowering 'Balwadis' at Fisher folk settlements. Under the Machhimar Vidya Deep Yojana, Adani Foundation constructed four Balwadis for kids between the age group of 2.5 years to 5 years at different settlements. The programme is inclusive of nutritious food, awareness on health, hygiene, cleanliness, discipline, regularity and development of basic age appropriate concepts.

18

Machhimar Arogya Yojana

A healthy person can work well and earn for his family. Hence it is necessary to provide medical facilities to cure and prevent them and to provide then the treatment of diseases prevailing among the people specially women; children and elderly person, especially due the lack of balanced nutritious diet.

Mobile Health Care Unit - the mobile dispensaries have been run by the Adani Foundation since 2009. The mobile dispensary is available not only in the Vasahats/Settlements but also near the coast where the fishermen, can avail the facilities as and when needed. Total average 247 fishermen were benefitted by Mobile Dispensary during last half year.

- Apart from this, a number of subsidiary initiatives such as health awareness camps, medical check-ups, etc. are conducted by the Adani Foundation at frequent intervals, to provide the fisher folk community with the much needed and required information and assistance.
- Medical Financial Support –Adani Foundation has extended financial assistance to more than 73 financially challenged patients from the Fisher Folk Community in case of medical urgency during this year.
- 3. Health Card for Senior Citizen Project This is one of the major and prominent and the most innovative project of the Adani Foundation. Under this scheme Health Cards were given to the to Senior Poverty Stricken Citizens to provide them financial support to combat with their health related needs. The project for the senior citizens is popularly known as Vadil Swasthya Yojana and till date 165 senior citizens from fisher folk community are enrolled in the scheme. Most of them keep these cards in their wallets with other important documents and cards.

20

Machhimar Shudhh Jal Yojana

This scheme of providing potable water has helped in reducing the drudgery of women and contributed largely towards general wellbeing.

Water tank platforms have been constructed and tanks have been set up in order to provide clean potable drinking water to the community. Daily 1.18.000 Litres of water is supplied at different settlements.

Potable Water		
Sr.	Vasahat	Total liters/ day
1	Juna Bandar	30,000
2	Luni Bandar	15,000
3	Randh Bandar	25,000
4	Bavadi Bandar	15,000
5	Veera Bandar	10,000
6	Ghavarvaro Bandar	8,000
7	Kutdi Bandar	15,000
	Total	1,18,000

Linkages with various Departments

Coordination with coast guard, Marine Department and Fisher folk for smooth Port operations Regular Meetings with fisherman for various innovate technology for fishing

Machhimar Kaushalya Vardhan Yojana

Apart from providing formal education, special programmes were conducted to enhance youth employability. Based on the need of assessment, a number of trades were introduced by the Adani Skill Development Centre in Mundra, where the fisher folk youth could join and get vocational training for a number of technical and non-technical skills. 20 women took part in Dori work training at Navinal and 19 women took part in Dori work at Juna Bandar.

Sr.	Course Name	No of
No		Students
1	Dori work ,Juna Bandar	19
2	Dori work, Navinal	20
3	Checker Cum RTG Crane	03
	Operator	
	Total	42

Machhimar Ajivika Uparjan Yojana

The 'Ajivika Uparjan Yojana' was implemented to promote and support alternative livelihoods among the Fisher folk communities during the nonfishing months. The Foundation introduced 'Mangrove Nursery Development and Plantation' in the area as an alternate income generating activity for the people of the region. Both men and women received training on Mangrove plantation, moss cleaning, etc. as per requirements. The Foundation provided them with employment equivalent to 5201 man-days. In addition to this, employment worth of 34727 man-days has been provided till date. The Foundation has also supported Pagadiya fishermen as painting laborers by providing them with employment and job in various field.

Innovative Project: Solar Tent Dryer

CIFT (Central Institute of Fisheries Technology) has been conducting a prototype study on Solar tent dryers with improved technology at their head quarters in Kochi, which is expected to be completed within a span of another three months. They may be able to upscale or replicate the technology once the study is completed. In all probability, they will provide the designs for the solar tent dryer for drying Bombay duck and / or Acetus Indicus with financial estimate by the first quarter of next year. Meanwhile the team from the HQ and Veravel centre can visit Mundra region for initial site visit and feasibility studies. CIFT requested our team to visit CIFT HQ at Kochi during coming months to assess the prototype model and understand more on other CIFT developed hybrid dryers

22

consistent betterment in livelihood sector. The organization has carried out remarkable activities in the agricultural and animal husbandry sectors.

Adani Foundation puts efforts in Mundra block for

Drive for Technology to use in agriculture

- · We have initiated Programme for Awareness of Farmers in collaboration with KVK. The outreach is approximate 67 farmers of 5 villages
- · The purpose of this project is to initiate village wise integrated agricultural & allied development for sustaining agriculture and socio economic situation of farming community of Mundra block.

Agriculture Programme		
Sr.no Village Name Member		
1	Zarapara	21
2	Zarapara	15
3	Siracha-	16
4	Navinal	15
		67

Fisherman Cricket league

Adani foundation, MUNDRA organized Cricket Tournament " Sixth Adani Premiere League among Fishermen community to promote healthy Sportsmanship and harmonically transparent relationship. The Tournament had been played for 13 days at SVC (Shanti Vihar Cricket Ground) by 6 matches per Days with full of Audience, Total 65 Teams with 780 Fishermen youth were participated with 550Rs. Contribution per teams from Mundra, Anjar and Mandyi Block. The Final Match was played on 9.07.2018 and Pir Saheb (Religious Mentor), Rakshit sir (Executive Director- APSEZ), Dr.A.k Vatsani (Deputy collector ,Bhuj) Mr. Mahesh Dafda (Assistant Director of Fisheries, Bhuj), Mrs. Pankti Shah(Unit CSR Head) .AF staff and Fishermen Leaders remained present. The Final Match was so interesting and Salaya team becomes winner over Luni Team and more than 1200 Audience from various villages were present. The winner's trophy, Runners-up Trophy, Man of the Series, Man of the Match, Best Baller, and Best Bats-Man Trophy has been given to the Respective Teams and players. The 25000Rs, 15000Rs, 2100Rs, 1100Rs, and 500Rs, 500Rs Prize given to the above Respective Teams and Players from the Teams contribution.

Fodder Cultivation

The organization provides fodder during the time of scarcity and the last 3 months of summer every year. During this period, fodder is regularly sent to every village with the help of the local people. This has given stability to the families who earn their livelihood through animal husbandry.

In order to meet the demand of fodder, the Adani Foundation purchases it from the regional farmers. This gives them fair rates in return

This year we have given 1,08,000 man fodder worth Rs. 205.00 Lacs approximately.

We have to find out Sustainable Solution for Fodder Cultivation

Fodder is the main issue as rainfall is very less in this region. Adami Foundation is working intensively in direction of fodder sustainability in three ways

1.Individual Fodder Cultivation Support - NB21 demonstration - Supported 140 Farmers of Dhrub and Zarpara

2.Drip Irrigation support Linkages with Fodder - First phase we will support drip irrigation in 22 villages and this linkages will help to convince them for NB21 at least in one acre land

3. Village Level Fodder Cultivation: Participatory Approach

(a) Winter crop Cultivation – Support to Individual (Supported for seeds of Makai for 200 acre land)

(b) Winter Crop Cultivation - Support to Group of Farmers

Project Swavlamban

Project Swavlamban Launched with blessings of differently abled people of MUNDRA TALUKA.

Our objective is

- To increase awareness about Government schemes for Divyang people, widows and senior citizens and coordinate them with Social Welfare Department, GoG
- After getting income generation equipment support Proper training provision to make them self-reliant in true sense!! In launching ceremony, Dy. Collector Kutch, Jilla social welfare officer and TDO MUNDRA will remain present.
- Adani Foundation is playing the role of facilitator in case of tie up with Government Scheme for Widows, Senior Citizens and Handicapped people. The identity cards are issued for the handicapped in coordination with Bhuj Samaj Suraksha Khata which is beneficial for them to get specific kit for their disability type.
- The financial benefit of the senior citizen Yojana is Rs. 500per month and the widow scheme is of Rs. 1000 per month. Jilla Samaj Suraksha Officer and team remain present every time.

No	Туре	Beneficiaries	Financial benefit	
1	Disabled	409	10,00,000	
2	Widow	92	3,25,000	
3	Senior Citizen	32	1,75,000	
	Total	533	15,00,000.00	

26

Women Empowerment Projects Step towards socio economic development

No	Village	Group	Members	Saving Amount	Work
1	Mota Kandagra	Jay Mekran	18	100	Stitching
2	Mota Kandagra	Jay Momai	10	200	Stitching
3	Navinal	Vishwas	14	100	Stitching/Dori
4	Navinal	Chamunda	10	100	Phynayle making
5	Baroi	Adhar	12	100	Perishable items
6	Sadau	Vishwasi	16	100	Dhadki, Frames
7	Shekhadia	Sonal	12	200	Washing Powder
8	Mota Kapaya	Tejasvi	10	100	Eco friendly bags
9	Mundra	Meghdhanushya	18	100	Mud work
			112	1100	

28

Women

Empowerment Projects

Women Empowerment Projects

- In Kutch, the situation of women is miserable. Women are totally dependent on male members of family for their needs.
 Consumption of liquor is one of the main culprits in Kutch.
 Due to this evil prevalent among men many women are suffering.
- Considering this situation, We have started our training program with two major women's group of Villages near Adani Power and Adani Ports. Both the groups of women (120 women in total) successfully completed their training for preparing washing powder, phenyl, liquid for cleaning utensils and hand wash etc.
- We have selected 12 women groups having 10 members each, as per their ability for different work i.e. accounting, banking, leadership, marketing, administration etc.
- As a further step to bring sustainability, we thought to start a shop "Saheli Mahila Gruh Udyog" at Shantivan Colony after discussion with the Administrative Department of Ports and Power regarding the supply of the material, rate etc.

Glimpse of Women Empowerment Projects

SHG Meetings in various Villages regarding record check, Loan, Interest detail also collect information for their hidden Skill.

27 29 100

Education Initiative of Adani Foundation signed an MoU with Maa Foundation, Vapi and adopted four major projects from them. The list of the projects upto October 2014-15 was:

<u>Project Uthhan:</u> Adani foundation has been promoting various educational and human initiatives in education, community health, sustainable livelihood and Rural Infrastructure.

In this context with an aim to enhance the quality of primary education in Kutch district, Adani foundation adopted 17 government school located at Mundra Taluka under the project 'UTTHAN' a drive of quality education.

Adani foundation is expected to achieve visible and measurable important in scholastic area.

Adani foundation will be focusing to bring the positive evidences of change in the personal, behavior and academic development of the students.

Beneficiaries of "Utthan"

· Children of class 1st to 7th standard in 17 government schools will be the beneficiaries of this project

Implementation Partners of "Utthan"

DPEO/TEPO/BRC will provide guidance for implementation and experts will visit on an interval of 6 months to evaluate the project.

Proposed Activities "Utthan"

- · Training of Government School Staff
- · Reading, Writing and Maths improvement as per Gunotsav Data
- · Development of Teaching Learning Material
- English Language
- · Role Model Activity in assembly
- · Reading Corner Activities
- Monitoring and Evaluation

Implementation Strategy "Utthan"

At school level Uthhan Preraks will be the core implementer of the project. Project Officer visits regularly to selected schools to guide and manage the project and report to management. TPEO/BRC will involve in the project evaluation process at the interval of twice in year.

32

Objective of "Utthan"

- To improve basic knowledge of Math, Languages, English and Computer among students of Govt. schools.
- · To Raise Minimum Level of weak students

Output of "Utthan"

- · Increase enrolment ratio of students to 100%
- 100% regular present of students in school
- To improve their arithmetic, reading capacity in various languages, English etc.
- To increase confidence level of students
- · Involvement of local community, village leaders and local Govt. through various activities

Outcome of "Utthan"

- · Students of class 1th to 7th in government schools will take interest in activity based learning.
- Community and teachers will be positive and satisfy from this education project.
- · Increase interest of students in school, they develop knowledge and understand importance of library.
- · Education friendly environment development in school as well as in community.

Expected impact of "Utthan"

- Vachan, Ganan and Lekhan strengthening in Priya students
- · Education department of Gujarat government will include activity based learning in regular course curriculum.

Kick Start of "Utthan"

- Participated in 'Teachers day' celebration.
 Introduced six female members of Utthan sahayak to schools. As a symbol of respect towards teachers Utthan team had given sapling to all 17 schools.
- Out of 1178 students 944 students participated in test, 413 students got more than 50% marks whereas 516 students got less than 50% marks means 44% students got more than 50% marks whereas 55% students got less than 50% marks. 232 students out of 1178 students were absent during the test. Base line for English subject is zero since first time we introduced English as a subject in 1 to 4 grade. Within 15 days of intervention we got remarkable and measurable change in English alphabet writing capability of Utthan students (Grade 1 to 4).
- Navneet English books distribution ' and Plastic free Environment awareness event organized in all 17 schools of Utthan by Adani foundation. One more positive step take by Adani foundation in order to achieve quality education for all " UTTHAN

3:

Project "Utthan": Guru Vandana

- Guruvandana' Program celebration of teacher's day was organized on 12 November 2018 attended by government dignitaries and our beloved teachers of 106 government primary schools with great enthusiasm.
- Objective of the program conveyed to audience by CSR head Ms.Panktiben.
- It has been said that a healthy mind resides in a healthy body which is why a health checkup is scheduled for all the gurudevs (teachers) which included BMI, BP, RBS, HB and vision test done by adani hospital Mundra.
- Followed by a motivational speech by Dr.Darshana Dhodakiya who is the Director of Bhasha Bhavan of Gujarati Subject, Throwing light on the principle that teachers cannot be trained in to be coming a teacher, but they are teachers because they actually are born teachers
- Soft skill training by Ms.Ridhi Trivedi who is a highly skilled trainer from ASDC and would explain us the importance and need of soft skills. A highly thought provoking drama by students of 'Shekhadiya' school. And last but not the least short and sweet session taken by Mr. Jatin Upadhyay. Throughout the program anchoring is done by Ms. Darshana Shastri and Ms. Incuti Joshi
- Achieved one of the objective teachers' capacity building

Shala Praveshotsav

To motivate children for schooling by providing the welcome kit / education kit and to create conducive children for "joyful learning" Environment for children for Learning during shala Praveshotsav Govt. has wide spread network of 111 Govt. primary schools in total 62 villages of Mundra Taluka, 3 villages of in Anjar taluka and two villages of Mandvi Taluka every year on an average 2550 to 2700 children gets enrolled in 1st std in Taluka For 2018-2019 total 2300 children got enrolled & Adani foundation provided the "Enrollment kit" to all new enrollee in Taluka

Mother's Meet

To motivate parents to maintain regularity of school, health hygiene and cleanliness we scheduled 3 mothers meet per week, which is really beneficial for student's overall growth. We arrange quiz completion for mother's to update their general knowledge.

34

Celebration of World Environment Day at High School, Moti Khakhar

• Plantation of 1111 trees in Moti Khakhar high school ground in coordination with forest department: Moti Khakhar is a Village in Mundra Taluka .It is located 19 KM from Mundra. School is constructed in year 2008 and it is with large ground. Principal requested Adani Foundation to support for tree plantation in area. As per size of ground we can plant more than 1000 plants. In addition, Soil condition is also appropriate. Adani Foundation contacted Forest Department for Tree plantation before monsoon and Forest Department supported for 4000 plants. After getting support from Forest Department - Adani Foundation supported for Drip and Fence for protection of plantation. On 5th June 2018, Adani Foundation Mundra planted 1111 trees at Moti Khakhar. Function was scheduled by Gram Panchayat. Mr. Vyas (District Education Officer), Mr. Anjan (DCF, Mundra), Mr. Saxena (COO, APSEZ), AF Team, students of the school and Village leaders remained present

Project UDAAN

Mundra has created a position for itself by creating capacities in Port Handling, Edible Oil Refining and Power Generation. With a vision to familiarize, educate and inspire the future generation to become successful business leader, engineers, managers and other professionals, the Adani Foundation organizes Education Exposure visits to Mundra for High schools and educational institutes in Various parts of Gujrat.

Total 2987 educational institutes has visited and 219410 beneficiaries of the project.

Summary of Six Months for Project "UDAAN" APRIL -2018 TO SEPTEMBER - 2018 SCHOOL/ COLLEGE Apr -18 May -18 June - 18 July - 18 1280 1256 Aua -18 Sep - 18 606 TOTAL 7674 4024 652 12350

Adani Vidya Mandir, Bhadreshwar

Adani Vidya Mandir, a unique Gujarati medium school was started in June 2012 at Bhadreshwar village of Mundra Taluka. The objective behind setting up this school is to provide free education to children of fishermen and economically challenged families. The foundation provides nutritious food to the pupils including breakfast, lunch and snacks every day. Special care is taken to provide high quality education and overall development of children. The children are groomed to go back to their families and communities and be the agents to change.

Class	2012-13	2013-14	2014-15	2015-16	2016-17	2017-18	2018-19
1 st	53	40	45	41	38	40	40
2 nd	26	68	46	41	39	37	37
3 rd	27	40	73	45	37	39	39
4 th		39	48	70	44	36	36
5 th			37	46	58	39	39
6 th			37	36	46	58	58
7 th			34	37	35	44	44
8 th			39	34	36	34	34
9 th				38	38	30	30
10 th					23	27	30
Total	106	187	359	387	394	384	387

38

The Environment Impact Assessment (EIA) Notification, 2006, issued under the Environment (Protection) Act, 1986, as amended from time to time, prescribes the process for granting prior environment clearance (EC) in respect of cevoain development projects/activities listed out in the Schedule to the Notification.

Sustainable development has many important facets/components like social, economic, environmental, etc. these components are closely interrelated and mutually re-enforcing. Under Corporate Environmental responsibility 10 km radious villages from SEZ Boundaries.

To make connections between human actions and the level of biological diversity found within a habitat and/or ecosystem, today we launch project "Sanrakshan" in coordination with GUIDE. Today MOU has been signed with Dr. Thivakaran – GUIDE for conservation of mangroves spices on coastal belt.

VIRONMENT

SUJLAM SUFLAM JAL ABHIYAN

The state government has announced its 31-day water conservation drive called 'Sujalam Sufalam Jal Abhiyan'. The campaign will be launched on "Gujarat Gaurav Din" on May 1, which is the foundation day of Gujarat state. Moreover, the government aims to revive 32 rivers in the state

Adani Foundation is willingly taking part in this drive and supporting 26 pond deepening at 19 villages of Mundra Taluka.

Inauguration of the Event was held at Nilkanth Mahadev Pond in Gundala Village. Chief Guest of the Event was Mr. Vasanbhai Ahir (Minister of State, Welfare of socially and educationally backward classes) Distinguish guest was Mr. Virendrasinh Jadeja (MLA Mandvi-Mundra) and Mrs. Remya Mohan (Collector, Kutchh) were remained present and motivated for this noble cause

Adani Foundation is working for water conservation with salinity department in construction of 18 check dams as well as more than 20 pond deepening work since 2007.

Adani Foundation got chance to become a part of Sujlam Suflam Jal Abhiyan. Adani Foundation will make the project successful and support this noble cause.

40

101:209Z

Under Sujlam Suflam project Adani Foundation has successfully completed pond deepening work in Mundra & Abdasa Taluka in record time. 26 pond deepening in Mundra and 7 pond deepening in Abdasa accomplished with all parameters calculated. In Mundra taluka 51723 cum excavation work has been done which increase storage capacity of 51 ML.

In Naliya taluka 14550 cum excavation work has been done which increase storage capacity of 15 ML. Total 66 ML storage capacity will increased.

39 41 **103**

PARTICIPATORY GROUND WATER MANAGEMENT

At the turn of millennium, the state watched with growing alarm the steady depletion of its ground water and launched massive drive to achieve water security in Mundra region. As a part of pre monsoon activities with ACT (Arid Communities and Technologies – NGO) we have carried out following work. But, due to negligible rainfall we are not able to find out outcome of this project.

Borana- Artificial bore well recharge -work completed

to pone occponing tront tront completed

Mangara- Artificial bore well recharge - work completed

Mota kapaya-abanded bore well recharge – work completed

42

Table 1: NURSERY STATUS AS OF SEPTEMBER 2018

Sr. No.	SPECIES	LOCATION (FROM)	SITE	DATE OF ARRIVAL IN BHUJ	DATE OF SOWING	NO. OF SEED- BAGS ESTABLISHED	NO. OF SEEDS IN EACH BAG	TOTAL NO. OF SEEDS SOWN	APPROX. SURVIVAL RATE TILL DATE
1	Aegiceros corniculatum	Parangipettai		Sept 21	Sept 25	2000	2	4000	
	negice/ of co/meanani	Kandla					_	4000	
2	Excoecaria agallocha	Pondicherry		Sept 22	Sept 26	4000	10	40000	
3	Rhizophora apiculata	Machilipatnam		Sept 22	Sept 26	4000	1	4000	
4	Ceriops decantra	Parangipettai		Sept 21	Sept 25				
4	Certops decantra	Machilipatnam		Sept 22	Sept 26				
5	Bruguiera gymnorhiza								
6	Xylocarpus moluccensis	Machilipatnam		Sept 22	Sept 26	1360	1	1360	
7	Bruguiera cylindrica	Machilipatnam		Sept 22	Sept 26	1500	1	1500	
8	Ceriops tagal	Jamnagar		Sept 15					

4

PROJECT "SANRAKSHAN" - BIODIVERSITY

The mangrove biodiversity enrichment project in and around Adani ports special economic zone limited (APSEZL) aims to introduce select true mangrove species on a pilot scale in suitable coastal belts and assess their survival. Because this project is the first of its kind, the expected survival rate is between 20-30%.

The project is currently in its initial stages of establishing nurseries and sowing seeds of several different species brought in from multiple locations in and outside of Gujarat state. These nurseries have been developed in tidal flats near the village of Luni, Kutchh, Gujarat.

The mangrove seeds/propagules) for the establishment of the nursery were brought in from various locations in India, namely, Machilipatnam (Andhra Pradesh), Pondicherry (Tamil Nadu), Parangipettai (Pichavaram Mangroves, Tamil Nadu), Kandla (Gujarat) and Jamnagar (Gujarat).

In most of these locations, there is adequate fresh water supply available due to high/substantial rainfall and/or presence of major rivers (also important river confluences and deltas that give rise to a thriving estuarine environment). Consequently, the mangrove species that successfully grow in those regions are adapted to a low-salinity environment (where salinity is approximately 20 ppt) against that of 37-44 ppt prevailing in Kachchh coastal waters. Furthermore, the species selected to establish the biodiversity enrichment project also belong to this group of mangrove species. This subsequently creates a challenge for the team heading this project because the Kachchh region does not provide adequate salinity ranges for survival of most of these species. In fact, it provides an extremely harsh saline environment (salinity can range up to as high as 44 ppt during summer).

Considering the above-mentioned scenario, the site selection criteria, need for species of high salinity tolerance and studying their natural occurrence in Kachchh becomes critical in ensuring a substantial survival rate of the mangrove species selected to potentially successfully establish a diverse and resilient mangrove community in the Kachchh region.

Furthermore, a highly diverse set of mangrove species will ensure resilience in the face of changing climate and could probably provide as a thriving gene pool and seed bank in the future for the Kachchh region.

PROJECT "DRIP IRRIGATION"

· Basis of Requirements of Drip Irrigation

The main source of livelihood being agriculture, the cultivators tend to use more and more underground water for irrigation. Underground waters have gone very highly saline. The use of such water for irrigation has made the soil also saline and the crop yields have dwindled.

Process of Drip Support

Farmer have to applied in the prescribed form of Adani foundation with photograph.

Inspection and verification will be by AF representative.

Ration card, work order of G.G.R.C, 7/12 certificate and all bills must be attached.

Farmer will be informed by telephonic to have form query.

Primary information about farmer land will be received by telephone. Farm visit within 10 days of after received of application and verified the installation of system as per map and material as per bill will be checked and get farmer feed back.

Verification report submitted to account office.

Payment within 20 days if all document is complete through net banking.

Farmer economic study after our support.

Villages of Drip Support

Keeping in view the situation and request comes from community, once again Drip irrigation support is planned in three phase. As a part of first phase, we are considering 22 potential villages. We have put condition that we will support only if they become agree for fodder cultivation atleast in one acre

43 45 104

Building a strong community relationship is the key to progress of Adani Foundation. The programs such as Education, Health and Sustainable livelihood development play a very important role in building this strong relationship with the community. These three programs are incomplete without the inclusion of the Rural Infrastructure Development program.

This year on path of sustainability, we have taken some steps as follows...

Under Dignity of Drivers Project, Adani Foundation has constructed Resting Shed for Drivers entering in SEZ Premises. Total 50 beds are constructed, drinking water and sanitation plus recreational – TV Facilities and will be charged minimum. Adani Foundation has handed over the project to ASSET Department – SEZ as a revenue generation model.

In this ceremony Mr. Avinash Rai (CEO- APSEZ), Mr. Rakshit Shah(Executive Director – APSEZ), Mr. Pritpal Sinh (Head – SEZ Operation) and other transporters remained present.

46

Adani Skill Development Centre (ASDC) is playing a pivotal role in implementing sustainable development in the state.

Several miscellaneous industries exist in Kutch district. Adani Skill Development Centre has started a center in Mundra block so that the needs of these industries are fulfilled, the local youth is enrolled in various training / skill courses and the distance between the both is minimized. The objective of this center is to impart different kinds of training to the students of 10th, 12th, college or ITI from surrounding areas. Thus, various employment-oriented trainings are organized to optimize the skills, art and knowledge through proper guidance and direction.

During this six months Total 762 people is given various trainings to enhance socio economic development.

Out of which 227 people are getting employment and average income up to Rs. 6500 per month.

48

Work in progress

- Drainage maintenance and other misc works
- Basic infra. Facility in Labour Colony
- Drainage chamber and covers ,wandh village
- Development in common place, Navinal
- Civil works in gadhvi samaj community hall, Navinal
- Civil works in secondary school, Navinal
- Repair of west weir work at zarpara
- Construction of fisherman house, shekhadiya

Completed works

- Civil and electrical works in HMV driver rest shed
- River and pond cleaning by JCB-Nani khakhar, Zarpara and Baroi
- 26 pond deepening work under SSJA in 19 villages of mundra taluka

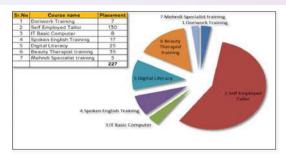
Labour colony- sanitation work

DEVELOPMENT

Driver Rest Shed at North Gate

Cricket pavilion shed, Nani Khakhar

47


Zarpara- west weir repairing work

DETAILS OF VARIOUS TRAINING UNDERTAKEN

Sr.No	Course name	No.of canditates	Male	Female	Place	Start date	End date
1	Doriwork Training	19	0	19	Juna Bandar	01-04-2018	31-05-2018
2	Doriwork Training	20	0	20	Navinal	01-04-2018	31-05-2018
3	Self Employed Tailor	34	0	34	Tunda	01-04-2018	31-05-2018
4	Self Employed Tailor	15	0	15	Pragpar	10-04-2018	10-06-2018
5	IT Basic Computer	18	14	4	ASDc collage centre	01-05-2018	30-06-2018
6	Spoken English Training	15	8	7	ASDC Collage centre	01-05-2018	30-06-2018
7	Self Employed Tailor	11	0	11	Pragpar	03-05-2018	03-07-2018
8	Self Employed Tailor	33	0	33	Tunda	18-05-2018	20-07-2018
9	Digital Literacy	40	17	23	ASDC Collage centre	04-06-2018	03-07-2018
10	Beauty Therapist training	93	0	93	ASDC Baroi Centre	18-06-2018	17-08-2018
11	Digital Literacy	35	16	19	Tunda	02-07-2018	01-08-2018
12	Digital Literacy	107	53	54	Dhrub	04-07-2018	03-08-2018
13	Self Employed Tailor	33	0	33	Toda	19-07-2018	18-09-2018
14	Self Employed Tailor	16	0	16	Tunda	25-07-2018	24-09-2018
15	Spoken English Training	31	18	13	ASDC collage centre	01-08-2018	30-10-2018
16	Digital Literacy	38	27	11	ASDC Collage centre	08-08-2018	07-09-2018
17	Self Employed Tailor	73	0	73	Rampar	16-08-2018	15-10-2018
18	IT Basic Computer	12	12	0	Adani House	27-08-2018	28-08-2018
19	Beauty Therapist training	97	0	97	ASDC Baroi Centre	04-09-2018	05-11-2018
20	Mehndi Specialist training	22	0	22	ASDC Baroi Centre	04-09-2018	05-11-2018
		762	165	597			

Total fee Collected = 2,42,500/-

DETAILS OF VARIOUS TRAINING UNDERTAKEN

Adani skill development centre Mundra Placement figures of ASDC.

Adani skill development centre Mundra is qualified in NSDC with 5 star rating for job role junior crane operator and unarmed security quard.

SWACHHAGRAHA

Mundra site- Adani Foundation launched Swachhagraha in 4 Blocks of Kutch District (Mundra, Anjar, Gandhidham, Bhuj). The Swachhagraha programme was launched in Bhuj District, Gujarat State with participation of over 450 Schools in Swachhagraha Prerak's Training Workshop with support of District Education Department, Kutch District. The programme was launched by Mrs. Shilin R. Adani, Trustee, Adani Foundation; Mr. Prabhav Joshi - DDO, Kutch Dist; Mr. V.S.Gadhavi, Director, Adani Foundation; Mrs. Sushama Oza, Director, Adani Foundation; Mrs. Ami Rakshit Shah, Adani Public School; Mr. Rakesh Vyas - DEO, Kutch; Mr. Sanjay Parmar - DPEO, Kutch; Dr. Gyaneshwar Rao, Medical Director, GAIMS; Dr. Gurudas Khilani, Dean, GAIMS: Ms Pankti Shah, Unit CSR Head, Mundra on 1st October 2018 at 10.30 AM at GAIMS Auditorium, Bhuj with full day Swachhagraha Training Workshop of Teachers.

52

LAUNCHED "SAKSHAM" CENTER AT BAROI GUEST HOUSE

ASDC-Baroi (Mundra):- Adani skill development Center (ASDC) launched 'SAKSHAM' center at Baroi guest house in Mundra on 16th June 2018 to provide skill development training to youth in the Mundra. An initiative of Adani foundation, the center in the Mundra city will benefit about more than 500 candidates every year in Beauty & Wellness course. The center will provide skill development training to the youths in the age group of 14-40years initially in Beauty & Wellness course. Total enrolled for this training were 90 students.

LAUNCHED "DIGITAL LITERACY" AT UTHHAN VILLAGES

Adani Skill Development center, Mundra has started digital literacy class in local village. 40 girls and boy are participated in first session. All village people are happy for this training in phase. We have also arrange evening batches to cover all people of various village.

Digital literacy training done through laptops and Tablets:

1). The course duration is 26 days and number of hours is

- The course duration is 26 days and number of hou
 52.
- 2). Per day training delivery hour is 2.
- 3). This is completely based on demonstrative and practical training methodologies.
- 4). The delivery is intended to be done through Desktops and Tablets $\,$
- 5). Attaching Also cover for payment banking topics .

SWACHHAGRAHA: At Gujrat Adani Institute of Medical Sciences

"Swachhagraha" – Project launched at Adani G K General Hospital to embed values of cleanliness in minds of the staff and community as well. Separate staff member is also appointed by HO team for the same. Mr. Gadhavi had launched swachhagraha by presenting insignia to Dr. Bhadraka (Head, Adani GKGH).

SAMVEDANA : Series of Motivational Sessions

To motivate and felicitate paramedical and nursing staff motivational session was organized with help of Ms. Hiral Pandya which is critical requirement of GKGH. She talked about behavior aspect as well as compassionate approach to patients.

106

Swachhagraha Marathon: Run Against Depression

Gujarat Adani Institute of Medical Sciences G K General Hospital and Student Counsel Organized the Bhuj

Marathon. Theme of the marathon was Run against Depression and Swachhagraha.

Total more than 800 participants took part in this marathon with enthusiasm and zeal.

54

Even as a breakthrough is waiting to happen, five trainees were enrolled on Tuesday 5th Dec 17 by Adani Skill Development Centre (ASDC) for the age-old Namda craft, a dying art form of Kutchh district in Gujarat. First initiative of its kind, the skill development training on Namda is aimed at preparing a future generation of artisans for the historic art form.

Adani Foundation, the CSR wing of Adani Group had vowed to save Namda from extinction and bring back its past glory. Originally innovated by an artisan of Mughal Era in the 11th Century India, Namda craft was primarily practiced by the Pinjara and Mansuri communities and Sama Muslims native to Kutchh. Sans proper encouragement, marketing avenues and promotion, the art suffered a major setback with artisans gradually switching over to other professions for livelihood earning.

Till recently, when the Adani Foundation, Mundra team members approached Mansuri Karimbhai Umarbhai, perhaps the sole survivor of the craft in Kutchh, Namda was dying a natural death. As a good corporate citizen, the Adani Group initiated a move to protect the art form, as well to make it popular and sustainable. The first step towards the enormous goal of reviving Namda, the training programme kicked started with lots of positivity and enthusiasm among the trainees, who are committed to put best efforts for bringing back the past glory for this craft. And the best part of the initiative is that, the Namda survivor himself would train the future-artisans.

GREAT ACHIEVEMENT IS....

KARIM MANSOORI ONCE AN ORDINARY NAMDA ARTISAN IS NOW AN ENTERPRENUAR. THE ADANI FOUNDATION FEELS CONTENTIN REVIVING THE DYING NAMDA ART FORM AND SUPPORTING MANSURI IN STARTING HIS OWN RUSINESS.

HIS JOURNEY IS OFF TO TO A FLYING START AND WE WISH HIM ALL THE BEST.

NAMDA: ON REVIVAL PATH

International Coastal Clean up Day

Mundra Adani foundation MUNDRA has celebrated swachhagraha related International Coastal Clean up Day celebrated with Coast Guard" with theme swachhagraha.. School students, Coast Guard staff and Adani foundation staff had cleaned Mandvi beach and give a message of swachhagraha.. At the end information given about swachhagraha project

New Journey of My Life!

As if destiny had turned cruel to her, one after another shocks shattered the family life of Shyama Ben. Otherwise a jolly woman with lots of positive energy and great dreams of in her bright eyes, the unexpected miseries compelled her to enter into a state of solitude and high-depression. This villager of Sadau in Mundra locality had 7 times miscarriages, each time giving her an serious emotional blow and ceasing the hope of being a mother. This was not the end; luck had kept something even worst for her. For no fault of this poor lady in the mishaps and destiny doings, her husband left her in the midst of life at a time when she required maximum support from a person who knows her so well and can best understand her pains.

All these pushed Shyama Ben into darkness of life and she became totally cut-off from the social mainstream. This also adversely resulted into her health and mental status. But its well said, "What God Will......", there was something big which she was destined to achieve in life to define her self-identity and shape the life in a constructive way. With help of neighbor lady she joined SHG Group and capacity building trainings by Adani Foundation. Within six months she took 5 training i.e. capacity building, leadership, banking, federation making and record keeping.

In June 2018 Adani Foundation planned an exposure to SEWA group. After exposure programme of SHG members and could notice certain potentials in her, which led to a new beginning. With required training and skill upgradation, she appeared for an interview in Britannia Industries within the APSEZ, Mundra and got selected for the position of supervisor. Today she is a self-sufficient woman with a earning of Rs 9000/- per month with other allowance for lunch and transportation. The new journey has again given her an opportunity to lead life normal way and start dreaming again to achieve greater things in life.

Ways to Bright Future!!

Mamad Sakil Osman Ghani Adani Vidya Mandir – Bhadreshwar 'A High Leap by a Poor Child from the Fisher folk Community.....Towards Engineering Studies.....Through Adani Vidya Mandir' 2017-18 Name: Mamad Sakil Osman Ghani Father's Name: Osman Ghani Mother's Name: Halimaben Family: Brother (1) + Sisters (4) & Parents; total 8 members Occupation: Fishing Village: Luni; Taluka: Mundra; District Rutchh In modern times along with its importance, education has also made changes in our lifestyle.

Adani Vidya Mandir, Bhadreshwar, is like a lighthouse giving a ray of hope in remote areas. It was established to provide education to children from socio-economically backward communities. The school provides high-quality education, nutritious food as well other kinds of facilities so that children's self-respect increases through the education. Speaking of students, Mamad Sakil was enrolled in the Std. 7, in 2014-15 in the Adani Vidya Mandir, Bhadreshwar. His father, Osman Ghani, is a fisherman. His family of eight members consists of his mother, his father, a brother and four sisters. They live in Luni Bandar.

From the beginning it was seen that he was a quiet, straightforward, humble and cultured boy. He also exhibits behavior with moral values. Everyone helped the family socio-economically. In the Adani Foundation with the help of Vijayhai and Ishwarbhai noted details of the family and found that nobody was educated. In such times of rising prices and inflation it is difficult to raise so many children. So the school management decided to take over and fulfil his basic necessities. Efforts for this child's educational success were made including counselling and guidance.

During his first year in the school, he participated in the running competition in the Khel Mahakumbh and came first in the district. In this way, he began to progress in not just education but also other areas. He started getting promoted to the next standard every year and eventually he reached Std. 10. With the help of the school in various ways and his own hard work, he successfully cleared Std. 10 with 77%. He stood second in the school. Now, the journey of his life has really started. He has started to see new and inconceivable dreams for his future career. Now, the Adani Foundation will be holding his hand to fulfil his dreams.

After completing studies of the Std. 10, he was gifted an android phone by the school principal, Smt. Lali madam, as he needed new technology to get admission for further studies. In this way all the obstacles have been removed from his career path. He has now taken admission in mechanical engineering in Bhuj Polytechnic, and the Adani Foundation has paid his entire fee. A new innings has started in his life. With his hard work he is making progress step-by-step. He has set a good example for other students. And we all hope that he will eventually become a strong financial support to his family.

58

Divine feeling towards Mata no Madh!!

Mata no Madh is a village in Lakhpat Taluka of Kutch district, Gujarat, India. The village lies surrounded by hills on both banks of a small stream and has a temple dedicated to Ashapura Mata, the household deity of former Jadeja rulers of Cutch State. She is also considered patron deity of Kutch. Many people are used to reach this Ashapura temple by feet from different parts of India. G K General hospital has organized health facility through at 10 locations on way of Mata Na Madh during Navaratri 5th to 11th oct.. In addition to medical facility, This health shibir will provide awareness of swachhagraha, swine flu and Beti bachavo as well The concept given by Shri Gadhvi Sir and implementation will be taken care by Dr. Chintan and Adani foundation health team.

60

Enhance Employability!!

Vimleshkumar, an RTG crane operator at MICT, Mundra is a classic case study of skill development training ensuing employability. Just couple of month back a much stressed Vimleshkumar had approached Adani Skill Development Centre (ASDC) Mundra to undertake checker-cum- RTG crane operator training with a hope of getting some employment somewhere to support his economically poor family. After passing 12th qualification, Vimlesh was rendered unemployed like hundreds and thousands of youths of his age and locality.

While undergoing the ASDC training he would have never imagined that this additional knowledge and skill up gradation would bring him a bright future and good days for his family. Soon after completion of his 3 months duration course, Vimlesh Kumar got a job in MICT, Mundra doing cargo handling operations at MICT, Mundra. His current earning per month is Rs 12,000/-.

Vimleshkumar for employability through knowledge and skill development...

ADANI FOUNDATION ALL PROJECT ACHIVIEMENT APRIL - SEP 2018-19

	AF- COMMUNITY	HEALTH - MUNDRA	2018-19		
Sr. No.	Description	No. of Direct Beneficiaries	No of Indirect Beneficiaries	No of Access Beneficiaries	Remarks
1	Mobile health care unit	8972	26916	61500	29 Village
2	Medicines for rural clinics - 9	10485	31455	37500	11 Village
3	Support to Needy people	485	2425	73700	15 Village
4	Dialysis Support	3	32	119	No.of Dialysis-119 (03 Village)
5	Health Card Service to Senior Citizen	5137	25685	169279	68 Village
6	Suposhan	21502	64506	153219	Child,Adolescent girls,RPA Women (61 Village)
7	Shakti Raksha Project	457	2285	153219	61 Village
Total		47041	153304	648536	
	AF- COMMUNIT	ΓΥ HEALTH - GAIMS	BHUJ		
1	Health Camp	4120	16780	7031	-
2	School Health Check up	527	1671	589	-
3	School Awareness	150	603	0	-
4	Ortho Implant	24	120	576	-
5	Death Body	259	1092	0	-
6	Patient Care & Coordination	2628	10872	162000	-
7	Mata no Madh - Health Camp	21000	84000	250000	
		28708	115138	420196	

59 61 108

		RID			
1					T-1-140 \ ('''
	Pond deepening work	31551	0	0	Total 19 Village.
2	Drainage maintenance and JCB hiring	13059	0	0	Total 06 Village.
3	Tuna Port Related CSR Projects	1215			Wandi Village.
4	Basic infra. Facility in Labour Colony	1380	0	0	Total Labour Colony = 5.
5	Development work in Zarpara & Mundra	2735	18338		(1) Zarpara = 735 (2) Mundra = 2000
6	Fisherman Amenities : Infrastructure Support at different Bandar	2472	0	0	(1) Old Abndar = 1056. (2) Bavdi Bandar = 576. (3) Kutadi Bandar = 840.
7	Participatory Ground Water Management	4927	0	0	Total 04 Village.
	Total	57339	18338	0	
	SLD (AGRI, Women Empo	werment and (Govt linkages)		
1	I.G Support	50	200	400	-
2	Sadhan sahay- tricycle and wheelchair	45	180	600	-
3	Gujrat govt sadhan sahay- Handicaps	41	164	600	-
4	Central govat sahay Handicaps	142	568	600	-
5	Medical certi Handicaps	182	728	980	-
6	Pension Yojana Linkages	124	496	400	-
7	Bus pass Linkages	170	680	980	-
9	fodder N.B 21	140	1250	1560	-
10	Biogas	21	130	270	-
11	Organic farming	21	140	290	-
12	Fodder support				-
13	Women Empowerment	94	570	768	-
14	Namada craft	6	36	0	-
	Total	1036	5142	7448	

h	,	
v	_	

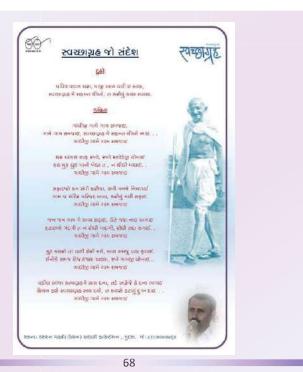
	EDUC	ATION			
1	Material Support	8	1600	20	-
2	Mothers Meet	36	1800	3600	-
3	Project Uthhan	17	2598	0	-
4	Shala Praveshotshav	3000	9000	0	-
5	Swachhagraha	450	36000	0	
6	Teachears Training	4	1000	10000	
7	Support to 10th Pass Students from AVMB	44	132	0	-
otal		3559	52130	13620	
	Education Initiat	ive for Fisher	folk		
1	Education Initiative for children at vasahat	250	1500	265	
2	Balvadi	138	690	149	
3	Vehical support	98	490	0	
4	Exposure tour, Fee & Other Edu. Support to poor students and cycle support to Fishermen Students.	142	852	0	
otal		628	3532	414	
	Sustainable livelih	nood for Fishe	r folk		
1	Community Engagement Activities	780	0	780	
2	Livelihood promotion - Income Generation to individual	13	78	0	
3	Awareness generation and capacity building	70	350	176	
4	Potable Water to Fisher Folk at vasahat	921	5526	1200	
5	Mangroves plantation and maintenance	158	948	0	
otal		1942	6902	2156	
	Total beneficaries	140253	354486	1092370	

Adani Foundation, CSR Budget - Mundra Budget Utilization April to September-2018

F.Y. 2018-19

Sr. No.	Program	Budget 2018-19	Budget Utilization
		Rs.	Rs.
Α.	Admin Expense	67.55	24.05
В.	Education		
(i)	Education Initiative	67.85	30.66
(ii)	Adani Vidya Mandir-Bhadreshwar	143.15	48.96
(iii)	Shanti Vihar (Project Udaan)	342.82	108.96
	Sub Total	553.82	188.58
C.	Community Health	243.21	84.00
D.	Sustainable Livelihood Development	475.22	282.10
E.	Rural Infrastructure Development	326.34	72.38
	GRAND TOTAL	1666.14	651,11

64



109

Annexure – 5

Cost of Environmental Protection Measures

Sr.	Activity		Budgeted Cost (INR in Lacs)		
No.	Activity	2016 - 17	2017 - 18	2018 - 19 (Till Sep'18)	2018 – 19
1.	Environmental Study / Audit	36.78	9.0	4.6	30.5
	and Consultancy				
2.	Legal & Statutory Expenses	4.76	5.07	0.12	5.7
3.	Environmental Monitoring Services	27.95	27.02	12.5	36.0
4.	Hazardous / Non Hazardous Waste Management & Disposal	12.52	65.62	50.5	84.8
5.	Environment Days Celebration	6.71	2.85	2.21	10.0
6.	Treatment and Disposal of Bio- Medical Waste	1.27	1.13	0.75	1.56
7.	Mangrove Plantation, Monitoring & Conservation	72.38	60.0	Nil	50.0
8.	Other Horticulture Expenses	555.00	547.0	299.0	636.0
9.	O&M of Sewage Treatment Plant and Effluent Treatment Plant (including STP, ETP of Port & SEZ & Common Effluent Treatment Plant)	61.50	70.02	81.67	108.05
10.	Expenditure of Environment Dept. (Apart from above head)	131.83	102.15	64.49	117.29
	Total	910.70	889.86	515.84	1079.9

Further year wise breakup of the cost is mentioned in table below:

Year	Environment	Horticulture	Total
2014-15	462.87	380.27	843.14
2015-16	346.23	434.72	780.95
2016-17	355.70	555.00	910.7
2017-18	342.86	547.00	889.86
2018-19 (Till Sep'18)	216.84	299.00	515.84
Total	1724.5	2215.99	3940.49