Vijayasankar K

From: Sathish Kumar R

Sent: Saturday, May 22, 2021 4:11 PM eccompliance-tn@gov.in

Cc: monitoring-ec@nic.in; ssuresh.cpcb@nic.in; Member Secretary, TNPCB; DEE

Gummidipoondi; tndoe@nic.in; Jai Khurana; Milind Sangtiani; Vijayasankar K

Subject: MIDPL - Kattupalli Port, Chennai - Bifurcation of EC&CRZ Clearance vide F. No

10-130/2007 – IA.III - Half Yearly Compliance Report for the period of October 2020

to March 2021 – Reg.

Attachments: MIDPL-HYCR- Oct'20 to Mar'21.pdf

Importance: High

MIDPL/EC-HYC/2021/95 Date: 20-05-2021

To

Additional Principal Chief Conservator of Forests (C),

Ministry of Environment, Forest and Climate Change, Regional Office (South Eastern Zone),

Ist and IInd Floor, Handloom Export Promotion Council,

34, Cathedral Garden Road, Nungambakkam,

Chennai - 600 034. Email: eccompliance-tn@gov.in

Dear Sir,

Sub: Half yearly Compliance report of Environment and CRZ Clearance for the development of proposed Port at Kattupalli, Tiruvallur District of Tamil Nadu by M/s Marine Infrastructure Developer Pvt. Limited for the period of October 2020 to March 2021 – Reg.

Ref: CRZ & Environmental Clearance for the development of proposed Port at Kattupalli, Tiruvallur District of Tamil Nadu by M/s Marine Infrastructure Developer Pvt. Limited – bifurcation of EC&CRZ Clearance vide F. No 10-130/2007 – IA.III dtd . 9th February 2018

With reference to the captioned subject and cited reference above; we are herewith submitting the Half yearly compliance report for the compliance period **October 2020 to March 2021** to the conditions stipulated in CRZ & Environment Clearance (the cited reference).

This is for your kind information and record please.

Thanking you,

for M/s. Marine Infrastructure Developer Private Ltd

R. Sathish Kumar

Head - Environment (Southern Ports) | Adani Ports and Special Economic Zone Limited | Mob +91 91760 00959 | Direct: +91 44 2796 8177 | Extn. 69177 | sathish.r@adani.com | www.adaniports.com |

Registerd Office: Ramcon Fortuna Towers, 4th floor No 1/2, Kodambakkam High Road, Nungambakkam, Chennai-

600034

Port Office: Kattupalli Port, Ponneri Taluk, Tiruvallur District - 600 120.

KATTUPALLI PORT CHENNAI'S NEW GATEWAY

MIDPL/EC-HYC/2021/95 Date: 20-05-2021

То

Additional Principal Chief Conservator of Forests (C),

Ministry of Environment, Forest and Climate Change, Regional Office (South Eastern Zone),

Ist and IInd Floor, Handloom Export Promotion Council,

34, Cathedral Garden Road, Nungambakkam,

Chennai - 600 034. Email: eccompliance-tn@gov.in

Dear Sir.

Sub: Half yearly Compliance report of Environment and CRZ Clearance for the development of proposed Port at Kattupalli, Tiruvallur District of Tamil Nadu by M/s Marine Infrastructure Developer Pvt. Limited for the period of October 2020 to March 2021 – Reg.

Ref: CRZ & Environmental Clearance for the development of proposed Port at Kattupalli,
Tiruvallur District of Tamil Nadu by M/s Marine Infrastructure Developer Pvt. Limited –
bifurcation of EC&CRZ Clearance vide F. No 10-130/2007 – IA.III dtd . 9th February 2018

With reference to the captioned subject and cited reference above; we are herewith submitting the Half yearly compliance report for the compliance period **October 2020 to March 2021** to the conditions stipulated in CRZ & Environment Clearance (the cited reference).

This is for your kind information and record please

Thanking you,

for M/s. Marine Infrastructure Developer Private Ltd

Jai Singh Khurana Managing Director

Encl: As above

Copy to:

- 1. The Director (Monitoring –IA-III Division), Ministry of Environment, Forest & Climate Change, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi 110003 (Email: monitoring-ec@nic.in)
- 2. Zonal Office, Central Pollution Control Board, A-Block, Nisarga Bhavan, 1st and 2nd Floors, 7th D Cross, Thimmaiah Road, Shivanagar, Bengaluru, Karnataka 5600879 (Email : ssuresh.cpcb@nic.in
- 3. The Member Secretary, Tamil Nadu Pollution Control Board, 76, Mount Salai, Guindy, Chennai 600 032 (Email: tnpcbmembersecretary@gmail.com)
- 4. The District Environmental Engineer, Tamil Nadu Pollution Control Board, No.88,SIPCOT Industrial Complex, Gummidipoondi, Tiruvallur District -601 201. (Email : deegummidipoondi@gmail.com)
- 5. Member Secretary TNCZMA & Director Dept of Environment, No.1, Jeenis Road, Panagal Building, Ground Floore, Saidapet, Chennai -600 015. (Email: tndoe@nic.in)

Marine Infrastructure Developer Pvt Ltd (Kattupalli Port) Kattupalli Village, Ponneri Taluk, Tirivalluvar District 600 120, Tamil Nadu, India Tel +91 44 2824 3062

CIN: U74999TN2016PTC103769

From: October 2020 To: March 2021

	Half yearly Compliance report on conditions stipulated in Environmental & CRZ Clearance			
S. No.				
Specif	ic Conditions			
(i)	The proponent shall comply all the conditions stipulated in the letter R.C.No. P1/2004/2008, dated 21.10.2008 of the Department of Environment, Chennai.	Complied. Compliance to letter R.C.No. P1/2004/2008, dated 21.10.2008, is enclosed as Annexure -I.		
(ii)	The proponent shall comply all the commitment made vide his letter No. D/Shipyard/00/07 dated 20.03.2009.	This EC is just a bifurcation of original EC of LTSB in name of MIDPL & LTSB. All applicable commitments, w.r.t letter No. D/Shipyard/00/07 dated 20.03.2009 like provision of fire station, independent port connectivity, and no reclamation on areas outside port, non-usage of Tri Butyl Tin [TBT] and treatment of waste water in STP and recycling, disposal of hazardous waste to authorised recyclers are being complied.		
(iii)	Provision shall be made for the housing of Construction labour within the site with all necessary infrastructure and facilities such as fuel or cooking, mobile toilets, mobile STP, safe drinking water, medical health care, creche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.	Complied. All the construction works are completed, and the port is in operation phase.		
(iv)	There shall be no withdrawal of groundwater in Coastal Regulation Zone area, for this project. In any case any ground water is proposed to be withdrawn from outside the CRZ area, specific prior permission from the concerned State /Central Groundwater board shall be obtained in this regard.	Complied. No groundwater is withdrawal from CRZ Area. Presently unit is procuring Desalinated water from M/s. Chennai Metropolitan Water Supply and Sewerage Board (CMWSSB), Chennai. In case of Groundwater withdrawal outside CRZ area prior permission will be obtained from State/Central Groundwater Board.		
(v)	No dumping of dredging materials in the sea shall be undertaken. In case of sea dumping required, an integrated Modelling study to be	Complied. No dumping of dredging material was carried out during the compliance period of October 2020 to March 2021.		

From: October 2020 To: March 2021

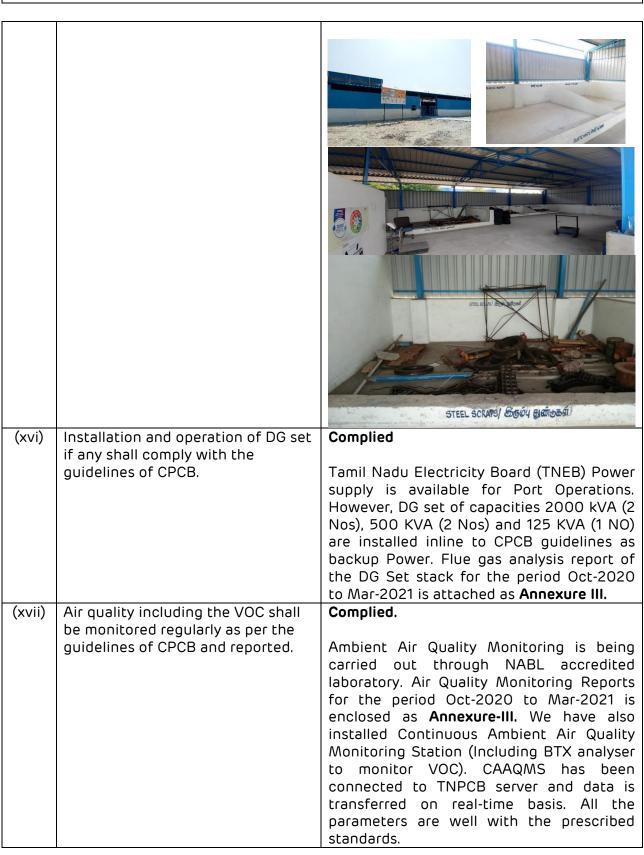
	carried out to locate the dump site so that it does not cause any problem to Ennore port.	Dredge material dumping location has already been identified by M/s. LTSB through modelling studies.
(vi)	Shoreline changes due the project shall be monitored continuously nourishment of northern shoreline shall be carried out using the sediments from beach acceleration on the southern shoreline.	Complied. MIDPL has engaged Institute of Ocean Management, Anna University, Chennai for shoreline Change study. Report of the same is submitted along with Half Yearly Compliance Report for the period Oct'19-Mar'20 vide our Letter No. MIDPL / EC – HYC / 2020 / 11 dated 31.05.2020.
(vii)	Suitable Screens shall be installed between the construction area and the intakes so that operations of the intakes are not affected by the construction activity.	Complied. Works/construction completed, and the port is in operation phase. No impact envisaged.
(viii)	At least a distance of 100 meter shall be provided between intake of Chennai Water Desalination Ltd. (CWDL) and north edge of the northern breakwater as agreed in the meeting between the proponent and CWDL	Complied. Distance maintained as agreed. Rattupall Village. Rattupall Village. Rattupall Village. Co221 Maker Technologies. Co221 Google

From: October 2020 To: March 2021

(ix)	Independent port connectivity shall be developed.	Complied.
	be developed.	An independent port connectivity has been developed.
		Kattupalli Port is having a dedicated road connectivity connecting State Highways and National Highways. NH-5 (Chennai – Kolkata) is about 30 km from Port. The cargo handled are directly goes to the roads mentioned above which are outside the City Limits of Chennai. Handling of cargo in Kattupalli Port does not affect the regular traffic.
		The Outer Ring Road from NH-45 connecting NH 4 - NH 205 - NH 5 is getting take-off from Minjur. Further, the Outer ring road is proposed to be connected to Section I (NPAR Project) of Chennai Peripheral Ring Road on an extent of 134 km starting from Kattupalli to Mahabalipuram. The project is getting commenced shortly, which will further enhance the cargo carrying capacity of Kattupalli Port.
		Kattupalli Port is located Close proximity to majority of CFSs serving immediate hinterland and enabling faster evacuation of cargo.
(x)	Rehabilitation if any shall be carried out as per law / State Government.	Complied. Rehabilitation was carried out completely as per law / State Government at the time of project implementation by M/s. LTSB.

From: October 2020 To: March 2021

(xi)	Fire station shall be located within	Complied.
(,,,)	the project area	MIDPL is having:
		 dedicated fire station with fire tender (1 No) and 15-member fire crew (DCPO - 3 Nos, Firemen - 11 Nos. and Supervisor - 1 No). 309 Nos of Fire Extinguishers (ABC, Foam, CO2) fixed in various locations in the port (with 10% additional stock) and 33 Sand Buckets. Fire water pumphouse with an underground storage tank of 12 lakhs Liters capacity with 5 pumps (2 Electrical, 2 Diesel and 1 Jockey Pump). fire hydrant points (51 Single Hydrant Points and 12 Double Hydrant Points) and 12 water monitors are placed at
		various strategic locations. MIDPL is facilitated with a Fire Tender with the following features: • Water Tank Capacity - 5500lts • Foam Tank Capacity - 500lts • DCP Extinguishers - 75 kg - 2nos • Co2 Extinguishers - 22.5 kg - 4nos • BA Set - 1no (Oxygen cylinder 2nos)
		FOR THE PARTY OF T
(xii)	The Hazardous waste generated	Complied.
	shall be properly collected and handled as per the provisions of Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016.	Hazardous wastes generated are properly collected and handled inline to Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016 as amended. Details of the same are submitted to TNPCB as a part of Hazardous waste annual return (Form 4) on regular basis.
		Annual Hazardous Waste Return for FY 2019-20 is attached as Annexure – II.
(xiii)	The wastewater generated from the activity shall be collected,	Complied.



From: October 2020 To: March 2021

	treated and reused properly.	Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is regularly analysed by NABL accredited laboratory. The monitoring results for the period Oct-2020 to Mar-2021 is enclosed as Annexure - III.
(xiv)	Sewage Treatment Facility should be provided in accordance with the	Complied.
	CRZ Notification.	Sewage Treatment Plants (3 Nos) with total capacity of 45 KLD are provided in accordance with the CRZ notification. Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is regularly analysed by NABL accredited laboratory. The monitoring results for the period Oct-2020 to Mar-2021 is enclosed as Annexure - III.
(xv)	No Solid Waste will be disposed of	Complied.
	in the Coastal Regulatory Zone area. The Solid Waste shall be properly collected segregated and disposed as per the provision of Solid Waste Management Rules, 2016.	No solid waste is being disposed of in the CRZ area. All the solid waste generated is properly collected, source segregation of all types of Solid Waste is practised and are disposed as per the provision of Solid Waste Management Rules 2016, as amended.
		Integrated waste Management system is in place and all wastes are being handled inline to 5R principle (Reduce, Reuse, Reprocess, Recycle & Recover).
		Following wastes are handled (inline to 5R principle) during the Compliance Period. • Metal Scraps – 84.55 MT • Wood Wastes - 32.775 MT • Used Tyres – 27.66 MT • Food Wastes – 1.398 MT

From: October 2020 To: March 2021

From: October 2020 To: March 2021

Status of Conditions Stipulated in Environmental and CRZ Clearance File no: 10-130/2007- A.III dated: 09/02/2018

(xviii) The project proponent shall undertake green belt development all along the periphery of the project area and also alongside the road.

Complied.

Greenbelt of adequate size has been developed along the periphery of the project area and alongside the road and are being maintained by MIDPL. Till date, 25,374 Nos. of trees has been planted and around 19,324 Nos of trees planted during the compliance period.

From: October 2020 To: March 2021

(xix)	All necessary clearances from the concerned agencies shall be obtained before initiating the project.	Complied. The project is in operation after obtaining all the necessary clearances (as applicable) from the concerned agencies as described below. Tamil Nadu Maritime Board (TNMB) clearance – 575/S1/2008 dated 24.05.2012 Fire and Rescue License – 159/2015 (Renewal) dated 10.06.2015. PESO Licenses – P/SC/TN/15/2514(P266086) dated 25.05.2012 (15 KL) and P/SC/TN/14/6260(P266084) dated 16.08.2012 (50 KL).
(xx)	Project proponent shall install necessary oil spill mitigation measures in the shipyard. The details of the facilities provided shall be informed to this Ministry within 3 months from the date of receipt of this letter.	Complied. All necessary precaution has been taken to avoid any kind of spillages. Oil Spill Contingency Plan has been prepared and is being followed. Oil spill contingency plan along with list of available oil spill equipment submitted vide our Letter No. MIDPL/TNPCB/GMP/EC-HYC dated 14.05.2018. Number of Persons trained Total Manhours Trained Total Manhours Trained Total Manhours Trained Total Manhours Training / Drill - 25 75 Total Manhours Training / Drill - 25 Total Manhours Total Manhours Training / Drill - 25 Total Manhours Total Manhours

From: October 2020 To: March 2021

Status of Conditions Stipulated in Environmental and CRZ Clearance File no: 10-130/2007- A.III dated: 09/02/2018

Inspection - 19.01.2021 Total	63	243
OSPR Equipment Quarterly Drill /	8	48
OSPR Equipment Commissioning- Training / Drill - 13.10.2020	30	120

(xxi) No hazardous chemicals shall be stored in the Coastal Regulation Zone area.

Noted for Compliance.

No hazardous chemical is stored in $\ensuremath{\mathsf{CRZ}}$ Area.

From: October 2020 To: March 2021

_		
(xxii)	The project shall not be commissioned till the requisite	Complied. Paguisite permission for Water Supply and
	water supply and electricity to the project are provided by the PWD/ Electricity Department.	Requisite permission for Water Supply and Electricity has been obtained from Chennai Metropolitan Water Supply and Sewerage Board (CMWSSB) and Tamil Nadu Electricity Board respectively before commissioning.
(xxiii)	Specific arrangements for	Being Complied.
	rainwater harvesting shall be made in the project design and the rain water so harvested shall be optimally utilized.	MIDPL is having Rainwater Collection facilities including Storm Water drains and Rainwater Harvesting Pond.
		Existing Rainwater Harvesting pond is used for Greenbelt maintenance.
		Water table is observed to be high in and around the Port area.
(xxiv)	The facilities to be constructed in the CRZ area as part of this project shall be strictly in conformity with the provisions of	Complied. All construction has been done in line to CRZ Notification, 2011 & EC&CRZ clearance obtained.

From: October 2020 To: March 2021

	the CRZ Notification, 2011 and its	
	amendment. The facilities such as	
	office building and residential	
	buildings which do not require	
	waterfront and foreshore	
	facilities shall not be constructed	
	within the Coastal Regulation	
	Zone area.	
Genera	I Conditions:	
(i)	Construction of the proposed	Complied.
	structures shall be undertaken	
	meticulously conforming to the	Project is in operation phase. All
	existing Central/local rules and	construction activity has been done in line
	regulations including Coastal	to the existing Central/local rules
	Regulation Zone Notification 1991	including CRZ Notification, 2011 and EC &
	& its amendments. All the	CRZ clearance obtained
	construction designs /drawings	
	relating to the proposed	
	construction activities must have	
	approvals of the concerned State	
	Government Departments	
	/Agencies.	
(ii)	Adequate provisions for	Complied.
	infrastructure facilities such as	
	water supply, fuel, sanitation etc.	Project is in Operation Phase.
	shall be ensured for construction	
	workers during the construction	
	phase of the project so as to	
	avoid felling of trees/mangroves	
	and pollution of water and the	
(:::)	surroundings.	On south of
(iii)	The project authorities shall make necessary arrangements for	Complied.
	disposal of solid wastes and for	No solid waste is being disposed of in the
	the treatment of effluents by	CRZ area. Integrated waste Management
	providing a proper wastewater	system is in place. All the solid waste
	treatment plant outside the CRZ	generated is properly collected, source
	area. The quality of treated	segregation of all types of Solid Waste is
	effluents, solid wastes and noise	practised and are disposed as per the
	level etc. must conform to the	provision of Solid Waste Management Rules
	standards laid down by the	2016, as amended.
	competent authorities including	Course Treeboset Bleets (7 CTD)
	the Central/State Pollution	Sewage Treatment Plants (3 STPs) of total
	Control Board and the Union	capacity of 45 KLD are provided for
	Ministry of Environment and	treatment of wastewater in line to CRZ Notification 2011. Domestic wastewater
	Forests under the Environment	
		generated are being collected, treated in

From: October 2020 To: March 2021

Status of Conditions Stipulated in Environmental and CRZ Clearance File no: 10-130/2007- A.III dated: 09/02/2018

(Protection) Act, 1986, whichever STP's and the entire treated sewage water is reused for green belt maintenance. Inlet are more stringent. & outlet characteristic of Sewage water is regularly analysed by NABL accredited laboratory. The monitoring results for the period Oct-2020 to Mar-2021 is enclosed as Annexure - III. Regular Environment Monitoring is being carried out through NABL accredited agency. Monitoring Reports for the period Oct-2020 to Mar-2021 are enclosed as Annexure -III. All the monitoring results are well within the prescribed standard. (iv) Complied. The proponent shall obtain the requisite consents for discharge Requisite Consents for discharge effluents and emissions under the Water of effluents and emissions under (Prevention and Control of Pollution) Act, the Water (Prevention and Control 1974 and the Air (prevention and Control of of Pollution) Act, 1974 and the Air Pollution) Act, 1981 were obtained before (prevention and Control of commissionina of the project Pollution) Act, 1981 from the submitted to Ministry. Project is in Tamil State Pollution Nadu operation phase and Consent to Operate Control Board before has been obtained from the Tamil Nadu commissioning of the project and State Pollution Control Board vide a copy of each of these shall be Consent Order No. 1907125448424 & sent to this Ministry. 1907225448424 dated 05/07/2019 valid till 31.03.2021. Complied. (v) order out to carry the environmental monitoring during MIDPL having Environmental is the operational phase of the Management Cell, staffed with qualified project, the project authorities personnel at site supported by team at shall establish an environmental Head Office in Ahmedabad. laboratory well equipped with Environment monitoring is being carried standard equipment and facilities out through NABL accredited Laboratory. and qualified manpower to carry FNVIRONMENT TEAM - ORGANOGRAM various out the testina of environmental parameters.

From: October 2020 To: March 2021

(vi)	The proponents shall provide for a regular monitoring mechanism so as to ensure that the treated effluents conform to the prescribed standards. The records of analysis reports must be properly maintained and made available for inspection to the concerned State/Central officials during their visits.	Complied. Domestic Wastewater is being treated in STP's and inlet & outlet characteristic of water is regularly analysed by NABL accredited laboratory. The monitoring results for the period Oct-2020 to Mar-2021 is enclosed as Annexure - III. All the results are found well within the prescribed standard.		
		Records are made available at site for inspection of concerned State / Central officials during their visit.		
(vii)	The sand dunes and mangroves, if any, on the site shall not be disturbed in any way.	Complied. No Sand dune and mangroves are present on the site.		
(viii)	A copy of the clearance letter will be marked to the concerned Panchayat / local NGO, if any, from whom any suggestion / representation has been received while processing the proposal.	Complied. This EC is just a bifurcation of original EC of LTSB. No representation received during the proposal stage.		
(ix)	The Tamil Nadu Pollution Control Board shall display a copy of the clearance letter at the Regional Office, District Industries Centre and Collector's Office/Tehsildars Office for 30 days.	Complied. The condition does not pertain to project proponent		
(x)	The funds earmarked for environment protection measures shall be maintained, in a separate account and there shall be no diversion of these funds for any other purpose. A year-wise expenditure on Environmental safeguards shall be reported to this ministry	Complied. Separate budget for the Environment Protection is earmarked every year. All the expenses are recorded in advanced accounting system of the organization. Expenditure for Environment Management measures during Oct-2020 to Mar-2021 is Rs. 159.33 Lakhs. The breakup details are as follows;		
		S. No. Description of Work Cost (Rs.) in Lakhs 1 Comprehensive 2.63 Environmental Monitoring 2 Environmental studies 52.86		
		3 Integrated Waste 1.15 Management & Pollution Under Check Facility		

From: October 2020 To: March 2021

_				•	
		4	O&M of STP's	7.42	
		5	Housekeeping	41.0	
		6	Greenbelt Plantation &	54.27	
4.3			Maintenance		
(xi)	Full support shall be extended to	Noted	for Compliance.		
	the officers (this Ministry's	-		CC:	
	Regional Office at Chennai and the officers of the Central and State		upport is extended to th DEF & CC Chennai, CPO		
	Pollution Control Boards by the		their inspection and site		
	project proponents during their	•	the compliance period,		– C
	inspection for monitoring purposes,	_	EF& CC visited the port		
	by furnishing full details and action		ompliance monitoring		
	plans including the action taken		nonthly visit was made		
	reports in respect of mitigative		als. All the necessary	•	
	measures and other environmental	extend	ded to them and the sa	ame shall	be
	protection activities.		ued in future also.		
(xii)	In case of deviation or alteration in	Noted	for Compliance.		
	the project including the	- .			
	implementing agency, a fresh		is no deviation or alte		the
	reference shall be made to this	projec	t including implementing	g agency.	
	ministry for modification in the clearance conditions or imposition				
	of new ones for ensuring				
	environmental protection.				
(xiii)	This Ministry reserves the right to	Noted	for Compliance.		
	revoke this clearance, if any of the		•		
	conditions stipulated are not				
	complied with to the satisfaction of				
	this Ministry.				
(xiv)	This Ministry or any other	Noted	for Compliance.		
	competent authority may stipulate				
	any other additional conditions subsequently, if deemed necessary,				
	for environmental protection,				
	which shall be complied with.				
(xv)	The Project proponents shall inform	Compl	ied.		
()	the Regional Office at Chennai as	· · · · ·			
	well as the Ministry the date of	The s	ame has been Compli	ed by L	TSB
	financial closure and final approval		bifurcation itself.	•	
	of the project by the concerned				
	authorities and the date of start of				
	Land Development Work.				
	RZ Amendment letter No. 10-130/200				
(i)	The details of combined effect on	Compl		011F dak-	نامط
	both the Ports (i.e. Ennore Port and Kattupalli Port) shall be carried out		TSB has already carried		
	to monitor the impact of the post-		ling study to understar umping and report was	•	
	dumping. This model study shall be	Minist		300111111111111111111111111111111111111	י נט
	comping. This model stody shall be	101111136	٠ ٫٠		

From: October 2020 To: March 2021

	carried out for a period of one year.	No dumping was being carried by MIDPL during the period Oct-2020 to Mar-2021. MIDPL engaged Institute of Ocean Management, Anna University to carry out shoreline studies of the concerned area. Reports of the same is submitted along with Half Yearly Compliance Report for the period Oct'19-Mar'20 vide our Letter No. MIDPL/EC-HYC/2020/11 dated 31.05.2020.
(ii)	A comparison between model study and actual dumping shall be carried out to examine the impacts both on North-East and South-West of the Ports and shall be submitted to the Ministry,	Complied. Comparison between model study and actual dumping was made to examine the impacts and report was submitted to Ministry by LTSB.
		No dumping was being carried by MIDPL during the compliance period of Oct-2020 to Mar-2021. MIDPL engaged Institute of Ocean Management, Anna University for studies. Reports of the same is submitted along with Half Yearly Compliance Report for the period Oct'19-Mar'20 vide our Letter No. MIDPL/EC-HYC/2020/11 dated 31.05.2020.
(iii)	No reclamation of the areas outside the Port limit and Buckingham Canal shall be carried out.	Being Complied. No reclamation of the areas outside Port Limit and Buckingham Canal is being carried out.
<u>६८ ६</u>	CRZ Extension of validity letter No. 1	0-130/2007- XIII dated 17.12.2014:
(i)	The cargo should only include (i) Container 21.60 MTPA, (ii) Ro-Ro – 0.22 MTPA, (iii) Project cargo – 0.44 MTPA, (iv) Break bulk/General cargo (Barytes/Gypsum/Limestone/Granit e/Steel cargo) – 1.82 MTPA and (v) Edible oil, CBFS, Base oil and Lube oil and non-hazardous liquid cargo – 0.57 MTPA	Being Complied.
(ii)	All the conditions stipulated by the Tamil Nadu Coastal Zone Management Authority (TNCZMA) vide letter no. 6064/EC.3/2014-1 dated 26.06.2014, shall be strictly complied with.	Complied. All the conditions stipulated by the Tamil Nadu Coastal Zone Management Authority (TNCZMA) vide letter no. 6064/EC.3/2014-1 dated 26.06.2014 are being complied. Compliance status of the

From: October 2020 To: March 2021

		same is enclosed as Annexure – IV .
(iii)	No additional land should be	Complied
	utilized for the proposed	
	development.	
(iv)	As committed, the local traffic	Complied.
	should not be disturbed.	
		Separate road is available for the local Traffic. Kattupalli Port is having a
		dedicated road connectivity connecting
		State Highways and National Highways.
		NH-5 (Chennai – Kolkata) is about 30 km
		from Port. The cargo handled are directly
		goes to the roads mentioned above which are outside the City Limits of Chennai.
		Handling of cargo in Kattupalli Port does
		not affect the regular traffic.
5	These stipulations would be	Noted for Compliance.
	enforced among other under the	
	provisions of water (Prevention and Control of Pollution) Act, 1974	
	the Air (Prevention and Control of	
	Pollution) Act 1981, the	
	Environment (Protection) Act,	
	1986, the Public Liability	
	(Insurance) Act, 991, the Hazardous Chemical (Manufacture,	
	storage and Import) Rules, 1989,	
	Solid Waste Management Rules,	
	2016 and the Coastal Regulation	
	Zone Notification, 2011 and its	
	subsequent amendments made	
6	All other statutory clearances such	Complied
	All other statutory clearances such as the approvals for storage of	The project is in operation after obtaining
	diesel from Chief Controller of	all the necessary clearances (as applicable)
	Explosives, Fire Department, Civil	from the concerned agencies as described
	Aviation Department, Forest	below.
	Conservation Act, 1980 and	• Tamil Nadu Maritime Board (TNMB) clearance – 575/S1/2008 dated
	Wildlife (Protection) Act 1972, etc	24.05.2012
	shall be Obtained, as applicable by project proponents from the	• Fire and Rescue License – 159/2015
	respective competent authorities.	(Renewal) dated 10.06.2015.
	·	• PESO Licenses -
		P/SC/TN/15/2514(P266086) dated 25.05.2012 (15 KL) and
		P/SC/TN/14/6260(P266084) dated
		16.08.2012 (50 KL).

From: October 2020 To: March 2021

the region, one of which shall be in the vernacular language informing that the project has been accorded Environmental Clearance and copies of clearance letters are available with the Tamil Nadu Pollution Control Board and may also be seen on the website of the Ministry of Environment and Forests at http://envfonnic.in. The advertisement should be made within 10 days from the date of receipt of the Clearance letter and a copy of the same should be forwarded to the Regional office of this Ministry at Chennai. 8 Any appeal against this Environmental Clearance shall lie with the National Environment	e is already submitted mpliance report for the to Mar-2019 vide our PL/TNPCB/GMP/EC-HYC
conditions and environmental safeguards will be uploaded by the project proponent in its website. Project proponent in its website. Environment Stathe year 2019-2 TNPCB vice MIDPL/TNPCB/2 21.9.2020. Copuploaded on Conto Regional Off mail on 21.09.2 attached as Annual This Environmental and CRZ Noted.	website regularly aniports.com/ports- tatement (Form-V) for 2020 was submitted to de letter No. 2020-21/32 dated py of the same is mpany website and sent fice of MoEF&CC by e-0. Copy of the same is
Clearance is valid till 2" July, 2019. 11 This issue with the approval of Noted .	

From: October 2020 To: March 2021

Status of Conditions Stipulated in Environmental and CRZ Clearance File no: 10-130/2007- A.III dated: 09/02/2018

Enclosures:

Annexure Number	Details of Annexure		
Annexure I:	Compliance to RC No. P1/2004/2008, dated 21.10.2008 of Department of Environment, Chennai		
Annexure II:	Annual Hazardous Waste Returns – Form IV FY 2019-20.		
Annexure III:	Environmental Monitoring reports for the period Oct-2020 to Mar- 2021		
Annexure IV:	Compliance to TNSCZMA conditions during Oct-2020 to Jan-2021		
Annexure V:	Mock Drills carried out during Oct-2020 to Mar-2021		
Annexure VI:	EMP Compliance Status		
Annexure VII	Environment Statement (Form V) FY 2019-20		

From: October 2020 To: March 2021

Status of Compliance to RC No. P1/2004/2008, dated 21.10.2008 of Department of Environment, Chennai

Annexure -1

SI.	Conditions	Compliance
No	The weit shall easy out diseased to de-	Noted for Compliance
i	The unit shall carry out dumping/ land filling at dredged material only on land which is not covered under CRZ	Noted for Compliance
ii	The unit shall not carry out any ship breaking activity	Not applicable
iii	The unit should design that the waste water should be recycled 100% and to be used for developing greenery etc., and there should not be any waste water let out.	Complied Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is regularly analysed by NABL accredited laboratory. The monitoring results for the period Oct-2020 to Mar-2021 is enclosed as Annexure - III.
iv	The unit should tie - up with institutions like Centre for Environmental Studies or IIT for the periodical monitoring during construction phase so as to ensure the adoption of Safety measures as per the Environmental Management Plan [EMP].	Complied. M/s. LTSB carried out the studies during Construction Phase.
V	Before commencing construction activities, Proper resettlement for the local the unit should ensure the proper resettlement of local inhabitants residing at the project area to the satisfaction of District Collector and submit a report to the Department of Environment.	Not applicable. Complied by M/s. LTSB. Rehabilitation & resettlement was carried out completely as per law / State Government at the time of project implementation. Bifurcation of original CRZ & EC of LTSB obtained vide File no: 10-130/2007- A.III dated 09/02/2018.
Gene	ral Conditions	
а	There should not be any extraction of Ground Water in CRZ.	Noted for compliance. No groundwater is withdrawal from CRZ Area. Presently unit is procuring desalinated water from M/s. Chennai Metropolitan Water Supply and Sewerage Board, Chennai.
b	The unit should obtain planning permission for their constructions from the CMDA/Department of Environment before commencing the constructions	Not applicable. Project is in operation phase. Bifurcation of original CRZ & EC of LTSB obtained vide File no: 10-130/2007- A.III dated 09/02/2018.

From: October 2020 To: March 2021

Status of Compliance to RC No. P1/2004/2008, dated 21.10.2008 of Department of Environment, Chennai

		Required permission from concerned
		authorities was taken by M/s. LTSB
		before commencing the constructions.
С	The proposed activities should not cause coastal erosion and alter the beach	Complied.
	configuration	MIDPL has engaged Institute of Ocean
	Configuration	Management, Anna University, Chennai
		for shoreline Change study. Report of the
		same is submitted along with Half Yearly
		Compliance Report for the period Oct'19-
		Mar'20 vide our Letter No. MIDPL / EC -
		HYC / 2020 / 11 dated 31.05.2020
d	No fencing or barricading along the pipeline alignment and parallel to the	Agreed for compliance.
	, ,	All activities permissible as per CRZ
	coast is permissible in CRZ.	notification 2011 & EC&CRZ clearance
	A	will only be carried out.
е	No blasting or drilling activities in CRZ is permissible.	Agreed for compliance.
		No blasting or drilling activity is carried in
		CRZ area. All activities permissible as per
		CRZ notification 2011 & EC&CRZ
		clearance will only be carried out.
f	The proponent should not prevent public	Being complied.
	from easy access to the beach.	Damig compiled:
	, , , , , , , , , , , , , , , , , , , ,	MIDPL will not block the access point to
		*
		beach for the public.
9	Chamical wasta accounted and the	
	Chemical waste generated and the	Complied.
	sewage generated, if any should not be	No chemical waste is generated.
	•	No chemical waste is generated. Domestic wastewater generated are
	sewage generated, if any should not be	No chemical waste is generated. Domestic wastewater generated are being collected, treated in STP's and the
	sewage generated, if any should not be	No chemical waste is generated. Domestic wastewater generated are
	sewage generated, if any should not be	No chemical waste is generated. Domestic wastewater generated are being collected, treated in STP's and the
	sewage generated, if any should not be	No chemical waste is generated. Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet
	sewage generated, if any should not be	No chemical waste is generated. Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is
	sewage generated, if any should not be	No chemical waste is generated. Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is regularly analysed by NABL accredited
	sewage generated, if any should not be	No chemical waste is generated. Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is regularly analysed by NABL accredited laboratory. The monitoring results for the
	sewage generated, if any should not be	No chemical waste is generated. Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is regularly analysed by NABL accredited laboratory. The monitoring results for the period Oct-2020 to Mar-2021 is enclosed
h	sewage generated, if any should not be discharged in to the sea.	No chemical waste is generated. Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is regularly analysed by NABL accredited laboratory. The monitoring results for the period Oct-2020 to Mar-2021 is enclosed as Annexure - III .
h	sewage generated, if any should not be discharged in to the sea. The proponent should implement the	No chemical waste is generated. Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is regularly analysed by NABL accredited laboratory. The monitoring results for the period Oct-2020 to Mar-2021 is enclosed as Annexure - III. Complied.
h	sewage generated, if any should not be discharged in to the sea. The proponent should implement the EMP including the Green Belt as	No chemical waste is generated. Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is regularly analysed by NABL accredited laboratory. The monitoring results for the period Oct-2020 to Mar-2021 is enclosed as Annexure - III. Complied. The EMP is being implemented in letter &
h	sewage generated, if any should not be discharged in to the sea. The proponent should implement the	No chemical waste is generated. Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is regularly analysed by NABL accredited laboratory. The monitoring results for the period Oct-2020 to Mar-2021 is enclosed as Annexure - III. Complied. The EMP is being implemented in letter & spirit. Greenbelt of adequate size has
h	sewage generated, if any should not be discharged in to the sea. The proponent should implement the EMP including the Green Belt as	No chemical waste is generated. Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is regularly analysed by NABL accredited laboratory. The monitoring results for the period Oct-2020 to Mar-2021 is enclosed as Annexure - III. Complied. The EMP is being implemented in letter & spirit. Greenbelt of adequate size has been developed along the periphery of
h	sewage generated, if any should not be discharged in to the sea. The proponent should implement the EMP including the Green Belt as	No chemical waste is generated. Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is regularly analysed by NABL accredited laboratory. The monitoring results for the period Oct-2020 to Mar-2021 is enclosed as Annexure - III. Complied. The EMP is being implemented in letter & spirit. Greenbelt of adequate size has been developed along the periphery of the project area and alongside the road
h	sewage generated, if any should not be discharged in to the sea. The proponent should implement the EMP including the Green Belt as	No chemical waste is generated. Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is regularly analysed by NABL accredited laboratory. The monitoring results for the period Oct-2020 to Mar-2021 is enclosed as Annexure - III. Complied. The EMP is being implemented in letter & spirit. Greenbelt of adequate size has been developed along the periphery of the project area and alongside the road and are being maintained by MIDPL. Till
h	sewage generated, if any should not be discharged in to the sea. The proponent should implement the EMP including the Green Belt as	No chemical waste is generated. Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is regularly analysed by NABL accredited laboratory. The monitoring results for the period Oct-2020 to Mar-2021 is enclosed as Annexure - III . Complied. The EMP is being implemented in letter & spirit. Greenbelt of adequate size has been developed along the periphery of the project area and alongside the road and are being maintained by MIDPL. Till date, 25,374 Nos. of trees has been
h	sewage generated, if any should not be discharged in to the sea. The proponent should implement the EMP including the Green Belt as	No chemical waste is generated. Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is regularly analysed by NABL accredited laboratory. The monitoring results for the period Oct-2020 to Mar-2021 is enclosed as Annexure - III. Complied. The EMP is being implemented in letter & spirit. Greenbelt of adequate size has been developed along the periphery of the project area and alongside the road and are being maintained by MIDPL. Till

From: October 2020 To: March 2021

Status of Compliance to RC No. P1/2004/2008, dated 21.10.2008 of Department of Environment, Chennai

		Operational Phase EMP compliance status is enclosed as Annexure – VI .
i	The project activity should not affect the coastal ecosystem including marine flora and fauna.	Complied Marine water & Sediment quality are being monitored through NABL accredited laboratory on monthly basis. There is no impact on water quality in the vicinity. The details of Marine Water quality monitoring report for the period October 2020 to March 2021 is enclosed as Annexure-III.
j	The proponent should not undertake any activity, which is violate of provisions of CRZ Notification 1991 and the subsequent amendments.	Being complied. All activities permissible as per CRZ notification 2011 & EC&CRZ clearance will only be carried out.
k	The CRZ Clearance will be revoked if any of the conditions stipulated in not complied with.	Noted for compliance

Ports and Logistics

MIDPL/TNPCB/GMP/HWR-2020/15

KATTUPALLI PORT CHENNAI'S NEW GATEWAY

Date: 22/06/2020

To.

The District Environmental Engineer,

Tamil Nadu Pollution Control Board, EPIB Building, A.O Block, Gummidipoondi Industrial Complex, Gummidipoondi – 601 201.

Dear Sir.

Sub: Submission of Annual Hazardous Waste Returns (FORM 4) for the period April'2019 to March'2020- Reg.

With reference to captioned subject, **M/s**. **Marine Infrastructure Developer Private Limited** is submitting the Annual Hazardous Waste Returns in Form 4 for the period April'2019 to March'2020.

Submitted for your kind records.

Kindly acknowledge us the receipt of the same.

for, M/s. Marine Infrastructure Developer Pvt Ltd

R. Sathish Kumar Head - Environment

Encl: As above

Chennai 600 120

Marine Infrastructure Developer Pvt Ltd (Kattupalli Port) Kattupalli Village, Ponneri Taluk, Tirivalluvar District 600 120, Tamil Nadu, India ET025425417IN IVR:6984025425
SP NORTH CHENNAI THERMAL PP 50 550126>
Counter No:1,24/06/2020,13:08 India Post
To:THE DIST ENVI,TN POLLUTION CON
PIN:601201, Summidipundi SO
From:SATHISHKUMA,HEAD ENVIRONMENT
Wit:110gms
Amt:41.30(Cash)Tax:6.30

(Track on www.indiaoost.oov.in>
CDial 18002666688> (Wear Masks, Stay Safe)

Tel +91 44 2824 3062

CIN: U74999TN2016PTC103769

FORM 4

[See rules 6(5), 13(8), 16(6) and 20 (2)]

FORM FOR FILING ANNUAL RETURNS

[To be submitted to State Pollution Control Board by 30th day of June of every year for the proceeding period April 2019 to March 2020]

1	Name and address of facility:	M/s. Marine Infrastructure Developer
		Pvt Ltd (MIDPL)
		Kattupalli Village, Ponneri Taluk,
	of the second	Tiruvallur District - 600120
2	Authorisation No. and Date of issue:	Authorization No. 19HFC20312718 &
	the state of the s	dated 30.04.2019
3	Name of the authorised person and	Mr. Jai Khurana
- 4	full address with telephone, fax	Director
	number and e-mail:	Marine Infrastructure Developer Pvt
		Ltd. Kattupalli Village, Ponneri Taluk,
		Tiruvallur District – 600120.
pl st		Tel: +91 44 2824 3062.
7		Mail: <u>Jai.Khurana@adani.com</u>
4	Production during the year (product	Not Applicable
	wise), wherever applicable	

Part A. To be filled by hazardous waste generators

1	Total quantity of waste generated category wise	Cargo residue, washing water and sludge containing Oil	Waste containing oil	Oil contaminated filter element
	Category	3.1	5.2	3.3
	Quantity	50.310 Tonnes	0	0
2	Quantity dispatched		•	
	(i) to disposal facility	NIL	NIL	NIL
	(ii) to recycler or co- processors or pre- processor	50.310 Tonnes	0	0
	(iii) others	NIL	NIL	NIL
3	Quantity utilised in-house, if any -	Cargo residue, washing water and sludge containing Oil: NIL Waste containing oil: NIL Oil contaminated filter element: NIL		
4	Quantity in storage at the end of the year –	Oil Sludge: NIL Waste containing oil: N I Oil contaminated filter el		

Part B. To be filled by Treatment, Storage and Disposal Facility operators

1	Total quantity received -		
2	Quantity in stock at the beginning of		
	the year -		
3	Quantity treated –		
4	Quantity disposed in landfills as such		
	and after treatment –	Not Applicable	
5	Quantity incinerated (if applicable) -		
6	Quantity processed other than		
	specified above -		
7	Quantity in storage at the end of the		
	year -		

Part C. To be filled by recyclers or co-processors or other users

Quantity of waste received during the year – (i) domestic sources (ii) imported (if applicable)	
Quantity in stock at the beginning of the year -	
Quantity recycled or co-processed or used –	
Quantity of products dispatched (wherever applicable) –	Not Applicable
Quantity of waste generated -	
Quantity of waste disposed -	dicture Devel
Quantity re-exported (wherever applicable)-	Chennai P.
Quantity in storage at the end of the vear -	
	year – (i) domestic sources (ii) imported (if applicable) Quantity in stock at the beginning of the year - Quantity recycled or co-processed or used – Quantity of products dispatched (wherever applicable) – Quantity of waste generated - Quantity of waste disposed - Quantity re-exported (wherever applicable)-

Date: 22.06.2020 Place: Chennai Signature of the Occupier

REPORT ON COMPREHENSIVE ENVIRONMENTAL MONITORING FOR

MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED (MIDPL) KATTUPALLI VILLAGE, PONNERI TALUK, THIRUVALLUR DISTRICT, TAMILNADU - 600 120

OCTOBER 2020 - MARCH 2021

PREPARED BY:

Green Chem Solutions Pvt. Ltd.

No.883, 11th Street, Syndicate Bank Colony, Anna Nagar West Extension, Chennai - 600 101.

Index for Table

S.No	Index
I.	Introduction
II.	Location of the project
III.	Scope of work
IV.	Methodology
V.	Environmental studies
i.	Meteorological Data
ii.	Ambient Air Quality
iii.	Ambient Noise Level Intensity
iv.	DG Set Emission
٧.	STP Water Sample Analysis
vi.	Drinking water Sample Analysis
vii.	Rain water harvesting pond Water Sample Analysis
viii.	Marine sampling
Fig.No	Description
1	Location Map
2	Ambient Air Sampling Station Location Map
3	Environmental Monitoring Locations with respect to Wind rose
4	Noise Level Sampling Location Map
5	Water and Marine Sampling Location Map

I. INTRODUCTION

Marine Infrastructure Developer Private Limited (MIDPL), subsidiary of Adani Ports and Special Economic Zone Limited (APSEZ) is operating Kattupalli Port, having the latest technology of Terminal Operating System which is the first of its kind in India, which can support the entire supply chain in doing business smoothly.

MIDPL have engaged M/s. Green Chem Solutions (P) Ltd, an Accredited Consultant by NABL to carry out the Comprehensive Environmental monitoring studies in the Port site continuously as per the norms. This report covers the monitored environmental data for the Period Oct 2020 to Mar 2021.

II. LOCATION OF THE PROJECT

The Project site is located at Port area, Kattupalli Port Area.

The location map is shown in Fig - 1

Fig - 1 - Location Map

III. SCOPE OF WORK

The scope of Comprehensive Environmental monitoring includes the following environmental components;

- 1. Meteorological data
- 2. Ambient Air Quality
- 3. Ambient Noise Level
- 4. Marine Sampling
- 5. Treated STP / ETP Water.
- 6. Potable water
- 7. DG Set emission

The parameters covered under the scope for each of the above attributes are given below:

SCOPE OF WORK

S.No	Attribute	Scope	Frequency
1.	Meteorological Data	Collection of micrometeorological data on hourly basis by installing an auto weather monitoring station at plant site covering the following parameters: • Wind speed • Wind direction • Rainfall • Relative Humidity • Temperature • Barometric pressure • Solar Radiation	Daily
2.	Ambient Air Quality	Sampling of ambient air at 04 stations for analyzing the following parameters: PM10 PM2.5 SO2 NO2 CO Lead Ozone Ammonia Benzene BenzoPyrene Arsenic Nickel	Weekly Twice
3.	Ambient Noise	Collection of Noise levels on hourly basis at 4 locations • L _{eq} - Day (Max and Min) • L _{eq} - Night (Max and Min)	Monthly Once
4.	Marine Sampling	9,01	

4a.	Surface and	Collection of Surface and Bottom	
	Bottom Water	Water analyzed for - 2 location	
		 Temperature 	
		• pH @ 25°C	
		 Total Suspended Solids 	
		 BOD at 27 °C for 3 days 	
		Dissolved oxygen	
		• Salinity at 25 °C	
		Oil & Grease	
		 Nitrate as No₃ Nitrite as No₂ 	Monthly Once
		Ammonical Nitrogen as N	
		Ammonia as NH ₃	
		Kjeldahl Nitrogen as Nl	
		 Total phosphates as PO₄ 	
		Total Nitrogen,	
		Total Dissolved Solids	
		• COD	
	1000	 Total bacterial count, 	
	A CONTRACTOR OF THE PARTY OF TH	• Coliforms	
		Escherichia coli	
		Salmonella	
		Shigella	
	AND THE RESERVE AND ADDRESS OF A	Vibrio cholera	
		Vibrio parahaemolyticusEnterococci	
		Colour	
		Odour	
		Taste	
		Turbidity	
		Calcium as Ca	
		 Chloride as Cl 	
	The same of the	 Cyanide as CN 	
		Fluoride as F	
	THE PARTY OF	Magnesium as Mg	
-	1 1	Total Iron as Fe	54
		Residual Free Chlorine	
	Que and	Phenolic Compounds as	
	T. Land	C ₆ H ₅ OH	
	Contra	 Total Hardness as CaCO₃ 	
	ACCOUNTS OF	 Total Alkalinity as CaCO₃ 	
		 Sulphide as H₂S 	
		 Sulphate as SO₄ 	
		 Anionic surfactants as MBAS 	
		 Monocrotophos 	
		 Atrazine 	
		• Ethion	
		 Chiorpyrifos 	
		Phorate	
		Mehyle parathion	
		Malathion	
		DDT (o,p and p,p-Isomers of	
		DDT,DDE and DDD	
		Gamma HCH (Lindane)	
		Alppha HCH	
		Beta HCH	

		 Endosulfan (Alpha,betaandsulphate) Butachlor Alachlor Aldrin/Dieldrin Isoproturon 2,4-D Polychlorinated Biphenyls(PCB) Polynuclear aromatic hydrocarbons (PAH) Arsenic as As Mercury as Hg Cadmium as Cd Total Chromium as C Copper as Cu Lead as Pb Manganese as Mn Nickel as Ni Selenium as Se Barium as Ba Silver as Ag Molybdenum as Mo Octane Nonane Decane Undecane Tridecane Tetradecane Pentadecane Hexadecane Heptadecane Octadecane Nonadecane Elcosan 	
4b.	Sea Sediment	Collection of sea sediment analyzed for - 2 location	Monthly Once

		PotassiumTotal Chromium	
		 Petroleum Hydrocarbon Aluminium Total Nitrogen Organic Nitrogen 	
		PhosphorusTexture	
4c.	Phytoplankton Monitoring	 Total Count No. of species Chlorophyll-a Major Species 	Monthly Once
4d.	Zooplankton Monitoring	Total CountNo. of speciesMajor	Monthly Once
4e.	Microbiological Monitoring	 Total Bacteria count Total Coliform Faecal Coliform E.Coli Enterococcus Salmonella Sheigella Vibrio 	Monthly Once
4f.	Primary Productivity Monitoring	Gross primary productivity Net Primary productivity	Monthly Once
4g.	Phytobenthos Monitoring data	 Fungus Total Count No. of species Diversity Index Major species 	Monthly Once
4h.	Total Fauna Monitoring	 Name of phylum Class Number of Individuals encountered Total no. of species encountered 	Monthly Once
5.	STP Treated Water	 Total fauna Collection of STP Treated water analyzed for - 2 locations pH TSS BOD Faecal Coliforms 	Monthly Once
6.	Potable Water analysis	Collection of Drinking water analyzed for - 1 locations - As per IS 10500 2012 - 36 Parameters	Monthly Once
7	DG Set Emissions - 3Nos & Liquid Terminal oil Generator	Sampling of Emission at 04 stations for analyzing the following parameters: • PM • Carbon Monoxide • NO _x - NO ₂ • SO ₂	Monthly Once

IV. METHODOLOGY

Methodologies adopted for sampling and analysis for each of the above parameters are detailed below

1	Meteorological parameters								
	Auto weather station								
2	Ambient Air Quality								
	Parameters	Method							
	RespirableSuspendedParticulateMatter(PM10)	IS5182Part23:2006							
	ParticulateMatter PM2.5	GCS/Lab/SOP/087, CPCB Guidelines							
	SulphurdioxideasSO ₂	IS5182 Part2 :2001(Reaff.2006)							
	OxidesofNitrogenas NO ₂	IS5182 Part6 :2006							
	LeadasPb	IS5182 Part22:2004(Reaff.2009)							
	ArsenicasAs	GCS/Lab/SOP/089, CPCB							
		Guidelines							
	NickelasNi	GCS/Lab/SOP/090, CPCB							
		Guidelines							
	Carbonmonoxide as CO	IS5182Part10:1999(Reaff.2009							
	OzoneasO ₃	IS5182Part9:1974[Reaff.2009]							
	AmmoniaasNH₃	GCS/Lab/SOP/086, CPCB Guidelines							
	Benzene (α) pyrene	IS 5182 - Part 12							
	BenzeneasC ₆ H ₆	IS5182Part11:2006							
3	Ambient Noise Monitoring								
	L _{eq} Day & Night	InstrumentManual,							
		GCS/LAB/SOP/Noise/001							
4	Marine Sampling								
	Surface and Bottom Water	APHA Methods 23 rd Edition, 2017							
	Sea Sediment	Standard Methods for examination							
	Phytoplankton Monitoring	of Water and Waste water and IS							
	Zooplankton Monitoring	3025							
	Microbiological Monitoring	Et.							
	Primary Productivity Monitoring	USEPA Test Methods							
	Phytobenthos Monitoring data	43"							
	Total Fauna Monitoring	- 15V							
5	STP Water Analysis								
	pH , TSS, BOD , Faecal Coliforms	APHA Methods 23 rd Edition, 2017							
	- COUNTY W	Standard Methods for examination							
		of Water and Waste water and IS							
		3025							
6	New Water Analysis								
	As per IS 10500 : 2012-36 Parameters	APHA Methods 23 rd Edition, 2017							
		Standard Methods for examination							
		of Water and Waste water and IS							
	3025								
7	Emission Monit								
	PM, Carbon Monoxide, NO_x - NO_2 , SO_2	IS 11255 Methods of measurement							
		of emissions from Stationary source							

V. ENVIRONMENTAL MONITORING: Oct 2020 - Mar2021

S.No	ATTRIBUTE	SCOPE							
1.	Meteorological parameters	Collection of micrometeorological data at project site on daily basis with hourly frequency							
2.	Ambient Air Quality	Collection of ambient air at 4 locations.							
3.	STP water	Collection of STP outlet water at two locations							
4.	Ambient Noise	Collection of Ambient noise levels for day and night at 4 locations							
5.	Drinking Water	Collection of Drinking water at Canteen Building							
6.	Marine Water and Marine Sediments	Collection of Marine water and Marine Sediments at Three locations							
7	DG Set Emissions	Collection of DG Set Emissions.							

i. METEOROLOGICAL DATA

Meteorological data was collected on hourly basis by installing an auto weather monitoring station at Plant site. The report depicted here under represents the data for the period Oct 2020 to Mar 2021.

The following parameters were recorded

- Wind speed
- Wind direction
- Ambient Temperature

- Ambient Pressure
- Relative humidity
- Rainfall

ANNEXURE - 1 MICROMETEOROLOGY DATA OCT - 2020

Date	Ambient Temperature (°C)		Atmospheric Pressure (mbar)		Predominant wind Direction	Wind Speed (m/s)		Relative Humidity (%)		Rainfall				
	Min	Max	Avg	Min	Max	Avg	(Blowing From)	Min	Max	Avg	Min	Max	Avg	- mm
01.10.20	25.5	33.1	28.8	1001.8	1006.3	1004.2	W	0	2.7	0.9	67	91	81.0	0.2
02.10.20	26.6	34.8	29.6	1002.4	1006.2	1004.4	SW	0	3.1	1.2	61	91	80.8	0.0
03.10.20	26.2	32.7	29.6	1003	1006.4	1004.6	WSW	0	5.4	1.8	71	91	81.2	0.8
04.10.20	27.3	31.9	29.6	1003.7	1007.7	1005.5	SW	0.4	4	1.2	72	84	79.3	0.0
05.10.20	26.8	35.3	30.4	1002.6	1007	1005.0	W	0	3.1	1.3	56	83	73.9	0.0
06.10.20	27.2	34.7	29.7	1002.7	1006.8	1004.9	SW	0	2.7	1.7	63	90	81.2	0.0
07.10.20	27.3	34.3	29.5	1003.7	1007.7	1005.9	SE	1.3	4.5	2.5	66	90	85.0	0.0
08.10.20	28.1	31.3	29.3	1003.7	1008.1	1006.2	SSE	0	3.1	1.8	78	93	87.3	0.0
09.10.20	28.2	29.9	29.1	1004	1008.3	1006.4	SE	0	3.1	1.6	83	90	87.3	0.0
10.10.20	26.7	30.6	28.4	1004	1007.3	1005.8	NW	0	1.3	0.3	79	90	85.5	0.8
11.10.20	24.7	30.7	27.7	1001.4	1006.1	1003.8	WNW	0	2.2	1.1	74	93	85.4	2.0
12.10.20	25.7	31.8	27.4	999.1	1004.3	1001.8	W	0	1.3	0.5	69	93	86.2	9.6
13.10.20	26	32.7	29.0	997.3	1001.8	999.9	SW	0	3.1	1.9	69	94	80.8	0.2
14.10.20	27	33.1	29.4	999.9	1003.7	1001.6	SW	1.3	4	2.6	65	85	75.9	0.0
15.10.20	27.3	32.6	29.4	1001.5	1005.5	1003.4	N	0.9	3.1	2.0	61	86	73.7	0.0
16.10.20	26.9	31.5	29.4	1001.4	1005.7	1003.7	ENE	0	1.3	0.5	79	92	85.8	0.0
17.10.20	24.5	27.1	25.8	1003.2	1008.5	1005.8	NW	0	0.9	0.1	81	96	93.8	16.0
18.10.20	24.7	27.1	25.8	1003.7	1008.5	1005.8	W	0	0.9	0.1	89	96	93.8	16.6
19.10.20	25.5	32.1	28.2	1002.9	1007.7	1005.1	WSW	0	1.3	0.2	72	96	87.4	0.2
20.10.20	25.1	28.5	26.7	1002.9	1006.9	1004.8	WNW	0	1.8	0.3	86	95	91.3	5.2
21.10.20	25.1	29.9	27.3	1003.2	1007.8	1005.5	WNW	0	3.6	1.4	82	95	88.8	0.2
22.10.20	25.4	33.5	28.0	1002.2	1006.8	1004.9	SW	0	2.7	1.0	72	93	87.3	0.2
23.10.20	23.8	32.3	27.4	1002.8	1007.5	1005.3	WSW	0	2.7	1.1	78	96	89.3	8.8
24.10.20	25.7	32.1	28.3	1004.7	1009	1006.6	WSW	0	1.3	0.6	76	90	84.5	0.0
25.10.20	26.8	31.3	29.0	1006.6	1010.1	1008.6	NNE	0	1.3	0.2	77	92	84.3	0.0
26.10.20	25.8	31.2	28.6	1007.2	1011.8	1009.4	NNE	0	1.8	0.6	74	94	84.9	0.0
27.10.20	26.3	30.8	28.7	1006.3	1010.8	1008.7	NNE	0	2.2	0.8	77	94	84.7	0.0
28.10.20	23.9	28.4	26.3	1007.7	1012	1009.5	WNW	0	2.7	1.1	80	93	88.3	11.6
29.10.20	23.1	28.3	25.7	1007.9	1013.2	1009.8	NNE	0.4	2.2	1.3	78	96	88.6	67.2

30.10.20	24.9	30.6	27.6	1007.1	1010.9	1009.2	NNE	0	2.7	1.3	70	89	81.5	0.0
31.10.20	24.4	31.4	28.1	1007.1	1011	1009.4	NNE	0	1.8	0.4	68	94	82.0	0.0

NOV - 2020

Date		Ambien peratur		Atmospheric Pressure (mbar)			Predominant wind Direction	Wind Speed (m/s)			Rela	Rainfall mm		
	Min	Max	Avg	Min	Max	Avg	(Blowing From)	Min	Max	Avg	Min	Max	Avg	111111
01.11.20	24.9	31.2	28.3	1007.7	1011.9	1010.0	NE	0	0.4	0.1	74	94	84.9	0.0
02.11.20	25.1	31.1	28.4	1008.9	1012.6	1010.8	NNE	0	1.3	0.3	76	95	86.4	0.0
03.11.20	26.4	31.6	29.0	1008.6	1012.7	1010.7	NNE	0	1.3	0.5	78	95	86.2	0.0
04.11.20	26.5	30.8	28.8	1007.9	1012.6	1010.5	NNE	0	1.3	0.3	81	92	87.2	1.8
05.11.20	25.7	30.7	28.7	1008.7	1012.9	1010.9	NNE	0	1.8	0.4	81	92	86.5	1.4
06.11.20	28.6	31.7	29.8	1010.7	1014.2	1012.3	NE	0	0.9	0.3	78	87	83.0	0.0
07.11.20	26.7	30.7	28.5	1011.5	1014.9	1012.8	NE	0	2.7	0.6	80	90	85.3	5.4
08.11.20	26.3	30.1	29.0	1011.5	1014.8	1013.0	NNE	0.9	2.2	1.8	75	90	79.6	3.4
09.11.20	27.4	30.5	28.6	1009.6	1014.4	1012.0	NNE	0.9	1.8	1.3	65	76	71.8	0.0
10.11.20	25.8	30.1	28.0	1007.2	1012.1	1010.0	NNE	0	1.3	0.9	64	82	71.0	0.0
11.11.20	22.6	27.8	25.6	1007.4	1011.9	1009.6	NW	0.4	4	2.3	78	95	87.1	5.6
12.11.20	24.1	27.4	25.1	1009.1	1013.7	1011.1	NE	0	2.2	1.0	89	97	95.5	37.6
13.11.20	26.8	29.7	28.5	1008.7	1012.6	1010.8	NNE	0.4	2.2	1.4	82	91	86.2	0.0
14.11.20	27.6	30.1	28.9	1007.6	1012.5	1009.9	NNE	1.3	2.2	1.9	78	87	83.2	0.0
15.11.20	25.9	28.5	27.5	1006.8	1011	1008.9	NNE	0	2.2	1.1	85	94	89.9	18.2
16.11.20	24.2	29.3	26.0	1008.7	1012.7	1010.7	E	0	2.7	1.3	83	97	92.5	33.6
17.11.20	23.7	30.1	27.7	1007.6	1012.4	1010.5	ENE	0	1.3	0.4	80	96	88.6	15.6
18.11.20	24.7	30.1	27.7	1008.8	1012.4	1010.5	NE	0	1.3	0.4	81	96	88.6	0.6
19.11.20	27.7	30.8	28.8	1009.1	1012.9	1010.8	ENE	0	1.3	0.4	79	88	83.6	0.0
20.11.20	25.6	29.6	27.8	1009.5	1013.5	1011.3	NNE	0	0.9	0.2	76	91	81.5	0.0
21.11.20	23.7	29.4	26.9	1009.7	1013.8	1011.6	NNE	0	1.3	0.4	72	93	81.0	0.0
22.11.20	22.2	29.3	26.2	1010.1	1013.7	1011.9	NNE	0	1.8	0.6	73	94	83.8	0.0
23.11.20	25.1	30.2	28.1	1009.1	1013.2	1011.2	NNE	0.9	1.8	1.2	76	92	81.9	6.2
24.11.20	24.7	28.1	26.4	1006.9	1011.8	1009.4	N	0.9	2.7	1.8	81	95	89.2	44.6
25.11.20	24.2	26.4	25.4	1002.8	1008.3	1005.6	NNE	1.3	2.7	2.2	89	96	93.5	84.0
26.11.20	21.1	27.2	24.7	999.2	1006.5	1001.9	SSE	2.2	15.2	7.1	85	97	91.3	10.4
27.11.20	20.3	26.8	23.5	1004.9	1012.5	1008.5	WSW	0	3.1	1.8	78	97	87.3	0.4
28.11.20	22.7	29	26.0	1010.1	1014	1012.1	WNW	0	2.2	0.4	81	94	87.5	0.0
29.11.20	23.8	27.7	25.2	1010.7	1014.4	1012.6	WNW	0.9	3.6	2.3	87	97	93.4	4.4
30.11.20	24.3	28.9	27.1	1010.7	1014.3	1012.3	NNE	0.4	2.7	1.5	78	96	85.5	1.2

DEC - 2020

Marine Infrastructure Developer Pvt Ltd											
		Report	Type:Average	Report							
	From:	01-12-2020 0	0:00:00 To: 3:	1-12-2020 23	:59:59						
	Created B	y: glensAdm	in Created At	: 2021-01-05	12:52:12						
		Wind	Atm.	Relative		Atm	Solar				
	Wind Speed	Direction	Temperature	Humidity	Rainfall	Pressure	Radiation				
Date	(km/h)	(Degree)	(Degree C)	(%)	(mm)	(mBar)	(w/m2)				
01-12-2020	11.09	60.64	29.58	84.06	0	1009.51	154.24				
02-12-2020	12.81	79.97	29.06	96.8	0.2	1007.71	55.27				
03-12-2020	6.7	81.23	28.49	99.9	27.46	1006.49	90.67				
04-12-2020	5.48	82.12	27.8	99.9	24.46	1006.23	38.17				
05-12-2020	4.73	68.65	28.38	99.9	11.55	1006.57	94.33				
06-12-2020	0.72	50	28.8	99.9	0	1007.2	22.01				
07-12-2020	1.89	92.3	29.19	99.9	20.44	1011.67	17				
08-12-2020	0.61	87.79	29.52	98.64	0.55	1010.5	188.65				
09-12-2020	0.6	104.8	29.1	90.69	15.94	1010.01	248.76				
10-12-2020	0.13	108.77	28.68	85.76	0	1009.94	4.17				
11-12-2020	0.39	156.57	27.97	89.88	0	1009.99	3.94				
12-12-2020	0.32	101.47	28.62	84.7	0	1009.34	4.31				
13-12-2020	1.37	167.22	28.1	92.33	0	1008.63	4.2				
14-12-2020	1.52	90.61	28.99	79.96	0	1008.41	3.9				
15-12-2020	4.38	67	29.54	88.07	0	1009.4	3.8				
16-12-2020	6.46	73.36	29.31	96.52	3.57	1010.04	2.1				
17-12-2020	6.18	72.12	29.54	94.04	0	1009.97	3.39				
18-12-2020	7.33	66.54	29.28	92.7	0	1009.94	3.14				
19-12-2020	3.58	84.89	29.63	86.21	0	1010.69	3.69				
20-12-2020	6.49	81.1	29.31	74.77	0	1010.87	4.11				
21-12-2020	5.16	69.52	28.6	70.23	0	1010.17	3.91				
22-12-2020	3.69	78.37	28.13	73.63	0	1009.48	3.68				
23-12-2020	4.2	82.59	28.21	74.36	0	1008.66	4.12				
24-12-2020	6.09	140.95	27.61	80.79	0	1008.04	4.03				
25-12-2020	6.51	138.68	27.52	82.77	0	1008.81	4.4				
26-12-2020	7.88	123.56	28.09	83.43	0	1009.41	4.26				
27-12-2020	8.78	93.91	28.26	86.49	0	1008.77	3.87				
28-12-2020	7.79	103.12	28.03	83.43	0	1008.57	4.18				
29-12-2020	8.76	96.62	28.59	90.85	0	1008.3	3.06				
30-12-2020	7.41	69.32	28.93	93.56	0	1008.5	2.13				
31-12-2020	8.73	82.46	29.23	87.71	0	1009.04	3.79				

JAN - 2021

	Mari		tructure Dort Type:Averag		r Pvt Ltd		
	1				FO.FO		
	-	From: 01-01-20		31-01-2021 23: At: 2021-02-05			
	Wind Speed	eated By: glensA	Atm Temperature		Total Rainfall	Atm Pressure	Solar Radiatio
Date-(DD-MM-YYYY)	(km/h)	(Degree)	(Degree C)	Humidity (%)	(mm)	(mBar)	(w/m2)
01-01-2021	7.74	69.12	(Degree C)	82	0	1009.45	3.54
02-01-2021	8.33	67.91	28.35	95.38	0	1009.28	1.15
03-01-2021	7.82	75.53	28.76	96.81	0	1007.89	2.39
04-01-2021	8.41	63.93	28.88	94.95	0.09	1008.19	3.18
05-01-2021	5.28	101.12	27.51	99.9	31.94	1008.73	0.65
06-01-2021	3.1	94.08	28.54	99.83	5.48	1007.67	3.23
07-01-2021	3.99	143.29	27.88	99.84	35.33	1006.77	3.06
08-01-2021	2.94	169.89	27.57	99.81	1.06	1006.38	1.92
09-01-2021	4.81	77.39	28.88	98.81	0	1006.91	3.78
10-01-2021	8.01	57.8	28.96	99.74	0	1007.4	3.09
11-01-2021	9.85	67.26	29.12	99.13	0	1008.15	4.41
12-01-2021	11.45	59.99	28.92	98.53	0	1008.34	3.82
13-01-2021	7.85	54.08	29.24	94.63	0	1008.36	4.32
14-01-2021	7.37	64.47	29.24	96.12	0	1007.89	3.9
15-01-2021	5.24	71.08	29.34	84.46	0	1007.64	4.31
16-01-2021	4.49	70.72	28.99	82.39	0	1007.03	4.72
17-01-2021	4.4	118.67	28.47	78.16	0	1008.28	4.94
18-01-2021	5.35	75.31	29.32	75.27	0	1008.87	4.7
19-01-2021	7.68	68.05	29.01	82.43	0	1008.47	4.51
20-01-2021	5.88	106.66	28.48	94.73	0	1008.98	2.87
21-01-2021	3.76	115.84	29.08	98.79	0	1008.36	4.66
22-01-2021	3.29	157.08	29.18	94.77	0	1008.38	4.26
23-01-2021	3.84	87.1	29.41	86.27	0	1008.69	4.86
24-01-2021	4.28	147.86	28.32	89.9	0	1009.39	4.71
25-01-2021	3.98	117.11	28.81	84.94	0	1009.96	4.81
26-01-2021	4.01	137.29	28.76	80.08	0	1009.4	5.01
27-01-2021	3.39	134.19	28.28	84.54	0	1009.61	4.35
28-01-2021	6.12	83.9	29.7	82.43	0	1009.69	4
29-01-2021	6.44	85.47	29.89	81.38	0	1010.04	4.43
30-01-2021	5.25	80.61	29.62	85.61	0	1009.53	4.66
31-01-2021	5.5	78.85	29.48	85.93	0	1010.06	4.78

FEB - 2021

		Report 1	Type:Average	Report				
	From:	01-02-2021 00	0:00:00 To: 2	8-02-2021 23	3:59:59			
	Create	d By: ADANI	Created At: 2	2021-03-03 1	2:09:53			
Date-(DD-MM-YYYY)	Wind Speed- (km/h)	Wind Direction- (Degree)	Atm Temperature (Degree C)	Relative Humidity (%)	Total Raainfall (mm)	Atm Pressure (mBar)	Solar Radiation (w/m2)	
01-02-2021	7.4	74.87	29.67	81.78	0	1011.73	5.17	
02-02-2021	6.32	82.99	29.73	84.12	0.78	1011.78	4.21	
03-02-2021	6.37	75.84	29.37	75.11	0	1011.42	4.73	
04-02-2021	5.83	81.96	29.27	68.84	0	1011.25	5.1	
05-02-2021	6.04	116.9	28.36	73.14	0	1010.47	4.93	
06-02-2021	5.51	108.67	28.35	76.5	0	1009.39	5.05	
07-02-2021	6.78	148.15	27.52	87.21	0	1009.85	5.11	
08-02-2021	6.19	67.56	29.14	77.56	0	1010.62	4.92	
09-02-2021	7.42	79.57	29.35	69.26	0	1009.85	5.04	
10-02-2021	4.69	75.52	28.61	70.78	0	1009.08	5.17	
11-02-2021	4.12	121.68	28	72.4	0	1008.72	4.95	
12-02-2021	4.62	116.63	28.2	71.48	0	1009.3	5.4	
13-02-2021	5.26	128.4	27.81	83.11	0	1010.3	5.24	
14-02-2021	4.15	138.03	27.86	82.86	0	1010.18	5.5	
15-02-2021	3.8	164.58	27.39	86.84	0	1009.28	5.53	
16-02-2021	4.8	147.89	27.74	84.65	0	1008.53	5.33	
17-02-2021	5.45	114.05	29.13	76.4	0	1008.37	5.54	
18-02-2021	7.19	90.4	29.51	74.9	0	1009.39	4.66	
19-02-2021	6.29	136.8	28.91	92.16	0	1009.73	4.26	
20-02-2021	10.26	111.42	27.97	92.88	0	1009.8	4.56	
21-02-2021	7.8	85.15	28.88	92.46	0	1010.26	3.17	
22-02-2021	6.31	70.9	29.68	91.17	0	1010.29	5.28	
23-02-2021	4.8	120.09	28.89	91.54	0	1009.06	5.15	
24-02-2021	3.87	154.55	28.65	85.72	0	1008.15	5.3	
25-02-2021	3.29	164.61	28.6	87.26	0	1007.93	5.36	
26-02-2021	3.83	213.47	28.68	91.78	0	1006.29	8.62	
27-02-2021	4.65	234.68	28.7	92.59	0	1005.52	5.07	
28-02-2021	3.23	232.61	28.61	92.93	0	1006.58	5.26	

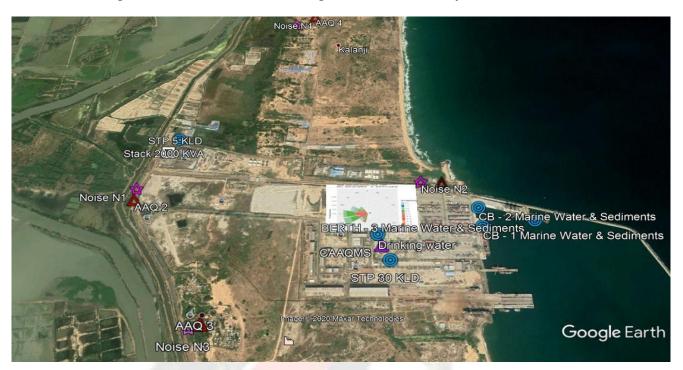
MAR - 2021

Marine Infrastructure Developer Pvt Ltd												
Report Type:Average Report												
	From: 0		0:00:00 To: 31-0		:59							
	Created B	y: glensAdmi	n Created At: 2	021-04-02 13:	21:29							
	Wind -	Wind -	Atm	Relative	Total	Atm	Solar					
	Speed	Direction	Temperature	Humidity	Rainfall	Pressure	Radiation					
Date-(DD-MM-YYYY)	(km/h)	(Degree)	(Degree C)	(%)	(mm)	(mBar)	(w/m2)					
01-03-2021	4.07	233.2	29.11	92.15	0	1009.09	5.14					
02-03-2021	3.38	234.1	29.24	90.99	0	1009.51	140.17					
03-03-2021	3.68	207.18	28.48	88.54	0	1008.6	247.86					
04-03-2021	3.96	180.54	28.75	84.6	0	1009.07	263.88					
05-03-2021	4.65	158.14	28.58	88.64	0	1009.8	265.1					
06-03-2021	3.51	211.08	29.18	91.15	0	1009.23	261.48					
07-03-2021	4.76	187.67	29.77	92.24	0	1008.44	250.88					
08-03-2021	4.61	162.33	29.97	89.59	0	1009.2	264.72					
09-03-2021	4.47	128.24	30.35	89.87	0	1009.84	255.99					
10-03-2021	4.95	146.47	30.63	92.42	0	1009.52	254.07					
11-03-2021	4.16	204.77	30.63	87.04	0	1009.49	248.64					
12-03-2021	4.33	183.43	29.48	86.49	0	1010.68	255.58					
13-03-2021	4.99	152.39	29.19	88.26	0	1010.07	257.13					
14-03-2021	5.45	157.09	30.08	87.05	0	1008.45	247.8					
15-03-2021	4.26	148.58	29.69	92.14	0	1007.71	244.63					
16-03-2021	3.68	172.44	29.61	92.24	0	1007.62	241.15					
17-03-2021	2.7	202.12	29.49	91.59	0	1006.84	217.95					
18-03-2021	3.15	166.72	30.13	84.33	0	1007.11	215.39					
19-03-2021	3.71	171.72	30.21	83.58	0	1006.73	229.57					
20-03-2021	3.83	174.46	29.5	90.95	0	1005.65	222.91					
21-03-2021	4.1	168.91	29.99	90.16	0	1005.24	218.06					
22-03-2021	4.22	161.22	30.71	87.88	0	1006.79	230.82					
23-03-2021	4.63	121.61	31.07	85.53	0	1007.54	228.63					
24-03-2021	4.07	148.86	30.39	92.39	0	1007.56	232.16					
25-03-2021	3.22	191.59	30.48	93.11	0	1006.44	258.19					
26-03-2021	3.33	190.64	30.37	94.09	0	1005.96	219.21					
27-03-2021	3.37	214.97	31.05	91.34	0	1005.41	223.36					
28-03-2021	3.61	235.7	31.03	93.22	0	1004.9	171.33					
29-03-2021	4.68	232.13	32.41	92.15	0	1004.1	226.51					
30-03-2021	6.73	228.93	32.41	89.24	0	1002.4	223.5					
31-03-2021	5.72	227.76	32.38	93.09	0	1000.65	220.46					

ii. AMBIENT AIR QUALITY

Ambient air quality monitoring is required to determine the existing quality of air, evaluation of the effectiveness of control system and to identify areas in need of restoration and their prioritization. In order to generate background data, air quality monitoring is conducted to assess existing level of contamination and to assess possible effects of air contamination occurring in future.

Frequency of Monitoring

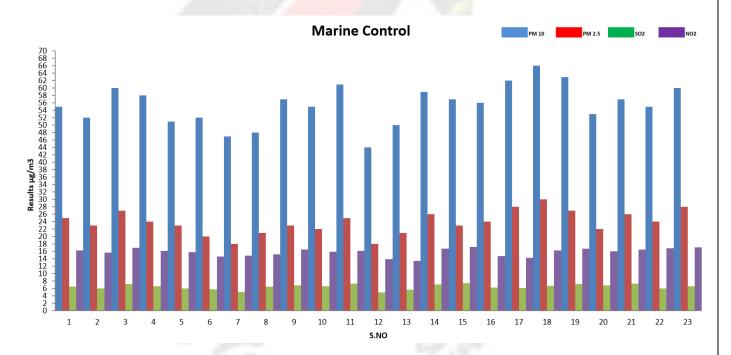

The frequency of monitoring that has been followed for sampling of ambient air quality is that one sample per weekly twice at four locations.

DETAILS OF AMBIENT AIR QUALITY MONITORING LOCATIONS

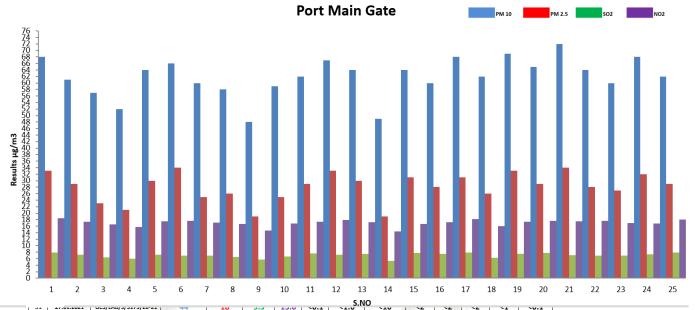
Station code	Location	Geographical location	Environmental setting
AAQ1	Near Marine Control Tower	13 ⁰ 18'55" N 80 ⁰ 20' 45" E	Industrial
AAQ2	Near Port Main Gate	13 ⁰ 18'51" N 80 ⁰ 19' 28" E	Industrial
AAQ3	Kattupalli v <mark>illage</mark>	13 ⁰ 18'18" N 80 ⁰ 19' 48" E	Village
AAQ4	Kalanji <mark>village</mark>	13° 20'8" N 80° 20' 0" E	Village
CAAQM 1	Port Op <mark>eratin</mark> g Building	13°18'45.68"N 80°20'25.50"E	Industrial

Fig. 3. Environmental Monitoring Locations with respect to Wind rose

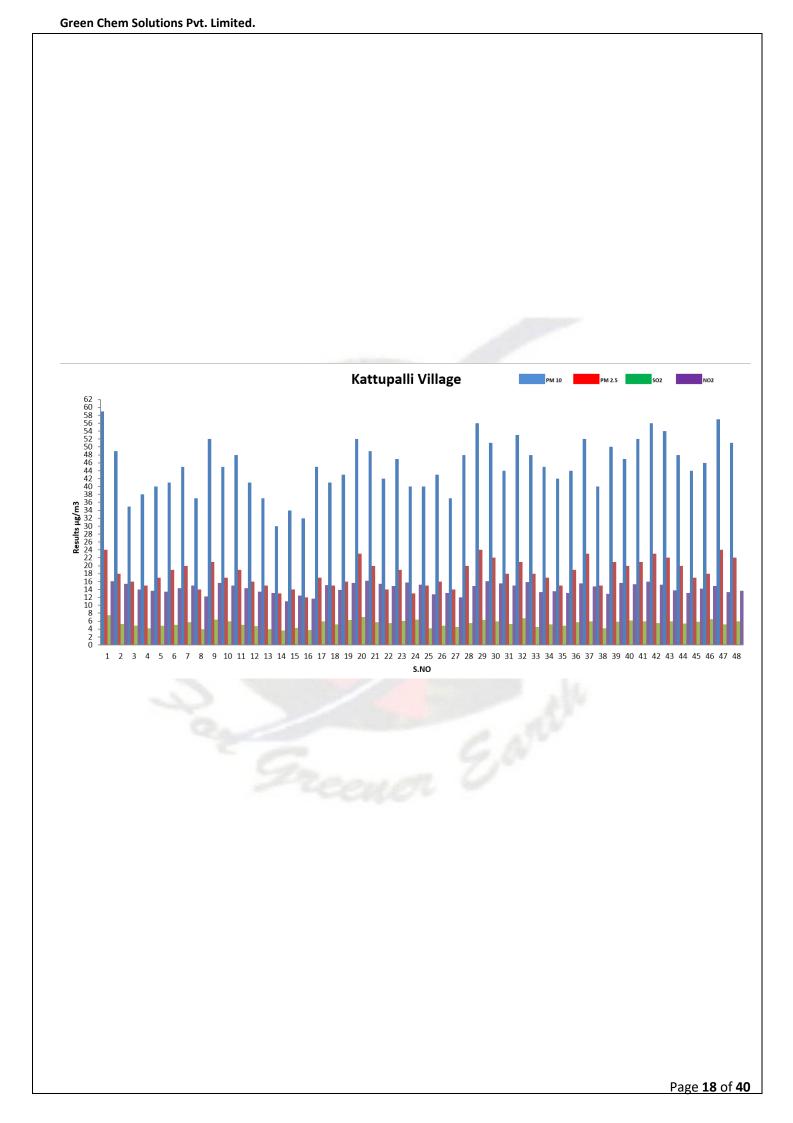
TECHNIQUES USED FOR AMBIENT AIR QUALITY MONITORING

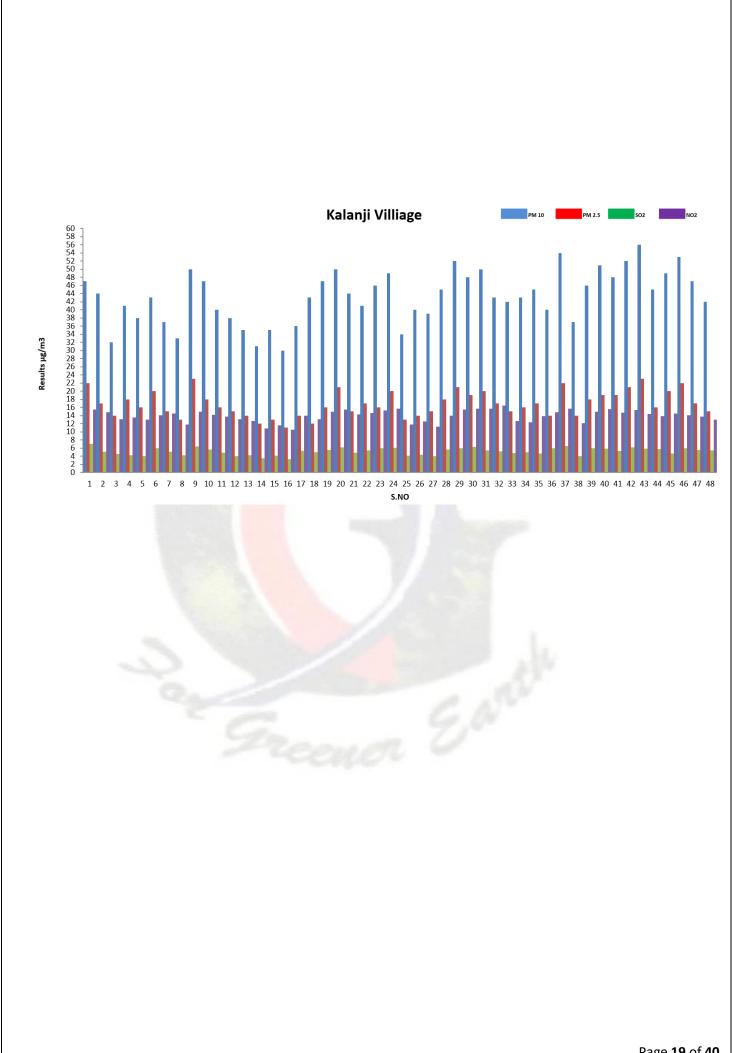

S.N o	Parameter	Technique	Unit	Minimum Detectable Limit
1	PM ₁₀	Respirable Dust Sampler (Gravimetric method)	μg/m³	1.0
2	PM _{2.5}	Fine particle Sampler (Gravimetric method)	µg/m³	5.0
3	Sulphur Dioxide	Modified West and Gaeke method	μg/m³	4.0
4	Nitrogen Oxide	Jacob & Hochheiser method	μg/m³	6.0
5	Lead	Atomic Absorption Spectrometry	µg/m³	0.5
6	Carbon Monoxide	Draggers Tube	mg/m³	0.1
7	Ozone	UV Photometric	μg/m³	2.0
8	Ammonia	Indophenol blue method	µg/m³	2.0
9	Benzene	Gas Chromatography	µg/m³	1.0
10	Benzene (α) pyrene	Gas Chromatography	ng/m³	0.1
11	Arsenic	Atomic Absorption Spectrometry	ng/m³	1.0
12	Nickel	Atomic Absorption Spectrometry	ng/m³	5.0

Results and Discussion


The results of the ambient air quality for the study period are submitted. The minimum, maximum 98th percentile and average values have been computed from the observed raw data for all the AAQ monitoring stations. The summary of these results for all the locations is presented in the Table and the detailed analytical results are shown in Annexure - 2. These are compared with the standards prescribed by Central Pollution Control Board (CPCB) for "Industrial, Rural, Residential and other areas"

ANNEXURE - 2 RESULTS OF AMBIENTAIRQUALITYMONITORING DATA


	MARINE CONTROL (AAQ1)												
	Parameters	Particular matter PM ₁₀	Particular matter PM _{2.5}	Sulphur dioxide as SO ₂	Nitroge n dioxide	Lead as Pb	Carbon monoxide as CO	Ozone as O ₃	Ammoni a as NH ₃	Arsenic as As	Nickel as Ni	Benzene as C ₆ H ₆	Benzo (a) pyrene as BaP
	Unit	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³	μg/m³	μg/m³	ng/m³	ng/m³	μg/m³	ng/m³
	National AAQM Standard	100	60	80	80	1	4	180	400	6	20	5	1
	Sampling Date Report Number												
1	12.10.2020 GCS/LAB/S/2978/20		25	6.5	16.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
2	16.10.2020 GCS/LAB/S/2978/20		23	6.0	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
3	27.10.2020 GCS/LAB/S/2978/20	21 60	27	7.2	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
4	30.10.2020 GCS/LAB/S/2978/20		24	6.7	16.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
5	09.11.2020 GCS/LAB/S/3040/20	21 51	23	6.0	15.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
6	23.11.2020 GCS/LAB/S/3040/20	21 52	20	5.8	14.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
7	27.11.2020 GCS/LAB/S/3040/20	21 47	18	5.1	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
8	07.12.2020 GCS/LAB/S/3110/20	21 48	21	6.5	15.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
9	11.12.2020 GCS/LAB/S/3110/20	21 57	23	6.9	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
10	21.12.2020 GCS/LAB/S/3110/20	21 55	22	6.7	15.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
11	28.12.2020 GCS/LAB/S/3110/20	21 61	25	7.3	16.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
12	04.01.2021 GCS/LAB/S/3175/20	21 44	18	5.0	13.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
13	08.01.2021 GCS/LAB/S/3175/20	21 50	21	5.7	13.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
14	18.01.2021 GCS/LAB/S/3175/20	21 59	26	7.1	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
15	22.01.2021 GCS/LAB/S/3175/20	21 57	23	7.5	17.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
16	08.02.2021 GCS/LAB/S/3218/20	21 56	24	6.3	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
17	12.02.2021 GCS/LAB/S/3218/20	21 62	28	6.2	14.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
18	22.02.2021 GCS/LAB/S/3218/20	21 66	30	6.8	16.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
19	26.02.2021 GCS/LAB/S/3218/20	21 63	27	7.2	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
20	08.03.2021 GCS/LAB/S/3312/20	21 53	22	6.9	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
21	12.03.2021 GCS/LAB/S/3312/20	21 57	26	7.4	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
22	22.03.2021 GCS/LAB/S/3312/20	21 55	24	6.0	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
23	26.03.2021 GCS/LAB/S/3312/20	21 60	28	6.6	17.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1



	PORT MAIN GATE (AAQ2)													
	Para	Particular matter PM ₁₀	Particul ar matter	Sulphu r dioxid	Nitrog en dioxid	Lead as Pb	Carbon monoxid e as CO	Ozone as O ₃	Ammo nia as NH ₃	Arsen ic as As	Nickel as Ni	Benze ne as C ₆ H ₆	Benzo (a) pyrene	
		Unit	μg/m³	μg/m³	μց/m³	μg/m³	μg/m³	mg/m³	μց/m³	μg/m³	ng/m³	ng/m³	μց/m³	ng/m³
		AQM Standard	100	60	80	80	1	4	180	400	6	20	5	1
S.No		Report Number												
1		GCS/LAB/S/2978/20-2		33	7.9	18.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
2		GCS/LAB/S/2978/20-2		29	7.2	17.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
3		GCS/LAB/S/2978/20-2		23	6.4	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
4		GCS/LAB/S/2978/20-2		21	6.0	15.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
5		GCS/LAB/S/3040/20-2		30	7.2	17.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
6	06.11.2020 0	GCS/LAB/S/3040/20-2	1 66	34	7.0	17.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
7	16.11.2020 0	GCS/LAB/S/3040/20-2	1 60	25	6.9	17.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
8	20.11.2020 0	GCS/LAB/S/3040/20-2	1 58	26	6.5	16.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
9	29.11.2020	GCS/LAB/S/3040/20-2	1 48	19	5.7	14.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
10	02.12.2020 (GCS/LAB/S/3110/20-2	1 59	25	6.7	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
11	09.12.2020 (GCS/LAB/S/3110/20-2	1 62	29	7.6	17.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
12	14.12.2020 (GCS/LAB/S/3110/20-2	1 67	33	7.2	17.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
13	18.12.2020 (GCS/LAB/S/3110/20-2	1 64	30	7.5	17.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
14	06.01.2021 0	GCS/LAB/S/3175/20-2	1 49	19	5.3	14.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
15	11.01.2021 (GCS/LAB/S/3175/20-2	1 64	31	7.8	16.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
16	27.01.2021 0	GCS/LAB/S/3175/20-2	1 60	28	7.5	17.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
17	29.01.2021 0	GCS/LAB/S/3175/20-2	1 68	31	7.9	18.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
18	01.02.2021 0	GCS/LAB/S/3218/20-2	1 62	26	6.3	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
19	05.02.2021 0	GCS/LAB/S/3218/20-2	1 69	33	7.5	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
20	15.02.2021 0	GCS/LAB/S/3218/20-2	1 65	29	7.8	17.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
21	19.02.2021 0	GCS/LAB/S/3218/20-2	1 72	34	7.1	17.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
22	01.03.2021 0	GCS/LAB/S/3312/20-2		28	7.0	17.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
23	05.03.2021 0	GCS/LAB/S/3312/20-2	1 60	27	6.9	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
24	15.03.2021 0	GCS/LAB/S/3312/20-2	1 68	32	7.4	16.8	<0.2	<1.1	<10	<2	<2	<2	<1	<0.2
25	19.03.2021 0	GCS/LAB/S/3312/20-2	1 62	29	7.9	18.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
1	Parame	ters matter P	M ₁₀ matter PM _{2.5}	oxide as dioxid		monoxide	Uzone as U ₃		as As Ni	as C _c H _c p	rene as			

91	21.01.2021	GC3/EU0/3/31/3/50-51	77	10	٠.,	13.0	,	`T.U	,10	``	~~	,	,	~V.1
32	29.01.2021	GCS/LAB/S/3175/20-21	53	21	6.7	15.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
33	01.02.2021	GCS/LAB/S/3218/20-21	48	18	4.5	13.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
34	05.02.2021	GCS/LAB/S/3218/20-21	45	17	5.2	13.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
35	08.02.2021	GCS/LAB/S/3218/20-21	42	15	4.9	13.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
36	12.02.2021	GCS/LAB/S/3218/20-21	44	19	5.7	15.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
37	15.02.2021	GCS/LAB/S/3218/20-21	52	23	6.0	14.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
38	19.02.2021	GCS/LAB/S/3218/20-21	40	15	4.2	12.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
39	22.02.2021	GCS/LAB/S/3218/20-21	50	21	5.8	15.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
40	26.02.2021	GCS/LAB/S/3218/20-21	47	20	6.2	15.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
41	01.03.2021	GCS/LAB/S/3312/20-21	52	21	5.9	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
42	05.03.2021	GCS/LAB/S/3312/20-21	56	23	5.5	15.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
43	08.03.2021	GCS/LAB/S/3312/20-21	54	22	6.0	13.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
44	12.03.2021	GCS/LAB/S/3312/20-21	48	20	5.4	13.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
45	15.03.2021	GCS/LAB/S/3312/20-21	44	17	5.8	14.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
46	19.03.2021	GCS/LAB/S/3312/20-21	46	18	6.5	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
47	22.03.2021	GCS/LAB/S/3312/20-21	57	24	5.2	13.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
48	26.03.2021	GCS/LAB/S/3312/20-21	51	22	5.9	13.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1

NATIONAL AMBIENT AIR QUALITY STANDARDS CENTRAL POLLUTION CONTROL BOARD

NOTIFICATION

New Delhi, the 18th November, 2009

No.B-29016/20/90/PCI-L—In exercise of the powers conferred by Sub-section (2) (h) of section 16 of the Air (Prevention and Control of Pollution) Act, 1981 (Act No. 14 of 1981), and in super session of the Notification No(s). S. O. 384(E), dated 11th April, 1994 and S.O. 935(E), dated 14th October, 1998, the Central Pollution Control Board hereby notify the National Ambient Air Quality Standards with immediate effect, namely:-

NATIONAL AMBIENT AIR QUALITY STANDARDS

				on in Ambient Air	
S. No.	Pollutant	Time Weighted average	Industrial, Residential, Rural and Other Area	Ecologically sensitive area (notified by Central Govt.)	Methods of Measurement
(1)	(2)	(3)	(4)	(5)	(6)
		Annual*	50	20	 Improved West and
1	Sulphur Dioxide (SO ₂), μg/m ³	24 hours**	80	80	Geake Ultraviolet fluorescence
		Annual*	40	30	 Modified Jacob &
2	Nitrogen Dioxide (NO ₂), μg/m ³	24 hours**	80	80	Hochheiser (Na- Arsenite) • Chemiluminescence
	Particulate Matter	Annual*	60	60	 Gravimetric
3	(size less than 10	24 hours**	100	100	TOEM Beta attenuation
	Particulate Matter	Annual*	40	40	Gravimetric
4	(size less than 2.5 microns) or PM _{2.5} μg/m ³	24 hours**	60	60	TOEM Beta attenuation
		8 hours **	100	100	 UV photometric
5	Ozone (O ₃) µg/m ³	1 hour **	180	180	Chemiluminescence Chemical method
		Annual*	0.5	0.5	ASS / ICP method
6	Annual* Lead (Pb) μg/m³ 24 hours**		1.0	1.0	after sampling on EPM 2000 or equivalent filter paper • ED - XRF using Teflon filter

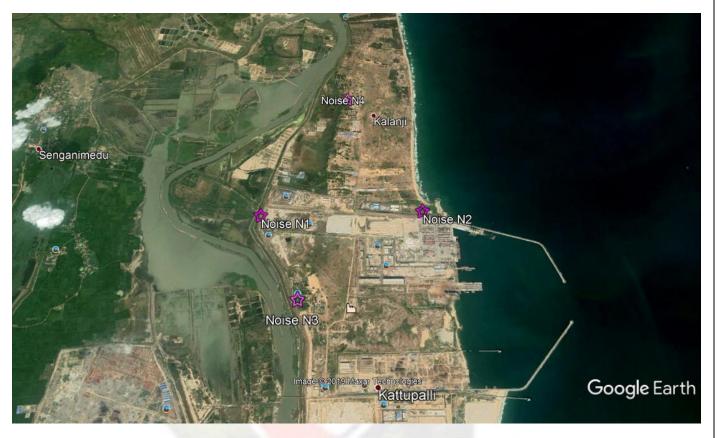
	Carbon Monoxide	8 hours**	2	2	Non Dispersive Infra
7	(CO) mg/m ³	1 hour**	4	4	RED (NDIR) Spectroscopy
	Ammonia (NH ₃)	Annual*	100	100	 Chemiluminescence
8	μg/m³	24 hours**	400	400	 Indophenol blue method
9	Benzene (C ₆ H ₆) μg/m ³	Annual*	5	5	Gas chromatography based continuous analyser Adsorption and desorption followed by GC analysis
10	Benzo (a) Pyrene (BaP) – particulate phase only ng/m ³	Annual*	1	1	Solvent extraction followed by HPLC / GC analysis
11	Arsenic (As) ng/m³	Annual*	6	6	AAS / ICP method after sampling on EPM 2000 or equivalent filter paper
12	Nickel (Ni) ng/m³	Annual*	20	20	AAS / ICP method after sampling on EPM 2000 or equivalent filter paper

Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.

Note: Whenever and wherever monitoring results on two consecutive days of monitoring exceed the limits specified above for the respective category, it shall be considered adequate reason to institute regular or continuous monitoring and further investigation.

AMBIENT NOISE LEVEL INTENSITY iii.

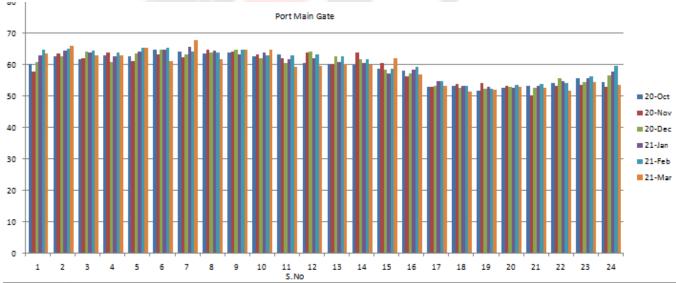
Collection of ambient noise levels at four locations. Spot noise levels where measured with a precalibrated Noise Level Meter - SL- 4023 SD for day and night periods.

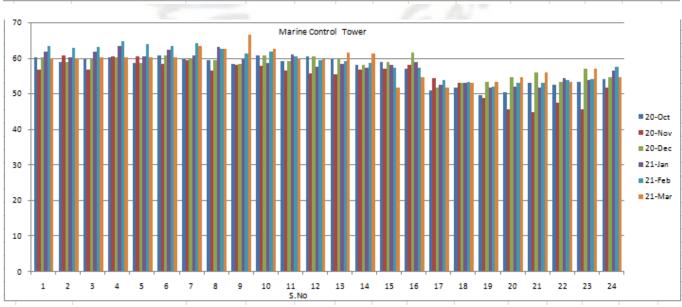

DETAILS OF NOISE MONITORING LOCATIONS

STATION CODE	LOCATIONS	Category	Geographical Location
N1	Port main gate	Industrial	N 13 ⁰ 18.856' E 080 ⁰ 19.478'
N2	Marine control tower	Industrial	N 13 ⁰ 18.909' E 080 ⁰ 20.756'

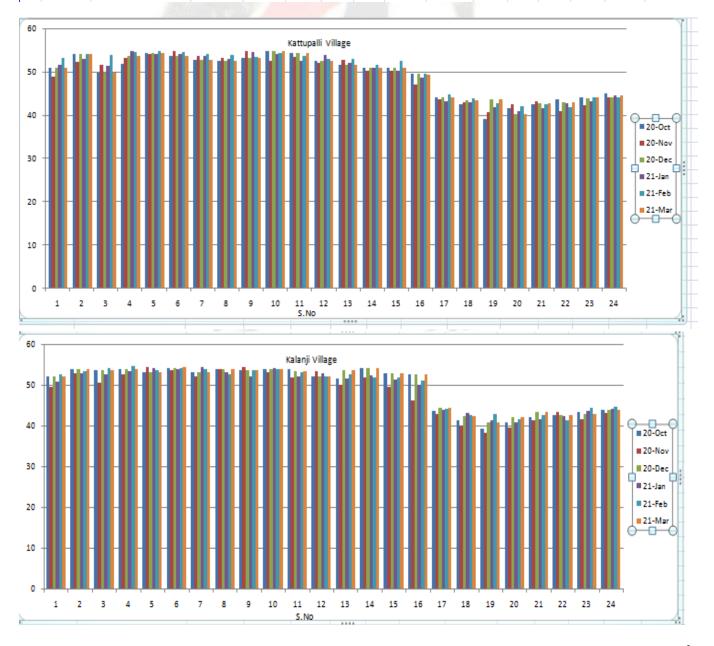
²⁴ hourly or 8 hourly or 1 hourly monitored values, as applicable, shall be complied with 98% of the time in a year. 2% of the time, they may exceed the limits but not on two consecutive days of monitoring.

N3	Kattupalli village	Residential	N 13 ⁰ 18.342' E 080 ⁰ 19.806'
N4	Kalanji village	Residential	N 13 ^o 20.156' E 080 ^o 20.023'


Fig - 4. Noise Level Sampling Locations



The noise levels monitored during the study period are given hereunder in form of Leq day, Leq night compared with CPCB Standards.


ANNEXURE - 3 RESULTS OF AMBIENT NOISE LEVEL MONITORING DATA

	AMBIENT NOISE LEVEL MONITORING												
	Location		POF	RT MAIN	GATE				MA	RINE C	ONTRO	L	
	Month & Year	Oct-20	Nov-20	Dec-20	Jan-21	Feb-	Mar-21	Oct-20	Nov-	Dec-	Jan-21	Feb-21	Mar-21
	Parameter & Unit	Leq dB(A)											
ŝ.No.	Time of Sampling												
1	06.00 - 07.00 (Day)	60.3	58.0	61.0	63.1	64.8	63.6	60.3	56.8	60.3	61.7	63.5	59.8
2	07.00 -08.00	62.7	63.5	62.8	64.5	65.2	66.1	58.9	60.6	58.9	60.3	62.8	59.9
3	08.00 - 09.00	61.9	62.2	64.3	63.9	64.5	63.1	59.7	56.7	59.7	61.9	63.2	60.1
4	09.00 - 10.00	63.1	63.8	60.9	62.7	64.0	63.0	60.3	60.4	60.3	63.4	64.7	60.2
5	10.00 - 11.00	62.6	61.2	63.5	64.2	65.4	65.6	58.5	60.4	58.5	60.5	63.9	60.2
6	11.00 - 12.00	64.8	63.4	64.7	64.9	65.6	61.2	60.8	58.3	60.8	62.2	63.4	60.3
7	12.00 - 13.00	64.2	62.3	63.4	65.7	64.3	67.8	59.6	59.5	59.6	60.8	64.1	63.3
8	13.00 - 14.00	63.5	64.7	64.0	64.5	63.8	61.9	59.3	56.6	59.3	63.1	62.6	62.6
9	14.00 - 15.00	64.0	64.3	64.9	63.2	64.7	65.0	58.4	58.2	58.4	59.7	61.3	66.5
10	15.00 - 16.00	62.8	63.2	62.1	63.8	63.1	64.9	60.6	57.7	60.6	58.6	61.8	62.7
11	16.00 - 17.00	63.4	62.1	60.7	61.7	62.9	59.3	59.1	56.6	59.1	61.0	60.5	59.9
12	17.00 - 18.00	60.7	63.8	64.3	62.0	63.4	59.7	60.4	55.8	60.4	57.5	59.3	59.7
13	18.00 - 19.00	60.3	60.2	62.6	60.8	62.6	60.3	59.6	55.5	59.6	58.3	59.0	61.6
14	19.00 -20.00	60.1	64.0	61.8	60.5	61.9	60.1	58.2	56.7	58.2	57.4	58.5	61.3
15	20.00 - 21.00	58.9	60.6	58.5	57.3	58.7	62.0	58.9	56.9	58.9	58.1	57.2	51.6
16	21.00 - 22.00	58.2	56.3	57.2	58.4	59.3	57.0	57.1	58.2	61.4	58.9	57.4	54.5
17	22.00 - 23.00 (Night)	52.9	53.1	53.4	54.7	55.0	53.4	51.0	54.4	51.6	52.5	53.8	51.6
18	23.00 - 00.00	53.3	54.0	52.8	53.4	53.2	51.6	51.7	53.0	52.9	53.1	53.4	52.9
19	00.00 - 01.00	51.7	54.1	52.3	53.0	52.4	52.0	49.6	48.7	53.4	51.8	52.0	53.4
20	01.00 - 02.00	52.6	53.3	53.1	52.8	53.5	53.1	50.3	45.6	54.5	52.0	53.1	54.5
21	02.00 - 03.00	53.4	50.4	52.6	53.2	53.8	52.6	52.9	44.9	55.9	51.7	52.9	55.9
22	03.00 - 04.00	54.1	53.2	55.8	54.9	54.1	51.8	52.6	47.5	53.2	54.3	53.7	53.2
23	04.00 - 05.00	55.8	53.5	54.5	55.7	56.3	54.5	53.4	45.6	56.9	53.9	54.2	56.9
24	05.00 - 06.00	54.5	53.0	56.7	58.0	59.7	53.7	54.1	51.6	54.7	56.4	57.6	54.7

	Location		KATTI	JPALLI '	VILLAG	E			KA	LANJI	VILLAG	E	
	Month & Year	Oct-20	Nov-20	Dec-20	Jan-21	Feb-	Mar-21	Oct-20	Nov-	Dec-	Jan-21	Feb-21	Mar-21
	Parameter & Unit	Leq dB(A)											
No.	Time of Sampling												
1	06.00 - 07.00 (Day)	50.9	48.9	50.9	51.5	53.1	50.9	52.2	49.6	52.2	50.9	52.8	52.2
2	07.00 -08.00	54.2	52.3	54.2	52.9	54.0	54.2	54.0	53.0	54.0	53.1	53.6	54.0
3	08.00 - 09.00	49.7	51.5	49.7	51.3	53.8	49.7	53.8	50.8	53.8	52.7	54.3	53.8
4	09.00 - 10.00	51.9	53.2	53.6	54.8	54.5	53.6	54.1	52.9	54.1	53.6	54.8	54.1
5	10.00 - 11.00	54.4	54.0	54.4	54.0	54.7	54.4	53.3	54.5	53.3	54.3	53.9	53.3
6	11.00 - 12.00	53.6	54.8	53.6	54.1	54.6	53.6	54.4	53.7	54.4	54.0	54.4	54.7
7	12.00 - 13.00	52.8	53.6	52.8	53.7	54.2	52.8	53.2	52.4	53.2	54.5	54.2	53.2
8	13.00 - 14.00	52.5	53.1	52.5	53.0	53.9	52.5	54.1	54.0	54.1	53.2	52.8	54.1
9	14.00 - 15.00	53.1	54.7	53.1	54.6	53.4	53.1	53.9	54.6	53.9	52.4	53.7	53.9
10	15.00 - 16.00	54.8	52.4	54.7	54.2	54.3	54.8	54.2	53.3	54.2	54.4	54.0	54.2
11	16.00 - 17.00	54.3	53.5	54.3	52.5	53.7	54.3	54.0	52.1	53.6	52.3	53.3	53.6
12	17.00 - 18.00	52.6	52.0	52.6	53.8	53.0	52.6	52.4	53.5	52.4	53.1	52.2	52.4
13	18.00 - 19.00	51.7	52.8	51.7	52.1	52.9	51.7	51.8	50.3	53.9	51.8	52.7	53.9
14	19.00 -20.00	51.0	50.3	51.0	50.8	51.7	51.0	54.3	52.0	54.3	52.6	52.0	54.3
15	20.00 - 21.00	50.9	50.2	50.9	50.3	52.4	50.9	53.0	49.8	53.0	51.5	51.9	53.0
16	21.00 - 22.00	49.6	47.0	49.6	48.7	49.6	49.4	52.8	46.4	52.8	50.2	51.3	52.8
17	22.00 - 23.00 (Night)	44.2	43.7	44.2	43.2	44.7	44.2	43.7	42.9	44.6	44.0	44.4	44.6
18	23.00 - 00.00	42.4	42.9	43.4	43.0	43.9	43.4	41.5	40.1	42.4	43.2	42.8	42.4
19	00.00 - 01.00	39.0	40.6	43.6	41.9	42.7	43.6	39.3	38.3	40.9	41.5	43.1	40.9
20	01.00 - 02.00	41.5	42.4	40.2	40.8	42.1	40.2	40.9	39.7	42.3	40.9	41.6	42.3
21	02.00 - 03.00	42.6	43.2	42.7	41.5	42.4	42.7	42.2	41.5	43.4	41.7	42.7	43.4
22	03.00 - 04.00	43.7	40.8	43.0	42.7	41.8	43.0	42.8	43.4	42.7	42.4	41.4	42.7
23	04.00 - 05.00	44.1	42.3	43.9	43.1	44.1	44.1	43.6	41.8	43.1	43.8	44.5	43.1
24	05.00 - 06.00	44.9	44.1	44.2	44.6	44.0	44.5	44.1	43,3	44.0	44.3	44.8	44.0

Ambient Air Quality Standards in respect of Noise

Area Code	Category of Area / Zone	Limits in dB(A) Leq*				
Code		Day Time	Night Time			
(A)	Industrial area	75	70			
(B)	Commercial area	65	55			
(C)	Residential area	55	45			
(D)	Silence Zone	50	40			

- Note:- 1. Day time shall mean from 6.00 a.m. to 10.00 p.m.
 - Night time shall mean from 10.00 p.m. to 6.00 a.m.
 - Silence zone is an area comprising not less than 100 metres around hospitals, educational institutions, courts, religious places or any other area which is declared as such by the competent authority
 - Mixed categories of areas may be declared as one of the four above mentioned categories by the competent authority.

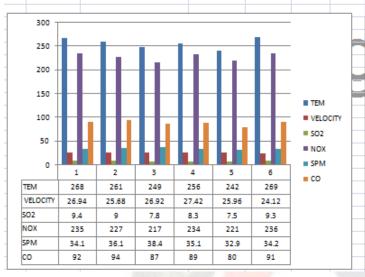
A "decibel" is a unit in which noise is measured.

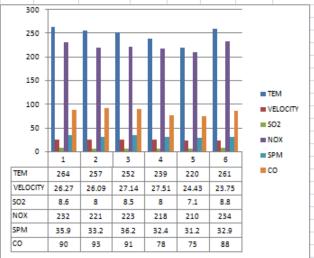
"A", in dB(A) Leq, denotes the frequency weighting in the measurement of noise and corresponds to frequency response characteristics of the human ear.

Leq: It is an energy mean of the noise level over a specified period.

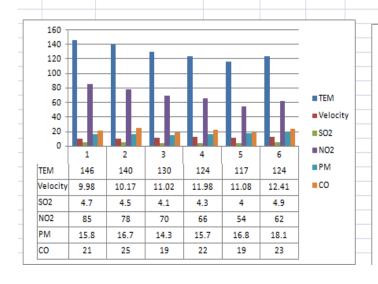
iv. DG SET EMISSIONS

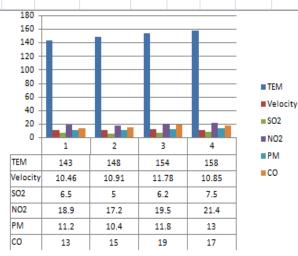
Sampling of Flue gas emission of 2000 KVA DG Set was done and its emissions were determined along with its noise intensity. The Detailed report has been is enclosed as Annexure - 4


DETAILS OF EMISSION MONITORING LOCATIONS


STATION CODE	LOCATIONS	Geographical Location
SM - 1	DG - 1 2000 KVA	13º 19'6" N
SM - 2	DG - 2 2000 KVA	80º 19' 34" E
SM - 3	DG 125 KVA	13 ⁰ 18'36" N 80 ⁰ 20' 25" E
SM - 3	Liquid Terminal Hot Oil Generator Stack	13 ⁰ 19'2.38" N 80 ⁰ 20' 6.81" E

^{*} dB(A) Leq denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.


ANNEXURE - 4 RESULTS OF SOURCE EMISSION MONITORING DATA


DG 2000KVA - 1 Location Month & Year Oct-20 Nov-20 Dec-20 Jan-21 Feb-Mar-21 Oct-20 Nov-Dec- Jan-21 Feb-21 Mar-21 S.No. Parameters 1 Stack Temperature, 'C 268 261 249 256 242 269 264 257 252 239 220 261 2 Flue Gas Velocity, m/s 26,94 25.68 26.92 27.42 25.96 24.12 26.27 26.09 27.14 27.51 24.43 23.75 9.4 3 Sulphur Diozide, mg/Nm3 9 7.8 8.3 7.5 9.3 8.6 8 8.5 8 7.1 8.8 NOX (as NO2) in ppmv 4 217 221 227 223 218 210 234 235 234 236 232 221 Particular matter, mg/Nm3 5 34.1 36.1 38.4 35.1 32.9 34.2 35.9 33.2 36.2 32.4 31.2 32.9 6 92 94 80 91 90 93 91 75 88 Carbon Monozide, mg/Nm3 87 89 78 Gas Discharge, Nm3/hr 6670 6442 6908 6943 6753 5961 6553 6594 6925 7197 6638 5957

	Location	DG 125 KVA Liquid Terminal Hot Oil Generator							erator			
	Month & Year	Oct-20	Nov-20	Dec-20	Jan-21	Feb-21	Mar-21	Oct-20	Nov-20	Feb-21	Mar-21	
S.No.	Parameters											
1	Stack Temperature, °C	146	140	130	124	117	124	143	148	154	158	
2	Flue Gas Velocity, m/s	9.98	10.17	11.02	11.98	11.08	12.41	10.46	10.91	11.78	10.85	
3	Sulphur Dioxide, mg/Nm3	4.7	4.5	4.1	4.3	4	4.9	6.5	5	6.2	7.5	
4	NOX (as NO2) in ppmv	85	78	70	66	54	62	18.9	17.2	19.5	21.4	
5	Particular matter, mg/Nm3	15.8	16.7	14.3	15.7	16.8	18.1	11.2	10.4	11.8	13	
6	Carbon Monoxide, mg/Nm3	21	25	19	22	19	23	13	15	19	17	
7	Gas Discharge, Nm3/hr	449	463	515	569	535	592	38367	39542	42096	38581	

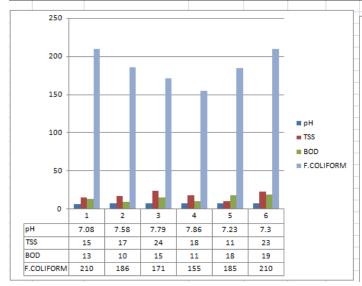
Paran	neter	Area	Total engine rating of	Generator	sets commis	sioning date	
		Category	the plant (includes existing as well as new generator sets)	Before 1.7.2003	Between 1.7.2003 and 1.7.2005	On or after 1.7.2005	
NO _x (as N	O ₂) (At 15%	A	Up to 75 MW		970	710	
O2, dry ba	sis, in ppmv	В	Up to 150 MW		505500		
		A	More than 75 MW	1100	710	360	
		В	More than 150 MW	J. Halle .			
NMHC (a: O ₂), mg/N	s C) (at 15% m ³	Both A and B			100		
PM (at 15% O ₂), mg/Nm ³	Diesel Fuels- HSD & LDO	Both A and B		75	15	7.5	
	Furnace Oils- LSHS & FO	Both A and B		150	1	00	
CO (at 15% O ₂), mg/Nm ³		Both A and B	Į.	150	1	50	

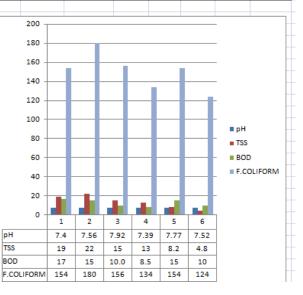
Inserted by Rule 2(b) of the Environment (Protection) Second Amendment Rules, 2008 notified by G.S.R.280(E), dated 11.4.2008.

v. STP WATER SAMPLE ANALYSIS

Water samples were collected at the following points.

- 30 KLD Treated Water Outlet
- 5 KLD Treated Water Outlet


DETAILS OF STP WATER LOCATIONS


STATION CODE	LOCATIONS	Geographical Location
STP - 1	30 KLD	13 ⁰ 18'36" N 80 ⁰ 20' 25" E
STP - 2	5 KLD	13º 19'6" N 80º 19' 35" E

Analysis results of the water sample collected from the above location are enclosed as Annexure - 5.

ANNEXURE - 5 RESULTS OF STP WATER QUALITY DATA

	Location STP 30KLD OUTLET						STP 5KLD OUTLET						
Month & Year		Oct-20	Nov-20	Dec-20	Jan-21	Feb-21	Mar-21	Oct-20	Nov-20	Dec-20	Jan-21	Feb-21	Mar-21
S.No.	Parameters												
1	pH @ 25°C	7.08	7.58	7.79	7.86	7.23	7.3	7.4	7.56	7.92	7.39	7.77	7.52
2	Total Suspended Solids, mg/L	15	17	24	18	11	23	19	22	15	13	8.2	4.8
3	BOD at 27°C for 3 days, mg/L	13	10	15	11	18	19	17	15	10.0	8.5	15	10
4	Fecal Coliform, MPN/100ml	210	186	171	155	185	210	154	180	156	134	154	124

² Serial No.96 and entries relating thereto inserted by Rule 2 of the Environment (Protection) Third Amendment Rules, 2002 notified vide Notification G.S.R.489(E), dated 9.7.2002.

MINISTRY OF ENVIRONMENT, FOREST AND CLIMATE CHANGE NOTIFICATION

New Delhi, the 13th October, 2017

G.S.R. 1265(E).—In exercise of the powers conferred by sections 6 and 25 of the Environment (Protection) Act, 1986 (29 of 1986), the Central Government hereby makes the following rules further to amend the Environment (Protection) Rules, 1986, namely:-

- Short title and commencement.—(1) These rules may be called the Environment (Protection)
 Amendment Rules, 2017.
 - (2) They shall come into force on the date of their publication in the Official Gazette.
- In the Environment (Protection) Rules, 1986, in Schedule I, after serial number 104 and the entries relating thereto, the following serial number and entries shall be inserted, namely:—

SI.	Industry	Parameters	Standards	
No.				
1	2	3	4	
		Effluent discharge stand	lards (applicable to all mode of disposal)	
"105	Sewage		Location	Concentration not
I	Treatment			to exceed
I	Plants		(a)	(b)
l	(STPs)	pH	Anywhere in the country	6.5-9.0
l		Bio-Chemical Oxygen	Metro Cities*, all State Capitals except	20
l		Demand (BOD)	in the State of Arunachal Pradesh,	
l			Assam, Manipur, Meghalaya Mizoram,	
I			Nagaland, Tripura Sikkim, Himachal	
l			Pradesh, Uttarakhand, Jammu and	
			Kashmir, and Union territory of	

	Andaman and Nicobar Islands, Dadar and Nagar Haveli Daman and Diu and Lakshadweep	
	Areas/regions other than mentioned above	30
Total Suspended Solids (TSS)	Metro Cities*, all State Capitals except in the State of Arunachal Pradesh, Assam, Manipur, Meghalaya Mizoram, Nagaland, Tripura Sikkim, Himachal Pradesh, Uttarakhand, Jammu and Kashmir and Union territory of Andaman and Nicobar Islands, Dadar and Nagar Haveli Daman and Diu and Lakshadweep	<50
	Areas/regions other than mentioned above	<100
 Fecal Coliform (FC) (Most Probable Number per 100 milliliter, MPN/100ml	Anywhere in the country	<1000

vi. DRINKING WATER SAMPLE ANALYSIS

Drinking Water samples were collected at the Canteen or Office Building. Analysis results of the water sample collected from the above location are enclosed as Annexure - 6.

vii. Rain WATER SAMPLE ANALYSIS

Rain water harvesting samples were collected at the Pond. Analysis results of the water sample collected from the above location are enclosed as Annexure - 7.

ANNEXURE - 6 RESULTS OF WATER SAMPLE (DRINKING WATER) QUALITY DATA

			Drinkin	g Water					
Ма	onth & Year	Unit	Oct-20	Nov-20	Dec-20	Jan-21	Feb-21	Mar-21	IS: 10500-1991 R.2012 PERMISSIBLE LIMIT IN THE
S.No.	Parameters								
1	pH @ 25°C	-	6.97	6.61	7.08	7.08	6.76	7.32	6.5 - 8.5
2	as CaCo3	mg/L	7.14	20	12.0	44	4	24	600
3	Chloride as Cl	mg/L	14.6	38	11	117	16	20	1000
4	Total Dissolved	mg/L	27	60	34	220	29	56	2000
5	Calcium as Ca	mg/L	1.4	2.4	1.8	3.2	0.8	4.8	200
6	Sulphate as SO4	mg∤L	1.12	5.5	1.21	400			
7	Nitrate as No3	mg/L				45			
8	Total Alkalinity a:	mg/L	10.6	5.1	20	600			
9	Magnesium as Me	mg/L	0.87	3.36	2.88	100			
10	Color	Hazen			<1	.0			15
11	Odour	-			Unobjec	tionable			Unobjectionable
12	Taste	-			Agre	eable			Agreeable
13	Turbidity	NTU	0.7			<0.5			5
14	Iron as Fe	mg/L			BDL(D	L 0.05)			0.3
15	Total Residual Cl	mg/L			BDL(D	L 0.1)			1
16	Copper as Cu	mg/L			BDL(D	L 0.05)			1.5
17	Manganese as	mg/L			BDL(D	L 0.05)			0.3
18	Fluoride as F	mg/L			BDL(D	L 0.1)			1.5
19	Phenolic	mg/L			BDL(DL	0.001)			0.002
20	Mercury as Hg	mg/L			BDL(DL	0.001)			0.001
21	Cadmium as Cd	mg/L			BDL(DL	0.003)			0.003
22	Selenium as Se	mg/L			BDL(D	L 0.01)			0.01
23	Arsenic as As	mg/L			BDL(D	L 0.01)			0.05
24	Lead as Pb	mg/L			BDL(D	L 0.01)			0.01
25	Zinc as Zn	mg/L			BDL(D	L 0.05)			15
26	Anionic	mg/L			N	il			1
27	Total Chromium	mg/L			BDL(D	L 0.05)			0.05
28	Phenolphthalei	mg/L			N	il			-
29	Aluminium as Al	mg/L			BDL(D	L 0.05)			0.2
30	Boron as B	mg/L			BDL(D	L 0.1)			1
31	Mineral Oil	mg/L				0.5			
32	Polynuclear	mg/L				0.0001			
33	Pesticides	mg/L				-			
34	Cyanide as CN	mg/L			BDL (DI	: 0.01)			0.05
35	E. coli	MPN/100				Absence			
36	Total Coliform	MPN/100							Absence

ANNEXURE - 7RESULTS OF RAINWATER HARVESTING POND WATER SAMPLE QUALITY DATA

Rain Water Harvesting Pond Water									
	onth & Year	Unit	Oct-20	Nov-20	Dec-20	Jan-21	Feb-21	Mar-21	IS: 10500-1991 R.2012 PERMISSIBLE LIMIT IN THE
S.No.	Parameters								
1	pH @ 25°C	-	8.28	7.85	7.93	7.93	7.96	7.48	6.5 - 8.5
2	as CaCo3	mg/L	260	276	180	124	188	182	600
3	Chloride as Cl	mg/L	626	228	92	103	104	106	1000
4	Total Dissolved	mg/L	1481	744	488	320	372	386	2000
5	Calcium as Ca	mg/L	44	58	42	26	46	45	200
6	Sulphate as SO4	mg/L	182	116	16	400			
7	Nitrate as No3	mg/L	4.39	2.98	3.12	45			
8	Total Alkalinity a:	mg/L	314	167	182	600			
9	Magnesium as Mg	mg/L	314 167 134 100 140 182 36 32 18 14.4 17 23						100
10	Color	Hazen	5	10	10	10	15	15	15
11	Odour	ı			Unobjec	tionable			Unobjectionable
12	Taste	-			Dis Agr	eeable			Agreeable
13	Turbidity	NTU	1.4	3.5	1.5	3.8	4.2	4.7	5
14	Iron as Fe	mg/L	0.18	0.13	0.15	0.19	0.24	0.21	0.3
15	Total Residual Cl	mg/L			BDL(D	L 0.1)			1
16	Copper as Cu	mg/L			BDL(D	L 0.05)			1.5
17	Manganese as	mg/L			BDL(D	L 0.05)			0.3
18	Fluoride as F	mg/L	0.46	0.53	0.62	0.78	0.64	0.58	1.5
19	Phenolic .	mg/L			BDL(DL	0.001)			0.002
20	Mercury as Hg	mg/L			BDL(DL	0.001)			0.001
21	Cadmium as Cd	mg/L			BDL(DL	0.003)			0.003
22	Selenium as Se	mg/L			BDL(D	L 0.01)			0.01
23	Arsenic as As	mg/L			BDL(D	L 0.01)			0.05
24	Lead as Pb	mg/L			BDL(D	L 0.01)			0.01
25	Zinc as Zn	mg/L			BDL(D	L 0.05)			15
26	Anionic	mg/L			N	il			1
27	Total Chromium	mg/L			BDL(D	L 0.05)			0.05
28	Phenolphthalei	mg/L			N	il			-
29	Aluminium as Al	mg/L			BDL(D	L 0.05)			0.2
30	Boron as B	mg/L	0.28	0.21	0.47	1			
31	Mineral Oil	mg/L				0.5			
32	Polynuclear	mg/L				0.0001			
33	Pesticides	mg/L			N	il			_
34	Cyanide as CN	mg/L			BDL (DI	: 0.01)			0.05
35	E. coli	MPN/100				Absence			
36	Total Coliform								

viii. Marine Sampling

Marine Water samples and sediment samples were collected at locations South side berth and North side berth. Analysis data of Marine and sediments as represented in Annexure - 8 & 9.

DETAILS OF MARINE WATER AND SEDIMENT LOCATIONS

STATION CODE	LOCATIONS	Geographical Location
		13º 18'50" N
MW - 1 / MS - 1	CB - 1	80º 20' 51" E
		13º 18'46" N
MW - 2 / MS - 2	CB - 2	80º 20' 49" E
		13 ⁰ 18'41" N
MW - 3 / MS - 3	BERTH - 3	80° 21' 4" E

Fig - 5. Water and Marine Sampling Locations

ANNEXURE - 8 RESULTS OF MARINE WATER QUALITY DATA

Location CB-1 Surface Water CB-2 Surface Water							==							
	Month & Year	Unit	Oct-20	Nev-20	Dec-20	Jan-21	Fab-21	Mar-21	Oat-20	Nav-20	Dec-20	Jan-21	Fob-21	Mar-21
S.No.		Onk	064-20	1100-20	D8C-20	Pan-E1	100-61	rigr-£1	064-20	1180-20	D06-20	Van-E1	100-61	Indian El
1	pH @ 25°C	-	7.8	7.72	7.81	7.19	7.93	8.04	7.79	7.54	7.75	7.32	8.04	8.11
2	Temperature	<u>~~</u>	29	29	29	29	29	29	29	29	29	29	29	29
3	Total Suspended Solids	mg/L	18	14	16	19	14	11	21	17	13	21	17	13
4	BOD at 27 °C for 3 days	mg/L	14	- ii -	10	12	5	4.6	17	13	11	17	4.5	4.8
	Dissolved oxugen	mg/L	3.8	4	3.9	3.5	3.9	2.2	3.9	4.1	3.8	4.2	4	2.2
6	Dissolved oxygen Salinity at 25 °C	-	38.9	35.6	33.2	42.3	33.5	33.1	39.4	36.8	33.7	43.5	32.7	33.6
7	Oil & Grease	mg/L			BDLI	DL 1.0)					BOLI	DL 1.0)		
8	Nitrate as No ₃	mg/L	7.86	6.45	5.14	7.4	5.81	4.63	6.38	6.03	6.35	6.21	6.48	5.15
ĕ	Nitrite as No ₂	mg/L	Z.5Z	2.78	2.12	4.11	3.18	2.18	Z.Z5	2.96	1.9	3.35	3.UZ	1.97
	Ammonical Nitrogen as N	mg/L			BDL(DL 1.0)					BDL(I	ĎL 1.0)		
11	Ammonia as NH3	mg/L			BDL(C	L 0.01)					BDL(C	DL 0.01)		
12	Kieldahl Nitrogen as N	mg/L				DL 1.0)						DL 1.0)		i
13	Total phosphates as PO4	mg/L	5.08	5.54	4.23	3.98	4.75	5.64	4.17	4.88	4.16	4.25	5.29	5.88
	Total Nitrogen	mg/L			Е	DL(DL 1.1	0)				BDL(I	DL 1.0)		
15	Total Dissolved Solids	mg/L	38964	31890	34127	39714	36530	37146	39005	32680	34720	41089	36440	37641
16	COD	mg/L	171	158	141	73	124	120	149	163	137	82	136	128
17	Total bacterial count	cfu/ml	120	114	102	58	70	74	104	109	96	66	85	79
18	Coliforms	Per 100 ml			Abse	ence					Abse	ence		
19	Escherichia coli	Per 100 ml			Abse	ence					Abse	ence		
20	Salmonella	Per 100 ml			Abse						Abse	ence		
21	Shiqella	Per 100 ml			Abse							ence		
22	Vibrio cholerae	Per 100 ml			Abse							ence		
<u>23</u>	Vibrio parahaemolyticus	Per 100 ml			Abse	ence					Abse	ence		
24	Enterococci	Per 100 ml			Abse							ence		
25	Octane	μg/L	118	131	156	158	164	148	125	134	162	142	155	160
<u>26</u>	Nonane	μg/L			BDL(L	DL 0.1)						DL 0.1)		
27		μg/L			BDL(L	DL 0.1)						DL 0.1)		!
28	Undecane	μq/L		0.5		DL 0.1)		7.0	70	7.0		DL 0.1)		
29	<u>Tridecane</u>	μq/L	8	8.5	9.2	7.5	8.6	7.3	7.2	7.9	8.7	7	7.7	8.2
30		μg/L			DULL	DL (0.1) DL (0.1)					DDL (I	DL 0.1) DL 0.1)		
31		μg/L												
32	Hexadecane	μq/L				DL 0.1)						DL 0.1)		
33		μg/L	BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1)											
35	Nonadecane	μq/L				DL 0.1)						DL 0.1) DL 0.1)		
		μg/L	8.7	0.12	7.86	9.12	8.05	8.19	8.83	8.43	6.98	10.71	9.27	10.26
	Primary Productivity	ma C/m³/hr												-
37	Chlorophyll a	mg/m³	4.23	4.08	5.24	7.31	6.58	7.28	4.91	4.47	4.02	8.05	8.35	7.47
	Phaeophytin	mg/m³	0.77	0.79	0.7	0.6	0.74	0.8	0.89	0.83	0.87	0.72	0.78	0.94
39	Oxidisable Paticular	mg/L	6.25	5.49	3.18	7.54	6.96	7.24	5.72	5.18	5.86	8.16	6.01	6.53

				PHY	TOPLANI	CTON							
40 Bacteriastrum hvalinum	nos/ml	17	14	13	17	12	15	18	16	19	20	14	17
41 Bacteriastrum varians	nos/ml	13	16	18	14	9	12	14	10	11	17	12	15
42 Chaetoceros didvmus	nos/ml	14	9	7	10	7	10	12	14	15	12	10	11
43 Chaetoceros decipiens	nos/ml	10	12	14	9	14	8	7	11	10	16	18	13
44 Biddulphia mobiliensis	nos/ml	22	13	16	15	17	19	19	15	17	19	22	16
45 Ditulum briahtwellii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
46 Gyrosiama so	nos/ml	Nil	Nil Nil	Nil Nil	5 Nil	8 Nil	11 Nil	Nil Nil	Nil Nil	Nil Nil	8 Nil	6 Nil	10 Nil
47 Cladophyxis sps	nos/ml												
48 Coscinodiscus centralis	nos/ml	12	11	12	16	10	14	5	13	16	13	15	18
49 Coscinodiscus granii	nos/ml	15	9	10	9	11	19	17	7	9	10	7	12
50 Cylcotella sps	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
51 Hemidiscus	nos/ml	7	8	7	22	18	16	10	12	14	15	17	20
52 Laudaria annulata	<u>nos/ml</u>	16	14	11	12	15	6	11	19	21	18	21	17
53 Pyropacus horologicum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
54 Pleurosiama angulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
55 Leptocylindrus danicus	nos/ml	5 Nil	10 Nil	9 Nil	18 Nil	21 Nil	17 Nil	- 7 Nil	8 Nil	- 7 Nil	21 Nil	16 Nil	9 Nil
56 Guinardia flaccida	nos/ml												
57 Rhizosolenia alata	nos/ml	11 Nil	12 Nil	15 Nil	11 Nil	16 Nil	13 Nil	16 Nil	9	12	7 Nil	11 Nil	14 Nil
58 Rhizosolena impricata	nos/ml								Nil	Nil			
59 Rhizosolena semispina	nos/ml	18	11	17	16	19	21	15	16	18	17	23	20
60 Thalassionema	nos/ml	23 Nii	17 Nil	21 Nil	13 Nil	6 Nil	10 Nil	24 Nil	18 Nil	23 Nii	11 Nil	9 Nil	15 Ni
61 Triceratium reticulatum	nos/ml												
62 Ceratium trichoceros	nos/ml	Nil Nil	Nil	Nil	Nil	Nil	Nil Na	Nil Nil	Nil	Nil	Nil	Nil	Ni Ni
63 Ceratium furca	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil Na	Nil	Nil	Nil	Nil	Nil	Ni Ni
64 Ceratium macroceros	nos/ml	Nil	Nil Nil	Nil Nil	Nil Nil	Nil Nil	Nil Nil	Nil	Nil Nil	Nil Nil	Nil Nil	Nil Nil	<u>Ni</u> Ni
65 Ceracium Iongipes	nos/ml	1911	IVII		PLANKT		DAIL	1911	IVII	IVII	IVII	IVII	IVI
66 Acrocalanus gracilis	nos/ml	8 1	12	14	10	13	15	14	15	17	13	15	11
67 Acrocalanus sp	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
68 Paracalanus parvus	nos/ml	14	17	19	15	18	10	10	12	14	12	16	13
69 Eutintinus sos	nos/ml	177	14	13	14	10	17	12	10	9	15	9	14
70 Centropages furcatus	nos/ml	9	15	17	16	9	11	7	16	18	13	14	16
71 Corycaeus dana	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Ni
72 Oithona brevicornis	nos/ml	10	11	12	13	8	12	11	13	15	20	12	18
73 Euterpina acutifrons	nos/ml	15	13	16	12	14	16	15	11	12	16	19	23
74 Metacalanus aurivilli	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Ni
75 Copipod nauplii	nos/ml	12	10	9	18	11	14	8	14	13	14	8	7
76 Cirripede nauplii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
77 Bivalve veliger	nos/ml	15	18	21	19	16	13	17	9	10	18	21	18
78 Gastronodueliner	nos/ml	19	16	20	17	20	9	21	17	21	10	17	10
Location	T		CB - 1F	Bottom W	ater			T	ſ	CB - 2 Bo	tom Wah		
Month & Year	Unit	0at-20	Nav-20	Dec-20	Jan-21	Fob-21	Mar-21	Oct-20	Nav-20	Dec-20	Jan-21	Fob-21	Mar-
No. Paramotors													
narametéti	1	I											
		7.83	7.86	7.74	7.55	8 18	8.31	7.71		7.65	75	8.22	82
1 pH @ 25°C		7.83 29	7.86 29	7.74	7.55 29	8.18 29	8.31 29	7.71 29	8.03	7.65 29	7.5 29	8.22 29	8.2 29
1 pH @ 25°C 2 Temperature	°c	29	29	29	29	29	29	29	8.03 29	29	29	29	23
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids	°C mg/L	29 22	29 18	29 19	29 33	29 18	29 13	29 25	8.03 29 21	29 22	29 30	29 18	23 15
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days	°C mg/L mg/L	29 22 16	29 18 14	29 19 13	29 33 14	29 18 5	29 13 4.6	29 25 20	8.03 29 21 17	29 22 15	29 30 18	29 18 4.5	25 15 4.3
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen	°C mg/L mg/L mg/L	29 22 16 3.9	29 18 14 3.8	29 19 13 3.7	29 33 14 3	29 18 5 3.4	29 13 4.6 2.7	29 25 20 3.6	8.03 29 21 17 3.9	29 22 15 3.6	29 30 18 2.6	29 18 4.5 3.1	2: 1: 4.: 2.
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C	°C mg/L mg/L mg/L	29 22 16	29 18 14	29 19 13 3.7 31.8	29 33 14 3 38.6	29 18 5	29 13 4.6	29 25 20	8.03 29 21 17	29 22 15 3.6 33.1	29 30 18 2.6 40.8	29 18 4.5	2: 1: 4.: 2.
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C 7 Oil & Grease	°C mg/L mg/L mg/L - mg/L	29 22 16 3.9 35.4	29 18 14 3.8 30.7	29 19 13 3.7 31.8 BDL(I	29 33 14 3 38.6 DL 1.0)	29 18 5 3.4 35.3	29 13 4.6 2.7 34.1	29 25 20 3.6 36.3	8.03 29 21 17 3.9 32.4	29 22 15 3.6 33.1 BDL(I	29 30 18 2.6 40.8 0L 1.0)	29 18 4.5 3.1 33.5	2: 4. 2. 34
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C 7 Oil & Grease 8 Nitrate as No₃	°C mg/L mg/L mg/L - mg/L mg/L	29 22 16 3.9 35.4	29 18 14 3.8 30.7	29 19 13 3.7 31.8 BDL(I	29 33 14 3 38.6 0L 1.0) 6.81	29 18 5 3.4 35.3	29 13 4.6 2.7 34.1	29 25 20 3.6 36.3	8.03 29 21 17 3.9 32.4	29 22 15 3.6 33.1 BDL((5.42	29 30 18 2.6 40.8 0L 1.0) 7.33	29 18 4.5 3.1 33.5	2: 15 4. 2. 34 6.0
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C 7 Oil & Grease 8 Nitrate as No₂ 9 Nitrite as No₂	°C mg/L mg/L mg/L - mg/L mg/L	29 22 16 3.9 35.4	29 18 14 3.8 30.7	29 19 13 3.7 31.8 BDL(6.03 2.15	29 33 14 3 38.6 0L.1.0) 6.81 4.02	29 18 5 3.4 35.3	29 13 4.6 2.7 34.1	29 25 20 3.6 36.3	8.03 29 21 17 3.9 32.4	29 22 15 3.6 33.1 BDL((5.42 2.27	29 30 18 2.6 40.8 3L 1.0) 7.33 4.95	29 18 4.5 3.1 33.5	2: 15 4. 2. 34 6.0
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C 7 Oil & Grease 8 Nitrate as No₃ 9 Nitrite as No₂ 10 Ammonical Nitrogen as N	°C mg/L mg/L - - mg/L mg/L mg/L	29 22 16 3.9 35.4	29 18 14 3.8 30.7	29 19 13 3.7 31.8 BDL(1 6.03 2.15 BDL(1	29 33 14 3 38.6 0L 1.0) 6.81 4.02 0L 1.0)	29 18 5 3.4 35.3	29 13 4.6 2.7 34.1	29 25 20 3.6 36.3	8.03 29 21 17 3.9 32.4	29 22 15 3.6 33.1 BDL(I 5.42 2.27 BDL(I	29 30 18 2.6 40.8 0L 1.0) 7.33 4.95 0L 1.0)	29 18 4.5 3.1 33.5	2: 1: 4. 2. 34
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27°C for 3 days 5 Dissolved oxygen 6 Salinity at 25°C 7 Oil & Grease 8 Nitrate as No₃ 9 Nitrite as No₃ 10 Ammonical Nitrogen as N 11 Ammonia s NH3	°C mg/L mg/L mg/L - mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4	29 18 14 3.8 30.7	29 19 13 3.7 31.8 BDL(1 6.03 2.15 BDL(1 BDL(1	29 33 14 3 38.6 0L.1.0) 6.81 4.02 0L.1.0)	29 18 5 3.4 35.3	29 13 4.6 2.7 34.1	29 25 20 3.6 36.3	8.03 29 21 17 3.9 32.4	29 22 15 3.6 33.1 BDL(I 5.42 2.27 BDL(I BDL(I	29 30 18 2.6 40.8 0L 1.0) 7.33 4.95 0L 1.0)	29 18 4.5 3.1 33.5	2: 1: 4. 2. 34
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C 7 Oil & Grease 8 Nitrate as No₃ 9 Nitrite as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N	°C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/	29 22 16 3.9 35.4 6.21 2.74	29 18 14 3.8 30.7 6.9 3.02	29 19 13 3.7 31.8 BDL(I 6.03 2.15 BDL(I BDL(I BDL(I	29 33 14 3.6 38.6 0L.1.0) 6.81 4.02 0L.1.0) 0L.0.01) 0L.1.0)	29 18 5 3.4 35.3 6.17 2.98	29 13 4.6 2.7 34.1 5.44 2.17	29 25 20 3.6 36.3 5.37 2.05	8.03 29 21 17 3.9 32.4 5.86 2.71	29 22 15 3.6 33.1 BDL(I 5.42 2.27 BDL(I BDL(I BDL(I	29 30 18 2.6 40.8 5L 1.0) 7.33 4.95 5L 1.0) 1L 0.01)	29 18 4.5 3.1 33.5 6.91 3.73	25 15 4.7 2.0 34. 5.0 2.0
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C 7 Oil & Grease 8 Nitrate as No₃ 9 Nitrite as No₃ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4	°C mg/L mg/L mg/L - mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4	29 18 14 3.8 30.7	29 19 13 3.7 31.8 BDL(1 6.03 2.15 BDL(1 BDL(1 BDL(1	29 33 14 3 38.6 0L.1.0) 6.81 4.02 0L.1.0) 0L.0.01) 0L.0.01) 0L.1.0)	29 18 5 3.4 35.3	29 13 4.6 2.7 34.1	29 25 20 3.6 36.3	8.03 29 21 17 3.9 32.4	29 22 15 3.6 33.1 BDL(I 5.42 2.27 BDL(I BDL(I BDL(I	29 30 18 2.6 40.8 0L 1.0) 7.33 4.95 0L 1.0) 0L 0.01) 0L 1.0) 4.3	29 18 4.5 3.1 33.5	2: 1! 4. 2. 34 5.0 2.0
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C 7 Oil & Grease 8 Nitrate as No₂ 9 Nitrite as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldshi Nitrogen as PO4 14 Total Nitrogen	°C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 6.21 2.74	29 18 14 3.8 30.7 6.9 3.02	29 19 13 3.7 31.8 BDL() 6.03 2.15 BDL() BDL() BDL() BDL() BDL()	29 33 14 3 38.6 0L 1.0) 6.81 4.02 0L 1.0) 0L 0.01) 0L 1.0) 0L 1.0)	29 18 5 3.4 35.3 6.17 2.98	29 13 4.6 2.7 34.1 5.44 2.17	29 25 20 3.6 36.3 5.37 2.05	8.03 29 21 17 3.9 32.4 5.86 2.71	29 22 15 3.6 33.1 BDL(I 5.42 2.27 BDL(I BDL(I BDL(I BDL(I BDL(I BDL(I BDL(I	29 30 18 2.6 40.8 30.1.0) 7.33 4.95 30.1.0) 10.001) 30.1.0) 4.3	29 18 4.5 3.1 33.5 6.91 3.73	2: 15 4. 2. 34 5.0 2.0
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C 7 Oil & Grease 8 Nitrate as No₂ 9 Nitrite as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldshl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids	°C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 6.21 2.74 5.43	29 18 14 3.8 30.7 6.9 3.02 5.86	29 19 13 3.7 31.8 BDL(6.03 2.15 BDL(BDL(BDL(BDL(BDL(BDL(BDL(BDL(29 33 14 3 38.6 0L.1.0) 6.81 4.02 0L.1.0) 0L.1.0) 0L.1.0) 5.16 0L.1.0) 38190	29 18 5 3.4 35.3 6.17 2.98 5.84	29 13 4.6 2.7 34.1 5.44 2.17	29 25 20 3.6 36.3 5.37 2.05 5.96	8.03 29 21 17 3.9 32.4 5.86 2.71	29 22 15 3.6 33.1 BDL((5.42 2.27 BDL((B))(B))(B))(B))(B))(B))(B))(B	29 30 18 2.6 40.8 3L 1.0) 7.33 4.95 3L 1.0) 1L 0.01) 3L 1.0) 4.3 3L 1.0) 40985	29 18 4.5 3.1 33.5 6.91 3.73	2: 19 4. 2. 34 6.0 2.0
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 21°C for 3 days 5 Dissolved oxygen 6 Salinity at 25°C 7 Dil & Grease 8 Nitrate as No₃ 9 Nitrite as No₃ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD	°C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 5.21 2.74 5.43	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154	29 19 13 3.7 3.18 BDL(1 6.03 2.15 BDL(1 BDL(1 5.18 BDL(1 5.18 BDL(1 35650	29 33 14 3 38.6 0L.1.0) 6.81 4.02 0L.1.0) 1C.0.01) 0L.1.0) 5.16 1.0) 38190 123	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150	29 25 20 3.6 36.3 5.37 2.05 5.96	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45	29 22 15 3.6 33.1 BDL((5.92 2.21 BDL((BDL)((4.51 BDL)((36879	29 30 18 2.6 40.8 0L.1.0) 7.33 4.95 0L.1.0) 1L.0.01) 0L.1.0) 4.03 1.1.0) 40985 118	29 18 4.5 3.1 33.5 6.91 3.73 5.17 36110 182	2: 1! 4. 2. 34 6.0 2.0 5.3
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 21°C for 3 days 5 Dissolved oxygen 6 Salinity at 25°C 7 Oil & Grease 8 Nitrite as No₂ 9 Nitrite as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total bacterial count	"C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 6.21 2.74 5.43	29 18 14 3.8 30.7 6.9 3.02 5.86	29 19 13 3.7 31.8 BDL(1 6.03 2.15 BDL(1 BDL(1 BDL(1 8.01 3.7 8.01 8.01 8.01 8.01 8.01 8.01 8.01 8.01	29 33 14 3 3,86 0L 1.0) 6.81 4.02 0L 1.0) 0L 0.01) 0L 1.0) 5.16 0L 1.0) 38190 123 85	29 18 5 3.4 35.3 6.17 2.98 5.84	29 13 4.6 2.7 34.1 5.44 2.17	29 25 20 3.6 36.3 5.37 2.05 5.96	8.03 29 21 17 3.9 32.4 5.86 2.71	29 22 15 3.6 33.1 5.42 2.21 BDL([BDL([BDL([BDL(] 36879 155 137	29 30 18 2.6 40.8 50.1.0) 7.33 4.95 50.1.0) 10.001) 51.10) 4.3 118 40385 118 90	29 18 4.5 3.1 33.5 6.91 3.73	2: 1! 4. 2. 34 6.0 2.0 5.3
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C 7 Oil & Grease 8 Nitrate as No₂ 9 Nitrite as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms	°C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 5.21 2.74 5.43	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154	29 19 13 3.7 31.8 BDL(1	29 33 14 3 3,6 0L 1.0) 6.81 4.02 0L 1.0) 0L 0.01) 0L 1.0) 5.16 0L 1.0) 38190 123 85 ence	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150	29 25 20 3.6 36.3 5.37 2.05 5.96	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45	29 22 15 3.6 33.1 BDL(I	29 30 18 2.6 40.8 0L.1.0) 7.33 4.95 0L.1.0) 0L.0.01) 0L.1.0) 4.3 0L.1.0) 40985 118 90 ence	29 18 4.5 3.1 33.5 6.91 3.73 5.17 36110 182	2: 19 4. 2. 34 5.1 5.3 363 16
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C 7 Oil & Grease 8 Nitrate as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli	"C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 5.21 2.74 5.43	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154	29 19 13 3.7 31.8 BDL(1 6.03 2.15 BDL(1 BDL(1 5.18 BDL(1 35650 167 128 Abs	29 33 14 3 38 50L 1.0) 6.81 4.02 0L 1.0) 0L 1.0) 5.16 0L 1.0) 38190 123 85 ence	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150	29 25 20 3.6 36.3 5.37 2.05 5.96	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45	29 22 15 3.6 33.1 BDL(I 5.42 2.27 BDL(I BDL(I 4.51 BDL(I 36879 155 137 Abse	29 30 18 2.6 40.8 0L 1.0) 7.33 4.95 0L 1.0) 0L 1.0) 4.3 0L 1.0) 40985 118 90 ence	29 18 4.5 3.1 33.5 6.91 3.73 5.17 36110 182	2: 19 4. 2. 34 5.1 5.3 363 16
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C 7 Oil & Grease 8 Nitrate as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli	°C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 5.21 2.74 5.43	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154	29 19 13 3.7 31.8 BDL(I 6.03 2.15 BDL(I BDL(I 5.18 BDL(I 35650 167 128 Abs Abs	29 33 14 3 38.6 0L.1.0) 16.81 4.02 0L.1.0) 0L.1.0) 5.16 0L.1.0) 38190 123 85 ence	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150	29 25 20 3.6 36.3 5.37 2.05 5.96	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45	29 22 15 3.6 33.1 BDL(I BDL(I BDL(I BDL(I 4.51 BDL(I 36879 155 137 Abse	29 30 18 2.6 40.8 0L 1.0) 7.33 4.95 0L 1.0) 0L 1.0) 4.3 0L 1.0) 4.0985 118 90 ence	29 18 4.5 3.1 33.5 6.91 3.73 5.17 36110 182	2: 19 4. 2. 34 5.1 5.3 363 16
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C 7 Oil & Grease 8 Nitrate as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli	°C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 5.21 2.74 5.43	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154	29 19 13 3.7 31.8 BDL(I	29 33 14 3 38.6 0L.1.0) 1.5.16 0L.1.0) 0L.0.01) 0L.1.0) 1.5.16 0L.1.0) 38190 123 85 ence ence ence	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150	29 25 20 3.6 36.3 5.37 2.05 5.96	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45	29 22 15 3.6 33.1 BDL(I BDL(I BDL(I BDL(I 4.51 BDL(I 36879 155 137 Abse Abse	29 30 18 2.6 40.8 0L 1.0) 7.33 4.95 0L 1.0) 0L 1.0) 4.3 0L 1.0) 4.0985 118 90 ence	29 18 4.5 3.1 33.5 6.91 3.73 5.17 36110 182	2: 1! 4. 2. 34 6.0 2.0 5.3
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27°C for 3 days 5 Dissolved oxygen 6 Salinity at 25°C 7 Oil & Grease 8 Nitrate as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli 20 Salmonella	°C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 5.21 2.74 5.43	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154	29 19 13 3.7 31.8 BDL(I	29 33 14 3 38.6 0L.1.0) 16.81 4.02 0L.1.0) 0L.1.0) 5.16 0L.1.0) 38190 123 85 ence	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150	29 25 20 3.6 36.3 5.37 2.05 5.96	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45	29 22 15 3.6 33.1 BDL(I 5.42 2.27 BDL(I BDL(I BDL(I 36879 155 137 Abse Abse Abse	29 30 18 2.6 40.8 30 1.0) 7.33 4.95 30 1.0) 4.3 30 1.0) 40985 118 90 ence ence ence	29 18 4.5 3.1 33.5 6.91 3.73 5.17 36110 182	2: 1! 4. 2. 34 6.0 2.0 5.3
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C 7 Oil & Grease 8 Nitrate as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio cholerae	°C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 5.21 2.74 5.43	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154	29 19 13 3.7 31.8 BDL(6.03 2.15 BDL(BDL(5.18 BDL(35650 167 128 Abs Abs Abs	29 33 14 3 38.6 0L.1.0) 1.5.16 0L.1.0) 0L.0.01) 0L.1.0) 1.5.16 0L.1.0) 38190 123 85 ence ence ence	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150	29 25 20 3.6 36.3 5.37 2.05 5.96	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45	29 22 15 3.6 33.1 BDL(I 5.42 2.27 BDL(I BDL(I BDL(I 36879 155 137 Abse Abse Abse	29 30 18 2.6 40.8 0L 1.0) 7.33 4.95 0L 1.0) 0L 1.0) 4.3 0L 1.0) 4.0985 118 90 ence	29 18 4.5 3.1 33.5 6.91 3.73 5.17 36110 182	2: 1! 4. 2. 34 6.0 2.0 5.3
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C 7 Oil & Grease 8 Nitrate as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio cholerae 23 Vibrio parahaemolyticus	°C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 5.21 2.74 5.43	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154	29 19 13 3.7 31.8 BDL((BDL)((BDL)((5.18 BDL)((5.18 BDL)((35650 167 128 Abs Abs Abs Abs	29 33 14 3 38.6 0L.1.0) 1.5.81 4.02 0L.1.0) 0L.1.0) 1.5.16 0L.1.0) 1.38190 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150	29 25 20 3.6 36.3 5.37 2.05 5.96	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45	29 22 15 3.6 33.1 BDL((5.42 2.21 BDL((BDL)((4.51 BDL)((36879 155 137 Abse Abse Abse Abse	29 30 18 2.6 40.8 30 1.0) 7.33 4.95 30 1.0) 4.3 30 1.0) 40985 118 90 ence ence ence	29 18 4.5 3.1 33.5 6.91 3.73 5.17 36110 182	2: 19 4. 2. 34 5.1 5.3 363 16
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C 7 Oil & Grease 8 Nitrate as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio cholerae 23 Vibrio parahaemolyticus	"C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 5.21 2.74 5.43	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154	29 19 13 3.7 31.8 BDL((BDL)((BDL)((5.18 BDL)((5.18 BDL)((35650 167 128 Abs Abs Abs Abs	29 33 14 3 38.6 0L.1.0) 6.81 4.02 0L.1.0) 0L.1.0) 1.5.16 0L.1.0) 38190 123 85 ence ence ence ence ence	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150	29 25 20 3.6 36.3 5.37 2.05 5.96	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45	29 22 15 3.6 33.1 BDL((5.42 2.21 BDL((BDL)((4.51 BDL)((36879 155 137 Abse Abse Abse Abse	29 30 18 2.6 40.8 01.1.0) 7.33 4.95 01.1.0) 10.001) 01.1.0) 40985 118 90 ence ence ence ence	29 18 4.5 3.1 33.5 6.91 3.73 5.17 36110 182	2: 1!: 4. 2. 34 6.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 21°C for 3 days 5 Dissolved oxygen 6 Salinity at 25°C 7 Oil & Grease 8 Nitrite as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio cholerae 23 Vibrio parahaemolyticus 24 Enterococci 25 Colour	°C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 6.21 2.74 5.43 37025 180 102	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154 115	29 19 13 3.7 3.18 BDL(I BDL(I BDL(I BDL(I 5.18 BDL(I 35650 167 128 Abs Abs Abs Abs Abs Abs	29 33 14 3 38.6 0L.1.0) 6.81 4.02 0L.1.0) 5.16 0L.1.0) 38190 123 85 ence ence ence ence ence ence ence	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174 98	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150 91	29 25 20 3.6 36.3 5.37 2.05 5.96 38922 171 98	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45 34678 143 109	29 22 15 3.6 33.1 BDL(I	29 30 18 2.6 40.8 4.95 0L.1.0) 7.33 4.95 0L.1.0) 4.3 0L.1.0) 40985 118 90 ence ence ence ence ence	29 18 4.5 3.1 33.5 6.91 3.73 5.17 36110 182 95	2: 1!: 4. 2. 34 6.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C 7 Oil & Grease 8 Nitrite as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total Dissolved Solids 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio cholerae 23 Vibrio parahaemolyticus 24 Enterococci 25 Colour 26 Odour	°C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 6.21 2.74 5.43 37025 180 102	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154 115	29 19 13 3.7 31.8 BDL(I BDL(I BDL(I 5.18 BDL(I 35650 167 128 Abs Abs Abs Abs Abs Abs Abs	29 33 14 3 38.6 0L.1.0) 6.81 4.02 0L.1.0) 1L.0.01 0L.1.0) 38190 123 85 ence ence ence ence ence ence ence	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174 98	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150 91	29 25 20 3.6 36.3 5.37 2.05 5.96 38922 171 98	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45 34678 143 109	29 22 15 3.6 33.1 BDL((BDL)((BDL)((BDL)((36879 155 137 Abse Abse Abse Abse Abse Abse Abse Abse	29 30 18 2.6 40.8 30.1.0) 7.33 4.95 30.1.0) 4.00 4.00 118 90 ence ence ence ence ence ence ence enc	29 18 4.5 3.1 33.5 6.91 3.73 5.17 36110 182 95	2: 1!: 4. 2. 34 6.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 21°C for 3 days 5 Dissolved oxygen 6 Salinity at 25°C 7 Oil & Grease 8 Nitrite as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio cholerae 23 Vibrio parahaemolyticus 24 Enterococci 25 Colour 26 Odour 27 Taste	Per 100 ml	29 22 16 3.9 35.4 6.21 2.74 5.43 37025 180 102	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154 115	29 19 13 3.7 31.8 BDL((BDL)((BDL)((5.18 BDL)((35650 167 128 Abs Abs Abs Abs Abs Abs Abs Abs Abs Abs	29 33 14 3 38.6 0L.1.0) 6.81 4.02 0L.1.0) 0L.1.0) 1.5.16 0L.1.0) 38190 123 85 ence ence ence ence ence ence ence enc	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174 98	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150 91	29 25 20 3.6 36.3 5.37 2.05 5.96 38922 171 98	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45 34678 143 109	29 22 15 3.6 33.1 BDL([BDL([BDL([BDL(] 36879 155 137 Abse Abse Abse Abse Abse Abse Abse Abse	29 30 18 2.6 40.8 10.1.0) 7.33 4.95 0L.1.0) L.0.01) 0L.1.0) 40385 118 90 ence ence ence ence ence ence ence enc	29 18 4.5 3.1 33.5 5.91 3.73 5.17 36110 182 95	2 19 19 19 19 19 19 19 19 19 19 19 19 19
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 21°C for 3 days 5 Dissolved oxygen 6 Salinity at 25°C 7 Oil & Grease 8 Nitrate as Nos 9 Nitrite as Nos 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio cholerae 23 Vibrio parahaemolyticus 24 Enterococci 25 Colour 26 Odour 27 Taste 28 Turbidity	PC mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 6.21 2.74 5.43 37025 180 102	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154 115	29 19 13 3.7 31.8 BDL(I BDL(I BDL(I 5.18 BDL(I 35650 167 128 Abs Abs Abs Abs Abs Abs Abs Abs Abs Abs	29 33 14 3 38.6 DL 1.0) 6.81 4.02 DL 1.0) DL 1.0) 5.16 DL 1.0) 38190 123 85 ence ence ence ence ence ence ence enc	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174 98	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150 91	29 25 20 3.6 36.3 5.37 2.05 5.96 38922 171 98	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45 34678 143 109	29 22 15 3.6 33.1 BDL(I BDL(I BDL(I BDL(I BDL(I 36879 155 137 Abse Abse Abse Abse Abse Abse Abse Abse	29 30 18 2.6 40.8 30.1.0) 7.33 4.95 30.1.0) 4.0385 118 90 ence ence ence ence ence ence ence enc	29 18 4.5 3.1 33.5 6.91 3.73 5.17 36110 182 95	2 19 19 19 19 19 19 19 19 19 19 19 19 19
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 21°C for 3 days 5 Dissolved oxygen 6 Salinity at 25°C 7 Oil & Grease 8 Nitrate as Nos 9 Nitrite as Nos 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio cholerae 23 Vibrio parahaemolyticus 24 Enterococci 25 Colour 26 Odour 27 Taste 28 Turbidity 29 Calcium as Ca	PC mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 6.21 2.74 5.43 37025 180 102	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154 115	29 19 13 3.7 31.8 BDL(I BDL(I BDL(I 5.18 BDL(I 35650 167 128 Abs Abs Abs Abs Abs Abs Abs Abs Abs Abs	29 33 14 3 38.6 0L.1.0) 6.81 4.02 0L.1.0) 1.5.16 0L.1.0) 38190 123 85 ence ence ence ence ence ence ence enc	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174 98	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150 91 20	29 25 20 3.6 36.3 5.37 2.05 5.96 38922 171 98	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45 34678 143 109	29 22 15 3.6 33.1 BDL([BDL([BDL([BDL([BDL([36879 155 137 Abse Abse Abse Abse Abse Abse Abse Abse	29 30 18 2.6 40.8 30.1.0) 7.33 4.95 30.1.0) 10.001) 30.1.0) 40385 118 90 ence ence ence ence ence ence ence enc	29 18 4.5 3.1 33.5 5.91 3.73 5.17 36110 182 95	2 19 19 19 19 19 19 19 19 19 19 19 19 19
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 21°C for 3 days 5 Dissolved oxygen 6 Salinity at 25°C 7 Dil & Grease 8 Nitrite as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio parahaemolyticus 24 Enterococci 25 Colour 26 Odour 27 Taste 28 Turbidity 29 Calcium as Ca 30 Chloride as CI	PC mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 6.21 2.74 5.43 37025 180 102	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154 115	29 19 13 3.7 31.8 BDL(I BDL(I BDL(I 5.18 BDL(I 35650 167 128 Abs Abs Abs Abs Abs Abs Abs Abs Abs Abs	29 33 14 3 38.6 0L.1.0) 6.81 4.02 0L.1.0) 1C.0.01) 0L.1.0) 1.516 0L.1.0) 38190 123 85 ence ence ence ence ence ence ence enc	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174 98	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150 91	29 25 20 3.6 36.3 5.37 2.05 5.96 38922 171 98	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45 34678 143 109	29 22 15 3.6 33.1 BDL((BDL)((BDL)((BDL)((BDL)((36879 155 137 Abse Abse Abse Abse Abse Abse Abse Abse	29 30 18 2.6 40.8 30.1.0) 7.33 4.95 30.1.0) 10.001) 30.1.0) 40385 118 90 ence ence ence ence ence ence ence enc	29 18 4.5 3.1 33.5 6.91 3.73 5.17 36110 182 95	2 19 19 19 19 19 19 19 19 19 19 19 19 19
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C 7 Oil & Grease 8 Nitrate as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio cholerae 23 Vibrio parahaemolyticus 24 Enterococci 25 Colour 26 Odour 27 Taste 28 Turbidity 29 Calcium as Ca	PC mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 6.21 2.74 5.43 37025 180 102	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154 115	29 19 13 3.7 31.8 BDL(I BDL(I BDL(I 5.18 BDL(I 35650 167 128 Abs Abs Abs Abs Abs Abs Abs Abs Abs Abs	29 33 14 3 38.6 0L.1.0) 6.81 4.02 0L.1.0) 1.5.16 0L.1.0) 38190 123 85 ence ence ence ence ence ence ence enc	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174 98	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150 91 20	29 25 20 3.6 36.3 5.37 2.05 5.96 38922 171 98	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45 34678 143 109	29 22 15 3.6 33.1 BDL((BDL)((BDL)((BDL)((BDL)((36879 155 137 Abse Abse Abse Abse Abse Abse Abse Abse	29 30 18 2.6 40.8 30.1.0) 7.33 4.95 30.1.0) 10.001) 30.1.0) 40385 118 90 ence ence ence ence ence ence ence enc	29 18 4.5 3.1 33.5 5.91 3.73 5.17 36110 182 95	2 19 19 19 19 19 19 19 19 19 19 19 19 19
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 21°C for 3 days 5 Dissolved oxygen 6 Salinity at 25°C 7 Oil & Grease 8 Nitrate as Nos 9 Nitrite as Nos 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio cholerae 23 Vibrio parahaemolyticus 24 Enterococci 25 Colour 26 Odour 27 Taste 28 Turbidity 29 Calcium as Ca 30 Chloride as CI 31 Cyanide as CN	PC mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 6.21 2.74 5.43 37025 180 102 20 10 336 19568	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154 115 25 7.9 800 16989	29 19 13 3.7 31.8 BDL((BDL)(5.18 BDL)(5.18 BDL)(35650 167 128 Abs Abs Abs Abs Abs Abs Abs Abs Abs Abs	29 33 14 3 38.6 0L.1.0) 6.81 4.02 0L.1.0) 1C.0.01) 0L.1.0) 1.516 0L.1.0) 38190 123 85 ence ence ence ence ence ence ence enc	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174 98 15	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150 91 20 20 8.5 426 18876	29 25 20 3.6 36.3 5.37 2.05 5.96 38922 171 98 15	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45 34678 143 109 20 20	29 22 15 3.6 33.1 BDL((BDL)((BDL)((BDL)((36879 155 137 Abse Abse Abse Abse Abse Abse Abse Abse	29 30 18 2.6 40.8 30.1.0) 7.33 4.95 30.1.0) 10.001) 30.1.0) 40985 118 90 ence ence ence ence ence ence ence enc	29 18 4.5 3.1 33.5 5.91 3.73 5.17 36110 182 95 15	2 19 19 2 19 2 19 2 19 2 19 2 19 2 19 2
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 21°C for 3 days 5 Dissolved oxygen 6 Salinity at 25°C 7 Oil & Grease 8 Nitrate as Nos 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio cholerae 23 Vibrio parahaemolyticus 24 Enterococci 25 Colour 26 Odour 27 Taste 28 Turbidity 29 Calcium as Ca 30 Chloride as Cl 31 Cyanide as CN 32 Fluoride as F	PC mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 6.21 2.74 5.43 37025 180 102 20 10 336 19568	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154 115 25 7.9 800 16989	29 19 13 3.7 3.18 BDL(I BDL(I BDL(I 5.18 BDL(I 35650 167 128 Abs Abs Abs Abs Abs Abs Abs Abs Abs Abs	29 33 14 3 38.6 0L.1.0) 6.81 4.02 0L.1.0) 1.5.16 0L.1.0) 38190 123 85 ence ence ence ence ence ence ence enc	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174 98 15 9.4 400 19568 0.32	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150 91 20 20 8.5 426 18876	29 25 20 3.6 36.3 5.37 2.05 5.96 38922 171 98 15 15 13 462 20126	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45 34678 143 109 20 20 9.5 780 17969	29 22 15 3.6 33.1 BDL((BDL)((BDL)((BDL)((BDL)((36879 155 137 Abse Abse Abse Abse Abse Abse Abse Abse	29 30 18 2.6 40.8 30.1.0) 7.33 4.95 30.1.0) 10.001) 30.1.0) 40385 118 90 ence ence ence ence ence ence ence enc	29 18 4.5 3.1 33.5 5.91 3.73 5.17 36110 182 95 15 8.7 458 18589	2 19 19 19 19 19 19 19 19 19 19 19 19 19
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 21°C for 3 days 5 Dissolved oxygen 6 Salinity at 25°C 7 Oil & Grease 8 Nitrate as Nog 9 Nitrite as Nog 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio cholerae 23 Vibrio parahaemolyticus 24 Enterococci 25 Colour 26 Odour 27 Taste 28 Turbidity 29 Calcium as Ca 30 Chloride as Cl 31 Cyanide as CN 32 Fluoride as F 33 Magnesium as Mg	Per 100 ml	29 22 16 3.9 35.4 6.21 2.74 5.43 37025 180 102 20 10 336 19568 0.85 705	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154 115 25 7.9 800 16989	29 19 13 3.7 31.8 BDL(I	29 33 14 3 38.6 0L.1.0) 6.81 4.02 0L.1.0) 5.16 0L.1.0) 38190 123 85 ence ence ence ence ence ence ence enc	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174 98 15 9.4 400 19568 0.32 1014	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150 91 20 20 8.5 426 18876	29 25 20 3.6 36.3 5.37 2.05 5.96 38922 171 98 15 15 462 20126	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45 34678 143 109 20 20 9.5 780 17969 0.83 1440	29 22 15 3.6 33.1 BDL([29 30 18 2.6 40.8 4.95 0L.1.0) 7.33 4.95 0L.1.0) 4.0985 118 90 ence ence ence ence ence ence ence enc	29 18 4.5 3.1 33.5 6.91 3.73 5.17 36110 182 95 15 8.7 458 18589	2 19 19 19 19 19 19 19 19 19 19 19 19 19
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 21°C for 3 days 5 Dissolved oxygen 6 Salinity at 25°C 7 Oil & Grease 8 Nitrate as Nog 9 Nitrite as Nog 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total Dissolved Solids 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio cholerae 23 Vibrio parahaemolyticus 24 Enterococci 25 Colour 26 Odour 27 Taste 28 Turbidity 29 Calcium as Ca 30 Chloride as Cl 31 Cyanide as CN 32 Fluoride as F 33 Magnesium as Mg 34 Total Iron as Fe	°C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 6.21 2.74 5.43 37025 180 102 20 10 336 19568	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154 115 25 7.9 800 16989	29 19 13 3.7 31.8 BDL(I	29 33 14 3 38.6 0L.1.0) 6.81 4.02 0L.1.0) 0L.1.0) 5.16 0L.1.0) 38190 123 85 ence ence ence ence ence ence ence enc	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174 98 15 9.4 400 19568 0.32	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150 91 20 20 8.5 426 18876	29 25 20 3.6 36.3 5.37 2.05 5.96 38922 171 98 15 15 13 462 20126	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45 34678 143 109 20 20 9.5 780 17969	29 22 15 3.6 3.3.1 BDL([29 30 18 2.6 40.8 4.95 0L.1.0) 7.33 4.95 0L.1.0) 4.001) 0L.1.0) 40385 118 90 ence ence ence ence ence ence ence enc	29 18 4.5 3.1 33.5 5.91 3.73 5.17 36110 182 95 15 8.7 458 18589	2 19 19 19 19 19 19 19 19 19 19 19 19 19
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25 °C 7 Oil & Grease 8 Nitrate as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total Dissolved Solids 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio cholerae 23 Vibrio parahaemolyticus 24 Enterococci 25 Colour 26 Odour 27 Taste 28 Turbidity 29 Calcium as Ca 30 Chloride as Cl 31 Cyanide as CN 32 Fluoride as F 33 Magnesium as Mg 34 Total Iron as Fe 35 Residual Free Chlorine	**C	29 22 16 3.9 35.4 6.21 2.74 5.43 37025 180 102 20 10 336 19568 0.85 705	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154 115 25 7.9 800 16989	29 19 13 3.7 31.8 BDL(I	29 33 14 38.6 38.6 0L.1.0) 6.81 4.02 0L.1.0) 0L.0.01) 0L.1.0) 5.16 0L.1.0) 38190 123 85 ence ence ence ence ence ence ence enc	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174 98 15 9.4 400 19568 0.32 1014	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150 91 20 20 8.5 426 18876	29 25 20 3.6 36.3 5.37 2.05 5.96 38922 171 98 15 15 462 20126	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45 34678 143 109 20 20 9.5 780 17969 0.83 1440	29 22 15 3.6 3.16 3.17 BDL(I B	29 30 18 2.6 40.8 0L.1.0) 7.33 4.95 0L.1.0) 1L.0.01) 1L.0.01) 40.385 118 90 ence ence ence ence ence ence ence enc	29 18 4.5 3.1 33.5 6.91 3.73 5.17 36110 182 95 15 8.7 458 18589	2 19 19 19 19 19 19 19 19 19 19 19 19 19
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27 °C for 3 days 5 Dissolved oxygen 6 Salinity at 25°C 7 Oil & Grease 8 Nitrite as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio cholerae 23 Vibrio cholerae 24 Enterococci 25 Colour 26 Odour 27 Taste 28 Turbidity 29 Calcium as Ca 30 Chloride as Cl 31 Cyanide as CN 32 Fluoride as F 33 Fluoride as F 34 Total Iron as Fe 35 Residual Free Chlorine 36 Phenolic Compounds as C6H5Of	Per 100 ml	29 22 16 3.9 35.4 6.21 2.74 5.43 37025 180 102 20 20 10 336 19568 0.85 705 1.41	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154 115 25 7.9 800 16389 0.92 2160 1.87	29 19 13 3.7 31.8 BDL(I BDL(I BDL(I BDL(I S5650 167 128 Abs Abs Abs Abs Abs Abs Abs Abs Abs Abs	29 33 14 3 8 3 8 5 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 1774 98 15 400 19568 0.32 1014 0.63	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150 91 20 20 8.5 426 18876	29 25 20 3.6 36.3 5.37 2.05 5.96 38922 171 98 15 15 13 462 20126 0.74 555 1.29	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45 34678 143 109 20 20 9.5 780 17969 0.83 1440 1.57	29 22 15 3.6 3.16 3.6 3.7 BDL(I BBL(I BBL(29 30 18 2.6 40.8 50.1.0) 7.33 4.95 50.1.0) 10.001) 10.1.0) 40.985 118 90 ence 15 577 22582 10.0.1) 50.53	29 18 4.5 3.1 33.5 5.91 3.73 5.17 36110 182 95 15 458 18589 0.37 1092 0.71	2: 19 4. 4. 2. 34 5. 4. 2. 4. 34 5. 4. 2. 4. 34 5. 4. 36 5.
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27°C for 3 days 5 Dissolved oxygen 6 Salinity at 25°C 7 Oil & Grease 8 Nitrate as No₂ 10 Ammonical Nitrogen as N 11 Ammonis as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio cholerae 23 Vibrio parahaemolyticus 24 Enterococci 25 Colour 26 Odour 27 Taste 28 Turbidity 29 Calcium as Ca 30 Chloride as Cl 31 Cyanide as CN 32 Fluoride as F 33 Magnesium as Mg 34 Total Iron as Fe 35 Residual Free Chlorine 36 Phenolic Compounds as C6H5OI 37 Total Hardness as CaCO3	PC mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 6.21 2.74 5.43 37025 180 102 20 10 336 19568 0.85 705 1.41	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154 115 25 7.9 800 16989 0.92 2160 1.87	29 19 13 3.7 31.8 BDL(I BBL(I	29 33 14 3 8.6 0L 1.0) 1 6.81 4.02 0L 1.0) 1 5.16 0L 1.0) 5.16 0L 1.0) 38190 123 85 ence ence ence ence ence ence ence enc	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174 98 15 400 19568 0.32 1014 0.63	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150 91 20 20 8.5 426 18876	29 25 20 3.6 36.3 5.37 2.05 5.96 38922 171 98 15 15 13 462 20126 0.74 555 1.29	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45 34678 143 109 20 20 3.5 780 17969 0.83 1440 1.57	29 22 15 3.6 3.16 3.16 5.42 2.27 BDL([BBL([BB(29 30 18 2.6 40.8 50.1.0) 7.33 4.95 50.1.0) 10.001) 50.1.0) 40.3 50.1.0) 40.385 118 90 ence ence ence ence ence ence ence enc	29 18 4.5 3.1 33.5 5.91 3.73 5.17 36110 182 95 15 8.7 458 18583 0.37 1092 0.71	23 15 4.1 2.1 34 5.0 2.0 363 16 8 47 192 0.5 110 0.1
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27°C for 3 days 5 Dissolved oxygen 6 Salinity at 25°C 7 Oil & Grease 8 Nitrate as No₂ 10 Ammonical Nitrogen as N 11 Ammonis as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio cholerae 23 Vibrio parahaemolyticus 24 Enterococci 25 Colour 26 Odour 27 Taste 28 Turbidity 29 Calcium as Ca 30 Chloride as Cl 31 Cyanide as CN 32 Fluoride as F 33 Magnesium as Mg 34 Total Iron as Fe 36 Phenolic Compounds as C6H5Ot 37 Total Hardness as CaCO3 38 Total Alkalinity as CaCO3	PC mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 6.21 2.74 5.43 37025 180 102 20 20 10 336 19568 0.85 705 1.41	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154 115 25 7.9 800 16389 0.92 2160 1.87	29 19 13 3.7 31.8 BDL(I 6.03 2.15 BDL(I 5.18 BDL(I 35650 167 128 Abs	29 33 14 3 38.6 0L.1.0) 6.81 4.02 0L.1.0) 0L.1.0) 1.51.6 0L.1.0) 38190 123 85 ence ence ence ence ence ence ence enc	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 1774 98 15 400 19568 0.32 1014 0.63	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150 91 20 20 8.5 426 18876	29 25 20 3.6 36.3 5.37 2.05 5.96 38922 171 98 15 15 13 462 20126 0.74 555 1.29	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45 34678 143 109 20 20 9.5 780 17969 0.83 1440 1.57	29 22 15 3.6 3.3.1 BDL([5.9.2 2.21 BDL([BDL([BDL([BDL([36879 155 137 Abse Abse Abse Abse Abse Abse Abse Abse	29 30 18 2.6 40.8 30.1.0) 7.33 4.95 31.1.0) 10.01) 31.1.0) 40.985 118 90 ence ence ence ence ence ence ence enc	29 18 4.5 3.1 33.5 5.91 3.73 5.17 36110 182 95 15 458 18589 0.37 1092 0.71	23
1 pH @ 25°C 2 Temperature 3 Total Suspended Solids 4 BOD at 27°C for 3 days 5 Dissolved oxygen 6 Salinity at 25°C 7 Oil & Grease 8 Nitrate as No₂ 10 Ammonical Nitrogen as N 11 Ammonia as NH3 12 Kjeldahl Nitrogen as N 13 Total phosphates as PO4 14 Total Nitrogen 15 Total Dissolved Solids 16 COD 17 Total bacterial count 18 Coliforms 19 Escherichia coli 20 Salmonella 21 Shigella 22 Vibrio cholerae 23 Vibrio parahaemolyticus 24 Enterococci 25 Colour 26 Odour 27 Taste 28 Turbidity 29 Calcium as Ca 30 Chloride as Cl 31 Cyanide as CN 32 Fluoride as F 33 Magnesium as Mg 34 Total Iron as Fe 35 Residual Free Chlorine 36 Phenolic Compounds as C6H5Ol 37 Total Hardness as CaCO3	PC mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	29 22 16 3.9 35.4 6.21 2.74 5.43 37025 180 102 20 10 336 19568 0.85 705 1.41	29 18 14 3.8 30.7 6.9 3.02 5.86 32840 154 115 25 7.9 800 16989 0.92 2160 1.87	29 19 13 3.7 31.8 BDL(I 6.03 2.15 BDL(I 5.18 BDL(I 35650 167 128 Abs	29 33 14 3 8.6 0L 1.0) 1 6.81 4.02 0L 1.0) 1 5.16 0L 1.0) 5.16 0L 1.0) 38190 123 85 ence ence ence ence ence ence ence enc	29 18 5 3.4 35.3 6.17 2.98 5.84 35960 174 98 15 400 19568 0.32 1014 0.63	29 13 4.6 2.7 34.1 5.44 2.17 6.22 36854 150 91 20 20 8.5 426 18876	29 25 20 3.6 36.3 5.37 2.05 5.96 38922 171 98 15 15 13 462 20126 0.74 555 1.29	8.03 29 21 17 3.9 32.4 5.86 2.71 6.45 34678 143 109 20 20 3.5 780 17969 0.83 1440 1.57	29 22 15 3.6 3.3.1 BDL([5.9.2 2.21 BDL([BDL([BDL([BDL([36879 155 137 Abse Abse Abse Abse Abse Abse Abse Abse	29 30 18 2.6 40.8 50.1.0) 7.33 4.95 50.1.0) 10.001) 50.1.0) 40.3 50.1.0) 40.385 118 90 ence ence ence ence ence ence ence enc	29 18 4.5 3.1 33.5 5.91 3.73 5.17 36110 182 95 15 8.7 458 18583 0.37 1092 0.71	2 19 19 19 19 19 19 19 19 19 19 19 19 19

•	Anionic surfactants as MBAS	mg/L												
	Monocrotophos	μg/L)L 0.01))L 0.01))L 0.01))L 0.01)		
•	Atrazine Ethion	µg/L)L 0.01))L 0.01)		
45	Chiorpyrifos	μg/L μg/L)L 0.01))L 0.01)		
_	Phorate	μg/L)L 0.01))L 0.01)		
_	Mehyle parathion	μg/L)L 0.01)					BDL(C)L 0.01)		
	Malathion	μg/L)L 0.01))L 0.01)		
49	DDT (o,p and p,p-Isomers of	μg/L			BDL (C	L 0.01)					BDL (C)L 0.01)		
	DDT,DDE and DDD													
50 51	Gamma HCH (Lindane)	μg/L)L 0.01))L 0.01)					BULL)L 0.01))L 0.01)		
	Alppha HCH Beta HCH	μg/L μg/L)L 0.01))L 0.01)		
53	Delta HCH	μg/L			BDL(C)L 0.01))L 0.01)		
54	Endosulfan (Alpha,beta and	μg/L)L 0.01))L 0.01)		
55	Butachlor	μg/L)L 0.01))L 0.01)		
56	Alachlor	μg/L)L 0.01))L 0.01)		
57	Aldrin/Dieldrin	μg/L)L 0.01))L 0.01)		
58	Isoproturon	μg/L)L 0.01))L 0.01)		
	2,4-D Polychlorinated Biphenyls (PCB)	μg/L)L 0.01))L 0.01))L 0.01))L 0.01)		
	Polynuclear aromatic	μg/L μg/L												
61	hydrocarbons (PAH)	kair			BDL(C)L 0.01)					BDL(C)L 0.01)		
62	Arsenic as As	mg/L			BDL(C	(L 0.01)					BDL(C)L 0.01)		
	Mercury as Hg	mg/L				L 0.001)						L 0.001)		
64	Cadmium as Cd	mg/L				0.003)						_0.003)		
•	Total Chromium as Cr	mg/L				L 0.05)						L 0.05)		
66 67	Copper as Cu Lead as Pb	mg/L				L 0.05))L 0.01)						(L 0.05) (L 0.01)		
	Manganese as Mn	mg/L mg/L				L 0.05)						L 0.05)		
69	Nickel as Ni	mg/L				L 0.05)						L 0.05)		
70	Selenium as Se	mg/L				L 0.01)						L 0.01)		
71	Barium as Ba	mg/L			BDL(I	DL (0.1)					BDL(I	DL (0.1)		
72	Silver as Ag	mg/L)L 0.01))L 0.01)		
_	Molybdenum as Mo	mg/L)L 0.01)			400)L 0.01)		
74	Octane	μg/L	144	158	170	175	191	170	160	152	159	172	184	181
75	Nonane	μg/L)L 0.01))L 0.01))L 0.01))L 0.01)		
76 77	Decane Undecane	μg/L μg/L	7.5	8.9	8	8.4	8.7	8.1	7.9	8.6	7.1	7.8	8.3	8.5
•	Tridecane	μg/L	1.0	0.5		5L 0.1)	0.1	0.1	1.0	0.0		<u>50 0.1)</u>	0.5	0.5
•	Tetradecane	μg/L				DL 0.1)						DL 0.1)		
80	Pentadecane	μg/L			BDL(I	DL (0.1)						DL (0.1)		
81	Hexadecane	uq/L	L		BDL(I	OL 0.1)					BDL(I	DL 0.1)		
	Month & Year	Unit	Oct-20	Nev-20	Dec-20	Jan-21	Fab-21	Mar-21	Oct-20	Nov-20	Dec-20	Jan-21	Fob-21	Mar-21
S.No.	Paramotors				BDI //	1 0 1					DOL (1 0 1		
-	Heptadecane	μg/L				DL 0.1)						DL 0.1)		
					PDI (I	71 0 41					PDI (DI O 10		
83	Octadecane	μg/L				DL 0.1)						DL 0.1)		
84	Nonadecane	μg/L			BDL(I	DL (0.1)					BDL(i	DL 0.1)		
84 85	Nonadecane Elcosane	μg/L μg/L	9 1/1	0 00	BDL(I	DL 0.1) DL 0.1)	0 14	O AE	9.47	0 01	BDL(1 BDL(1	DL 0.1) DL 0.1)	0.01	10.45
84 85 86	Nonadecane Elcosane Primary Productivity	μg/L μg/L mg C/m³ /hr	9.14	8.09	BDL(1 BDL(1 8.42	DL 0.1) DL 0.1) 9.56	9.14	9.45	9.47	8.91	BDL() BDL() 7.65	DL 0.1) DL 0.1) 10.46	9.81	10.45
84 85 86 87	Nonadecone Elcosane Primary Productivity Chlorophyll a	μg/L μg/L mg C/m³ /hr mg /m³	5.09	5.73	BDL(I BDL(I 8.42 6.18	0L 0.1) 0L 0.1) 9.56 7.05	7.71	8.09	5.7	5.26	BDL() BDL() 7.65 4.89	DL 0.1) DL 0.1) 10.46 7.94	8.79	10.45
84 85 86 87 88	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin	μg/L μg/L mg C/m³ /hr mg /m³	5.09 0.82	5.73 0.71	BDL(1 BDL(1 8.42 6.18 0.86	DL 0.1) DL 0.1) 9.56 7.05 0.69	7.71 0.85	8.09 0.87	5.7 0.95	5.26 0.67	BDL() BDL() 7.65 4.89 0.73	DL 0.1) DL 0.1) 10.46 7.94 0.85	8.79 0.9	8.01 0.98
84 85 86 87 88	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin	μg/L μg/L mg Clm³ lhr mg lm³ mg lm³	5.09	5.73	BDL(I BDL(I 8.42 6.18	0L 0.1) 0L 0.1) 9.56 7.05	7.71	8.09	5.7	5.26	BDL() BDL() 7.65 4.89	DL 0.1) DL 0.1) 10.46 7.94	8.79	8.01
84 85 86 87 88	Nonadecone Elcosane Primary Productivity Chlorophyll a	μg/L μg/L mg C/m³ /hr mg /m³	5.09 0.82	5.73 0.71	BDL(I BDL(I 8.42 6.18 0.86 4.25	DL 0.1) DL 0.1) 9.56 7.05 0.69	7.71 0.85 7.23	8.09 0.87	5.7 0.95	5.26 0.67	BDL() BDL() 7.65 4.89 0.73	DL 0.1) DL 0.1) 10.46 7.94 0.85	8.79 0.9	8.01 0.98
84 85 86 87 88 89	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular	µg/L µg/L mg C/m³ /hr mg /m³ mg /L	5.09 0.82 5.77	5.73 0.71 5.05	BDL(I BDL(I 8.42 6.18 0.86 4.25 PHY	OL 0.1) OL 0.1) 9.56 7.05 0.69 8.01 TOPLAN	7.71 0.85 7.23 KTON	8.09 0.87 8.31	5.7 0.95 5.08	5.26 0.67 4.93	BDL() 7.65 4.89 0.73 6.01	0L 0.1) 0L 0.1) 10.46 7.94 0.85 8.92	8.79 0.9 6.98	8.01 0.98 7.69
84 85 86 87 88 89	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum	µg/L µg/L mg C/m³ /hr mg /m³ mg /L nos/ml	5.09 0.82 5.77	5.73 0.71 5.05	BDL(I BDL(I) 8.42 6.18 0.86 4.25 PHY 20	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN	7.71 0.85 7.23 KTON 11	8.09 0.87 8.31	5.7 0.95 5.08	5.26 0.67 4.93	BDL() 7.65 4.89 0.73 6.01	0L 0.1) 0L 0.1) 10.46 7.94 0.85 8.92	8.79 0.9 6.98	8.01 0.98 7.69
84 85 86 87 88 89 90	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians	µg/L µg/L mg C/m ³ /hr mg /m ³ mg /L nos/ml nos/ml	5.09 0.82 5.77 19	5.73 0.71 5.05 17	BDL(1 BDL(1 8.42 6.18 0.86 4.25 PHY 20 17	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15	7.71 0.85 7.23 KTON 11 17	8.09 0.87 8.31 13 10	5.7 0.95 5.08 22 16	5.26 0.67 4.93 18 12	BDL() BDL() 7.65 4.89 0.73 6.01	0L 0.1) 0L 0.1) 10.46 7.94 0.85 8.92 16	8.79 0.9 6.98 18 14	8.01 0.98 7.69 21 18
84 85 86 87 88 89 90 91	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus	µg/L µg/L mg C/m³ /hr mg /m³ mg /m³ mg /L nos/ml nos/ml	5.09 0.82 5.77 19 10	5.73 0.71 5.05 17 15 7	BDL(1 BDL(1 8.42 6.18 0.86 4.25 PHY 20 17	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16	7.71 0.85 7.23 KTON 11 17	8.09 0.87 8.31 13 10 14	5.7 0.95 5.08 22 16 15	5.26 0.67 4.93 18 12 10	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8	0L 0.1) 0L 0.1) 10.46 7.94 0.85 8.92 16 18	8.79 0.9 6.98 18 14 8	8.01 0.98 7.69 21 18 12
84 85 86 87 88 89 90 91 92 93	Nonadecane Eleosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens	µg/L µg/L mg C/m³ /hr mg /m³ mg /m³ mg /L nos/ml nos/ml nos/ml	5.09 0.82 5.77 19 10 11 8	5.73 0.71 5.05 17 15 7	BDL(1 BDL(1 8.42 6.18 0.86 4.25 PHY 20 17 9	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13	7.71 0.85 7.23 KTON 11 17 9	8.09 0.87 8.31 13 10 14 16	5.7 0.95 5.08 22 16 15 6	5.26 0.67 4.93 18 12 10 14	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13	0L 0.1) 0L 0.1) 10.46 7.94 0.85 8.92 16 18 15 14	8.79 0.9 6.98 18 14 8	8.01 0.98 7.69 21 18 12 15
84 85 86 87 88 89 90 91 92 93 94	Nonadecane Eleosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis	µg/L µg/L mg C/m³ /hr mg /m³ mg /m³ mg /L nos/ml nos/ml nos/ml nos/ml	5.09 0.82 5.77 19 10 11 8	5.73 0.71 5.05 17 15 7 10	BDL(I BDL(I 8.42 6.18 0.86 4.25 PHY 20 17 9 11	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7	7.71 0.85 7.23 KTON 11 17 9 10	8.09 0.87 8.31 13 10 14 16 23	5.7 0.95 5.08 22 16 15 6	5.26 0.67 4.93 18 12 10 14 9	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13	0L 0.1) 0L 0.1) 10.46 7.94 0.85 8.92 16 18 15 14	8.79 0.9 6.98 18 14 8 17 24	8.01 0.98 7.69 21 18 12 15 20
84 85 86 87 88 89 90 91 92 93 94 95	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii	µg/L µg/L mg C/m³ /hr mg /m³ mg /m³ mg /L nos/ml nos/ml nos/ml nos/ml nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil	5.73 0.71 5.05 17 15 7 10 16 Nil	BDL(I BDL(I 8.42 6.18 0.86 4.25 PHY 20 17 9 11 18 Nil	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil	7.71 0.85 7.23 KTON 11 17 9 10 20 Nil	8.09 0.87 8.31 13 10 14 16 23 Nil	5.7 0.95 5.08 22 16 15 6 17 Nil	5.26 0.67 4.93 18 12 10 14 9 Nil	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil	DL 0.1) DL 0.1) 10.46 7.94 0.85 8.92 16 18 15 14 17 Nil	8.79 0.9 6.98 18 14 8 17 24 Nil	8.01 0.98 7.69 21 18 12 15 20 Nil
84 85 86 87 88 89 90 91 92 93 94 95 96	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii	µg/L µg/L mg C/m³ /hr mg /m³ mg /m³ mg /L nos/ml nos/ml nos/ml nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil	5.73 0.71 5.05 17 15 7 10 16 Nil	BDL(I BDL(I 8.42 6.18 0.86 4.25 PHY 20 17 9 11 18 Nii	DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6	7.71 0.85 7.23 KTON 11 17 9 10 20 Nil 4	8.09 0.87 8.31 13 10 14 16 23 Nil 8	5.7 0.95 5.08 22 16 15 6 17 Nil	5.26 0.67 4.93 18 12 10 14 9 Nil	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil	DL 0.1) DL 0.1) 10.46 7.94 0.85 8.92 16 18 15 14 17 Nil 7	8.79 0.9 6.98 18 14 8 17 24 Nil 9	8.01 0.98 7.69 21 18 12 15 20 Nil
84 85 86 87 88 89 90 91 92 93 94 95	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii	µg/L µg/L mg C/m³ /hr mg /m³ mg /m³ mg /L nos/ml nos/ml nos/ml nos/ml nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil	5.73 0.71 5.05 17 15 7 10 16 Nil	BDL(I BDL(I 8.42 6.18 0.86 4.25 PHY 20 17 9 11 18 Nil	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil	7.71 0.85 7.23 KTON 11 17 9 10 20 Nil	8.09 0.87 8.31 13 10 14 16 23 Nil	5.7 0.95 5.08 22 16 15 6 17 Nil	5.26 0.67 4.93 18 12 10 14 9 Nii	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil	DL 0.1) DL 0.1) 10.46 7.94 0.85 8.92 16 18 15 14 17 Nil	8.79 0.9 6.98 18 14 8 17 24 Nil 9	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil
84 85 86 87 88 89 90 91 92 93 94 95 96 97	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps	µg/L µg/L mg C/m³ /hr mg /m³ mg /m³ mg /L nos/ml nos/ml nos/ml nos/ml nos/ml nos/ml nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil	5.73 0.71 5.05 17 15 7 10 16 Nil Nil	BDL(I BDL(I 8.42 6.18 0.86 4.25 PHY 20 17 9 11 18 Nii Nii	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil	7.71 0.85 7.23 KTON 11 17 9 10 20 Nil 4 Nil	8.09 0.87 8.31 13 10 14 16 23 Nil 8	5.7 0.95 5.08 22 16 15 6 17 Nil Nil	5.26 0.67 4.93 18 12 10 14 9 Nii	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil	DL 0.1) DL 0.1) 10.46 7.94 0.85 8.92 16 18 15 14 17 Nil 7 Nil	8.79 0.9 6.98 18 14 8 17 24 Nil 9	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil
84 85 86 87 88 89 90 91 92 93 94 95 96 97	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis	µg/L µg/L ng C/m³ /hr ng /m³ mg /m³ mg /L nos/ml nos/ml nos/ml nos/ml nos/ml nos/ml nos/ml nos/ml nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil 14	5.73 0.71 5.05 17 15 7 10 16 Nil Nil 9	BDL(I BDL(I 8.42 6.18 0.86 4.25 PHY 20 17 9 11 18 Nil Nil Nil 8	DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12	7.71 0.85 7.23 KTON 11 17 9 10 20 Nil 4 Nil 9	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil	5.26 0.67 4.93 18 12 10 14 9 Nii Nii Nii	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil Nil 15	DL 0.1) DL 0.1) 10.46 7.94 0.85 8.92 16 18 15 14 17 Nil 7 Nil 14	8.79 0.9 6.98 18 14 8 17 24 Nil 9	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis Coscinodiscus granii	µg/L µg/L ng C/m³ /hr ng /m³ mg /m³ mg /L nos/ml nos/ml nos/ml nos/ml nos/ml nos/ml nos/ml nos/ml nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil 14 21	5.73 0.71 5.05 17 15 7 10 16 Nil Nil Nil 9	BDL(I BDL(I 8.42 6.18 0.86 4.25 PHY 20 17 9 11 18 Nil Nil Nil 8 13	DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12 8	7.71 0.85 7.23 KTON 11 17 9 10 20 Nii 4 Nii 9	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil 8	5.26 0.67 4.93 18 12 10 14 9 Nil Nil 13 17	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil Nil 15 20	DL 0.1) DL 0.1) 10.46 7.94 0.85 8.92 16 18 15 14 17 Nil 7 Nil 14 12	8.79 0.9 6.98 18 14 8 17 24 Nil 9 Nil 19	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 90	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis Coscinodiscus granii Cylcotella sps	µg/L µg/L ng C/m³ /hr ng /m³ mg /m³ mg /L nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil 14 21 Nil	5.73 0.71 5.05 17 15 7 10 16 Nil Nil Nil 9 12 Nil	BDL(I BDL(I 8.42 6.18 0.86 4.25 PHY 20 17 9 11 18 Nil Nil Nil 8 13	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12 8 Nil	7.71 0.85 7.23 KTON 11 17 9 10 20 Nii 4 Nii 9 12 Nii	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11 19 Nil	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil 8 14 Nil	5.26 0.67 4.93 18 12 10 14 9 Nil Nil 13 17 Nil	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil Nil 15 20 Nil	DL 0.1) DL 0.1) 10.46 7.94 0.85 8.92 16 18 15 14 17 Nil 7 Nil 14 12 Nil	8.79 0.9 6.98 18 14 8 17 24 Nil 9 Nil 19	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22 14 Nil
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis Coscinodiscus granii Cylcotella sps Hemidiscus	µg/L µg/L ng C/m³ /hr ng /m³ mg /m³ mg /L nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil 14 21 Nil 9	5.73 0.71 5.05 17 15 7 10 16 Nil Nil Nil 9 12 Nil 6	BDL(I BDL(I 8.42 6.18 0.86 4.25 PHY 20 17 9 11 18 Nil Nil Nil Nil Nil 8 13 Nil 9	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12 8 Nil 19	7.71 0.85 7.23 KTON 11 17 9 10 20 Nil 4 Nil 9 12 Nil 15	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11 19 Nil 18	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil 8 14 Nil 5	5.26 0.67 4.93 18 12 10 14 9 Nil Nil 13 17 Nil 15	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil Nil 15 20 Nil 17	DL 0.1) DL 0.1) DL 0.1) 10.46 7.94 0.85 8.92 16 18 15 14 17 Nil 7 Nil 14 12 Nil 18	8.79 0.9 6.98 18 14 8 17 24 Nil 9 Nil 19 10 Nil 21	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22 14 Nil 23
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis Coscinodiscus granii Cylcotella sps Hemidiscus Laudaria annulata	µg/L µg/L ng C/m³ /hr ng /m³ mg /m³ mg /L nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil Nil 14 21 Nil 9 17	5.73 0.71 5.05 17 15 7 10 16 Nil Nil Nil Nil Nil S 12 Nil 6	BDL(I BDL(I BDL(I 8.42 6.18 0.86 4.25 PHY 20 17 9 11 18 Nil Nil Nil Nil 8 13 Nil 9 12	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12 8 Nil 19 8	7.71 0.85 7.23 KTON 11 17 9 10 20 Nil 4 Nil 9 12 Nil 15 13	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11 19 Nil 18 7	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil 8 14 Nil 5	5.26 0.67 4.93 18 12 10 14 9 Nil Nil Nil 13 17 Nil 15 16	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil Nil 15 20 Nil 17 19	DL 0.1) DL 0.1) 10.46 7.94 0.85 8.92 16 18 15 14 17 Nil 7 Nil 14 12 Nil 18 14	8.79 0.9 6.98 18 14 8 17 24 Nil 9 Nil 19 10 Nil 21	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22 14 Nil 23 24
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis Coscinodiscus granii Cylcotella sps Hemidiscus Laudaria annulata Pyropacus horologicum	µg/L µg/L ng C/m³ /hr ng /m³ mg /m³ mg /L nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil 14 21 Nil 9 17 Nil	5.73 0.71 5.05 17 15 7 10 16 Nil Nil Nil Nil 3 12 Nil 6 11	BDL(I BDL(I BDL(I 8.42 6.18 0.86 4.25 PHY 20 17 9 11 18 Nil Nil Nil Nil Nil 8 13 Nil 9 12 Nil	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12 8 Nil 19 8 Nil	7.71 0.85 7.23 KTON 11 17 9 10 20 Nii 4 Nii 9 12 Nii 15 13 Nii	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11 19 Nil 18 7	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil 8 14 Nil 5 18	5.26 0.67 4.93 18 12 10 14 9 Nil Nil Nil 13 17 Nil 15 16 Nil	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil Nil 15 20 Nil 17 19 Nil	DL 0.1) DL 0.1) DL 0.1) 10.46 7.94 0.85 8.92 16 18 15 14 17 Nil 7 Nil 14 12 Nil 18 14 Nil 18	8.79 0.9 6.98 18 14 8 17 24 Nil 9 Nil 19 10 Nil 21 20 Nil	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22 14 Nil 23 24 Nil
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis Coscinodiscus granii Cylcotella sps Hemidiscus Laudaria annulata	µg/L µg/L ng C/m³ /hr ng /m³ mg /m³ mg /L nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil Nil 14 21 Nil 9 17	5.73 0.71 5.05 17 15 7 10 16 Nil Nil Nil Nil Nil S 12 Nil 6	BDL(I BDL(I BDL(I 8.42 6.18 0.86 4.25 PHY 20 17 9 11 18 Nil Nil Nil Nil 8 13 Nil 9 12	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12 8 Nil 19 8 Nil Nil Nil Nil Nil	7.71 0.85 7.23 KTON 11 17 9 10 20 Nil 4 Nil 9 12 Nil 15 13	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11 19 Nil 18 7 Nil Nil	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil 8 14 Nil 5	5.26 0.67 4.93 18 12 10 14 9 Nil Nil Nil 13 17 Nil 15 16	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil Nil 15 20 Nil 17 19	DL 0.1) DL 0.1) DL 0.1) 10.46 7.94 0.85 8.92 16 18 15 14 17 Nil 7 Nil 14 12 Nil 18 14 Nil Nil Nil Nil	8.79 0.9 6.98 18 14 8 17 24 Nil 9 Nil 19 10 Nil 21 20 Nil Nil	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22 14 Nil 23 24
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis Coscinodiscus granii Cylcotella sps Hemidiscus Laudaria annulata Pyropacus horologicum Pleurosigma angulatum	µg/L µg/L ng C/m³ /hr ng /m³ mg /m³ mg /L nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil 14 21 Nil 9 17 Nil	5.73 0.71 5.05 17 15 7 10 16 Nil Nil Nil Nil 3 12 Nil 6 11	BDL(I BDL(I BDL(I 8.42 6.18 0.86 4.25 PHY 20 17 9 11 18 Nil Nil Nil Nil 8 13 Nil 9 12 Nil	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12 8 Nil 19 8 Nil	7.71 0.85 7.23 KTON 11 17 9 10 20 Nii 4 Nii 9 12 Nii 15 13 Nii	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11 19 Nil 18 7	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil 8 14 Nil 5 18	5.26 0.67 4.93 18 12 10 14 9 Nil Nil Nil 13 17 Nil 15 16 Nil	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil Nil 15 20 Nil 17 19 Nil	DL 0.1) DL 0.1) DL 0.1) 10.46 7.94 0.85 8.92 16 18 15 14 17 Nil 7 Nil 14 12 Nil 18 14 Nil 18	8.79 0.9 6.98 18 14 8 17 24 Nil 9 Nil 19 10 Nil 21 20 Nil	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22 14 Nil 23 24 Nil
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis Coscinodiscus granii Cylcotella sps Hemidiscus Laudaria annulata Pyropacus horologicum Pleurosigma angulatum Leptocylindrus danicus	µg/L µg/L ng C/m³ /hr ng /m³ mg /m³ mg /L nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil 14 21 Nil 9 17 Nil Nil 4	5.73 0.71 5.05 17 15 7 10 16 Nil Nil Nil 9 12 Nil 6 11 Nil Nil Nil S	BDL(I BDL(I	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12 8 Nil 19 8 Nil Nil 17	7.71 0.85 7.23 KTON 11 17 9 10 20 Nii 4 Nii 9 12 Nii 15 13 Nii Nii 20	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11 19 Nil 18 7 Nil Nil Nil	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil 8 14 Nil 5 18 Nil 9	5.26 0.67 4.93 18 12 10 14 9 Nil Nil 13 17 Nil 15 16 Nil Nil Nil 8	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil Nil 15 20 Nil 17 19 Nil Nil 10	DL 0.1) DL 0.1) DL 0.1) 10.46 7.94 0.85 8.92 16 18 15 14 17 Nil 7 Nil 14 12 Nil 18 14 Nil Nil Nil Nil 22	8.79 0.9 6.98 18 14 8 17 24 Nil 9 Nil 19 10 Nil 21 20 Nil Nil 13	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22 14 Nil 23 24 Nil Nil 11
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis Coscinodiscus granii Cylcotella sps Hemidiscus Laudaria annulata Pyropacus horologicum Pleurosigma angulatum Leptocylindrus danicus Guinardia flaccida	µg/L µg/L ng C/m³ /hr ng /m³ mg /m³ mg /L nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil 14 21 Nil 9 17 Nil Nil Nil 4 Nil	5.73 0.71 5.05 17 15 7 10 16 Nil Nil Nil 9 12 Nil 6 11 Nil Nil Nil Nil Nil Sil Sil Sil Sil Sil Sil Sil S	BDL(I BDL(I BDL(I BDL(I BDL(I BDL(I BDL(I BL) BDL(I BD	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12 8 Nil 19 8 Nil 17 Nil Nil 17	7.71 0.85 7.23 KTON 11 17 9 10 20 Nil 4 Nil 9 12 Nil 15 13 Nil Nil 20 Nil	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11 19 Nil 18 7 Nil Nil 15 Nil	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil 8 14 Nil 5 18 Nil Nil 5 18 Nil Nil 9 Nil	5.26 0.67 4.93 18 12 10 14 9 Nil Nil 13 17 Nil 15 16 Nil Nil Nil Nil 8 Nil	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil 15 20 Nil 17 19 Nil Nil 10 Nil	DL 0.1) DL 0.1) DL 0.1) 10.46 7.94 0.85 8.92 16 18 15 14 17 Nil 7 Nil 14 12 Nil 18 14 Nil Nil Nil Nil Nil 22 Nil	8.79 0.9 6.98 18 14 8 17 24 Nil 9 Nil 19 10 Nil 21 20 Nil Nil 13 Nil	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22 14 Nil 23 24 Nil Nil Nil Nil Nil Nil Nil Nil
84 85 86 87 88 89 90 91 92 93 94 95 95 96 97 98 99 100 101 102 103 104 105 106 107	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis Coscinodiscus granii Cylcotella sps Hemidiscus Laudaria annulata Pyropacus horologicum Pleurosigma angulatum Leptocylindrus danicus Guinardia flaccida Rhizosolenia alata	µg/L µg/L ng C/m³ /hr ng /m³ mg /m³ mg /L nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil 14 21 Nil 9 17 Nil Nil Nil 4 Nil 8	5.73 0.71 5.05 17 15 7 10 16 Nil Nil Nil 9 12 Nil 6 11 Nil Nil Nil Nil Sil 6 11 Nil Nil Nil Nil 12 Nil Nil Nil Nil Nil Nil Nil Nil	BDL(I BDL(I	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12 8 Nil 19 8 Nil 17 Nil 9	7.71 0.85 7.23 KTON 11 17 9 10 20 Nil 4 Nil 9 12 Nil 15 13 Nil Nil 20 Nil 14	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11 19 Nil 18 7 Nil Nil 15 Nil 18	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil 8 14 Nil 5 18 Nil Nil Nil 18	5.26 0.67 4.93 18 12 10 14 9 Nil Nil Nil 13 17 Nil 15 16 Nil Nil Nil 18 11 11	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil Nil 15 20 Nil 17 19 Nil Nil 10 Nil 11 11 11 11 11 11 11 11 11 11 11 11 11	DL 0.1) DL 0.1) DL 0.1) 10.46 7.94 0.85 8.92 16 18 15 14 17 Nil 7 Nil 14 12 Nil 18 14 Nil Nil Nil Nil 22 Nil 6	8.79 0.9 6.98 18 14 8 17 24 Nil 9 Nil 19 10 Nil 21 20 Nil Nil 13 Nil 15	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22 14 Nil 23 24 Nil Nil Nil 11 Nil 11
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis Coscinodiscus granii Cylcotella sps Hemidiscus Laudaria annulata Pyropacus horologicum Pleurosigma angulatum Leptocylindrus danicus Guinardia flaccida Rhizosolenia alata Rhizosolena impricata	µg/L µg/L ng C/m³ /hr ng /m³ mg /m³ mg /L nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil 14 21 Nil 9 17 Nil Nil Nil 4 Nil Nil Nil Nil Nil Nil Nil Nil	5.73 0.71 5.05 17 15 7 10 16 Nil Nil Nil 9 12 Nil 6 11 Nil Nil Nil Nil Nil Nil Nil Nil	BDL(I BDL(I BDL(I 8.42 6.18 0.86 4.25 PHY 20 17 9 11 18 Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12 8 Nil 19 8 Nil 17 Nil 9 Nil 17 Nil 9	7.71 0.85 7.23 KTON 11 17 9 10 20 Nil 4 Nil 9 12 Nil 15 13 Nil Nil 20 Nil 14 Nil	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11 19 Nil 18 7 Nil Nil 15 Nil 18 Nil	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil 8 14 Nil 5 18 Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil	5.26 0.67 4.93 18 12 10 14 9 Nil Nil Nil 13 17 Nil 15 16 Nil Nil Nil Nil Nil 15 16 Nil Nil Nil Nil Nil Nil Nil Nil	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil 15 20 Nil 17 19 Nil Nil 10 Nil 11 Nil	DL 0.1) DL 0.1) DL 0.1) 10.46 7.94 0.85 8.92 16 18 15 14 17 Nil 7 Nil 14 12 Nil 18 14 Nil Nil Nil Nil 22 Nil Nil 6 Nil	8.79 0.9 6.98 18 14 8 17 24 Nil 9 Nil 19 10 Nil 21 20 Nil Nil 13 Nil 15 Nil	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22 14 Nil 23 24 Nil Nil 11 Nil 17 Nil
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis Coscinodiscus granii Cylcotella sps Hemidiscus Laudaria annulata Pyropacus horologicum Pleurosigma angulatum Leptocylindrus danicus Guinardia flaccida Rhizosolena impricata Rhizosolena semispina	µg/L µg/L µg/L mg C/m³ /hr mg /m³ mg /m³ mg /L nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil 14 21 Nil 9 17 Nil Nil Nil 4 Nil Nil 16	5.73 0.71 5.05 17 15 7 10 16 Nil Nil Nil 9 12 Nil Nil Nil Nil Nil Nil Nil Nil	BDL(I BDL(I BDL(I BDL(I BDL(I BDL(I BDL(I BL) BL) BL) BL) BL) BL) BL) BL) BL) BL)	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12 8 Nil 19 8 Nil 17 Nil 9 Nil 17 Nil 9 Nil 18	7.71 0.85 7.23 KTON 11 17 9 10 20 Nil 4 Nil 9 12 Nil 15 13 Nil Nil 20 Nil 14 Nil 21	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11 19 Nil 18 7 Nil Nil 15 Nil 18 Nil 24	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil 8 14 Nil 5 18 Nil Nil Nil Nil 18 Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil	5.26 0.67 4.93 18 12 10 14 9 Nil Nil 13 17 Nil 15 16 Nil Nil Nil Nil 15 16 Nil Nil Nil 17	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil 15 20 Nil 17 19 Nil Nil 10 Nil 11 11 11 Nil 11 11 11 Nil 11 11 11 Nil 11 11 11 11 11 11 11 11 11 11 11 11 11	DL 0.1) DL 0.1) DL 0.1) 10.46 7.94 0.85 8.92 16 18 15 14 17 Nil 7 Nil 14 12 Nil 18 14 Nil Nil Nil Nil 22 Nil Nil 20	8.79 0.9 6.98 18 14 8 17 24 Nil 9 Nil 19 10 Nil 21 20 Nil Nil 13 Nil 15 Nil 25	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22 14 Nil 23 24 Nil Nil 11 Nil 11 Nil 17 Nil 17
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis Coscinodiscus granii Cylcotella sps Hemidiscus Laudaria annulata Pyropacus horologicum Pleurosigma angulatum Leptocylindrus danicus Guinardia flaccida Rhizosolenia alata Rhizosolena impricata	µg/L µg/L ng C/m³ /hr ng /m³ mg /m³ mg /L nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil 14 21 Nil 9 17 Nil Nil 4 Nil Nil 4 Nil 8 Nil 16 25	5.73 0.71 5.05 17 15 7 10 16 Nil Nil Nil 9 12 Nil 6 11 Nil Nil Nil Nil 11 Nil Nil Nil Nil 11 Nil Nil Nil Nil Nil Nil Nil Nil	BDL(I BDL(I BDL(I BDL(I BDL(I BDL(I BDL(I BL) BL) BL) BL) BL) BL) BL) BL) BL) BL)	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12 8 Nil 19 8 Nil 17 Nil 9 Nil 17 Nil 9 Nil 18 11	7.71 0.85 7.23 KTON 11 17 9 10 20 Nil 4 Nil 9 12 Nil 15 13 Nil Nil 20 Nil 14 Nil 21 7	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11 19 Nil 18 7 Nil Nil 15 Nil 18 Nil 18 Nil 17 Nil 18 Nil 17 Nil 18 Nil 18 Nil 18 Nil 17 Nil 18 Nil 18 Nil 17	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil 8 14 Nil 5 18 Nil Nil Nil Nil Nil 18 Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil	5.26 0.67 4.93 18 12 10 14 9 Nil Nil 13 17 Nil 15 16 Nil Nil Nil 15 16 Nil Nil 17 Nil 18 17 Nil 18 Nil 19 Nil 19 Nil 19 Nil 19 Nil 19 Nil 19 Nil 19 Nil Nil Nil Nil Nil Nil Nil Nil	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil 15 20 Nil 17 19 Nil Nil 10 Nil 11 13 Nil 12 13 Nil 14 15 15 17 18 18 18 18 18 18 18 18 18 18 18 18 18	DL 0.1) DL 0.1	8.79 0.9 6.98 18 14 8 17 24 Nil 9 Nil 19 10 Nil 21 20 Nil Nil 13 Nil 15 Nil 15 Nil 25 12	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22 14 Nil 23 24 Nil Nil 11 Nil 17 Nil 27 19
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis Coscinodiscus granii Cylcotella sps Hemidiscus Laudaria annulata Pyropacus horologicum Pleurosigma angulatum Leptocylindrus danicus Guinardia flaccida Rhizosolena impricata Rhizosolena semispina	µg/L µg/L µg/L mg C/m³ /hr mg /m³ mg /m³ mg /L nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil 14 21 Nil 9 17 Nil Nil Nil 4 Nil Nil 16	5.73 0.71 5.05 17 15 7 10 16 Nil Nil Nil 9 12 Nil Nil Nil Nil Nil Nil Nil Nil	BDL(I BDL(I BDL(I BDL(I BDL(I BDL(I BDL(I BL) BL) BL) BL) BL) BL) BL) BL) BL) BL)	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12 8 Nil 19 8 Nil 17 Nil 9 Nil 17 Nil 9 Nil 18	7.71 0.85 7.23 KTON 11 17 9 10 20 Nil 4 Nil 9 12 Nil 15 13 Nil Nil 20 Nil 14 Nil 21	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11 19 Nil 18 7 Nil Nil 15 Nil 18 Nil 24	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil 8 14 Nil 5 18 Nil Nil Nil Nil 18 Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil	5.26 0.67 4.93 18 12 10 14 9 Nil Nil 13 17 Nil 15 16 Nil Nil Nil Nil 15 16 Nil Nil Nil 17	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil 15 20 Nil 17 19 Nil Nil 10 Nil 11 11 11 Nil 11 11 11 Nil 11 11 11 Nil 11 11 11 11 11 11 11 11 11 11 11 11 11	DL 0.1) DL 0.1) DL 0.1) 10.46 7.94 0.85 8.92 16 18 15 14 17 Nil 7 Nil 14 12 Nil 18 14 Nil Nil Nil Nil 22 Nil Nil 20	8.79 0.9 6.98 18 14 8 17 24 Nil 9 Nil 19 10 Nil 21 20 Nil Nil 13 Nil 15 Nil 25	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22 14 Nil 23 24 Nil Nil 11 Nil 11 Nil 17 Nil 17
84 85 86 87 88 89 90 91 92 93 94 95 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 110 110 110 110 110 110 110 110	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis Coscinodiscus granii Cylcotella sps Hemidiscus Laudaria annulata Pyropacus horologicum Pleurosigma angulatum Leptocylindrus danicus Guinardia flaccida Rhizosolenia alata Rhizosolena semispina Thalassionema Triceratium reticulatum	µg/L µg/L µg/L mg C/m³ /hr mg /m³ mg /m³ mg /L nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil 14 21 Nil 9 17 Nil Nil 4 Nil 4 Nil 8 Nil 16 25 Nil	5.73 0.71 5.05 17 15 7 10 16 Nil Nil Nil 9 12 Nil 6 11 Nil Nil Nil Nil 11 Nil Nil Nil Nil Nil 11 Nil Nil Nil Nil Nil Nil Nil Nil	BDL(I BDL(I BDL(I BDL(I BDL(I BDL(I BDL(I BL)) BDL(I BDL(I BL) BDL(I BDL	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12 8 Nil 19 8 Nil 17 Nil 9 Nil 17 Nil 18 11 Nil 18	7.71 0.85 7.23 KTON 11 17 9 10 20 Nil 4 Nil 9 12 Nil 15 13 Nil Nil 20 Nil 14 Nil 21 7 Nil	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11 19 Nil 18 7 Nil Nil 15 Nil 18 Nil 18 Nil 17 Nil 18 Nil 17 Nil 18 Nil 18 Nil 18 Nil 17 Nil 18 Nil 18 Nil 17 Nil 18 Nil 18 Nil 18 Nil 19 Nil 18 Nil 18 Nil 19 Nil 18 Nil 18 Nil 18 Nil 19 Nil 18	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil 8 14 Nil 5 18 Nil Nil Nil 18 Nil Nil 18 Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil	5.26 0.67 4.93 18 12 10 14 9 Nil Nil 13 17 Nil 15 16 Nil Nil Nil 15 16 Nil Nil 17 Nil 17 Nil Nil Nil Nil Nil Nil Nil Nil	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil Nil 15 20 Nil 17 19 Nil Nil 10 Nil 13 Nil 10 Nil 13 Nil 10 Nil 13 Nil 10 Nil 13 Nil 10 Nil 11 11 11 11 11 11 11 11 11 11 11 11 11	DL 0.1) DL 0.1	8.79 0.9 6.98 18 14 8 17 24 Nil 9 Nil 19 10 Nil 21 20 Nil Nil 13 Nil 15 Nil 25 12 Nil	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22 14 Nil 23 24 Nil Nil 11 Nil 17 Nil 27 19 Nil
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 111 112	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis Coscinodiscus granii Cylcotella sps Hemidiscus Laudaria annulata Pyropacus horologicum Pleurosigma angulatum Leptocylindrus danicus Guinardia flaccida Rhizosolenia alata Rhizosolena impricata Rhizosolena semispina Thalassionema Triceratium reticulatum Ceratium trichoceros	pg/L pg/L pg/L mg C/m³ /hr mg /m³ mg /m³ mg /L nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil 14 21 Nil 9 17 Nil Nil 4 Nil 8 Nil 16 25 Nil Nil	5.73 0.71 5.05 17 15 7 10 16 Nil Nil 9 12 Nil 6 11 Nil Nil Nil Nil 11 Nil Nil 11 Nil Nil Nil Nil Nil Nil Nil Nil	BDL(I BDL(I BDL(I BDL(I BDL(I BDL(I BDL(I BL)) BDL(I BDL(I BL) BDL(I BDL	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12 8 Nil 19 8 Nil 17 Nil 9 Nil 17 Nil 9 Nil 18 11 Nil	7.71 0.85 7.23 KTON 11 17 9 10 20 Nil 4 Nil 9 12 Nil 15 13 Nil Nil 20 Nil 14 Nil 21 7 Nil Nil Nil	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11 19 Nil 18 7 Nil Nil 15 Nil 18 Nil 24 17 Nil Nil	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil 8 14 Nil 5 18 Nil Nil Nil Nil 18 Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil	5.26 0.67 4.93 18 12 10 14 9 Nil Nil 13 17 Nil 15 16 Nil Nil Nil 15 16 Nil Nil 17 Nil 17 Nil Nil Nil Nil Nil Nil Nil Nil	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil 15 20 Nil 17 19 Nil Nil 10 Nil 13 Nil 10 Nil 13 Nil 10 Nil 11 Nil 1	DL 0.1) DL 0.1	8.79 0.9 6.98 18 14 8 17 24 Nil 9 Nil 19 10 Nil 21 20 Nil Nil 13 Nil 15 Nil 25 12 Nil Nil	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22 14 Nil 23 24 Nil Nil 11 Nil 17 Nil 27 19 Nil Nil Nil
84 85 86 87 88 89 90 91 92 93 94 95 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 111 112 113 114 115 116 116 116 116 116 116 116 116 116	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis Coscinodiscus granii Cylcotella sps Hemidiscus Laudaria annulata Pyropacus horologicum Pleurosigma angulatum Leptocylindrus danicus Guinardia flaccida Rhizosolenia alata Rhizosolena impricata Rhizosolena semispina Thalassionema Triceratium reticulatum Ceratium furca	pg/L pg/L pg/L mg C/m³ /hr mg /m³ mg /m³ mg /L nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil 14 21 Nil 9 17 Nil Nil 4 Nil 8 Nil 16 25 Nil Nil Nil Nil 16 25 Nil	5.73 0.71 5.05 17 15 7 10 16 Nil Nil Nil 9 12 Nil Nil Nil Nil Nil Nil Nil Nil	BDL(I BDL(I BDL(I 8.42 6.18 0.86 4.25 PHY 20 17 9 11 18 Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12 8 Nil 19 8 Nil 17 Nil 9 Nil 18 11 Nil	7.71 0.85 7.23 KTON 11 17 9 10 20 Nil 4 Nil 9 12 Nil 15 13 Nil Nil 20 Nil 14 Nil 21 7 Nil	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11 19 Nil 18 7 Nil Nil 15 Nil 18 Nil 24 17 Nil Nil Nil Nil	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil 8 14 Nil 5 18 Nil Nil Nil 18 Nil Nil 18 Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil	5.26 0.67 4.93 18 12 10 14 9 Nil Nil 13 17 Nil 15 16 Nil Nil Nil 11 Nil 11 Nil Nil Nil Nil Nil Nil Nil Nil	BDL() BDL() RDL()	DL 0.1) DL 0.1	8.79 0.9 6.98 18 14 8 17 24 Nil 9 Nil 19 10 Nil 21 20 Nil Nil 13 Nil 15 Nil 25 12 Nil Nil Nil	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22 14 Nil 23 24 Nil Nil 11 Nil 17 Nil 27 19 Nil Nil Nil Nil Nil Nil Nil
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 111 112 113 114	Nonadecane Elcosane Primary Productivity Chlorophyll a Phaeophytin Oxidisable Paticular Bacteriastrum hyalinum Bacteriastrum varians Chaetoceros didymus Chaetoceros decipiens Biddulphia mobiliensis Ditylum brightwellii Gyrosigma sp Cladophyxis sps Coscinodiscus centralis Coscinodiscus granii Cylcotella sps Hemidiscus Laudaria annulata Pyropacus horologicum Pleurosigma angulatum Leptocylindrus danicus Guinardia flaccida Rhizosolenia alata Rhizosolena impricata Rhizosolena semispina Thalassionema Triceratium reticulatum Ceratium trichoceros	pg/L pg/L pg/L mg C/m³ /hr mg /m³ mg /m³ mg /L nos/ml	5.09 0.82 5.77 19 10 11 8 20 Nil Nil 14 21 Nil 9 17 Nil Nil 4 Nil 8 Nil 16 25 Nil Nil	5.73 0.71 5.05 17 15 7 10 16 Nil Nil 9 12 Nil 6 11 Nil Nil Nil Nil 11 Nil Nil 11 Nil Nil Nil Nil Nil Nil Nil Nil	BDL(I BDL(I BDL(I BDL(I BDL(I BDL(I BDL(I BL)) BDL(I BDL(I BL) BDL(I BDL	DL 0.1) DL 0.1) 9.56 7.05 0.69 8.01 TOPLAN 15 16 13 7 14 Nil 6 Nil 12 8 Nil 19 8 Nil 17 Nil 9 Nil 17 Nil 9 Nil 18 11 Nil	7.71 0.85 7.23 KTON 11 17 9 10 20 Nil 4 Nil 9 12 Nil 15 13 Nil Nil 20 Nil 14 Nil 21 7 Nil Nil Nil	8.09 0.87 8.31 13 10 14 16 23 Nil 8 Nil 11 19 Nil 18 7 Nil Nil 15 Nil 18 Nil 24 17 Nil Nil	5.7 0.95 5.08 22 16 15 6 17 Nil Nil Nil 8 14 Nil 5 18 Nil Nil Nil Nil 18 Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil	5.26 0.67 4.93 18 12 10 14 9 Nil Nil 13 17 Nil 15 16 Nil Nil Nil 15 16 Nil Nil 17 Nil 17 Nil Nil Nil Nil Nil Nil Nil Nil	BDL() BDL() 7.65 4.89 0.73 6.01 14 16 8 13 12 Nil Nil 15 20 Nil 17 19 Nil Nil 10 Nil 13 Nil 10 Nil 13 Nil 10 Nil 11 Nil 1	DL 0.1) DL 0.1	8.79 0.9 6.98 18 14 8 17 24 Nil 9 Nil 19 10 Nil 21 20 Nil Nil 13 Nil 15 Nil 25 12 Nil Nil	8.01 0.98 7.69 21 18 12 15 20 Nil 13 Nil 22 14 Nil 23 24 Nil Nil 11 Nil 17 Nil 27 19 Nil Nil Nil

потроставляння дрез													
ZOOPLANKTONS													
116 Acrocalanus gracilis	nos/ml	6	10	9	12	17	20	14	16	13	15	19	14
117 Acrocalanus sp	nos/ml	Nil											
118 Paracalanus parvus	nos/ml	18	20	22	11	14	8	10	11	10	14	17	11
119 Eutintinus sps	nos/ml	15	12	11	17	12	15	12	5	7	8	11	18
120 Centropages furcatus	nos/ml	17	18	20	10	7	10	7	13	15	11	16	19
121 Corycaeus dana	nos/ml	Nil											
122 Oithona brevicornis	nos/ml	13	9	10	9	6	14	11	15	18	11	15	21
123 Euterpina acutifrons	nos/ml	19	17	19	15	18	21	15	10	14	10	14	25
124 Metacalanus aurivilli	nos/ml	Nil											
125 Copipod nauplii	nos/ml	14	16	17	16	10	13	- 8	19	20	17	12	9
126 Cirripede nauplii	nos/ml	Nil											
127 Bivalve veliger	nos/ml	11	14	15	13	19	16	17	17	9	16	23	15
128 Gastropod veliger	nos/ml	20	11	13	19	22	12	21	12	17	18	21	13

	Location		·	Berth - 3	Surface '	water		
	Month & Year	Unit	0 ct-20	Nev-20	Dac-20	Jan-21	Fab-21	Mar-21
S.No.	Paramotors							
1	pH @ 25°C	1	7.66	7.98	8.21	7.93	8.41	8.29
2	Temperature	°C	29	29	29	29	29	29
3	Total Suspended Solids	mg/L	14	11	10	20	17	15
4	BOD at 27 °C for 3 days	mg/L	11	13	11	9	4.8	4.4
5	Dissolved oxygen	mg/L	4	3.8	4	3.7	3.9	2.9
6	Salinity at 25 °C	_	35.2	33.7	33.1	43.5	31.8	32.3
7	Oil & Grease	mg/L			BDL(C	DL 1.0)		
8	Nitrate as No ₃	mg/L	6.45	6.74	6.89	6.27	5.42	4.54
9	Nitrite as No ₂	mg/L	2.01	2.61	2.13	3.91	3.05	1.98
10	Ammonical Nitrogen as N	mg/L				OL 1.0)		
11	Ammonia as NH3	mg/L			BDL(D	L 0.01)		
12	Kjeldahl Nitrogen as N	mg/L			BDL(C	OL 1.0)		
13	Total phosphates as PO4	mg/L	5.96	4.89	4.27	3.19	4.83	5.61
14	Total Nitrogen	mg/L			BDL(C	DL 1.0)		
15	Total Dissolved Solids	mg/L	37148	33127	34055	40842	37860	38150
16	COD	mg/L	163	139	128	109	151	135
17	Total bacterial count	ofu/ml	95	103	114	84	89	71
18	Coliforms	Per 100 ml			Abse	ence		
19	Escherichia coli	Per 100 ml			Abse			
20	Salmonella	Per 100 ml			Abse	ence		
21	Shigella	Per 100 ml			Abse			
22	Vibrio cholerae	Per 100 ml			Abse			
23	Vibrio parahaemolyticus	Per 100 ml			Abse	ence		
24	Enterococci	Per 100 ml			Abse	ence		
25	Octane	μg/L	160	142	150	163	170	155
_26	Nonane	μg/L				OL (0.1)		
27	Decane	μg/L				DL (0.1)		
_28	Undecane	μg/L			BDL(C	DL (0.1)		
29	Tridecane	μg/L	7.7	8	8.6	9.2	8.5	7.4
_30	Tetradecane	μg/L				OL (0.1)		
31		μg/L				OL (0.1)		
32	Hexadecane	μg/L						
33	Octadecane	μg/L				OL (0.1)		
34	Nonadecane	μg/L				OL (0.1)		
					BDL(C	OL (0.1)		

36	Primary Productivity	mg C/m³ /hr	8.67	8.54	8.32	9.2	8.05	8.91
37	Chlorophyll a	mg/m ³	5.43	6.21	6.46	7.83	6.27	7.43
38	Phaeophytin	mg/m³	0.75	0.73	0.89	0.73	0.63	0.79
39	Oxidisable Paticular	mq/L	5.86	5.38	5.71	5.99	6.42	7.06
	Chidisable Faticalal	PHY	TOPLAN		<u> </u>	0.00	<u> </u>	<u> </u>
40	Bacteriastrum hyalinum	nos/ml	16	12	16	19	16	14
41	Bacteriastrum varians	nos/ml	10	16	14	15	11	16
42	Chaetoceros didymus	nos/ml	8	10	9	16	8	10
43	Chaetoceros decipiens	nos/ml	13	11	13	10	15	12
44	Biddulphia mobiliensis	nos/ml	9	13	10	9	12	17
45	Ditylum brightwellii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
46	Gyrosigma sp	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
47	Cladophyxis sps	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
48	Coscinodiscus centralis	nos/ml	5	9	11	17	10	13
49	Coscinodiscus granii	nos/ml	19	15	17	15	7	9
50	Cylcotella sps	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
51	Hemidiscus	nos/ml	11	8	13	18	14	18
52	Laudaria annulata	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
53	Pyropacus horologicum	nosimi	Nil	Nil	Nil	Nil	Nil	Nil
54	Pleurosigma angulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
55	Leptocylindrus danicus	nos/ml	18	14	12	14	19	21
56	Guinardia flaccida	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
57	Rhizosolenia alata	nos/ml	10	6	8	20	17	23
58	Rhizosolena impricata	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
59	Rhizosolena semispina	nos/ml	19	23	21	12	9	19
60	Thalassionema	nos/ml	17	16	18	21	24	20
61	Triceratium reticulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
62	Ceratium trichoceros	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
63	Ceratium furca	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
64	Ceratium macroceros	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
65	Ceracium longipes	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
		ZOC	PLANKT	ONS				
66	Acrocalanus gracilis	nos/ml	15	13	16	11	17	14
67	Acrocalanus sp	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
68	Paracalanus parvus	nos/ml	18	19	21	16	10	16
69	Eutintinus sps	nos/ml	14	11	13	17	14	21
70		nos/ml	11	15	12	14	8	13
71	Corycaeus dana	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
72		nos/ml	22	18	15	18	11	18
73	<u> </u>	nos/ml	10	12	17	10	13	10
74		nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
75		nos/ml	9	17	20	15	18	12
76	<u> </u>	nosimi	Nil	Nil	Nil	Nil	Nil	Nil
77	Bivalve veliger	nosimi	6	8	10	13	7	17
78	Gastropod veliger	nos/ml	19	23	26	21	19	22 .

	Location			Berth - 3	Bottom V	Vater		
	Month & Year	Unit	Oat-20	Nev-20	Dac-20	Jan-21	Fob-21	Mar-21
S.No.	Paramotors							
1	pH @ 25°C		7.39	8.02	8.12	7.84	8.34	8.45
_2	Temperature	°C	29	29	29	29	29	29
3	Total Suspended Solids	mg/L	18	13	15	27	21	17
4	BOD at 27 °C for 3 days	mg/L	13	15	14	16	4.6	ភ
5	Dissolved oxygen	mg/L	3.8	3.7	3.8	3.5	3.8	3
6	Salinity at 25 °C	ppt	34.5	32.9	33.9	39.1	32.7	33.1
7	Oil & Grease	mq/L			BDL(C	DL 1.0)		
8	Nitrate as Nos	mg/L	5.98	5.15	5.82	8.43	6.84	5.14
9	Nitrite as Nog	mg/L	2.46	2.78	2.09	5.99	3.22	2.05
10	Ammonical Nitrogen as N	mg/L			BDL(C	DL 1.0)		
11	Ammonia as NH3	mg/L			BDL(D	L 0.01)		
	Kjeldahl Nitrogen as N	mg/L				DL 1.0)		
13	Total phosphates as PO4	mg/L	4.76	5.31	5.45	4.05	5.86	6.48
	Total Nitrogen	mg/L	7.10	0.01		0L 1.0)	0.00	0.40
	Total Dissolved Solids	mg/L	37892	32985	34903	42157	36810	38127
	COD		174	161	149	128	160	140
	Total bacterial count	mg/L cfu/ml	116	107	122	102	95	74
	Coliforms		110	IU r	Abse		33	14
18	Escherichia coli	Par 100 ml						
		Per 100 ml			Abse			
	Salmonella	Per 100 ml			Abse			
	Shigella	Per 100 ml			Abse			
22	Vibrio cholerae	Per 100 ml			Abse			
23	Vibrio parahaemolyticus	Per 100 ml			Abse			
24	Enterococci	Per 100 ml			Abse			
25	Colour	Hazan	15	25	15	25	20	15
26	Odour	-				tionable		
	Taste	-			Disagre	eeable		
28	Turbidity	NTU	14	10.3	9.7	18.3	14	10
29	Calcium as Ca	mg/L	462	695	756	501	400	415
30	Chloride as Cl	mg/L	19079	18211	18765	21646	18101	18322
31	Cyanide as CN	mg/L			BDL(D	L 0.01)		
32	Fluoride as F	mg/L	0.7	0.86	0.94	0.66	0.79	0.84
33	Magnesium as Mg	mg/L	1398	1580	1916	1510	1408	1451
34	Total Iron as Fe	mg/L	1.55	1.74	1.88	0.52	0.56	0.59
	Residual Free Chlorine	mg/L	-			DL 0.1)	-	
	Phenolic Compounds as C6H5OH	mg/L			<u>-</u>	DL 1.0)		
	Total Hardness as CaCO3	mg/L	0070	0004	· ·		enez l	7000
37		-	6978	8321	9873	7544	6867	7083
38	Total Alkalinity as CaCO3	mg/L	127	102	125	290	105	117
39	Sulphide as H2S	mg/L				DL 0.5)		
40	Sulphate as 804	mg/L	2410	1699	1848	2147	2038	2209
41	Anionic surfactants as MBAS	mg/L				DL 1.0)		
42	Monocrotophos	μg/L			= =====================================	L 0.01)		
43	Atrazine	μg/L			•	L 0.01)		
44	Ethion	μg/L			•	L 0.01)		
45	Chiorpyrifos	μg/L			-	L 0.01)		
46	Phorate	μg/L			= =====================================	L 0.01)		
47	Mehyle parathion	μg/L			-	L 0.01)		
	W W 1 - 12	μg/L			BDL(C	L 0.01)		
48	Malathion				-			
48 49	DDT,DDE and DDD	μg/L			-	L 0.01)		

49	DDT,DDE and DDD	μg/L	BUL(UL U.U1)							
50	Gamma HCH (Lindane)	μg/L			BDL(C)L 0.01)				
51	Alppha HCH	μg/L			BDL(C)L 0.01)				
52	Beta HCH	μg/L			BDL(C)L 0.01)				
53	Delta HCH	μg/L			BDL(C)L 0.01)				
54	sulphate)	μg/L			BDL(C)L 0.01)				
55	Butachlor	μg/L			BDL(C	DL 0.01)				
56	Alachlor	μg/L			BDL(C	DL 0.01)				
57	Aldrin/Dieldrin	μg/L	BDL(DL 0.01)							
58	Isoproturon	μg/L	BDL(DL 0.01)							
59	2,4-D	μg/L	BDL(DL 0.01)							
60	Polychlorinated Biphenyls (PCB)	μg/L			BDL(C	DL 0.01)				
61	hydrocarbons (PAH)	μg/L			BDL(C)L 0.01)				
62	Arsenic as As	mg/L			BDL(C)L 0.01)				
63	Mercury as Hq	mg/L			BDL(D	L 0.001)				
64	Cadmium as Cd	mg/L			BDL(DI	_ 0.003)				
65	Total Chromium as Cr	mg/L			BDL(C	L 0.05)				
66	Copper as Cu	mg/L			BDL(C	L 0.05)				
67	Lead as Pb	mg/L			BDL(C)L 0.01)				
68	Manganese as Mn	mg/L			BDL(C	L 0.05)				
69	Nickel as Ni	mg/L			BDL(C	L 0.05)				
70	Selenium as Se	mg/L			BDL(C	DL 0.01)				
71	Barium as Ba	mg/L			BDL(I	DL 0.1)				
72	Silver as Ag	mg/L			BDL(C	DL 0.01)				
73	Molybdenum as Mo	mg/L			BDL(C	DL 0.01)				
74	Octane	μg/L	163	174	162	175	1 51	164		
75	Nonane	μg/L			BDL(I	DL 0.1)				
76	Decane	μg/L			BDL(I	DL 0.1)				
77	Undecane	μg/L	8.2	8.7	7.6	7.9	7.0	8.2		
78	Tridecane	μg/L			_	DL 0.1)				
79	Tetradecane	μg/L			BDL(I	DL 0.1)				
80	Pentadecane	μg/L			BDL(I	DL 0.1)				
81	Hevadecane	μq/L				DL 0.1)				
82	Heptadecane	μg/L				DL 0.1)				
83	Octadecane	μg/L	BDL(DL 0.1)							
84	Nonadecane	μg/L	BDL(DL 0.1)							
85	Elcosane	μg/L	BDL(DL 0.1)							
86	Primary Productivity	mg C/m³ /hr	9.49	9.37	9.48	10.23	9.48	10.08		
87	Chlorophyll a	mg /m³	6.12	7.9	7.79	8.46	8.01	8.26		
88	Phaeophytin	mg /m³	0.84	0.86	0.78	0.81	0.69	0.73		
89	Oxidisable Paticular Organic	mg /L	6.37 5.88 5.39 6.57 7.36 8.05							

		PH	YTOPLANK	TON				
90	Bacteriastrum hyalinum	nos/ml	18	15	12	15	18	16
91	Bacteriastrum varians	nos/ml	15	17	20	17	13	10
92	Chaetoceros didymus	nos/ml	10	13	15	14	11	14
93	Chaetoceros decipiens	nos/ml	16	14	11	13	19	17
94	Biddulphia mobiliensis	nos/ml	12	10	16	14	16	21
95	Ditylum brightwellii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
96	Gyrosigma sp	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
97	Cladophyxis sps	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
98	Coscinodiscus centralis	nos/ml	7	8	7	12	8	15
99	Coscinodiscus granii	nos/ml	23	22	23	20	12	18
100	Cylcotella sps	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
101	Hemidiscus hardmanianus	nos/ml	14	11	10	16	10	13
102	Laudaria annulata	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
103	Pyropacus horologicum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
104	Pleurosigma angulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
105	Leptocylindrus danicus	nos/ml	22	23	29	25	21	24
106	Guinardia flaccida	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
107	Rhizosolenia alata	nos/ml	13	12	14	22	20	25
108	Rhizosolena impricata	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
109	Rhizosolena semispina	nos/ml	21	19	21	10	7	16
110	Thalassionema nitaschioides	nos/ml	20	24	27	21	25	22
111	Triceratium reticulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
112	Ceratium trichoceros	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
113	Ceratium furca	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
114	Ceratium macroceros	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
115	Ceracium longipes	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
		20	OOPLANKTO					
116	Acrocalanus gracilis	nos/ml	11	9	8	14	20	17
117	Acrocalanus sp	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
118	Paracalanus parvus	nos/ml	13	14	12	19	13	15
119	Eutintinus sps	nos/ml	17	13	18	21	16	19
120	Centropages furcatus	nos/ml	8	10	9	12	19	10
121	Corycaeus dana	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
	Oithona brevicornis	nos/ml	25	22	23	20	15	21
123	Euterpina acutifrons	nos/ml	14	15	14	8	17	13
124	Metacalanus aurivilli	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
125	Copipod nauplii	nos/ml	12	20	22	19	22	16
	Cirripede nauplii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
		nos/ml	5	7	11	16	11	23
	Gastropod veliger	nos/ml	16	19	25	23	14	20

ANNEXURE - 9 RESULTS OF MARINE SEDIMENT QUALITY DATA

	Location			<u>CB-1</u> 9	ea Sedin	nent					B-2Se	a Sedimei	nt	
	Month & Year	Unit	0at-20	Nav-20	Doc-20	Jan-21	Fob-21	Mar-21	Oct-20	Nev-20	Dec-20	Jan-21	Fob-21	Mar-21
S.No.	Paramotors													
1	Total organic matter	ž.	0.55	0.58	0.51	0.5	0.62	0.64	0.51	0.56	0.57	0.61	0.57	0.6
2	% Sand	*	20	23	21	25	27	29	18	25	23	28	25	28
3	Xsilt	ž.	27	33	34	20	22	25	29	35	36	22	23	27
4	%Clay	*	53	44	45	55	51	46	53	40	41	50	52	45
5	Iron (as Fe)	mg/kg	29.3	27.1	29.2	14.2	16.7	18.1	25.6	28.7	26.9	19	11.4	14.9
6	Aluminium (as Al)	mg/kg	11012	9886	9948	10917	10126	9983	11196	10071	10102	12080	11086	1004
7	Chromium (as cr)	mg/kg	59	52	58	44	39	32	64	57	51	69	55	40
8	Copper (as cu)	mg/kg	88	75	81	60	65	78	74	70	77	62	84	73
9	Manganese (as Mn)	mg/kg	242	220	214	306	286	215	235	217	225	314	317	266
10	Nickel (as Ni)	mg/kg	15.4	16.1	17.5	15.7	12.8	10.3	14.7	14	16.2	13.6	16.2	13.4
11	Lead (as Pb)	mg/kg	37	34	32	28	29	24	35	38	42	58	40	35
12	Zinc (as Zn)	mg/kg	268	240	256	245	291	317	270	253	264	261	259	288
13	Mercury(as Hg)	mg/kg	0.41	0.46	0.41	0.38	0.32	0.3	0.43	0.45	0.47	0.6	0.41	0.37
14	Total phosphorus as P	mg/kg	139	155	139	121	117	123	141	149	141	159	138	131
15	Octane	mg/kg				DL 0.1)						DL 0.1)		
16	Nonane	mg/kg				DL 0.1)						DL 0.1)		
17	Decane	mg/kg			BDL(I	OL 0.1)						DL 0.1)		
18	Undecane	mg/kg	0.84	0.77	0.7	0.63	0.52	0.59	0.79	0.72	0.78	0.71	0.57	0.5
19	Dodecane	mg/kg				DL (0.1)						DL 0.1)		
20	Tridecane	mg/kg				DL 0.1)						DL 0.1)		
21	Tetradecane	mg/kg			BDL(I	DL 0.1)						DL 0.1)		
22	Phntadecane	mg/kg				OL 0.1)						DL 0.1)		
23	Hexadecane	mg/kg				DL 0.1)						DL 0.1)		
24	Heptadecane	mg/kg				OL 0.1)						DL 0.1)		
25	Octadecane	mg/kg				DL 0.1)						DL 0.1)		
26	Nonadecane	mg/kg				DL 0.1)						DL 0.1)		
27	Elcosane	mg/kg			BDL(I	DL 0.1)					BDL(I	DL 0.1)		
I. Ner	matoda													
28	Oncholaimussp	nos/m²	14	11	13	15	13	15	10	12	15	19	15	11
	Tricomasp	nos/m²	12	16	17	20	17	19	17	15	12	15	18	15
	raminifera													
30	Ammoniabeccarii	nos/m²	17	14	11	18	14	11	13	17	19	13	12	16
31	Quingulinasp	nos/m²	10	9	8	11	19	14	15	10	13	17	16	18
32	Discorbinellasp	nos/m²	11	12	14	17	15	17	18	19	21	14	11	14
33	Bolivinaspathulata	nos/m²	18	17	20	12	18	13	7	11	17	16	19	10
34	Elphidiumsp	nos/m²	22	21	23	16	12	16	24	20	24	18	14	17
35	Noniondepressula	nos/m²	26	20	19	13	16	20	20	24	21	25	23	21
III. N	/lolluses-Bivalvia													
	Meretrixveliaers	nos/m²	13	15	16	9	17	18	18	13	15	18	19	22
37	Anadoraveligers	nosim²	21		27			10	26	21	23	20	13	25
	Total No. of individuals	nos/m²	164	24 165	27 168	19 150	15 156	10 153	168	162	180	175	160	169
	Shanon Weaver Diversity		2.26	2.27	2.25	2.27	2.29	2.28	2.24	2.26	2.28	2.29	2.28	2.2

	Location			Berth - 3	Sea Sec	liment		
	Month & Year	Unit	Oct-20	Nav-20	Dec-20	Jan-21	Fob-21	Mar-2
S.No.	Paramotors							
1	Total organic matter	*	0.59	0.54	0.59	0.54	0.58	0.54
2	% Sand	*	22	24	25	35	29	28
3	Zsilt	2	31	37	35	23	21	24
4	*Clay	ž.	47	39	40	42	50	48
5	Iron (as Fe)	mg/kg	27.5	25.9	27.2	18.7	153	17.5
6	Aluminium (as Al)	mg/kg	10893	9156	9417	11946	10084	896
7	Chromium (as cr)	mg/kg	70	49	45	67	52	35
8	Copper (as cu)	mg/kg	79	68	74	71	77	81
9	Manganese (as Mn)	mg/kg	251	236	230	303	273	301
10	Nickel (as Ni)	mg/kg	14.3	15.7	16.8	12.9	13.6	11.8
11	Lead (as Pb)	mg/kg	42	40	44	50	43	47
12	Zinc (as Zn)	mg/kg	255	221	239	285	242	296
13	Mercury(as Hg)	mg/kg	0.47	0.42	0.45	0.64	0.58	0.44
14	Total phosphorus as P	mg/kg	156	151	158	147	120	137
15	Octane	mg/kg				DL 0.1)		
16	Nonane	mg/kg	BDL(DL 0.1)					
17	Decane	mg/kg				DL 0.1)		
18	Undecane	mg/kg	0.88	0.8	0.83	0.78	0.63	0.66
19	Dodecane	mg/kg	BDL(DL 0.1)					
20	Tridecane	mg/kg	BDL(DL 0.1)					
21	Tetradecane	mg/kg				DL 0.1)		
22	Phntadecane	mg/kg				DL 0.1)		
23	Hexadecane	mg/kg				DL 0.1)		
24	Heptadecane	mg/kg				DL 0.1)		
25	Octadecane	mg/kg				DL 0.1)		
26	Nonadecane	mg/kg				DL 0.1)		
27	Elcosane	mg/kg	<u> </u>		BDL(I	DL 0.1)	· -	
II. Fo	oraminifera	•	•					
30	Ammoniabeccarii	nos/m²	10	16	13	16	18	20
31	Quinqulinasp	nos/m²	14	12	17	13	15	17
32	Discorbinellasp.,	nos/m²	16	18	15	11	14	11
33	Bolivinaspathulata	nos/m²	11	14	19	12	16	19
34	Elphidiumsp	nos/m²	21	23	20	24	13	<u>;ŏ</u>
35	Noniondepressula	nos/m²	24	19	16	19	22	15
	Molluses-Bivalvia	1 1021111		10				100
36	Meretrixyeligers	nos/m²	17	21	24	17	20	23
37	Anadoraveligers	nosim ²	25	27	22	25	21	26
	Total No. of individuals	nosim²	165	176	178	179	168	180
	Shanon Weaver Diversity Index	11001111	2.26	2.27	2.29	2.27	2.28	2.27
			L. 20	L. L I	L. £. U	L. £ 1	L.EU	

Marine Infrastructure Developer Pvt Ltd

From: October 2020 To: March 2021

Compliance to Tamil Nadu Coastal Zone Management Authority (TNCZMA) Conditions vide letter no. 6064/EC.3/2014-1 dated 26.06.2014

Annexure - 4

SI. No	Conditions	Compliance
i	The unit shall compliance with all the conditions stipulated in Environment Clearance issued in No. 10-130/2007-IA-III, Ministry of Environment & Forest, Government of India, dated 3rd July 2009	Being complied
ii	The proposed activities should not cause coastal erosion and alter the beach configuration. The shoreline changes shall be monitored continuously	Being Complied. In past, LTSB has been continuously monitoring shoreline studies through Institute of Ocean Management, Anna University, Chennai. Further, MIDPL also engaged Institute of Ocean Management, Anna University, Chennai. for shoreline studies of the concerned area. Shoreline Change Monitoring Report is submitted along with the Half Yearly Compliance Report for the period
		Oct'19-Mar'20 vide our Letter No. MIDPL/EC- HYC/2020/11 dated 31.05.2020.
iii	Chemical waste generated and the sewage generated, if any should not be discharged into the sea and shall be properly handled	Complied No chemical waste is generated. Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is regularly analysed by NABL accredited laboratory. The monitoring results for the period Oct-2020 to Mar-2021 is enclosed as Annexure - III.
iv	The wastewater generated shall be collected, treated and reused properly	Complied. Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is regularly analysed by NABL accredited laboratory. The monitoring results for the period Oct-2020 to Mar-2021 is enclosed as Annexure - III.
V	The proponent shall implement oil spill mitigation measures without fail	Complied.
Vİ	Disaster management plan shall be implemented, and mock drills shall be carried out properly and periodically.	Complied MIDPL has already formulated detailed Disaster Preparedness & Management Plan to handle any Natural and industrial hazards at site. Regular Mock Drills are conducted as per the Crisis Management Plan. The details of drills conducted for the period Oct-2020 to Mar-2021 is enclosed as Annexure- 5.

Annexure - V

MOCK DRILL DETAILS

	Mock Drills - Oct-2020 to Mar-2021							
S. No.	Date	Time	Scenario	Participants				
1	30.10.2020	14:50 hrs	A Minor fire broke out the backside of the CFS warehouse	8				
2	28.12.2020	15:15hrs	Rescue of personnel who got stuck inside the Tank-2	36				

EMP COMPLIANCE STATUS

	EMP (OPERATIONAL PHASE) - COMPLIANCE STATUS							
S.No.	Activity	Relevant Environmental components likely to be impacted	Proposed Mitigation Measures	Compliance Status				
1.	Cargo handling and Inland Cargo movemen t and storage areas	Air Quality	 Use of dust suppression system etc., Use of low Sulphur diesel fuel is proposed Dust suppression measures at loading/unloading points, storage area and at internal roads Regularization of truck movement Periodic cleaning of cargo spills, Speed regulations for vehicles engaged in transportation Greenbelt Development 	 Complied. The Major air pollution generated by port activities include vehicle movements, dry cargos operations and other port activities. The following is practiced controlling of air pollutions at port premises: Water sprinkling on truck path Mobile Hopper during cargo handling Road cleaning with sweeping machines Installed Vehicle Pollution Under Control (PUC) checking facility at Port. Tarpaulin cover over the dry cargo materials at open yard Using the closed warehouse for fine dry cargos materials. Trucks covered with Tarpaulin for dry cargo vehicle movements Using low Sulphur diesel fuel for DG sets. Greenbelt of adequate size has been developed along the periphery of the project area and alongside the road and are being maintained by MIDPL. Till date, 25,374 Nos. of trees has been planted and around 19,324 Nos of trees planted during the compliance period. 				

Noise	 Personal Protecting Equipment (PPE) Greenbelt Development Counselling and traffic regulation 	Complied. Traffic and noise level control measures is monitored regularly for all vehicle movements like containers, trucks movements and dumpers & other road equipment operating for import /export of cargos at various locations of port premises. Following control measures are implemented at Kattupalli Port for Noise Control. • Adequate Greenbelt development with avenue plantation • DG sets are having acoustic enclosures as per the standard practice. • Musical Horns are completely banned inside the port premises • Vehicle speed are restricted to 20 Km/ Hr. • Adopting latest technology operation to control the vehicular movements inside terminal

		Traffic Addition	The existing Kattupalli Port site is well connected by existing road and rail. In addition port approach road is developed as a part of initial development. All the roads are in good condition to accommodate traffic.	Complied. Kattupalli Port is having a dedicated road connectivity connecting State Highways and National Highways. NH-5 (Chennai – Kolkata) is about 30 km from Port. The cargo handled are directly goes to the roads mentioned above which are outside the City Limits of Chennai. Handling of cargo in Kattupalli Port does not affect the regular traffic.
				The Outer Ring Road from NH-45 connecting NH 4 – NH 205 – NH 5 is getting take-off from Minjur. Further, the Outer ring road is proposed to be connected to Section I (NPAR Project) of Chennai Peripheral Ring Road on an extent of 134 km starting from Kattupalli to Mahabalipuram. The project is getting commenced shortly, which will further enhance the cargo carrying capacity of Kattupalli Port. Kattupalli Port is located Close proximity to majority of CFSs serving immediate hinterland and enabling
				faster evacuation of cargo.
2	Aqueous discharge s in harbour basin	Marine water quality and ecology	 Ships are prohibited from discharging wastewater, bilge, oil wastes, etc. into the near-shore as well as harbour waters. Ships would also comply with the MARPOL convention. As a part of mitigation measure for accidental spillage of Oil, Construction Contractor/ Kattupalli Port n Oil spill contingency plan is prepared and in place. Provision of waste reception facility Ballast Water Management Guideline as issued by Ministry of Shipping – India Shall be adhered. 	 Complied. Ships/vessels calling at port are not permitted to dump any wastes/bilge water/ballast water during the berthing period. The waste reception facilities developed at Kattupalli Port as per the Guidelines issued by Government of India (GoI) and MARPOL regulation is strictly implemented. Hazardous wastes are handled as per Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016 (as amended). Hazardous wastes are disposed through approved TNPCB /CPCB vendor. Oil Spill contingency Plan is in place and MIDPL is maintaining oil spill equipments as per Coast Guard guidelines and conducting oil spill mock drills at regular intervals.

				Management Guideline as issued by Ministry of Shipping – India are being adhered to.
3	Cargo and Oil spills	Marine water quality and ecology	 In case of any cargo spillage during transfer from/to ships, it will be attempted to recover the spills. Oil spill control equipment such as booms / barriers will be provided for containment and skimmers will be provided for recovery. Response time for shutting down the fuelling, containment and recovery will be quicker. 	Oil Spill contingency Plan is in place and MIDPL is maintaining oil spill equipments as per Coast Guard guidelines and conducting oil spill mock drills at regular intervals.

4	Maintena nce dredging	Maintenance dredging Marine Ecology	 Maintenance dredging material is being disposed of at identified disposal location at sea. It will be ensured that dumping of the excess/unusable dredge material would be uniform. Additional Environmental Monitoring Program comprising of monitoring of marine water quality, marine sediment quality and marine ecology will be initiated one week prior to commencement of dredging and will be carried out during the dredging period. 	 Complied. There was no maintenance dredging activity during the compliance period. However Marine Water, sediment & ecology is being monitored on regular basis and reports of the same are being submitted to all the concerned authorities. Monitoring Reports for the period Oct-2020 to Mar-2021 are enclosed as Annexure –III.
5	Water Supply	Water resources	The water requirement proposed activities shall be met by existing water supply as it was considered during initial development	Complied. The main source of raw water is from existing Chennai Metropolitan Water Supply and Sewage Board (CMWSSB), Desalination plant, Kattupalli, which is located adjacent to Kattupalli Port.
6	Wastewat er Discharge	Water Quality	 Collection of runoff from stock piles and directing into settling tanks Available Sewage treatment plant within port area will be utilized. Treated wastewater from STP will be used for irrigating the greenbelt 	Complied. Domestic wastewater generated are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance. Inlet & outlet characteristic of Sewage water is regularly analysed by NABL accredited laboratory. The monitoring

				results for the period Oct-2020 to Mar-2021 is enclosed as Annexure - III.
7	Solid Waste Managem ent	Groundwater and Soil quality	 Composted biodegradable waste will be used as manure in greenbelt. Other recyclable wastes will be sold. 	Complied. 100% utilization of STP sludge for greenbelt maintenance as manure. All the non-hazardous wastes like paper, wood, metal scraps generated from the terminal are also collected, stored in the Integrated Waste Management Shed (IWMS) and are handled as per 5R principle. The recyclable and the bio-degradable waste are recycled by the composting method. The compost is used in the nursery and for the gardening purposes Kitchen waste is being disposed to the biogas facility (6 m3/Day) available on site. Gas output will be 3 Kg/Day. Following wastes are handled (inline to 5R principle) during the Compliance Period. Metal Scraps – 84.55 MT Wood Wastes - 32.775 MT Used Tyres – 27.66 MT Food Wastes – 1.398 MT

				STEEL SCRAPS/ STORY BUSTON
8	Handling of hazardous wastes	Fire accidents due to products handling	 No Hazardous cargo Handling /storage is envisaged Hazardous wastes (used oil & used battery if any) will be sent to TSDF located at Gummidipoondi, along with other shipyard wastes. The consent for the same was already obtained and the same can be extended. Medical facilities including first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. 	 Complied. No Hazardous cargo is handled. Hazardous wastes are handled as per Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016 (as amended). Hazardous wastes are disposed through approved TNPCB /CPCB vendor. MIDPL has obtained Hazardous Waste Authorization from TNPCB for handling and disposal of the wastes. Details of the same are submitted to TNPCB as a part of Hazardous waste annual return (Form 4) on regular basis. Annual Hazardous Waste Return for FY 2019-20 is attached as Annexure - II.

			 Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 Occupational Health Centre is available at Kattupalli Port on 24 X 7 basis. Emergency alarms, fire hydrant system and Fire station equipped with Fire Tender and Fire crew are available at Kattupalli Port. Disaster Management Plan (DMP) is in place which covers both onsite and offsite emergency plans. MIDPL is equipped with adequate facility for recovery of spills.
9	Fishing activity	Fishermen livelihood	 The cargo handling activities involved in operation phase are confined to the project area and hence no hindrance to fishing is anticipated Continuing to Educate the fishermen about Port activities Regular Interactions will be carried out with the fishing community Conflicts if any with fishing community will be amicably resolved in all cases 	Complied. Our activities are confined to approved Port Limits and there is no hindrance to fishing activity.
10	Operation of port – Handling of Proposed Traffic	Socio-economic conditions of the region	The present employment potential of Port is around 250 Nos. and Total Shipyard cum Port is around 2000 nos. The employment potential will increase about 20 nos as direct employment due to proposed activity and will also enhance indirect employment potential in the region. Together with this employment potential, project will help to enhance the socio economic conditions of	Being Complied. Major CSR activities carried out during the compliance period are as follows; 1. Education: 300 nos of Bicycle distribution to Govt. School (Kattuapalli, Koraikuppam, Pulicat, Kattur & Thiruvellavoyal) Conducted Fun class w.r.t Science, mathematics, GK, sports & others - 10 sessions at 10 villages

the area with better schooling	2 Community Health
the area with better schooling, communication and transport facilities that will be developed/ triggered as a part of overall economic development of the region.	 table mask & sanitizer Water filter distribution to 110 families (Sengazhaneermedu colony) Distribution of Tarpaulin to 500 families for 4 panchayats (Kattur, Vayalor, Vellore & Thangal Perumpulam) Distribution of Sweater for 500 members at 2 villages (Kattur & Thangal Perunpulam) Conducted Health awareness session for 150 members at Vayalor, Thiruvellaivoyal & Kattur)
	 Sustainable Livelihood Development Workshop renovation and distribution of workshop accessories to differently abled person, Kottai kuppam. Provided organic training session for 150 farmers (Neithavayal, Vayalor & Thiruvellaivoyal & Kattur) Provided training on palm leaf products for SHG women- 35 at Zamilapath village, Kottai Kuppam. Distribution of ice box to 240 families (Thangal Perumpulam & kattupalli) Conducted veterinary camp 500 (Vellore, Thiruvellaivoyal, Neiyathaval & Vayalor) 4. Community Infrastructure Development Provided streetlight and High mast for 5 villages (Sengazhaneermedu, Kattur, Neiyathavoyal, Thiruvellavoyal and sathan kuppam)

Natural Hazards	The existing Disaster Management Plan (DMP) will be implemented at the time of disaster; COO will act as the overall incharge of the control of educative, protective and rehabilitation activities to ensure least damage to life and property.	Noted for Compliance. Disaster Management Plan (DMP) is in place which covers both onsite and offsite emergency plans. Regular Mock Drills are conducted as per the Disaster Management Plan. The details of drills conducted for the period Oct-2020 to Mar-2021 is enclosed as Annexure- 5.
Induced Development	Offers an efficient and cost-effective supply chain/value proposition to the local importers and exporters in states of Tamil Nadu, Andhra Pradesh, Kerala and Karnataka.	Being Complied. Kattupalli Port is having a dedicated road connectivity connecting State Highways and National Highways, which offers an efficient and cost-effective supply chain/value proposition to the local importers and exporters in the states of Tamil Nadu, Andhra Pradesh, Kerala and Karnataka. We are presently moving Inland Container Depot (ICD) rail bound Containers ex Kattupalli through Concor's ICD at Tondiarpet to ICD Bangalore. The containers are road bridged by Concor to/from Kattupalli Port to Tondiarpet and vice versa. This service the customers and facilitate the EXIM trade.

KATTUPALLI PORT CHENNAI'S NEW GATEWAY

Date: 21/09/2020

Annexure - VII

MIDPL/TNPCB/2020-21/32

To,
The Member Secretary,
Tamil Nadu Pollution Control Board,
76, Mount Salai,
Guindy,
Chennai – 600 032

Dear Sir,

ET214080/41 N 1VR:6904214
SP MINUR SU (601203)
Counter No:1,22/07/2020,10:44
To:TN POLLUTION ,75 MOUNT SALAL
PIN:600032, Guindy industrial Estate 5-0
From:SAIHISH KUMAN, AWAMI MOUSE
Wt:60gms
Amt:41.30(Cash)Tax:6.30
(Track un www.indiapost.gov.in)
(Dial 1900266680) (Wear Masks, Stay Safe)

Sub: Submission of Environmental Statement (Form V) for the financial year ending 31st March, 2020 of Marine Infrastructure Developer Private Limited, Kattupalli Port, Chennai

Ref: 1. Consent Order No. 1907125448424 under Water Act dated 05.07.2019

2. Consent Order No. 1907225448424 under Air Act dated 05.07.2019

With reference to the captioned subject and cited references above, we submit herewith the Environmental Statement of **M/s Marine Infrastructure Developer Private Limited,** in Form-V prescribed under Rule 14 of the Environment (Protection) Rules 1986 for the financial year ending 31st March 2020.

Submitted for your kind information and records.

Thanking you,

For, M/s. Marine Infrastructure Developer Private Limited

cture De

Jai Khurana
Director

Enclosures: As above

Сору То:

ST214080724IN IVR:698421400 SP MINJUR SD (601203) Counter No:1,72/07/2020,10:44 India Post To:THE JOINT CHI, ANIMBAKKAM PIN:600106, Arumbakkam S.D From:CATHISH KUMAR, ADANI HOUSE WE:600ms Ant:41.30 (Cash/Tax:6.30 Cirack on waw.indiapost.gov.im) CD:11 10002666068 (Wear Masks, Stay Safe)

- 1) The Joint Chief Environmental Engineer, Tamilnadu Pollution Control Board, First Floor, 950/1, Poonamallee High Road, Arumbakkam, Chennai-600 106
- 2) The District Environmental Engineer, Tamil Nadu Pollution Control Board, Gummidipoondi 601201.

Marine Infrastructure Developer Pvt Ltd (Kattupalli Port) Kattupalli Village, Ponneri Taluk, Tirivalluvar District 600 120, Tamil Nadu, India

Tel +91 44 2824 3062

CIN: U74999TN2016PTC103769

Form-V (See rule 14 of Environment (Protection) Rules, 1986)

Environmental Statement for the financial year ending 31st March 2020

Part-A

i)	Name and Address of the	:	: Mr. Jai Khurana		
	owner/occupier of the		Director		
	industry operation or process		Marine Infrastructure Developer Private Limited Kattupalli Port,		
	F				
	¥		Kattupalli Village, Ponneri Taluk,		
			Thiruvallur District – 600 120		
	,		Tamil Nadu, India		
ii)	Industry Category	:	Primary : Red		
			Secondary: 1065- Ports & Harbour, Jetties and Dredging		
			Operations.		
iii)	Production Capacity	••	 Cargo Handling Capacity: 24.65 MMTPA Containers - 21.60 MTPA Ro-Ro (automobiles) - 0.22 MTPA Project cargo - 0.44 MTPA Breakbulk / General Cargo (Barytes/ Gypsum/ Limestone/ Granite/ Steel Cargo) - 1.82 MTPA Edible oil, CBFS, Base Oil, Lube Oil and Non-Hazardous Liquid Cargo - 0.57 MMTPA. 		
iv)	Year of establishment	••	2009 with the issue of Environmental Clearance to L&T Ship Building. Bifurcation of Environmental Clearance of L&T Ship Building to Marine Infrastructure Developer Private Limited on 09 th February 2018.		
v)	Date of the last	10	Vide our Letter No. MIDPL/TNPCB/2019-20/09 dated		
	environmental statement		20.09.2019.		
	submitted				

Part -B

WATER AND RAW MATERIAL CONSUMPTION

(i) Water Consumption

S. No	Water Consumption (m³/ Day)	During the previous financial year (2018-2019)	During the Current financial year (2019-2020)
1.	Process	NIL	NIL
2.	Cooling	NIL	NIL
3.	Domestic	134.85	138.25

(ii) Raw Material Consumption

S. No	Name of the Raw Material	Name of the Product	Consumption during the financial year 2018 – 19.	Consumption during the financial year 2019 - 20.
1	Not Applicable	Not Applicable	NIL	NIL

The unit does not undergo any manufacturing process. The water consumed is mainly for Firefighting, dust suppression on roads, Green belt development and maintenance, etc.

Part-C

POLLUTION DISCHARGE TO ENVIRONEMENT/ UNIT OF OUTPUT (Parameters as specified in the consent issued)

Pollutants	Quality of Pollutants	Concentration of Pollutants discharges			Percentage of variation	
	Discharged (Mass/day)		s discharge /volume)		from prescribed standards with reasons	
				Stallt	Jai us With reasons	
a) Water	STP Treated Water Char	acteristics	:-			
	Parameter	Consent	Act	ual	% Variation with	
		Limit	30 KLD	5 KLD	prescribed standard	
	рН	5.5-9	7.41	7.58	-Nil-	
,	Total Suspended Solids (mg/l)	30	17.08	17.75	-Nil-	
	BOD (3 days at 27°C) (mg/l)	20	12.42	14.42	-NiI-	

b) Air	DG sets are provided as standby power source and were used during power
	failure. The Height of DG stacks as per CPCB/TNPCB Standards. All the
	monitored parameters are within prescribed standards.
Particulate	
Matter	
(mg/Nm3)	
Sulphur	DG stack emission report is enclosed as Annexure 1 .
Dioxide (ppm)	
Nitrogen Oxide	
(ppm)	

Part-D HAZARDOUS WASTES (As specified under Hazardous Waste Management and Handling Rules 1989)

	Total Quan	tity (Kg)
Hazardous Wastes	During the previous financial Year (2018-19)	During the current financial Year (2019-20)
(a) From Process	 Used oil (5.1) - 19,600 Liters Sludge and filters contaminated with oil (3.3) - 2.23 MT 	Cargo residue, washing water and sludge containing oil (3.1) - 50.310 T
(b) From Pollution control facilities	NA	NA

Part-E SOLID WASTES

		Total Quantity Generated	
	Solid Waste	During the previous financial Year (2018-19)	During the current financial Year (2019-20)
a)	From process	NIL	NIL
b)	From pollution control facilities- STP	180 kgs	192 kgs
c)	Quantity recycled or reutilized within the Unit	180 kgs	192 kgs
	2. Sold	NIL	NIL
	3. Disposed	NIL	NIL

Part-F

Please specify the characterization (in terms of composition and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

- Hazardous waste includes Cargo residue, washing water and sludge containing oil. All
 the hazardous wastes are collected and stored properly in Integrated Waste
 Management Shed & are being disposed to TNPCB authorized /registered recyclers in
 line to Hazardous and Other Waste (Management & Transboundary Movement) Rules,
 2016 (As amended).
- The used batteries and E-waste are stored in Integrated Waste Management Shed and disposed through TNPCB approved vendor.
- Hazardous waste Annual returns in Form 4 was submitted in line with the Hazardous and Other Wastes (Management & Transboundary Movement) Rules, 2016.
- E-waste returns in Form 3 was submitted in line with the E-waste Management Rules, 2016.
- 100% utilization of STP sludge for greenbelt maintenance as manure.
- All the non-hazardous wastes like paper, wood, metal scraps generated from the port are also collected, stored in the Integrated Waste Management Shed and are handled as per 5R principle.

Part-G

Impact on pollution control measures on conservation of natural resources and consequently on the cost of production

- Solar panels of 450 kW were installed at MIDPL and the power generated from solar panel ranges between 55,000-65,000 units per months. MIDPL has invested nearly Rs.2 Crs. for developing this solar plant there by achieved reduction of conventional energy and contributed for resource conservation.
- 15RTGs retrofitted into Electrical power driven system at the project cost of Rs.44 Crs.
 Key Cost benefits includes reduction in diesel consumption and emission level.
- Sewage Treatment Plants (30 KLD and 5 KLD STPs) are in continuous operation and the treated effluent water quality is meeting the TNPCB norms. STP treated water is

di

- used for Gardening purpose, thereby reducing freshwater consumption. The total cost spent on STP operation and maintenance during the year 2019-20 is Rs. 14.49 Lakhs.
- Biogas facility was setup at MIDPL to convert the kitchen waste to useful heat energy.
 The biogas unit generates output of 3kg / day. The plant capacity is 6 cubic meter / day.
- Unit is undertaking Regular Environmental Monitoring in port through NABL accredited laboratory. We have also installed and operating Continuous Ambient Air Quality Monitoring Station (SO2, NOx, CO, PM10&2.5, BTX analyser to monitor VOC) and meteorological station (Wind Speed, Wind Direction, Ambient Temperature, Atmospheric Pressure, Relative Humidity, Rainfall and Solar Radiation). Real time data of CAAQMS is connected to TNPCB server. All the monitored environmental parameters are well within the prescribed standards and the details of monitored data is regularly submitting to TNPCB, CPCB, MoEF&CC and other concerned authorities.
- All the domestic effluent generated at port is treated at existing sewage treatment plants (30 KLD and 5 KLD) and the entire treated sewage water is being reused within port premises for gardening.
- Unit is continuously developing and maintaining green belt within port premises.
- Motion sensor and timers installed at buildings to reduce energy consumption.
- Installation of water saver (water tap filter nozzles) in all wash basin taps achieved around 4% reduction in water consumption.
- Integrated Waste Management Shed (IWMS) constructed to handle wastes as per 5R principle.
- Installed and operating Vehicle Pollution Under Control (PUC) checking facility to control vehicular emission in port premises.
- RTG Stack monitoring system implemented and achieved energy saving up to 18000 Units per year amounting to Rs. 1.35 L /Year.
- Air conditioners fitted with energy saving device.
- Street light and High mast lighting controlled by light intensity sensor.
- Carried out mass Tree Plantation of 1000 saplings through "Woodlot Planting Technique".

0.8%.

Part-H Additional investment proposal for environment protection including abatement of pollution, prevention of pollution

	Regular Expenditure (cost in INR lakhs/ye	ear)
S. No	Description	Cost
1	Environmental monitoring of MOEF recognized third party	9.0
2	Green belt & Horticulture development	29.85
3	Annual maintenance contractor of STP operation	14.50
4	Operation & Maintenance of Integrated Waste Management System	2.40

Part-I

ANY OTHER PARTICULARS IN RESPECT TO ENVIRONMENT

- Working towards achieving "Zero Waste Inventory" as per our Group Environment Policy and all wastes are being handled in line with 5R Principle.
- Energy Conservation Committee to measure the amount of energy consumed and to actions to reduce the energy consumed through port operations
- Carried out mass Tree Plantation of 1000 saplings through "Woodlot Planting Technique".
- Water Warriors committee to identify and reduce the water consumption. The committee would propose innovative water solutions
- Integrated Management System (ISO 9001:2015, 14001:2015 and 45001:2018)
 certified Port
- Single use and throwaway plastics completely banned inside the port premises.

Date: 21.09.2020

(Signature of a person earrying out an

industry operation or process)

Name

: Jai Khurana

Designation: Director

Address

: Marine Infrastructure Developer

Private Limited (MIDPL)

Kattupalli Village, Ponneri Taluk, Thiruvallur District – 600 120

Tamil Nadu, India.

Chennai 600 120

		2	AIDPL- STA	ACK MONIT	TORING (MIDPL- STACK MONITORING (April'2019 to March'2020)	to March	2020)					
	Location					٥	DG 2000KVA - 1	VA - 1					
7	Month & Year	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19	0ct-	Nov- 19	Dec-19	Jan- 20	Feb- 20	Mar- 20
S.No.	Parameters												385
-	Stack Temperature, °C	241	247	238	245	253	259	267	253	262	269	280	269
7	Flue Gas Velocity, m/s	21.98	19.95	21.63	22.18	22.81	23.57	21.98	23.05	23.68	24.12	25.14	26.35
М	Sulphur Dioxide, mg/Nm3	7.5	9.8	9.1	8.7	9.4	8.8	5.5	6'2	8.5	9.3	8.3	6.9
4	NOX (as NO2) in ppmv	180	188	175	186	195	210	226	220	231	236	248	233
S	Particular matter, mg/Nm3	34.4	31.5	34.1	35.8	32.7	34	32.9	34.3	31	34.2	36.7	34
9	Carbon Monoxide, mg/Nm3	92	81	87	92	98	92	28	80	87	91	86	93
7	Gas Discharge, Nm3/hr	5728	5139	2670	5736	5809	5935	5455	5871	5929	5961	0609	6512
		<	AIDPL- STA	ACK MONI	TORING (MIDPL- STACK MONITORING (April'2019 to March'2020)	to March	2020)					
	Location					٥	DG 2000KVA - 2	VA - 2					
	Month & Year	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19	Oct- 19	Nov- 19	Dec-19	Jan- 20	Feb- 20	Mar- 20
S.No.	Parameters												
-	Stack Temperature, °C	238	243	231	240	247	252	259	250	257	261	273	260
7	Flue Gas Velocity, m/s	20.87	20.21	20,98	21.73	22.36	22.9	22.16	22.87	23.19	23.75	24.86	25.98
2	Sulphur Dioxide, mg/Nm3	2	6.7	8.4	7.9	8.6	ω	8.6	7.4	8	8.8	ω	7.2
4	NOX (as NO2) in ppmv	175	182	170	182	191	203	214	218	225	230	242	228
Ŋ	Particular matter, mg/Nm3	32.8	33.6	32.3	34	36.2	33.2	31.5	35.7	33.4	31.6	34.3	32.7
9	Carbon Monoxide, mg/Nm3	79	85	89	95	90	96	91	84	89	93	96	06
7	Gas Discharge, Nm3/hr	5471	5246	5576	5674	2760	5843	5580	5858	5861	5957	6609	6259

