Subramanian A

From:	Subramanian A
Sent:	Wednesday, May 31, 2023 11:27 PM
То:	eccompliance-tn@gov.in
Cc:	monitoring-ec@nic.in; ssuresh.cpcb@nic.in; memsec@tnpcb.gov.in; DEE
	Gummidipoondi; Subramanian A
Subject:	MIDPL - Kattupalli Port, Chennai - Bifurcation of EC&CRZ Clearance vide F. No
	10-130/2007 – IA.III - Half Yearly Compliance Report for the period of October 2022 to
	March 2023 – Reg.
Attachments:	MIDPL HYC (Oct'22 to Mar'23).pdf

MIDPL/ENV/MoEF/EC-HYC/2023/16 31.05.2023

Date:

Additional Principal Chief Conservator of Forests (C), Ministry of Environment, Forest and Climate Change, Integrated Regional Office Ist and IInd Floor, Handloom Export Promotion Council, 34, Cathedral Garden Road, Nungambakkam, Chennai - 600 034. Email : <u>eccompliance-tn@gov.in</u>

Dear Madam / Sir,

- Sub: CRZ and Environmental Clearance for the development of proposed Shipyard-cum- Minor Port Complex at Kattupalli, Ponneri Taluka, Tiruvallur District. Tamil Nadu by M/s Marine Infrastructure Developer Private Limited (MIDPL) - bifurcation of Environmental and CRZ Clearance - Half yearly Compliance report for the period of October 2022 to March 2023 – Reg.
- **Ref**: CRZ & Environmental Clearance for the development of proposed Port at Kattupalli, Tiruvallur District of Tamil Nadu by M/s Marine Infrastructure Developer Pvt. Limited – bifurcation of EC&CRZ Clearance vide F. No 10-130/2007 – IA.III dtd. 9th February 2018

With reference to the captioned subject and cited reference above; we herewith submitting the Half yearly compliance report for the compliance period **October 2022 to March 2023** to the conditions stipulated in the cited reference for your kind information and records.

Thanking you,

for M/s. Marine Infrastructure Developer Private Ltd

Subramanian A Assistant Manager- Environment

Marine Infrastructure Developer Private Limited | Adani Ennore Container Terminal Pvt Ltd.

(M) +91 91509 44421 | (O) 69018 | <u>subramanian.A@adani.com | www.adani.com</u>

Our Values: Courage | Trust | Commitment

MIDPL/ENV/MoEF/EC-HYC/2023/16

Date: 31/05/2023

То

Additional Principal Chief Conservator of Forests (C), Ministry of Environment, Forest & Climate Change, Regional Office (South Eastern Zone), Ist and IInd Floor, Handloom Export Promotion Council, 34, Cathedral Garden Road, Nungambakkam, Chennai – 600 034. Email : <u>eccompliance-tn@gov.in</u>

Dear Sir,

- Sub: Half yearly Compliance report of Environment and CRZ Clearance for the development of proposed Port at Kattupalli, Tiruvallur District of Tamil Nadu by M/s Marine Infrastructure-Developer Pvt. Limited for the period of October 2022-to March 2023 Reg.
- **Ref**: CRZ & <u>Environmental</u> Clearance for the development <u>of proposed</u> Port at Kattupalli, Tiruvallur District of Tamil Nadu by M/s Marine Infrastructure Developer Pvt. Limited – bifurcation of EC&CRZ Clearance vide F. No 10-130/2007 – IA.III dtd. 9th February 2018.

With reference to the captioned subject and cited reference above; we herewith submitting the **Half yearly compliance report** for the compliance period **October 2022 to March 2023** to the conditions stipulated in the cited reference for your kind information.

Submitted for your kind information and records.

Thank you,

for, M/s. Marine Infrastructure Developer Pvt Ltd

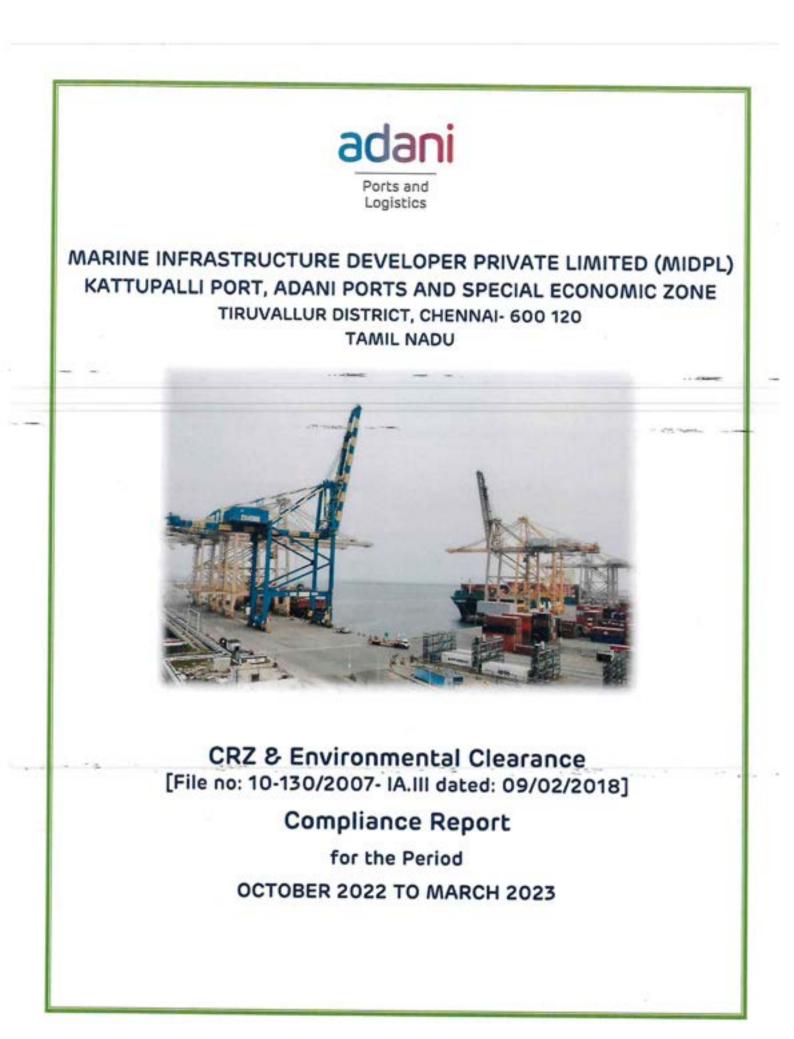
Chennal 600 120

*

. . . .

Encl: As above

Copy to:


- The Director (Monitoring –IA-III Division), Ministry of Environment, Forest & Climate Change, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi – 110003 (Email : <u>monitoring-ec@nic.in</u>)
- Zonal Office, Central Pollution Control Board, A-Block, Nisarga Bhavan, 1st and 2nd Floors, 7th D Cross, Thimmaiah Road, Shivanagar, Bengaluru, Karnataka 5600879 (Email: <u>ssuresh.cpcb@nic.in</u>)
- The Member Secretary, Tamil Nadu Pollution Control Board, 76, Mount Salai, Guindy, Chennai 600 032 (Email : <u>tnpcbmembersecretary@gmail.com</u>)
- 4. The District Environmental Engineer, Tamil Nadu Pollution Control Board, No.88 A, SIPCOT Industrial Complex, Gummidipoondi, Tiruvallur District -601 201. (Email : <u>deegummidipoondi@gmail.com</u>)
- Member Secretary TNCZMA & Director Dept of Environment, No.1, Jeenis Road, Panagal Building, Ground Floor, Saidapet, Chennai -600 015. (Email : <u>tndoe@nic.in</u>)

Marine Infrastructure Developer Pvt Ltd (Kattupalli Port) Kattupalli Village, Ponneri Taluk, Tirivalluvar District 600 120, Tamil Nadu, India

Tel +91 44 2824 3062

CIN: U74999TN2016PTC103769

Registered Office: Ramcon Fortuna Towers, 4th floor No 1/2, Kodambakkam High Road, Nungambakkam, Chennai 600034

adar	ni
Ports and Logistics	

From: October 2022 To : March 2023

Name of the Project: CRZ and Environmental Clearance for the development of proposed Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluka, Tiruvallur District, Tamil Nadu by M/s. Marine Infrastructure Developer Private Limited (MIDPL) – bifurcation of Environmental and CRZ Clearance.

Index

Sr.No.		Details of Annexure
1.	CRZ & Environn	nental Clearance Compliance Report
2.	Annexures	
	Annexure I	Compliance to RC No. P1/2004/2008, dated 21.10.2008 of Department of Environment, Chennai
	Annexure II	Annual Hazardous Waste Returns – Form IV FY 2021-22
	Annexure III	Environmental Monitoring reports for the period October 2022 to March 2023
	Annexure IV	Compliance to TNSCZMA conditions during period October 2022 to March 2023
	Annexure V	Mock Drills carried out during period October 2022 to March 2023
	Annexure VI	EMP Compliance Status
	Annexure VII	Environment Statement (Form V) FY 2021-22
	Annexure VIII	Consent Orders under Air & Water Acts

Adar Ports and Logistics	-			loper Pvt Ltd	TO . Marc	h 2023
Name of th	Tiru Priv	yard-cum-Mir vallur District	nor Port (, Tamil Nad	arance for the Complex at Ka u by M/s. Marin bifurcation of	attupalli, Ponr e Infrastructur	e Developer
				•		
		- c= 3#0-	10,000			5 65 700 00 (m .
- 14 - 1				~ e		

CRZ & ENVIRONMENTAL CLEARANCE COMPLIANCE REPORT (October 2022 to March 2023)

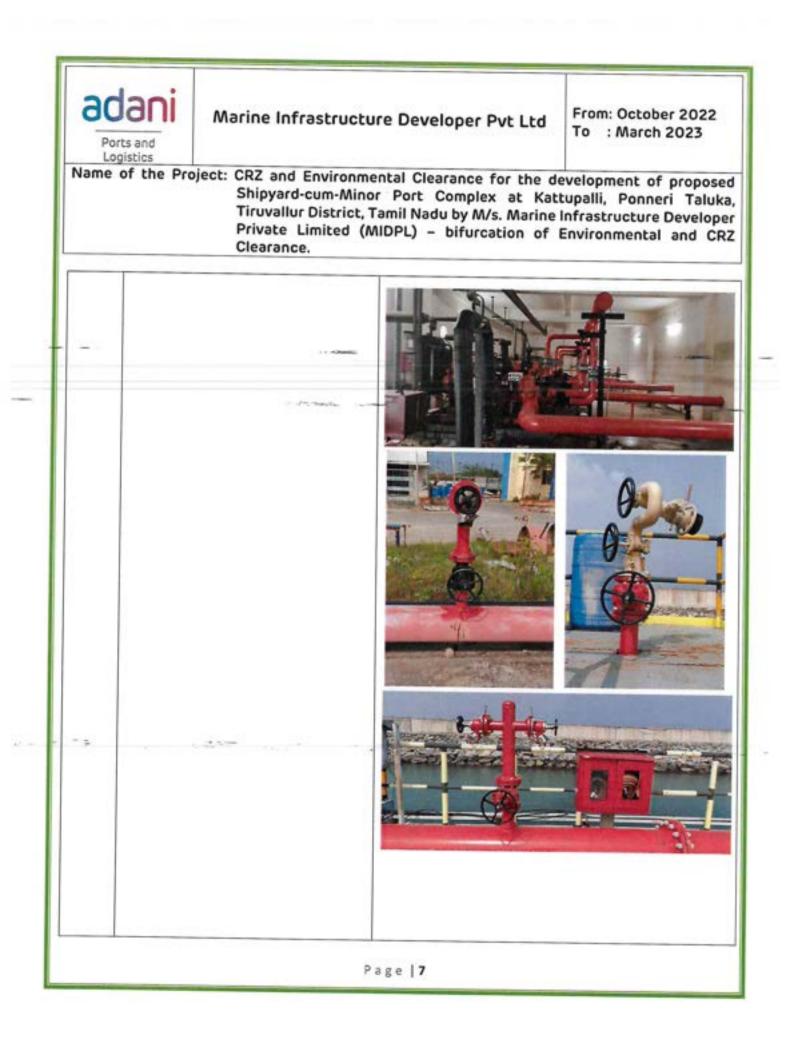
Por		Aarine Infrastructu	re Developer Pvt Ltd	From: October 2022 To : March 2023
Name	of the Projec	Shipyard-cum-Minor Tiruvallur District, T	ntal Clearance for the de r Port Complex at Kate amil Nadu by M/s. Marine IIDPL) – bifurcation of I	tupalli, Ponneri Taluka Infrastructure Developer
Half	yearly Complia	File no: 10-130/200	ons stipulated in CRZ & Er 07- IA.III dated: 09/02/201	vironmental Clearance 8]
S. No.		Conditions	Complian	ce Status
Specifi	c Conditions		1	
(i)	Conditions st R.C.No. P1	nt shall comply all the ipulated in the letter /2004/2008, dated of the Department of Chennai,	Compliance to letter R.C. 21.10.2008, is enclosed as	
(11)	commitment r D/Shipyard/00	it shall comply all the nade vide his letter No.)/07 dated 20.03.2009.	Complied This EC is just a bifurcation name of MIDPL & LTSB. All applicable commitm D/Shipyard/00/07 dated 20 fire station, independent reclamation on areas outs Butyl Tin [TBT] and treatm and recycling, disposal authorised recyclers are be	ents, w.r.t letter No 0.03.2009 like provision of port connectivity, and no ide port, non-usage of Tr tent of wastewater in STP of hazardous waste to
(iii)	housing of Con the site infrastructure fuel or cooking STP, safe dr health care, co may be in th	Il be made for the instruction labour within with all necessary and facilities such as g, mobile toilets, mobile inking water, medical reche etc. The housing he form of temporary be removed after the the project.	Complied. All the construction works a is in operation phase.	are completed, and the port
(iv)	There shall I groundwater Zone area, for any ground w withdrawn from	be no withdrawal of in Coastal Regulation this project. In any case ater is proposed to be moutside the CRZ area, permission from the State /Central	M/s. Chennai Metropolit	g Desalinated water from an Water Supply and), Chennai. In case of any

Name of the Project: CRZ and Environmental Clearance for the development of proposed Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluka, Tiruvallur District, Tamil Nadu by M/s. Marine Infrastructure Developer Private Limited (MIDPL) – bifurcation of Environmental and CRZ Clearance.

Half yearly Compliance report on conditions stipulated in CRZ & Environmental Clearance [File no: 10-130/2007- IA.III dated: 09/02/2018]

S. No.	Conditions	Compliance Status
	Groundwater board shall be obtained in this regard.	CRZ Area, prior permission will be obtained from State/Central Groundwater Board.
(v)	No dumping of dredging materials in the sea shall be undertaken. In case of sea dumping required, an integrated Modelling study to be carried out to locate the dump site so that it does not cause any problem to Ennore port.	Complied. No maintenance dredging activity carried out during the compliance period October 2022 to March 2023.
(vi)	Shoreline changes due the project shall be monitored continuously nourishment of northern shoreline shall be carried out using the sediments from beach acceleration on the southern shoreline.	Complied. MIDPL has engaged Institute of Ocean Management Anna University, Chennai for shoreline Change stud and the report is under preparation for the year 2022. However, Report for the year 2020 i submitted along with Half Yearly Compliance Report for the period Oct'19-Mar'20 vide our Letter No. MIDP / EC – HYC / 2020 / 11 dated 31.05.2020.
(vii)	Suitable Screens shall be installed between the construction area and the intakes so that operations of the intakes are not affected by the construction activity.	Complied. Works are completed, and the port is in operation phase. No impact envisaged.
(viii)	At least a distance of 100 meters shall be provided between intake of Chennai Water Desalination Ltd. (CWDL) and north edge of the northern breakwater as agreed in the meeting between the proponent and CWDL	Complied. Distance maintained as agreed.

Page | 2


Por	Marine Infrastructu	ire Developer Pvt Ltd	From: October 2022 To : March 2023
Name (Tiruvallur District,	ental Clearance for the de or Port Complex at Kati Tamil Nadu by M/s. Marine AIDPL) – bifurcation of I	tupalli, Ponneri Talul Infrastructure Develop
Half	yearly Compliance report on condit [File no: 10-130/20	ions stipulated in CRZ & Er 07- IA.III dated: 09/02/201	
S. No.	Conditions	Complian	ce Status
(ix)	Independent port connectivity shall		iniaka Inia
(ix)	Independent port connectivity shall be developed.	Complied. An independent port connecting Port is having a disconnecting State Highways NH-5 (Chennai – Kolkata) The cargo handled are dimensioned above which are Chennai. Handling of cargo affect the regular traffic.	edicated road connective s and National Highway is about 30 km from Po irectly goes to the roa e outside the City Limits
*	• •	The Outer Ring Road from NH 205 – NH 5 is getting ta the Outer ring road is pro Section I (NPAR Project) of Road on an extent of 134 I to Mahabalipuram. The pro shortly, which will further of capacity of Kattupalli Port.	ke-off from Minjur. Furth posed to be connected of Chennai Peripheral Ri km starting from Kattup ject is getting commence enhance the cargo carryi
10		Kattupalli Port is located Cl CFSs serving immediate hin evacuation of cargo.	
(x)	Rehabilitation if any shall be carried	Complied.	

ada Ports an Logistic	d s	ructure Developer Pvt Ltd	From: October 2022 To : March 2023
Name of t	Shipyard-cum Tiruvallur Dis	ronmental Clearance for the de -Minor Port Complex at Kat trict, Tamil Nadu by M/s. Marine ed (MIDPL) – bifurcation of	tupalli, Ponneri Taluka, Infrastructure Developer
Half year		onditions stipulated in CRZ & Er 0/2007- IA.III dated: 09/02/201	
S. No.	Conditions	Compliar	nce Status
	497a-	Rehabilitation was carried State Government at implementation by M/s. LT	

Page |4

Por		Marine Infrastructu	re Developer Pvt Ltd	From: October 2022 To : March 2023
Name	of the Pro	Shipyard-cum-Mino Tiruvallur District, 1	ental Clearance for the de or Port Complex at Kate Tamil Nadu by M/s. Marine AIDPL) – bifurcation of I	tupalli, Ponneri Taluk Infrastructure Developi
(xi) -	Fire static the projec	on shall be located within ct area	Complied. MIDPL is having dedicated premises with fire tender crew_(DCPO – 3 Nos, Firem – 1 No).	(1 No) and 15-member fi
			 fixed in various loca additional stock) and Fire water pumpho storage tank of 12 la pumps (2 Electrica Pump). Sea water pump ho pumps, 2 Nos of Jo Foam Pumps (1 Election) fire hydrant points (1 26 Double Hydrant P Water monitors and 	the firefighting system nguishers (ABC, Foam, CO tions in the port (with 10 d 33 Sand Buckets. use with an undergroun akhs Liters capacity with I, 2 Diesel and 1 Jocket use with 3 Nos of vertice ockey pump and 2 Nos of trical and 1 DG pump) 76 Single Hydrant Points Points), 4 Tower Monitors, nd 20 water cum foar ed at various strategit a Fire Tender with th 00 Its 0 Its - 2nos rg - 4nos

Adani Ports and Logistics		ucture Developer Pvt Ltd	From: October 2022 To : March 2023
Name of the Proj	Shipyard-cum- Tiruvallur Distr	onmental Clearance for the d Minor Port Complex at Kat ict, Tamil Nadu by M/s. Marine d (MIDPL) – bifurcation of	tupalli, Ponneri Taluk Infrastructure Develope
··· database			

From: October 2022 To : March 2023

Name of the Project: CRZ and Environmental Clearance for the development of proposed Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluka, Tiruvallur District, Tamil Nadu by M/s. Marine Infrastructure Developer Private Limited (MIDPL) – bifurcation of Environmental and CRZ Clearance.

S. No.	Conditions		Compliance St	tatus
(xii)	The Hazardous waste generated shall	Complied.	- dynami	
	be properly collected and handled as per the provisions of Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016.	and handled inline (Management and 2016 as amended.	e to Hazardo Transbound Details of th t of Hazardou	are properly collect us and Other Wast ary Movement) Rule e same are submitt is waste annual retu
		Annual Hazardous attached as Annex		irn for FY 2021-22
(xiii)	xiii) The wastewater generated from the activity shall be collected, treated and reused properly.	Complied.		
		MIDPL is operating ETP of 50 KLD capacity to treat the effluent generated from Liquid Tank Washings and STPs of capacity 30KLD, 10KLD & 5KLD at variou locations inside the port premises to treat the maximum wastewater flow of 45KLD.		
		such as washing flushing water f collected, treated sewage water is r within the port pro- limit. Inlet & outle regularly monitore laboratory. Average quantity	water from from office in STP's an reused for gro emises after of t characterist d and analyse of Sewage v	d from various source canteen and toi buildings are bei ad the entire treat een belt maintenan confirming permissit ic of Sewage water d by NABL accredit vater treated in ST as furnished below.
		Location	STP/ETP Capacity	Avg. Quantity of Sewag Water Treated (Oct'22 to Mar'23)
		Near IWMS	STP 30 KLD	14.1 KLD
		Near CFS	STP 5 KLD	0.9 KLD
		Near Liquid Terminal	STP 10 KLD	2.2 KLD
		Near Liquid Terminal	ETP 50 KLD	0.2 KLD

Adan Ports and Logistics		Ucture Developer Pvt Ltd From: October 2022 To : March 2023				
Name of the	l iruvallur Disti	onmental Clearance Minor Port Comple rict, Tamil Nadu by M ed (MIDPL) – bifurc	x at Ka /s. Marine	ttupalli Infras	i, Poni tructur	neri Talu e Develo
Half yearly	Compliance report on co [File no: 10-130	onditions stipulated i 0/2007- IA.III dated:	n CRZ & E 09/02/20	nviron 18]	mental	Clearanc
S. No.	Conditions		Complia	nce Sta	tus	
		The monitoring March'23 is end	results fo	or the p	eriod C	ctober'22
	11 - 274 Marchine	Summary of ST during complian	P & ETP tr	eated w as meni	vater an tioned t	pelow.
		Parameter	Unit	Min	Max	TNPCB
		pH		6.45	8.02	Limit 6.5 to 9
		TSS	mg/l	6	21	30
		BOD	mg/l	3.4	16	20
		COD Faecal Coliform	mg/l MPN/100ml	16	68	100
			TED WATER A			
		Parameter	Unit	R0-1	RO-2	TNPCB
		pH		8.61	8.58	6.5 to 9
		TSS	mg/l	20	6.4	200
		800	mg/l mg/l	1500	606 3.3	2100
		Oil & Grease	mg/l	BOL	BDL	100
•		All the parame norms.				S KLD STP

Port	ani ts and istics	Marine Infrastructure Developer Pvt Ltd				: Octot March	
		oject: CRZ and Environme Shipyard-cum-Minor Tiruvallur District, T Private Limited (M Clearance.	Port Comple amil Nadu by M	x at Katt /s. Marine	upalli, Infrast	Ponn	eri Ta e Devel
Half	yearly Cor	mpliance report on conditio [File no: 10-130/200				nental	Cleara
S. No.		Conditions		Complian	ce Stat	us	
(xiv)	Sewage T	reatment Facility should be	Complied.			-	
-		in accordance with the CRZ	Sewage Treatm of 45 KLD are notification.				
			such as washing water flushing water from collected, treated in S sewage water is reused inside the port premises limit. Inlet & outlet char regularly monitored and laboratory.		office buildings are to IP's and the entire tre for green belt mainten after confirming permis acteristic of Sewage wal		
					b		
			30 KLD 517		10 KLD 5	STP .	5 KLD
			Summary of ST compliance per				
			Parameter	Unit	Min	Max	TNPC
			pH		6.45	8.02	6.5 to
			TSS BOD	mg/l mg/l	6 3.4	21	30
			COD	mg/l	16	68	100
			Faecal Coliform	MPN/100ml	110	260	<1000
			The monitoring March'23 is end All the param norms.	closed as Ar	nexure	- III,	

2	dar	ni
	Ports and Logistics	

From: October 2022 To : March 2023

Name of the Project: CRZ and Environmental Clearance for the development of proposed Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluka, Tiruvallur District, Tamil Nadu by M/s. Marine Infrastructure Developer Private Limited (MIDPL) – bifurcation of Environmental and CRZ Clearance.

	S. No.	Conditions	Compliance Status
1	(xv)	No Solid Waste will be disposed of in the Coastal Regulatory Zone area. The	Complied.
		Solid Waste shall be properly collected segregated and disposed as per the provision of Solid Waste Management Rules, 2016.	No solid waste is being disposed of in the CRZ area. All the solid waste generated is properly collected, source segregation of all types of Solid Waste is practised and are disposed as per the provision of Solid Waste Management Rules 2016, as amended.
		-	Solid Waste Management:
			MIDPL Kattupalli Port certified as "Zero Waste to Landfill" Port from CII. To achieve this milestone, various sources of waste and their sustainable waste management techniques were identified. Having understood the entire concept of "Zero Waste to Landfill", a firm commitment was given by the top management to implement the sustainable waste management techniques.
			A well-established Integrated waste Management system is in place and all wastes are being handled inline to 5R principle (Reduce, Reuse, Reprocess, Recycle & Recover).
	**		And
			All the wastes (non-hazardous and hazardous) generated from the port activities are collected, segregated and stored in the designated compartments in Integrated Waste Management Shed (IWMS).
		P	age 11

8	dar	ni
	Ports and Logistics	

From: October 2022 To : March 2023

Name of the Project: CRZ and Environmental Clearance for the development of proposed Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluka, Tiruvallur District, Tamil Nadu by M/s. Marine Infrastructure Developer Private Limited (MIDPL) – bifurcation of Environmental and CRZ Clearance.

S. No.	Conditions		C	ompliance s	Status
		Non-H	azardous Wa	ste Manage	ement:
- 275ard		metal handle with 5	scraps, etc., g d, stored, and	enerated f disposed t he method o	astes like paper, wo rom port area are be horough vendors in of non-hazardous wa
		S.No.	Type of waste	Storage Location within port	Method of disposal
		1.	Dry Waste (Paper, Plastic, Metal waste, etc.)	IWMS	Material recovery Sent for Recycling
		2.	(Food Waste)	Biogas Unit	Reprocess
		3.	Solid waste Dry and Wet port	Daily Disposal	Dry and Wet Wast separately for materia recovery and compostin respectively.
		4.	Sludges	STPs	Reprocessed for gardenin manure
		Hazaro contar contar mainto kept ir dispos	minated with minated with enance activity of Integrated N ed through T zardous Was	that incluin oil. Use oil gene ties are co Waste Man 'NPCB auth	agement: de used oil and filt d oil and the filt erated during vari- blected in barrels a agement Shed and porized recyclers in l ement Rules 2016,
		cranes and s proces	and diesel g tored in bar	enerators. rels and a	om Rubber tyred gar Used oils are collec re being mechanic at TNPCB authori
					s used batteries and in Integrated Wa

Ports and Logistics				Vt Ltd	From: Octobe To : March 3	2023
Name of the	Project: CRZ and Environm Shipyard-cum-Min Tiruvallur District, Private Limited (Clearance.	or Po Tamil	rt Complex Nadu by M/s	at Kattu Marine In	palli, Ponner frastructure l	i Taluka Develope
Half yearly	Compliance report on condi [File no: 10-130/20	tions s 007- IA	tipulated in .III dated: O	CRZ & Env 9/02/2018	ironmental Cl]	earance
S. No.			Complianc	e Status		
			hagement Sh dor in line to		posed through	approve
		disp Faci Limi Dist Rule All 1 ope	osed at Com lity namely lited, Madura rict, in line to es 2016. types of haz	nmon Bio N M/s. Tamiin nthagam T o the Bio Me ardous was aintenance a	ted from OHG ledical Waste adu Waste Ma aluk and Kand dical Waste Ma tes generated activity are bein ws:	Treatmen anagemen cheepuran anagemen from po
		S. No	Type of waste	Storage Location within port	Method of disposal	Quantity Disposed
		1.	Oily waste	IWMS	Disposed to authorized recycler	4.74 MT
		2.	Oil Sludge	IWMS	Disposed to authorized Recycler	8.40 MT
		3.	E-Waste	IWMS	Sold to Registered recycler / re- processor	Nil
	(1.2.5. 	4.	Battery Waste	ww.s	Sold to Registered recycler / re- processor	Nil
		5.	Bio Medical Waste	Occupational Health Centre (OHC)	Sent to CBWTF for scientific Disposal.	2.8 Kg

adani	Marine Infrastructure Developer Pvt Ltd	From: October 2022 To : March 2023
Ports and Logistics		10 110000000
Name of the Pro	bject: CRZ and Environmental Clearance for the d Shipyard-cum-Minor Port Complex at Kat Tiruvallur District Tamil Nadu by M/s Marine	tupalli, Ponneri Taluka,

Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluka, Tiruvallur District, Tamil Nadu by M/s. Marine Infrastructure Developer Private Limited (MIDPL) – bifurcation of Environmental and CRZ Clearance.

S. No.	Conditions	Compliance Status
(xvi)	Installation and operation of DG set if any shall comply with the	Complied.
2	guidelines of CPCB.	Tamil Nadu Electricity Board (TNEB) Power supply and inhouse Solar Plant (TMW Capacity) are available for Port Operations. However, DG set of capacities 2000 kVA (2 Nos), 500 KVA (2 Nos) and 125 KVA (1 NO are installed inline to CPCB guidelines as backup Power. Flue gas analysis report of the DG Set stack fo the period October'22 to March'23 is attached as Annexure III.
		All the DG Sets are retrofitted to reduce the Particulate Matter emission level. Efficiency of the retrofitting equipment is observed above 90% agains the TNPCB requirement of >70%.
(xvii)	Air quality including the VOC shall be monitored regularly as per the guidelines of CPCB and reported.	Complied. Ambient Air Quality (twice in a week) including VOC is monitored through NABL accredited laboratory Quality of Ambient Air confirm to the standard lais down by TNPCB / CPCB. Summary of Ambient A Quality Monitored during Oct'22 to Mar'23 is tabulate below.

0	adar	ni	
	Ports and Logistics		

From: October 2022 To : March 2023

Name of the Project: CRZ and Environmental Clearance for the development of proposed Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluka, Tiruvallur District, Tamil Nadu by M/s. Marine Infrastructure Developer Private Limited (MIDPL) – bifurcation of Environmental and CRZ Clearance.

	Conditions		Con	Compliance Status			
		Ambient Air	r Quality M	onitoring L	ocations: 4	4 Nos.	
		Parameter	Unit	Min	Max	NAAQM	
		AAQM				Norms	
	- N.T. There	PM _{to}	hð/w ₃	37	59	100	
		PM _{2.5}	hð/w3	16	29	60	
		SO2	hð/w3	4.3	8.4	80	
		NO ₂	µg/m ³	13.2	19.6	80	
		CO	mg/m ³	<1.0	<1.0	2.0	
		Benzene	µg/m³	<1.0	<1.0	5	
		Benzo(a]Pyrene	ng/m³	<0.1	<0.1	1	
		including E been con					
5		transferred parameters standards.	f on real- s are fou	time basis	s. All the	monito	
5		parameters	f on real- s are fou	time basis	s. All the	monito	

Port	ani ts and listics	Marine Infrastructur	e Developer P		om: October 2022 : March 2023
Name o	of the Pro	Tiruvallur District, Ta	Port Complex amil Nadu by M/s	at Kattupa Marine Infra	opment of proposed olli, Ponneri Taluka, astructure Developer ronmental and CRZ
Half	yearly Cor	npliance report on conditio [File no: 10-130/200			onmental Clearance
S. No.		Conditions		Compliance S	itatus
(xviii)		oject proponent shall	Complied.		
	along the	e green belt development all e periphery of the project also alongside the road.	26.95Ha (which i 11.695Ha inside t trees covering 1 Greenbelt has be the port area and	ncludes 35,12 the Port premis 15.25Ha outsion en developed alongside of 7,107 Nos of tr	Greenbelt covering 4 nos of trees covering ses and around 35,000 de the Port premises). along the periphery of the road and are being rees planted during the
(xix)	concerne	ssary clearances from the d agencies shall be obtained tiating the project.		ances (as a	fter obtaining all the applicable) from the
			Permission	Ref.No.	Date
			Tamil Nadu Maritime Board (TNMB) clearance	575/S1/2008	24.05.2012
			Fire and Rescue License (Renewal)	159/2015	10.06.2015
			PESO Licenses - 15KL - 50KL	P/SC/TN/15/25 (P266086) P/SC/TN/14/62 (P266084)	
(xx)	details o shall be within 3		MIDPL is maint	gency Plan (C aining oil sp uidelines and	SCP) is in place and ill equipment as per conducting oil spill ls.
		P	age 16		

2.0

Ports and Logistics Name of th	ne Project: CRZ and Envir Shipyard-cum Tiruvallur Dist	onmental Clearance for the Minor Port Complex at I rict, Tamil Nadu by M/s. Mari ed (MIDPL) – bifurcation o	To : A developme (attupalli, f ne Infrastru	Ponneri Taluka cture Develope
Half year		onditions stipulated in CRZ 8 0/2007- IA.III dated: 09/02/3		ntal Clearance
S. No.	Conditions	Comp	liance Status	1. C.
		Oil spill contingency pla spill equipment subm MIDPL/TNPCB/GMP/EC Details of Training a during compliance pe	hitted vide -HYC dated 1 and Mock [our Letter No 4.05.2018.
		Activity/ Drill	Number of Persons trained	Total Manhour Trained
		OSPR Drill & Equipment inspection conducted on 07.02.2023.	15	60
		OSPR Drill conducted on 08.02.2023.	28	112
		Total	43	182
•			F	

is and	cture Developer Pvt Ltd From: October 2022 To : March 2023
of the Project: CRZ and Environ Shipyard-cum-N Tiruvallur Distric	nmental Clearance for the development of proposed linor Port Complex at Kattupalli, Ponneri Taluka, ct, Tamil Nadu by M/s. Marine Infrastructure Developer (MIDPL) – bifurcation of Environmental and CRZ
	ditions stipulated in CRZ & Environmental Clearance 2007- IA.III dated: 09/02/2018]
Conditions	Compliance Status
Zone area.	
commissioned till the requi water supply and electricity to	the Requisite permission for Water Supply and Electricity
Specific arrangements for rainwa harvesting shall be made in	ater Complied.
	A stored in the Coastal Regulation Zone area. The project shall not commissioned till the requi water supply and electricity to project are provided by the PM

.

5		From: October 2022 To : March 2023
Shipyard-cum- Tiruvallur Distr	Minor Port Complex at Kat ict, Tamil Nadu by M/s. Marine	tupalli, Ponneri Taluka Infrastructure Develope
y Compliance report on co [File no: 10-130	nditions stipulated in CRZ & En 0/2007- IA.III dated: 09/02/201	nvironmental Clearance 18]
Conditions	Compliar	nce Status
	Water table is observed to Port area. Feasibility of ra explored.	
888- ii		
	e Project: CRZ and Envir Shipyard-cum- Tiruvallur Distr Private Limite Clearance. y Compliance report on co [File no: 10-130	e Project: CRZ and Environmental Clearance for the d Shipyard-cum-Minor Port Complex at Kat Tiruvallur District, Tamil Nadu by M/s. Marine Private Limited (MIDPL) – bifurcation of Clearance. y Compliance report on conditions stipulated in CRZ & En [File no: 10-130/2007- IA.III dated: 09/02/201 Conditions Complian Water table is observed to Port area. Feasibility of ra

Port	ts and listics	Marine Infrastructure D	Δ	From: October 20 To : March 202
Name (of the Projec	t: CRZ and Environmental Shipyard-cum-Minor Pe Tiruvallur District, Tami Private Limited (MIDP Clearance.	ort Complex at Katt Nadu by M/s. Marine	upalli, Ponneri T nfrastructure Deve
Half	yearly Compli	iance report on conditions [File no: 10-130/2007- I		
S. No.		Conditions	Complian	ce Status
11 23				
(xxiv)	the CRZ area shall be strict the provis Notification, amendment. office build buildings w waterfront a shall not be	a as part of this project ctly in conformity with ions of the CRZ No	mplied. construction has been tification, 2011 and CRZ tained.	
Genera	Conditions:	Jacion Zone area.		
(1)	structures meticulously existing Ce regulations	shall be undertaken conforming to the Pro intral/local rules and ha including Coastal rul	mplied. oject is in operation phas s been done in line to les including CRZ Noti vironmental Clearance o	the existing Centra fication, 2011 and

Por	ts and listics	icture Developer Pvt Ltd	To : March 2023
lame (Tiruvallur Distri	Anmental Clearance for the d Ainor Port Complex at Kat ict, Tamil Nadu by M/s. Marine d (MIDPL) – bifurcation of	tupalli, Ponneri Taluka Infrastructure Develope
Half	yearly Compliance report on con [File no: 10-130	nditions stipulated in CRZ & E /2007- IA.III dated: 09/02/20	nvironmental Clearance 18]
S. No.	Conditions	Complia	nce Status
	its amendments. All construction designs /draw relating to the propo construction activities must h approvals of the concerned S Government Departme /Agencies.	osed nave tate	
(ii)	Adequate provisions infrastructure facilities such water supply, fuel, sanitation shall be ensured for construct workers during the construct phase of the project so as to a felling of trees/mangroves pollution of water and surroundings.	etc. Project is in Operation Pha tion tion	ise.
2 8			

adar	ni
Ports and Logistics	

From: October 2022 To : March 2023

Name of the Project: CRZ and Environmental Clearance for the development of proposed Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluka, Tiruvallur District, Tamil Nadu by M/s. Marine Infrastructure Developer Private Limited (MIDPL) – bifurcation of Environmental and CRZ Clearance.

S. No.	Conditions	Compliance Status
(iii)	The project authorities shall make necessary arrangements for	Complied.
1810	disposal of solid wastes and for the	No solid waste is being disposed of in the CRZ area.
	treatment of effluents by providing a proper wastewater treatment plant outside the CRZ area. The quality of treated effluents, solid wastes and noise level etc. must	Integrated waste Management system is in place. A the solid waste generated is properly collected, source segregation of all types of Solid Waste is practised and are disposed as per the provision of Solid Waste Management Rules 2016, as amended.
	conform to the standards laid down	Solid Waste Management:
	by the competent authorities including the Central/State Pollution Control Board and the Union Ministry of Environment and Forests under the Environment (Protection) Act, 1986, whichever are more stringent.	MIDPL Kattupalli Port certified as "Zero Waste to Landfill" Port from CII. To achieve this mileston various sources of waste and their sustainable wast management techniques were identified. Havin understood the entire concept of "Zero Waste to Landfill", a firm commitment was given by the to management to implement the sustainable wast management techniques.
		A well-established Integrated waste Managemen system is in place and all wastes are being handle inline to 5R principle (Reduce, Reuse, Reproces Recycle & Recover).
-		AlL the wastes (non-hazardous, and hazardou generated from the port activities are collecte segregated and stored in the designate compartments in Integrated Waste Management She (IWMS).

adan Ports and Logistics		Marine Infrastructure Developer Pvt Ltd oject: CRZ and Environmental Clearance for the de			From: October To : March 2	023
Name of the	Shipyard-cun Tiruvallur Dis	n-Minor Por strict, Tamil N	t Complex Nadu by M/s.	at Kattu Marine Ir	velopment of p upalli, Ponneri nfrastructure D nvironmental :	Taluka
	Compliance report on [File no: 10-1]	conditions st 30/2007- IA.	tipulated in III dated: 09	CRZ & Env 0/02/2018	vironmental Cle 3]	arance
S. No.	Conditions			Complianc	e Status	
	E s/R Seet	All t meta hand with	al scraps, etc. iled, stored, a	hazardous , generateo nd dispose The metho	gement: wastes like pap from port-area. d thorough vend d of non-hazardo	are being ors in line
		S.No	Type of waste	Storage Location within port	Method of disposal	Quantity Disposed
		1.	Dry Waste (Paper, Plastic, Metal waste, etc.)	IWMS	Material recovery Sent for Recycling	189.36MT
		2.	Wet Waste (Food Waste)	Daily Disposal	Reprocess	1.07 MT
		3.	Sludges	STPs	Reprocessed for gardening manure	0.12 MT
		4.	Horticulture Waste	Greenbelt Area	Reusing as mulching for gardening	
		Sewa	age & Effluer	t Treatme	nt Facility:	
× -		efflu STPs locat	ent generate of capacity	d from Liq 30KLD, 10 the port	VKLD capacity to uid Tank Washir QKLD & 5KLD a premises to t of 45KLD.	ngs and 3 it various
		such flush colle sewa withi limit. regu	as washing ing water cted, treated oge water is in the port pr Inlet & outle	y water from office of in STP's reused for emises aft et characte	ated from variou rom canteen a ce buildings a and the entire green belt mai er confirming pe ristic of Sewage lysed by NABL a	nd toilet re being treated ntenance rmissible water is

Page | 23

2

Adani Ports and Logistics	Marine Infrastructure Developer Pvt Ltd	From: October 2022 To : March 2023
	oject: CRZ and Environmental Clearance for the d Shipyard-cum-Minor Port Complex at Kat Tiruvallur District, Tamil Nadu by M/s. Marine Private Limited (MIDPL) – bifurcation of	tupalli, Ponneri Taluka, Infrastructure Developer

Clearance.

S. No.		Condition	ns		Complian	ce Stat	us	
				Average quanti during the com				
- 471			Location	STP/ETP Capacity	1 2 2 3	Quantity Water Tr Oct 22 to		
				Near IWMS	STP 30 KL	D	14.1 8	LD
				Near CFS	STP 5 KLD		0.9 K	alo
				Near Liquid Termin	STP 10 KL	D	2.2 1	(LD
				Near Liquid Termin	ETP 50 KL	D	0.21	(LD
				The monitoring March'23 is end Summary of ST during complian STP TREAT	losed as An P & ETP trea	nexure ated was s ment	- III. ater ana ioned b	alysis res elow.
				March'23 is end Summary of ST during complian	losed as An P & ETP trea nce period a	nexure ated was s ment	- III. ater ana ioned b	elysis res elow. (AVG)
				March'23 is end Summary of ST during complian STP TREAT Parameter pH	closed as An P & ETP trea nce period a red water an	nexure ated was s ment NALYSIS	- III. ater ana ioned b REPORTO Max 8.02	alysis res elow. (AVG) TNPCB Limit 6.5 to S
				March'23 is end Summary of ST during complian STP TREAT Parameter pH TSS	Closed as An P & ETP trea nce period a rED WATER AN Unit - mg/l	nexure ated was s ment IALYSIS Min 6.45 6	- III. ater ana ioned b REPORTO Max 8.02 21	Alysis res elow. (AVG) TNPCB Limit 6.5 to 9 30
				March'23 is end Summary of ST during complian STP TREAT Parameter pH TSS BOD	P & ETP trea nce period a rED WATER AN Unit - mg/l mg/l	nexure ated was s ment IALYSIS Min 6.45 6 3.4	- III. ater ana ioned b REPORTI Max 8.02 21 16	Alysis res elow. (AVG) TNPCB Limit 6.5 to S 30 20
				March'23 is end Summary of ST during complian STP TREAT Parameter pH TSS BOD COD	P & ETP trea nce period a rED WATER AN Unit - mg/1 mg/1 mg/1	All States of the second secon	- III. ater ana ioned b REPORTI Max 8.02 21 16 68	Alysis res elow. (AVG) TNPCB Limit 6.5 to 9 30 20 100
				March'23 is end Summary of ST during complian STP TREAT Parameter pH TSS BOD	P & ETP trea nce period a rED WATER AN Unit - mg/l mg/l	nexure ated was s ment IALYSIS Min 6.45 6 3.4	- III. ater ana ioned b REPORTI Max 8.02 21 16	Alysis res elow. (AVG) TNPCB Limit 6.5 to 9 30 20
51				March'23 is end Summary of ST during complian STP TREAT Parameter PH TSS BOD COD Faecal Coliform	P & ETP trea nce period a rED WATER AN Unit - mg/1 mg/1 mg/1	All States of the second secon	- III. ater ana ioned b REPORTI Max 8.02 21 16 68 5260	AVG) TNPC8 Limit 6.5 to 9 30 20 100 <1000 (1000
51				March'23 is end Summary of ST during complian STP TREAT Parameter PH TSS BOD COD Faecal Coliform	P & ETP trea nce period a rED WATER AN Unit mg/l mg/l MPN/100mL	All States of the second secon	- III. ater ana ioned b REPORTI Max 8.02 21 16 68 5260	Alysis res elow. (AVG) TNPCB Limit 6.5 to 9 30 20 100 <1000
5				March'23 is end Summary of ST during complian STP TREAT Parameter PH TSS BOD COD Faecal Coliform	P & ETP trea nce period a rED WATER AN Unit mg/l mg/l MPN/100mL	ALYSIS R ALYSIS R ALYSIS R ALYSIS R ALYSIS R RO-1 8.61	 III. ater analioned b REPORTION Max 8.02 21 16 68 260 EPORT(AV RO-2 8.58 	AVG) TNPC8 Limit 6.5 to 9 30 20 100 <1000 (1000 5.5 to 9
51				March'23 is end Summary of ST during complian STP TREAT Parameter PH TSS BOD COD Faecal Coliform ETP TREA Parameter PH TSS	closed as An P & ETP treat nee period a rED WATER AN Unit mg/l mg/l MPN/100ml MPN/100ml MEN/100ml	ALYSIS R ALYSIS R ALYSIS R ALYSIS R ALYSIS R R0-1 8.61 20	- III. ater ana ioned b REPORTO Max 8.02 21 16 68 260 EPORT(AV RO-2 8.58 6.4	Alysis res elow. (AVG) TNPCB Limit 6.5 to 9 20 100 <1000 <1000 C) TNPCB Limit 6.5 to 9 200
51				March'23 is end Summary of ST during complian STP TREAT Parameter pH TSS BOD COD Faecal Coliform ETP TREAT Parameter pH	Closed as An P & ETP treat nee period a rED WATER AN Unit mg/l mg/l MPN/100mL MPN/100mL	ALYSIS R ALYSIS R ALYSIS R ALYSIS R ALYSIS R RO-1 8.61	 III. ater analioned b REPORTION Max 8.02 21 16 68 260 EPORT(AV RO-2 8.58 	AVG) TNPCB Limit 6.5 to 9 30 20 100 <1000 <1000 TNPCB Limit 6.5 to 9

8	dar	ni
	Ports and Logistics	

From: October 2022 To : March 2023

Name of the Project: CRZ and Environmental Clearance for the development of proposed Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluka, Tiruvallur District, Tamil Nadu by M/s. Marine Infrastructure Developer Private Limited (MIDPL) – bifurcation of Environmental and CRZ Clearance.

Conditions	Compliance Status			tatus	
	All the pa norms	rameters ar	re well v	within the	e prescrib
	30	KD STP	20	RLD STP	S KLD STP
	Ambient Ai	r Quality:			
	in a month	r Quality (tw) Monitoring edited labo	g are bei	ng carried	out throu
	in a month NABL accr and Noise TNPCB / CP Apr'22 to S) Monitoring	g are bei ratory. G n to the ry of the summaris	ng carried Quality of standard I same for d sed below.	out throu Ambient aid down luration fro
	in a month NABL accr and Noise TNPCB / CP Apr'22 to S Total Ambie Parameter) Monitoring edited labo level confirm PCB. Summa ep'22 is as s ent Air & Noi	g are bei ratory. G n to the ry of the summaris ise Samp	ng carried Quality of standard I same for d sed below. Ing Locatio	out throu Ambient laid down luration fro
	in a month NABL accr and Noise TNPCB/CP Apr'22 to S Total Ambie) Monitoring edited labo level confirm PCB. Summa ep'22 is as s ent Air & Noi Unit	g are bei ratory. G n to the ry of the summaris ise Samp	ng carried Quality of standard I same for d sed below. Ing Locatio	out throu Ambient aid down luration fro
	in a month NABL accr and Noise TNPCB / CP Apr'22 to S Total Ambie Parameter AAQM) Monitoring edited labo level confirm PCB. Summa ep'22 is as s ent Air & Noi	g are bei ratory. G m to the ry of the summaris ise Samp Min	ng carried Quality of standard I same for d sed below. Iing Locatio Max	out throu Ambient aid down luration fro ons: 4 Nos NAAQM Norms
	in a month NABL accr and Noise TNPCB / CP Apr'22 to S Total Ambie Parameter AAQM PMiio) Monitoring edited labo level confirm PCB. Summa ep'22 is as s ent Air & Noi Unit unit	g are bei ratory. G m to the ry of the summaris ise Samp Min 37	ng carried Quality of standard I same for d sed below. Ing Locatio Max 59	out throu Ambient aid down luration fro ons: 4 Nos NAAQM Norms
	in a month NABL accr and Noise TNPCB / CP Apr'22 to S Total Ambie Parameter AAQM PM ₂₅) Monitoring edited labo level confirm PCB. Summa ep'22 is as s ent Air & Noi Unit unit	g are bei ratory. G m to the ry of the summaris ise Samp Min 37 16	ng carried Quality of standard I same for d sed below. Ing Locatio Max 59 29	out throu Ambient aid down luration fro ons: 4 Nos Norms 100 60
	in a month NABL accr and Noise TNPCB / CP Apr'22 to S Total Ambie Parameter AAQM_ PMio PMas SO2) Monitoring edited labo level confirm PCB. Summa ep'22 is as s ent Air & Noi Unit Unit upg/m ³ ug/m ³	g are bei ratory. G n to the ry of the summaris ise Samp Min 37 16 4.3	ng carried Quality of standard I same for d sed below. Ing Locatio Max 59 29 8.4	out throu Ambient aid down uration fro ons: 4 Nos Norms 100 60 80 80 2.0
	in a month NABL accr and Noise TNPCB / CP Apr'22 to S Total Ambie Parameter AAQM_ PMas SO2 NO2 CO Benzene) Monitoring edited labo level confirm PCB. Summa ep'22 is as s ent Air & Noi Unit Unit unit up/m ³ ug/m ³ ug/m ³	g are bein ratory. G m to the ry of the summaris ise Samp Min 37 16 4.3 13.2 <1.0 <1.0	ng carried Quality of standard I same for d sed below. Ing Locatio Max 59 29 8.4 19.6 <1.0 <1.0	out throu Ambient aid down uration fro ons: 4 Nos Norms 100 60 80 80 80 2.0 5
	in a month NABL accr and Noise TNPCB / CP Apr'22 to S Total Ambie Parameter AAQM_ PMio PMio PMio SO2 NO2 CO) Monitoring edited labo level confirm PCB. Summa ep'22 is as s ent Air & Noi Unit Unit Unit Unit ug/m ³ ug/m ³ ug/m ³ mg/m ³	g are bein ratory. G m to the ry of the summaris ise Samp Min 37 16 4.3 13.2 <1.0	ng carried Quality of standard I same for d sed below. Ing Locatio Max 59 29 8.4 19.6 <1.0	out throu Ambient Jaid down Juration fro Ons: 4 Nos Norms 100 60 80 80 2.0 5 1
	in a month NABL accr and Noise TNPCB / CP Apr'22 to S Total Ambie Parameter AAQM_ PMio PMas SO2 NO2 CO Benzene Benzo[a]) Monitoring edited labo level confirm PCB. Summa ep'22 is as s ent Air & Noi Unit Unit Unit ug/m ³ ug/m ³ ug/m ³ ug/m ³ ug/m ³	g are bein ratory. G m to the ry of the summaris ise Samp Min 37 16 4.3 13.2 <1.0 <1.0	ng carried Quality of standard I same for d sed below. Ing Locatio Max 59 29 8.4 19.6 <1.0 <1.0	out throu Ambient aid down uration fro ons: 4 Nos Norms 100 60 80 80 80 2.0 5
	in a month NABL accr and Noise TNPCB / CP Apr'22 to S Total Ambie Parameter AAQM PMio PMis SO2 NO2 CO Benzene Benzo[a] Pyrene) Monitoring edited labo level confirm PCB. Summa ep'22 is as s ent Air & Noi Unit Unit Unit Ug/m ³ µg/m ³ µg/m ³ µg/m ³ µg/m ³ µg/m ³	g are bei ratory. G n to the ry of the summaris ise Samp Min 37 16 4.3 13.2 <1.0 <1.0 <0.1	ng carried Quality of standard I same for d sed below. Iing Locatio Max 59 29 8.4 19.6 <1.0 <1.0 <0.1	out throu Ambient Jaid down Juration fro ons: 4 Nos Norms 100 60 80 80 80 2.0 5 1 1 NAAQM

ac	la	ni
	rts an gistics	d

Name of the Project: CRZ and Environmental Clearance for the development of proposed Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluka, Tiruvallur District, Tamil Nadu by M/s. Marine Infrastructure Developer Private Limited (MIDPL) – bifurcation of Environmental and CRZ Clearance.

Half yearly Compliance report on conditions stipulated in CRZ & Environmental	Clearance
[File no: 10-130/2007- IA.III dated: 09/02/2018]	

S. No.	Conditions	Compliance Status		
		All the monitoring results are well within the prescribed standard.		
1.45		We have also installed Continuous Ambient Air Quality Monitoring Station (Including BTX analyser to monito VOC). CAAQMS has been connected to TNPCB server and data is transferred on real-time basis. All the parameters are well with the prescribed standards.		
		Detailed Air and Water Quality Monitoring Reports fo the period October'22 to March'23 is enclosed as Annexure -III.		
		All the monitoring parameters are well within the prescribed standard.		
-				
(iv)	The proponent shall obtain the requisite consents for discharge of effluents and emissions under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (prevention and Control of Pollution) Act, 1981 from the Tamil	Complied. Requisite Consents for discharge of effluents and emissions under the Water (Prevention and Control o Pollution) Act, 1974 and the Air (prevention and Control of Pollution) Act, 1981 were obtained before commissioning of the project and submitted to		

2	adar	ni
	Ports and Logistics	

From: October 2022 To : March 2023

Name of the Project: CRZ and Environmental Clearance for the development of proposed Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluka, Tiruvallur District, Tamil Nadu by M/s. Marine Infrastructure Developer Private Limited (MIDPL) – bifurcation of Environmental and CRZ Clearance.

S. No.	Conditions	Compliance Status		
	Nadu State Pollution Control Board before commissioning of the project and a copy of each of these shall be sent to this Ministry.	to Operate has been obtained from the Tamil Nadu		
(v)	In order to carry out the environmental monitoring during the operational phase of the project, the project authorities shall establish an environmental laboratory well equipped with standard equipment and facilities and qualified manpower to carry out the testing of various environmental parameters.	Complied. MIDPL is having Environmental Management Cell staffed with qualified personnel at site supported by team at Head Office in Ahmedabad. Environment monitoring is being carried ou through NABL accredited Laboratory. ENVIRONMENT TEAM - ORGANOGRAM		
		DEO (Soluthern Ports) Tesseckkay office Tesseckkay office Tesseckka		

9	dar	ni
	Ports and Logistics	

From: October 2022 To : March 2023

Name of the Project: CRZ and Environmental Clearance for the development of proposed Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluka, Tiruvallur District, Tamil Nadu by M/s. Marine Infrastructure Developer Private Limited (MIDPL) – bifurcation of Environmental and CRZ Clearance.

Half yearly Compliance report on conditions stipulated in CRZ & Environmental Clearance	e
[File no: 10-130/2007- IA.III dated: 09/02/2018]	

S. No.	Conditions	Compliance Status	
(vi)	The proponents shall provide for a Complied. regular monitoring mechanism so as		
	to ensure that the treated effluents conform to the prescribed standards. The records of analysis reports must be properly maintained and made available for inspection to the concerned State/Central officials during their visits.	treat the effluent generated from Liquid Tar Washings and 3 STPs of capacity 30KLD, 10KLD 5KLD at various locations inside the port premise	
1		Records are made available at site for inspection State / Central officials during their visit.	
(vii)	The sand dunes and mangroves, if any, on the site shall not be disturbed in any way.	Complied. No Sand dune and mangroves are present on the sit	
(viii)	A copy of the clearance letter will be marked to the concerned Panchayat / local NGO, if any, from whom any suggestion / representation has been received while processing the proposal.	Complied. This EC is just a bifurcation of original EC of LTSB.	

From: October 2022 To : March 2023

Name of the Project: CRZ and Environmental Clearance for the development of proposed Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluka, Tiruvallur District, Tamil Nadu by M/s. Marine Infrastructure Developer Private Limited (MIDPL) – bifurcation of Environmental and CRZ Clearance.

S. No.	Conditions	Compliance Status			
(ix)	The Tamil Nadu Pollution Control Board shall display a copy of the clearance letter at the Regional Office, District Industries Centre and Collector's Office/Tehsildars Office for 30 days.	Complied. The condition does not pertain to project proponent			
(x)	The funds earmarked for environment protection measures shall be maintained, in a separate account and there shall be no diversion of these funds for any other purpose. A year- wise expenditure on Environmental safeguards shall be reported to this ministry	e d Separate budget for the Environment Prote e earmarked every year. All the expenses are rec r- advanced accounting system (SAP) al organization.			
		S. No.	Description of Work	Cost (Rs.)	
		1	Comprehensive Environmental Monitoring and other Environment related studies like Impact Assessment Study, 3 Season monitoring Study, etc.,	94.87	
10	 The subsection of the subsection of	2	Integrated Waste Management	1.20	
		3	O&M of STP's & ETP	9.21	
		3	Housekeeping	48.53	
		4	Greenbelt	19.66	

2	adar	ni
	Ports and Logistics	

Name of the Project: CRZ and Environmental Clearance for the development of proposed Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluka, Tiruvallur District, Tamil Nadu by M/s. Marine Infrastructure Developer Private Limited (MIDPL) – bifurcation of Environmental and CRZ Clearance.

Half yearly Compliance report on conditions stipulated in CRZ & Environmental Clearance [File no: 10-130/2007- IA.III dated: 09/02/2018]

S. No.	Conditions	Compliance Status	
	for monitoring purposes, by furnishing full details and action plans including the action taken reports in respect of mitigative measures and other environmental protection activities.	n to monitor the compliance and all the neces n supports were extended and the same shall e continued in future also.	
(xii)	In case of deviation or alteration in the project including the implementing agency, a fresh reference shall be made to this ministry for modification in the clearance conditions or imposition of new ones for ensuring environmental protection.	Noted for Compliance. There is no deviation or alteration in the project including implementing agency.	
(xiii)	This Ministry reserves the right to revoke this clearance, if any of the conditions stipulated are not complied with to the satisfaction of this Ministry.	Noted for Compliance.	
(xiv)	This Ministry or any other competent authority may stipulate any other additional conditions subsequently, if deemed necessary, for environmental protection, which shall be complied with.	Noted for Compliance.	
(xv)	The Project proponents shall inform the Regional Office at Chennai as well as the Ministry the date of financial closure and final approval of the project by the concerned authorities and the date of start of Land Development Work.	Complied. The same has been Complied by LTSB befor bifurcation itself.	

Page | 30

Por	ani ts and istics	rine Infrastructu	re Developer Pvt Ltd	From: October 2022 To : March 2023
Name		Shipyard-cum-Minor Tiruvallur District, T	ntal Clearance for the de Port Complex at Kat amil Nadu by M/s. Marine IDPL) – bifurcation of	tupalli, Ponneri Talu Infrastructure Develop
Half	yearly Complian	ce report on conditio File no: 10-130/200	ons stipulated in CRZ & Er 7- IA.III dated: 09/02/201	nvironmental Clearanc [8]
S. No.	Co	nditions	Complian	nce Status
CRZ &	EC Amendment le	tter No. 10-130/2007	A.III dated 12.05.2010:	
(i)	both the Ports Kattupalli Port) s monitor the in dumping. This r	combined effect on (i.e. Ennore Port and shall be carried out to npact of the post- nodel study shall be period of one year.	Complied. M/s LTSB has already carr study to understand imp. report was submitted to M MIDPL engaged Institute of University, Chennai to carr with the details of combine (i.e Ennore Port and Kattor impact of the post dumpine preparation for the year of 2020 was submitted Compliance Report for the our Letter No. MIDP 31.05.2020.	act of post dumping a inistry. f Ocean Management, Ar y out shoreline study alo ed effect on both the po upalli Port) to monitor ng and the report is un 2022. Report for the y along with Half Yea
(ii) 	and actual dum out to examine North-East and	etween model study ping shall be carried the impacts both on South-West of the be submitted to the	Complied. Comparison between mode was made to examine the submitted to Ministry by L ² No dumping was being ca period October'22 to Marci MIDPL engaged Institute of University, Chennai for the report is under preparation for the year 2020 is submi Compliance Report for the our Letter No. MIDP 31.05.2020.	e impacts and report w TSB. hried by MIDPL during th hr23. f Ocean Management, Ar he above studies and th h for the year 2022. Rep tted along with Half Yea

Port	ani is and istics	Marine Infrastructur			То :/	October 2022 March 2023
Name o	of the Pro	oject: CRZ and Environmen Shipyard-cum-Minor Tiruvallur District, Ta Private Limited (Mi Clearance.	Port amil Nac	Complex at Katt lu by M/s. Marine l	upalli, nfrastru	Ponneri Taluk Incture Develope
Half	yearly Cor	npliance report on conditio [File no: 10-130/200				ental Clearance
S. No.		Conditions		Compliand	ce Statu	s
(iii)	and the second second second	nation of the areas outside limit and Buckingham Canal	Being C	complied.		
		arried out.	and the second se	amation of the are gham Canal is being		The second s
EC 8 C	RZ Extens	ion of validity letter No. 10-	130/200	07- XIII dated 17.12.	2014:	
(1)	Containe 0.22 MTF MTPA, (iv (Barytes/ e/Steel c Edible oi	o should only include (i) r 21.60 MTPA, (ii) Ro-Ro – PA, (iii) Project cargo – 0.44) Break bulk/General cargo Gypsum/Limestone/Granit argo) – 1.82 MTPA and (v) I, CBFS, Base oil and Lube on-hazardous liquid cargo – PA	MIDPL Break b and Lut MIDPL Certific /F.0228 the pro- of Roc increas 0.57 M the po- change the EC obtaine 210523 Act) or Cargo below t		Edible azardou ncrease le TNPCE 2021 da go Mix (a mite, Ba iliquid ca PA by o being da dling cap 8 CC) a ide_ Cor nd 2105 till 31.03	Oil, CBFS, Base of s liquid cargo onl in Pollution Los 3 Lr. No. T1/TNPC ted 12.01.2021 for idditional handlin uxite cargos an argo capacity fro ptimally deployin eveloped without bacity approved and subsequent isent Order N 136876761 (Wat 5.2026. Details presented in th
			.No.	Description		Capacity
			1	Containers		21.60 MMTPA
			2	Ro-Ro – Automobil	es	0.07 MMTPA
			3	Project Cargo Break Bulk/general	Caroo	0.44 MTPA
			4	(Barytes / Gyps Limestone / Gra	sum /	1.82 MTPA

6	Idar	ni
	Ports and Logistics	

Name of the Project: CRZ and Environmental Clearance for the development of proposed Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluka, Tiruvallur District, Tamil Nadu by M/s. Marine Infrastructure Developer Private Limited (MIDPL) – bifurcation of Environmental and CRZ Clearance.

S. No.	Conditions	Compliance Status		
		Steel Cargo / Rock Phosphate / Bauxite / Dolomite cargoes) Edible oil, CBFS, Base Oil,		
		5 Lube and Non-Hazardous 0.72 MTPA Liquid Cargo		
		Total Handling capacity at Port 24.65 MTPA		
(ii)	All the conditions stipulated by the Tamil Nadu Coastal Zone Management Authority (TNCZMA) vide letter no. 6064/EC.3/2014-1 dated 26.06.2014, shall be strictly complied with.	All the conditions stipulated by the Tamil Na Coastal Zone Management Authority (TNCZN vide letter on 6064/EC 3/2014-1 dated 26.06.20		
(iii)	No additional land should be utilized for the proposed development.	Complied		
(īv)	As committed, the local traffic should not be disturbed.	Complied. Separate road is available for the local Traffi Kattupalli Port is having a dedicated roa connectivity connecting State Highways an National Highways. NH-5 (Chennai – Kolkata) about 30 km from Port. The cargo handled ar directly goes to the roads mentioned above which are outside the City Limits of Chennai. Handling of cargo in Kattupalli Port does not affect the regula traffic.		
5	These stipulations would be enforced among other under the provisions of water (Prevention and Control of Pollution) Act, 1974 the Air (Prevention and Control of Pollution) Act 1981, the	Noted for Compliance.		

Adani Marine Infrastructure Developer Pvt Ltd From: October 2022 Ports and Logistics To : March 2023 Jame of the Project: CRZ and Environmental Clearance for the development of proposed Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluka,					
		Tiruvallur District, Ta	Port Complex at amil Nadu by M/s. Ma IDPL) – bifurcation	rine Infrastructur	e Develope
Half	yearly Cor	npliance report on conditio [File no: 10-130/200			Clearance
S. No.		Conditions	Com	pliance Status	
6	the Publi 991, th (Manufac Rules, Managen Coastal Notificati subseque there und All other as the	ent (Protection) Act, 1986, c Liability (Insurance) Act, e Hazardous Chemical cture, storage and Import) 1989, Solid Waste nent Rules, 2016 and the Regulation Zone ion, 2011 and its ent amendments made der from time to time. statutory clearances such approvals for storage of rom Chief Controller of	Complied. The project is in op		
	Aviation Conserva (Protection Obtained proponer	es, Fire Department, Civil Department, Forest tion Act, 1980 and Wildlife on) Act 1972, etc shall be , as applicable by project ats from the respective int authorities.	necessary clearance concerned agencies a Permission		
-		- ANT	Tamil Nadu Maritime Board (TNMB) clearance	575/51/2008	24.05.2012
	n filad	3.22.2	Fire and Rescue License (Renewal)	159/2015	10.06.2015
			PESO Licenses - 15KL - 50KL	P/SC/TN/15/2514 (P266086) P/SC/TN/14/6260	25.05.2012

2	dar	ni
	Ports and Logistics	

Marine Infrastructure Developer Pvt Ltd

From: October 2022 To : March 2023

Name of the Project: CRZ and Environmental Clearance for the development of proposed Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluka, Tiruvallur District, Tamil Nadu by M/s. Marine Infrastructure Developer Private Limited (MIDPL) – bifurcation of Environmental and CRZ Clearance.

Half yea	rly Compliance report on conditions stipulated in CRZ & Environmental Clearance	ľ
	[File no: 10-130/2007- IA.III dated: 09/02/2018]	

S. No.	Conditions	Compliance Status	
7	The project proponent should advertise in at least two local newspapers widely circulated in the region, one of which shall be in the vernacular language informing that the project has been accorded Environmental Clearance and copies of clearance letters are available with the Tamil Nadu Pollution Control Board and may also be seen on the website of the Ministry of Environment and Forests at http://envfonnic.in. The advertisement should be made within 10 days from the date of receipt of the Clearance letter and a copy of the same should be forwarded to the Regional office of this Ministry at Chennai.	Complied. Copy of the same is already submitted along with the Compliance report for the period Oct-2018 to Mar- 2019 vide our Letter No. MIDPL/TNPCB/GMP/EC-HYC dated 24.05.2019.	
8	Any appeal against this Environmental Clearance shall lie with the National Environment Appellate Authority, if preferred, within a period of 30 day as prescribed under section 11 of the National Environment Appellate Act, 1997.	Noted.	

Por		Marine Infrastructur	cure Developer Pvt Ltd From: October 2022 To : March 2023		
		Tiruvallur District, T Private Limited (M Clearance.	Port Complex at Kat amil Nadu by M/s. Marine IDPL) – bifurcation of	tupalli, Ponneri Taluka, Infrastructure Developer Environmental and CRZ	
	1			Select	
S. No.		Conditions	Complian	ce Status	

		 2021-2022 was submitted to TNPCB vide letter No. MIDPL/TNPCB/2021-22/179 dated 22.09.2022. Copy of the same is attached as Annexure VII. Form V for the year 2021-22 is also uploaded on Company website (Form-V Environment- Statement MIDPL FY2021 22.pdf (adaniports.com)) and sent to Regional Office of MoEF&CC through e- mail on 22.09.22. The details of the past six Half yearly compliance reports are as tabulated below for reference. 			
		S.No.	Compliance period	Date of submission	
		1.	Oct'18 to Mar'19	24.05.2019	
		2.	Apr'19 to Sep'19	25.11.2019	
		3.	Oct'19 to Mar'20	31.05.2020	
		4.	Apr'20 to Sep'20	27.11.2020	
		5.	Oct'20 to Mar'21	20.05.2021	
		6.	_ Apr'21 to Sep'21 _	_ 24.11.2021	
	t t Astrac 15 il co	7.	Oct'21 to Mar'22	17.05.2022	
		8.	Apr'22 to Sep'22	29.11.2022	
10	This CRZ and Environmental Clearance is valid till 2" July, 2019.	Noted.			
11	This issue with the approval of the Competent Authority.	Noted.			

CHENNAI's

MIDPL/TNPCB/GMP/HWM/195

Date: 03.12.2022

To,

The District Environmental Engineer, Tamil Nadu Pollution Control Board, No. 88A, SIPCOT Industrial Complex, Gummidipoondi, Tiruvallur District - 601 201.

Dear Sir,

Sub: Marine Infrastructure Developer Private Limited (MIDPL), Kattupalli Port - Submission of Hazardous Waste Manifest in Form-10 - Reg.

Ref: Hazardous Waste Authorization No. 19HFC20312718 dated 30.04.2019

With reference to the captioned subject, M/s. Marine Infrastructure Developer Private Ltd. is submitting the Hazardous Waste Manifest in Form-10 for the month of November 2022.

Submitted for your kind information and records.

for, M/s. Marine Infrastructure Developer Private Limited

R. Sathish Kumar Head - Environment

Encl: As above

Marine Infrastructure Developer Pvt Ltd (Kattupalli Port) Kattupalli Village, Ponneri Taluk, Tirivalluvar District 600 120, Tamil Nadu, India

Tel +91 44 2824 3062 CIN: U74999TN2016PTC103769

Registered Office: Ramcon Fortuna Towers, 4th floor No 1/2, Kodambakkam High Road, Nungambakkam, Chennai 600034

	Senders name and mailing address : (Including Phone No. and E-mail)	M.V. SSL CHENNAL C Kattupalli Port) MIDPL
2.	Sender's Authorisation No. :	19HFC 26312418
3.	Manifest Document No. :	_
4.	Transporter's Name and address : Including Phone No. and E-mail	Thirupathi oil Company
5.	Type of Vehicle :	(Truck/Tranker/Special Vehicle)
5.	Transporters Registration No. :	T
7.	Vahiala Pagietestion No.	HIRUPATHI OH. COMPANY TN 5202151
8.	Receivers name and mailing address : (Including Phone and E-mail)	Factory : Plot No. 7, Industrial Estato, Venmaniathur Villago - 694 207
9.	Receivers authorisation No. :	18 HRC12111693 DT 17/5/018
10.	Waste Description :	OFL Sludge (3. 1 Category)
11.	Total Quantity : No. of Container	<u>8+4</u> M ² or MT Nos.
12.	Physical Form :	Solid/Semi Solid/Sludge/Oily/Tarry/Slurry /Liguid/Other
13.	Special handling instructions and additional information	
14.	Senders Certificate	I hereby declare that the content of the consigment are fully and accurately descrified above the proper shipping name and are categoriesed packed, marked and labelled and are in all respects in proper conditions for transport and road according for transport by road according to applicable national government regulation.
	Name and Stamp : SSL CHEF Signature	Day Month Year 23112022
15.	Transporter acknowled concurrent of presint waster	
	Name and Stamp : Authorized Signatory	Day Month Year 23112022
16.	Receivers Certification for receivern burgardou and other waste	S (4)
3	Name and Stamp : Authorized Signatory	Day Month Year 23112022

FORM 10 {see rule 19 (1) } MANIFEST FOR HAZORDOUS AND OTHER WASTE

ANNEXURE - 1 (DoE COMPLIANCE STATUS)

adani			
Ports and Logistics	Marine Infrastructure Developer Pvt Ltd	From : October 2022 To : March 2023	
Status o	f Compliance to RC No. P1/2004/2008, o Department of Environment, Chenna		

Annexure -1

SI. No	Conditions		Compliance	,	
1	The unit shall carry out dumping/ land filling at dredged material only on land which is not covered under CRZ				
11	The unit shall not carry out any ship	Not applicable			
iii	breaking activity The unit should design that	Complied.			
	the wastewater should be recycled 100% and to be used for developing greenery etc., and there should not be any wastewater let out.	MIDPL is operating effluent generated STPs of capacity	from Liquid 30KLD, 10KL port premises	D capacity to treat the Tank Washings and 3 D & 5KLD at various to treat the maximum	
		such as washing wa water from office b	ter from cant uildings are b tire treated s	from various sources een and toilet flushing eing collected, treated ewage water is reused bin the port premises	
		after confirming characteristic of Se and analysed by NA	permissible wage water BL accredited of Sewage w	imit. Inlet & outlet is regularly monitored laboratory. vater treated in STPs	
		after confirming characteristic of Se and analysed by NA Average quantity of	permissible wage water BL accredited of Sewage w	imit. Inlet & outlet is regularly monitored laboratory. ater treated in STPs s furnished below. Avg. Quantity of Sewage Water Treated	
		after confirming characteristic of Se and analysed by NAI Average quantity of during the complian	permissible wage water BL accredited of Sewage w ce period is a STP/ETP	imit. Inlet & outlet is regularly monitored laboratory. ater treated in STPs s furnished below. Avg. Quantity of	
		after confirming characteristic of Se and analysed by NA Average quantity of during the complian	permissible wage water BL accredited of Sewage w ce period is a STP/ETP Capacity	Imit. Inlet & outlet is regularly monitored laboratory. ater treated in STPs s furnished below. Avg. Quantity of Sewage Water Treated (Oct'22 to Mar'23)	
		after confirming characteristic of Se and analysed by NAI Average quantity of during the complian Location Near IWMS	permissible ewage water BL accredited of Sewage w ce period is a STP/ETP Capacity STP 30 KLD	imit. Inlet & outlet is regularly monitored laboratory. ater treated in STPs s furnished below. Avg. Quantity of Sewage Water Treated (Oct'22 to Mar'23) 14.1 KLD	
		after confirming characteristic of Se and analysed by NA Average quantity of during the complian Location Near IWMS Near CFS	permissible ewage water BL accredited of Sewage w ce period is a STP/ETP Capacity STP 30 KLD STP 5 KLD	Imit. Inlet & outlet is regularly monitored laboratory. ater treated in STPs s furnished below. Avg. Quantity of Sewage Water Treated (Oct'22 to Mar'23) 14.1 KLD 0.9 KLD	

adani Ports and Logistics	Marine Infrastructure Developer Pvt L	td From To	1000000	ber 2022 h 2023
Status o	Compliance to RC No. P1/2004/200 Department of Environment, Che		21.10.2	008 of
	STP TREATED WATE	R ANALYSIS	REPORT	(AVG)
	Parameter Unit	Min	Max	TNPC8 Limit
	pH -	6.45	8.02	6.5 to 9

		Parameter	Unit	Min	Max	TNPC8 Limit
		pН		6.45	8.02	6.5 to 9
		TSS	mg/l	6	21	30
		BOD	mg/1	3.4	16	20
		COD	mg/l	16	68	100
		Faecal Coliform	MPN/100ml	110	260	<1000
		ETP TREAT	TED WATER AN	ALYSIS	REPORT	(AVG)
		Parameter	Unit	R0-1	R0-2	TNPCB
		pH	-	8.61	8.58	6.5 to 9
		TSS	mg/l	20	6.4	200
		TDS	mg/i	1500	606	2100
		BOD	mg/l	10	3.3	100
		Oil & Grease	mg/l	BDL	BDL	10
iv	The unit should tie - up with	SO KED (TP)			D STP	S RED STP
	institutions like Centre for Environmental Studies or IIT for the periodical monitoring during construction phase so as to ensure the adoption of Safety measures as per the Environmental Management Plan [EMP].	LTSB carried o	ut the studi	es durir	ng Cons	truction Phas
×	Before commencing construction activities, Proper resettlement for the local the unit should ensure the proper	Not applicable	e.			

adani		
Ports and Logistics	Marine Infrastructure Developer Pvt Ltd	From : October 2022 To : March 2023
Status o	f Compliance to RC No. P1/2004/2008, o Department of Environment, Chenna	

	resettlement of local inhabitants residing at the project area to the satisfaction of District Collector and submit a report to the Department of Environment.	Complied by M/s. LTSB. Rehabilitation & resettlement was carried out completely as per law / State Government at the time of project implementation. This EC & CRZ Clearance is just a bifurcation of original EC & CRZ clearance of LTSB in name of MIDPL & LTSB.
Gen	neral Conditions	
a	There should not be any extraction of Ground Water in CRZ.	Noted for compliance. No withdrawal of groundwater from CRZ Area. Presently unit is procuring desalinated water from M/s. Chennai Metropolitan Water Supply and Sewerage Board Chennai.
Þ	The unit should obtain planning permission for their constructions from the CMDA/Department of Environment before commencing the constructions	Not applicable. Project is in operation phase. This EC & CRZ Clearance is just a bifurcation of original EC & CRZ clearance of LTSE in name of MIDPL & LTSB. Required permission from concerned authorities was taken by M/s. LTSB before commencing the constructions.
c	The proposed activities should not cause coastal erosion and alter the beach configuration	Complied. MIDPL has engaged Institute of Ocean Management Anna University, Chennai for shoreline Change study and the report is under preparation for the year 2022 However, Report for the year 2020 is submitted along with Half Yearly Compliance Report for the period Oct'19-Mar'20 vide our Letter No. MIDPL / EC – HYC 2020 / 11 dated 31.05.2020
d	No fencing or barricading along the pipeline alignment and parallel to the coast is permissible in CRZ.	Agreed for compliance. All activities permissible as per CRZ notification 2011 & EC&CRZ clearance will only be carried out.

* 5.7

 $(A_{i})_{i\in I}$

8	Ports and Logistics	Marine Infras	ructure Developer Pvt Ltd	From : October 2022 To : March 2023		
	Status of		RC No. P1/2004/2008, d t of Environment, Chenna			
e No blasting or drilling activities in CRZ is permissible.			Agreed for compliance. No blasting or drilling activity is carried in CRZ area. All activities permissible as per CRZ notification 2011 & EC&CRZ clearance will only be carried out.			
 1	The proponent prevent public access to the be	from easy	Being complied. MIDPL-will-not block the a public.	occess point to beach for the		
	Chemical wast and the sewage any should not t into the sea.	generated, if	effluent generated from L STPs of capacity 30KLD, locations inside the port private wastewater flow of 45KLD. Domestic wastewater gen such as washing water from water from office buildings in STP's and the entire tree for green belt maintenan after confirming permiss characteristic of Sewage and analysed by NABL according	50 KLD capacity to treat the Liquid Tank Washings and 3 10KLD & 5KLD at various remises to treat the maximum erated from various sources in canteen and toilet flushing is are being collected, treated eated sewage water is reused ce within the port premises sible limit. Inlet & outlet water is regularly monitored		
	The propone implement the E the Green Belt in the EIA report	MP including as envisaged	is having adequate Greent includes 35,124 nos of tre the Port premises and an 15.25Ha outside the Port p developed along the peri alongside of the road and 7,107 Nos of trees planted	nted in letter and spirit. MIDPL belt covering 26.95Ha (which res covering 11.695Ha inside ound 35,000 trees covering premises). Greenbelt has been phery of the port area and d are being well maintained. during the compliance period. mpliance status is enclosed as		

adani		
Ports and Logistics	Marine Infrastructure Developer Pvt Ltd	From : October 2022 To : March 2023
Status o	f Compliance to RC No. P1/2004/2008, o Department of Environment, Chenna	

I	The project activity should not affect the coastal ecosystem including marine flora and fauna.	Complied. Marine water & Sediment quality are being monitored through NABL accredited laboratory on monthly basis. There is no impact on water quality in the vicinity. The details of Marine Water quality monitoring report for the period October 2022 to March 2023 is enclosed as Annexure-III.
j	The proponent should not undertake any activity, which is violate of provisions of CRZ Notification 1991 and the subsequent amendments.	Being complied. All activities permissible as per CRZ notification 2011 & ECBCRZ clearance will only be carried out.
ĸ	The CRZ Clearance will be revoked if any of the conditions stipulated in not complied with.	Noted for compliance

العارية ويوادك الكارية تصفون التراف تعاديه والإراك الالتوا المتواد

ANNEXURE - 2

(HW ANNUAL RETURNS IN FORM-4)

2.0.00

1.000

KATTUPALLI PORT CHENNAI'S NEW GATEVVAY

MIDPL/TNPCB/GMP/HWR-2022/156

Date: 27/06/2022

To,

The District Environmental Engineer, Tamil Nadu Pollution Control Board, 88A, First Cross Road, SIPCOT Industrial Complex, Gummidipoondi - 601201.

Dear Sir,

Sub: Submission of Annual Hazardous Waste Returns (FORM 4) for the period April'2021 to March'2022-Reg.

M/s. Marine Infrastructure Developer Private Limited has submitted the Hazardous Waste Annual Returns (Form 4) in Online Consent Management and Monitoring System (OCMMS) for the period April'21 to March'22 vide Return No. 46315655

Soft copy of the submitted Form 4 is attached herewith for your kind information and records.

Thanking you.

for, M/s. Marine Infrastructure Developer Pvt Ltd

R. Sathish Kumar Head - Environment

Encl: As above

Marine Infrastructure Developer Pvt Ltd (Kattupalli Port) Kattupalli Village, Ponneri Taluk, Tirivalluvar District 600 120, Tamil Nadu, India

Tel +91 44 2824 3062 CIN: U74999TN2016PTC103769

Registered Office: Ramcon Fortuna Towers, 4th floor No 1/2, Kodambakkam High Road, Nungambakkam, Chennai 600034

FORM 4

[See rules 6(5), 13(8), 16(6) and 20 (2)]

Annual Return

under

Hazardous & Other Wastes(Management & Transboundary Movement) Rules, 2016

Transboundary Movement) Rules, 2016

To be submitted to State Pollution Control Board by 30th day of June of every year for the preceding period April to March

Return No : 46315655

Period : 202/-2022

1. Name of facility/Industry Industry Address of facility/Industry	MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED PB No. 001, KATTUPALLI PORT, KATTUPALLI VILLA GE				
2. UID	R17AMB9758447				
3.Authorisation No Date of issue: Date of Expiry	19HFC20312718 30/04/2019 29/04/2024				
4. (i) Name of the authorised person & Designation	Jai Singh Khurana Managing Director				
(ii) Correspondence Address	Ramcon Fostuno Towers, 4th floar No 1/2, Kodambakkarn High Road, Nungambakkam, Chennai-600034				
(iii) Mobile No	9176000959				
(lv) Land Line No (with area code)					
(iv) Fax number (with area code)					
(vi) e-mail	sathisk r@ad	antcom			
Production during the year (product wise), wherever applicable	Sr.no	Product	Quantity	Unit	
	1	Containers	6347685.6	Metric Ton	
	2	Ro-Ro Automobiles	0	Metric Ton	
	3	project Cargo	0	Metric Ton	
	4	Break Balk / General Cargo	653742.98	Metric Ton	
	5	Edible Oil, CBFS, Base oil, Lube and Non- Hazardous liquid cargo	388739,48	Metric Ton	

			Part A. To b	e filled by ha	zardous was	ste generator	8		
Sr .n o	Category	Unit	Quantity in stock at the beginning of the year		Quantity dispatched to disposal facility	Quantity dispatched to recycler or co- processors or pre- processor	Quantity dispatched to others	Quantity utilised in house	Quantity in storage at the end of the year

MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIBBITED, PR No. 001, EATTUPALLI PORT, KATTUPALLI VILLAGE, Tinoviller, Pagel

1	Schodule 1 - 3, Cleaning, omptying and maintenance of petroleum ail storage tanks including ships - .3,1-Cargo residue, washing water and sludge containing ail	Metric Tou	0	0	0	0	0	0	0
2	Schedule 1 - 33 Disposal of barrels / containers used for handling of hazardows wastes / chemicals - 33.1. Chemical- containing residue arising from decondaminarian	Metric Ton	0	0	0	0	0	0	0
3	Schedule 1 - 5. Industrial operations using inheral or synthetic oil as Inbricant in hydraulic syntems or other applications - 5.1-Used or spent oil	Metric Ton	0	2.079	2.079	2.079	0	0	0

	1	Part B. To	be filled by T	reatment, st	torage and di	sposal facili	ty operators		
Sr .n o	Category	Unit	Quantity in stock at the beginning of the year	Total quantity received	Quantity treated	Quantity	Quantity incinerate d (If	Quantity processed other than	at the en

S	Catal	80.00				-precessors	er entre b	Jer 3		
5 r. n 0	Category	Unit	Quantity in stock at the beginnin g of the year	Quantity of waste received during the year from Domestic sources	Quantity of waste received during the year Imported	or co- processe d or used	of waste	of waste disposed	re- exported (whereve	in storage at the end of

Date :25/06/2022 Place : Tiruvallar

11.

C/Links

Name of the Occupier or Operator of the disposal facility

1 2 1.72

-

MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED, PS No. 601, KATTUPALLI PORT, KATTUPALLI VILLAGE, Timodiae, Page2

a dat hereine in an and - 475 Tambar and such that a set of the set of

ANNEXURE – 3 (MIDPL MONITORING REPORT OCT'22 - MAR'23)

1 2 2 2 2

REPORT ON

COMPREHENSIVE ENVIRONMENTAL MONITORING

FOR

MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED (MIDPL) KATTUPALLI VILLAGE, PONNERI TALUK, THIRUVALLUR DISTRICT, TAMILNADU - 600 120

OCTOBER 2022 - MARCH 2023

PREPARED BY:

Green Chem Solutions Pvt. Ltd.

No.883, 11th Street, Syndicate Bank Colony, Anna Nagar West Extension, Chennai - 600 101.

Index for Table

S.No	Index
1.	Introduction
Ш.	Location of the project
Ш.	Scope of work
IV.	Methodology
٧.	Environmental studies
i.	Meteorological Data
ii.	Ambient Air Quality
111.	Ambient Noise Level Intensity
iv.	DG Set Emission
٧.	STP Water Sample Analysis
vi.	Drinking water Sample Analysis
vii.	Rain water harvesting pond Water Sample Analysis
viii.	Marine sampling
Fig.No	Description
1	Location Map
2	Ambient Air Sampling Station Location Map
3	Ambient Air Sampling Station with respect to Wind
4	Noise Level Sampling Location Map
. 5	Water and Marine Sampling Location Map

2.2

I. INTRODUCTION

Marine Infrastructure Developer Private Limited (MIDPL), subsidiary of Adani Ports and Special Economic Zone Limited (APSEZ) is operating Kattupalli Port, having the latest technology of Terminal Operating System which is the first of its kind in India, which can support the entire supply chain in doing business smoothly.

MIDPL have engaged M/s. Green Chem Solutions (P) Ltd, an Accredited Consultant by NABL to carry out the Comprehensive Environmental monitoring studies in the Port site continuously as per the norms. This report covers the monitored environmental data for the Period Oct 2022 to Mar 2023.

II. LOCATION OF THE PROJECT

The Project site is located at Port area, Kattupalli Port Area.

The location map is shown in Fig - 1

Fig - 1 - Location Map

III. SCOPE OF WORK

The scope of Comprehensive Environmental monitoring includes the following environmental components;

- 1. Meteorological data
- 2. Ambient Air Quality
- 3. Ambient Noise Level
- 4. Marine Sampling
- 5. Treated STP / ETP Water.
- 6. Potable water
- 7. DG Set emission

Page 3 of 44

Green Chem Solutions Pvt. Limited.

- - -

ent Airty	stations for analyzing the following parameters: • PM10 • PM2.5	Daily
ent Air	data on hourly basis by installing an auto weather monitoring station at plant site covering the following parameters : Wind speed Wind direction Rainfall Relative Humidity Temperature Barometric pressure Solar Radiation Sampling of ambient air at 04 stations for analyzing the following parameters: PM10 PM2,5	Daily
	Barometric pressure Solar Radiation Sampling of ambient air at 04 stations for analyzing the following parameters: PM10 PM2.5	
	stations for analyzing the following parameters: • PM10 • PM2.5	
	• PM2.5	
	 SO2 NO2 CO Lead Ozone Ammonia Benzene BenzoPyrene Arsenic Nickel 	Weekly Twice
ent Noise	Collection of Noise levels on hourly basis at 4 locations • L _{eq} - Day (Max and Min) • L _{eq} - Night (Max and Min)	Monthly Once
	ent Noise	 Ozone Ammonia Benzene BenzoPyrene Arsenic Nickel mt Noise Collection of Noise levels on hourly basis at 4 locations Leq - Day (Max and Min) Leq - Night (Max and Min)

1,0,00

-

4a.	Surface and Bottom Water	Collection of Surface and Bottom Water analyzed for - 2 location • Temperature • pH @ 25°C • Total Suspended Solids • BOD at 27 °C for 3 days • Dissolved oxygen • Salinity at 25 °C		
		 Oil & Grease Nitrate as No₃ Nitrite as No₂ Ammonical Nitrogen as N Ammonia as NH₃ Kjeldahl Nitrogen as NI Total phosphates as PO₄ Total Nitrogen, 	Monthly Once	
		 Total Dissolved Solids COD Total bacterial count, -Coliforms Escherichia coli Salmonella Shigella Vibrio cholera 		
		 Vibrio parahaemolyticus Enterococci Colour Odour Taste Turbidity Calcium as Ca Chloride as Cl Cyanide as CN Fluoride as F Magnesium as Mg Total Iron as Fe 		
	20	 Residual Free Chlorine Phenolic Compounds as C₆ H₅ OH Total Hardness as CaCO₃ Total Alkalinity as CaCO₃ Sulphide as H₂S Sulphate as SO₄ Anionic surfactants as MBAS Monocrotophos Atrazine Ethion 		
		 Chiorpyrifos Phorate Mehyle parathion Malathion DDT (o,p and p,p-lsomers of DDT,DDE and DDD Gamma HCH (Lindane) Alppha HCH Beta HCH 		

		 Delta HCH Endosulfan (Alpha, betaandsulphate) Butachlor Alachlor Aldrin/Dieldrin Isoproturon 2,4-D Polychlorinated Biphenyls(PCB) Polynuclear aromatic hydrocarbons (PAH) Arsenic as As Mercury as Hg Cadmium as Cd Total Chromium as C Copper as Cu Lead as Pb Manganese as Mn Nickel as Ni Selenium as Se Barium as Ba Silver as Ag Molybdenum as Mo Octane Nonane Decane Tridecane Tetradecane Heptadecane Heptadecane Octadecane Nonadecane Elcosan 		
4b.	Sea Sediment	Collection of sea sediment analyzed for - 2 location	Monthly Once	

. . .

		 Potassium Total Chromium Petroleum Hydrocarbon Aluminium Total Nitrogen Organic Nitrogen Phosphorus Texture 		
4c.	Phytoplankton Monitoring	 Total Count No. of species Chlorophyll-a Major Species 	Monthly Once	
4d.	Zooplankton Monitoring	Total Count No. of species Major	Monthly Once	
4e.	Microbiological Monitoring	Total Bacteria count Total Coliform Faecal Coliform E.Coli Enterococcus	Monthly Once	
		Salmonella Sheigella Vibrio		-
4f.	Primary Productivity Monitoring	Gross primary productivity Net Primary productivity	Monthly Once	
4g.	Phytobenthos Monitoring data	 Fungus Total Count No. of species Diversity Index Major species 	Monthly Once	
4h.	Total Fauna Monitoring	Name of phylum Class Number of Individuals encountered Total no. of species encountered Total fauna	Monthly Once	
5.	STP Treated Water	Collection of STP Treated water analyzed for - 2 locations • pH • TSS • BOD • Faecal Coliforms	Monthly Once	
6.	Potable Water analysis	Collection of Drinking water analyzed for - 1 locations - As per IS 10500 2012 - 36 Parameters	Monthly Once	
7	DG Set Emissions - 3Nos & Liquid Terminal oil Generator	Sampling of Emission at 04 stations for analyzing the following parameters: • PM • Carbon Monoxide • NO _x - NO ₂ • SO ₂	Monthly Once	

Page 7 of 44

IV. METHODOLOGY

Methodologies adopted for sampling and analysis for each of the above parameters are detailed below

1	Meteorological para					
	Auto weather station					
2	Ambient Air Qu	ality				
	Parameters	Method				
	Respirable Suspended Particulate Matter (PM10)	IS5182Part23:2006				
	Particulate Matter PM2.5	GCS/Lab/SOP/087, CPCB Guidelines				
	Sulphur di-oxide as SO ₂	IS5182 Part2 :2001(Reaff.2006)				
	Oxides of Nitrogen as NO ₂	IS5182 Part6 :2006				
	Lead as Pb	IS5182 Part22:2004(Reaff.2009)				
	Arsenic as As	GCS/Lab/SOP/089, CPCB Guidelines				
	Nickel as Ni	GCS/Lab/SOP/090, CPCB Guidelines				
-	Carbon monoxide as CO	155182Part10:1999(Reaff.2009				
	Ozone as O ₃	IS5182Part9:1974[Reaff.2009]				
	Ammonía as NH ₃	GCS/Lab/SOP/086, CPCB Guidelines				
	Benzene (a) pyrene	IS 5182 - Part 12				
	Benzene as C ₆ H ₆	IS5182Part11:2006				
3	Ambient Noise Mor	nitoring				
	Leg Day & Night	Instrument Manual,				
		GCS/LAB/SOP/Noise/001				
4	Marine Sampling					
	Surface and Bottom Water	APHA Methods 23rd Edition, 2017				
	Sea Sediment	Standard Methods for examination				
	Phytoplankton Monitoring	of Water and Waste water and IS				
	Zooplankton Monitoring	3025				
	Microbiological Monitoring	æ				
	Primary Productivity Monitoring	USEPA Test Methods				
	Phytobenthos Monitoring data	- 19 ·				
	Total Fauna Monitoring					
5	STP Water Ana	lysis				
	pH , TSS, BOD , Faecal Coliforms	APHA Methods 23 rd Edition, 2017 Standard Methods for examination of Water and Waste water and IS 3025				
6	New Water Ana	lysis				
68	As per IS 10500 : 2012-36 Parameters	APHA Methods 23 rd Edition, 2017 Standard Methods for examination of Water and Waste water and IS 3025				
7	Emission Monito	ring				
	PM, Carbon Monoxide, NO _x - NO ₂ , SO ₂	IS 11255 Methods of measurement of emissions from Stationary source				

Page 8 of 44

S.No	ATTRIBUTE	SCOPE
1.	Meteorological parameters	Collection of micrometeorological data at project site on daily basis with hourly frequency
2.	Ambient Air Quality	Collection of ambient air at 4 locations.
3.	STP water	Collection of STP outlet water at two locations
4.	Ambient Noise	Collection of Ambient noise levels for day and night at 4 locations
5.	Drinking Water	Collection of Drinking water at Canteer Building
6.	Marine Water and Marine Sediments	Collection of Marine water and Marine Sediments at Three locations
7	DG Set Emissions	Collection of DG Set Emissions.

East

Page 9 of 44

i. METEOROLOGICAL DATA

Meteorological data was collected on hourly basis by installing an auto weather monitoring station at Plant site. The report depicted hereunder represents the data for the period Oct 2022

- Mar 2023.

The following parameters were recorded

- Wind speed
- Wind direction
- Ambient Temperature
- Ambient Pressure
- Relative humidity
- Rainfall

ANNEXURE - 1 MICROMETEOROLOGY DATA OCTOBER - 2022

A			Report Type	: Average Rep	ort		
		From: 01-10	-2022 00:00	:00 To: 31-10	-2022 23:59:59		
		Created By:	ADANI Cre	ated At: 01.11	.2022 10:15:20		
Date	AQMS- Wind_Speed (km/h)	AQMS- Wind_Directio n(Degree)	AQMS-RH (%)	AQMS Total Rain Fall (mm)	AQMS-Ann. Pressure (mBar)	AQMS-Atm. Temperature (Degree)	AQMS- Solar_Radiatio n (m/m2)
dex	4.5	221	92.1	208.0	1002,3	31.8	92.5
Min	1.1	176	79,4	*	1000.0	28.9	14.8
Max	9,5	251	99,9		1005.4	33.2	302,9
01-10-2022	1.1	251	99.9	0.5	1093.4	28.9	99.2
02-10-2022	2.5	217	94.0	0.0	1003.8	30.9	298.8
03-10-2022	3.6	216	93.8	0.0	1003.4	31.8	260.7
04-10-2022	4.3	230	95.9	0.0	1002.9	32.3	258.9
05-10-2022	4.3	225	90.6	16.5	1002.2	32.8	272.9
06-10-2022	3.6	227	93.3	2.5	1001.6	33.2	302.9
07-10-2022	4.4	189	98.6	28.0	1002.0	30.6	171.3
08-10-2022	4.1	248	99.9	6.0	1001.8	29.6	76.4
09-10-2022	4.4	209	94.0	15.0	1000.8	30.9	180.9
10-10-2022	5.4	237	90.1	12.5	1000.4	31.7	131.3
11-10-2022	9.5	231	84.1	1.5	1000.0	32.7	188.4
12-10-2022	6.3	230	89.0	1.5	1000.4	32.5	256.2
13-10-2022	4.9	230	90.5	0.5	1002.3	32.6	18.8
14-10-2022	5.5	234	95,4	8.0	1004.5	32.4	18.5
15-10-2022	3.1	236	93.5	0.0	1005.4	31.4	17.5
16-10-2022	4.5	222	92.1	19.0	1003.0	32.0	17.9
17-10-2022	4.8	237	92.7	1.5	1002.4	32.8	14.8
18-10-2022	4.4	223	90.6	0.0	1002.8	32.8	17.1
19-10-2022	- 5:3	237	-87.2	0.0	1002.6	- 32.5	- 18.2
20-10-2022	5.6	243	79.4	12.0	1002.0	32.3	18.3
21-10-2022	5.1	208	83.5	3.5	1002.1	32.4	19.5
22-10-2022	5.8	211	84.5	11.5	1002.5	33.2	19.7
23-10-2022	3.9	213	84.5	0.0	1003.3	33.1	19.6
24-10-2022	4.5	187	86.7	0.0	1002.8	32.6	19.7
25-10-2022	4.7	182	89.1	0.0	1002.0	32.6	19.7
26-10-2022	2.9	250	96.0	0.0	1003.0	31.7	20.0
27-10-2022	4.6	176	93.7	13.5	1002.0	31.8	19.7
28-10-2022	3.8	227	99.4	0.0	1001.1	30.6	19.0
29-10-2022	3.4	227	99.9	0.5	1001.1	30.2	27.0
30-10-2022	3.8	226	99.4	0.0	1001.1	30.3	26.3
31-10-2022	4.6	176	93.7	54.0	1002.0	31.8	19.7

Page 10 of 44

1.000

A. S. A. 347*

			Report Type	: Average Rep	ort		
	101100-00	From: 01-11	Contraction of the second second second	the second s	1-2022 23:59:59		
		A CONTRACTOR OF THE OWNER	the second second second second	and the second second second second second second	2022 11:00:50		
Date	AQMS- Wind_Speed (km/h)	AQMS- Wind_Directio n(Degree)	AQMS-RH (%)	AQMS Total Rain Fall (mm)	AQMS-Atm. Pressure (mBar)	AQMS-Abn. Temperature (Degree)	AQMS- Solar_Radiation n (w/m2)
Aug	5.2	169	ND11007	399.5	1006.5	28.8	143.1
Min	1.4	88	0.0	-	1001.2	24.8	38.3
Max	10.2	288	0.0	4	1009.3	31.2	224.9
01-11-2022	2.2	260	•	141.0	1007.4	26.4	42.0
02-11-2022	2.7	206	+	84.0	1006.8	27.5	78.6
03-11-2022	4.5	223	*	2.0	1006.5	28.6	172.3
04-11-2022	3.1	174		16.5	1007.8	28.8	205.3
05-11-2022	4.2	101	+	0.0	1009.1	30.8	211.7
06-11-2022	6.5	8.8		0.0	1009.3	31.2	224.9
07-11-2022	6.7	156	*	7.0	1008.9	29.9	120.9
08-11-2022	6.3	141		1.5	1008.4	29.9	114.6
09-11-2022	6.2	151		1.5	1008.0	29.9	176.6
10-11-2022	7.3	138		16.5	1007.2	29.9	168.9
11-11-2022	10.2	111		49.0	1006.3	29.2	50.8
12-11-2022	7.6		- •	40.5	1006.8	29.8	82.6 -
13-11-2022	3.8	202		15.0	1008.0	28.0	86.3
14-11-2022	4.1	211		0.5	1008.5	28.8	124.0
15-11-2022	4.1	177		2.5	1008.8	29.2	155.7
16-11-2022	5.6	129	•	0.0	1007.4	29.6	203.6
17-11-2022	5.7	150	•	0.0	1007.2	29.0	146.5
18-11-2022	7.1	182	•	0.0	1007.1	28.9	163.9
19-11-2022	9.8	125		0.0	1006.8	29.4	189.3
20-11-2022	6.5	248		0.0	1005.6	27.4	119.0
21-11-2022	8.0	279		8.0	1005.4	24.8	58.6
22-11-2022	7.6	288		12.0	1004.3	26.0	38.3
23-11-2022	4.2	196		2.0	1005.0	28.6	129.4
24-11-2022	1.8	157		0.0	1006.9	29.7	203.4
25-11-2022	1.4	207		0.0	1006.9		73.9
26-11-2022	3.0	149		0.0	1003.0		195.6
27-11-2022	3.2	134		0.0	1001.2		192.0
28-11-2022	3.9	106		0.0	1002.1	•	168.7
29-11-2022	4.3	101		0.0	1003.5		215.9
30-11-2022	4.7	189		0.0	1003.9		179.4

3,570

Nov - 2022

Page 11 of 44

2 4 33

21 1 24

			Report Type	: Average Rep	ort		
	a uparation	From: 01-12			-2022 23:59:59		
					.2022 11:00:50		
Date	AQMS- Wind_Speed (km/h)	AQMS- Wind_Directio n(Degree)	AQMS-RH (%)	AQMS Total Rain Fall (mm)	AQMS-Atm. Pressure (mBar)	AQMS-Atm. Temperature (Degree)	AQMS- Solar_Radiation n (w/m2)
Avg	5.9	128	#D11/#1	46.1	1003.1	#DB70!	178.9
Min	1.7	79	0.0	-	996.1	0.0	59.8
Max	12.3	211	0.0		1008.4	0.0	284.1
01-12-2022	4.0	88.0	-	2.0	1003.4		180.6
02-12-2022	3.4	86.2	•	0.0	1003.2		235.6
03-12-2022	4.3	90.8		0.0	1003.5		206.8
04-12-2022	5.5	92.3		0.0	1004.2		157.9
05-12-2022	4.8	88.3		0.0	1004.8	-	181.2
06-12-2022	8.3	82.7		0.0	1004.0	-	125.2
07-12-2022-	8.9	142.3		0.0			132.2
08-12-2022	11.0	211.4	2	0.0	1000.8		59.8
09-12-2022	12.3	145.6		32.5	996.1		69.1
10-12-2022	8.5	198.5	14	1.5	996.4		65,2
11-12-2022	1.7	184.3		0.0	1001.3		96.7
12-12-2022	4.9	169.3		0.0	1002.2	2	62.1
13-12-2022	5.5	107.9		0.0	1004.0		213.2
14-12-2022	2.5	151.3		0.0	1004.2		187.9
15-12-2022	2.7	103.9		0.0	1003.2	-	234.5
16-12-2022	3.3	162.0	2.1	0.0	1002.3		271.9
17-12-2022	7.0	79.0		0.0	1002.9		284.1
18-12-2022	6.1	94.0		0.0	1002.5	-	189.6
19-12-2022	8.4	86.1		0.0	1001.9		209.0
20-12-2022	8.6	115.4		0.0	1001.7		205.9
21-12-2022	7.5	161.9		0.0	1001.9		155.3
22-12-2022	10.2	100.4		0.0	1001.6		183.8
23-12-2022	8.8	173.5		0.0	1001.6		124.3
24-12-2022	9.2	157.0	-	4.5	1001.8		176.7
25-12-2022	6.9	90.1	-	3.6	1002.3		173.3
26-12-2022	3.2	91.2		0.0	1004.5		187.0
27-12-2022	3.2	90.9		2.0	1005.8		226.5
28-12-2022	2.1	143.0	-	0.0	1006.5		246.3
29-12-2022	3.0	163.4		0.0	1007.6		241.6
30-12-2022	3.0	154.2		0.0	1008.4		239.4
31-12-2022	- 2,8	171.2		0.0	1007.6	1.5	222.5

Dec - 2022

.....

			Report Type	e: Average Rep	ort		
	From:	01-01-2023	0:00:00	Hrs To:	31-01-2023	23:59:59	Hrs
		Create	ed by Adani.	Created at	01-01-2023	11:00:05 AM	-
Date	AQMS- Wind_Speed (km/h)	AQMS- Wind_Directio n(Degree)	AQMS-RH (%)	AQMS Total Rain Fall (mm)	AQMS-Atm. Pressure (mBar)	AQMS-Atm. Temperature (Degree)	AQMS- Solar_Radiatic n (w/m2)
dug	5.0	118	37	0.0	1003,1	31.7	212.4
Min	L4	71	81.8		996.1	30.1	118.9
Max	9.8	163	97.1	and the second second	1008.4	33.1	255.9
01-01-2023	2.5	161.0	•	0.0	1007.1	•	241.4
02-01-2023	2.6	129.7	•	0.0	1006.9		244.8
03-01-2023	3.5	114.6		0.0	1007.0	•	220.2
04-01-2023	6.2	84.3		0.0	1006.1		200.1
05-01-2023	8.0	85.4	•	0.0	1006.4		233.7
06-01-2023	7.3	80.6		0.0	1007.8	•	192.4
07-01-2023	7.4	73.4		0.0	1007.0		194.7
08-01-2023	5.1	106.8		0.0	1006.3	•	159.2
09-01-2023	5.9	78.9	•	0.0	1007.4		239.6
10-01-2023	6.6	124.9	1. 1. 1. 1.	0.0	1007.7		- 248.7
11-01-2023	4.2	163.0	10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0.0	1005.2		238.6
12-01-2023	3.0	160.4		0.0	1004.3		255.9
13-01-2023		163.0		0.0	- 1005.8-		167.6
14-01-2023	2.9	147.1	82.0	0.0	1007.0	30.8	232.2
15-01-2023	2.1	162.6	85.8	0.0	1006.4	30.1	233.9
16-01-2023	3.4	152.7	85.4	0.0	1007.1	30.5	241.4
17-01-2023	3.5	155.8	83.3	0.0	1007.8	31.1	233.8
18-01-2023	3.7	155.8	82.5	0.0	1009.1	31.4	221.8
19-01-2023	3.3	131.6	82.6	0.0	1008.9	31.4	229.0
20-01-2023	4.2	140.7	93.8	0.0	1008.3	31.4	118.9
21-01-2023	6.7	85.6	88.2	0.0	1007.5	32.6	214.4
22-01-2023	5.7	88.7	83.4	0.0	1006.9	32.3	183.8
23-01-2023	6.3	84.3	89.4	0.0	1006.0	32.4	151.5
24-01-2023	5.7	85.2	83.3	0.0	1006.4	32.5	238.6
25-01-2023	5.0	112.7	8L.8	0.0	1006.4	32.1	227.4
26-01-2023	5.7	133.0	89.3	0.0	1006.4	31.4	189.4
27-01-2023	4.1	94.6	82.7	0.0	1006.4	32.0	239.3
28-01-2023	5.9	147.5	95.3	0.0	1005.7	31.1	215.1
29-01-2023	6.3	108.1	92.3	0.0	1004.4	32.6	205.5
30-01-2023	6.9	83.8	95.2	0.0	1005.5	33.1	205.2
31-01-2023	9.8	70.5	97.1	0.0	1005.0	32.7	166.3

1.200

(1) (2) (3)

Jan - 2023

Page 13 of 44

2.5-

 $\sim \infty$

.

4

.

1. 1. 1. L

	Mari	ne Infrast	tructur	e Develo	per Privat	e Ltd	
	-22.252.77	Contra a contra		: Average Repor	Service and the service of the servi	and setting	
N N I S I	From	CONTRACTOR OF	0:00:00	and the second	and the second second	23:59:59	Hrs
		Creat	ted by Adani. Created at 01-02-2023 10:25:01 AM				
Date	AQMS- Wind_Speed (km/h)	AQMS- Wind_Direction (Degree)	AQMS-RH (%)	AQMS Total Rain Fall (mm)	AQMS-Atm. Pressure (mBar)	AQMS-Atm. Temperature (Degree)	AQMS- Solar_Rediation (m/m2)
deg	4.3	148	78	0.0	1006.3	28,5	232.4
Min	2.4	79	69.7		1004.6	27.2	120.3
Max	10.3	191	96.8		1009.6	32.9	263.5
01-02-2023	10.3	81.0	96.8	0.0	1004.6	32.6	180.0
02-02-2023	8.7	81.8	91.0	0.0	1005.2	32.9	120.3
03-02-2023	6.3	86.2	85.0	0.0	1005.7	31.4	120.3
04-02-2023	5.1	79.1	69.7	0.0	1004.7	29.1	225.4
05-02-2023	3.3	124.8	72.3	0.0	1094.6	28.2	231.8
06-02-2023	3.2	150.6	78.5	0.0	1004.9	27.8	241.5
07-02-2023	4.3	152.4	76.2	0.0	1004.6	28.2	242.9
08-02-2023	3.0	144.8	71.9	0.0	1004.7	27.9	242.8
09-02-2023	2.7	167.0	73.5	0.0	1005.5	27.5	229.5
10-02-2023	3.7	166.0	71.9	0.0	1006.4	27.9	241.8
11-02-2023	2.8	171.6	74.8	0.0	1006.6	27.4	171.9
12-02-2023	3.4	190.5	76.0	0.0	1006.7	27.3	253.4
13-02-2023	3.5	162.9	76.2	0.0	1006.7	27.2	255.7
14-02-2023	4.2	156.0	76.8	0.0	1006.7	27.4	253.0
15-02-2023	3.8	155.3	77.9	0.0	1005.3	27.7	247.8
16-02-2023	2.7	171.8	77.3	0.0	1605.7	27.6	240.1
17-02-2023	2.4	187.7	75.2	0.0	1006.2	27.6	246.6
18-02-2023	4.1	167.5	77.4	0.0	1006.4	28.1	256.3
19-02-2023	4.6	128.6	75.3	0.0	1006.5	29.0	262.0
20-02-2023	4.0	162.4	75.1	0.0	1006.5	28.4	252.3
21-02-2023	4.9	173.5	76.1	0.0	1006.5	28.2	241.8
22-02-2023	3.5	168.3	77.2	0.0	1006.2	28.4	240.7
23-02-2023	4.8	165.2	76.1	0.0	1006.2	28.2	258.0
24-02-2023	4.1	178.1	75.3	0.0	1006.8	28.4	263.5
25-02-2023	3.3	166.7	78.9	0.0	1008.3	27.6	248.6
26-02-2023	3.4	155.4	79.1	0.0	1009.5	27.9	247.0
27-02-2023	4.6	152.3	80.0	0.0	1009.6	28.0	259.5
28-02-2023	4.8	108.1	79.5	0.0	1009.5	29.3	231.6

Page 14 of 44

-

.

				e: Average Re	loper Priv	Summer and Summer and	
	From:	01-03-2023	0:00:00	and the second se		23:59:59	Max
			ed by Adani.	Created a		9:28:17 AM	nis
Date	AQMS- Wind_Speed (km/h)	AQMS- Wind_Directio n(Degree)	AQMS-RH (%)	AQMS Total Rain Fall (mm)	AQMS-Atm. Pressure (mBar)	AQMS-Atm. Temperature (Degree)	AQMS- Solar_Radiatic n (w/m2)
Arg	3.7	175	87	0.0	1003.1	30.2	225.1
Min	2.0	80	70.2	Contract Char	996.1	28.8	141.1
Max	5.6	253	99.2		1008.4	31.6	294.1
01-03-2023	5.5	84.1	74.5	0.0	1009.5	30.1	239.9
02-03-2023	4.5	100.9	70.2	0.0	1009.7	29.6	253.7
03-03-2023	3.6	130.1	73.9	0.0	1010.1	28.9	244.3
04-03-2023	4.0	96.6	75.4	0.0	1009.9	29.5	239.4
05-03-2023	4.7	101.1	83.9	0.0	1009.4	29.2	243.9
06-03-2023	2.9	145.6	83.6	0.0	1008.1	28.8	250.6
07-03-2023	4.1	130.0	78.0	0.0	1007.6	29.2	240.9
08-03-2023	- 5.6 -	-112.8	77.8	0.0	1007.5	29.7_	- 237.8
09-03-2023	5.0	79.9	78.9	0.0	1006.8	29.9	203.3
10-03-2023	4.0	128.7	80.8	0.0	1006.3	29.4	211.9
11-03-2023	5.5	87.7	76.7	0.0	.1006.4	30.2	228.8
12-03-2023	4.7	123.5	85.5	0.0	1006.2	29.6	227.5
13-03-2023	4.0	132.1	88.5	0.0	1005.1	29.4	224.3
14-03-2023	3.0	150.6	83.6	0.0	1004.1	28.8	163.6
15-03-2023	3.8	200.3	71.8	0.0	1003.2	30.1	203.7
16-03-2023	4.8	186.6	71.1	0.0	1004.0	31.0	231.1
17-03-2023	4.7	128.3	88.4	0.0	1005.7	29.7	141.1
18-03-2023	3.8	191.7	96.0	0.0	1005.2	30.9	228.6
19-03-2023	2.2	233.1	97.1	0.0	1004.4	29.7	152.3
20-03-2023	2.8	234.9	96.6	0.0	1003.9	29.7	221.2
21-03-2023	2.0	252.7	97.1	0.0	1003.6	30.7	241.5
22-03-2023	2.7	241.9	96.8	0.0	1004.1	31.4	205.3
23-03-2023	2.3	239.7	99.2	0.0	1004.4	30.9	157.4
24-03-2023	3.4	243.2	95.9	0.0	1004.6	30.9	235.9
25-03-2023	2.9	242.3	96.7	0.0	1005.9	31.5	238.5
26-03-2023	2.6	236.7	96.2	0.0	1005.1	31.4	239.8
27-03-2023	3.8	233.9	95.8	0.0	1004.2	31.6	239.1
28-03-2023	3.2	236.7	96.7	0.0	1004.8	31.5	224.3
29-03-2023	3.2	243.2	93.1	0.0	1005.8	31.5	255.8
30-03-2023	3.3	239.1	92.5	0.0	1005.3	31.2	294.1
31-03-2023	3.4	235.4	93.7	0.0	1004.1	31.2	258.6

Mar - 2023

1.00

ii. AMBIENT AIR QUALITY

Ambient air quality monitoring is required to determine the existing quality of air, evaluation of the effectiveness of control system and to identify areas in need of restoration and their prioritization. In order to generate background data, air quality monitoring is conducted to assess existing level of contamination and to assess possible effects of air contamination occurring in future.

1.127

Page 15 of 44

13

+ · · · -

Frequency of Monitoring

The frequency of monitoring that has been followed for sampling of ambient air quality is that one sample per weekly twice at three locations.

Station code	Location	Geographical location	Environmental setting
AAQ1	Near Marine Control Tower	13 ⁰ 18'55" N 80 ⁰ 20' 45" E	Industrial
AAQ2	Near Port Main Gate	13° 18'51" N 80° 19' 28" E	Industrial
AAQ3	Kattupalli village	13 ⁰ 18'18" N 80 ⁰ 19' 48" E	Village
AAQ4	_ Kalanji village	13º 20'8" N 80º 20' 0" E	Village
CAAQM 1	Port Operating Building	13° 18'45.68"N 80° 20'25.50"E	Industrial

DETAILS OF AMBIENT AIR QUALITY MONITORING LOCATIONS

Fig - 2. AMBIENT AIR SAMPLING STATIONS LOCATION MAP

S.N O	Parameter	Technique	Unit	Minimum Detectable Limit
1	PM10	Respirable Dust Sampler (Gravimetric method)	µg/m³	1.0
2	PM _{2.5}	Fine particle Sampler (Gravimetric method)	µg/m³	5.0
3	Sulphur Dioxide	Modified West and Gaeke method	µg/m³	4.0
4	Nitrogen Oxide	Jacob & Hochheiser method	µg/m ³	6.0
5	Lead	Atomic Absorption Spectrometry	µg/m³	0.5
6	Carbon Monoxide	Draggers Tube	mg/m ³	0.1
7	Ozone	UV Photometric	µg/m ³	2.0
8	Ammonia	Indophenol blue method	µg/m³	2.0
9	Benzene	Gas Chromatography	µg/m³	1.0
10	Benzene (a) pyrene	Gas Chromatography	ng/m³ -	0.1
11	Arsenic	Atomic Absorption Spectrometry	ng/m ³	1.0

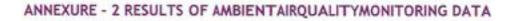
Atomic Absorption Spectrometry

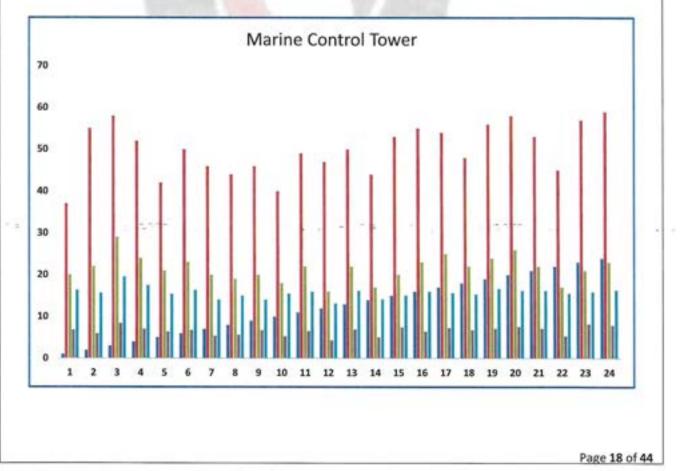
TECHNIQUES USED FOR AMBIENT AIR QUALITY MONITORING

1212

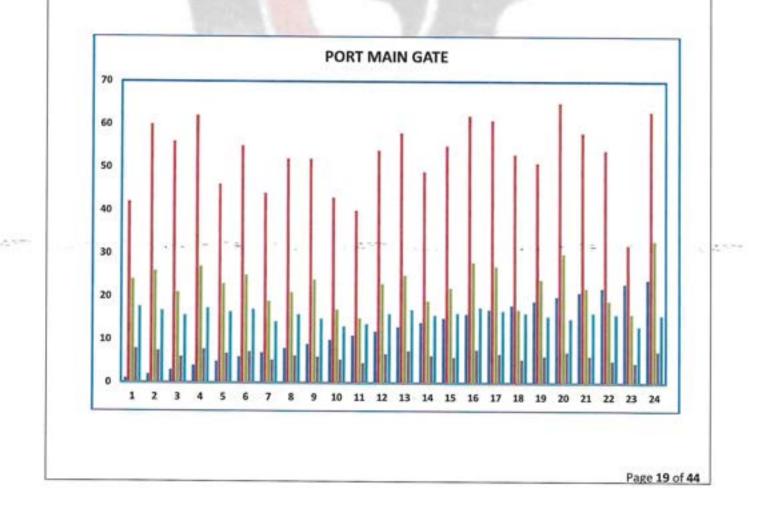
Results and Discussion

12 Nickel

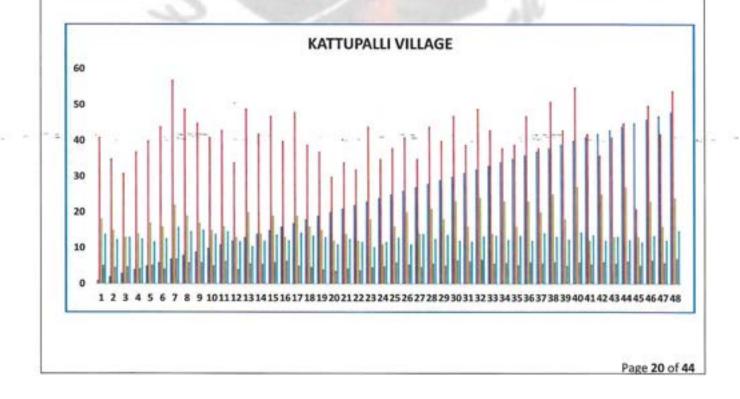

The results of the ambient air quality for the study period are submitted. The minimum, maximum 98th percentile and average values have been computed from the observed raw data for all the AAQ monitoring stations. The summary of these results for all the locations is presented in the Table and the detailed analytical results are shown in Annexure - 2. These are compared with the standards prescribed by Central Pollution Control Board (CPCB) for "Industrial, Rural, Residential and other areas"

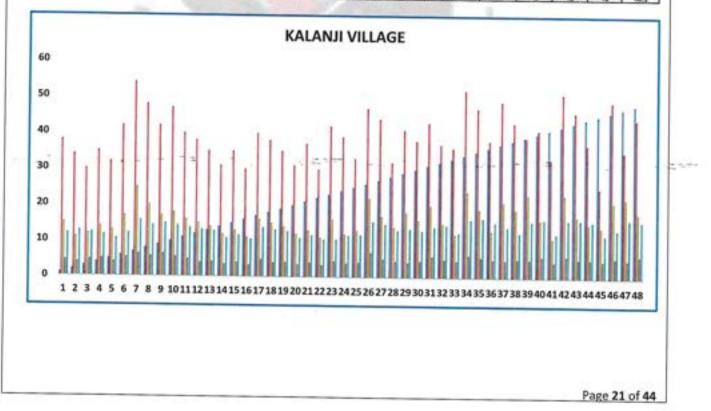

ng/m³

Page 17 of 44


5.0

	Param	eters	Particular matter PM10	Particular matter PM2.5	Sulphur dioxide as SO2	Nitrogen dioxide as NO2	Lead as Pb	Carbon monoxide as CO	Otone as 03	Ammonia as NH3	Arsenic as As	Nickel as Ni	Benzene as CEHG	Benzo (a) pyrene ar BaP
	Uni	t	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	mg/m3	yg/m3	µg/m3	ng/m3	ng/m3	µg/m3	ng/m3
	National AAQ	M Standard	100	60	80	80	1	4	180	400	6	20	5	1
S.No.	Sampling Date	Report Number	1.1.1.1	-	2		Sec. 13	Sec. 13	1	S		1.00		·
1	10.10.2022	GCS/LAB/5/1886/22-23	17	20	6.5	16.4	<0.1	<1.0	<10	4	9	2	<1	-0.1
2	14.10.2022	GCS/LAB/5/1886/22-23	55	22	5.9	15.7	<0.1	<1.0	<10	4	4	4	4	<0.1
3	25.10.2022	GCS/UA8/S/1886/22-23	58	29	8,4	19,6	<0.1	<1.0	<10	2	9	2	<1	-0.1
4	28.10.2022	GCS/LAB/S/1886/22-23	52	24	7	17.5	<0.1	<1.0	<10	4	4	0	a	<0.1
5	07.11.2022	GCS/UA8/S/1987/22-23	42	21	6,3	15.4	<0.1	<1.0	<10	9	9	2	<1	<0.1
6	21.11.2022	GCS/UA8/5/1987/22-23	50	23	6.7	16.4	<0.1	<1.0	<10	a	2	2	4	<0.1
7	25.11.2022	GCS/LAB/S/1987/22-23	46	20	5.4	14.1	<0.1	<1.0	<10	9	9	<2	4	<0.1
8	28.11.2022	GCS/UA8/5/1987/22-23	44	19	5.6	15	<0.1	<1.0	<10	2	2	<2	4	<0.1
9	05.12.2022	GCS/LAB/S/2126/22-23	46	20	6.7	14.1	<0.1	<1.0	<10	9	9	2	<1	<0.1
10	19.12.2022	GCS/UAB/S/2126/22-23	40	18	5.3	15.5	<0.1	<1.0	<10	2	2	42	4	<0.1
11	23.12.2022	GCS/UA8/5/2126/22-23	49	22	6.5	16	<0.1	<1.0	<10	9	9	2	4	<0.1
12	30.12.2022	GCS/UA8/5/2126/22-23	47	16	43	13.2	40.1	<1.0	<10	2	2	2	d b	<0.1
13	09.01.2023	GCS/LAB/S/2175/22-23	50	22	6.9	16.2	<0.1	<1.0	<10	2	4	0	4	<0.1
14	13.01.2023	GCS/LAB/S/2175/22-23	44	17	5	14.2	<0.1	<1.0	<10	2	2	<2	d	<0.1
15	23.01.2023	GCS/UAB/S/2175/22-23	53	20	7.4	15.1	-0.1	<1.0	<10	2	0	1	<1	<0.1
16	27.01.2023	GCS/UA8/S/2175/22-23	55	23	6,4	16	<0.1	<1.0	<10	2	2	2	4	<0.1
17	06.02.2023	GCS/UA8/S/2297/22-23	54	25	7.3	15.7	<0.1	<1.0	<10	2	2	4	4	<0.1
18	10.02.2023	GCS/UAB/S/2297/22-23	48	22	6.8	15.3	40.1	<1.0	<10	2	<2	2	4	<0.1
19	20.02.2023	GCS/UAB/S/2297/22-23	56	24	7.1	16.7	<0.1	<1.0	<10	4	-2	4	4	<0.1
20	24.02.2023	GCS/LA8/S/2297/22-23	58	26	7.5	16.2	-0.1	<1.0	<10	2	2	2	<1	<0.1
21	06.03.2023	GCS/UAB/S/2355/22-23	53	22	7.1	16.2	-01	4.0	<10	2	2	4	d .	<0.1
22	10.03.2023	GCS/LAB/S/2355/22-23	45	17	5.3	15.5	<0.1	<1.0	<10	2	2	9	<1	<0.1
23	20.03.2023	GCS/UAII/S/2355/22-23	57	21	8.2	15.9	-0.1	<1.0	<10	2	2	2	- 1	<0.1
24	27.03.2023	GCS/LAB/5/2355/22-23	59	23	7.5	16.4	411	<1.0	<10	2	2	9	<1	<0.1




				PC	RT MAI	N GATE (AAQ2)	· · · ·						
	Param	eters	Particular matter PM10		Sulphur dioxide as \$02	Nitrogen	Lead as Pb	Carbon monoxide as CD	Ozone as O3	Ammonia as NH3	Arsenic as As	Nickel as Ni	Benzene as C6H6	Benzo (a pyrene a BaP
	Uni		µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	mg/m3	µg/m3	ug/m3	ng/m3	ng/m3	µg/m3	ng/m3
	National AAQ	M Standard	100	60	80	80	1	4	180	400	6	20	5	1
S.No.	Sampling Date	Report Number		1										
1	03.10.2022	GC5/LAB/5/1886/22-23	42	24	7.9	17.7	<0.1	<1.0	<10	9	0	a	<1	1.0>
2	07.10.2022	GCS/LAB/S/1886/22-23	60	25	7,4	16.8	<0.1	<1.0	<10	4	9	9	d	<0.1
3	17.10.2022	GCS/UA8/S/1886/22-23	56	21	6	15.7	<0.1	<1.0	<10	4	a	9	d	<0.1
4	21.10.2022	GCS/LA8/S/1886/22-23	叔	27	7.8	17,4	<0.1	<1.0	<10	2	9	0	d	-0.1
5	01.11.2022	GCS/LA8/5/1987/22-23	46	23	6.8	16.5	<0.1	<1.0	<10	2	a	4	4	<0.1
6	04.11.2022	GC\$/LAB/5/1987/22-23	55	25	7.2	17.1	<0.1	<1.0	<10	a	9	9	d	-0.1
7	14.11.2022	GCS/LAB/S/1987/22-23	44	19	5.3	14.2	<0.1	<1.0	<10	4	9	9	d	<0.1
8	18.11.2022	GCS/LAB/S/1987/22-23	52	21	6.3	15.9	<0.1	<1.0	<10	2	9	0	4	<0.1
9	01.12.2022	GCS/LAB/S/2126/22-23	52	24	6	14.9	<0.1	<1.0	<10	2	42	4	4	-01
10	12.12.2022	GCS/LAB/5/2126/22-23	43	17	5.4	13.2	<0.1	<1.0	<10	4	9	9	d	<0.1
11	16.12.2022	GC\$/\AB/\$/2126/22-23	40	15	4.6	13.7	<0.1	<1.0	<10	9	9	9	4	<0.1
12	26.12.2022	GCS/LAB/S/2126/22-23	54	23	6.7	16.1	<0.1	<1.0	<10	2	4	4	<1	<0.1
13	02.01.2023	GCS/LAB/S/2175/22-23	58	B	7.4	17	<0.1	<1.0	<10	2	2	4	4	<0.1
14	06.01.2023	GCS/LAB/S/2175/22-23	49	19	6.3	15.7	<0.1	<1.0	<10	2	a	9	d	<0.1
15	17.01.2023	GC\$/LAB/\$/2175/22-23	55	22	5.9	16.2	<0.1	<1.0	<10	4	9	2	<1	<0.1
16	20.01.2023	GCS/LAB/S/2175/22-23	62	28	7.3	17.5	<0.1	<1.0	<10	2	4	0	4	<0.1
17	01.02.2023	GCS/LAB/S/2297/22-23	61	27	6.7	16.7	<0.1	<1.0	<10	2	2	0	<1	<0.1
18	03.02.2023	GCS/LAB/S/2297/22-23	53	17	5.4	16.2	41	<1.0	<10	2	4	4	d	-0.1
19	13.02.2023	GCS/LAB/S/2297/22-23	51	24	6.2	15.5	-0.1	4.0	<10	2	4	9	4	<0.1
20	17.02.2023	GCS/LA8/S/2297/22-23	65	30	7.1	14.9	<0.1	<1.0	<10	2	2	4	<1	<0.1
21	03.03.2023	GCS/LA8/5/2355/22-23	58	22	6.2	16.3	<0.1	<1.0	<10	2	2	4	<1	-01
22	13.03.2023	GCS/LAB/S/2355/22-23	54	19	5.1	15.9	<0.1	<1.0	<10	4	4	9	<1	<0.1
23	17.03.2023	GC\$/LAB/\$/2355/22-23	32	25	4,6	13.2	<0.1	<1.0	<10	4	9	0	d	<0.1
24	29.03.2023	GC\$/LAB/\$/2355/22-23	63	33	7.3	15.7	<0.1	<1.0	<10	9	2	a	-0	<0.1

				_		I VILLAG	E (AAQ	(3)						
	Paramete	ers.	Particular matter PM10	matter PM2.5	Sulphur dioxide as SO2	Nitragen dioxide as NOZ	Lead as Pb	Carbon monoxide as CO	Ozone as 03	Ammonia as NH3	Arsenic as As	Nickel as Ni	Benzene as CEHS	Benzo (a pyrene a BaP
	Unit		pg/m3	yg/m3	ug/m3	ug/m3	ug/m3	mg/m3	µg/m3	ug/m3	ng/m3	ng/m3	HE/m3	ng/m3
	National AAQM	Standard	100	60	80	80	1	- 4	180	400	6	20	5	1
5.No.	Sampling Date	Report Number			12.000						- · · · · · · · · · · · · · · · · · · ·			
1	03.10.2022	GCS/LAB/S/1886/22-	-41	18	5.2	13.9	<0.1	<1.0	<10	.4	<2	-2	<1	<0.1
2	07.10.2022	GCS/LAB/S/1886/22-	25	15	4.6	12.4	<0.1	<1.0	<10	4	4	4	<1	<0.1
3	10.10.2022	GCS/LAB/S/1886/22-	31	13	4.8	13	<0.1	<1.0	<10	9	d.	9	- 41	-0.1
- 4	14,10,2022	GCS/LAB/S/1886/22-	37	14	43	12.6	<0.1	<1.0	<10	4	2	4	<1	<0.1
5	17.50.2022	GCS/LAB/S/1886/22-	40	17	5.1	11.8	<0.1	<1.0	<10	4	4	4	d	-00.1
6	21.10.2022	GCS/LAB/S/1886/22-	-64	16	4.2	12.7	<0.1	<1.0	<10	- a	Q.	9	<1	<0.1
7	25.10.2022	GCS/LAB/S/1886/22-	57	22	7	15.9	<0.1	<1.0	<10	12	- 12	12	- 4	<0.1
	28,10,2022	GCS/LAB/S/1886/22-	49	19	- 6	14.7	<0.1	<1.0	<10	- 2	<2	- 2	<1	<0.1
	01.11.2022	GCS/LAB/S/1987/22-	.45	17	6	15.1	<0.1	<1.0	<10	4	2	<2	<1	+0.1
10	04.11.2022	GCS/LAB/S/1987/22-	-41	15	5.2	13.9	<0.1	<1.0	<10	-12	-12	-2	<1	<0.1
11	67,11,2022	GCS/LAB/S/1987/22-	-43	16	6.1	14.7	<0.1	<1.0	<10	4	<2	-2	<1	<0.1
12	14.11.2022	GCS/LAB/S/1987/22-	34	13	4	11.9	<0.1	<1.0	<10	<2	9	-2	-1	+0.1
13	18.11.2022	GCS/LAB/S/1987/22-	45	20	5.7	10.5	+0.1	<1.0	<10	-2	-2	2	<1	<0.1
14	21,11,2022	GCS/LAB/S/1987/22-	42	14	5.5	12	<0.1	<1.0	<10	42	<2	<2	<1	<0.1
15	25.11.2022	GCS/LAB/S/1987/22-	.47	19	6.1	13.8	<0.1	<1.0	<10		q.	- 42	<1.	+0.1
16	28.11.2022	GCS/LAB/S/1987/22-	40	13	6.4	12.2	<0.1	<1.0	<10	-2	-2	12	<1	<0.1
17	01.12.2072	GCS/LAE/S/2126/22-	- 48	19	5.1	14.3	<0.1	<1.0	<10	<2	4	1	<d 1<="" td=""><td><0.1</td></d>	<0.1
18	05.12,2022	GCS/LAB/S/2126/22-	39	18	4.7	13.5	<0.1	<1.0	<10	4	q	0	4	+0.1
19	12.12.2022	GCS/LAB/S/2126/22-	37	15	4	13.1	-0.1	<1.0	<10	-2	-2	2	<1	<0.1
20	36.12.2022	6CS/LAB/S/2126/22-	30	12	3.6	11	<0.1	<1.0	<10	4	4	4	<1	<0.1
21	19.12.2022	GCS/LAB/S/2126/22-	34	14	43	12.5	<0.1	<1.0	<50	4	4	0	-d	<0.3
22	23.12.2022	GCS/LAB/S/2126/22-	32	12	3.8	11.7	-0.1	<1.0	<10	-42	-2	<2	<1 .	<0.1
23	26.12.2022	GCS/LAB/S/2126/22-	- 44		4.6	10.3	-0.1	<1.0	<10	4	4	<2	<1	C0.1
24	30.12.2022	GCS/LAB/S/2126/22-	35	11	4.9	. 11.7	<0.1	<1.0	<10	a.	9	0	-d	<0.1
25	02.01.2023	GCS/LAB/S/2175/22-	58	16		12.9	-0.1	<1.0	<30	42	2	- a	<1	<0.1
26	06.01.2023	GCS/LAB/S/2175/22-	.41	20	5.4	11	<0.1	<1.0	<10	4	-2	2	<1	<0.1
27	09.01.2023	GCS/LAE/S/2175/22-	- 35	14	4.7	14	<0.1	<1.0	<10	a	9	9	4	+0.1
28	13.01.2023	GCS/LAB/S/2175/22-	-44	21	5.7	12.5	-0.1	<1.0	<10	-2	-2	12	<1	<0.1
29	17.01.2023	GCS/LAB/S/2175/22-	40	18	- 33	13.7	<0.1	<1.0	<30	4	4	4	- 3	1.00.1
30	20.01.2023	GCS/LAB/S/2175/22-	47	23	6.6	12.1	<0.1	<1.0	<30	9	9	2	- 41	<0.1
31	23.01.2023	GCS/LAB/S/2175/22-	25	16	6.3	11.5	-0.1	<1.0	<10	-2	-2	-2	<1	<0.1
32	27.01.2023	GCS/LAB/3/2175/22-	49	24	6.8	13.3	<0.1	<1.0	<30	<2	4	0	<1	<0.1
33	01.02.2023	GCS/LAB/5/2297/22-	-43	14	5.7	13.5	-01.1	<1.0	<30	2	2	2	4	-0.1
34	03.02.2023	GCS/LAB/S/2217/22-	38	23	5.9	12.3	-0.1	<1.0	<10	2	2	12	<1	<0.1
35	06.02.2023	GCS/LAB/S/2297/22-	20	16	5.2	13.4	<0.1	<1.0	<10	-2	1	-2	<1	<0.1
36	10.02.2023	GCS/LAB/S/2297/22-	47	23	6.1	12.1	<0.1	<1.0	<10	9	9	- 2	-	-0.1
37	13.02.2023	GCS/LAR/S/2297/22-	38	20	5.8	14.2	-0.1	<1.0	<10	2	2	-2	<1	<0.1
38	17.02.2023	6CS/LAB/S/2297/22-	53	25	6.1	13.2	-9.1	<1.0	<10	2	-2	2	<1	<0.1
39	20.02.2023	GCS/LAB/S/2297/22-	43	- 18	5.1	12.4	<0.1	<1.0	<10	-2	4	4	d	<0.1
40	24.02.2023	GCS/LAB/S/2297/22-	55	27	. 6	14.4	<0.1	<1.0	<10	0	2	-2	-	-0.1
-41	03.03.2023	GCS/LAB/S/2355/22-	42	12	5.5	13.6	-0.1	<1.0	<10	-2	-2	-2	<1	<0.1
42	06.03.2023	GCS/LAB/S/2355/22-	36	25	5.1	12.1	<0.1	<1.0	<10	0	<2	-2	<1	<0.1
41	10.03.2023	GCS/LAR/S/2355/22-	41	13	5.6	13.2	<0.1	<1.0	<10	2	-2	4	4	-0.1
44	13.03.2023	GCS/LAB/S/2355/22-	45	27	6.3	12.5	+0.1	<1.0	<10	4	-12	12	4	<0.1
45	17,03.2023	GCS/LAB/S/2355/22-	21	13	5.2	11.6	<0.1	<1.0	<10	a	- 2	10	A	<0.1
46	20.03.2023	GCS/LAB/S/2355/22-	50	23	6.6	13.5	<0.1	<1.0	<10	a	4	- 2	4	-0.1
47	27.03.2023	GCS/LAB/S/2355/22-	47	16	3.9	12.2	<6.1	<1.0	<10	9	+2	2	4	<0.1
48	29.03.2023	GCS/LAB/S/2355/22-	54	24	7.1	-14.9	<0.1	<1.0	<10	4	-12	1.0	d	<0.1

			_	K	ALANJI \	VILLAGE	(AAQ4)							-
	Paramet	ers	Particular matter PM30	Particular matter PM2.5	Sulphur dicxide as SO2	Nitrogen dioxide as NO2	Lead as Pb	Carbon monoxide as CD	Ozone as O3	Ammonia as NH3	Arsenic as As	Nickel as Ni	Benzene as CSHS	Benzo (a pyrene a Balt
	Unit		jg/m3	ag/m3	pg/m3	98/m3	µg/m3	mg/m3	ug/m3	Hg/m3	ne/m3	ng/m3	- infant	
	National AAQM	Standard	100	60	80	80	1	4	1.80	400			pg/m3	ng/m3
S.No.	Sampling Date	Report Number	-			-			190	400	4	20	5	1
1	03.10.2022	GCS/LAB/5/1886/22-	38	15						S				1.000
2	07.10.2022	GCS/LAB/S/1886/22-	34	11	45	12	<0.1	<1.0	<10	-2	9	2	d	<0.1
1	30.10.2022	GCS/LAB/5/1886/22-	30	12	47	12.8	<0.1	<1.0	<10	2	<2	9	- 41	<0.1
4	14.10.2022	GCS/LAB/S/1886/22-	35	14		11.7	<0.1 <0.1	<1.0	<10	-2	4	2	<1	<0.1
5	17.10.2022	GCS/LAB/S/1886/22-	12	13	41	10.6	-00.1	<1.0	<10	4	- 2	9	<1	<0.1
6	21.30,2022	GC5/LAB/S/1886/22-	42	17.	5.3	12.1	<0.1	<1.0 <1.0	<30	2	-2	9	-0	<0.1
7	25.30.2022	GCS/LAB/S/1806/22-	54	25	6.3	15.7	<0.1	<1.0	<20	4	4	9	<1	<0.1
8	28.50.2022	OCS/LAB/S/1886/22-	48	20	5.7	14.3	-0.1	<1.0	<10	9		2	d	<0.1
	01.11.2022	GCS/LAB/S/1987/22-	42	17	6.4	14.5	<0.1	<1.0	<10	4	0	2	<u>a</u>	<0.1
10	04.11.2022	GCS/LAB/S/1987/22-	- 47	18	3.4	14.2	<0.1	<1.0	<10	4	9	9	4	-0.1
11	07.11.2022	GCS/LAB/S/1987/22-	40	16	4.9	13.7	<0.1	<1.0	<10	4	42	2 2	D	-9.1
12	14.11.2022	GCS/LA8/S/1987/22-	38	15	4	15.1	<0.1	<1.0	<10	0	4	12	D	-0.1
13	18.11.2022	GCS/LAB/5/1987/22-	35	14	4.2	12.7	<0.1	<1.0	<10	4	9	4	<u>b</u>	-0.1
14	21.11.2022	GCS/LAB/S/1987/22-	11	32	3.5	10.8	<0.1	<1.0	<10	4	-2	9	0 0	-0.1
15	25.11.2022	GCS/LAB/S/1987/22-	35	11	4.1	11.6	-9.1	<1.0	<10	42	d	4	d	-01
16	28.11.2022	GCS/LAB/S/1987/22-	30	11	3.3	10.5	<0.1	<1.0	<10	2	42	4	-41	<0.1
17	01.12.2022	GCS/LAB/S/2126/22-	40	36	4.9	13.7	-0.1	<1.0	<10	2	-12	9	-1	<0.1
18	05.12.2022	GCS/LAB/S/2126/22-	38	15	4	13.1	<0.1	<1.0	<10	4	9	-2	-d	+0.1
19	12.12.2022	GCS/LAB/S/2126/22-	35	14	4.2	12.7	<0.1	<1.0	<30	0	-2	4	d	<0.1
20	16.12.2022	GCS/LAB/S/2126/22-	31	12	1.5	10.8	<0.1	<1.0	<30	-2	4	9	4	<0.1
21	19,12,2022	GCS/LA8/S/2126/22-	37	13	4.1	11.6	<0.1	<1.0	<10	4	4	2	4	<0.1
22	23.12.2022	GCS/LAB/S/2126/22-	30	11	3.8	30.5	<0.1	<1.0	<10	9	-12	4	d	40.1
23	26.12.2022	GCS/LAB/S/2126/22-	42	16	4.5	10.5	<0.1	<1.0	<10	-2	4	0	4	<0.1
24 25	30.12.2022	GCS/LAB/S/2126/22-	39	12	3.9	11.6	<0.1	<1.0	<10	4	9	42	d	<0.1
25	02.01.2023	GCS/TA8/S/TD5/22-	33	11	4.2	11.6	<0.1	<10 ⁻⁰		9-	- 2	- 02	d	<0.1
27	06.01.2023	GCS/LAB/S/2125/22-	47	22	7	15.5	-0.1	<1.0	<10	-2	4	0	-1	<0.1
28	the second se	GCS/LAB/S/2175/22-	44	17	5.1	14.8	<0.1	<1.0	<10	-2	0	-2	d	-00.1
29	17.01.2023	OCS/LAB/S/2175/22-	12	34	45	13.1	<0.1	<1.0	<10	4	2	-2	-0	<0.1
30		GCS/LAB/S/2175/22-	41	- 14	4.2	13.5	-0.1	<1.0	<10	-2	4	4	-d	<0.1
31	23.01.2023	GCS/LAB/S/2175/22-	38	16	4.7	13	-41	- <1.0	<10	- 2	q	-2	d	-01
12	27.01.2023	GCS/LAB/S/2175/22- GCS/LAB/S/2175/22-	- 43	20	5.5	14.1	<0.1	<1.0	<10	2	-4	2	-0	<0.1
10	01.02.2023	GCS/LAB/S/2297/22-	17	15	5.1	14.5	+0.1	<1.0	<10	-2	- 2	9	<1	-00.1
34		GCS/LAB/S/2297/22-	52	12	4.7	17.4	<0.1	<1.0	<10	-2	2	-2	<1	<0.1
15		GCS/LAB/S/2297/22-	47	24	6.3	36.2	<0.1	<1.0	<10	9	-2	4	4	<0.1
36		GCS/LAB/5/2297/22-	38		5.7	26.5	=0.1	<1.0	<10	-2	-2	- Q	<1	<0.1
37		GCS/LAB/S/2297/22-	45	21	5.1	15.4	<0.1	<1.0	<10	4	9	2	<1	+0.1
38	the second se	GCS/LAB/S/2297/22-	-0			14.1	<0.1	<1.0	<10	9	-2	42	-d	<0.1
29		GCS/LAB/S/2297/22-	39	23	5.3	12.5	-0.1	<1.0	<10	-2	4	-2	<1 .	<0.1
40	and the second se	GCS/LAB/S/2297/22-	41	16	4	15.7	<0.1	<1.0	<10	4	9	-12	4	<0.1
41		GCS/LAB/S/2355/22-	11	11	4.4	16.2	<0.1	-10	<10	d	-2	-2	d l	<0.1
42		GCS/LAR/S/2355/22-	55	23	6.1	16	-0.1	<1.0	<10	2	4	- 4	-1	<0.1
43		GCS/LA8/S/2355/22-	45	17	5.3	16.1	-01	<1.0	<10	9	4	9	<1	<0.1
44		GCS/LAB/S/2355/22-	17	.15	5.2	15.7	-01	<1.0	<10	4	9	<2	d	1.0>
45		GCS/LAB/5/2355/22-	25	14	4.8	11.9	<01	<1.0	<10	2	4	9	4	<0.1
46		GCS/LAB/S/2355/22-	49	21	5.6	13.4	<0.1		-10	2	2	2	d	-00.1
47		GC3/LAB/5/2355/22-	15	22	5.1	16.2	<0.1	<1.0	<10	2	-2	2	d	<0.1
48		GCS/LAB/S/2355/22-	68	18	6.2	15.8	40.1	<1.0	<10	2	4	9	-0	<0.1

- -

-

NATIONAL AMBIENT AIR QUALITY STANDARDS CENTRAL POLLUTION CONTROL BOARD NOTIFICATION New Delhi, the 15" Norember, 2009 No.3-25016/20/00/DC1...-In survive of the powers confarred by Sub-section (2) (b) of section 16 of the Air (Prevention and Control of Pollmison) Act. 1981 (Art No. 14 of 1981), and in upper session of the Notification No(1). 5.0, 354(E), dated 11" April, 1994 and 5.0, 935(E), dated 14" October, 1992, the Control Pollmison Control Board hereby notify the National Ambient Air Quality Standards with Immediate effect, namely:-

NATIONAL AMBIENT AIR OUALITY STANDARDS

				on in Ambient	
S. No.	Pollutant	Time Weighted average	Industrial, Residential, Rural and Other Area	Ecologically sensitive area (notified by Central Gavt.)	Methods of Measurement
(1)	(2)	(3)	(4)	(5)	(6)
		Acresse.*	(4)	(5)	. Improved West and
1	(SO ₂), µg/m ³	34 bours**	80	90	Geske - Uhttaviolet faorescence
_		Annual*	40	30	· Medified Jacob &
2	Nitrogen Dieuide (NO ₅), µg/m ³	24 hours**	50	80	Hochheiser (Na- Arsenite) • Chemiluminescence
_	Particulate Matter	Arranal*	50	60	- Gravimetric
3	(size less than 10 jam) er PM_uant/m ²	34 betas**	100	100	TOEM Idea attenuation
-	Particulate Matter	Annual*	40	40	- Gravimetric
4	(time less than 2.5 microns) or PM2.4 wg/m ²	24 hours**	60	60	TOEM Sets attenuation
_		S hears **	100	100	+ UV photometric
5	Ozone (O,) µg/m ³	1 hour **	190	180	Chemiluminescence Chemical method
		Annual*	0.5	0.5	+ ASS / ICP method
4	Lead (Pb) pg/m*	24 beurs**	1.0	1.0	after unspling on EPM 3000 er equivalent filter paper • ED - XRF using Tetlon filter

-	Carbon Monoride	S hours**	2	2	Non Dispersive Infra
7	(CO) mg/m ²	1 hour**	4	4	RED (NDR) Spectroscopy
	Ammonia (SIL)	Annual*	100	100	 Chemiltuminescence
1	MB/DE	34 hours**	400	400	 Indophenel blue method
9	Benzene (C.H.) µg/m ⁸	Annus!*	\$	5	Ons chromasography based continuous analyser Adsorption and desorption followed by OC analysis
10	Benzo (s) Pyreos (BaP) – particulate phase only na m	Annual*	1	1	Solvent extraction followed by HPLC / GC analysis
11	Arsenic (As) ng/m ³	Annus!*	6	ő	AAS / ICP method after sampling on EPM 2000 or equivalent filter coper
12	Nickel (Ni) ngim ^a	Annual*	20	20	AAS / ICP method after sampling on EPM 2000 of equivalent filter paper

Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.

34 hourly or 2 hourly or 1 hourly meninered values, as applicable, shall be compiled with 93% of the time in a year. 2% of the time, they may exceed the limits but not on two consecutive days of menitering. ---

Note: Whenever and wherever monitoring results on two consecutive days of monitoring exceed the limits specified above for the respective category, it shall be considered adequate mesons to institute regular or continuous monitoring and further investigation.

and the second second

Page 22 of 44

- 1 - CRAME

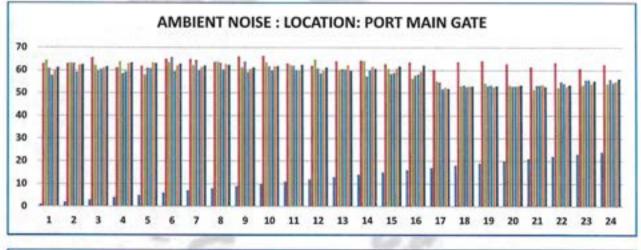
iii. AMBIENT NOISE LEVEL INTENSITY

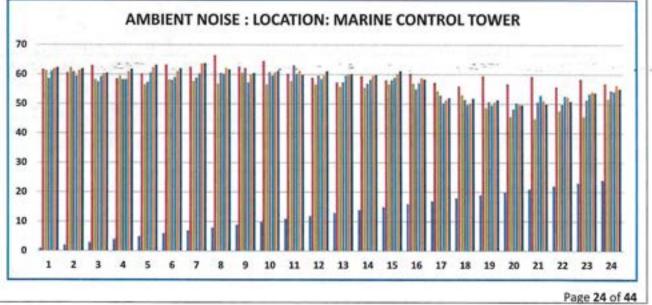
Collection of ambient noise levels at four locations. Spot noise levels where measured with a precalibrated Noise Level Meter - SL- 4023 SD for day and night periods.

STATION CODE	LOCATIONS	Geographical Location
N1	Port main gate	N 13º 18.856' E 080º 19.478'
N2	Marine control tower	N 13º 18.909' E 080º 20.756'
N3	Kattupalli village	N 13º 18.342' E 080º 19.806'
N4	Kalanji village	

DETAILS OF NOISE MONITORING LOCATIONS

Fig - 4. Noise Level Sampling Locations

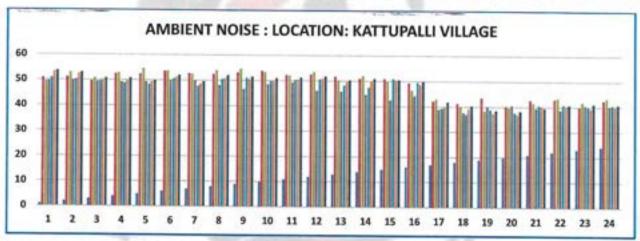


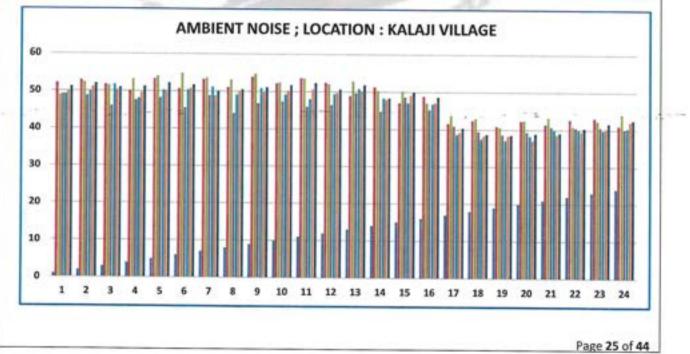

The noise levels monitored during the study period are given hereunder in form of Leq day, Leq night compared with CPCB Standards.

Page 23 of 44

Le	cation			PORT M	AIN GATE		1.1.1	S		MARINE CON	TROL TOWER		
Moor	th & Year	7-0ct	4-Nov	S-Dec	6-Jan	3-Feb	13-Mar	10-04	7 Mov	12-Dec	5-lan	6-Feb	17-Mar
Param	eter & Unit	Log db(A)	Leg dB(A)	Log dB(A)	Leg dB(A)	Log db(A)	Leg db(A)	Leg dB(A)	Leg dB(A)	Leg dB(A)	Leg dB(A)	Len dB(A)	Log dB(A)
LNo.	Time of Sampling												
1	06.00 - 07.00 (Day)	63.1	64.3	60.8	57.8	66,1	61.2	61.8	61.4	58.6	61.2	62,1	62,5
2	87.08-08.08	63	63.2	63.1	59.2	82.5	62.5	60.7	62.4	41	59.6	61.5	62
3	08.00 - 09.00	65.6	62.1	\$9.7	60.5	81.2	51.6	63.1	58.3	\$7.5	55.3	60,4	40.5
4	05.00 - 18.00	61.2	63.8	58.6	\$9.4	63	53.5	58.6	59.5	58.3	58.4	61.1	61.9
\$	10.00 - 11.00	61.9	58	84	93.8	83.4	83.1	60.3	36.6	\$ \$.4	60.5	\$2.5	63.2
.4	13.00 - 32.00	65	63.5	45.7	\$9.6	82.1	62.9	63.3	58.2	58.1	59.1	\$1.2	62.3
7	12.00 - 13.00	64.9	62.2	64.5	60.1	61.5	62	62.6	\$7.7	\$4.9	60.4	83.7	63.8
	13.00 - 14.00	63.6	63.8	83.2	60.3	62.7	\$2.5	66.5	56.8	60.5	60.3	\$2.3	\$1.7
	14.00 - 13.00	66.1	61.2	63.8	\$9.2	82.5	\$1.2	62.7	60.6	62.2	57.4	60.1	80.5
30	15.00 - 16.00	66.3	63.4	61.7	60	85.7	81.8	64.5	\$6.7	90.8	59.7	80.8	41.3
11	16.00 - 17.00	63.1	62.3	62	60.1	60	\$2,4	60.3	\$7.7	45.1	60.3	41.3	10.0
12	17.00 - 18.00	62	64.7	60.8	58.6	\$9.7	\$1.2	58.9	36.6	38.7	58.5	\$9.7	61.1
13	18.00 - 19.00	64	60.2	60.5	60.3	62.3	59.8	57.4	\$5.6	\$7,4	59.6	60.2	50.2
34	19.00 -20.00	64.3	64	\$7.3	60.1	\$1.5	52.5	59.5	55.5	56.9	\$8.2	39.7	50.0
15	20.00 - 21.00	62.8	60.6	58.4	58.9	60.8	\$1,7	58.1	56.7	58.1	58.9	60.3	61.2
36	21.00 - 22.00	63.5	56.3	\$7.7	58.2	58.4	\$2.1	60.4	36.9	55	\$7.1	58,8	58.3
57	22.00 - 21.00 (Night)	60.3	55.1	54.7	\$1.7	52,4	51.8	\$7.3	54.4	52.9	\$0.3	33.5	52
28	23.00 - 00.00	63.7	53	53.4	52.6	53	\$2.9	56.T	53	51.4	49.7	50.5	51.8
39	90.00-01.00	84.1	54.1	3.84	53.4	\$2.7	\$3	59.5	48.7	50.7	49.6	\$0.6	51.3
30	01.00-02.00	62.8	53.3	\$2,8	\$2.9	53.1	53.4	56.E	45.8	48.2	50.3	45.8	48.6
21	02.00 - 09.00	61.5	51.4	53.2	\$3.3	53.6	52.7	59.3	44.9	\$0.6	\$2.9	51.1	49.9
22	03.00 - 04.00	63.4	\$2.2	SL.9	54.1	\$2.8	\$3.5	55.8	47.5	48.8	52.6	52.3	\$0.0
23	04.00 - 05.00	60.5	\$3.5	\$5.F	55.6	54	\$5.3	58.4	45.6	31.3	\$3.4	54.1	35.7
24	95.00 - 06.00	62.6	54	1 1 10 10 10	54.5	55	56.2	56.9	51.6	54.5	54.2	36.3	11.1

2





-

1.0	cation	1	C	KATTUPA	UI VILLAGE					KALANIS	VILLAGE		
Mon	th & Year	14-Oct	22-May	16-Dec	13-Jan	10-Feb	27-Mar	17-0et	22-May	19-0ec	17-Jan	E3-Feb	29-Mar
Parama	eter & Unit	Leg db(A)	Les dB(A)	Log dB(A)	Leg db(A)	Les dB(A)	Log dB(A)	Leg dB(A)	Leg #B(A)	Log dB(A)	Log db(A)	Log dB(A)	Long distA
S.No.	Time of Sampling												
1	06.00 - 67.00 (Day)	50.9	49.6	49.7	50.9	53.4	\$3.7	82.2	48.9	49.5	49.2	10.1	11.2
1	07.00-06.00	51.2	53	49.3	\$0.2	\$2.6	53	53	52.3	48.7	50	\$1.2	12
3	08.00 - 09.00	49.7	50.8	48.5	49.7	10.3	\$0.6	51.8	\$1.5	60	51.6	30.4	-91
4	09.00 - 10.00	52.6	52.9	48.2	48.9	50.1	90.8	50.1	53.2	47.6	48.1	49.6	31.3
5	10.00 - 11.00	52,4	\$4.5	43.4	48.4	49.5	49.9	51.3	54	48.7	50.3	50.2	\$2.2
٤.	11.00 - 12.00	\$3.6	53.7	30	50.6	51.3	52	50.7	54.8	45.5	50.4	50.8	\$1.7
7	12.00 - 13.00	\$2.8	\$2.4	48.9	47.8	48.6	49.5	53.2	53.6	46.8	\$1.2	48.5	50.1
	18.00 - 14.00	\$2.5	54	48.1	50.5	53	\$12	51.1	53.1	44.1	49.1	50.1	30.5
	14.00 - 15.00	\$8.1	54.6	40.7	\$1.1	90.5	11.5	53.9	54.7	46.8	50.9	49.9	\$1.1
10	15.00 - 16.00	13.4	\$3.3	48.6	49.8	\$0.2	81	52.2	32.4	47.3	69.2	\$8.2	\$1.7
11	36.00 - 17.00	\$2.3	\$2.1	48.3	50.3	50.5	51.2	53.6	55.5	48.9	48	30.6	\$2.3
13	17.00 - 18.00	52,6	\$3.5	46.1	\$0.6	31	\$1.7	52.4	52	44.4	49.4	49.4	30.8
13	18.00 - 29.00	\$1.7	50.3	45.8	48.3	49.7	55.1	48.9	52.6	49.6	50.8	50.3	SL.
34	19.00 -20.00	51	82	44.8	47.5	60.1	50.0	\$1.3	\$0.3	44.7	48.3	48	42.3
15	20.00 ~ 21.00	\$0.0	49.8	42.5	50.9	50.4	50.4	47	\$0.2	48.6	47	49.1	42.9
34	21.00 ~ 22.00	49.4	45.4	44.2	49.6	48.8	49.3	48.8	47	45.2	46.8	47.1	48.5
19	22.00 - 23.00 (NigH)	42.2	42.9	88.8	39,3	40.1	41.8	41.6	43.7	40.9	18.7	29.2	40.4
38	23.00-00.00	41.4	40.1	37.6	37	39.1	40.1	42.4	42.9	39.4	37.5	38.3	38.7
19	00.00 - 01.00	43.8	36.3	40.1	34.9	37.5	18.5	40.9	40.6	38.6	17.1	38.3	38.5
-80	01.00 - 02.00	40.2	19.7	40.5	37.7	37	18.1	42.3	42.4	25.3	38.3	37.2	25.9
n	03.00 - 03.00	42.7	41.5	38,4	40.5	40.2	19.5	41.4	43.2	40.7	40	38.7	28.1
35	01.00 - 04.00	43	43.4	38.7	40.8	40.4	40.T	42.7	45.8	40.5	40.1	38.4	40.4
28	64.00 - 05.00	40.1	41.0	42.5	40.1	29,4	43.1	43.1	42.3	40.6	39.8	40.3	41.4
24	05.00 - 06.00	42.5	43.3	49.2	40.6	40.3	40.8	41	44.1	40.1	40.4	42.1	42.5

Ambient Air Quality Standards in respect of Noise

Area Code	Category of Area / Zone	Limits in dB(A) Leq*				
Code		Day Time	Night Time			
(A)	Industrial area	75	70			
(8)	Commercial area	65	55			
(A) (B) (C)	Residential area	55	45			
(D)	Silence Zone	50	40			

Note:- 1. Day time shall mean from 6.00 a.m. to 10.00 p.m.

2. Night time shall mean from 10.00 p.m. to 6.00 a.m.

- Silence zone is an area comprising not less than 100 metres around hospitals, educational institutions, courts, religious places or any other area which is declared as such by the competent authority
- Mixed categories of areas may be declared as one of the four above mentioned categories by the competent authority.

* dB(A) Leq denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

A "decibel" is a unit in which noise is measured.

"A", in dB(A) Leq, denotes the frequency weighting in the measurement of noise and corresponds to frequency response characteristics of the human ear.

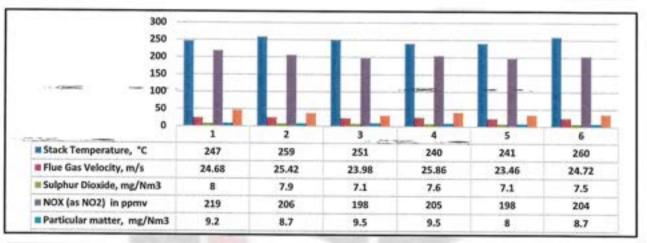
Leq: It is an energy mean of the noise level over a specified period.

iv. DGSET EMISSIONS

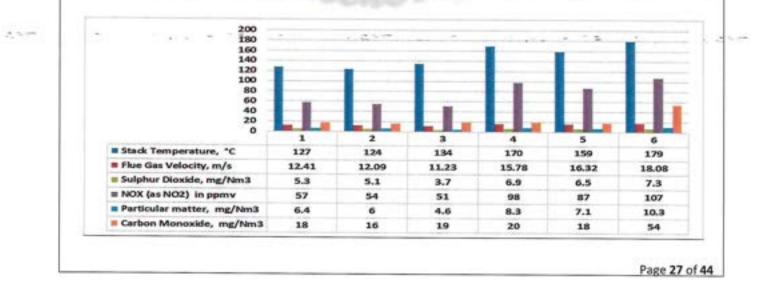
1. 1. 1

2

Sampling of Flue gas emission of 2000 KVA DG Set was done and its emissions were determined along with its noise intensity. The Detailed report has been is enclosed as Annexure - 4


STATION CODE	LOCATIONS	Geographical Location
SM - 1	DG - 1 2000 KVA	13º 19'6" N
SM - 2	DG - 2 2000 KVA	80° 19' 34" E
SM - 3	DG 125 KVA	13º 18'36" N 80º 20' 25" E
SM - 3	Liquid Terminal Hot Oil Generator Stack	13° 19'2.38" N 80° 20' 6.81" E

2.5


DETAILS OF EMISSION MONITORING LOCATIONS

	Location		DG 2000KVA -	1	DG 2000KVA - 2			
	Month & Year	17-Nov	26-Dec	20-Feb	17-Nov	26-Dec	20-Feb	
S.No.	Parameters							
1	Stack Temperature, *C	247	259	251	240	241	260	
2	Flue Gas Velocity, m/s	24.68	25.42	23.98	25.86	23.46	24.72	
3	Sulphur Dioxide, mg/Nm3	8	7.9	7.1	7.6	7.1	7.5	
4	NOX (as NO2) in ppmv	219	206	198	205	198	204	
5	Particular matter, mg/Nm3	9.2	8.7	9.5	9.5	8	8.7	
6	Carbon Monoxide, mg/Nm3	46	39	32	41	34	36	
7	Gas Discharge, Nm3/hr	6385	6429	6157	6782	6142	6157	

Location		100	DG 125 KVA	12.2	DG S00 KVA			
fonth & Ye	ar	21-Oct	31-Jan	16-Mar	21-0ct	31-Jan	16-Mar	
S.No.	Parameters		1.1					
1	Stack Temperature, "C	127	124	134	170	159	179	
2	Flue Gas Velocity, m/s	12.41	12.09	11.23	15.78	16.32	18.08	
3	Sulphur Dioxide, mg/Nm3	5.3	5.1	3.7	6.9	6.5	7.3	
4	NOX (as NO2) in ppmv	57	54	51	98	87	107	
5	Particular matter, mg/Nm3	6.4	6	4.6	8.3	7.1	10.3	
6	Carbon Monoxide, mg/Nm3	18	16	19	20	18	54	
7	Gas Discharge, Nm3/hr	587	576	522	1584	1682	1779	

Paran	neter	Area	Total engine rating of	Generator	sets commis	sioning date
			the plant (includes existing as well as new generator sets)	Before 1.7.2003	Between 1.7.2003 and 1.7.2005	On or after 1.7.2005
NO _X (as N	(O2) (At 15%	A	Up to 75 MW	1100	970	710
O2, dry ba	sis, in ppmv	В	Up to 150 MW			1000
		A	More than 75 MW	1100	710	360
		В	More than 150 MW		i interesti	
NMHC (a O2), mg/N	s C) (at 15%	Both A and B		150	1	00
PM (at 15% O ₂), mg/Nm ³	Diesel Fuels- HSD & LDO	Both A and B		75		75
	Furnace Oils- LSHS & FO	Both A and B		150	1	00
	15% O ₂), 2/Nm ²	Both A and B		150	1	50

Inserted by Rule 2(b) of the Environment (Protection) Second Amendment Rules, 2008 notified by G.S.R.280(E), dated 11.4.2008.

11.4.2009. Serial No.90 and entries relating thereto inserted by Rule 2 of the Environment (Protection) Third Amendment Rules, 2002 notified vide Notification G.S.R.409(E), dated 9.7,2002.

v. STP WATER SAMPLE ANALYSIS

5

Water samples were collected at the following points.

- 30 KLD Treated Water Outlet
- 5 KLD Treated Water Outlet

DETAILS OF STP WATER LOCATIONS

STATION CODE	LOCATIONS	Geographical Location
STP - 1	30 KLD	13° 18'36" N 80° 20' 25" E
STP - 2	5 KLD	13º 19'6" N 80º 19' 35" E

Analysis results of the water sample collected from the above location are enclosed as Annexure - 5.

.

.

Page 28 of 44

2.5

- - -

			_		ST	P WATER 2	1023						
	Location			STP 30K	LD INLET					STP 30KL	D OUTLET	1	
	Month & Year	21-0ct	17- Nov	26-Dec	31-Jan	20-Feb	16-Mar	21-Oct	17- Nov	26-Dec	31-Jan	20-Feb	16- Mar
S.No.	Parameters	S	1.1.1.1								-		10121
1	pH @ 25*C	7.58	7.08	7.58	7.72	6.45	6.46	8.02	7.36	7.82	7.67	7.31	
2	Total Suspended Solids	76	54	68	48	55	47	21	7.1	10	6	8.2	6.45
3	BOD at 27°C for 3 days	84	98	110	161	142	126	12	3.4	6.4	12.1	10	16
4	Fecal Coliform	450	930	940	1100	1400	1200	260	110	170	130	150	120
5	COD	352	412	285	482	525	489	48	16	28	60		130
6	Oil & Grease	4.9	4.5	4.8	7.6	8.1	7.2	BDL				68	63
7	Total Dissolved Solids	1560	1136	1258	1374	1949	1657	1192	BDL 1102	BDL 1142	8DL 1086	BDL 1468	BDL 1216
8	Chlorides (as CI)	582	395	402	453	738	621	410	372	394	482		
9	Sulphates (as SO4)	110	38	35	28	22	25	74	13	15	24	696 21	576

ANNEXURE - 5 RESULTS OF STP WATER QUALITY DATA

_					ST	P WATER 2	023	100		_				
	Location			STP SK	ID INLET	ie.	V	STP SKLD OUTLET						
	Month & Year	21-Oct	17- Nov	26-Dec	31-Jan	20-Feb	16- Mar	21-Oct	17- Nov	26-Dec	31-Jan	20- Feb	16-Ma	
S.No.	Parameters			1	1	1000			1000			res	-	
1	pH @ 25*C	7.38	7.34	7.86	7.78	7.6	7.74	7.86	7.49	7.91	7.65	7.79	6.73	
2	Total Suspended	50	48	52	64	69	43	15	17	14	18	15		
3	BOD at 27°C for 3	48	64	82	88	92	96	5.2	3	5.2	7.1	8.3	12	
4	Fecal Coliform	370	780	840	910	940	840	140	42	120	150	110	9	
5	COD	214	296	218	256	274	293	22	16	14	48		110	
6	Oil & Grease	3	3.2	3.7	3.5	3.9	6.8	BDL	BDL			42	39	
7	Total Dissolved	1230	1368	1492	1682				-	BDL	BOL	BDL	BOL	
8	Chlorides (as CI)	346				1861	1039	1014	1272	1314	1008	1772	1303	
	and the second se		390	414	532	710	663	220	280	318	302	640	589	
9	Sulphates (as SO4)	24	23	27	21	29	32	21	12	16	10	20	19	

		36.			ST	P WATER 2	023			1.0			_
	Location			STP 100	LD INLET	1000	and the second	12	- 34	STP 10KL	D OUTLET		_
	Month & Year	21-Oct	17-	26-Dec	31-Jan	20-Feb	16-	21-Oct	17-	26-Dec	31-Jan	20-Feb	16-
S.Na.	Parameters		1000			-		100	-		33.300	awreb	
1	pH @ 25°C	7.42	7	7,43	7.57	6.25	6.51	7.8	7.71	7.87	7.5	6.81	6.75
2	Total Suspended	78	78	70	62	68	52	13	11	13	9.8	11	16
3	BOD at 27°C for 3	90	104	86	96	110	98	11	3.8	4.2	8.9	13	
4	Fecal Coliform	600	810	750	940	840	920	140	80	150	110		10
5	COD	204	368	240	278	296	276	38	18	150	44	170	210
6	Oil & Grease	7=	3.8	4.1	4.5	4	5.3	BDL	BDL	BDL			43
7	Total Dissolved	1436	1282	1390	690	1978	1413	1124	724		BDL	BDL	BDL
8	Chlorides (as Cl)	456	370	398	174	621	436			896	784	1657	120
9	Sulphates (as SO4)	36	10	14				372	225	260	182	565	392
	and merely less social		3.4	19	6.2	28	21	21	2.6	5.8	7.4	23	19

Page 29 of 44

MINISTRY OF ENVIRONMENT, FOREST AND CLIMATE CHANGE

NOTIFICATION

New Delhi, the 13th October, 2017

G.S.R. 1205(E).—In exercise of the powers conferred by sections 6 and 25 of the Environment (Protection) Act, 1986 (29 of 1986), the Central Government hereby makes the following rules further to amend the Environment (Protection) Rules, 1986, namely:-

1. Short title and commencement.--(1) These rules may be called the Environment (Protection) Amendment Rules, 2017.

(2) They shall come into force on the date of their publication in the Official Gazette.

 In the Environment (Protection) Rules. 1986. in Schedule – L after serial number 104 and the entries relating thereto, the following serial number and entries shall be inserted, numely:—

SL. No.	Industry	Parameters	Standards	
1	2	3 Effluent discharge stand	4 tards (applicable to all mode of disposal)	
-105	Sewage Treatment		Location	Concentration net to exceed
	Plants		(2)	(b)
	(STPs)	pB	Anywhere in the country	6.5.9.0
		Bis-Chemical Oxygen Demuad (BOD)	Metro Cities*, all State Capitals except in the State of Arunachol Pradesh, Assam, Maripur, Meghalaya Minoram, Nagaland, Tripura Sikkim, Himachal Pradesh, Uttarakhand, Jammu and Kashmir, and Union territory of	29

	708dama67 and Nicobar Islands, Dadar and Nagar Haveli Daman and Dis and Lakshodweep	
	Areas'regions other than mentioned above	30
Total Suspended Solids (TSS)	Metro Cities*, all State Capitals except in the State of Aranachal Pradesh. Assam, Manipur, Meghalaya Miroram, Nagaland, Tripura Sikkim, Hirnschal Pradesh, Unarakhand, Jamms and Kashmir and Union territory of Andaman and Nicobar Islands, Dudar and Nagar Haveli Daman and Dra and Lakshadweep	<50
	Areas/regions other than mentioned above	<100
Fecal Coliform (FC) (Most Probable Number per 100 milliliter, MPN/100		<1000

vi. DRINKING WATER SAMPLE ANALYSIS

Drinking Water samples were collected at the Canteen or Office Building. Analysis results of the water sample collected from the above location are enclosed as Annexure - 6.

vii. RAW WATER SAMPLE ANALYSIS

Raw water samples were collected at the Pond. Analysis results of the water sample collected from the above location are enclosed as Annexure - 7.

ANNEXURE - 6 RESULTS OF WATER SAMPLE (DRINKING WATER) QUALITY DATA

				DRINKING WATER	TEST REPORT			
S.No	Parameter	Unit	21-Oct-22	17-Nov-22	26-Dec-22	31-Jan-23	20-Feb-23	16-Mar-23
1	Color	Hazen	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2	Odour	-	Unobjectionable	Unobjectionable	Unobjectionable	Unobjectionable	Unobjectionable	Unobjectionabl
3	Taste	-	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
4	Turbidity	N.T.U	BDL (DL: 0.5)	BDL (DL: 0.5)				
5	pH @ 25℃	-	8.28	6.95	7.14	6.82	8.19	7.92
6	Total Hardness as CaCo ₃	mg/L	18	4	6	4	10	6
7	Iron as Fe	mg/L	BDL (DL: 0.05)	BDL (DL: 0.05)	8DL (DL: 0.05)	BDL (DL: 0.05)	BDL (DL: 0.05)	BDL (DL: 0.05)
8	Chloride as Cl	mg/L	16	11	14	12	15	16
9	Total Residual Chlorine	mg/L	BDL (DL: 0.1)	BDL (DL: 0.1)				
10	Total Dissolved Solids	mg/L	52	25	32	28	60	30
11	Colcium as Ca	mg/L	4	0.8	1.2	0.8	2.4	1.6
12	Copper as Cu	mg/L	BDL(DL 0.05)	8DL(DL 0.05)				
13	Manganese as Mn	- mg/L	BDL(DL 0.05)	BDL(DL 0.05)	BDL(DL 0.05)	BOL(DL 0.05)	80t(DL 0.05)	BDL(DL 0.05)
14	Sulphate as SO4	mg/L	1.57	BDL (DL: 1.0)	BOL (DL: 1.0)	BDL (DL: 1.0)	BDL (DL: 1.0)	BDL (DL: 1.0)
15	Nitrate as NO ₃	mg/L	8DL (DL: 1.0)	BDL (DL: 1.0)	BDL (DL: 1.0)	BDL (DL: 1.0)	BDL (DL: 1.0)	BDL (DL: 1.0)
16	Fluoride as F	mg/L	BDL (DL: 0.1)	BDL (DL: 0.1)				
17	Phenolic Compounds as C ₆ H ₅ OH	mg/L	BDL(DL 0.001)	BDL(DL 0.001)	BDL(DL 0.001)	8DL(DL 0.001)	BDL(DL 0.001)	BDL(DL 0.001)
18	Mercury as Hg	mg/L	BDL (DL: 0.001)	BDL (DL: 0.001)	BDL (DL: 0.001)	8DL (DL: 0.001)	BDL (DL: 0.001)	BDL (DL: 0.001)
19	Cadmium as Cd	mg/L	BDL (DL: 0.003)	BDL (DL: 0.003)				
20	Selenium as Se	mg/L	BOL (DL: 0.01)	BDL (DL: 0.01)	BDL (DL: 0.01)	BDL (DL: 0.01)	8DL (DL: 0.01)	BDL (DL: 0.01)
21	Arsenic as As	mg/L	BDL (DL: 0.01)	BDL (DL: 0.01)				
22	Lead as Pb	mg/L	BDL (DL: 0.01)	BDL (DL: 0.01)				
23	Zinc as Zn	mg/L	BDL (DL: 0.05)	BDL (DL: 0.05)				
24	Anionic Detergents	mg/L	Nil	Nil	NI	Nil	NI	
25	Total Chromium						Net	NI
	as Cr Phenolphthalein	mg/L	8DL (DL: 0.05)	BDL (DL: 0.05)	BDL (DL: 0.05)	BDL (DL: 0.05)	8DL (DL: 0.05)	BDL (DL: 0.05)
26	Alkalinity as CaCo ₃	mg/L	Nil	NE	Nil	NI	Nil	Nil
27	Total Alkalinity as CaCo3	mg/L	24	10	15	13	21	12
28	Aluminium as Al	mg/L	BDL (DL: 0.03)	BDL (DL: 0.03)	BDL (DL: 0.03)	8DL (DL: 0.03)	BDL (DL: 0.03)	BDL (DL: 0.03)
29	Boron as B	mg/L	BDL (DL: 0.1)	BDL (DL: 0.1)	8DL (DL: 0.1)	BDL (DL: 0.1)	BDL (DL: 0.1)	BDL (DL: 0.1)
30	Magnesium as Mg	mg/L	1.94	0.486	0.729	0.49	0.97	0.5
11	Mineral Off	mg/L	Ni	Nil	Nil	NE	⁻ Nil	NI -
12	Polynuclear Aromatic Hydrocarbons as [PAH]	mg/L	NI	Nil	NII	Nil	Nil	NI
3	Pesticides	mg/L	Nil	Nil	Nil	Nil	Nil	Nil
14	Cyanide as CN	mg/L	BDL (DL: 0.01)	BDL (DL: 0.01)				
15	E. coli	MPN/100ml	Absence	Absent	Absent	Absent	Absent	Absent
6	Total Coliform	MPN/100ml	Absence	Absent	Absent	Absent	Absent	Absent

-

Page 31 of 44

ANNEXURE - 7RESULTS OF RAINWATER HARVESTING POND WATER SAMPLE QUALITY DATA

	Month & Year	Unit	21-Oct-22	17-Nov-22	26-Dec-22	31-Jan-23	20-Feb-23
S.No.	Parameters	UNIN	21-041-22	17-1404-22	20-040-22	51-MIL 25	20100-23
1	Color		<1.0	<1.0	<1.0	<1.0	<1.0
2	Odour	mg/L	Unobjectionable	Unobjectionable	Unobjectionable	Unobjectionable	Unobjectionable
3	Taste	mg/L	Agrecable	Agreeable	Agreeable	Agreeable	Agreeable
4	Turbidity	mg/L	BDL (DL: 0.5)	BDL (DL: 0.5)	BDL (DL: 0.5)	BDL (DL: 0.5)	8DL (DL: 0.5)
5	pH @ 25°C	mg/L	7.55	7.26	7.67	7.56	7.44
6	Total Hardness as	mg/L	156	150	72	128	112
7	CaCo3 Iron as Fe	mg/L	BDL (DL: 0.05)	80L (DL: 0.05)	BDL (DL: 0.05)	8DL (DL: 0.05)	BDL (DL: 0.05)
8	Chloride as Cl	mg/L	448	357	385	514	480
9	Total Residual	Hazen	BDL (DL: 0.1)	8DL (DL: 0.1)	BDL (DL: 0.1)	BDL (DL: 0.1)	BDL (DL: 0.1)
10	Total Dissolved	12	1154	844	805	1212	940
11	Solids Calcium as Ca		32	16	13	31	27
12	Copper as Cu	NTU	BDL(DL 0.05)				
13	Manganese as Mn	mg/L	BDL(DL 0.05)				
14	Sulphate as \$04	mg/L	78	34	31	40	
15	Nitrate as NO3	mg/L	4.82	2.57	1.98	2.26	2.14
16	Fluoride as F	mg/L	0.47	0.39	0.33	0.31	0.33
17	Phenolic	mg/L	BDL(DL 0.001)				
18	Compounds as Mercury as Hg	mg/L	BDL (DL: 0.001)	BDL (DL: 0.001)	BDL (DL: 0.001)	BDL (DL: 0.001)	BDL (DL: 0.001
19	Cadmium as Cd	mg/L	BDL (DL: 0.003)	BDL (DL: 0.003)	BDL (DL: 0.003)	BDL (DL: 0.003)	BDL (DL: 0.003
20	Selenium as Se	mg/L	BDL (DL: 0.01)				
21	Arsenic as As	mg/L	BDL (DL: 0.01)				
22	Lead as Pb	mg/L	BDL (DL: 0.01)				
23	Zinc as Zn	mg/L	BDL (DL: 0.05)				
24	Anionic Detergents	mg/L	NI	Nil	NI	NI	Nil
25	Total Chromium as	mg/L	BDL (DL: 0.05)				
26	Cr Phenolphthalein Alkalinity as CaCo3	mg/L	NI	NII	NI	NI	Nil
27	Total Alkalinity as	mg/L	196	51	40	125	113
28	CaCo3 Aluminium as Al	mg/L	BOL (DL: 0.03)	BDL (DL: 0.03)	8DL (DL: 0.03)	BDL (DL: 0.03)	BDL (DL: 0.03)
29	Boron as B	mg/L	BDL (DL: 0.1)				
30	Magnesium as Mg	mg/L	18	27	10	12	11
31	Mineral Oil	mg/L	Nil	NI	Nil	NR	Nil
32	Polynuclear Aromatic	mg/L	Nil	NI	Nil	Nil	NE
33	Pesticides	mg/L	Nil	NI	Nil	NB	NE
34	Cyanide as CN	mg/L	BDL (DL: 0.01)	BDL (DL: 0.01)	BDL (DL: 0.01)	BDL (DL: 0.01)	BDL (DL: 0.01
35	E. coli	mg/L	Absent	Absent	Absent	Absent	Absent
36	Total Coliform	MPN/100ml	Absent	Absent	Absent	Absent	Absent

Page 32 of 44

viii. Marine Sampling

Marine Water samples and sediment samples were collected at locations South side berth and North side berth. Analysis data of Marine and sediments as represented in Annexure - 8 & 9.

STATION CODE	LOCATIONS	Geographical Location
MW - 1 / MS - 1	CB - 1	13º 18'50" N 80º 20' 51" E
MW - 2 / MS - 2	CB - 2	13º 18'46" N 80º 20' 49" E
MW - 3 / MS - 3	BERTH - 3	13° 18'41" N 80° 21' 4" E

DETAILS OF MARINE WATER AND SEDIMENT LOCATIONS

Fig - 5. Water and Marine Sampling Locations

						MAR	INE WATE	R						
S.N	PARAMETER	UNIT				-		CB	-1			_		
0	PARAMETER	5	21-0	ct-22	17-N	ov-22	26-D	ec-22	31-Ja	in-23	20-Fe	rb-23	16-M	lar-23
Phys	icochemical Paran	neters	Surfac	Botto	Surfac	Botto	Surfac	Botto	Surfac	Botto	Surfac	Botto	Surfac	Bott
1	Colour	Haza n	25	40	20	35	15	30	10	30	10	25	10	25
2	Odour	÷.,						Unobjec	tionable					
3	pH @ 25°C		8.05	8.36	8.21	8.29	8.06	8.21	7.98	8.23	7.81	8.32	8.17	8.1
4	Temperature	°C	29	29	27	27	26	26	29	29	28	28	28	28
5	Turbidity	NTU	5.8	17.3	17	37	13	29	11	27	13	24	11	22
6	Total	mg/L	9.7	23	20	30	16	24	15	18	17	20	15	19
7	BOD at 27 oC	mg/L	4.2	4.8	4.9	4.6	4.5				-		-	-
-	for 1 days	-						4.1	4.4	4.8	4.5	4.7	4.6	4.5
8	COD	mg/L	121	132	116	142	122	136	117	141	106	130	107	12
9	owiten	mg/L	2.8	2.6	2.7	2.4	2.8	2.5	3	2.8	3.1	2.7	2.9	2.8
10	Salinity at 25	ppt	38.5	40.8	33.5	36.2	32.4	33.9	35.7	38.2	34.9	36	36.1	35.
11	Oil & Grease	mg/L	BOL(DL:	1.6	1.0)	80L (0L) 1.0)	BOLIOL)	801 (DL) 1.0)	801 (DL) 1.0)	804 (DL: 1.0)	10L (DL : 1.0)	BOL(DL: 1.0)	10	80L (
- 33			-		1000	Nutrier	nt Paramet	ers						
12	Nitrate as No3	mg/L	6.82	7.96	7.4	8.76	5.98	7.38	7.28	10.14	6.27	8.21	6.23	7.7
13	Nitrite as No2	mg/L	2.14	2.78	2.76	2.17	2.17	2.05	2.96	3.86	2.08	4.17	2.01	4.1
14	Ammonical	mg/L	BOL (DL:	HDL(DL:	804.004.: 1.00	BDL (DL: 1.0)	BOL (DL: 1.0)	BOL (DL I	BOL (DL)	804.(DL: 1.0)	BOL (DL)	BOL (DL:	BOL (DL :	BOL (
15	Nitroaen ac N Total	mg/L	BOL (DL.:	BDL (DL :	BDL (DL :	BOL (DL 1	804.004.1	BDL (DL)	BOL (DL:	BOL (DL :	1.0) NOL (DL :	EDL (DL :	1.0) BOL (DL :	8010
16	Inorganic	mg/L	3.98	7.14	1.0)	6.92	3.34	5.23	3.86	7.14	3.14	1.0	3.27	5.7
17	nhncnhatas as Silica as SiO2	mg/L	7.01	11.7	6.23	8.05	7.82	8.93	4.25	8.1				-
18	Particulate	μgC/							-		5.09	9.42	5.08	8.2
	Oreanic Pertoleum	- 1	14 BDL (DL 1	18 BDL (DL :	12 804,004 :	16 BDL(DL:	14 80L(DL:	18 801 (DL:	15 BOL(DL)	23 80L(DL)	16 BOL(DL)	25 BOLIDL1	18 801/01:	23 80L0
19	Hudrocarbons	µg/L	0.01)	0.01)	0.01)	(21.0	0.013	0.01}	0.01)	0.01)	0.01)	0.01)	0.01)	0.01
		_					ivy Metals							
20	Cadmium as	mg/L	8.01 (DK) 0.0010	BOL (04: 0.003)	804 (04 : 0.003)	801 (DL: (L003)	BOL (OL: 0.003)	0.003)	BOL (DL ; 0.003)	80£ (0£) 6.063)	80L (DL 1 0.003)	BDL (DL) 0.003)	804 (04.1 0.003)	BOL (
21	Copper as Cu	mg/L	BOL (DL : 0.05)	BOL (DL: 0.05)	BDL (DL : 0.05)	BOL (DL: 0.05)	80L (DL1 6.05)	BEDL (DL. 0.05)	REDE (EQ. 1 0.05)	804.(04) 0.05)	804 (DL : 6.05)	804 (04.: 0.05)	#OL(OL: 0.05)	80L (
22	Total Iron as	mg/L	0.8	0.87	0.62	0.7	0.67	0.74	0.62	0.79	0.67	0.72	0.66	0.6
23	Zinc as Zn	mg/L	80L (DL : 0.01)	BOL (OL: 0.01)	BOK (04 : 0.00)	80L (DL: 0.01)	804 (DL1 0.01)	80L (OL: 0.01)	80L(0L) 0.05)	804 (04) 0.013	804 (04.1 4.05)	BDL (DL: 0.01)	BOL(DL: 0.01)	BDL (
24	Lead as Pb	mg/L	BOL (DL : 0.01)	804 (OL: 0.01)	BDL (DL : 0.01)	80L (DL) 6.65)	80L (0L) 8.05)	804.304. 8.013	BOL (DL: 0.01)	BDL (DL: 0.01)	BOL (OL :	BOL (DL:	BOL (OL :	BDL (
25	Mercury as Hg	mg/L	BDL [DL I	BOL (OL:	904.(DL :	BOL (DL:	BOL (OL :	BOL (DL:	BOL (DL 1	BDE (DL:	BDL (OL)	BOL (DL:	0.01) 804 (DL :	0.01 BDL (
26	Nickel as Ni	mg/L	RDL (DL :	BOC (DL:	0.001) 906.(06.:	80L[DU	0.001) BDL (DL)	0.001) RDL (DL	0.001) BOL(DL1	0.000) 804 (0L:	0.001) BDL (DL :	0.001} BDL (DL:	0.001) BDL (OL :	6.00 BDL (
27	Total	mg/L	0.05) 806 (04.1	0.05) BOL(DL:	8.05) 80L (0L :	8.85) 90L(DL:	8.05) 80L (0L :	0.05) 805.(DL:	0.05) BOL (DL :	0.05) BDL (DL)	8.05) 804.(04.)	0.05) 804.(DL)	8.85) 804.(04.:	0.05
	Cheomium as	mg/c	6.05)	0.05)	6.05)	0.05)	0.05)	0.05)	0.05)	0.05)	6.65)	0.05)	\$.05)	0.0
28	Escherichia Coli (ECLO)	cfu/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Abse
29	Faecal Coliform	clu/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Abse
30	(FCLO) Pseudomonas	chu/mi	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Abse
31	streptococcus	cfu/mi	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Abse
-	faecalis (SFLO)		Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Abse
32	Shigella (SHLO) Salmonella	cfu/ml	Absent	Absent	Absent	Absent		1.000						
33	(\$1.0)	ctu/eil	1000				Absent	Absent	Absent	Absent	Absent	Absent	Absent	Abse
34	Total Coliform	cfu/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Abse
35	Total Viable Count (TVC)	cfu/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absi
36	Vibrio cholera (VC)	chu/ml	Abcent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Abse
		_	Absent	the second s		Absent	Absent	Absent	Absent	Absent	Absent	-		-

ANNEXURE - 8 RESULTS OF MARINE WATER QUALITY DATA

4.00

							C8-1							
C No.	Month & Yea	1		kt-22		ov-22		ec-22	31	Jan-23	2	0-Feb-23	16-	Mar-23
S.No	Parameters	Unit	Surfac	Botto	Surfac	Botto	Surfac	Botto	Surfac	Botto	Surfac	Botto	Surfac	Bott
38	Primary Productivity	mg C/m3	6.12	8.56	9.72	10.9	8.98	10.05	8.48	10.52	9.11	10.01	9.23	9.87
39	Chlorophyll a	mg /m3	5.98	7.03	6.01	7.47	6.44	7.17	6.15	6.86	6.65	7.01	5.12	6.63
40	Phaeopigme nt	/mg /m3	2.32	2,47	2.68	3.12	3.26	3.14	2.47	3.28	3.11	3.44	3.09	3.21
41	Total Biomass	ml /100	1.73	2.01	2.14	1.85	1.81	1.86	1.63	1.8	1.81	1.9	1.77	2.03
	Bacteriastrum	1				PHY	TOPLANKT	ON						1
42	hadinam	nos/m	15	18	7	11	8	12	13	17	16	21	12	16
43	Bacteriastrum	nos/m	12	10	5	9	11	14	9	15	11	18	10	15
44	Chaetoceros didumas	nos/m	10	14	13	17	12	15	18	19	22	22	17	18
45	Chaetoceres decisiens	nos/m	14	17	15	16	7	13	11	8	14	10	12	9
46	Biddulphia mobilizasis	nos/m	17	15	12	14	9	12	7	13	9	16	9	10
47	Ditylum	nos/m	Nil	NE	NE	Nil	NI	Nil	NI	Nil	Nil	NII	NE	Nil
48	Gynasigmu sp	nos/m	8	9	10	12	16	18	12	15	15			
49	Clationwis spe	nos/m	- NI	Nil	Nil	NI			-			18	13	16
50	Concinediscus	nos/m	-				NI	Nil	NE	NI	NE	Nil	NE	Nil
	centralis Coscinediscus		6	10	19	23	13	16	17	20	19	21	14	19
51	erani	nos/m	16	18	20	25	11	10	8	11	8	9	9	12
52	Cylcotella spr	nos/m	Nil	Nil	Nil	NI	NI	· -Nil ·	Nil	Nil	Niž	Nil	NB	Nil
53	Herelafiscus hardmanianus	nos/m	17	19	14	11	6	9	16	23	14	20	14	21
54	Laudaria annulota	nos/m	11	15	16	13	14	19	5	11	6	13	7	12
55	Pyropiacus horologicum	nos/m	Nil	Nil	Nil	Nil	Nil	Nil	NI	Nil	Nil	NE	NIL	NI
56	Pleurosigna	nos/m	Nil	Nil	NI	Nil	Nil	Nil	Nil	Nil	NE	NE	NI	NE
57	anculation Leptocylindrus	nos/m	15	13	17	21	21	25	14	16				
58	danicas Guinardia	nos/m	Nil	Nil	Nil	NI		-		-	16	19	15	17
59	Racchita Rhizocolenia	nos/m	19	-	1000		Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
60	alata Nhizosolena	nos/m		20	9	10	10	14	19	21	20	22	16	19
	imericata Rhisosolena		Nil	NE	Nil	Nil	Nil	Nil	Nil	Nil	Nil	NI	Nil	Nil
61	semissing	nos/m	13	11	23	26	20	18	14	18	17	14	14	18
62	Thatassionema nitzschioides	nos/m	9	13	18	20	16	14	9	6	11	8	9	6
63	nticulatum	nos/m	NE	Nil	Nil	NI	Nil	Nil	NI	Nil	Nil	NI	Nil	NI
64	Ceratium trichoceros	nos/m	Nil	Nil	Nil	Nil	NE	Nil	NI	NR	Nil	NI	NI	NI
65	Ceratikam funca	nos/m	Nil	Nil	NI	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	NIL
66	Ceratikam macrocerco	nos/m	NI	NE	Nil	Nil	NE	Nil	Nil	NE	NB	NB	Nil	NI
67	Ceracium	nos/m	NI	Nil	Nil	Nil	NI	NE	Nil	NE	Nil	Nil	Nil	
							PLANKTON					140		NI
68	Arrocalanias eracilis	nos/m	8	12	15	17	13	15	7	9	5	11	5	7
69	Acrocatanus sp	nos/m	Nil	Nil	Nil	Nil	NI	NE	NE	Nil	Nil	NB	Nil	Nil
70	Paracalanus Bacous	nos/m	_14	18	12	15	14	18	13	16	16	18	10	14
71	Eutintinus sps	nos/m	5	9	10	11	8	13	10	6	12	9	7	8
72	Centropages	nos/m	15	19	9	10	6	8	12	17	15			
73	Corycaeus dana	nos/m	NE	NI	NI	NI	Nil					20	12	17
74	Okhona	nos/m	10	8				Nil	NEL	NSI	Nil	Nil	Nil	Nil
-	bravicarnia Euterpina	nos/m			11	13	12	14	15	12	11	11	13	11
75	acutificers Metacalanus		17	14	14	12	19	16	18	15	20	13	16	14
76	arivill	nos/m	NI	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Ni	NB	Nil	Nil
77	Copiped naupli	nos/m	9	13	13	18	10	13	9	17	7	14	11	13
78	Cirripede navolii	nos/m	NI	Nil	Nil	NI	NI	Nil	Nil	Nil	NI	Nil	NI	Nil
79	Bisalve veliger	nos/m	11	15	10	16	17	21	14	18	12	20	12	17
80	Gastrapod	nos/m	13	17	19	20	16	19	11	14	13	19	9	15

Page 35 of 44

						MAR	INE WAT	ER						
S.N	PARAMETER	UNIT						CB	-2					
0	Pressienten	5	21-	Oct	17-	Nov	26-	Dec	31-	Jan	20-	Feb	16-1	Mar
Physi	icochemical Para	meters	Surfac	Botto m	Surfac	Botto m	Surfac e	Botto	Surfac e	Botto m	Surfac e	8otto m	Surfac e	Botte
1	Colour	Hara	25	40	15	40	15	30	10	35	10	30	10	30
2	Odour			-			1	Unobjec	tionable					
3	pH @ 25℃		8.13	8.28	8.27	8.36	8.12	8.3	8.09	8.18	8.02	8.27	8.31	8.22
4	Temperature	۰c	29	29	27	28	26	26	29	29	28	28	28	28
5	Turbidity	NTU	6.4	18.1	14	31	11	27	8.5	30	11	27	12	25
6	Total Suspended Solids	mg/L	10	25	18	28	14	26	10	20	14	23	17	21
7	BOD at 27 oC for 3 days	mg/L	4.1	4.6	4.1	4	4.3	3.8	4,4	4,6	4.7	4.5	4.5	4.3
8	COD	mg/L	105	140	120	130	128	132	120	130	112	120	116	131
9	Dissolved oxygen	mg/L	3.1	2,4	2.6	2.5	2.7	2.5	2.8	2.7	2.9	2.6	3	2.5
10	Salinity at 25 °C	ppt	39	40.2	31.8	34.8	32.1	33.2	37.1	38.9	35.3	36.4	34.2	36.1
11	Oil & Grease	mg/L	8DL (DL : 1.0)	BOL (OL) 1.05	BOL (OL : EX)	806.00L; 1.0)	BOL (DL : ETB)	NOL (DL: 1.0)	ROL (DL : 1.0)	80% (DL: 1.0)	BDL(DL: 1.0)	BOL (DL: 1.8)	BOL (DL:	BOL (0
						Nutrie	nt Parame	ters						
12	Nitrate as	mg/L	6.96	8.12	7.07	8.49	6.23	7.71	6.75	8.62	6.98	9.18	6.76	8.94
13	Nitrite as No2	mg/L	2.52	2.96	2.43 -	-3.01	2.56	1.96	2.41	4.23	2.01	4,76	-2.08	-4.92
14	Ammonical Nitrogen as N	mg/L	801.701.1 1.0)	80L (OL : 1.0)	BOK (OL.) LO)	BOL (DL) LO)	BOL (DL : LA)	BOL (DL : 1.0)	80L (DL : 1.0)	BOL (DL: 3.0)	HOL (DL : 1.0)	80L (DL : 1.0)	BOL (OL : LO)	8DL (DL 1.0)
15	Total Nitrogen	mg/L	BDL (DL : 5.0)	BDL (OL 1 1.0)	BDL (DL) L0j	BDL (DL : L0)	BOL (DL) 1.8)	HDL (DL : 1.0)	80L (DL : 1.0)	80L (DL: 1.0)	804 (DL : 1.0)	80L (DL : 1.0)	80L(0L: 1.0)	BD4 (DL 1.0
16	Inorganic phosphates as PO4	mg/L	3.39	6.98	3.96	5.72	3.17	4.89	4.27	6.56	3.86	6.03	3.35	6.2
17	Silica as SiO2	mg/L	6.47	10.5	5.78	9.2	7.14	8.42	5.05	9.55	5.72	8.92	5.24	8.7
18	Particulate Organic Carbon	WEC/	16	21	15	19	18	17	14	21	13	23	16	21
19	Pertoleum Hydrocarbon s	µg/L	801.101.1 6.052	NOL (DL : 0.02)	BDL (DL) 6.00)	801. (04. 1 0.02)	904, (D4, r 0.01)	801.001.1 1.003	801.01.1 6.013	NN.404.: 6.053	80%.(0%.) 0.05)	804.04.1 6.000	804.0%.1 8-010	801.07 9.40
		100			-	He	avy Metal	6	-				·	
20	Cadmium as	mg/L	804.(DL :8.003)	804.004 (0.503)	804.(04. 18.803)	904.(DL (6.003)	BEL (OL (0.008)	BDL (DL (DL (D.003)	80L (DL ;0.003)	BOL (DL ;0.003)	BDL (DL 10.003)	BOL (DL :0.003)	80L (0L :0.000)	8DL (1
21	Copper as Cu	mg/L	BDL (DL : 0.05)	BDL (DL : 0.05)	BDL (DL) 0.05)	801 (DL) 0.05)	80L (DL) 4.85)	BDK (04. 1 0.05)	801 (DL + 0.05)	BDL (DL 1 0.05)	BDL (DL : 0.05)	BDL (DL : 0.05)	RDL (DL : 0.0%)	804.00
22	Total Iron as Fe	mg/L	0.73	0.8	0.59	0.67	0.63	0.78	0.6	0.71	0.64	0.74	0.59	0.7
23	Zinc as Zn	mg/L	804, (04,) 6:30)	MDL (D4: 6.91)	904, (D4.) 6-310	804.04: 9.01)	HILOL: LED	MOX.00% 8.000	MH. (DK.) 6-31()	#01.010 6-910	MDL (DL) 6.000	HOL (DL: 0-NG	805.051 0.80	80L () 8.6L
24	Lead as Pb 📑	mg/L	804.04.1 6.51)	- NDL (DL) 0.23)	805,855 0.03)	804.042 8.80]	NOK.ODLI A.OLJ	805.(DL 840)	904,1041 6466	.401,050 - 6,80	86L (DL) 8.000	BEL (DU 0.HQ	804,054. 0.84()	801.0 8.01
25	Mercury as Hg	mg/L	805.(01. (8.000)	BEA. (DLIA.0011)	901, (01, (8-905)	NOL (DL-G-SHT)	801.(01. (0.801)	965. (DL-0.001)	905,055 (5.000)	HEL (DL-E-MIQ)	HOL (DL 19.0010)	BOL (04-6-080)	905.05. :#040	804. 104.0.0
26	Nickel as Ni	mg/L	804, (54, 1 0.85)	801.(01) 0.01)	901 (DL- 0.35)	804,504 4.85)	HILDL: LOD	BOL (DL) 6-210	805.051: 0.011	804,000 6,00	804, (04.: 6.05)	80L(DU 9.85)	804.(DL) 9.65)	80x.0 8.05
27	Total Chromium as Cr	mg/L	805.051 0.851	HDL (DL) 9.851	805.(DL) 9.851	BOL DU 8.00	80L(0L) 8.053	800.00L	RDL (DL) 0.010	80L (DL) 0.01)	BOX (DL)	804, (DL) 0.05)	#04.(04.: 0.05)	804.0 6.00

.

-	Furthern data data		-					logical Par	ameters						
28	Escherichia Cali Fetcal Coliform	cfu/mi	Abser	-	sence	Absence	Absence	Absence	Abunace	Absence	Absence	Absence	Absence	Absence	Absence
29	(9010)	cfu/ml	Absen	Ab	sence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence
30	Pseudomonas aeruginosa (PALO)	chu/ml	Absen	Ab	sense	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence
11	Streptococcus forcails (SFLO)	du/mi	Absen	ce Ab	sence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence
32	Shipella (SHLO)	cha/mi	Absen	-	_	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence
33	Selmonella (SLO) Total Coliform	cla/es	Abten	ce Ab	sence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Aboence
м	(TC) Total Viable Count	chulmi	Absen	er Ab	HERCE	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence
15	(7745)	etha/mi	Absen	-	sense	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence
ж	Vibria cholera (VC) Vibrio	chu/mi	Absen	en Ab	tence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Abounce
17	parahaomolyticus (VP)	da/ei	Absen	or Ab	HINCH	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence
			-					C8 - 2							
S.No.	Month & Yea Parameters	Unit	-	21- Surface	Botton	the second se	17-Nov	the second se	26-Dec	-	31-Jan		0-Feb	-	-Mar
		mg	ť	-arrace	BOCCOR	1 Surfac	# Botto	m Surfac	e Botto	m Surfac	e Bottor	n Surface	Bottom	Surface	Botto
	Primary Productivity	C/m3 /hr		7.47	10.56	9.48	11.0	7 9.43	9.12	8.91	10.37	9.42	30.67	9.98	10.25
39	Chlorophyll a	mg /s	_	4.82	6.05	6.05	6.83		7.9	6	7.34	6.41	7.11	6.97	7,46
-	Phaeopigment	mg /s	_	2.09	2.5	2.14	1.52	3.5	3.05	2.73	3.51	2.12	3.23	3.21	3.29
41	Total Biomass	m3	-	1.85	2.17	1.83	1.56		1.93	1.95	2.08	1.74	2	2.03	1.98
42	Bacteriastrum	nes/r	T	12	12		1 222	TOPLANK		1	-	1	-	1	-
43	Bacteriast/Um	nes/n	-	13	17	11	15	6	14	11	15	16	19	10	16
44	varians Chaetoceros	nos/n	-	12	34	15	10	13	11	7	10	*	12	8	11
45	didymus Chaetoceros	nos/n	-	16	18	10	11	15	18	15	17	17	14	14	18
46	decipiens Biddulphia mobiliensis	nos/s	4	10	12	17	11	1	15	,	-	10	1	7	-
47	Ditylum brightwellii	nos/a		NI	NE	NI	NE	NI	NE	NI	12 Nil	11 NI	16 NI	11	13
48	Gyrosigma sp	nes/a	1	6		5		100	100	-	20	-	-	NE	NI
49	Cladophyxis sps	nes/a	_	NE	NI	NI	7 NI	14	12 Ni	30 NI	13	13	15	12	11
50	Coscinodiscus centralis	nes/n		9	11	13	17	12	15	34	18	NII 36	20	Nil 17	19
51	Coscinodiscus granii	nos/n	4	15	30	15	19	16	18	12	15	14	10	30	14
52	Cylcotella sps	nos/n	4	NI	NI	Nil	NI	Nil	NI	NI	NE	Nil	NI		-
53	Hemidiscus hardmanianus	nos/m		11	17	23	25	9	7	22	19	21	21	20	Nil 18
54	Laudaria annulata	not/m	â	6	p	14	19	13	15	13	7	11	9	11	
55	Pyropacus horologicum	nos/m	6	NE	NI	NE	NI	NI	NI	NL	NI	NI	NE	NI	NE
56	Meurosigma angulatum	nos/m	1	NE	NI	NE	NI	NE	NR	NI	NI	NI	NI	NI	NI
57	Leptocylindrus danicus	nos/m	1	16	ш	19	22	22	19	9	12	7	14	10	11
58	Guinardia flaccida	nos/m	1	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
59	Rhizosolenia alata	nos/m	1	18 .	25	16	18	7	_ 14	20	24	18	21	21	22
50	Rhizosolena Impricata	nos/m	1	Nİ	NI	NI	NI	NI	NII	NI	Nil	NI	NI	NI	Nil
51	Rhizosolena semispina	nes/m	1	10	14	20	24	23	27	12	16	14	14	12	16
12	Thalassionema nitzschioides	nos/m	1	7	10	6		18	20	8	5	10	7		5
53	Triceratium	nos/m	1	NI	NI	NE	NI	NE	NE	NE	NI	NE	NI	NI	NE
64	Ceratium trichoceros	nos/m	-	NI	NI	NE	NI	NI	NE	NI	NI	NR	NE	NI	NI
5	Ceratium furca	nos/m		NI	NI	NI	NI	NI	NI	MI	NR	NI	NI	NR	NI
6	Ceratium macroceros	nos/m		NII	Nil	Nil	NI	NE	NI	Nil	NE	NI	NI	NI	NI
57	Ceracium longipes	nos/mi	1	NE	NI	NE	NU	NE	NI	NI	1		NI		NI

Page 37 of 44

-

- 7	2	0 - 5		-	20	OPLANK	TONS	Sec. 773	S. 13	2		0. 72		17
68	Acrocalanus gracilis	nos/ml	10	7	11	14	8	12	11	14	13	19	12	15
69	Acrocalanus sp	nos/ml	NI	NB	Nil	Nil	Nil	NE	Nil	NI	Nil	Nil	NI	N
70	Paracalanus parvus	nos/ml	13	15	8	10	11	15	10	8	16	10	10	9
71	Eutintinus sps	nos/ml	11	13	12	15	10	17	5	9	7	13	7	6
72	Centropages furcatus	nos/ml	9	14	13	11	9	13	16	20	19	18	16	20
73	Corycaeus dana	nos/ml	NE	NE	NE	Nil	Nil	Nil	Nil	NE	Nil	Nil	NE	Ni
74	Oithona brevicornis	nos/ml	12	6	7	5	13	16	14	17	17	14	15	18
75	Euterpina acutifrons	nos/ml	15	18	18	13	11	9	13	21	15	19	12	15
76	Metacalanus aurivilli	nos/ml	NE	NE	Nil	Nil	Nil	NE	Nil	Ni	NI	Nil	Nil	Ni
77	Copipod nauplii	nos/ml	15	19	14	17	8	12	10	7	11	9	9	7
78	Cirripede nauplii	nos/ml	Nil	Nit	Nil	Nil	Nil	NI	Nil	NI	NI	NI	Nil	N
79	Bivalve veliger	nos/ml	17	15	18	14	15	10	18	21	19	19	16	17
80	Gastropod veliger	nos/ml	10	8	16	20	18	22	9	15	11	17	9	14

S.N	PARAMETE	UNIT					0.0	BERT	H-3			-		
0	R	5	21-	Oct	17-	Nov	26-	Dec	31-	Jan	20-	Feb	16-	Mar
Physi	cochemical Para	meters	Surfac	Botto	Surfac	Botto	Surfac	Botto	Surfac	Botto	Surfac	Botto	Surfac	Botto
1	Colour	Haza	15	40	15	25	20	35	15	35	10	30	10	30
2	Odour		1000	1	1000			Unobjec	tionable				1	· · · ·
3	pH @ 25℃		8.24	8.39	8.17	8.31	7.98	8.19	8.08	8.21	7.91	8.09	8.2	8.08
4	Temperatur	*C	29	29 -	27	27	26	26	29	29	28	28	28	28
5	Turbidity	NTU	4.3	13	11	27	14	32	7.8	21	6.4	17	7	15
6	Total Suspended Solids	mg/L	7.6	15.4	13	22	16	28	10	33	11	20	13	18
7	BOD at 27 oC for 3	mg/L	4.1	4.8	4.9	4.5	4.7	4	4.6	4.4	4.8	4.5	4.7	4,4
8	COD	mg/L	110	132	112	146	108	132	118	135	123	132	120	129
9	Dissolved	mg/L	2.7	3	2.8	29	2.9	2.6	2.9	3	2.8	2.7	2.7	3.1
10	Salinity at 25 °C	ppt	40.3	41.7	37	41.2	33.6	34.9	36.6	38.2	34.2	35	35.3	34.8
11	Oil & Grease	mg/L	806.006.1 1.0)	BDL (DL) LEJ	801.(DL : 1.0)	BOL (DL I 1.0)	BDL (DL 1 1.0)	BDL (DL : L0)	BDL (DL ; LO)	BDL (DL) L0)	80L (DL 1 1.0)	80L (DL : 1.0)	BDL (DL : 1.0)	805. (D6 1.0)

	10 10	-	(and			Nutrient	Paramete	ri	h	110			-	5
12	Nitrate as No3	mg/L	5.96	7.14	6.24	7.05	6.98	7.72	4.98	4.12	5.17	5.86	6.34	6.17
13	Nitrite as No2	mg/L	2.05	3.08	1.82	2.87	1.65	2.14	2.05	2.54	2.63	2.91	2.48	2.87
14	Ammonical Nitrogen as N	mg/L	8DL (DL: 1.0)	BDL (DL: 1.0)	BOL (DL : 3.0)	801. (DL 1 2.0)	804.(04.: 1.0)	#DL (DL : 1.0)	805.(0L: 1.0)	BDL (DL : 1.0)	805.(DL: 1.0)	BDL [DL 1 1.0]	80L (0L: 1.0)	804.004 1.00
15	Total Nitrogen	mg/L	BDL (DL :	BDL (DL;	BOL (DL : 1.0)	BOL (OL : 1.0)	BDL (DL : 1.0)	BDL (DL : L0)	BOL (DL: 1.0)	NOL (DL : LA)	BDL (DL : LII)	BOL (DL : 1.0)	BOL (OL : 1.0)	801. (01. 1.0)
16	Inorganic phosphates as PO4	mg/L	4.28	6.44	3.27	5.19	3.41	5.89	5.98	4.12	5.07	4.63	4.63	5.34
17	Silica as SiO2	mg/L	7.13	9.26	6.8	7.03	7.24	8.96	9.15	8.07	8.29	9.58	7.52	9.42
18	Particulate Organic Carbon	µgC/L	14	19	16	20	14	18	10	17	12	19	15	17
19	Pertoleum Hydrocarbons	µg/L	801.(DL: 0.01)	801.(DL : 0.01)	80L (DL I 6.01)	80L (DL : 0.01)	801.(DL.: 0.01)	80L (DL : 9.85)	80L (DL : 0.05)	90L (0L) 0.05)	80L (DL : 0.01)	#DL (DL : 0.01)	BOL (DL : 0.01)	801.(DI 0.01)

Page 38 of 44

_		_				Hes	wy Metals	63 - C						
20	Cadmium as Cd	mg/L	BOL (DL 1 0.003)	804 (DL (0.003)	6DL (DL : 0.000)	804 (DL 10.003)	BDL (DL I 0.003)	ROL (DL (0.003)	BOL (OL : 0.003)	80L (DL :0.003)	804 (DL 1 0.003)	801 (DL (0.003)	BOL (OL : 0.003)	8DL (0 10.005
21	Copper as Cu	mg/L	HOL (DL : 0.05)	BOL (DL) 0.05)	BOL (DL : 6.05)	804 (04.: 0.05)	NOL (DL : 0.05)	801.(DL) 0.05)	BOL (DL : 0.05)	BDL (DL: 0.05)	HDL (DL : 0.05)	80L (0L) 0.05)	804.(0L) 6.05)	BOL (0
22	Total Iron as Fe	mg/L	0,78	0.84	0.5	0.63	0.54	0.6	0.63	8.74	0.59	0.7	0.34	0.71
23	Zinc as Zn	mg/L	805 (DL 1 0.01)	BDL (DL : 0.01)	8DL (DL : 6.01)	804 (04.1 0.81)	BDL (DL : 0.01)	BDL (DL : 6.01)	80L (DL : 0.01)	80L (DL : 0.01)	8DL (DL : 0.01)	BOL (OL : 6.01)	801 (01 : 9.01)	BOL (0
24	Lead as Pb	mg/L	BDL (DL : 0.01)	BDC (DL : 0.01)	BDL (DL : 8.81)	80L (DL : 0.01)	BDL (DL : 0.01)	801.(01.) 6.05)	BOL [DL: 0.01)	804 (04 : 0.01)	804 (DL : 0.01)	BOL (0L1 0.05)	804 (DL: 0.01)	BDL (0
25	Mercury as Hg	mg/L	BOL (DL : 0.001)	801 (DL 10.001)	80L(DL: 0.001)	80L (DL -0.001)	8DL (DL 1 0.001)	BDL (DL :0.001)	80L(DL: 0.001)	BDL (DL 10.001)	BDL (DL : 0.001)	BDL (DL 30.002)	BOL (OL: 0.001)	804.0 -0.00
26	Nickel as Ni	mg/L	804.(04.) 0.05)	804.(04.: 0.05)	804 (DL: 0.95)	BDL (DL) 0.05}	804.(04.1 6.05)	BOL (DL : 0.0%)	BOL (DL : 0.05)	80L (DL) 0.05)	804 (04.1 0.05)	80L (DL : 0.05)	BDL (DL) 0.05)	804. [2 0.05
27	Total Chromium as Cr	mg/L	BOL (DL 1 0.05)	804 (DL: 4.85)	8DL (DL : 0.95)	BDL (DL) 0.05)	804 (04.) 0.05)	80L (DL : 0.05)	BOL (DL : 0.05)	80L (DL) 0.05)	80L (DL1 6.05)	801.(0L) 0.0%	BDL (DL : 0.05)	BDL (2 0.05

					8	acteriologi	cal Parame	eters						
28	Escherichia Coli (ECLO)	cfu/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
29	Faecal Coliform (FCLO)	cfu/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
30	Pseudomonas aeruginosa (PALO)	cfu/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
n	Streptococcus faecalis (SFLO)	cfu/ml	Absent	Absent	Absent	Absent	Absent	Absent.	Absent	Absent	Absent	Absent	Absent	Absent
32	Shigella (SHLO)	cfu/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
33	Salmonella (SLO)	clu/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
34	Total Coliform (TC)	cfu/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
35	Total Viable Count (TVC)	cfu/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
36	Vibrio cholera (VC)	cfu/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
37	Vibrio parahaemolyticus (VP)	cfu/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

		-					BERTH - 3							
	Month & Year		21-	Oct	17-	Nov	26-	Dec	3	1-Jan		20-Feb	16	5-Mar
S.No	Parameters	Unit	Surfac e	Botto	Surfac e	Botto	Surfac	Botto	Surfac e	Botto	Surfac	Botto	Surfac	Botto
38	Primary Productivity	mg C/m 3 /hr	7.98	9.47	7.14	8.6	8.24	9.08	8.21	10.78	9.01	10.14	10.14	9.76
39	Chlorophyll a	mg _/m3-	4.68	6.12	5.92	7.27	5.1	6.85	4.73	6.06	5.12	6.18	5.11	6.07
40	Phaeopigmen t	mg /m3	2.56	2.96	3.17	4.94	3.62	4.57	2.15	3.4	2.74	3.27	2.83	2.88
41	Total Biomass	ml /100 m3	2.01	2.83	2.65	2.55	2.18	2.24	1.96	2.73	2.01	3.01	2.04	3.12

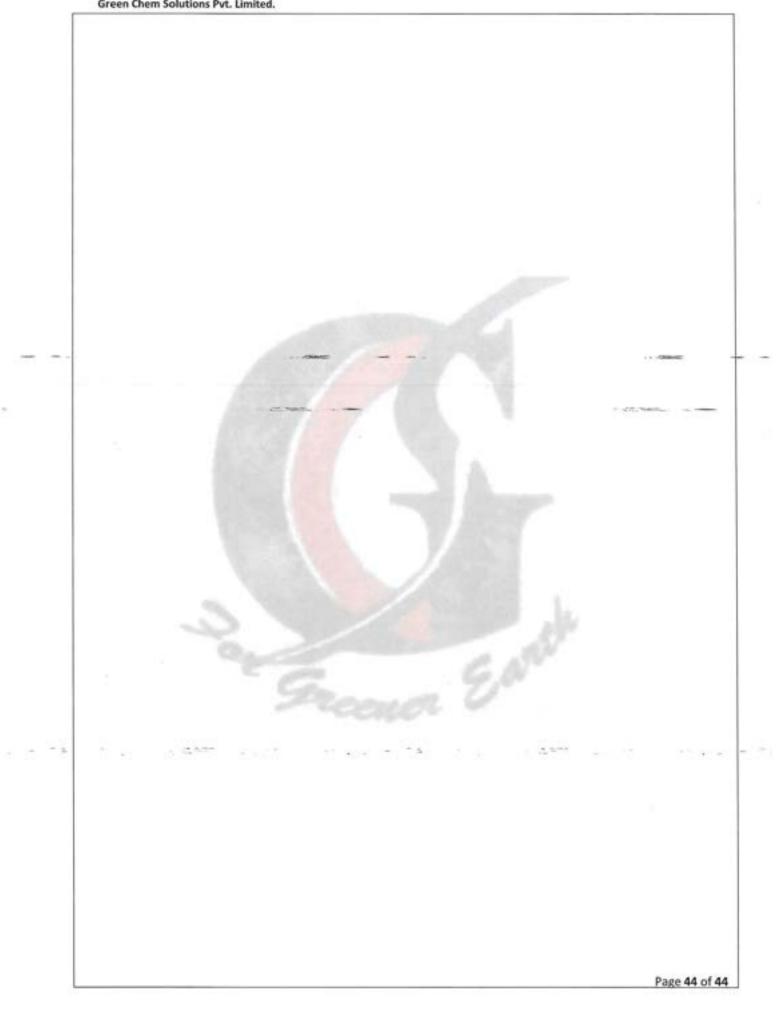
.

Page 39 of 44

	I manufacture								-	-	-	÷	-	
42	Bacteriastrum hyalinum	nos/ml	8	11	11	14	6	10	10	16	14	n	11	12
43	Bacteriastrum varians	nos/ml	14	17	8	10	11	15	16	18	19	14	15	19
44	Chaetoceros didymus	nos/ml	11	15	13	17	16	19	8	5	11	7	7	6
45	Chaetoceros decipiens	nos/ml	16	19	18	21	12	16	9	11	12	9	10	10
46	Biddulphia mobiliensis	nos/ml	10	8	13	20	10	14	17	15	20	17	16	18
47	Ditylum brightwellii	nos/ml	NI	Nil	Nil	NI	Nil	NI	NI	NI	Nil	NI	NI	NI
48	Gyrosigma sp	nos/ml	13	16	17	19	9	11	4	7	6	5	3	8
49	Cladophyxis sps	nos/ml	Nil	Nil	Nil	NI	NII	NI	NI	NI	NE	NI	NE	Nil
50	Coscinodiscus centralis	nos/ml	7	12	12	14	14	18	13	19	15	12	12	18
51	Coscinodiscus granii	nos/ml	15	18	11	13	8	12	21	24	19	18	20	23
52	Cylcotella sps	nos/ml	Nil	Nil	Nil	Nil	Nil	NI	NI	NI	Nil	NI	Nil	Ni
53	Hemidiscus hardmanianus	nos/ml	6	8	18	15	15	10	12	17	15	12	11	18
54	Laudaria annulata	nos/ml	NI	Nil	Nil	NI	NI	NI	NB	NI	Nil	NB	Nil	Ni
55	Pyropacus horologicum	nos/ml	NI	Nil	Nil	Nil	NII	Nil	NI	NI	NI	NI	Nil	N
56	Pleurosigma angulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	NI	NI	NI	Nil	NI	NII	Ni
57	Leptocylindrus danicus	nos/mi	5	4	10	8	12	10	11	14	14	n	12	17
58	Guinardia flaccida	nos/ml	NI	Nil	NI	NI	Nil	Nil	Nil	NR	Nil	Nil	Nil	N
59	Rhizosolenia alata	nos/ml	17	20	13	17	14	19	18	20	19	16	17	21
60	Rhizosolena	nos/ml	NIL	Nil	Nil	NII	Nil	Nil	Nil	NI	Nil	Nil	Nil	N
61	Rhizosolena semispina	nos/ml	12	15	21	23	22	25	17	21	15	12	19	20
62	Thalassionema	nos/ml	17	19	15	20	13	17	13	10	17	15	15	11
63	Triceratium	nos/ml	NI	NI	Nil	Nil	Nil	Nil	Nil	Nil	NI	NII	NI	N
64	Ceratium trichoceros	nos/ml	NI	NI	NI	NI	NI	Nil	NI	NI	NI	Nil	NE	Ni
65	Ceratium furca	nos/ml	NI	NI	Nil	NI	NB	Nil	Nil	NI	NI	NI	NI	N
66	Ceratium macroceros	nos/ml	NI	Nil	Nil	NI	NI	Nil	Nil	NE	Nil	NI	NI	N
67	Ceracium longipes	nos/ml	NI	Nil	Nil	NI	NI	Nil	NI	Nil	NI	NI	Nil	Ni
		-			Z	DOPLANK	TONS	1						
68	Acrocalanus gracilis	nos/ml	13	17	10	14	7	11	10	14	12	15	11	17
69	Acrocalanus sp	nos/ml	Nil	NI	Nil	Nil	NE	Nil	Nil	Nil	NI	NE	Nil	Ni
70	Paracalanus parvus	nos/ml	10	12	7	13	9	15	16	12	14	10	15	14
71	Eutintinus sps	nos/ml	16	18	12	16	14	19	18	21	21	23	20	21
n	Centropages furcatus	nos/ml	8	11	13	15	10	17	15	23	18	21	13	22
73	Corycaeus dana	nos/ml	NI	NI	NI	NI	NB	Nil	NI	Nil	Nil	Nil	Nil	Ni
74	Oithona brevicornis	nos/ml	12	16	15	12	14	10	8	11	10	13	10	12
75	Euterpina acutifrons	nos/ml	7	13	11	18	8	12	13	17	15	19	11	15
76	Metacalanus aurivilli	nos/ml	Nil	NI	Ni	NB	Nil	Nil	NB	NI	Nil	Nil	Nil	N
77	Copipod nauplii	nos/ml	9	13	14	17	10	14	11	15	13	20	12	16
78	Cirripede nauplii	nos/mi	Nil	NI	Nil	Nil	Nil	Nil	Nil	NI	Nil	Nil	Nil	N
79	Bivalve veliger	nos/ml	17	20	18	22	13	18	14	20	17	22	17	15
80	Gastropod veliger	nos/ml	15	18	20	24	22	26	18	22	20	23	19	23

Page 40 of 44

	Location				CB-1			
	Month & Year	Unit	21-Oct	17-Nov	26-Dec	31-Jan	20-feb	16-Mar
S.No.	Parameters							20 mai
1	Total organic matter	15	0.75	0.69	0.62	0.85	0.73	0.69
2	% Sand	%	19	14	16	12	16	15
3	%silt	%	28	33	36	35	33	32
4	%Clay	%	53	53	48	53	51	53
5	Iron (as Fe)	mg/kg	29.1	22.5	24.1	22.6	21.8	21.2
6	Aluminium (as Al)	mg/kg	9864	10058	8975	9474	9491	9219
7	Chromium (as cr)	mg/kg	20	42	40	39	42	37
8	Copper (as cu)	mg/kg	63	81	77	46	49	42
9	Manganese (as Mn)	mg/kg	55	37	35	30	35	33
10	Nickel (as Ni)	mg/kg	17	21	29	19	24	26
11	Lead (as Pb)	mg/kg	24	23	20	25	29	28
12	Zinc (as Zn)	mg/kg	229	291	252	236	241	236
13	Mercury(as Hg)	mg/kg	50L (DL : 0.1)	BOL (DL 10.2)	FOCIDE : 0.1)	#DC/00:0.1)	'NOL (DL : 0.1)	BDL [DL : 0.1
14	Total phosphorus as P	mg/kg	133	164	138	117	121	125
15	Octane	mg/kg	804 (DL : 0.1)	BDL (DL : 0.1)	804 (04 : 0.1)	80L (0L : 0.1)	BOL (OL : 0.1)	BDL (DL : 0.1
16	Nonane	mg/kg	BDL (04 : 0.1)	BDL (DL : 0.1)	BDL (DL (D.1)	BOL (DL : 0.1)	80L (0L + 0.1)	BOL (DL : 0.1
17	Decane	mg/kg	BDL (0L : 0.1)	BDE (DL : 0.1)	BDL (0L : 0.1)	BOL (DL : 0.1)	BOL (DL : 0.5)	BDL (DL : 0.1
18	Undecane	mg/kg	9.26	0.64	6.71	0.75	0.75	0.73
19	Dodecane	mg/kg	90L (0L ; 0.1)	HOL (OL : 0.1)	00L (DL : 0.3)	80L (DL : 0.1)	BOL (DL : 0.1)	BOL (OL 1 0.5
20	Tridecane	mg/kg	BOL (DL : 0.1)	BOL (0L : 6.3)	60L (DL : 0.1)	BOL (DL 10.1)	BDL (DL : 0.1)	HOL (DL 10.3
21	Tetradecane	mg/kg	804 [DL 0.2]	BOL (DL: 0.1)	BOL (DL (0.2)	BOL (DL : 0.1)	BDL (DL : 0.1)	80L (DL : 0.1
22	Phntadecane	mg/kg	BDL (DL : 0.1)	BDL (DL 10.3)	BOL (DL 10.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BOL (DL 10.1
23	Hexadecane	mg/kg	BOL (DL : 0.1)	BDL (DL : 0.1)	BOL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BOL (DL 10.1
24	Heptadecane	mg/kg	BD4 (D4 - 0.1)	BDL (DL : 0.1)	BEK (DL : 0.3)	BDL (DL : 8.1)	804 (04 ± 0.1)	BDL (DL : 0.1
25	Octadecane	mg/kg	BDL (DL : 0.1)	BDC (DL : 0.1)	80x.(01.:0.1)	BDL (0L:0.1)	BOL (01 : 0.1)	BOL (DL : 0.1
26	Nonadecane	mg/kg	804 (04 : 0.1)	BDL (DL 10.1)	(LG:30) J08	BOL (OL 1 0.3)	804.(0L:0.1)	BDL (DL : 0.1
27	Elcosane	mg/kg	804.(04.:0.1)	904 (04 : 0.1)	BOL (OL : 0.1)	80L(0L:0.1)	804 (04 ± 0.3)	BDL (0L : 0.1
I. Nemato	oda	15			A			
28	Oncholaimussp	nos/m2	14	10	13	11	14	13
29	Tricomasp	nos/m2	11	16	18	15	18	13
II. Forami	inifera	-	CILC	100 3	-		- 19 m	1000
30	Ammoniabeccarii	nos/m2	17	14	16	14		
31	Quinquinasp-	nos/m2	15	20-			17	15
32	Discorbinellasp.,	nos/m2			12	_ 10 -	13	11
33	Bolivinaspathulata		16	12	10	17	20	16
34	Elphidiumsp	nos/m2	14	13	19	13	16	14
35		nos/m2	25	21	17	16	19	17
	Noniondepressula	nos/m2	21	17	20	25	22	23
	ics-Bivalvia						-	
36	Meretrixveligers	nos/m2	20	23	21	26	24	27
37	Anadoraveligers	nos/m2	24	12	26	21	24	20
38	Total No. of individuals	nos/m2	177	158	175	175	187	168
39	Shanon Weaver Diversity Index		2.27	2.27	2.26	2.26	2.28	2.28


ANNEXURE - 9 RESULTS OF MARINE SEDIMENT QUALITY DATA

Page 41 of 44

			SEA SED	IMENT				
	Location				CB - 2			
	Month & Year	Unit	21-Oct	17-Nov	26-Dec	31-Jan	20-Feb	16-Mar
S.No.	Parameters							
1	Total organic matter	%	0.72	0.67	0.65	0.8	0.85	0.75
2	% Sand		20	16	17	11	10	12
3 4	%silt %Clay	5	32	34	38	34	36	33
5	Iron (as Fe)	mg/kg	28.5	19.8	45	55 24.8	26.4	55 25.8
6	Aluminium (as Al)		9462	9895		9042	9067	
7	Chromium (as cr)	mg/kg mg/kg	23	37	9146 32	3042	3067	9167 41
8	Copper (as cu)	mg/kg	58	75	70	55	58	49
9	Manganese (as Mn)	mg/kg	67	49	42	26	29	28
10	Nickel (as Ni)	mg/kg	14	15	24	16	19	17
11	Lead (as Pb)	mg/kg	28	18	16	19	21	23
12	Zinc (as Zn)	mg/kg	216	250	237	201	199	201
			BDL (DL :	BDL (DL :	BDL (DL :	BDL (DL :	BDL (DL :	BDL (DL
13	Mercury(as Hg)	mg/kg	0.1)	0.1)	0.1)	0.1)	0.1)	0.1)
14	Total phosphorus as P	mg/kg	125	178	151	124	127	127
15	Octane	mg/kg	BOL-(DL :	- BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL :	BDL (DL: 0.1)
10	Manage	and the	BOL (DL :	BDL (DL :	BDL (DL:	BDL (DL :	BOL (DL :	BDL (DL
16	Nonane	mg/kg	0.1)	0.1)	0.1)	0.1)	0.1)	0.1)
17	Decane	mg/kg	BOL (DL:	BDL (DL :	BDL (DL:	BDL (DL:	BOLIDL	BDL (DL
18	Undecane	mg/kg	0.1)	0.1)	0.1)	0.1)	0.1)	0.1)
40	Undecane	mg/ Ng	BDL (DL :	BDL (DL :	BDL (DL :	BDL (DL :	BDL (DL :	BDL (DL
19	Dodecane	mg/kg	0.1)	0.1)	0.1)	0.1)	0.1)	0.1)
20	Tridecane	mg/kg	8DL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)
21	Tetradecane	mg/kg	8DL (DL : 0.1)	8DL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	8DL (DL 1
22	Photadecane	mg/kg	BDL (DL :	BDL (DL :	BDL (DL :	BDL (DL :	BDL (DL :	BDL (DL
	Finisheretaile	marina	0.1)	0.1)	0.1)	0.1)	0.1)	0.1)
23	Hexadecane	mg/kg	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	8DL (DL : 0.1)	8DL (DL: 0.1)
24	Heptadecane	mg/kg	BDL (DL :	BDL (DL :	BDL (DL :	BDL (DL :	BDL (DL :	BDL (DL
	nepcadecane	ng/st	0.1)	0.1)	0.1)	0.1)	0.1)	0.1)
25	Octadecane	mg/kg	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BOL (DL : 0.1)	8DL (DL : 0.1)	BDL (DL 0.1)
26	Neerderine	malter	BDL (DL :	BDL (DL :	BDL (DL :	BOL (DL :	BDL (DL :	BDL (DL
20	Nonadecane	mg/kg	0.1)	0.1)	0.1)	0.1)	0.1)	0.1)
27	Elcosane	mg/kg	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BOL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL 0.1)
Nematoda		-		0.4		0.1		1 0.1
28	Oncholaimussp	nos/m2	17	- 11	10	14	12	15
29	Tricomasp	nos/m2	14	12	15	10	13	9
Foraminife	tra							
30	Ammoniabeccarii	nos/m2	11 -	17	11	- 13	16	16.
31	Quingulinasp	nos/m2	13	24	16	14	17	12
32	Discorbinellasp.,	nos/m2	10	18	16	19	21	12
33	Bolivinaspathulata	-	8	6				
		nos/m2			17	15	19	16
34	Elphidiumsp	nos/m2	23	15	12	18	20	19
35	Noniondepressula	nos/m2	16	20	24	23	20	22
. Molluscs-	Bivalvia							
36	Meretrixveligers	nos/m2	19	26	22	24	21	23
37	Anadoraveligers	nos/m2	25	19	19	22	21	21
38	Total No. of individuals	nos/m2	156	168	160	160	180	172
39	Shanon Weaver Diversity Index		2.25	2.24	2.27	2.27	2.29	2.32

.....

		1000	SEA SE	DIMENT				
	Location				BERTH - 3			
1	Month & Year	Unit	21-Oct	17-Nov	26-Dec	31-Jan	20-Feb	16-Ma
S.No.	Parameters							
1	Total organic matter	%	0.8	0.75	0.6	0.83	0.92	0.88
2	% Sand	%	22	16	15	12	13	10
3	Nsilt	*	29	32	34	36	34	35
4	%Clay	%	49	52	51	52	53	55
5	Iron (as Fe)	mg/kg	26.9	20.4	21.7	20,4	23.7	22.6
6	Aluminium (as Al)	mg/kg	9647	11264	9462	9217	9263	9345
7	Chromium (as cr)	mg/kg	21	39	35	33	36	38
8	Copper (as cu)	mg/kg	55	70	64	49	43	56
9	Manganese (as Mn)	mg/kg	62	32	36	21	23	21
10	Nickel (as Ni)	mg/kg	15	14	17	17	16	19
11	Lead (as Pb)	mg/kg	21	26	21	20	23	21
12	Zinc (as Zn)	mg/kg	205	252	229	219	212	198
	Manualacia		BDL (DL :	BDL (DL :	BDL (DL :	BOL (DL:	BDL (DL :	BDL (DI
13	Mercury(as Hg)	mg/kg	0.1)	0.1)	0.1)	0.1)	0.1)	0.1)
14	Total phosphorus as P	mg/kg	127	143	130	120	122	119
15	Octane	mg/kg	BDL (DL :	BDL (DL :	BDL (DL :	BDL (DL :	BOL (DL :	BDL (D
			0.1)	0.1)	0.1)	. 0.1)	0.1)	0.1)
16	Nonane	mg/kg	BDL (DL : 0.1)	8DL (DI 0.1)				
17	Decane	mg/kg	BDL (DL :	BDL (DI				
18	Undecane	mg/kg	0.1)	0.1)	0.1)	0.1)	0.1)	0.1)
-		mgrag	BDL (DL :	BDL (DL :	0.68 BDL (DL :	0.63 BDL (DL :	0.63	0.71
19	Dodecane	mg/kg	0.1)	0.1)	0.1)	0.1)	8DL (DL : 0.1)	8DL (DI 0.1)
20	Tridecane	mg/kg	BDL (DL : 0.1)	8DL (DI 0.1)				
21	Tetradecane		BDL (DL :	BDL (DI				
-	renesecane	mg/kg	0.1)	0.1)	0.1)	0.1)	0.1)	0.1)
22	Phntadecane	mg/kg	BDL (DL :	BDL (DI				
	the second s	-	0.1)	0.1)	0.1)	0.1)	0.1)	0.1)
23	Hexadecane	mg/kg	BOL (DL : 0.1)	BDL (D) 0.1)				
24	Mandadana		BDL (DL :	BDL (DI				
24	Heptadecane	mg/kg	0.1)	0.1)	0.1)	0.1)	0.1)	0.1)
25	Octadecane	mg/kg	BDL (DL :	BDL (DI				
-			0.1)	0.1)	0.1)	0.1)	0.1)	0.1)
26	Nonadecane	mg/kg	BDL (DL :	BDL (DI				
			0.1) BDL (DL :	0.1) BDL (DL :	0.1) BDL (DL :	0.1)	0.1)	0.1)
27	Elcosane	mg/kg	0.1)	0.1)	0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DI 0.1)
I. Nema	toda	11						0.4)
28	Oncholaimussp	nos/m2	15	17	12	10	9	12
29	Tricomasp	nos/m2	13	9	14	17	20	15
II. Foran	ninifera	10 mm	Same and	6 C				
30	Ammoniabeccarii	nos/m2	14	13	10	11	14	14
31	Quinquinasp	nos/m2	18	11	18	12	15	11
32	Discorbinellasp.,	nos/m2	11	15	11	14	18	15
33	Solivinaspathulata	nos/m2	15	10	14	17	15	16
34	Elphidiumsp	nos/m2	19	18	20	13	15	15
35	Noniondepressula	nos/m2	24	24	17	21	10	20
	uscs-Bivalvia					**	17	20
36	Meretrixveligers	nos/m2	22	21	19	22	36	
37	Anadoraveligers	nos/m2	19	23	21	18	25	26
38	Total No. of individuals	nos/m2	170	161	156		22	19
	Contraction of manifestation	uon/mz	110	101	120	156	173	155

ANNEXURE – 4 (TNCZMA COMPLIANCE)

Marine Infrastructure Developer Pvt Ltd

adani

Ports and Logistics

Compliance to Tamil Nadu Coastal Zone Management Authority (TNCZMA) Conditions vide letter no. 6064/EC.3/2014-1 dated 26.06.2014

Annexure - 4

SI. No	Conditions	Compliance
1	The unit shall compliance with all the conditions stipulated in Environment Clearance issued in No. 10- 130/2007-IA-III, Ministry of Environment & Forest, Government of India, dated 3rd July 2009	Being complied
li	The proposed activities should not cause coastal erosion and alter the beach configuration. The shoreline changes shall be monitored continuously	Complied. MIDPL has engaged Institute of Ocean Management, Anna University, Chennai for shoreline Change study and the report is under preparation for the year 2022. However, Report for the year 2020 is submitted along with Half Yearly Compliance Report for the period Oct'19-Mar'20 vide our Letter No. MIDPL / EC – HYC / 2020 / 11 dated 31.05.2020
	Chemical waste generated and the sewage generated, if any should not be discharged into the sea and shall be properly handled	Complied. No chemical waste is generated. MIDPL is operating ETP of 50 KLD capacity to treat the effluent generated from Liquid Tank Washings and 3 STPs of capacity 30KLD, 10KLD & 5KLD at various locations inside the port premises to treat the maximum wastewater flow of 45KLD.
2		Domestic wastewater generated from various sources such as washing water from canteen and toilet flushing water from office buildings are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance within the port premises after confirming permissible limit. Inlet & outlet characteristic of Sewage water is regularly monitored and analysed by NABL accredited laboratory.
		All the parameters are well within the prescribed norms.

Ports and Logistics Marine Infrastructure I		10 : March 2023					
		pliance to Tamil Nadu (anditions vide letter no.					ZMA)
iv	shal	wastewater generated I be collected, treated reused properly	Complied. MIDPL is operating the effluent generations and 3 STPs of car various locations the maximum was Domestic waster sources such as toilet flushing war collected, treated sewage water is re within the por permissible limit. Sewage water is by NABL accreditor	erated from apacity 30K inside the stewater flow water gen washing wa ter from off d in STP's a reused for g rt premise Inlet & ou regularly m	Liquid LD, 10 port p w of 4 erated ater fro- ice bu and th reen b es af utlet c onitor	Tank DKLD 8 remises 5KLD. from om can ildings e entir relt mai ter c charact	Washing 5KLD a s to trea variou teen and are being treate onfirming eristic o
			Average quantity treated during furnished below	· · · · · · · · · · · · · · · · · · ·			
				· · · · · · · · · · · · · · · · · · ·	liance Avg.	perio	of Sewage Nated Mar23)
			treated during furnished below.	the comp	liance Avg.	perio Quantity o Water Tre let'22 to M	of Sewage Nated Mar23) LD
			treated during furnished below. Location Near IWMS	the comp STP/ETP Capacity STP 30 KLD	liance Avg.	perio Quantity o Water Tre ct'22 to A 14.1 KL	nd is a of Sewage nated Mar 23) LD LD
			treated during furnished below. Location Near IWMS Near CFS	the comp STP/ETP Capacity STP 30 KLD STP 5 KLD	liance Avg.	perio Quantity o Water Tre oct 22 to A 14.1 KL 0.9 KL	of Sewage eated Mar23) LD LD
			treated during furnished below. Location Near IWMS Near CFS Near Liquid Terminal	the comp STP/ETP Capacity STP 30 KLD STP 50 KLD ETP 50 KLD esults for th enclosed as P & ETP to	Avg. (0	Quantity of Water Tre ot 22 to M 14.1 Ki 0.9 Ki 0.2 Ki 0.2 Ki 0.2 Ki 0.2 Ki 0.2 Ki 0.2 Ki 0.2 Ki 0.2 Ki	of Sewage sated Mar23) LD LD LD LD D Dber 202 II. r analysi
			treated during furnished below.	the comp STP/ETP Capacity STP 30 KLD STP 30 KLD STP 10 KLD ETP 50 KLD esults for th enclosed as P & ETP to compliance er Analysis of	Avg. (0 (0 e period reated period	perio Quantity o Water Tre et 22 to M 14.1 KL 0.9 KL 2.2 KL 0.2 K	of Sewage sated Mar23) LD LD LD LD Dber 202 II. r analysi
			treated during furnished below.	the comp STP/ETP Capacity STP 30 KLD STP 30 KLD STP 10 KLD ETP 50 KLD	Avg. (o (o e period reated period	perio Quantity o Water Tre let 22 to A 14.1 KL 0.9 KL 2.2 KL 0.2	d is a of Sewage rated Mar23) LD LD LD LD LD LD LD LD LD LD LD LD LD
			treated during furnished below.	the comp STP/ETP Capacity STP 30 KLD STP 30 KLD STP 10 KLD ETP 50 KLD esults for the enclosed as P & ETP to compliance er Analysis for Unit	Avg. (0 (0 e period Period period report. Min 6.45	perio Quantity o Water Tre let 22 to A 14.1 Ki 0.9 Ki 2.2 Ki 0.2 ki 0.3 ki 0.2	d is a of Sewage eated Mar23) LD LD LD LD LD LD LD LD LD LD LD LD LD
			treated during furnished below.	the comp STP/ETP Capacity STP 30 KLD STP 30 KLD STP 10 KLD ETP 50 KLD esults for the enclosed as P & ETP to compliance er Analysis for Unit	Avg. (0 (0 e period Period period report. Min 6.45 6	perio Quantity o Water Tre ect 22 to A 14.1 KL 0.9 KL 2.2 KL 0.2	d is a of Sewage rated Mar23) LD LD LD LD LD LD LD LD LD LD LD LD LD
			treated during furnished below.	the comp STP/ETP Capacity STP 30 KLD STP 30 KLD STP 10 KLD ETP 50 KLD esults for the enclosed as P & ETP to compliance er Analysis for Unit - mg/l mg/l	Avg. (0 (0 e period Period period report. Min 6.45 6 3.4	perio Quantity o Water Tre let 22 to A 14.1 KL 0.9 KL 2.2 KL 0.2	of Sewage sated Mar23) LD LD LD LD LD LD LD LD LD LD
			treated during furnished below.	the comp STP/ETP Capacity STP 30 KLD STP 30 KLD STP 10 KLD ETP 50 KLD esults for the enclosed as P & ETP to compliance er Analysis for Unit	Avg. (0 (0 e period Period period report. Min 6.45 6	perio Quantity o Water Tre ect 22 to A 14.1 KL 0.9 KL 2.2 KL 0.2	d is a of Sewage rated Mar23) LD LD LD LD LD LD LD LD LD LD LD LD LD

- 181 18

adani Ports and Logistics

1.2.2

Marine Infrastructure Developer Pvt Ltd

From : October 2022 To : March 2023

Compliance to Tamil Nadu Coastal Zone Management Authority (TNCZMA) Conditions vide letter no. 6064/EC.3/2014-1 dated 26.06.2014

		ETP TREATED WATER ANALYSIS REPORT(AVG)							
		Parameter	Unit	RO-1	RO-2	TNPCB			
		pH		8.61	8.58	6.5 to 9			
		TSS	mg/l	20	6.4	200			
		TDS	mg/l	1500	606	2100			
		800	mg/l	10	3.3	100			
		Oil & Grease	mg/l	BOL	BDL	10			
		All the parame norms.	ters are v		nin the	prescribe			
v	The proponent shall implement oil spill mitigation measures without fail								
		OSCP along with already subm MIDPL/TNPCB/0	nitted v	ide o	ur Le	tter No			
vi	Disaster management plan shall be implemented and mock drills shall be carried out properly and periodically.	Complied. MIDPL is havin Management Pl or and incidents	lan to han	ency Re idle any	sponse Natural	& Disaste I calamitie			
		Regular Mock Disaster Manag conducted for 2023 is enclose	gement P the perio	lan. The d Octob	e detai	Is of drill			

A

-

. 1.0007080

ANNEXURE – 5 (MIDPL MOCK DRILLS)

2.2.00

MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED(MIDPL) INTEGRATED MANAGEMENT SYSTEM FORMATS MANUAL

Rev. No. 0

			0	uration of Dril	ill: 10 mins	
Location: MIDPL - CFS	Date: 1	6/10/2022	1.7	Start Time: T 12:25hrs 1		
RESPONSE TIME: 04	min			te becar	100000000000	
DSO: Mr. Revanth	Ri Ja	re crew: Bharath (DCPO), amarathinam (Fireman), aisuriya (Fireman) HC: Mr. Manoj mbulance Driver: Mr. Raj	Security: Mr. Shift in charg	Venkatesan je: Mr. Jaikuma	r	
Observer's Name: Mr. Revanth Mr. Jaikumar		Scenario: Fall from height		No. of perso Total: 26	ons involved:	
		department th 3. At 12:26 hr department. T informed to th Traffic. 4. Ambulance 5. At 12:31 hr using Spine b 6. At 12:35 hr Ald given at th 7. After the co	s. Shift-in-charge prough Mobile. s. Ambulance de fo reach the spot ne Security (DSO e arrived the spot s. Paramedic shi poard. rs. Ambulance re he OHC. Mock do pompletion of moc usic first aid training	part from the si quickly, Safety) through VHF 1 at 12:30 hrs. fted the IP into turned back to t fill completed k drill, briefing v	afety (DSO) to clear the Ambulance the OHC. First was done at	
Equipment's Usage D	etails:	VHF Duty Mobile				

S. NO	OBSERVATION	Corrective action	Status
1	Among 3 fall arresters in CFS, only No.3 fall arrester is working properly.	Need to change / repair the remaining fall arrester	Closed

MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED(MIDPL) INTEGRATED MANAGEMENT SYSTEM FORMATS MANUAL

	During heavy truck movement, labors using No.2 also.		
2	OnScene CFS Shift-in-charge informed safety via Mobile phone instead of VHF	At least shift in-charge should have VHF to communicate other departments in case of emergencies	open

Signature of Observers:

S. No.	Name	Signatures
1.	Mr. Revanth	
2.	Mr. Jaikumar	

Page 2 of 2

1.0.10

MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED(MIDPL) INTEGRATED MANAGEMENT SYSTEM FORMATS MANUAL

Rev. No. 0

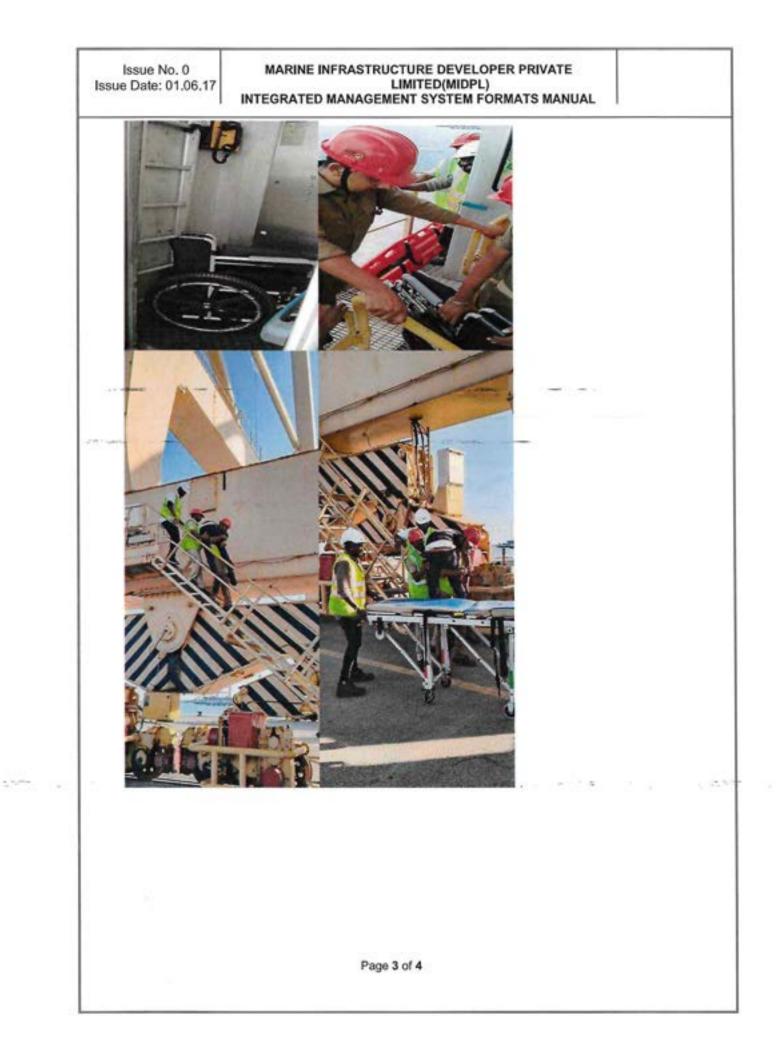
				0	uration of Dril	I: 10 mins
Location: MIDPL -CB2 QC5	Date:	25/11/2022	á		itart Time: 5:34hrs	End Time: 15:54hrs
RESPONSE TIME: (01 min					
DSO: Mr. Marimuthu		Ramarathin Sarath Siva Mahesh (Fir OHC: Mr. M Ambulance Vinoth	e man) urugan Driver: Mr.		je: Mr. Naveen	Electrical
Observer's Name:			cenario: ES tech			
Mr. Marimuthu Mr. Naveen —	-		slipped in oily su n the e-room	rface and fell in	No. of perse Tetal:18	ons involved:
Describe the Event	Occurred:		2003-000 042		1. 1.25 T.S. 11	15 - 56
				.34hrs Mr. Nithis along with bude		
			2. At 15:34hr mobile.	s Mr. Fredrick co	nvey the scena	rio to shift OHS
				s Mr. Fredrick inf trical In-charge.	ormed the issue	e with Mr.
			4. At 15.35hr	s Ambulance rea	ched the QC05	
				rescue team rea		
				paramedic chec s IP shifting proc		
			9.At 15.51hr	the person resc		
			ground level.	hrs. IP shifted to	the ambulance	
				irs ambulance re		
+ + -	- ÷ · ·		1. 1. 1.		+ ÷	
Equipment's Usage	Details:		VHF Duty Mobile Ambulance Fire tender			
	Co	rrective & F	Preventive Action	n Recommende	ł	
S. NO (DBSERVAT	ON	Correcti	ve action	Sta	tus

MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED(MIDPL) INTEGRATED MANAGEMENT SYSTEM FORMATS MANUAL

1.	Protocol not followed by buddy technician, failed to inform the scenario to supportive team	Need to follow the communication matrix in emergency scenario	Open
2	Spine board was unable to be used due to space congested in QC05 platform and staircase	Need to modify the platform for rescue person in emergency situation.	Open

Signature of Observers:

1.200


S. No.	Name	Signatures
1.	Mr. Marimuthu	
2.	Mr. Naveen	

11.00

2.11

Images

Page 2 of 4

MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED(MIDPL) INTEGRATED MANAGEMENT SYSTEM FORMATS MANUAL

Rev. No. 0

MOCK DRILL REPORT

Location:			Du	aration of Dril	I: 07 mins
MIDPL –Dry Cargo Ware House	Date:14/12	2022		art Time: :39hrs	End Time: 10:45hrs
RESPONSE TIME: 01 min					-102
DSO: Mr. Marimuthu	(DCPO Sarath Mahest OHC: M	ew: Prabakaran) Sivan (Fireman) h (Fire man) Ar. Murugan Ance Driver: Mr.	Shift in charge	e: Mr.Vamsi	
Observer's Name: Mr. Marimuthu Mr.Suresh — —	car	e of Scenario: While go in trailer an Elite S ployee fell on the floo I got right arm fracture	hipping contract r from trailer edge	No. of perse Total:18	ons involved:
Describe the Event Occurr	red:	floor from the 2. At 1039 h safety dept. 3. At 1040hr dept and rea 4. The injure OHS dept fo	1037hrs an employe e edge of the trailer rs Mr. Vamsi dry ca s ambulance and fi ached the dry cargo ed was given first ai r further treatment briefing was done	while loading argo shift InCh re tender start ware house a d at 1042hrs a at 1044hrs.	dry cargo arge called the ted from fire at1041hrs. and taken to
Equipment's Usage Detail	s:	 VHF Duty Mobile Ambulance Fire tender 			

Corrective & Preventive Action Recommended - - -

- -

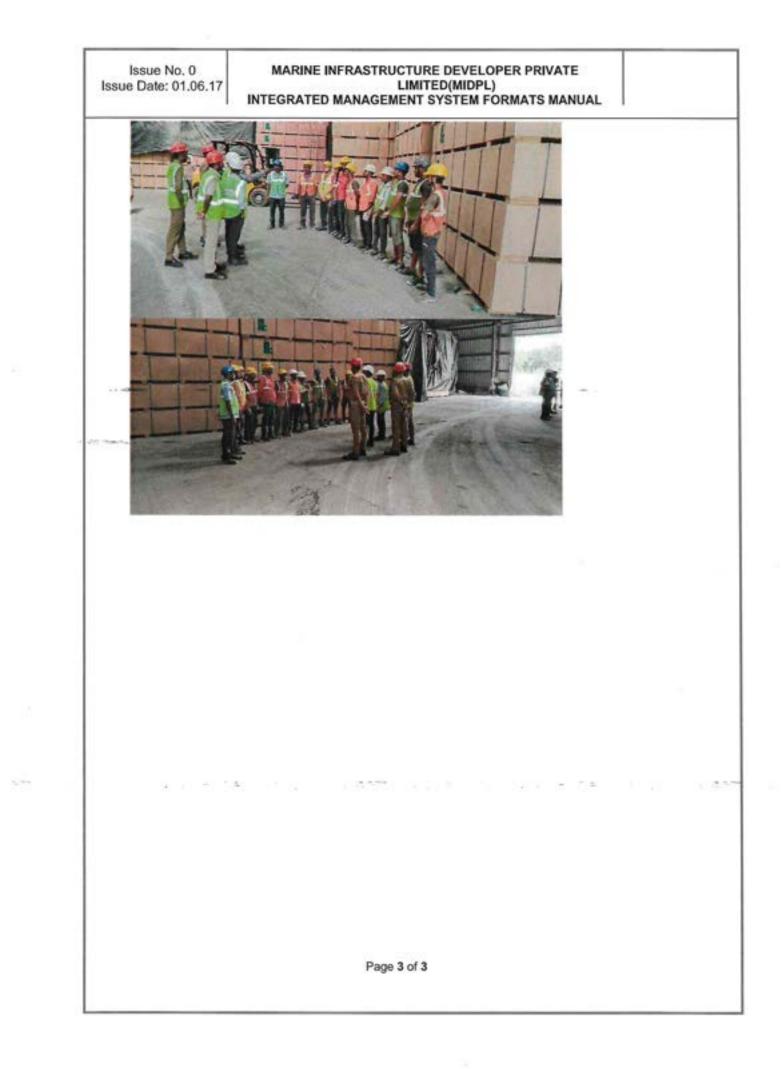
1.00

S. NO	OBSERVATION	Corrective action	Status
1.	Nil		

Page 1 of 3

MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED(MIDPL) INTEGRATED MANAGEMENT SYSTEM FORMATS MANUAL

2	Nil		
1.5			


Signature of Observers:

S. No.	Name	Signatures
1.	Mr. Marimuthu	
2.	Mr. Vamsi	

Images

Page 2 of 3

MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED(MIDPL) INTEGRATED MANAGEMENT SYSTEM FORMATS MANUAL

Rev. No. 0

Location:			Du	ration of Dri	
MIDPL –Refer container Yard	Date:19/0	1/2023		art Time: :29hrs	End Time: 10:38hrs
RESPONSE TIME: 01 30se	e min		v		
DSO: Mr. Marimuthu	(DCPC Sanal Vasan OHC:	Sanny (Fireman) th (Fire man) Mr. Murugan lance Driver: Mr.	Shift in charge	: Mr. Venkate	san
Observer's Name: Mr. Vadivel Mr. Suresh		pe of Scenario: Mr. Ma chnician electrocuted	nikandan reefer	No. of pers Total:20	ons involved:
Describe the Event Occur	red:				
3	17.1	Mr. Manikanda the issue to sh 2. At 1029hrs i convey the Sc 3. At 1029hrs i OHS&F dept 4. At 1030hrs i team. 5. At 1031hrs i 6. At 1032hrs i 7.Engineering at 1032hrs and 8. At 1032hrs i	Yard supervisor M in reefer technicia ift in-charge on til Operations shift Ir enario to OHS tea 30 sec Ambulance OHS team conver Ambulance, fire te Security reached Service electrical d isolated the elect OHS team rescue Mr. Manikandan.	an got electro me. hCharge Mr. \ am & ES team e, fire tender : y the scenario ender reached the spot. team reached trical power s ed and param	cution, Convey- /enkadesan h through VHF, started from to security d the spot d the location supply edic check the
		 treatment. 10. At about10 	38hrs briefing wa m & Security team	s given to ES	eam, Operation
Equipment's Usage Detail	s:	VHF Duty Mobile Ambulance Fire tender			

MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED(MIDPL) INTEGRATED MANAGEMENT SYSTEM FORMATS MANUAL

	Corrective & Pre-	ventive Action Recommended	
S. NO	OBSERVATION	Corrective action	Status
1.	On scene failed to communicate the OHS team on spot via VHF	Need to communicate immediately to OHC case of medical emergency by on scene person.	Closed
2	Nill		

Signature of Observers:

S. No.	Name	Signatures
1.	Mr. Vadivel	
2.	Mr. Suresh	and the second se

Images

Page 2 of 3

MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED(MIDPL) INTEGRATED MANAGEMENT SYSTEM FORMATS MANUAL

Rev. No. 0

Location:			Duration of Dri	II: 08mins	
MIDPL –Engineering Work Shop	Date:18/02/2023		Start Time: 09:54hrs	End Time: 10:02hrs	
RESPONSE TIME: 01 30sec	min				
DSO: Mr. Marimuthu	Fire crew: Bharrat (DCPC Sanal Sanny (Fireman) Vasanth (Fire man) OHC: Mr. Yuvaraj Ambulance Driver: Mr.Bhuvinaswar		ift in charge: Mr.Dass		
Observer's Name: Mr. Vadivel Mr. Kalaiarasan	 Type of Scenario: M Mechanical technician shocked while using of 	n electrically	No. of pers involved: T		
Describe the Event Occurred	4.		+ -		
	2. At 0954 engineerii shocked 3. At 0954 dept. 4. At 0954 team. 5. At 0956 6. At 0957 7. At 0959 the vitals 8.At 1000 further tree		received the cat that Mr.S.Mano ire tender starter mvey the scenar ire tender reach hed the spot. scued and parar kandan. victim shifted to	II from electrically d from OHS&F tio to security ed the spot medic check	
Faviorent's Hanne Datailer	team & Se	out1002hrs briefing ocurity team by Du		s team, OHS	
Equipment's Usage Details:	VHF Duty Mob Ambulance Fire tende	pe -			

Page 1 of 4

MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED(MIDPL) INTEGRATED MANAGEMENT SYSTEM FORMATS MANUAL

S. NO	OBSERVATION	Corrective action	Status
1.	While Ambulance and fire tender reached work shop it was stopped by in between movement of EITVs. The path was not clear.	Conveyed the message to mechanical team and they agreed to correct the same.	Closed
2		Engineering team gave assurance they will use VHF during emergency situation	Closed

Signature of Observers:

S. No.	Name	Signatures
1.	Mr. Vadivel	
2.	Mr. Kalaiarasan	· · · · Name

Images

Page 2 of 4

1.5

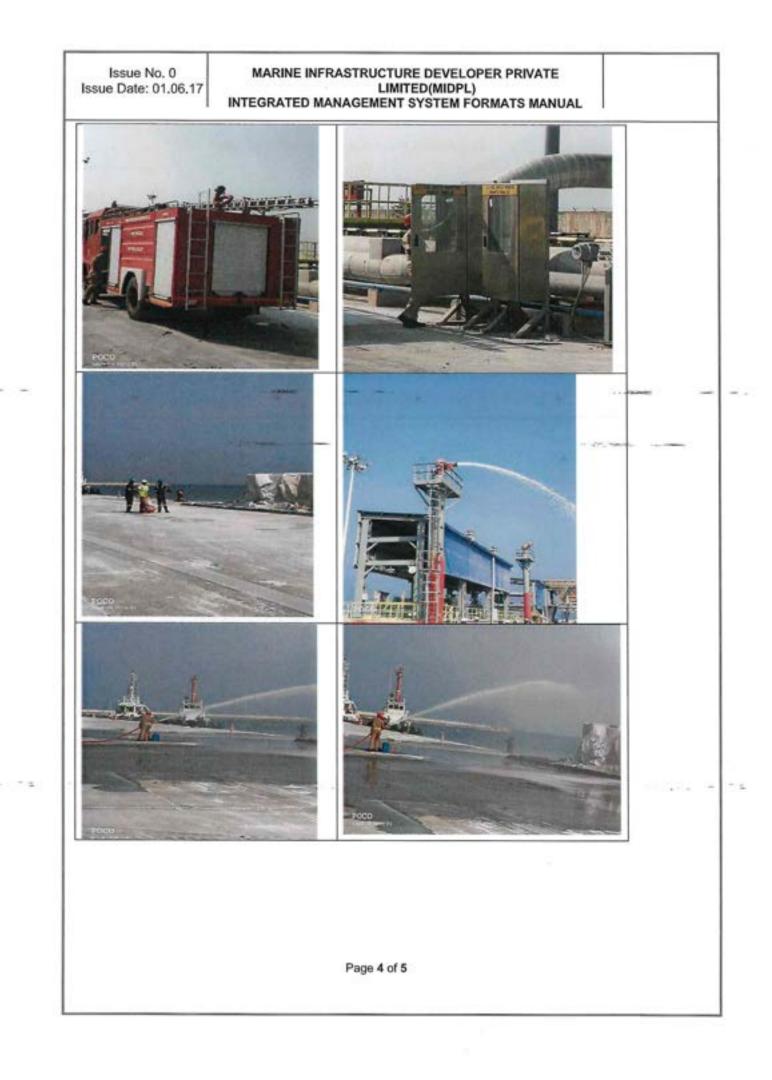
2.57

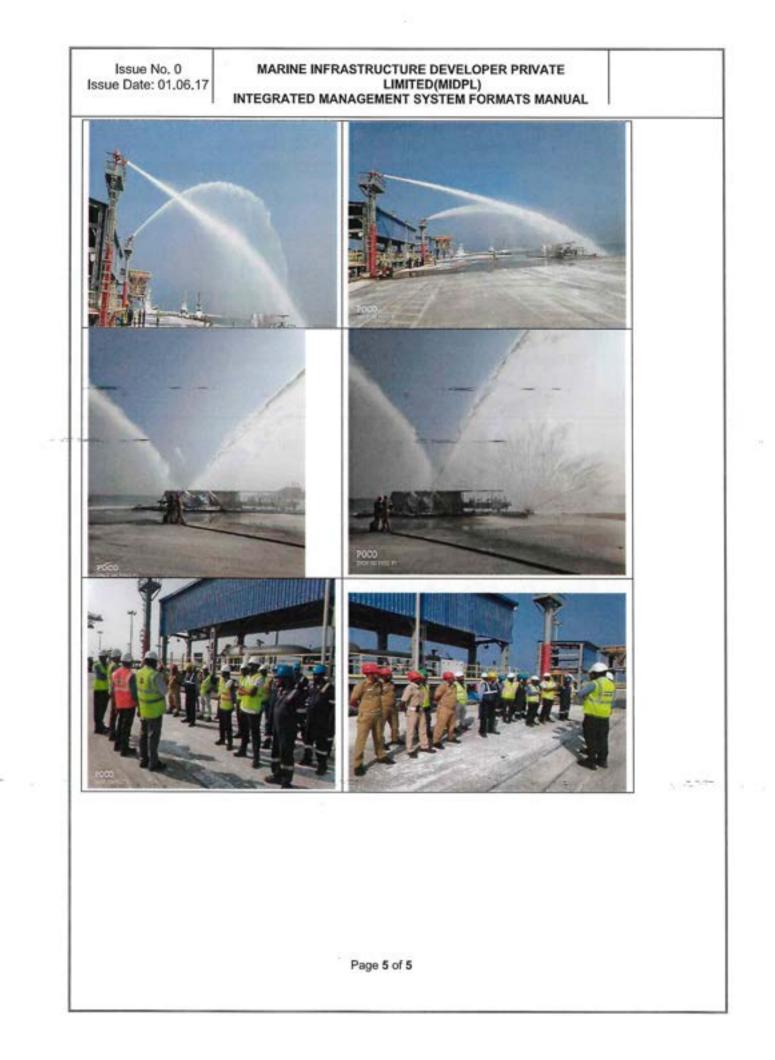
		Page	e 4 of 4	Ê.	
5				13 O 8	
-					
		INTEGRATED MANAGE	MENT SYSTEM FORM	1	
	Issue No. 0 Issue Date: 01.06.17	MARINE INFRASTR	UCTURE DEVELOPER LIMITED(MIDPL) MENT SYSTEM FORM		

MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED(MIDPL) INTEGRATED MANAGEMENT SYSTEM FORMATS MANUAL

Rev. No. 0

Location:		Date		Duration of Drill	
Berth-3 Manifold	Berth-3 Manifold		Start Tir 15:24hr		End Time: 15:40hrs
RESPONSE TIME: 06 min					
LT - H.O. D: Mr.Siddhant Chatterjee Port Safety Head: Mr. Rajan Port Safety Dept: Mr.Ravi Kun LT Safety Dept.: Mr.Vimalnath	nar A	O: Mr.Marimuthu e: Mr.Vadivel {C: Mr.Yuvaraj nbulance Driver: .Vinoth	Marine Con	trol	Tower: Mr.Michal Saspe
Observer's Name:		Scenario: Oil (CBFS) Spil			. of persons involved: tal: 20
Describe the Event Occurred:		 manifold are At 15:24 hrs siren. At 15:24 hrs At 15:24 hrs At 15:24 hrs At 15:25 hrs Manager & At 15:25 hrs Manager & At 15:26 hrs team At 15:26 hrs team At 15:27 hrs At 15:28 hrs water monit extinguish t At 15:30 hrs incident loc At 15:31 hrs was activate At 15:32 hrs was activate At 15:33 hrs At 15:33 hrs At 15:34 hrs 	ea, Loading Master Loading Master Loading Master Control room of Control room of LT – Operator Try to extinguis Control room of Control room of Contr	er acl er infi office office Towe 's, op h the office -3, N d by I d by I d by I Ambo 3 To the f 4 To the f 11 H a was	erate the DCP fire fire er inform to Port Safety, F er inform to Port Security lo:13 Ground level Fire LT – Operators to ulance arrived at the fire wer Water Monitor syster ire.

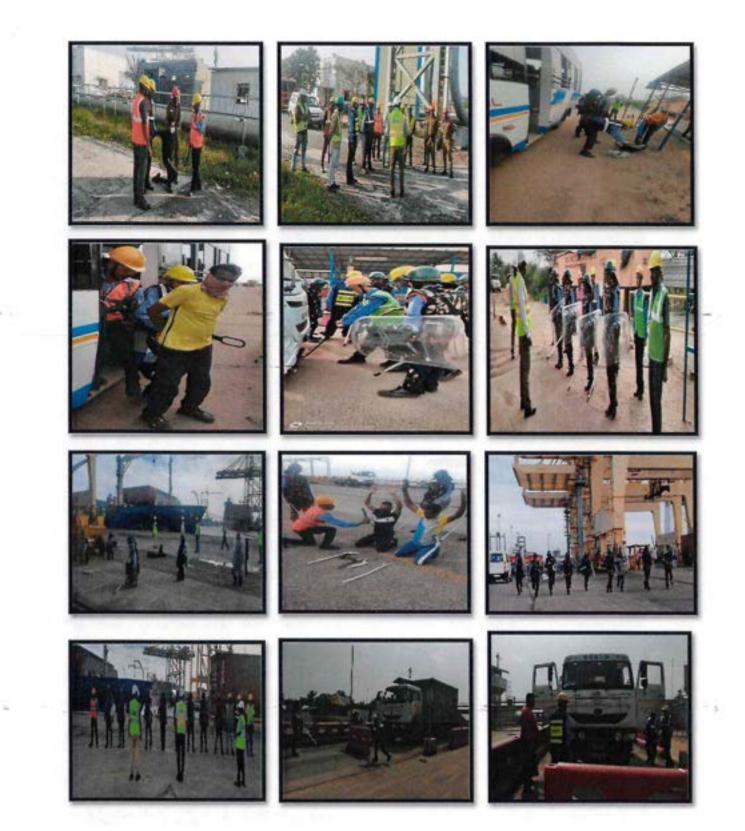

		15. At 15:36 hrs. Berth – 3, No:3 Jumbo Water Curtain system
		was activated for not spreading the fire from manifold to vessel.
		 At 15:37 hrs. Berth – 3, No:4 Jumbo Water Curtain system was activated for not spreading the fire from manifold to vessel.
		17. At 15:39 hrs. Tower Water monitor & Jumbo Water Curtain system was Shutt off
		18. At 16:02 hrs. All Clear siren was activated.
		19. At 15:40 hrs. Briefing was started by LT - Operation
		Manager, CDU In charge, Marine Associate Manager & Port Safety team.
Equipment's Usage	Details:	
		Walkie talkie Duty Mobile
		 Fire tender and Fire hydrant
		Tower Water Monitor Jumbo Water Curtain
		Fire Monitor
		Ambulance
		1. The communication was passed aptly to the HOD, safety
	a 2 - 3 4	 department, marine control & security departments.
Good Observations:		2. The Fire team responded rapidly to arrive at the incident
		location & where it is commendable that they are
		extinguishing the fire.
		3. The Marine team passed the communication to the Tug &
		Near Vessel for mock drill attention.


l

Г

MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED(MIDPL) INTEGRATED MANAGEMENT SYSTEM FORMATS MANUAL

SRNO		OBSERVATION	SERVATION Action ACTION BY			TARGET DATE	Status
1.	As ev	Jetty area nearby there is no Emergency sembly point is not available thus the eryone was standing in the incident ation.	To provid the Eme Assemb	rgency	Port Safety		Pending
2.	At	Jetty area windsock is not available	To prov wind		Port Safety & Marine		Pending
3.	the Mo	he berth -3 manifold from the Tower Water will be, on around		The high-pressure water will be poured on around the manifold		Immediate	Complied
4.	ma	ire water line valve was operated ually instead of automotive valve open im is not activated. The automatic valve open system should be activated Port Safety		open system should			Pending
5.		alkey was not properly working distance m Jetty area to control room radius.	To be provide Walkey for clear communication system from jetty to control room		LT- Operation		Pending
6.	While using foam Barral foam was not coming effectively		Effectively foam should be provided to extinguishing fire		Port Safety	Immediate	Complied
7.	100	served more water leak on Berth –3 wer Water Monitor - 3	To be arrest the water leak Port Safety		Port Safety		Pending
8.		wer Water Monitor & Fire monitor entification number is mentioned	identification number Port Safety		Port Safety		Pending
		Sign	ature of Obs	ervers:	2		
SI		Name			Sign	atures	
1	-	Mr. Prathiban seenivasan					
2	_	Mr. Kulandai Samy					
3		Mr. Vimalnath					



Sr. No	Date	Time	No. of Contrast of	Destation
Sr. No	Date	Time	Scenario	Participant
1	09.10.2022	1625Hrs.	Unauthorized access or use including stowaways and smuggling of weapon of mass destruction.	15
2	29.10.2022	2215Hrs.	Failure of total power supply at night.	18
3	26.11.2022	1515Hrs.	An empty car lying parked dg room for last 03 days.	20
4	29.11.2022	1530Hrs.	Attempt to intrusion through boundary wall.	15
5	23.12.2022	1530Hrs.	Forcible entry carrying weapons etc.	15
6	25.12.2022	1530Hrs.	Use of ship itself as weapon for destruction or as means as cause damage of destruction.	20
7	21.01.2023	1210Hrs.	An Empty Truck made force entry and disappeared inside port premises.	20
8	23.02.2023	1530Hrs.	Perimeter Fencing Forced Breached.	16
9	18.03.2023	1530Hrs.	Suspected Explosive Device Found at Main Gate.	12
10	19.03.2023	1030Hrs.	Unauthorized access or use including stowaways and smuggling of weapon of mass destruction.	20

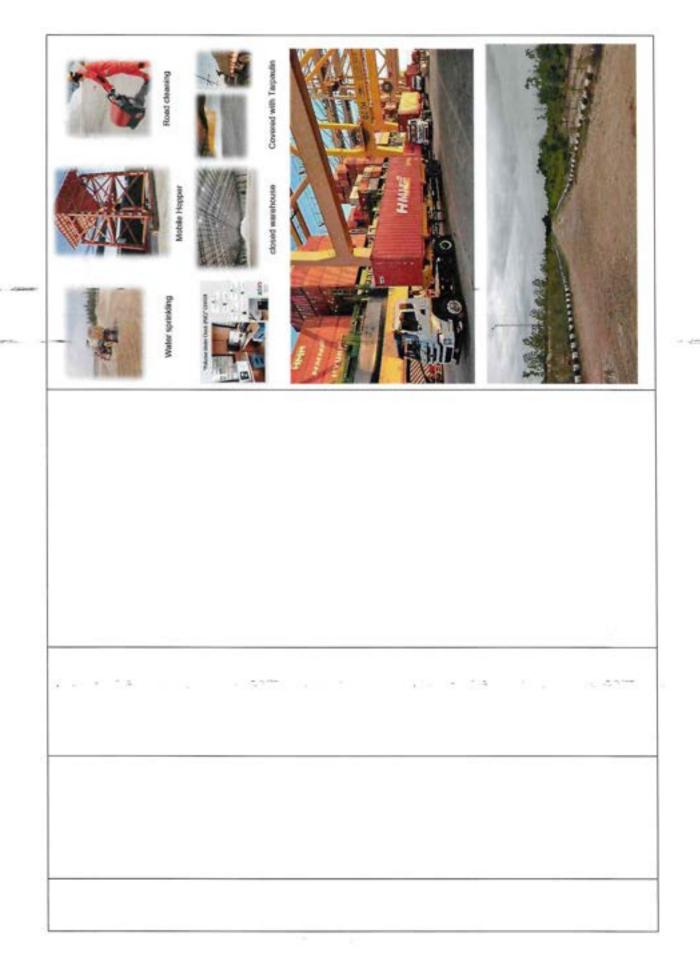
Mock Drills - Oct 22 to Mar 23 (Photos)

and a second the architector in the contract of the second s

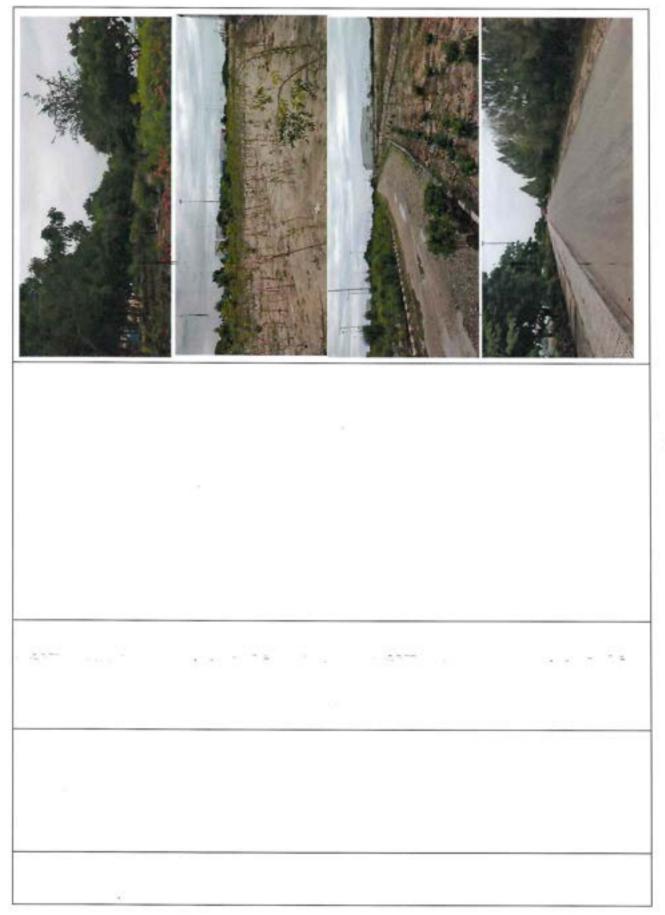
ANNEXURE - 6 (EMP COMPLIANCE)

A. 1. 1.

- +


. . . .

Annexure - VI


Environment Management Plan (EMP) - Operational Phase : COMPLIANCE STATUS

Compliance Status	 Complied. The Major air pollution generated by port activities include vehicle movements, dry cargos operations and other port activities. The following is practiced controlling of air pollutions at port premises: Water sprinkling on truck path Water sprinkling on truck path Mobile Hopper during cargo handling Road cleaning with sweeping machines Ensuring Tarpaulin cover over the dry cargo materials at open yard Using the closed warehouse for storage of fine dry cargos materials. Trucks covered with Tarpaulin for dry cargo vehicle movements Using low Sulphur diesel fuel for DG sets. Installed Retrofitting of DG Sets for reduction of emission level to the norms prescribed. Adequate Greenbelt has been developed & is being maintained in the port area. 35,124 Nos. of trees has been planted as on date. Internal tripnsfer vehicles (ITVs) are being used extensively in port operations. All the diesel operated ITVs 51nos are replaced with e-ITVs to avoid the carbon emissions and to achieve our carbon neutral mission.
ures	diesel fuel Is diesel fuel Is measures at points, nternal roads ck movement cargo spills, for vehicles tation ent
Proposed Mitigation Measures	Use of dust suppression system etc., Use of low Sulphur diesel fuel is proposed Dust suppression measures at loading/unloading points, storage area and at internal roads Regularization of truck movement Periodic cleaning of cargo spills, Speed regulations for vehicles engaged in transportation Greenbelt Development
is d	•••••
Relevant Environmental components likely to be impacted	Air Quality
Activity	Cargo handling and Inland Cargo movement and storage areas.
S.No.	1.

Page 1

Page |2

 Complied. Traffic and noise level control measures is monitored regularly for all vehicle movements like containers, trucks movements and dumpers & other road equipment operating for import /export of cargos at various locations of port premises. Following control measures are implemented at Kattupalli Port for Noise Control. Adequate Greenbelt development with avenue plantation DG sets are having acoustic enclosures as per the standard practice. Musical Horns are completely banned inside the port premises
 Personal Protecting Equipment (PPE) Greenbelt Development Counselling and traffic regulation
 Soise Solo Solo Solo Solo Solo Solo Solo Sol

Page 4

 Adopting latest technology operation to restrict the vehicular movements inside terminal Mysical HORNS Mysical HORNS Mysical HORNS Mysical HORNS Misical Antical Horns Misical Horns Misical Horns Misical Horns 	

2 Aqueous bachouc	Aqueous discharges in	Addition Marine water quality	 Site is well connected by existing road and rall. In addition, port approach road is developed as a part of initial development. All the roads are in good condition to accommodate traffic. Ships are prohibited from discharging wastewater, bilge, oil wastes etc into the pear-shore as 	 Kattupalli Port is having a dedicated road connectivity connecting State Highways and National Highways. NH-5 (Chennal - Kolkata) is about 30 km from Port. The cargo handled are directly goes to the roads mentioned above which are outside the City Limits of Chennal. Handling of cargo in Kattupalli Port does not affect the regular traffic. The Outer Ring Road from NH-45 connecting NH 4 - NH 205 - NH 5 is getting take-off from Minjur. Further, the Outer ring road is proposed to be connected to Section 1 (NPAR Project) of Chennal Peripheral Ring Road on an extent of 134 km starting from Kattupalli to Mahabalipuram. The project is getting commenced shortly, which will further enhance the cargo carrying capacity of Kattupalli Port. Kattupalli Port is located Close proximity to majority of C55 serving immediate hinterland and enabling faster evacuation of cargo.
			 Ships would also comply with the MARPOL convention. Ships would also comply with the MARPOL convention. As a part of mitigation measure for accidental spillage of Oil, Construction Contractor/ Kattupalli Port n Oil spill contingency plan is prepared and in place. Provision of waste reception facility Ballast Water 	• •

Page | 6

11.00

 guidelines and conducting oil spill mock drills at regular intervals. Management Guideline as issued by Ministry of Shipping - India are being adhered to. Regular monitoring of Marine Water and Sediment quality are being carried out by NABL accredited laboratory. 	Oil Spill contrigency Plan is in place and MIDPL is maintaining oil spill equipment as per Coast Guard guidel/nes and conducting oil spill mock drills at regular intervals.
Management Guideline as issued by Ministry of Shipping – India Shall be adhered.	In case of any cargo spillage during transfer from/to ships, it will be attempted to recover the spills. Oil spill control equipment such as booms / barriers will be provided for containment and skimmers will be provided for recovery. Response time for shutting down the fuelling, containment and recovery will be quicker.
•	Marine water quality and ecology
	spills and Oil
	M

Page | 7

а. З

	nplied. No maintenance dredging activity carried out	during the compliance period October 2022 to March 2023.	However Marine Water, sediment & ecology is being monitored on regular basis and reports of the same are being submitted to all the concerned	authorities. Monitoring report for the period Oct'22 to Mar'23 is attached as Annexure- III.		Complied. The main source of raw water is from existing Chennai Metropolitan Water Supply and Sewage Board (CMWSSB), Desalination plant, Kattupalli, which is located adjacent to Kattupalli Port.
	 Complied. No maintenance dred 	during the compliance March 2023.	 However Marine Wate being monitored on re the same are being subi 	authorities. Monitoring report for the pe Oct'22 to Mar'23 is attached as Annexure- III.		Complied. The main source of raw water is from existing C Metropolitan Water Supply and Sewage (CMWSSB), Desalination plant, Kattupalli, w located adjacent to Kattupalli Port.
	Maintenance dredging material is being disposed of at identified disposal location at sea.	It will be ensured that dumping of the excess/unusable dredge material would be uniform.	Additional Environmental Monitoring Program comprising of monitoring of marine water	v will	initiated one week prior to commencement of dredging and will be carried out during the dredning period	water vities s er supp ng initi
e e de la company	Maintenance • dredging	Marine Ecology	•		- 1 b	Water resources
	Maintenance dredging		Water Supply			
	4					ω

10.00

Complied. MIDPL is operating ETP of 50 KLD capacity to treat the effluent generated from Liquid Tank Washings and 3 STPs of capacity 30KLD, 10KLD & 5KLD at various locations inside the port premises to treat the maximum wastewater flow of 45KLD. Domestic wastewater flow of 45KLD. Domestic wastewater from canteen and toilet flushing water from office buildings are being collected, treated in STP's and the entire treated sewage water is reused for green belt maintenance within the port premises after confirming permissible limit. Inlet & outlet characteristic of Sewage water is regularly monitored and analysed by NABL accredited laboratory. The monitoring results for the period Oct'22 to Mar'23 is enclosed as Annexure - III.	 Complied. 100% utilization of STP sludge for greenbelt maintenance as manure. All the non-hazardous wastes like paper, wood, metal scraps generated from the terminal are also collected, stored in the Integrated Waste Management Shed (IWMS) and are handled as per 5R, principle. The recyclable and the bio-degradable waste are recyclable and the bio-degradable waste are recyclable and the bio-degradable waste are purposes. 	 Complied. No Hazardous cargo is handled at MIDPL.
Collection of runoff from stock piles and directing into settling tanks Available Sewage treatment plant within port area will be utilized. Treated wastewater from STP will be used for irrigating the greenbelt	Composted biodegradable waste will be used as manure in greenbelt. Other recyclable wastes will be sold.	No Hazardous cargo Handling /storage is envisaged Hazardous wastes (used oil & used battery if any) will be
• • •	Groundwater and Soil quality .	Fire accidents • due to products handling
Discharge	Solid Waste Management	Handling of hazardous wastes
٥	~	ω

Fishermen • The cargo handling activities Com livelihood in operation phase are confined to the project •			MILPL IS requipped with adequate facility for recovery of spills.		 necations wastes are narrous as per nazaroous and Other Wastes (Management and Transboundary Movement) Rules. 2016 (as amended), Hazardous wastes are disposed through approved TNPCB /CPCB vendor. MIDPL has obtained Hazardous waste Authorization from TNPCB for handling and disposal of the wastes. Details of the same are submitted to TNPCB as a part of Hazardous waste annual return (Form 4) on regular basis. Annual Hazardous Waste Return for FY 2021-22 is attached as Annexure - II. Occupational Health Centre is available at Kattupalli Port on 24 X7 basis. Details of the same are submitted to TNPCB as a part of Hazardous waste annual return (Form 4) on regular basis. Annual Hazardous Waste Return for FY 2021-22 is attached as Annexure - II. Occupational Health Centre is available at Kattupalli Port on 24 X7 basis. Disaster Management Plan (DMP) is in place which covers both onsite and offsite emergency plans. MIDPL is lequipped with adequate facility for recovery of spills. MIDPL is lequipped with adequate facility for recovery of spills. MIDPL is lequipped with adequate facility for recovery of spills. MIDPL is lequipped with adequate facility for the port counter in the statupalli Port. Disaster Management Plan (DMP) is in place which are available at Kattupalli Port. 	 sent to TSDF located at Gummidipoondi, along with other shipyard wastes. The consent for the same was already obtained and the same can be extended. Medical facilities including first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. The cargo handling activities involved in operation phase are confined to the project area and hence no hindrance to fishing is anticipated 	Fishermen livelihood
	 The cargo handling activities involved in operation phase are confined to the project area and hence no hindrance to fishing is anticipated 	Fishermen • The cargo handling activities Com livelihood • The cargo handling activities • • • • • • • • • • • • • • • • • • •	Fishermen Ivelihood area and hence no hindrance to fishing is anticipated	 Recovery or spins to the extent possible. extent possible. extent possible. Fishermen The cargo handling activities involved in operation phase are confined to the project area and hence no hindrance to fishing is anticipated 	confined to approved Port Limits and there is no hindrance to fishing activity.	Continuing to Educate the fishermen about Port	
Fishermen • The cargo handling activities Con livelihood involved in operation phase are confined to the project •				Kecovery or spills to the extent possible.	 Complied. Kattupalli port follows Safe navigation routes which are earmarked for safe movement of fishing vessels and the port cargo ships. Our activities are confined to approved Port Limits and there is no 	 The cargo handling activities involved in operation phase are confined to the project area and hence no hindrance to fishing is anticipated Continuing to Educate the 	Fishermen livelihood
		•	ANDO IS SAUGADA WIND AS ANDO IS SAUGADA WIND ADAVISTA FAVILLY FAC	•	plans.		
		•	plans.		Digaster Management Plan (DMP) is in place	 Kecovery or sprins to the extent possible. 	1
Recovery of spills to the extent possible.	• Recovery of spills to the extent possible.	 offsite emergency plans. Recovery of spills to the extent possible. 	• •		 Emergency alarms, fire hydrant system and Fire 	Management Plan (DMP) which covers onsite and	
which covers onsite and offsite emergency plans. Recovery of spills to the extent possible.	which covers onsite and offsite emergency plans. Recovery of spills to the extent possible.	which covers onsite and offsite emergency plans. Recovery of spills to the extent possible.	• • •	•	<u>.s</u>	Effective Disaster	2.5
 Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	Effective Disaster Ananagement Plan (DMP) Which covers onsite and Emergency alarms, fire hydrant sys		of fire hydrant system and fire	5
 of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible.	of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible.	of fire hydrant system and fire station. • Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. • Recovery of spills to the extent possible.	 of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) Which covers onsite and which covers onsite and Emergency alarms, fire hydrant 	as a part of Hazardous waste (Form 4) on regular basis.	Emergency alarms, provision	
 Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and Effective Disaster Management Plan (DMP) Emergency alarms, fire hydrant system a 	wastes. Details of the same are submitted to	first aid will be available for	
 first aid will be available for attending to injured workers. Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and 	from TNPCB for handling and disposal of the	 Medical facilities including 	8
 Medical facilities including first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 Medical facilities including first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 Medical facilities including first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 Medical facilities including first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 Medical facilities including first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and 	through approved TNPCB /CPCB vendor. MIDPL	already obtained and the	2
 already obtained and the same can be extended. Medical facilities including first aid will be available for attending to injured workers first aid will be available for attending to injured workers. Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 already obtained and the same can be extended. Medical facilities including first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 already obtained and the already obtained and the same can be extended. Medical facilities including first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 already obtained and the already obtained and the same can be extended. Medical facilities including first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 already obtained and the already obtained and the same can be extended. Medical facilities including first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and 	amended)., Hazardous wastes are disposed	consent for the same was	2
 consent for the same was already obtained and the same can be extended. Medical facilities including first aid will be available for attending to injured workers first and first aid will be available for attending to injured workers of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 consent for the same was already obtained and the same can be extended. Medical facilities including first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 consent for the same was already obtained and the same can be extended. Medical facilities including first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 consent for the same was already obtained and the same can be extended. Medical facilities including first aid will be available for attending to injured workers first and will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. 	 consent for the same was already obtained and the same can be extended. Medical facilities including first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and 	boundary Movement) Rules, 2016	other shipyard wastes. The	8
 other shipyard wastes. The consent for the same was already obtained and the same can be extended. Medical facilities including first aid will be available for attending to injured workers Emerations of fire hydrant system and fire hydrant system and fire hydrant system and fire hydrant system and fire the number of sation. Effective Disaster Management Plan (DMP) is in pl which covers onsile and offsite mergency plans. Recovery of splils to the extent possible. MiDPL is lequipped with adequate facility equipped with adequate facility equipped with adequate facility. 	 other shipyard wastes. The other shipyard wastes. The consent for the same was already obtained and the same can be extended. Medical facilities including and etcom the same are submitted frest and fing to injured workers the hydrant system and fire hydrant system and fire hydrant system and fire terturn (Form 4) on regular basis. Annosure - II. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. Effective Disaster Management Plan (DMP) which covers onsite and offsite emergency plans. Recovery of spills to the extent possible. MiDPL is lequipped with adequate facility is for byording in process both onsite and offsite emergency of spills. MiDPL is lequipped with adequate facility is plans. 	 other shipyard wastes. The consent for the same was already obtained and the same was already obtained and the same can be extended. Medical facilities including first aid will be available for attending to injured workers Medical facilities including first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and offise to the same are submitted as Annexure - II. Effective Disaster Management Plan (DMP) which covers onsite and offise to the same are submitted as tattopalli Port. MiDPL is lequipped with Fire Tender and Fire plans. MiDPL is lequipped with adequate facility in plans. 	 other shipyard wastes. The other shipyard wastes. The consent for the same was already obtained and the same can be extended. Transboundary Movement) Rules, 2016 amended already obtained and the same are disposal of first aid will be available for attending to injured workers terrin for FY 2021-22 from TNPCB as a part of Hazardous waste annotated and fire hydrant system and fire extern possible. Transboundary Movement) Rules, 2016 amended. Medical facilities including first aid will be available for attending to injured workers terrin for FY 2021-22 attactive Disaster Effective Disaster Management Plan (DMP) which covers onsite and office emergency plans. Recovery of spills to the extent possible. Digaster Management Plan (DMP) is in plane. 	 other shipyard wastes. The other shipyard wastes. The consent for the same was already obtained and the same wastes are disponal of amended). Hazardous wastes are disponal of same can be extended. Medical facilities including first aid will be available for attending to injured workers Medical facilities including first aid will be available for attending to injured workers Medical facilities including first aid will be available for attending to injured workers Medical facilities including first aid will be available for attending to injured workers Emergency alarms, provision of fire hydrant system and fire station. Effective Disaster Management Plan (DMP) which covers onsite and whi	Other Wastes (Management	Gummidipoondi, along with	
Other Wastes (Management boundary Movement) Rules, 2016 ded). Hazardous wastes are dispo gh approved TNPCB /CPCB vendor. Mi bitained Hazardous Waste Authoriza TNPCB for handling and disposal of s. Details of the same are submitted as a part of Hazardous waste an to (Form 4) on regular basis. An dous Waste Return for FY 2021-22 ned as Annexure -II. Dational Health Centre is available palli Port on 24 X 7 basis. Details of the same are disposated to equipped with Fire Tender and Fire of allable at Kattupalli Port. Er Management Plan (DMP) is in p covers both onsite and offsite emerge rev of spills.	Other Wastes (Management boundary Movement) Rules, 2016 ded). Hazardous wastes are dispo gh approved TNPCB /CPCB vendor. MI obtained Hazardous Waste Authoriza TNPCB for handling and disposal of s. Details of the same are submitted as a part of Hazardous waste an h (Form 4) on regular basis. An dous Waste Return for FY 2021-22 hed as Annexure - II. Dational Health Centre is available palli Port on 24 X 7 basis. Detoiped with Fire Tender and Fire of allable at Kattupalli Port. Er Management Plan (DMP) is in p covers both onsite and offsite emerge is lequipped with adequate facility ery of spills.	Other Wastes (Management boundary Movement) Rules, 2016 ded). Hazardous wastes are dispo gh approved TNPCB /CPCB vendor. MI obtained Hazardous Waste Authoriza TNPCB for handling and disposal of s. Details of the same are submitted as a part of Hazardous waste an o (Form 4) on regular basis. An dous Waste Return for FY 2021-22 hed as Annexure – II. Dational Health Centre is available palli Port on 24 X 7 basis. The as Annexure – II. Dational Health Centre is available palli Port on 24 X 7 basis. The as the hydrant system and n equipped with Fire Tender and Fire o allable at Kattupalli Port. The adequate facility ery of spills.	Other Wastes (Management boundary Movement) Rules, 2016 ded). Hazardous wastes are dispo gh approved TNPCB /CPCB vendor. MI obtained Hazardous Waste Authoriza TNPCB for handling and disposal of s. Details of the same are submitted as a part of Hazardous waste an (Form 4) on regular basis. An dous Waste Return for FY 2021-22 ned as Annexure – II . Dational Health Centre is available palli Port on 24 X 7 basis. Detopped with Fire hydrant system and n equipped with Fire Tender and Fire c allable at Kattupalli Port.	Other Wastes (Management boundary Movement) Rules, 2016 ded). Hazardous wastes are dispo gh approved TNPCB /CPCB vendor. MI obtained Hazardous Waste Authoriza TNPCB for handling and disposal of s. Details of the same are submitted as a part of Hazardous waste an h (Form 4) on regular basis. An dous Waste Return for FY 2021-22 hed as Annexure – II. Dational Health Centre is available palli Port on 24 X 7 basis.	dous wastes are nanoleo as per hazaro	•	sent to TSDF located at

Page | 10

Regular interactions are being carried out with the fishing community in order to make fishermen aware of the on-going activities and importance of channel marker buoys and other navigational aids.	 Being Complied. Major CSR activities carried out during the compliance period are as follows; 1. Educationi 596 Students benefited during the compliance period. Through 20 evening education centers 596 students from this program. 110 students from AEEC Program wrote 10th Standard Board Exams. We also provided exams kit for the students. 8th Dec 2022 had review meeting and experiential sharing meeting with all the AEEC tutors. In JS Pulicat government Higher Secondary School there are 638 students are studying in which 478 students are preparing for board exams. Understanding the need for and importance of computer section for government school students. Adait Kattupalli Port through its Corporate Social Responsibility programs came forward to establish a computer smart lab with 20 computer systems. Through computer smart lab students from their lessons and other students will have lacces to learn basic computer smart lab with 20 computer SMART Lab will reaction. The Computer SMART Lab will react the students from Pulicat, Kottaikuppam, Thangalperumbulam and Lidht House Panchavats.
 Regular Interactions will be carried out with the fishing community Conflicts if any with fishing community will be amicably resolved in all cases 	The present employment potential of Port is around 250 Nos. and Total Shipyard cum Port is around 2000 c nos. The employment potential will increase about 20 nos as direct employment due to proposed activity and will also enhance indirect employment potential in the region. Together with this employment potential, project will help to enhance the socio economic conditions of the area with better schooling, communication and transport facilities that will be developed/ triggered as a part of overall economic development of the region.
est all	Socio- economic the region of
	Operation of port – Handling of Proposed Traffic

Page | 11

51.5

<image/>	 2. Community Health: MHCU: During this period, we have reached 9944 people through this program. We are supporting the needs of elderly population and women. Part of this program we also go for home visits. SuPoshan: We are happy to record that through Suposhan program we successfully covered about 2877 direct beneficiaries under the various activities of SuPoshan. The beneficiaries fall under the Pregnant women, Lactating Mothers, Adolescent Girls & Children. Pulicat Government hospital is a 32 bedded hospital providing health care support for five panchayats- Light House, Pulicat, Thangalperumbalam, Kottaikuppam and Thamenchi, covering 45000 populations.

risnermen communities and irulas communities get health care support from this hospital. The Chief Medical Officer Dr. Sankar asked us to support cots and beds for the patients since it is difficult to accommodate many inpatients due to lack of cot facility. Understanding the needs of the hospital and its importance, we came forwarded and provided 20 patients cots and beds for the hospital.	 Comprehensive Eye Camps: Community health care program, we have planned to screen the community members focusing on detecting eye care issues faced by them. The aim of the program is to identify preventable eye issues at the early stage and curb the situation and to provide better vision for the community members. Especially for the members who are having cataract and facing vision issues where their productivity gets reduced which gets affected their family. Hence to check their issues we conducted five camps in our project area. We network with Sankar Nethralaya to conduct the eye camps. We screened 625 persons in which 300 were having refractive errors who are recommended to use spectacles which will be supported by us. The identified cataract cases will be pperated at the base hospital under the government schemes through District Blindness Control Society.

	 Sustainable Livelihood Development: 300 Organic Famers have cultivated 300 acres of paddy following INM and IPDM. All the farmers have barvested the paddy. Marutham FPO bought the paddy and brought out as rice and sold it in the market under Marutham Brand. We have put a stall at the PORT for the port employees where the port employees where the port employees bought organic rice and other farmers products. Connecting the farmers directly with the consumers. 	
		Page 14
•		

111000

der familier

	Convergence with government line departments: For the current year, the Awareness Meeting has been conducted at Kattur Village on 9th January 23 inaugurated by Joint Director of Agriculture, Tiruvallur under the presidentship of Kattur Panchayat on 9th January 2023 where 175 farmers participated in the program. Besides Apriculture. other Sister Departments viz.	- 0 D 0 0 0 0 C =	One technical workshop on Soil Health card and upkeep of Soil Fertility for the benefit of 300 farmers who are adopting natural forming. 159 farmers participated. Technical experts from agriculture department and KVK were our resource persons.	vomen are part of 9 livelih cement groups who are running s ess units where have supported w 0000 as materials to run their busin	perveropment: Nature pencengrate new provided the building for skilling program. During, this period there were two batches which are tailoring, and beautician 93 women are getting their skilling in Tailoring (43 person) and Beautician (50 persons)
					•

Page | 15

	 In view of promoting healthy behaviors among the youth in the community and to increase the contribution of the youth towards betterment of the community and to participate in the overall development of the participate and to be a better citizen, community sports were conducted with the youth were created the awareness about the community sports were conducted with the theme of SAY NO TO DRUGS and FOLLOW ROAD SAFETY RULES. Adani foundation conducted a Volleyball and Kabaddi Championship on 26 of February 2023 with "SAY NO TO DRUGS" & Follow the Traffic Rules as the theme to educate the youth & to create awareness. In this wonderful occasion 600 youth from 8 Panchayats of Kattur. Kottaikuppam, Voyalur, Thangal Perungulam, Light House. Kattupalli, Nandiyampakkam, Kadapakkam, Thathamanji, Somancherry and Neithavoyal who participated & signed to take a stand against drugs. They displayed their excellent sportsmanship throughout the game & helped us carry out the matches with decorum. The program was well received 	
3		

a grading unit to grade their products. The government of Tamilnadu through Rural Development Department the district our agriculture program. We are also extending support to build capacity of the women are from our project areas who part of FPO also has come out with a plan to establish collector gave INR 1000000 towards the project. We are happy to record that the FPO consist of 1006 members in which 600 FPO. - + -2.11 4. 10. 100 -

00	gs.	to to	es.	he	P	i i	2	and	e p	1	2 2	5	for	pe .	eq	.5	be	2	E	UO				
over	community toilets, housed in two buildings and constructed to the Kattur panchayat.	Prior to this, 756 families in Kattur colony of	toilet facilities and resultant health issues.	Understanding the problems faced by the	women, the Adani Foundation came forward	to construct community tonets at Nattur Colony. Kattur Panchavat which is part of their	programs promoting Health care for rural	'n	Childrein. Now the panchayat has appointed a	-	We have installed KU water of 100 LPH for Kathur provernment school Welfare School			Thiruvellaivoyal Panchayat. The work will be	completed by 15th June 23 and will be handed	over to Panchayat auministration team. School Toilet for oirls has commenced in	=	completed by 15th June and handed over to	Government School. Through this program	sanitation				
8	bul	colo	n -	P, P	a 4	Lt o	for	Women	poi	3	50		ГРН	ž	e h	enc	3	o p	ã	sani				
ed.	§ d	5	ealt	ace	Ee .	s Da	e	Non	de s		10C		-	NO.		a u	p	apu	his	Ð				
and	tt n	Kat	P P	5 fe	C I	sh is	S	2	has		10 Ion	Eal	0	pe.	N N	COL	æ	har	-	oof				
dola	= eY	.⊆ 8	tan I	em	atio	vhic	alth	fo	yat	et.	in ter	osp	1000	1	an	as as	1001	Pu	6no	0				
 4. Community Infrastructure Development: The Adani Foundation handed 	use	lies	1nsa	ldo	pun	rat v	He	communities especially for	cha	person to maintain the toilet.	Poq.	and Pulicat Government Hospital.		aya	23	over to Panchayat auministration team. School Toilet for oirls has commenc	Pulicat government school and will	9	The	girls will access to good				
dat	04 o	E		ā	Po de	Ner l	g	ecia	pan	Ê	Ωř.	uer.	install	h ch	un i	airl	i H	Ju	÷	ces				
oun	ets,	9	an	th.	ine	and	otic	esp(he	Lie	Da	ern	ŝ	Pa	5 1	for	me	ŝ	ö Ho	ac				
St2	toil	75	ies	e.	PA	2 4	rom	s	MC	aint	Istal	Gov	2	levio	V 1	er a	/ern	L AC	š	N.				
ani	Str	this	cilit G	ipue.	the	att	d s	itie	ž	E.		in the	-	aive	p	Toil	6	p	ent	un				
Ad	UNC DOD	20	0.0	か	ú.	N, K	E e	j,	ren.	D C	ave		pa	Vell	lete		낢	lete	E.	E B	ť.		-	
The	L P	io.	liet	opu	mo d		16o	E	plic	erso	9 11	D D	Started	Sic	d i	- Por	JIC	ding	ove	280	support.			
ĒF	õ é	9.5	5 3	5	3 1	20	ă	ö	ΰ	å	2 2	'n	ŝ	F	ö	6 0	đ	ö	ŏ	ñ	ŝ	_		_
ō.											•		•			÷								
4																								
_							_	_	_		_	_	_	_	_		_	_	_	_	_	-		
								÷			- 6	۰,				20	÷		-		2			\mathbf{t}
																						_		
																						-		

- 5

Page | 20

In Feb 2023, the project has started in Adani Kattupalli Port. We have successfully done 3 visits with INDIAN INSTITUTE OF LOGISTICS, CHENNAI, ASET COLLEGE OF SCIENCE AND TECHNOLOGY, CHENNAI, and Government High School.	Noted for Compliance. Disaster Management Plan (DMP) is in place which covers both onsite and offsite emergency plans. Regular Mock Drills are conducted as per the Disaster Management Plan. The details of drills conducted for the period Odtober'22 to March'23 is enclosed as Annexure-5.	Being Complied. Kattupalli Port is having a dedicated road connectivity connecting State Highways and National Highways, which offers an efficient and cost-effective supply chain/ value proposition to the local importers and exporters in the states of Tamil Nadu, Andhra Pradesh, Kerala and Karnataka.	We are presently moving Inland Container Depot (ICD) rail bound Containers ex Kattupalli through Concor's ICD at Tondiarpet to ICD Bangalore. The containers are road bridged by Concor to/from Kattupalli Port to Tondiarpet and vice versa. This service the customers and facilitate the EXIM trade.	
	The existing Disaster Management I Plan (DMP) will be implemented at the time of disaster; COO will act as the overall in-charge of the control of educative. protective and rehabilitation activities to ensure least damage to life and property.	Offers an efficient and cost effective is supply chain/ value proposition to the local importers and exporters in states of Tamil Nadu, Andhra Pradesh, Kerala and Karnataka.		
	Natural Hazards	Development		 -

8.5

.

ANNEXURE - 7 (MIDPL FORM-V FY 2021-22)

- 15 - 1

. 2,577

Subramanian A

From:	Sathish Kumar R
Sent:	Thursday, September 22, 2022 4:42 PM
To:	eccompliance-tn@gov.in; DEE GMP TNPCB
Cc:	Ramde Karangiya; Subramanian A
Subject:	Submission of Environmental Statement (Form V) for the financial year ending 31st March, 2022 of Marine Infrastructure Developer Private Limited, Kattupalli Port, Chennai
Attachments:	MIDPL_ Form- V (2021-22).pdf
Importance:	High

Dear Sir / Madam,

With reference to the captioned subject, we submit herewith the Environmental Statement of M/s Marine Infrastructure Developer Private Limited, in Form-V prescribed under Rule 14 of the Environment (Protection) Rules 1986 for the financial year ending 31st March 2022.

Submitted for your kind information and records.

Thanks and Regards

R. Sathish Kumar Deputy General Manager - Environment | Adani Ports and SEZ Limited | Mob +91 91760 00959 | Direct: +91 44 2796 8177 | Extn. 69177 | sathish.r@adani.com | www.adaniports.com |

 Image: Second state
 Growth with Goodness
 Our Values: Courage | Trust | Commitment

 Image: Second state
 Image: Second state
 Image: Second state

 Image: Second state
 Image: Second state
 Image: Second state

- ANS

1

mark .

KATTUPALLI PORT CHENNAI'S NEW GATEWAY

MIDPL/TNPCB/2021-22/179

To,

The Member Secretary, Tamil Nadu Pollution Control Board, 76, Mount Salai, Guindy, Chennai - 600 032 Date: 22.09.2022

Dear Sir,

- Sub: Submission of Environmental Statement (Form V) for the financial year ending 31st March, 2022 of Marine Infrastructure Developer Private Limited, Kattupalli Port, Chennai
- Ref: 1. Consent Order No. 2105136876761 under Water Act dated 13.09.2021 2. Consent Order No. 2105236876761 under Air Act dated 13.09.2021

With reference to the captioned subject and cited references above, we submit herewith the Environmental Statement of *W/s* Marine Infrastructure Developer Private Limited, in Form-V prescribed under Rule 14 of the Environment (Protection) Rules 1986 for the financial year ending 31st March 2022.

Submitted for your kind information and records.

Thanking you,

600 120

R. Sathish Kumar Head - Environment

Encl: As above

Copy To:

- The Joint Chief Environmental Engineer, Tamilnadu Pollution Control Board, First Floor, 950/1, Poonamallee High Road, Arumbakkam, Chennai-600 106
- The District Environmental Engineer, Tamil Nadu Pollution Control Board, Gummidipoondi - 601201.

Marine Infrastructure Developer Pvt Ltd (Kattupalli Port) Kattupalli Village, Ponneri Taluk, Tirivalluvar District 600 120, Tamil Nadu, India Tel +91 44 2824 3062 CIN: U74999TN2016PTC103769

Registered Office: Ramcon Fortuna Towers, 4th floor No 1/2, Kodambakkam High Road, Nungambakkam, Chennai 600034

ET1297653718 JELEFERENCIATO SP ETRIBAI SELAI IPC (500000) Inclusion Counter Ror2.23/05/2022,15625 Tothe IF ENVIRO.TN POLLUTION COM FUNCTION, Generational SO FrontSathUSA KUK.IN GEN MANGER WithfOpes Antria.30(Cach/Taxi6.30 Cirack on www.indiacost.gov.10)

ETLTUNYASISIN INRIANSALISTA SP ETHIRAJ SHARI SPC (400005) Counter Hei2,23/09/2022,16426 ToiTHE HENBER SE.IM POLLUTION COM PINIGO0032, Gmindy Indestrial Estate 5.0 FruntSATHISH NUM.DY SEM NAMAGER Will40gas Aut:29.10(Cash)Tart4.30 GTrack on name.indiapost.gov.in) Chial JB002566060 Glear Minis_ Diay Safe)

Environmental Statement	tor th	e financial year ending 31 st Marc	h 2022
		PART - A	
 Name and Address of the owner/occupier of the industry operation or process 	Chief Marin Kattu Kattu Thiru	B.J. Rao Executive Officer ne Infrastructure Developer Private Limited palli Port, palli Village, Ponneri Taluk, vallur District – 600 120 Nadu, India	
ii) Industry Category		ary : Red ndary : 1065- Ports & Harbour, Jetties ations.	and Dredg
iii) Production Capacity	: Carge	Handling Capacity: 24.65 MMTPA	
	S.No	. Description	Quantity MMTPA
	1.	Containers	21.6
	2.	Ro-Ro (Automobiles)	0.
	3.	Project cargo	0.4
	4.	Break Bulk / General Cargo (Barytes/ Gypsum/ Limestone/ Granite/ Steel Cargo/ Rock Phosphate/ Bauxite/ Dolomite Cargo)	1.4
	5.	Edible oil, CBFS, Base Oil, Lube Oil and Non-Hazardous Liquid Cargo	0.1
iv). Year of establishment	Buildi Bifurd to Ma	, with the issue of Environment al C learancing, ng, ation of Environmental Clearance of L&T arine Infrastructure Developer Private Lir ary 2018.	Ship Build
v) Date of the last environmental statement submitted	10.02523-	our Letter No. MIDPL/TNPCB/2021-2 .2021.	2/119 dat

PART - B

WATER AND RAW MATERIAL CONSUMPTION

(i) Water Consumption

S. No	Water Consumption (m³/ Day)	During the previous Financial year (2020-2021)	During the Current Financial year (2021-2022)
1.	Process	. NIL	NIL
2.	Cooling	NIL	NIL
3.	Domestic	124.66	111.46

The unit does not undergo any manufacturing process. The water consumed is mainly for Firefighting, dust suppression on roads, Greenbelt development and maintenance, etc.

(ii) Raw Material Consumption

URED

S. No	Name of the Raw Material	Name of the Product	Consumption during the financial year 2020-21.	Consumption during the financial year 2021-22.
1	Not Applicable	Not Applicable	NIL	NIL

The unit does not undergo any manufacturing process. Hence, there is no raw material consumption.

2 Page

PART - C

POLLUTION DISCHARGE TO ENVIRONEMENT/ UNIT OF OUTPUT

(Parameters as specified in the consent issued)

Pollutants	Quality of Polluta Discharged (Mass/day)	Polle	utants disc mass/volu	charges	prescribe	e of variation from d standards with reasons					
a) Water	STP Treated Wate	d Water Characteristics: -									
s., .	Parameter	Consent		Actual		% Variation with					
	Parameter	Limit	30 KLD	10 KLD	5 KLD	prescribed standard					
	рH	5.5-9	7.3	7.7	7.4	-Nil-					
	Total Suspended Solids (mg/l)	30	18.2	14.4	7.6	-Nil-					
Į.	BOD (3 days at 27°C) (mg/l)	20	11.9	13.0	8.1	-Nil-					
	1.										
LA 41-	Fecal Coliform (MPN/100ml)	1000	195	174.7	135.8	-Nil-					
b) Air		ided as sta leight of [ofitted to retrofitting nt of >70%	andby pow DG stacks reduce ti g equipme	ver sourc as per Cl he Partio nt is obs	e and are u PCB/TNPCB culate Matt	used during powe Standards, All th er emission leve e 90% against th					
b) Air Particulate Matter (mg/Nm3)	(MPN/100ml) DG sets are provi failure only. The H DG Sets are retr Efficiency of the TNPCB requireme	ided as sta leight of [ofitted to retrofitting nt of >70%	andby pow DG stacks reduce ti g equipme	ver sourc as per Cl he Partio nt is obs	e and are u PCB/TNPCB culate Matt	used during powe Standards, All the er emission level e 90% against the					
Particulate Matter	(MPN/100ml) DG sets are provi failure only. The H DG Sets are retr Efficiency of the TNPCB requireme	ided as sta leight of to ofitted to retrofitting nt of >70% parameter	andby pow DG stacks reduce ti g equipme s. s are well	ver sourc as per Cl he Partio nt is obs within th	e and are u PCB/TNPCB culate Matt served above	used during powe Standards, All the er emission level e 90% against the					

PART-D

HAZARDOUS WASTES

(As specified under Hazardous Waste Management and Handling Rules 1989)

	Total Qua	antity (Kg)
Hazardous Wastes	During the current financial Year (2020-21)	During the current financial Year (2021-22)
(a) From Process	 Cargo residue, washing water and sludge containing Oil (3.1)- 44.42 MT Discarded Containers/ Barrels (33.1)- 3.57 MT Used/Waste/ Spent Oil (5.1)- 6.0 KL 	Used/Waste/ Spent Oil (5.1)- 2.31 KL
(b) From Pollution control facilities	NA	NA

PART-E

SOLID WASTES

	Solid Waste	During the previous Financial Year (2020-21)	During the current Financial Year (2021-22)
a)	From process	NIL	NIL
b)	From pollution control facilities- STP	168 kgs	278 kgs
c)	1. Quantity recycled or reutilized within the Unit 2. Sold	168 kgs	278 kgs
	3. Disposed	NIL	NIL NIL

URE DA

CHENNAL

MFR45

4|Page

PART-F

Please specify the characterization (in terms of composition and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

- "Zero Waste to Landfill" Initiative No waste is being sent to landfill or incineration facility. MIDPL is having Integrated Waste Management System (IWMS) to proper segregate & recover the materials and are handled as per 5R (Reduce, Reuse, Recycle, Recover and Reprocess) principle.
- MIDPL has awarded with Zero Waste to Landfill Management System (ZWTL MS 2020) from TÜV Rheinland India Pvt. Ltd (Annexure – 2).
- Hazardous waste includes Cargo residue, washing water and sludge containing oil, Discarded Containers/ Barrels and Used/Waste/ Spent Oil. All the hazardous wastes are collected and stored properly in Integrated Waste Management Shed & are being disposed to TNPCB authorized /registered recyclers in line with the Hazardous and Other Waste (Management & Transboundary Movement) Rules, 2016 (As amended).
- The used batteries and E-waste are stored in Integrated Waste Management Shed and disposed through TNPCB approved recyclers as per the E-waste Management Rules 2016 (as amended).
- Hazardous Waste Annual returns in Form 4 was submitted in line with the Hazardous and Other Wastes (Management & Transboundary Movement) Rules, 2016.
- 100% utilization of STP sludge for greenbelt maintenance as manure.
- MIDPL certified as "Single Use Plastic (SUP) Free" site from CII –ITC Centre of Excellence for Sustainable Development (Annexure – 3)

5|Page

PART-G

Impact on pollution control measures on conservation of natural resources and consequently on the cost of production

- Roof Top Solar Plant with the solar power generation capacity of 1000 kW were installed at MIDPL. Around 12,60,000 Units per Annum being generated from Solar Plant. MIDPL has invested nearly Rs.4 Crs. for developing this solar plant there by achieved reduction of conventional energy and contributed for resource conservation.
- 15 RTGs retrofitted into Electrical power-driven system at the project cost of Rs.45 Crs. Key Cost benefits includes reduction in diesel consumption and emission level.
- Sewage Treatment Plants (30 KLD, 10 KLD and 5 KLD STPs) are in continuous operation and the treated effluent water quality is meeting the TNPCB norms. STP treated water is used for Gardening purpose, thereby reducing freshwater consumption. The total cost spent on STP operation and maintenance during the year 2021-22 is Rs. 17.34 Lakhs.
- Biogas facility was setup at MIDPL to convert the kitchen waste to useful heat energy. The biogas unit generates output of 3kg / day. The plant capacity is 6 cubic meter / day.
- Unit is undertaking Regular Environmental Monitoring in port through NABL accredited laboratory. We have also installed and operating Continuous Ambient Air Quality Monitoring Station (SO2, NOx, CO, PM10 & 2.5, BTX analyser to monitor VOC) and Meteorological Station (Wind Speed, Wind Direction, Ambient Temperature, Atmospheric Pressure, Relative Humidity, Rainfall and Solar Radiation). Real time data of CAAQMS is connected to TNPCB server. All the monitored environmental parameters are well within the prescribed standards and the details of monitored data is regularly being submitting to TNPCB, CPCB, MoEF8CC and other concerned authorities.
- All the domestic effluent generated at port is treated at existing Sewage Treatment Plants (30 KLD, 10 KLD and 5 KLD) and the entire treated sewage water is being reused within port premises for gardening.
- Motion sensor and timers installed at buildings to reduce energy consumption.

6 Page

- Installed and operating Vehicle Pollution Under Control (PUC) checking facility to control vehicular emission in port premises.
- RTG Container Stacking monitoring system implemented and achieved energy saving up to 18000 Units per year amounting to Rs. 1.35 L /Year.
- Air conditioners fitted with energy saving device "Eco Plug" and achieved energy saving of around 22.1MWH per year.
- Streetlight and High mast lighting controlled by light intensity sensor. Energy savings achieved around 29,000 units per year amounting to Rs. 2.15 Lakhs/Annum.
- 10,292 trees & 19,880 Shrubs planted as part of Greenbelt development program in the year 2021-22. Drip Line and Sprinkler System is provided at MIDPL for irrigation in Greenbelt and landscape areas.

PART-H

Additional investment proposal for Environment protection including abatement of pollution, prevention of pollution

	Regular Expenditure (cost in INR lakhs/year)	
S. No	Description	Cost
1	Comprehensive Environmental Monitoring	28.96
2	AAQ/NL/SM Survey & STP Treated Water Quality Analysis	0.55
3	Environment Studies	36.86
4	Retrofitting of DG Sets	56.57
5	Integrated Waste Management & Pollution Under Check Facility	2.17
6	O&M of STP's	17.34
7	Housekeeping	77.60
8	Greenbelt Maintenance	107.57
_	Total	322.98

7|Page

PART-I

ANY OTHER PARTICULARS IN RESPECT TO ENVIRONMENT

- Handling of all types of wastes in line with 5R (Reduce, Reuse, Recycle, Recover and Reprocess) Principle.
- Paperless Operation is in place (Except for Statutory requirements) using application tools and Software – Terminal Info Gateway (TIG).
- Energy Conservation Committee to measure the amount of energy consumed and to actions to reduce the energy consumed through port operations.
- Water Warriors Committee to identify and reduce the water consumption. The committee would propose innovative water solutions
- Integrated Management System (ISO 9001:2015, 14001:2015, 45001:2018 and 50001:2018) certified Port.
- obtained "5S" Certification at MIDPL
- MIDPL is bestowed with the top honors and the details of accolades received during the year 2021-22 are mentioned here under;
 - EKDKN's "Platinum Award" under 10th Exceed Environment Award 2021 for Energy Conservation Category.
 - "Golden Peacock Environment Management Award 2021" for Transportation (Ports) Sector, under 'Environment Management' Category.

Community Development:

Kattupalli Port has been propagating the community development through a broad based Corporate Social Responsibility (CSR) program in the project area through Adani Foundation since 2018 to ensure inclusive growth and catering to the developmental needs of the community at the grassroots level. The project area encompasses 11 panchayats covering about 46 villages within 10 Km radius of the Kattupalli Port. The key interventions introduced in the project area are as under:

- Education
- Community Health
- community Infrastructure facility
- Sustainable Livelihood development

8 Page

- Tree Plantation & Bio-Diversity development program .
- Special Focus Groups
- COVID / Cyclone relief measures

Date: 22.09.2022

(Signature of a person carrying]out an industry

----- operation or process) -Co. Name

: G.J. Rao

Designation: Chief Executive Officer

: Marine Infrastructure Developer Pvt Ltd (MIDPL) Address Kattupalli Village, Ponneri Taluk,

Thiruvallur District - 600 120

Tamil Nadu, India.

9|Page

b
-
_
=
~
Ð
Ξ.
\sim
-
mi.
ŝ

7	•		•	-	-	N	-	S.No.			-					N	-	S.No.			
Carbon Monoxide, mg/Nm3	Particular matter, mg/Nm3	Audd w (20M se) you	and a subscription of the subscription	Culober Disaids and Mart	Gat Discharge NmX/hr	Flue Gas Velocity, m/s	Stack Temperature, "C	Parameters	Month & Year	Location	Carbon Monoxide, mg/Nm3	Particular matter, mg/Nm3	MOX (as MOZ) in ppmv	Sulphur Dioxide, mg/Nm3	Gas Discharge, Nm3/hr	Flue Gas Velocity, m/s	Stack Temperature, *C	Parameters	Month 8 Year	Location	
				1				21.04.21	Apr-21		86	37.3	248	10.7	6334	26.08	281	21.04.21	Apr-21		
								20.05.21	May-21		94	35	. 255	11.2	6465	26.91	287	20,05,21	May-21	100	
66	37.3	261	16.1	4640	E.O.A	27.56	298	18,05,21	Jun-21									18.06.21	Jun-21	State and a state of the	MUPLY STACK MONITORING REPORT (April 2021 to March 2022)
								20.07.21	Jul-21		93	35,1	257	6'01	6689	28.92	291	20.07.21	Jul-21	Section 199	CK MUMITUR
87	33	242	9.7	0/10	2000	26,75	258	18,08.21	Aug-21									18.08.21	Aug-21	The second se	NICHER RAND
						•	+	15.09.21	Sep-21	DG 2000KVA - 2	95	37.4	249	9	6372	25,48	265	15,09.21	Sep-21	DG 2000KVA - 1	POLLINGAL
75	15	022	9.9	7860	and the second	25,46	247	21.10.21	Oct-21	KVA-2	69	12	228	7.1	6420	24.72	245	21.10.21	Oct-21	NOVA-1	1 CD MIAPEN'2
	+						• 2	15,11,21	Nov-21		75	14.3	236	7.9	6674	26.29	257	15,11,21	Nov-21		(220)
00	13.1	214	7.3	0447	00100	24.68	242	24,12.21	Dec-21						••			24,12.21	Dec-21		
								25,01.21	Jan-22		56	12	224	8.1	6543	26.01	262	25.01.21	Jan-22		
47	10.8	212	7.7	6376	24.90	80 40	294	16.02.22	Feb-22						100			16.02.22	Feb-22		
5.4	12.1	225	8.9	6557	20.12	64.36	263	23,03,22	Mar-22		52	LUL	218	84	6645	25.83	250	23.03.22	Mar-22		

12

-	•		•	-	3	N	-	S.No.				-			•	3	N	-	S.No.	1			1	6	5			N	-	S.No.		
Carbon Monoxide, mp/Wm3	Particular matter, mg/Nm3	wind us (2014 Se) vow	Cutton of the second second	Sulphus Diavida manina	Gas Discharge, Nm3/hr	Flue Gas Velocity, m/s	Stack Temperature, *C	Parameters	Month B Year	Location	Annual management with the	Carbon Monovida molling	Particular matter, mo/Nm3	NOX (as NO2) in ppmv	Sulphur Dioxide, mg/Nm3	Gas Discharge, Nm3/hr	Flue Gas Velocity, m/s	Stack Temperature, "C	Parameters	Month & Year	Location		Carbon Monexide, mg/Nm3	Particular matter, mg/Nm3	NOX (as NO2) in ppmv	Sulphur Diaxide, mp/Nim3	Gas Discharge, Nm3/hr	Flue Gas Velocity, m/s	Stack Temperature, "C	Parameters	Month & Year	Location
24	11.2	20.3	0.0	2000	36254	10.03	151	21.04.21	Apr-21			20	16.4	60	5,6	611	12.93	127	21.04.21	Apr-21										21,04,21	Apr-21	Contraction of the
						+ •		20.05.21	May-21	1.						+			20.05.21	May-21		-	69	27.8	1 91	7.9	1639	16.88	185	20.05.21	May-21	
							-	18.06.21	Jun-21	11111	20	0,61	14.0	74	59	858	12.01	134	18,06,21	Jun-21	0									18,05,21	Jun-21	
30	12.3	25.1	67	at the second	RIBAE	10.21	452	20.07.21	101-21						•				20,07,21	Jul-21			64	24.6	103	7.1	1780	18.12	180	20.07.21	Jul-21	
								18.09.21	Aug-21	LIQUID TE	66	11.1		10	4.4	559	11.48	116	18.08.21	Aug-21	Contraction of the local distribution of the								+	10.08.21	Aug-21	1 - William
35	14.2	27.4	7	10100	TANGE .	10.75	159	15.09.21	Sep-21	RMINAL HO								+	15.09,21	549-21	DG 125 KVA		68	22.6	94	6.3	1690	16.87	171	15.09.21	Sep-21	DG 500 KVA
•								21.10.21	Oct-21	LIQUID TERMINAL HOT OIL GENERATOR	10	4,0		10	22	581	12.05	119	21.10.21	Oct-21	- KVA		54	8.3	80	5.8	1732	17.41	174	21.10.21	Oct-21	OKVA
			. 4			•		15,11,21	Nov-21	RATOR				-			-		15,11,21	Nov-21			51	1	69	2.2	10.06	18,57	165	15.11.21	12-von	
	•					•	•	24.12.21	Dec-21		81	4.0	CC.	14	19	535	11.26	124	24.12.21	Dec-21		-							2	24.12.21	Dec-21	
	•		•					25.01.21	Jan-22	1							•		25.01.21	Jan-22			16	6.8	92	6.5	1588	15.78	691	25.01.21	Jan-22	
22	11.4	21	7.9	41362	11.44	11 43	152	16.02.22	Feb-22										16.02.22	Feb-22										16.02.22	Feb-22	Support States
				*				23.03.22	Mar.22		20	5.2	86		202	194	11 94	128	23.03.22	Mar-22									•	23,03,22	Mar-22	

. -

-

Annexure - 2

Certificate

Standard: Zero Waste to Landfill Management System (ZWTL MS 2020) -----Certificate Holder: Marine Infrastructure Developer Private Limited Kattupalli Port, Tiruvallur - 600120 Tamil Nadu, India Scope: Providing Port Facilities for Handling and Storage of Bulk Cargo, Containerized Cargo and Liquid **Terminal Operations** Proof has been furnished by means of an audit that the Requirements of ZWTL MS 2020 are met, with the achievement of waste diversion rate of above 99% Validity: This certificate is valid from 01-06-2021 until 31-05-2024 Subject to satisfactory annual surveillance audits. Certificate No. TUV/ZWLMS/2021/Adani Ports/0502

New Delhi, 01-06-2021

TÜV Rheinland India Pvt. Ltd. Office 610, 6rd Floor, iThum Tower, A-40, Sector-62, Noida- 201301, India

EKDKN's Platinum Award - 2021

Golden Peacock Environment Management Award 2021

Annexure - 3

Accolades

na series de la serie de la companya 5 1000 - 100 -100 Aug. 222 - 1 22668224 1 1

ANNEXURE – 8 (CONSENT ORDERS UNDER AIR &

WATER ACTS)

- - -

Category of the Industry :

CONSENT ORDER NO. 2105236876761

DATED: 13/09/2021.

PROCEEDINGS NO.T6/TNPCB/F.0491GMP/RL/GMP/A/2021 DATED: 13/09/2021

 SUB: Tamil Nadu Pollution Control Board -CONSENT TO OPERATE -DIRECT -M/s. MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED , S.F.No. Survey Numbers : 14/18B, 15. 168/1, 168/2, 169, 170/1, 170/2, 171/1, 171/2, 172/1, 172/2, 173/1, 173/2, 174, 175, 176, 177, 178/1, 178/2, 178/3, 178/4, 179/1, 179/2, 179/3, 179/4, 180, 181, 182, 183, 184/1, 184/2, 184/3, 186, 187, 188/1, 188/2A, 188/2B, 188/2C, 189, 190, 191, 192/1, 192/2, 193/1, 193/2, 193/3, 193/4, 194, 195, 196, 197/1, 197/2, 197/3, 199, 200/1, 200/2, 202/1, 202/2, 203, 206/1, 206/2A, 206/2B, 206/3, 20674A, 206/4B, 207/2B, 208/2, 209/1, 209/2, 209/3; 2T0/T, 210/2, 2T1/1, "211/2, 211/3, 211/4, 211/5, 211/6, 211/7, 212, 213, 214/1, 214/2, 214/3, 214/4, 215/1, 215/2, 216, 217, 218/1, 218/2, 218/3, 218/4, 218/5, 219/1, 219/2, 220, 223/1, 223/2, 224/1, 224/2, 224/3, 224/4, 224/5, 225, 226, 227, 228/1, 228/2, 228/3, 228/4, 228/5, 229, 230, 231/1, 231/2, 231/3, 231/4, 231/5, 232, 233/1, 233/2, 233/3, 233/4, 234/1, 234/2, 234/3, 234/4, 235/TB, 235/2, 235/3B, 236/3B, 236/4, 242/1, 242/2, 243/2B, 244/2, 247/1, 248/1, 248/2, 249/1A2, 249/2B, 198/1, 205/1A, 205/1B, 205/2, 205/5, 1/4A1, 1/4A2, 1/4B, 1/5, 16/1, 16/2, 17/1, 17/2, 17/3A, 17/3B, 143, 151/1, 151/2, 151/3, 151/4, 152, 153, 154/1, 154/2, 166, 167/1, 167/2, 204/1, 204/2, 204/3, 221, 221/1, 222/2, 330/1, 330/2, 330/3, 30/4, 12, 16/3, 198/2, 201, 205/3, 205/4, KATTUPALLI villagePonneri Taluk and Tiruvallur District - Consent for operation of the plant and discharge of emissions under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) –Issued- Reg.

Ref: 1. Units application for CTO direct dt. 15.02.2021

2. IR.No : F.0491GMP/RL/DEE/GMP/2021 dated 30/06/2021

3. Board's (Consent Clearance Committee) Resolution No.281-12 dt: 13.08.2021

CONSENT TO OPERATE is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) (hereinafter referred to as "The Act") and the rules and orders made there under to

The Chief Executive Officer,

M/s . MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED

S.F.No.Survey Numbers : 14/18B, 15, 168/1, 168/2, 169, 170/1, 170/2, 171/1, 171/2, 172/1, 172/2, 173/1, 173/2, 174, 175, 176, 177, 178/1, 178/2, 178/3, 178/4, 179/1, 179/2, 179/3, 179/4, 180, 181, 182, 183, 184/1, 184/2, 184/3, 186, 187, 188/1, 188/2A, 188/2B, 188/2C, 189, 190, 191, 192/1, 192/2, 193/1, 193/2, 193/3, 193/4, 194, 195, 196, 197/1, 197/2, 197/3, 199, 200/1, 200/2, 202/1, 202/2, 203, 206/1, 206/2A, 206/2B, 206/3, 206/4A, 206/4B, 207/2B, 208/2, 209/1, 209/2, 209/3, 210/1, 210/2, 211/1, 211/2, 211/3, 211/4, 211/5, 211/6, 211/7, 212, 213, 214/2, 214/3, 214/4, 215/1, 215/2, 216, 217, 218/1, 218/2, 218/3, 218/4, 218/5, 219/1, 219/2, 220, 223/1, 223/2, 224/1, 224/2, 224/3, 224/4, 224/5, 225, 226, 227, 228/1, 228/2, 228/3, 228/4, 228/5, 229, 230, 231/1, 231/2, 231/3, 231/4, 231/5, 232, 233/1, 233/2, 233/3, 233/4, 234/1, 234/2, 234/3, 234/4, 235/1B, 235/2, 235/3B, 236/3B, 236/4, 242/1, 242/2, 243/2B, 244/2, 247/1, 248/2, 249/1A2, 249/2B, 198/1, 205/1A, 205/1B, 205/2, 205/5, 1/4A1, 1/4A2, 1/4B, 1/5, 16/1, 16/2, 17/1, 17/2, 17/3A, 17/3B, 143, 151/1, 151/2, 151/3, 151/4, 152, 153, 154/1, 154/2, 166, 167/1, 167/2, 204/1, 204/2, 204/3, 221, 221/2, 221/1, 222/2, 330/1, 330/4, 12, 16/3, 198/2, 201, 205/3, 205/4,

KATTUPALLI Village, Ponneri Taluk, Tiruvallur District.

Authorizing the occupier to operate the industrial plant in the Air Pollution Control Area as notified by the Government and to make discharge of emission from the stacks/chimneys.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This CONSENT is valid for the period ending March 31, 2026

JOSEPHINESAHAYARANI Digitally signed by JOSEPHINESAHAYARA

of the second

. . . .

For Member Secretary, Tamii Nadu Pollution Control Board, Chennai

To

The Chief Executive Officer,

M/s.MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED,

Ramcons Fortuna Towers: 4th Floor, No: 1/2 Kodambakkam High Road, Nungambakam, Chennai - 600034,

Pin: 600034

Copy to:

40.00

1. The Commissioner, MEENJUR-Panchayat Union, Ponneri Taluk, Tiruvallur District .

2. The District Environmental Engineer, Tamil Nadu Pollution Control Board, GUMMIDIPOONDI.

2 21 P X 2

3. The JCEE-Monitoring, Tamil Nadu Pollution Control Board, Chennai.

4. File

4.0000

SPECIAL CONDITIONS

 This consent to operate is valid for operating the facility for the manufacture of products (Col. 2) at the rate (Col. 3) mentioned below. Any change in the products and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

SI. No.	Description	Quantity	Unit
	Product Details		
1.	Containers	21.60	MMTPA
2.	Ro-Ro – Automobiles	0.07	MMTPA
3.	Project Cargo	0.44	MMTPA
4.	Break Bulk/general cargo (Barytes / Gypsum / Limestone / Granite / Steel Cargo / Rock Phosphate / Bauxite / Dolomite cargoes)	1.82	MMTPA
5.	Edible oil, CBFS, Base Oil, Lube and Non- Hazardous Liquid Cargo	0.72	ММТРА -

 This consent to operate is valid for operating the facility with the below mentioned emission/noise sources along with the control measures and/or stack. Any change in the emission source/control measures/change in stack height has to be brought to the notice of the Board and fresh consent/Amendment has to be obtained.

I	Point source emission with sta	ick :		
Stack No.	Point Emission Source	Air pollution Control measures	Stack height from Ground Level in m	Gaseous Discharge in Nm3/hr
1	DG Set - 2000 KVA - I	Acoustic enclosures with stack	30	8000
2	DG Set - 2000 KVA - II	Acoustic enclosures with stack	30	8000
3	DG Set - 500 KVA - I	Acoustic enclosures with stack	20	5000
4	DG Set - 500 KVA - II	Acoustic enclosures with stack	20	5000
5	DG Set - 125 KVA	Acoustic enclosures with stack	4	1000
6	Hot Water System (CBFS / Veg Oil,Facility) =	Wet scrubber with stack	31	50000
7	Hot Oil Generator (Bitumen Facility)	Wet scrubber with stack	31	50000
8	Fire DG Pump Stack - 1	Stack	2.5	
9	Fire DG Pump Stack - 2	Stack	2.5	
10	ETP Boiler Stack	Stack	12	
1	Fugitive/Nolse emission :			
SL. No.	Fugitive or Noise Emission sources	Type of emission	Control measures	
1.	DG Set	Noise	Acoustic Enclosures	

÷

3(a). The emission shall not contain constituents in excess of the tolerance limits as laid down hereunder :

 Sl.
 Parameter
 Unit
 Tolerance limits
 Stacks

Annexure enclosed if applicable.

:-

3.(b) The Ambient Air in the industrial plant area shall not contain constituents in excess of the tolerance limits prescribed below.

S1.	Pollutant	Time Weighted	Unit	Toleran	ce Limits
No.		Average		Industrial, Residential, Rural and other area	Ecologically Sensitive Area (notified by Central Govt.)
1.	Sulphur Dioxide (SO2)	Annual 24 hours	microgram/m3 microgram/m3	50 80	20 80
2.	Nitrogen Dioxide (NO2)	Annual	microgram/m3 microgram/m3	40 80	30 80
3.	Particulate Matter (Size Less than 10 micro M) or PM10	Annual 24 hours	microgram/m3 microgram/m3	60 100	60 100
4.	Particulate Matter (Size Less than 2.5 micro M) or PM2.5	Annual 24 hours	microgram/m3 microgram/m3	40 60	40 60
5.	Ozone (O3)	Annual 24 hours	8 Hours 1 Hour	100 180	100 180
SI.	Pollutant	Time Weighted	Unit	Toleran	ce Limits
No.		Average		Industrial, Residential, Rural and other area	Ecologically Sensitive Area (notified by Central Govt.)
6.	Lead (Pb)	Annual 24 hours	microgram/m3 microgram/m3	0.5 1.0	0.5 1.0
7.	Carbon Monoxide (CO)	8 Hours 1 Hour	miligram/m3 miligram/m3	02 04	02 04
8.	Ammonia (NH3)	Annual 24 hours	microgram/m3 microgram/m3	100 400	100 400
9.	Benzene (C6H6)	Annual	microgram/m3	5	5
10.	Benzo(O) Pyrene (BaP) -particulate phase only	Annual	nanogram/m3	01	01
п.	Arsenic (As)	Annual	nanogram/m3	06	06
12.	Nickel (Ni)	Annual	nanogram/m3	20	20

3(c) The Ambient Noise Level in the industrial plant area shall not exceed the limits prescribed below:

Limits in L.eqdB(A)	Day Time	Night Time	
IndustrialArea	75	70	

 All units of the Air pollution control measures shall be operated efficiently and continuously so as to achieve the standards prescribed in SI. No.3 above.

TAMILNADU POLLUTION CONTROL BOARD

- 5 The occupier shall not change or alter quality or quantity or the rate of emission or replace or alter the air pollution control equipment or change the raw material or manufacturing process resulting in change in quality and/or quantity of emissions without the previous written permission of the Board.
- The occupier shall maintain log book regarding the stack monitoring system or operation of the plant 6 or any other particulars for each of the unit operations of air pollution control systems to reflect the working condition which shall be furnished for verification of the Board officials during inspection.
- 7 The occupier shall at his own cost get the samples of emission/air/noise levels collected and analyzed by the TNPC Board Laboratory once in every 6 months/once in a year/periodically for the parameters as prescribed.
- Any upset condition in any of the plants of the factory which is likely to result in increased emissions 8 and result in violation of the standards mentioned in Sl.No.3 shall be reported to the Member Secretary / Joint Chief Environmental Engineer-Monitoring and the concerned District/Assistant Environmental Engineer of the Board by e-mail immediately and subsequently by Post with full details of such upset condition.
- The occupier shall always comply and carryout the order/directions issued by the Board in this 9 Consent Order and from time to time without any negligence. The occupier shall be liable for action as per provisions of the Act in case of non compliance of any order/directions issued.

Special Additional Conditions:

The unit shall install the approved retrofit emission control device/equipment with at least 70% Particulate matter reduction efficiency on all DG sets with capacity of 125 KVA and above or otherwise the unit shall be shift to gas based generators within the time frame prescribed in the notification No. TNPCB/Labs/DD(L)02151/2019 dated 10.06.2020 issued by TNPCB_____

Additional Conditions:

1. The unit shall operate and maintain the APC measures efficiently and continuously so as to satisfy the Ambient Air Quality / emission standards prescribed by the Board.

2. The unit shall adhere to the Ambient Noise Level standards prescribed by the Board.

3. The unit shall conduct AAQ/ANL/SM emission survey periodically and furnish the ROA to the Board.

4. The unit shall maintain Continuous Ambient Air Quality Monitoring station provided for the parameters PM10, PM2.5 and VOC and shall transfer data to the care Air Centre, TNPCB. Guindy without any interruption.

5. The unit shall utilize the Power obtained from the DG Sets for captive use only and shall not supply Power to Grid.

6. The unit shall maintain adequate dust suppression system and take all measures to ensure that the cargo is handled by taking necessary precautions to avoid spread of fugitive dust while transporting cargo through lorries and containers.

7. The unit shall ensure that the vehicles shall not fit or use any multi toned horn giving a harsh, shrill, loud or alarming noise.

8. The unit shall provide water sprinklers to the internal roads so as to avoid dust emissions due to the vehicular movements inside the premises within a month as committed.

9. The unit shall comply with the conditions imposed in the environmental clearance accorded to the unit from the MoEF, GOI vide Lr.No. 10-130/2007-1AIII dated 09.02.2018.

10. In case of any deviation in the Gross Fixed Assets furnished in future, the unit shall remit the difference in amount to the Board without fail.

11. The unit shall continue to develop adequate green belt by planting tree saplings of native species in and around the unit premises so as to comply with the Board norms.

12. In case of revision of consent fee by the Government, the unit shall remit the difference in amount within one month from the date of notification. Failing to remit consent fee, this consent order will be withdrawn without any notice and further action will be initiated against the unit as per law.

13. The unit shall comply with the conditions imposed in the "No increase in Pollution Load" letter issued to the unit by the Board vide Lr. No: T1/TNPCB/ F.022882/RL/GMP/NIPL/2021 Dated:12.01.2021.

JOSEPHINESAHAYARANI JOSEPHINESAHAYARANI

Digitally signed by Date: 2021.09.14 07:45:41 +05'30'

For Member Secretary, Tamil Nadu Pollution Control Board, Chennal

5

GENERAL CONDITIONS

- The occupier shall make an application along with the prescribed consent fee for grant of renewal of consent at least 60 days before the date of expiry of this Consent Order along with all the required particulars ensuring that there is no change in production quantity and emission.
- This Consent is given by the Board in consideration of the particulars given in the application. Any
 change or alteration or deviation made in actual practice from the particulars furnished, in the
 application will also be ground for review/variation/revocation of the Consent Order under Section 21
 of the Act.
- The conditions imposed shall continue in force until revoked under Section 21 of the Act.
- After the issue of this order, all the 'Consent to Operate' orders issued previously under Air (Prevention and Control of Pollution) Act, 1981 as amended stands defunct.
- The occupier shall maintain an Inspection Register in the factory so that the inspecting officer shall record the details of the observations and instructions issued to the unit at the time of inspection for adherence.
- 6. The occupier shall provide and maintain an alternate power supply along with separate energy meter for the Air Pollution Control measures sufficient to ensure continuous operation of all pollution control equipments to ensure compliance.
- The occupier shall provide all facilities to the Board officials for collection of samples in and around the factory at any time.
- The applicant shall display the flow diagram of the sources of emission and pollution control systems provided at the site.
- The liquid effluent arising out of the operation of the air pollution control equipment shall also be treated in a manner and to the satisfaction of standards prescribed by the Board in accordance with the provisions of Water (Prevention and Control of Pollution) Act, 1974 as amended.
- The air pollution control equipments, location of inspection chambers and sampling port holes shall be made easily accessible at all time.
- In case of any episodal discharge of emission, the industry shall take immediate action to bring down the emission within the limits prescribed by the Board.
- If applicable, the occupier has to comply with the provisions of Public Liability Insurance Act, 1991 to
 provide immediate relief in the event of any hazard to human beings, other living creatures/plants and
 properties while handling and storage of hazardous substances.
- The issuance of this consent does not authorize or approve the construction of any physical structures or facilities or the undertaking of any work in any natural watercourse or in Government Poromboke lands.
- 14. The issuance of this Consent does not convey any property right in either real personal property or any exclusive privileges, nor does it authorize any injury to private property or Government property or any invasion of personal rights nor any infringement of Central, State laws or regulation.
- 15. The occupier shall forth with keep the Board informed of any accident of unforeseen act or event of any poisonous, noxious or polluting matter or emissions are being discharged into stream or well or air as a result of such discharge, water or air is being polluted.
- 16. If due to any technological improvements or otherwise the Board is of opinion that all or any of the conditions referred to above requires variation (including the change of any treatment system, either in whole or in part) the Board shall, after giving the applicant an opportunity of being heard, vary all or any of such conditions and thereupon the applicant shall be bound to comply with the conditions as so varied.
- 17. In case there is any change in the constitution of the management, the occupier of the new management shall file fresh application under Air (Prevention and Control of Pollution) Act, 1981, as amended in Form-I alongwith relevant documents of change of management immediately and get the necessary amendment with renewal of consent order.
- In case there is any change in the name of the company alone, the occupier shall inform the same with relevant documents immediately and get the necessary amendments for the change of name from the Board.

 The occupier shall display this consent order granted to him in a prominent place for perusal of the inspecting Officers of this Board.

÷

4

۰.

7

1.72

....

.....

JOSEPHINESAHAYARANI Digitally signed by JOSEPHINESAHAY, Date: 2021.09.14 07:46/18 +05'30'

> For Member Secretary, Tamii Nadu Pollution Control Board, Chennai

> > 1.0

- -

400

Category of the Industry :

CONSENT ORDER NO. 2105136876761

DATED: 13/09/2021.

PROCEEDINGS NO.T6/TNPCB/F.0491GMP/RL/GMP/W/2021 DATED: 13/09/2021

 SUB: Tamil Nadu Pollution Control Board -CONSENT TO OPERATE - DIRECT -M/s. MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED , S.F.No. Survey Numbers : 14/18B, 15. 168/1, 168/2, 169, 170/1, 170/2, 171/1, 171/2, 172/1, 172/2, 173/1, 173/2, 174, 175, 176, 177, 178/1, 178/2, 178/3, 178/4, 179/1, 179/2, 179/3, 179/4, 180, 181, 182, 183, 184/1, 184/2, 184/3, 186, 187, 188/1, 188/2A, 188/2B, 188/2C, 189, 190, 191, 192/1, 192/2, 193/1, 193/2, 193/3, 193/4, 194, 195, 196, 197/1, 197/2, 197/3, 199, 200/1, 200/2, 202/1, 202/2, 203, 206/1, 206/2A, 206/2B, 206/3, 206/4A, 206/4B, 207/2B, 208/2, 209/1, 209/2, 209/3, 2T071, 210/2, 2T1/1, 211/2, 2T1/3, 2T1/4, 2T1/5, 2T1/6, 2T1/7, 2T2, 2T3, 2T4/1, 2T4/2, 2T4/3, 2T4/4, 2T5/1, 2T5/2, 2T6, 2T7, 2T8/1, 2T8/2, 218/3, 2T8/4, 2T8/5, 2T9/1, 2T9/2, 220, 223/1, 223/2, 224/1, 224/2, 224/3, 224/4, 224/5, 225, 226, 227, 228/1, 228/2, 228/3, 228/4, 228/5, 229, 230, 231/1, 231/2, 231/3, 231/4, 231/5, 232, 233/1, 233/2, 233/3, 233/4, 234/1, 234/2, 234/3, 234/4, 235/TB, 235/7, 235/3B, 236/3B, 236/4, 242/1, 242/2, 243/2B, 244/2, 247/1, 248/1, 248/2, 249/1A2, 249/2B, 198/1, 205/1A, 205/1B, 205/2, 205/5, 1/4A1, 1/4A2, 1/4B, 1/5, 16/1, 16/2, 17/1, 17/2, 17/3A, 17/3B, 143, 151/1, 151/2, 151, 3, 151/4, 152, 153, 154/1, 154/2, 166, 167/1, 167/2, 204/1, 204/2, 204/3, 221, 221/1, 222/2, 330/1, 330/2, 330/3, 330/4, 12, 16/3, 198/2, 201, 205/3, 205/4, KATTUPALLI villagePonneri Taluk and Tiruvallur District - Consent for the operation of the plant and discharge of sewage and/or trade effluent under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act 6 of 1974) – Issued- Reg.

Ref: 1. Units application for CTO direct dt. 15.02.2021

2. IR.No : F.0491GMP/RL/DEE/GMP/2021 dated 30/06/2021

3. Board's (Consent Clearance Committee) Resolution No.281-12 dt: 13.08.2021

CONSENT TO OPERATE is hereby granted under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act, 6 of 1974) (hereinafter referred to as "The Act") and the rules and orders made there under to

The Chief Executive Officer,

M/s . MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED

S.F.No.Survey Numbers : 14/18B, 15, 168/1, 168/2, 169, 170/1, 170/2, 171/1, 171/2, 172/1, 172/2, 173/1, 173/2, 174, 175. 176. 177. 178/1, 178/2, 178/3, 178/4, 179/1, 179/2, 179/3, 179/4, 180, 181, 182, 183, 184/1, 184/2, 184/3, 186, 187, 188/1, 188/2A, 188/2B, 188/2C, 189, 190, 191, 192/1, 192/2, 193/1, 193/2, 193/3, 193/4, 194, 195, 196, 197/1, 197/2, 197/3, 199, 200/1, 200/2, 202/1, 202/2, 203, 206/1, 206/2A, 206/2B, 206/3, 206/4A, 206/4B, 207/2B, 208/2, 209/1, 209/2, 209/3, 210/1, 210/2, 211/1, 211/2, 211/2, 211/6, 211/7, 212, 213, 214/1, 214/2, 214/3, 214/4, 215/1, 215/2, 216, 217, 218/1=218/2, 218/3, 218/4, 215/1, 219/2, 220, 223/1, 223/2, 224/1, 224/2, 224/3, 224/4, 224/5, 225, 226, 227, 228/1, 228/2, 228/3, 228/4, 228/5, 229, 230, 231/1, 231/2, 231/3, 231/4, 231/5, 232, 233/1, 233/2, 233/3, 233/4, 234/1, 234/2, 234/3, 234/4, 235/1B, 235/2, 235/3B, 236/3B, 236/4, 242/1, 242/2, 243/2B, 244/2, 247/1, 248/2, 249/1A2, 249/2B, 198/1, 205/1A, 205/1B, 205/2, 205/5, 1/4A1, 1/4A2, 1/4B, 1/5, 16/1, 16/2, 17/1, 17/2, 17/3A, 17/3B, 143, 151/1, 151/2, 151/3, 151/4, 152, 153, 154/1, 154/2, 166, 167/1, 167/2, 204/1, 204/2, 204/3, 221/2, 221/1, 222/2, 330/1, 330/2, 330/3, 330/4, 12, 16/3, 198/2, 201, 205/3, 205/4, 205/4, 205/4, 204/1, 204/2, 204/3, 221/1, 222/2, 330/1, 330/2, 330/3, 330/4, 12, 16/3, 198/2, 201, 205/3, 205/4, 205/4, 205/4, 204/1, 204/2, 204/3, 221/1, 222/2, 330/1, 330/2, 330/3, 330/4, 12, 16/3, 198/2, 201, 205/3, 205/4, 205/4, 205/4, 204/1, 204/2, 204/3, 221/1, 222/2, 330/1, 330/2, 330/3, 330/4, 12, 16/3, 198/2, 201, 205/3, 205/4, 205/4, 206/4, 206/1B, 205/4, 206/2B, 206/2, 205/4, 204/2, 204/3, 204/2, 204/3, 221/1, 222/2, 330/1, 330/2, 330/3, 330/4, 12, 16/3, 198/2, 201, 205/3, 205/4, 205/2, 205/5, 1/4A1, 1/4A2, 1/4B, 1/5, 16/1, 16/2, 17/1, 17/2, 17/3A, 17/3B, 143, 151/1, 151/2, 151/3, 151/4, 152, 153, 154/1, 154/2, 166, 167/1, 167/2, 204/1, 204/2, 204/3, 221/2, 221/1, 222/2, 330/1, 330/2, 330/3, 330/4, 12, 16/3, 198/2, 201, 205/3, 205/4, 205/4, 205/4, 205/4, 206/2, 206/3, 205/4, 205/3, 205/4, 205/3, 205/

KATTUPALLI Village, Ponneri Taluk, Tinuvallur District

Authorising the occupier to make discharge of sewage and /or trade effluent.

1

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This CONSENT is valid for the period ending March 31, 2026

JOSEPHINESAHAYARANI Digitally signed by JOSEPHINESAHAYARANI Data: 2021.09.14.07.47.28 + 05.30

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

To

The Chief Executive Officer, M/s.MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED, Ramcons Fortuna Towers, 4th Floor, No: 1/2 Kodambakkam High Road, Nungambakam, Chennai - 600034. Pint: 600034

Copy to:

I. The Commissioner, MEENJUR-Panchayat Union, Ponneri Taluk, Tiruvallur District.
 2. The District Environmental Engineer, Tamil Nadu Pollution Control Board, GUMMIDIPOONDI.
 3. The JCEE-Monitoring, Tamil Nadu Pollution Control Board, Chennai.
 4. File

SPECIAL CONDITIONS

 This consent to operate is valid for operating the facility for the manufacture of products (Col. 2) at the rate (Col. 3) mentioned below. Any change in the products and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

SL. No.	Description	Quantity	Unit
	Product Details		
1.	Containers	21.60	MMTPA
2.	Ro-Ro – Automobiles	0.07	MMTPA
3.	Project Cargo	0.44	MMTPA
4.	Break Bulk/general cargo (Barytes / Gypsum / Limestone / Granite / Steel Cargo / Rock Phosphate / Bauxite / Dolomite cargoes)	1.82	MMTPA
5.	Edible oil, CBFS, Base Oil, Lube and Non- Hazardous Liquid Cargo	0.72	MMTPA

This consent to operate is valid for operating the facility with the below mentioned permitted outlets for the discharge of sewage/trade effluent. Any change in the outlets and the quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

2

.

Outlet No.	Description of Outlet	Maximum daily discharge in KLD	Point of disposal
Effluent Ty	pe : Sewage		
1.	Treated Sewage Effluent - 1 (30 KLD)	30.0	On land for gardening
2.	Treated Sewage Effluent - 2 (10 KLD)	10.0	On land for gardening
3.	Treated Sewage Effluent - 3 (5 KLD)	5.0	On land for gardening
Effluent Ty	pe : Trade Effluent		
1.	Trade Effluent - 1 (RO Permeate)	41.0	On land for gardening
2.	Trade Effluent - 2 (RO Reject)	9.0	Evaporated in ATFD System

 The effluent discharge shall not contain constituents in excess of the tolerance Limits as laid down hereunder.

4.1.114

SI.	Parameters	Unit	TOLERANCE LIMITS - OUTLETS -Nos				
No.	N N N N N N N N N N N N N N N N N N N		Sewa	ge	Trade Effluent		
			1	2,3	1	2	
1.	pН		5.5 to	5.5 to	5.5 to 9	5.5 to 9	
2.	Temperature	oC	-	-		shall not exceed 5°C above the receiving water temperature	1
3.	Particle size of Suspended solids	-	-	-	-	shall pass 850 micron IS sieve	
4.	Total Suspended Solids	mg/l	30	30	200	100	
5.	Total Dissolved solids (inorganic)	mg/l	-	-	2100	2100	
6.	Oil & Grease	mg/l	-	-	10	10	
7.	Biochemical Oxygen Demand (3 days at 27oC)	mg/l	20	20	100	30 - 0	
8.	Chemical Oxygen Demand	mg/l	-	-	-	250	
9.	Chloride (as Cl)	mg/l	-		600	1000	
10.	Sulphates (as SO4)	mg/l	-	-	1000	1000	
11.	Total Residual Chlorine	mg/l	-	-	-	1	-
12.	Ammonical Nitrogen (as N)	mg/l	-	+	50	50	
13.	Total Kjeldahl Nitrogen (as N)	mg/l				100	
14.	Free Ammonia (as NH3)	mg/l	-	-	-	5	_
15.	Arsenic (as As)	mg/l		-	0.2	0.2	-
16.	Mercury (as Hg)	mg/l	-		0.01	0.01	-
17.	Lead (as Pb)	ľlig/l	-	-	1	0.1	
18	Cadmium(as Cd)	mg/l	-	-	1	2	1
19.	Hexavalent Chromium (as Cr+6)	mg/l		•	1	0.1	
20	Total Chromium (as Cr)	mg/l	-	•	2	2	
21.	Copper (as Cu)	mg/l	-		3	3	-
22.	Zinc (as Zn)	mg/l		-	1.5	1	
23.	Selenium (as Se)	mg/l	-	-	0.05	0.05	-
-24	Nickel (as Ni)	mg/l	+	-	3	3	-
25.	Boron (as B)	mg/l	-	-	2	2	-
26	Percent Sodium	%	-	-	60	*	-
27	Residual Sodium Carbonate	mg/l	-		5	-	
28	Cyanide (as CN)	mg/l	-		0.2	0.2	-
29	Fluoride (as F)	mg/l	-	+	2	2	-
30	Dissolved Phosphates(as P)	mg/l	-	-	-	5	
31	Sulphide (as S)	mg/l	-	-	2	2	-
32	Pesticides	mg/l	-	-	-	-	-
33	C6H5OH)	mg/l	-	•	5	1	
34	Radioactive materials a) Alpha emitters	micro curie/ml	-	•	10-8	10-7	

.

TAMILNADU POLLUTION CONTROL BOARD

35.	Radioactive materials b). Beta emitters	micro curie/ml		-	10-6	10-6	
36.	Fecal Coliform	MPN/100ml	-		-	-	

- All units of the sewage and Trade effluent treatment plants shall be operated efficiently and continuously so as to achieve the standards prescribed in SI No.3 above or to achieve the zero liquid discharge of effluent as applicable.
- The occupier shall maintain the Electro Magnetic Flow Meters/water Meters installed at the inlet of the water supply connection for each of the purposes mentioned below for assessing the quantity of water used and ensuring that such meters are easily accessible for inspection and maintenance and for other purposes of the Act.
 - Industrial Cooling, Spraying in mine pits or boiler feed.
 - b. Domestic purpose.
 - c. Process.
- The occupier shall maintain the Electro Magnetic Flow Meters with computer recording arrangement for measuring the quantity of effluent generated and treated for the monitoring purposes of the Act.
- Log book for each of the unit operations of ETP have to be maintained to reflect the working condition of ETP along with the readings of the Electro Magnetic Flow Meters installed to assess effluent quantity and the same shall be furnished for verification of the Board officials during inspection.
- The occupier shall at his own cost get the samples of effluent/surface water/ground water collected in and around the unit by Board officials and analyzed by the TNPC Board Laboratory periodically.
- 9. Any upset condition in any of the plants of the factory which is, likely to result in increased effluent discharge and result in violation of the standards mentioned in SL No.3 above shall be reported to the Member Secretary / Joint Chief Environmental Engineer-Monitoring and the concerned District/Assistant Environmental Engineer of the Board by e-mail immediately and subsequently by Post with full details of such upset condition.
- 10. The occupier shall always comply and carryout the order/directions issued by the Board in this Consent Order and from time to time without any negligence. The occupier shall be liable for action as per provisions of the Act in case of non compliance of any order/directions issued.
- The occupier shall develop adequate width of green belt at the rate of 400 numbers of trees per Hectare.
- The occupier shall provide and maintain rain water harvesting facilities.
- The occupier shall ensure that there shall not be any discharge of effluent either treated or untreated into storm water drain at any point of time.
- In the case of zero liquid discharge of effluent units, the occupier shall adhere the following conditions as laid under.

 The occupier shall ensure zero liquid discharge of effluent, thereby no discharge of untreated / treated effluent on land or into any water bodies either inside or outside the premises at any point of time.

ii) The occupier shall operate and maintain the Zero liquid discharge treatment components comprising of Primary, Secondary and tertiary treatment systems at all times and ensure that the RO permeate/Evaporator condensate shall be recycled in the process and the final RO reject shall be disposed off with the reject management system ensuring zero liquid discharge of effluents in the premises.

iii) The occupier shall operate and maintain the reject management system effectively and recover the salt from the system which shall be reused in the process if reusable or shall be disposed off as ETP sludge.

iv) In case of failure to achieve zero discharge of effluents for any reason, the occupier shall stop its production and operations forthwith and shall be reported to the Member Secretary/Joint Chief Environmental Engineer-Monitoring and the concerned District/Assistant Environmental Engineer of the Board by e-mail immediately and subsequently by Post with full details of such upset condition. v) The occupier shall restart the production only after ascertaining that the Zero discharge treatment system can perform effectively for achieving zero discharge of effluents.

Additional Conditions:

1. The unit shall operate and maintain the existing STPs efficiently and continuously so as to satisfy the standards prescribed by the Board.

 The unit shall utilize the treated sewage on its own land for gardening purposes.
 The unit shall operate and maintain the existing ETP, RO systems, MEE and ATFD for the treatment of trade effluent generated from the unit and the RO permeate shall be utilized for gardening purpose after satisfying the standards prescribed by the Board.

4. The unit shall ensure that operation of the Port activity does not create any impact on the livelihood of the fishermen.

5. The unit shall ensure that the operation of port activity shall not create any adverse effect on the marine eco system or marine water quality of the sea water intake point of M/s. Chennai Water Desalination Plant.

6. The unit shall ensure that the operation activity of the unit shall not create any hindrances to the Kattupalli village under any circumstances.

The unit shall comply with the conditions imposed in the environmental clearance accorded to the unit from the MoEF, GOI vide Lr.No. 10-130/2007-IAIII dated 09.02.2018.

8. The unit shall ensure that no oil spill shall occur in the marine coastal areas due to the operation activities.

9. The Port shall ensure that the dredged material arising from dredging operations shall not be dumped in the areas attracting CRZ Notification and the material shall be used for further beneficial use.

10. The Port shall have containment Boom facility with skimmer to contain and recover the spillages of Liquid Cargo in to the sea if any.

11. The unit shall maintain the water quality of Marine Sea so as to meet the Marine Water quality prescribed for Harbour Sea Water and ensure that the marine water quality is monitored at regular intervals by engaging competent agencies.

12. The unit shall furnish carry out impact assessment study once in a year with respect to marine and land environment and the report shall be furnished to Board.

13. The Port shall ensure that adequate oil spill response equipment shall be made available as per the Appendix B of the Tamil Nadu State Oil Spill Disaster Contingency Plan, September 2016.

14. The Port shall ensure participation in the oil spill combating training along with the State Agencies such as Tamil Nadu Maritime Board organised by the Indian Coast Guard time to time.

15. The port shall ensure the formation and regular functioning of dedicated Environment Cell and Oil Spill Contingency Response Cell in order to have timely response to incidents of oil spill and any other contingency in the Port area.

16. In case of revision of consent fee by the Government, the unit shall remit the difference in amount within one month from the date of notification. Failing to remit consent fee, this consent order will be withdrawn without any notice and further action will be initiated against the unit as per law.

17. The unit shall not use 'use and throwaway plastics' such as plastic sheets used for food wrapping, spreading on dining table etc., plastic plates, plastic coated tea cups, plastic tumbler, water pouches and packets, plastic straw, plastic carry bag and plastic flags irrespective of thickness, within the industry premises. Instead unit shall encourage use of eco friendly alternative such as banana leaf. areca nut palm plate, stainless steel, glass, porcelain plates/cups, cloth bag, jute bag etc.

18. The unit shall not undertake any activity in its premises in violation of the CRZ Rules notified by the MoEF & CC, GoI.

The unit shall maintain the dedicated reception facilities provided for receiving hazardous waste as per the orders of the Hon'ble NGT (PB) in OA No.804/2017.

20. The unit shall adhere to the International Convention for the prevention of pollution from Ships (MARPOL guidelines) covering the following regulations,

(i) Regulations for the prevention of pollution by oil (ii) Regulations for the control of pollution by Noxious liquid substances in bulk

(iii) Prevention of pollution by sewage from ships
 (iv) Prevention of pollution by garbage from ships
 (v) Prevention of Air pollution from ships

21. The unit shall comply with the conditions imposed in the "No increase in Pollution Load" letter issued to the unit by the Board vide Lr. No: T1/TNPCB/ F.022882/RL/GMP/NIPL/2021 Dated:12.01.2021.

22. In case of any deviation in the Gross Fixed Assets furnished in future, the unit shall remit the difference in amount to the Board without fail.

23. The unit shall not commence its expansion activity before obtaining CTE/CTO expansion from the Board.

Digitally signed by JOSEPHINESAHAVAR ON CONTROL BOARD TAMILNADU POLLÚ

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

GENERAL CONDITIONS

- The occupier shall make an application along with the prescribed consent fee for grant of renewal of consent at least 60 days before the date of expiry of this Consent Order along with all the required particulars ensuring that there is no change in Production quantity and change in sewage/Trade effluent.
- 2. This Consent is issued by the Board in consideration of the particulars given in the application. Any change or alteration or deviation made in actual practice from the particulars furnished in the application will also be ground for review/variation/revocation of the Consent Order under Section 27 of the Act and to make such variation as deemed fit for the purpose of the Act.
- The consent conditions imposed in this order shall continue in force until revoked under Section 27(2) of the Act.
- After the issue of this order, all the 'Consent to Operate' orders issued previously under Water (Prevention and Control of Pollution) Act, 1974 as amended stands defunct.
- The occupier shall maintain an Inspection Register in the factory so that the inspecting officer shall record the details of the observations and instructions issued to the unit at the time of inspection for adherence.
- The occupier shall provide and maintain an alternate power supply along with separate energy meter for the Effluent Treatment Plant-sufficient to ensure continuous operation of all pollution controlequipments to maintain compliance.
- The occupier shall provide all facilities to the Board officials for inspection and collection of samples in and around the factory at any time.
- The occupier shall display the flow diagram of the sources of effluent generation and pollution control systems provided at the ETP site.
- The solid waste such as sweepings, wastage, package, empty containers, residues, sludge including that from air pollution control equipments collected within the premises of the industrial plant shall be collected in an carmarked area and shall be disposed off properly.
- The occupier shall collect, treat the solid wastes like food waste, green waste generated from the canteen and convert into organic compost.
- The occupier shall segregate the Hazardous waste from other solid wastes and comply in accordance with Hazardous Wastes (Management, Handling and Transboundary Movement) Rules, 2008.
- 12. The occupier shall maintain good house-keeping within the factory premises.
- All pipes, valves, sewers and drains shall be leak proof. Floor washings shall be admitted into the trade effluent collection system only and shall not be allowed to find their way in storm drains or open areas.
- The occupier shall ensure that there shall not be any diversion or by-pass of trade effluent on land or into any water sources.
- 15. The occupier shall ensure that solar Evaporation pans shall be constructed in such a way that the bottom of the solar pan is at least 1 m above the Ground level (if applicable).
- The occupier shall furnish the following returns in the prescribed formats to the concerned District office regularly.

 a) Monthly water consumption returns of each of the purposes with water meter readings in Form-I on or before 5th of every month.

b) Yearly return on Hazardous wastes generated and accumulated for the period from 1st April to 31st March in Form-4 before the end of the subsequent 30th June of every year (if applicable).

c) Yearly Environmental Statement for the period from 1st April to 31st March in Form -V before the end of the subsequent 30th September of every year(if applicable).

- If applicable, the occupier has to comply with the provisions of Public Liability Insurance Act, 1991 to
 provide immediate relief in the event of any hazard to human beings, other living creatures plants and
 properties while handling and storage of hazardous substances.
- The issuance of this consent does not authorize or approve the construction of any physical structures or facilities or the undertaking of any work in any natural watercourse or in Government Poromboke lands.
- 19. The issuance of this Consent does not convey any property right in either real personal property or any exclusive privileges, nor does it authorize any injury to private property or Government property or any invasion of personal rights nor any infringement of Central, State laws or regulation.

TAMILNADU POLLUTION CONTROL BOARD

- 20. The occupier shall forth with keep the Board informed of any accident of unforeseen act or event of any poisonous, noxious or polluting matter or emissions are being discharged into stream or well or air as a result of such discharge, water or air is being polluted.
- 21. If due to any technological improvements or otherwise the Board is of opinion that all or any of the conditions referred to above requires variation (including the change of any treatment system, either in whole or in part) the Board shall, after giving the applicant an opportunity of being heard, vary all or any of such conditions and thereupon the applicant shall be bound to comply with the conditions as so varied.
- 22 In case there is any change in the constitution of the management, the occupier of the new management shall file fresh application under Water (Prevention and Control of Pollution) Act, 1974, as amended in Form-II alongwith relevant documents of change of management immediately and get the necessary amendment with renewal of consent order.
- 23. In case there is any change in the name of the company alone, the occupier shall inform the same with relevant documents immediately and get the necessary amendments for the change of name from the Board.
- The occupier shall display this consent order granted to him in a prominent place for perusal of the inspecting Officers of this Board.

9

JOSEPHINESAHAYARANI Digitally signed by JOSEPHINESAHAYA

For Member Secretary, Tamit Nadu Pollution Control Board, Chennai