

KATTUPALLI PORT CHENNAI'S NEW GATEWAY

MIDPL/TNPCB/GMP/EC-HYC

Date:24-05-2019

Additional Principal Chief Conservator of Forests (C), Ministry of Environment, Forest and Climate Change, Regional Office (South Eastern Zone), Ist and IInd Floor, Handloom Export Promotion Council, 34, Cathedral Garden Road, Nungambakkam, Chennai – 600 034

Dear Sir.

Sub: Half yearly Compliance report of Environment and CRZ Clearance for the development of proposed Port at Kattupalli, Tiruvallur District of Tamil Nadu by M/s Marine Infrastructure Developer Pvt. Limited for the period of October 2018 – March 2019 – Reg.

Ref: CRZ & Environmental Clearance for the development of proposed Port at Katupalli, Tiruvallur District of Tamilnadu by M/s Marine Infrastructure Developer Pvt. Limited – bifurcation of EC&CRZ Clearance vide F. No 10-130/2007 – IA.III dtd . 9th February 2018

With reference to the captioned subject and cited reference above; please find enclosed herewith the Half yearly compliance report to the conditions stipulated in the cited reference for the Half Yearly period of **October 2018 to March 2019** in soft copy for your kind reference.

Thank you,

For, M/s. Marine Infrastructure Developer Ltd

8.84

Authorized Signatory.

Encl: As above Copy to:

- 2) Zonal Office, Central Pollution Control Board, A-Block, Nisarga Bhavan, 1st and 2nd Floors, 7th D Cross, Thimmaiah Road, Shivanagar, Bengaluru, Karnataka 5600879
- 3) The Member Secretary, Tamil Nadu Pollution Control Board, 76, Mount Salai, Guindy, Chennai 600 032
- 4) The District Environmental Engineer, Tamil Nadu Pollution Control Board, EPIB Building, A.O Block, Gummipoondi Industrial Complex, Gummipoondi 601201.
- 5) Member Secretary TNCZMA & Director Dept of Environment, No.1, Jeenis Road, Panagal Building, Ground Floore, Saidapet, Chennai -600 015

ETERS4591831M IVR:6984384 TIRE
SP MANSWERAKKAM HIGH ROAD SINGERSOAD
Counter Ho:2,30/05/2019,10:38
To:ARDITIONAL PRIN CHIEF,CH
PIN:60003A, Mungambakkam High Road 5.0
From:R SATHISH KIMAR,CH
Wt:50gas
Amt:17.70(Cash)Tax:2.70
(Track on waw.indiapost.gov.in)
(Dial 1800 266 6868)

Marine Infrastructure Developer Pvt Ltd (Kattupalli Port) Kattupalli Village, Ponneri Taluk, Tirivalluvar District 600 120, Tamil Nadu, India

Tel +91 44 2824 3062

CIN: U74999TN2016PTC103769

From: October 2018
To: March 2019

H	Half yearly Compliance report on conditions stipulated in Environmental & CRZ Clearance (Period: October 2018 to March 2019)					
S. No.	Conditions	Compliance Status as on 31.03.2019				
Specifi	c Conditions					
(i)	The proponent shall comply all the conditions stipulated in the letter R.C.No. P1/2004/2008, dated 21.10.2008 of the Department of Environment, Chennai.	Complied. Compliance to letter R.C.No. P1/2004/2008, dated 21.10.2008, is enclosed as Annexure -I				
(ii)	The proponent shall comply all the commitment made vide his letter No. D/Shipyard/00/07 dated 20.03.2009.	Complied This EC is just a bifurcation of original EC of LTSB in name of MIDPL & LTSB. All applicable commitments, wrt letter No. D/Shipyard/00/07 dated 20.03.2009 like provision of fire station, independent port connectivity, and no reclamation on areas outside port, non-usage of Tri Butyl Tin [TBT] and treatment of waste water in STP and recycling, disposal of hazardous waste to authorised recyclers are being complied.				
(iii)	Provision shall be made for the housing of Construction labour within the site with all necessary infrastructure and facilities such as fuel or cooking, mobile toilets, mobile STP, safe drinking water, medical health care, creche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.	Complied. Most of the construction labours are from nearby villages. Construction activities are being carried out in daytime and worker leave the site on daily basis.				
(iv)	There shall be no withdrawal of groundwater in Coastal Regulation Zone area, for this project. In any case any ground water is proposed to be withdrawn from outside the CRZ area, specific prior permission from the concerned State /Central Groundwater board shall be obtained in this regard.	Complied. No groundwater is withdrawal from CRZ Area. Presently unit is procuring water from M/s. Chennai Metropolitan Water Supply and Sewerage Board, Chennai. In case of Groundwater withdrawal outside CRZ Area prior permission will be obtained for from State/Central Groundwater Board				
(>)	No dumping of dredging materials in the sea shall be undertaken. In case of sea dumping required, an integrated Modelling study to be carried out to locate the dump site so that it does not cause any problem to Ennore port.	Complied. No dumping of dredging material was carried out during the period October-18 to Mar'19. Dredge material dumping location has already been identified by LTSB through modelling studies.				

From: October 2018
To: March 2019

Н	Half yearly Compliance report on conditions stipulated in Environmental & CRZ Clearance (Period: October 2018 to March 2019)						
S. No.	Conditions	Compliance Status as on 31.03.2019					
(vi)	Shoreline changes due the project shall be monitored continuously nourishment of northern shoreline shall be carried out using the sediments from beach acceleration on the southern shoreline.	Being Complied MIDPL has engaged Institute of Ocean Management, Anna University, Chennai for shoreline Change study which is ongoing. Reports of the same are expected in another 3 months and same will be submitted as part of compliance.					
(vii)	Suitable Screens shall be installed between the construction area and the intakes so that operations of the intakes are not affected by the construction activity.	Complied Presently marine side construction is being carried out within basin area, which is sheltered by northern break water. No impact envisaged.					
(viii)	At least a distance of 100 meter shall be provided between intake of Chennai Water Desalination Ltd. (CWDL) and north edge of the northern breakwater as agreed in the meeting between the proponent and CWDL	Complied Distance maintained as agreed.					
(ix)	Independent port connectivity shall be developed.	Complied An independent port connectivity was developed					
(x)	Rehabilitation if any shall be carried out as per law / State Government.	Complied Rehabilitation was carried out completely as per law / State Government at the time of project implementation.					
(xi)	Fire station shall be located within the project area	Complied MIDPL is having dedicated fire station with fire tender and fire crew.					
(xii)	The Hazardous waste generated shall be properly collected and handled as per the provisions of Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016.	Complied. Hazardous wastes generated are properly collected and handled inline to Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016 as amended. Details of the same are submitted to TNPCB as a part of Hazardous waste annual return (Form 4) on regular basis. Annual return FY 2017-18 is attached as Annexure – 2.					

From: October 2018
To: March 2019

Н	Half yearly Compliance report on conditions stipulated in Environmental & CRZ Clearance (Period: October 2018 to March 2019)				
S. No.	Conditions	Compliance Status as on 31.03.2019			
(xiii)	The waste water generated from the activity shall be collected, treated and reused properly.	Complied Domestic waste water generated from the activity is being collected, treated in STP and treated water is reused for green belt.			
(xiv)	Sewage Treatment Facility should be provided in accordance with the CRZ Notification.	Complied STP provided in accordance with the CRZ notification.			
(xv)	No Solid Waste will be disposed of in the Coastal Regulatory Zone area. The Solid Waste shall be properly collected segregated and disposed as per the provision of Solid Waste Management Rules, 2016.	Complied No solid waste is being disposed of in the CRZ area. All the solid waste generated is properly collected, source segregation of all types of Solid Waste is practised and are disposed as per the provision of Solid Waste Management Rules 2016, as amended, APSEZ has developed a vision for making itself – "A Zero Waste Port" by the year 2020. MIDPL vision is based on adoption of 5R principle of waste management i.e Reduce, Reuse, Reprocess, Recycle & Recover. All waste is being handled inline to 5R principle. Construction of Integrated Waste Management Shed (IWMS) is nearing completion.			
(xvi)	Installation and operation of DG set if any shall comply with the guidelines of CPCB.	Complied 02 no of DG set with 2000 kVA capacity is installed inline to CPCB guideline. Flue gas analysis report of the DG Set stack for the period Oct-2018 to Mar-2019 is attached as Annexure 3			
(xvii)	Air quality including the VOC shall be monitored regularly as per the guidelines of CPCB and reported.	Complied Ambient Air Quality Monitoring is being carried out by NABL accredited agency, Air Quality monitoring Reports for the period October 2018 – March 2019 is enclosed as Annexure-3. All the parameters are well with the prescribed standards. Online BTX analyser to monitor VOC is being commissioned as part of Continuous Ambient Air Quality Monitoring (CAAQM) Station.			

From: October 2018
To: March 2019

Н	Half yearly Compliance report on conditions stipulated in Environmental & CRZ Clearance (Period: October 2018 to March 2019)					
S. No.	Conditions	Compliance Status as on 31.03.2019				
(xviii)	The project proponent shall undertake green belt development all along the periphery of the project area and also alongside the road.	Complied Adequate greenbelt are developed and maintained. 978 Nos. of trees planted during Oct'18 to Mar'19 and proposed to plant another 3000 Nos FY 2019-20.				

From: October 2018
To: March 2019

H	alf yearly Compliance report on condition Clearance (Period: Octobe	
S. No.	Conditions	Compliance Status as on 31.03.2019
(xix)	All necessary clearances from the concerned agencies shall be obtained before initiating the project.	Complied All the necessary clearances from the concerned agencies have been obtained.
(xx)	Project proponent shall install necessary oil spill mitigation measures in the shipyard. The details of the facilities provided shall be informed to this Ministry within 3 months from the date of receipt of this letter.	Complied All necessary precaution has been taken to avoid any kind of spillages. Oil spill contingency plan along with list of available oil spill equipment submitted vide our Letter No. MIDPL/TNPCB/GMP/EC-HYC dated 14.05.2018.
(xxi)	No hazardous chemicals shall be stored in the Coastal Regulation Zone area.	Noted for Compliance. No hazardous chemical is stored in CRZ Area.
(xxii)	The project shall not be commissioned till the requisite water supply and electricity to the project are provided by the PWD/Electricity Department.	Complied Requisite permission for Water Supply and Electricity has been obtained from Chennai Metropolitan Water Supply and Sewerage Board (CMWSSB) and Tamil Nadu Electricity Board respectively before commissioning
(xxiii)	Specific arrangements for rainwater harvesting shall be made in the project design and the rain water so harvested shall be optimally utilized.	Being Complied Water table is observed to be high in and around the Port area Feasibility of rainwater harvesting will be studies and explored.
(xxiv)	The facilities to be constructed in the CRZ area as part of this project shall be strictly in conformity with the provisions of the CRZ Notification, 2011 and its amendment. The facilities such as office building and residential buildings which do not require water front and foreshore facilities shall not be constructed within the Coastal Regulation Zone area.	Complied. All construction has been done inline to CRZ Notification, 2011 & EC&CRZ clearance obtained.
	l Conditions:	Complied
(i)	Construction of the proposed structures shall be undertaken meticulously conforming to the existing Central/local rules and	Complied All construction has been done inline to CRZ Notification , 2011 & EC&CRZ clearance obtained

From: October 2018
To: March 2019

Н	alf yearly Compliance report on condition Clearance (Period: Octobe	•
S. No.	Conditions	Compliance Status as on 31.03.2019
	regulations including Coastal Regulation Zone Notification 1991 & its amendments. All the construction designs /drawings relating to the proposed construction activities must have approvals of the concerned State Government Departments /Agencies.	
(ii)	Adequate provisions for infrastructure facilities such as water supply, fuel, sanitation etc. shall be ensured for construction workers during the construction phase of the project so as to avoid felling of trees/mangroves and pollution of water and the surroundings.	Complied Most of the construction labours are from nearby villages. Construction activities are being carried out in daytime and worker leave the site on daily basis.
(iii)	The project authorities shall make necessary arrangements for disposal of solid wastes and for the treatment of effluents by providing a proper wastewater treatment plant outside the CRZ area. The quality of treated effluents, solid wastes and noise level etc. must conform to the standards laid down by the competent authorities including the Central/State Pollution Control Board and the Union Ministry of Environment and Forests under the Environment (Protection) Act, 1986, whichever are more stringent.	Complied Disposal of solid waste & STP unit is provided in accordance with the CRZ notification. Environment Monitoring is being carried out by NABL accredited agency, Reports for the period Oct-2018 to Mar-2019 are enclosed as Annexure -3 All the monitoring results are well within the prescribed standard.
(iv)	The proponent shall obtain the requisite consents for discharge of effluents and emissions under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (prevention and Control of Pollution) Act, 1981 from the Tamil Nadu State Pollution Control Board before commissioning of the	Complied. Requisite Consents for discharge of effluents and emissions under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (prevention and Control of Pollution) Act, 1981 were obtained before commissioning of the project and

From: October 2018
To: March 2019

H	Half yearly Compliance report on conditions stipulated in Environmental & CRZ Clearance (Period: October 2018 to March 2019)					
S. No.	Conditions	Compliance Status as on 31.03.2019				
	project and a copy of each of these shall be sent to this Ministry.	submitted to Ministry. Project is in operation phase and CTO has been obtained from the Tamil Nadu State Pollution Control Board vide Consent Order No. 1808115430679 & 1808215430679 dated 17/09/2018. Copy of the CTO, is enclosed as Annexure – 4 Application for CTO Renewal has been submitted to TNPCB in Online Consent Management and Monitoring System (OCMMS) vide Application No. 21257901 and Renewal of CTO Orders				
(v)	In order to carry out the environmental monitoring during the operational phase of the project, the project authorities shall establish an environmental laboratory well equipped with standard equipment and facilities and qualified manpower to carry out the testing of various environmental parameters.	are under scrutiny with TNPCB. Complied MIDPL is having Environmental Management Cell, staffed with qualified personnel at site supported by team at Head Office in Ahmedabad. Environment monitoring is being carried out by NABL accredited agency.				
(vi)	The proponents shall provide for a regular monitoring mechanism so as to ensure that the treated effluents conform to the prescribed standards. The records of analysis reports must be properly maintained and made available for inspection to the concerned State/Central officials during their visits.	Complied. Domestic Waste water is being treated in STP and inlet and outlet characteristic of water is regularly analysed by NABL accredited laboratory, the monitoring results for the period Oct-2018 to Mar-2019 is enclosed as Annexure - 3. All the results are found well within the prescribed standard. Records are made available at site for inspection of State / Central officials during their visit.				
(vii)	The sand dunes and mangroves, if any, on the site shall not be disturbed in any way.	Complied No Sand dune and mangroves are present on the site.				
(viii)	A copy of the clearance letter will be marked to the concerned Panchayat / local NGO, if any, from whom any	Complied This EC is just a bifurcation of original EC of LTSB.				

From: October 2018
To: March 2019

Н	alf yearly Compliance report on condition Clearance (Period: Octobe	•
S. No.	Conditions	Compliance Status as on 31.03.2019
	suggestion / representation has been received while processing the proposal.	
(ix)	The Tamil Nadu Pollution Control Board shall display a copy of the clearance letter at the Regional Office, District Industries Centre and Collector's Office/Tehsildars Office for 30 days.	Complied The condition does not pertain to project proponent
(x)	The funds earmarked for environment protection measures shall be maintained, in a separate account and there shall be no diversion of these funds for any other purpose. A year-wise expenditure on Environmental safeguards shall be reported to this ministry	Complied. Separate budget for the Environment Protection is earmarked every year. All the expenses are recorded in advanced accounting system of the organization. Expenditure for Environment Management measures during Oct'18 to Mar'19 is Rs.21.21 Lakhs and for the FY 2018-19 is aroundRs.39.21 lakhs. The breakup details are as follows; (i) Comprehensive Environmental Monitoring – Rs. 10.25 Lakhs (ii) Statutory Monitoring – Rs. 1.0 Lakhs (iii) Hazardous Waste Management – Rs. 1.86 Lakhs (iv) Environmental Studies – Rs. 26.1 Lakhs In addition, Annual Maintenance Cost for STP's is Rs.10 Lakhs, House Keeping is Rs.36 Lakhs, Green belt maintenance is Rs.20 Lakhs, total amounting to Rs. 66 Lakhs FY 2018-19. Budget Proposed for Environment Management FY 2019-20 is Rs.72.75 Lakhs, excluding AMC for STP, Greenbelt
(xi)	Full support shall be extended to the officers (this Ministry's Regional Office at Chennai and the officers of the Central and State Pollution Control Boards by the project proponents during their inspection for monitoring purposes, by	Officials to monitor the compliance and

From: October 2018
To: March 2019

Half yearly Compliance report on conditions stipulated in Environmental & CRZ Clearance (Period: October 2018 to March 2019)						
S. No.	Conditions	Compliance Status as on 31.03.2019				
	furnishing full details and action plans including the action taken reports in respect of mitigative measures and other environmental protection activities.					
(xii)	In case of deviation or alteration in the project including the implementing agency, a fresh reference shall be made to this ministry for modification in the clearance conditions or imposition of new ones for ensuring environmental protection.	Noted for Compliance There is no deviation or alteration in the project including implementing agency.				
(xiii)	This Ministry reserves the right to revoke this clearance, if any of the conditions stipulated are not complied with to the satisfaction of this Ministry.	Noted for Compliance.				
(xiv)	This Ministry or any other competent authority may stipulate any other additional conditions subsequently, if deemed necessary, for environmental protection, which shall be complied with.	Noted for Compliance.				
(xv)	The Project proponents shall inform the Regional Office at Chennai as well as the Ministry the date of financial closure and final approval of the project by the concerned authorities and the date of start of Land Development Work.					
	RZ Amendment letter No. 10-130/2007					
	The details of combined effect on both the Ports (i.e. Ennore Port and Kattupalli Port) shall be carried out to monitor the impact of the post-dumping. This model study shall be carried out for a period of one year.	Complied M/s LTSB has already carried out detailed modelling study to understand impact of post dumping and report was submitted to Ministry. No dumping was being carried by MIDPL during the period Oct-2018 to Mar-2019 MIDPL engaged Institute of Ocean Management, Anna University to carry out shoreline studies of the concerned area which is ongoing. Reports of the same are expected in another 3 months and same will be submitted as part of				

From: October 2018
To: March 2019

Half yearly Compliance report on condition Clearance (Period: Octobe						
S. No.	o. Conditions				Compliance Status as on 31.03.2019	
(ii)	A comparison between model study and actual dumping shall be carried out to examine the impacts both on North-East and South-West of the Ports and shall be submitted to the Ministry,			ll be car acts both Vest of	Complied Comparison between model study and actual dumping was made to examine the impacts and report was submitted to Ministry by LTSB. No dumping was being carried by MIDPL during the period Oct-2018 to Mar-2019 MIDPL engaged Institute of Ocean Management, Anna University for further studies which is ongoing. Reports of the same are expected in another 3 months and same will be submitted as part of compliance.	
(iii)	the shal	reclamation Port limit a I be carried	nd Buckir out.	ngham Ca	anal	Being Complied No reclamation of the areas outside Port Limit and Buckingham Canal is being carried out.
1			•		<u>). 10</u>	-130/2007- XIII dated 17.12.2014:
(i)	S	cargo shou Description	Quantity	Unit	1	Being Complied.
	1	Containers Ro-Ro (Nos)	1.8	Million TEU/Ann um (21.60 MTPA)	<u>-</u>	
	2	(Automobiles	149899	um (0.22 MTPA)		
	3	Project Cargo	440000	MT/Annu m (0.44 MTPA)		
	4	Breakbulk/Ge neral Cargo (Barytes/ Gypsum/ Limestones/ Granite/ Steel Cargo)	1820000	MT/Annu m/1.82 MTPA)	-	
(ii)	(All the conditions stipulated by the Tamil Nadu Coastal Zone Management Authority (TNCZMA) vide letter no. 6064/EC.3/2014-1 dated 26.06.2014, shall be strictly complied with.			tal Z (TNCZ/ /EC.3/201	Complied Compliance to Tamil Nadu Coastal Zone Management Authority (TNCZMA) vide letter no. 6064/EC.3/2014-1 dated 26.06.2014, enclosed as Annexure -5	
(iii)	No additional land should be utilized				Complied	
(iv)	for the proposed development. As committed, the local traffic should not be disturbed.				Complied Separate road available for local traffic.	

From: October 2018
To: March 2019

F	Half yearly Compliance report on conditions stipulated in Environmental & CRZ						
C No	Clearance (Period: Octobe	•					
S. No.		Compliance Status as on 31.03.2019					
5	These stipulations would be enforced among other under the provisions of water (Prevention and Control of Pollution) Act, 1974 the Air (Prevention and Control of Pollution) Act 1981, the Environment (Protection) Act, 1986, the Public Liability (Insurance) Act, 991, the Hazardous Chemical (Manufacture, storage and Import) Rules, 1989, Solid Waste Management Rules, 2016 and the Coastal Regulation Zone Notification, 2011 and its subsequent amendments made there under from time to time.	Noted for Compliance.					
6	All other statutory clearances such as the approvals for storage of diesel from Chief Controller of Explosives, Fire Department, Civil Aviation Department, Forest Conservation Act, 1980 and Wildlife (Protection) Act 1972, etc shall be Obtained, as applicable by project proponents from the respective competent authorities.	Complied. All the statutory approvals as applicable have been obtained. Clearance from Chief Controller of Explosives, Fire Department, Civil Aviation Department has been obtained					
7	The project proponent should advertise in at least two local newspapers widely circulated in the region, one of which shall be in the vernacular language informing that the project has been accorded Environmental Clearance and copies of clearance letters are available with the Tamil Nadu Pollution Control Board and may also be seen on the website of the Ministry of Environment and Forests at http://envfonnic.in. The advertisement should be made within 10 days from the date of receipt of the Clearance letter and a copy of the same should be forwarded to the Regional office of	Complied. Copy of Newspaper Advertisement attached as Annexure - 7.					

From: October 2018
To: March 2019

Н	Half yearly Compliance report on conditions stipulated in Environmental & CRZ Clearance (Period: October 2018 to March 2019)					
S. No. Conditions		Compliance Status as on 31.03.2019				
	this Ministry at Chennai.					
8	Any appeal against this Environmental Clearance shall lie with the National Environment Appellate Authority, if preferred, within a period of 30 day as prescribed under section 11 of the National Environment Appellate Act, 1997.	Noted.				
9	Status of compliance to the various stipulated environmental conditions and environmental safeguards will be uploaded by the project proponent in its website.	Being complied. Six monthly Compliance Report of CRZ & EC Clearance is uploaded on company website regularly (https://www.adaniports.com/ports-downloads)				
10	This Environmental and CRZ Clearance is valid till 2" July, 2019.	Noted.				
11	This issue with the approval of the Competent Authority.	Noted.				

From: October 2018
To: March 2019

Status of Conditions Stipulated in Environmental and CRZ Clearance File no: 10-130/2007- A.III dated: 09/02/2018

Enclosures:

Annexure Number	Details of Annexure
Annexure I:	Compliance to RC No. P1/2004/2008, dated 21.10.2008 of Department of Environment, Chennai
Annexure II:	Annual Hazardous Returns – Form IV
Annexure III:	Environmental Monitoring reports for the period Oct'18 to Mar'19
Annexure IV:	TNPCB's Renewal CTO orders FY 2018-19 under Air & Water Acts
Annexure V:	Compliance to Tamil Nadu Coastal Zone Management Authority (TNCZMA) vide letter no. 6064/EC.3/2014-1 dated 26.06.2014
Annexure VI:	Mock Drills carried out during Oct'18 to Mar'19
Annexure VII:	News Paper advertisement regarding MIDPL Environmental Clearance.

Annexure -1

Compliance to RC No. P1/2004/2008, dated 21.10.2008 of Department of Environment, Chennai

SI. No	Conditions	Compliance
i	The unit shall carry out dumping/ land filling at dredged material only on land which is not covered under CRZ	Noted for Compliance
ii	The unit shall not carry out any ship breaking activity	Not applicable
iii	The unit should design that the waste water should be recycled 100% and to be used for developing greenery etc., and there should not be any waste water let out.	Complied Domestic waste water generated is being treated in STP. Treated water is being reused for Horticulture / green belt purpose
iv	The unit should tie - up with institutions like Centre for Environmental Studies or IIT for the periodical monitoring during construction phase so as to ensure the adoption of Safety measures as per the Environmental Management Plan [EMP].	Complied. LTSB carried out the studies during Construction Phase.
V	Before commencing construction activities, Proper resettlement for the local the unit should ensure the proper resettlement of local inhabitants residing at the project area to the satisfaction of District Collector and submit a report to the Department of Environment.	Not applicable. This EC is just a bifurcation of original EC of LTSB. Rehabilitation & resettlement was carried out completely as per law / State Government at the time of project implementation.
Gen	eral Conditions	
а	There should not be any extraction of Ground Water in CRZ.	Noted for compliance. Presently unit is procuring desalinated water from M/s. Chennai Metropolitan Water Supply and Sewerage Board, Chennai.
b	The unit should obtain planning permission for their constructions from the CMDA/Department of Environment before commencing the constructions	Not applicable. This EC is bifurcation of original EC of LTSB. Required permission from concerned authorities was taken before commencing the constructions.
С	The proposed activities should not cause coastal erosion and alter the beach configuration	Complied. MIDPL is monitoring shoreline studies through Institute of Ocean Management, Anna University, Chennai.

d	No fencing or barricading along the pipeline alignment and parallel to the	Agreed for compliance.
	coast is permissible in CRZ.	All activities permissible as per CRZ
		notification 2011 & EC&CRZ
	No blocking or deilling orbivities in	clearance will only be carried out.
е	No blasting or drilling activities in CRZ is permissible.	Agreed for compliance.
		All activities permissible as per CRZ
		notification 2011 & EC&CRZ
_		clearance will only be carried out.
f	The proponent should not prevent public	Being complied.
	from easy access to the beach.	
		MIDPL will not block the access
		point to beach for the public.
9	Chemical waste generated and the	Complied.
	sewage generated, if any should not be discharged in to the sea.	No chemical waste generated.
	discharged in to the sea.	Sewage waste water generated is
		being treated in STP for further
		usage in horticulture / greenbelt
h	The proponent should implement the	Complied.
	EMP including the Green Belt as	Adequate Greenbelt is being
i	envisaged in the EIA report.	developed and maintained
'	The project activity should not affect	Complied Marine water & Sediment quality are
	the coastal ecosystem including marine flora and fauna.	being monitored by NABL
	mornic flora and radiia.	accredited laboratory on monthly
		basis. There is no e impact on water
		quality in the vicinity. The details of
		Marine Water quality monitoring
		report for the period October 2018
		to March 2019 is enclosed as Annexure-3 .
j	The proponent should not undertake	Being complied.
'	any activity, which is violate of	3 -
	provisions of CRZ Notification 1991	All activities permissible as per CRZ
	and the subsequent amendments.	notification 2011 & EC&CRZ
		clearance will only be carried out.
k	The CRZ Clearance will be revoked if any	Noted for compliance
	of the conditions stipulated in not	
1	complied with.	

REGISTERED OFFICE: NO:22, L&T CONSTRUCTION COMPLEX, MOUNT POONAMALLEE ROAD, MANAPAKKAM, CHENNAI – 600089, TAMIL NADU, INDIA

CIN: U74999TN2016PTC103769

Telephone: 044-2252 6000

Date: 28/06/2018

MIDPL/TNPCB/GMB/HWR-201806

To,

The District Environmental Engineer,

Tamil Nadu Pollution Control Board, EPIB Building, A.O Block, Gummidipoondi Industrial Complex, Gummidipoondi – 601201.

Dear Sir,

Sub: Submission of Annual Hazardous Waste Returns for the year 2017-18 Ref:

- Hazardous Wastes (Management, Handling & Transboundary Movement) authorization no.4380 Dated 06.12.2013 issued to L&T Shipbuilding (Shipyard cum Minor Port)
- CRZ & Environmental Clearance for the development of proposed Port at Katupalli, Tiruvallur District of Tamilnadu by M/s Marine Infrastructure Developer Pvt. Limited – bifurcation of EC&CRZ Clearance vide F. No 10-130/2007 – IA.III dtd . 9th February 2018
- 3. TNPCB's Consent Order No.170629762139 & 170619762139 under Air & Water Acts dated 26/12/17

With reference to captioned subject, **M/s. Marine Infrastructure Developer Private Limited** is submitting the Annual Hazardous Waste Returns in Form IV for the year 2017-18.

We wish to inform that our application for name change from L&T Ship Building to M/s Marine Infrastructure Developer Pvt Ltd for Hazardous waste Authroization is in progress.

Submitted for your kind records.

Kindly acknowledge us the receipt of the same,

For, M/s. Marine Infrastructure Developer Private Limited

Chennai 600 120

Authorized Signato

Encl: As Above

FORM 4

[See rules 6(5), 13(8), 16(6) and 20 (2)]

FORM FOR FILING ANNUAL RETURNS

[To be submitted to State Pollution Control Board by 30th day of June of every year for the proceeding period April to March]

1	Name and address of facility:	Marine Infrastructure Developer Private Limited Kattupalli Village, Ponneri Taluk , Thiruvallur - 600120
2	Authorisation No. and Date of issue:	No.4380 Dated 06.12.2013
3	Name of the authorised person and full address with telephone, fax number and email:	Capt.Jeyaraj Thamburaj Chief Executive Officer Kattupalli Village, Ponneri Taluk , Thiruvallur - 600120 044 – 2796 9107 Jeyaraj.thamburaj@adani.com
4	Production during the year (product wise), wherever applicable	NA

Part A. To be filled by hazardous waste generators

FY 2017-2018

1	Total quantity of waste generated category wise	Used oil	Waste containing oil	Oil contaminated filter element
	Category	5.1	5.2	5.2
	Quantity	10000L	100Kg	225 Kgs
2	Quantity dispatched	Used oil	Waste containing oil	Oil contaminated filter element
	(i) to disposal facility	13020 L	NIL	1115 Kgs
	(ii) to recycler or co-processors or pre- processor			
	(iii) others			
3	Quantity utilised in-house, if any -	Used oil: NIL Waste containi Oil contaminate	ng oil: NIL ed filter element:	NIL
4	Quantity in storage at the end of the year –	Used oil: 990 Waste containi Oil contaminate	_	NIL

Part B. To be filled by Treatment, Storage and Disposal Facility operators

_	- Van
1	Total quantity received -
2	Quantity in stock at the beginning of the
1	year -
3	Quantity treated –
4	Quantity disposed in landfills as such and
1	after treatment –
5	Quantity incinerated (if applicable) -
6	Quantity processed other than specified

MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED (MIDPL) Oct - 18 to Mar - 19

I.					MADINI	E CONTRO	I (AAO1)							
					Sulphur	Nitrogen	, ,	Carbon						Benzo (a)
ı	Para	meters	Particular	Particular	dioxide	dioxide	Lead as	monoxide	Ozone as O ₃	Ammonia	Arsenic	Nickel as	Benzene	pyrene as
ı			matter PM ₁₀	matter PM _{2.5}	as SO ₂	as NO ₂	Pb	as CO	_	as NH ₃	as As	Ni	as C ₆ H ₆	BaP
i	Į	Unit	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m ³	μg/m³	μg/m³	ng/m³	ng/m³	μg/m³	ng/m³
i	National A	AQM Standard	100	60	80	80	1	4	180	400	6	20	5	1
S.No.	Sampling Date	Report Number												
1	06.10.2018	GCS/LAB/S/1164/18-19	55	19	5.9	14.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
2	08.10.2018	GCS/LAB/S/1164/18-19	66	25	7.7	16.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
3	12.10.2018	GCS/LAB/S/1164/18-19	69	27	7.3	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
4	15.10.2018	GCS/LAB/S/1164/18-19	60	23	6.9	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
5	19.10.2018	GCS/LAB/S/1164/18-19	63	26	6.4	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
6	22.10.2018	GCS/LAB/S/1164/18-19	58	22	6.1	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
7	26.10.2018	GCS/LAB/S/1164/18-19	62	24	7.2	17.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
8	29.10.2018	GCS/LAB/S/1164/18-19	67	28	6.5	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
9	02.11.2018	GCS/LAB/S/1216/18-19	59	21	6.8	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
10	07.11.2018	GCS/LAB/S/1216/18-19	53	18	6.1	15.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
11	09.11.2018	GCS/LAB/S/1216/18-19	62	23	6.6	15.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
12	12.11.2018	GCS/LAB/S/1216/18-19	68	26	7.4	17.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
13	16.11.2018	GCS/LAB/S/1216/18-19	55	22	7.0	15.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
14	19.11.2018	GCS/LAB/S/1216/18-19	64	25	6.9	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
15	23.11.2018	GCS/LAB/S/1216/18-19	51	17	5.5	14.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
16	26.11.2018	GCS/LAB/S/1216/18-19	63	27	7.2	17.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
17	03.12.2018	GCS/LAB/S/1296/18-19	51	18	5.7	14.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
18	07.12.2018	GCS/LAB/S/1296/18-19	63	25	6.7	16.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
19	10.12.2018	GCS/LAB/S/1296/18-19	58	21	6.0	14.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
20	14.12.2018	GCS/LAB/S/1296/18-19	61	22	6.9	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
21	17.12.2018	GCS/LAB/S/1296/18-19	52	17	7.6	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
22	21.12.2018	GCS/LAB/S/1296/18-19	60	23	6.2	17.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
23	24.12.2018	GCS/LAB/S/1296/18-19	67	26	6.4	16.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
24	26.12.2018	GCS/LAB/S/1296/18-19	59	20	6.8	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
25	02.01.2019	GCS/LAB/S/1359/18-19	69	27	7.8	17.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
26	04.01.2019	GCS/LAB/S/1359/18-19	72	29	8.1	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
27	07.01.2019	GCS/LAB/S/1359/18-19	64	23	6.9	15.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
28	11.01.2019	GCS/LAB/S/1359/18-19	58	20	7.3	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
29	16.01.2019	GCS/LAB/S/1359/18-19	61	22	7.0	17.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
30	18.01.2019	GCS/LAB/S/1359/18-19	55	19	6.8	16.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
31	21.01.2019	GCS/LAB/S/1359/18-19	60	21	7.4	17.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
32	24.01.2019	GCS/LAB/S/1359/18-19	57	18	6.2	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
33	01.02.2019	GCS/LAB/S/1445/18-19	75	29	7.0	17.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
34	04.02.2019	GCS/LAB/S/1445/18-19	77	31	7.5	16.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
35	08.02.2019	GCS/LAB/S/1445/18-19	60	21	7.9	17.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
36	11.02.2019	GCS/LAB/S/1445/18-19	69	25	7.8	17.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
37	15.02.2019	GCS/LAB/S/1445/18-19	73	28	8.2	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
38	18.02.2019	GCS/LAB/S/1445/18-19	64	22	7.3	17.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
39	22.02.2019	GCS/LAB/S/1445/18-19	67	24	6.5	18.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
40	25.02.2019	GCS/LAB/S/1445/18-19	62	20	6.9	17.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
41	01.03.2019	GCS/LAB/S/1516/18-19	79	31	8.2	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
42	04.03.2019	GCS/LAB/S/1516/18-19	71	27	7.8	17.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
43	08.03.2019	GCS/LAB/S/1516/18-19	75	26	6.9	17.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
44	11.03.2019	GCS/LAB/S/1516/18-19	74	27	7.2	16.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
45	15.03.2019	GCS/LAB/S/1516/18-19	70	21	7.5	17.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
46	18.03.2019	GCS/LAB/S/1516/18-19	68	23	8.4	18.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
47	22.03.2019	GCS/LAB/S/1516/18-19	80	33	7.7	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
48	25.03.2019	GCS/LAB/S/1516/18-19	72	24	8.0	17.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1

	PORT MAIN GATE (AAQ2)													
			Particular	Particular	Sulphur	Nitrogen	Lead as	Carbon		Ammonia	Arsenic	Nickel as	Benzene	Benzo (a)
	Para	imeters	matter PM ₁₀	matter PM _{2.5}	dioxide	dioxide	Pb	monoxide	Ozone as O ₃	as NH₃	as As	Ni	as C ₆ H ₆	pyrene as
					as SO ₂	as NO ₂		as CO						BaP
		Unit	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m ³	μg/m³	μg/m³	ng/m³	ng/m³	μg/m³	ng/m³
C N -		AQM Standard	100	60	80	80	1	4	180	400	6	20	5	1
S.No.	Sampling Date 06.10.2018	Report Number GCS/LAB/S/1164/18-19	60	22	5.5	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
2	08.10.2018	GCS/LAB/S/1164/18-19	73	31	7.4	15.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
3	12.10.2018	GCS/LAB/S/1164/18-19	68	27	6.5	16.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
4	15.10.2018	GCS/LAB/S/1164/18-19	76	33	7.9	17.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
5	19.10.2018	GCS/LAB/S/1164/18-19 GCS/LAB/S/1164/18-19	65	24	6.9	17.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
6	22.10.2018	GCS/LAB/S/1164/18-19	67	29	6.3	15.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
7	26.10.2018	GCS/LAB/S/1164/18-19	66		8.0	17.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
8	29.10.2018	GCS/LAB/S/1164/18-19	72	26 30		17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
9	02.11.2018	GCS/LAB/S/1164/18-19	68	26	7.1 7.0	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
10	07.11.2018	GCS/LAB/S/1216/18-19 GCS/LAB/S/1216/18-19	64	23	6.8	16.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
11	09.11.2018	GCS/LAB/S/1216/18-19	73	30	7.5	16.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
	12.11.2018		79	35	6.2	17.7	<0.1	<1.0		<2	<2	<2	<1	<0.1
12		GCS/LAB/S/1216/18-19					_		<10					
13	16.11.2018 19.11.2018	GCS/LAB/S/1216/18-19	70 61	28 22	7.3 6.7	16.7	<0.1	<1.0	<10	<2 <2	<2 <2	<2 <2	<1 <1	<0.1 <0.1
	23.11.2018	GCS/LAB/S/1216/18-19				16.3	<0.1	<1.0	<10					
15	26.11.2018	GCS/LAB/S/1216/18-19	55 67	19	5.8 8.1	14.6 17.9	<0.1	<1.0 <1.0	<10 <10	<2 <2	<2 <2	<2 <2	<1 <1	<0.1 <0.1
16		GCS/LAB/S/1216/18-19		24	_		_							
17 18	03.12.2018	GCS/LAB/S/1296/18-19	57	20	6.2	15.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
_	07.12.2018	GCS/LAB/S/1296/18-19	69 77	27	7.3	17.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
19	10.12.2018	GCS/LAB/S/1296/18-19		33	8.1	17.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
20	14.12.2018	GCS/LAB/S/1296/18-19	71 74	29	7.4	16.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
21	17.12.2018 21.12.2018	GCS/LAB/S/1296/18-19	68	31	7.0	15.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1 <0.1
22		GCS/LAB/S/1296/18-19		25	7.1	17.7	<0.1	<1.0	<10	<2	<2	<2	<1	-
24	24.12.2018	GCS/LAB/S/1296/18-19	62 55	24	6.5	16.0	<0.1	<1.0	<10	<2 <2	<2 <2	<2 <2	<1 <1	<0.1 <0.1
25	26.12.2018 02.01.2019	GCS/LAB/S/1296/18-19 GCS/LAB/S/1359/18-19	78	18 34	7.2	16.6 17.7	<0.1	<1.0 <1.0	<10 <10	<2	<2	<2	<1	<0.1
	04.01.2019		74		7.6					<2	<2		<1	<0.1
26 27	07.01.2019	GCS/LAB/S/1359/18-19 GCS/LAB/S/1359/18-19	68	30 27		18.0 17.2	<0.1	<1.0	<10	<2	<2	<2 <2		<0.1
28	11.01.2019				7.5		<0.1	<1.0	<10		<2		<1 <1	
29		GCS/LAB/S/1359/18-19	65	24	7.7	17.6	<0.1	<1.0	<10	<2 <2		<2		<0.1 <0.1
30	16.01.2019 18.01.2019	GCS/LAB/S/1359/18-19	70 62	28 23	7.3 7.8	18.2 17.0	<0.1	<1.0 <1.0	<10 <10	<2	<2 <2	<2 <2	<1 <1	<0.1
31	21.01.2019	GCS/LAB/S/1359/18-19 GCS/LAB/S/1359/18-19	67	26	7.5	17.9	<0.1	<1.0		<2	<2	<2	<1	<0.1
_	24.01.2019								<10					
32	01.02.2019	GCS/LAB/S/1359/18-19 GCS/LAB/S/1445/18-19	60 70	22 26	6.9 8.3	16.5 16.9	<0.1	<1.0 <1.0	<10 <10	<2 <2	<2 <2	<2 <2	<1 <1	<0.1 <0.1
34	01.02.2019	GCS/LAB/S/1445/18-19 GCS/LAB/S/1445/18-19	65	23	7.0	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
35	04.02.2019	GCS/LAB/S/1445/18-19 GCS/LAB/S/1445/18-19	77	32	8.1	18.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
36	11.02.2019	GCS/LAB/S/1445/18-19 GCS/LAB/S/1445/18-19	71	28	7.5	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
37	15.02.2019	GCS/LAB/S/1445/18-19 GCS/LAB/S/1445/18-19	76	30	8.4	16.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
38	18.02.2019	GCS/LAB/S/1445/18-19 GCS/LAB/S/1445/18-19	68	25	6.9	18.3	<0.1	<1.0		<2	<2	<2	<1	<0.1
39	22.02.2019	GCS/LAB/S/1445/18-19 GCS/LAB/S/1445/18-19	73	29	6.2	17.0	<0.1	<1.0	<10 <10	<2	<2	<2	<1	<0.1
40	25.02.2019	GCS/LAB/S/1445/18-19 GCS/LAB/S/1445/18-19	66	24	8.0	18.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
40	01.03.2019	GCS/LAB/S/1445/18-19 GCS/LAB/S/1516/18-19	74	27	8.6	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
41	04.03.2019	GCS/LAB/S/1516/18-19 GCS/LAB/S/1516/18-19	70	21	7.8		<0.1	<1.0			<2	<2	<1	<0.1
42	08.03.2019	GCS/LAB/S/1516/18-19 GCS/LAB/S/1516/18-19			7.8	16.7	<0.1	<1.0	<10	<2 <2		<2		<0.1
44	11.03.2019	GCS/LAB/S/1516/18-19 GCS/LAB/S/1516/18-19	68 65	20 19	8.2	17.9 18.4	<0.1	<1.0	<10 <10	<2	<2 <2	<2	<1 <1	<0.1
44	15.03.2019		72	25	7.9	18.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
45	18.03.2019	GCS/LAB/S/1516/18-19 GCS/LAB/S/1516/18-19	77	28	7.4	17.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
46	22.03.2019	GCS/LAB/S/1516/18-19 GCS/LAB/S/1516/18-19	78	30	8.6	16.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
48	25.03.2019		74							<2	<2	<2	<1	
48	25.03.2019	GCS/LAB/S/1516/18-19	/4	26	8.3	17.8	<0.1	<1.0	<10	< 2	< Z	\ < Z	<.T	<0.1

					KATTUP	ALLI VILLA	GE (AAQ	3)						
	Para	meters	Particular matter PM ₁₀	Particular matter PM _{2.5}	Sulphur dioxide as SO ₂	Nitrogen dioxide as NO ₂	Lead as Pb	Carbon monoxide as CO	Ozone as O ₃	Ammonia as NH ₃	Arsenic as As	Nickel as Ni	Benzene as C ₆ H ₆	Benzo (a) pyrene as BaP
	ι	Jnit	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³	μg/m³	μg/m³	ng/m³	ng/m³	μg/m³	ng/m³
	National A	AQM Standard	100	60	80	80	1	4	180	400	6	20	5	1
S.No.	Sampling Date	Report Number												
1	06.10.2018	GCS/LAB/S/1164/18-19	37	15	3.9	10.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
2	08.10.2018	GCS/LAB/S/1164/18-19	46	19	4.8	12.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
3	12.10.2018	GCS/LAB/S/1164/18-19	53	22	5.0	11.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
4	15.10.2018	GCS/LAB/S/1164/18-19	44	17	5.9	13.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
5	19.10.2018	GCS/LAB/S/1164/18-19	50	21	5.5	12.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
6	22.10.2018	GCS/LAB/S/1164/18-19	54	23	5.1	13.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
7	26.10.2018	GCS/LAB/S/1164/18-19	56	24	6.7	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
8	29.10.2018	GCS/LAB/S/1164/18-19	47	20	5.8	14.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
9	02.11.2018 07.11.2018	GCS/LAB/S/1216/18-19 GCS/LAB/S/1216/18-19	44 49	18	4.5 5.0	11.9	<0.1	<1.0 <1.0	<10	<2	<2 <2	<2	<1 <1	<0.1
10	07.11.2018	GCS/LAB/S/1216/18-19 GCS/LAB/S/1216/18-19	49	21 20	5.8	13.1 12.6	<0.1		<10	<2 <2	< <u>2</u>	<2 <2	<1	<0.1 <0.1
11	12.11.2018		53					<1.0	<10					
13	16.11.2018	GCS/LAB/S/1216/18-19 GCS/LAB/S/1216/18-19	56	24 25	6.5	12.2	<0.1	<1.0 <1.0	<10 <10	<2 <2	<2 <2	<2 <2	<1 <1	<0.1 <0.1
14	19.11.2018	GCS/LAB/S/1216/18-19 GCS/LAB/S/1216/18-19	48	16	4.9	11.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
15	23.11.2018	GCS/LAB/S/1216/18-19	35	14	4.9	10.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
16	26.11.2018	GCS/LAB/S/1216/18-19	45	19	5.2	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
17	03.12.2018	GCS/LAB/S/1216/18-19	38			10.5	<0.1	<1.0		<2	<2	<2	<1	<0.1
18	03.12.2018	GCS/LAB/S/1296/18-19 GCS/LAB/S/1296/18-19	45	16 18	4.1 5.2	11.7	<0.1	<1.0	<10 <10	<2	<2	<2	<1	<0.1
19	10.12.2018	GCS/LAB/S/1296/18-19 GCS/LAB/S/1296/18-19	55	24	6.6	13.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
20	14.12.2018	GCS/LAB/S/1296/18-19	48	19	5.7	13.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
21	17.12.2018	GCS/LAB/S/1296/18-19	51	20	7.3	12.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
22	21.12.2018	GCS/LAB/S/1296/18-19	59	26	6.0	13.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
23	24.12.2018	GCS/LAB/S/1296/18-19	49	21	5.8	12.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
24	26.12.2018	GCS/LAB/S/1296/18-19	53	22	6.5	12.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
25	02.01.2019	GCS/LAB/S/1359/18-19	44	19	5.0	12.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
26	04.01.2019	GCS/LAB/S/1359/18-19	49	22	5.8	11.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
27	07.01.2019	GCS/LAB/S/1359/18-19	58	25	5.4	12.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
28	11.01.2019	GCS/LAB/S/1359/18-19	42	17	6.6	14.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
29	16.01.2019	GCS/LAB/S/1359/18-19	56	23	6.1	13.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
30	18.01.2019	GCS/LAB/S/1359/18-19	47	20	7.4	13.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
31	21.01.2019	GCS/LAB/S/1359/18-19	55	24	6.5	13.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
32	24.01.2019	GCS/LAB/S/1359/18-19	46	19	6.2	13.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
33	01.02.2019	GCS/LAB/S/1445/18-19	52	21	6.1	13.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
34	04.02.2019	GCS/LAB/S/1445/18-19	55	26	5.2	13.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
35	08.02.2019	GCS/LAB/S/1445/18-19	50	19	5.8	14.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
36	11.02.2019	GCS/LAB/S/1445/18-19	46	18	5.5	12.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
37	15.02.2019	GCS/LAB/S/1445/18-19	48	20	5.3	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
38	18.02.2019	GCS/LAB/S/1445/18-19	42	16	6.7	13.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
39	22.02.2019	GCS/LAB/S/1445/18-19	40	14	7.1	14.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
40	25.02.2019	GCS/LAB/S/1445/18-19	53	22	7.4	12.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
41	01.03.2019	GCS/LAB/S/1516/18-19	50	19	6.8	14.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
42	04.03.2019	GCS/LAB/S/1516/18-19	52	24	6.0	13.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
43	08.03.2019	GCS/LAB/S/1516/18-19	58	26	5.1	13.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
44	11.03.2019	GCS/LAB/S/1516/18-19	51	20	6.3	14.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
45	15.03.2019	GCS/LAB/S/1516/18-19	53	22	5.9	13.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
46	18.03.2019	GCS/LAB/S/1516/18-19	49	18	5.5	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
47	22.03.2019	GCS/LAB/S/1516/18-19	45	16	6.2	13.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
48	25.03.2019	GCS/LAB/S/1516/18-19	47	17	6.4	14.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1

					KALAN	JI VILLAGI	(AAQ4)							
	Para	meters	Particular matter PM ₁₀	Particular matter PM _{2.5}	Sulphur dioxide as SO ₂	Nitrogen dioxide as NO ₂	Lead as Pb	Carbon monoxide as CO	Ozone as O ₃	Ammonia as NH ₃	Arsenic as As	Nickel as Ni	Benzene as C ₆ H ₆	Benzo (a) pyrene as BaP
		Jnit	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m ³	μg/m³	μg/m³	ng/m³	ng/m³	μg/m³	ng/m³
		AQM Standard	100	60	80	80	1	4	180	400	6	20	5	1
S.No.	Sampling Date	Report Number	2.4	40		40.0			-10					
1	06.10.2018	GCS/LAB/S/1164/18-19	34	13	3.5	10.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
3	08.10.2018	GCS/LAB/S/1164/18-19	42 51	17 20	4.3	11.6	<0.1	<1.0	<10	<2 <2	<2 <2	<2 <2	<1 <1	<0.1 <0.1
4	12.10.2018 15.10.2018	GCS/LAB/S/1164/18-19 GCS/LAB/S/1164/18-19	48	19	5.2	12.6 11.4	<0.1	<1.0 <1.0	<10 <10	<2	<2	<2	<1	<0.1
5	19.10.2018	GCS/LAB/S/1164/18-19 GCS/LAB/S/1164/18-19	53	22	6.0	11.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
6	22.10.2018	GCS/LAB/S/1164/18-19	45	18	6.4	13.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
7	26.10.2018	GCS/LAB/S/1164/18-19	50	18	5.7	12.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
8	29.10.2018	GCS/LAB/S/1164/18-19	54	23	6.0	13.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
9	02.11.2018	GCS/LAB/S/1216/18-19	41	16	4.7	11.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
10	07.11.2018	GCS/LAB/S/1216/18-19	52	21	5.5	12.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
11	09.11.2018	GCS/LAB/S/1216/18-19	43	18	5.2	11.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
12	12.11.2018	GCS/LAB/S/1216/18-19	45	17	4.9	12.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
13	16.11.2018	GCS/LAB/S/1216/18-19	49	20	6.6	12.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
14	19.11.2018	GCS/LAB/S/1216/18-19	55	24	5.7	11.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
15	23.11.2018	GCS/LAB/S/1216/18-19	36	13	3.9	9.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
16	26.11.2018	GCS/LAB/S/1216/18-19	48	21	5.0	13.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
17	03.12.2018	GCS/LAB/S/1296/18-19	35	14	3.8	9.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
18	07.12.2018	GCS/LAB/S/1296/18-19	49	18	4.6	11.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
19	10.12.2018	GCS/LAB/S/1296/18-19	51	20	5.9	12.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
20	14.12.2018	GCS/LAB/S/1296/18-19	40	15	5.3	13.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
21	17.12.2018	GCS/LAB/S/1296/18-19	53	22	6.0	11.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
22	21.12.2018	GCS/LAB/S/1296/18-19	48	17	4.3	12.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
23	24.12.2018	GCS/LAB/S/1296/18-19	44	16	4.7	11.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
24	26.12.2018	GCS/LAB/S/1296/18-19	52	23	5.8	12.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
25	02.01.2019	GCS/LAB/S/1359/18-19	41	16	4.7	11.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
26	04.01.2019	GCS/LAB/S/1359/18-19	52	20	5.2	12.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
27	07.01.2019	GCS/LAB/S/1359/18-19	46	18	6.3	13.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
28	11.01.2019	GCS/LAB/S/1359/18-19	55	24	5.9	12.1	< 0.1	<1.0	<10	<2	<2	<2	<1	<0.1
29	16.01.2019	GCS/LAB/S/1359/18-19	44	17	6.8	13.0	< 0.1	<1.0	<10	<2	<2	<2	<1	<0.1
30	18.01.2019	GCS/LAB/S/1359/18-19	53	21	5.7	13.3	< 0.1	<1.0	<10	<2	<2	<2	<1	<0.1
31	21.01.2019	GCS/LAB/S/1359/18-19	49	19	5.5	12.7	< 0.1	<1.0	<10	<2	<2	<2	<1	<0.1
32	24.01.2019	GCS/LAB/S/1359/18-19	43	15	6.2	13.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
33	01.02.2019	GCS/LAB/S/1445/18-19	45	17	5.4	13.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
34	04.02.2019	GCS/LAB/S/1445/18-19	48	19	6.0	13.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
35	08.02.2019	GCS/LAB/S/1445/18-19	52	22	5.7	14.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
36	11.02.2019	GCS/LAB/S/1445/18-19	42	15	6.6	13.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
37	15.02.2019	GCS/LAB/S/1445/18-19	55	24	7.2	14.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
38	18.02.2019	GCS/LAB/S/1445/18-19	50	18	6.9	12.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
39	22.02.2019	GCS/LAB/S/1445/18-19	44	16	6.7	14.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
40	25.02.2019	GCS/LAB/S/1445/18-19	51	20	7.3	13.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
41	01.03.2019	GCS/LAB/S/1516/18-19	42	15	6.3	14.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
42	04.03.2019	GCS/LAB/S/1516/18-19	46	18	5.5	14.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
43	08.03.2019	GCS/LAB/S/1516/18-19	55	23	6.0	13.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
44	11.03.2019	GCS/LAB/S/1516/18-19	50	17	7.1	14.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
45	15.03.2019	GCS/LAB/S/1516/18-19	58	26	5.9	14.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
46	18.03.2019	GCS/LAB/S/1516/18-19	54	20	6.2	13.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
47	22.03.2019	GCS/LAB/S/1516/18-19	47	19	5.6	13.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
48	25.03.2019	GCS/LAB/S/1516/18-19	56	24	6.1	14.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1

AMBIENT NOISE LEVEL MONITORING

	Location		PO	RT MAIN (SATE				r	MARINE C	ONTROL		
	Month & Year	Oct - 18	Nov - 18	Dec-18	Jan-19	Feb-19	Mar-19	Oct - 18	Nov - 18	Dec-18	Jan-19	Feb-19	Mar-19
	Parameter & Unit	Leq	Leq	Leq	Leq	Leq	Leq	Leq	Leq	Leq	Leq	Leq	Leq
S.No.	Time of Sampling	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1	06.00 - 07.00 (Day)	65.4	72.6	69.3	62.5	69.3	59.7	66.4	56.4	60.1	68	66.1	58.1
2	07.00 -08.00	67.9	66.5	73.5	60.1	67.8	59.3	65.1	56.9	56.6	61.4	64.1	64.7
3	08.00 - 09.00	66.9	67.5	72.8	66.4	67.4	59.6	65.8	56.9	63	62.2	58.7	68.9
4	09.00 - 10.00	62.7	65.8	73.1	63.2	66	61.2	65.6	66.3	65	70.8	69.9	67.5
5	10.00 – 11.00	70.3	66.3	67	62.3	65.5	59.3	63.3	66.7	63	71.2	65.6	66.6
6	11.00 – 12.00	64.7	68.9	67.3	59.4	65.7	64.4	70.8	61.7	67.7	70.2	65.3	73.7
7	12.00 – 13.00	65.5	68.0	56.6	61.9	60.6	61.4	68.8	64.4	56.5	70.8	67.9	73.6
8	13.00 – 14.00	68.4	72.0	57.6	59.7	67.2	61.3	66.5	67.1	64.4	55.4	61.2	69
9	14.00 – 15.00	64.1	65.4	58.4	61.1	63.9	61	67.0	63.3	69.9	57.5	59	71.7
10	15.00 – 16.00	66.2	61.9	60.4	60.8	63	62.3	64.9	63.3	69.4	59.3	63.1	74
11	16.00 – 17.00	67.5	65.2	58.4	60.6	63.9	60.7	63.9	68.8	67.2	63.9	61.8	66.7
12	17.00 – 18.00	62.2	66.5	58.7	61.7	64.2	60.5	63.5	66.1	71.5	56.1	62.3	57.5
13	18.00 - 19.00	67.7	71.9	59	62.7	64.6	60.3	63.0	61.4	68.9	55.1	60.1	57.4
14	19.00 -20.00	62.9	72.7	59.9	61.1	62.3	60.3	59.2	62.1	72.2	57.8	65.6	57.5
15	20.00 - 21.00	64.7	62.7	64.9	61.5	67	60.4	62.1	55.5	73.3	57.6	65.5	58
16	21.00 - 22.00	64.9	68.8	68.8	62.5	63.4	70	59.7	56.8	74	61.5	65.3	58.4
17	22.00 – 23.00 (Night)	61.0	63.8	66	60.9	59.7	58.6	66.1	56.5	67.5	58.9	63.3	58.3
18	23.00 - 00.00	65.6	62.9	60.1	61.9	65	59.7	57.7	59.1	68.9	59.5	67.3	58.9
19	00.00 - 01.00	63.6	63.6	59.4	62.1	65.7	59.8	61.4	57.9	68.1	59.7	67.3	58.2
20	01.00 - 02.00	66.8	64.2	59.3	62.7	67.8	59.8	60.4	58.6	69.2	57.7	66.4	59
21	02.00 - 03.00	67.5	64.3	59.3	62.9	62.9	59.9	67.0	58.6	67.4	56.4	66.5	57.5
22	03.00 - 04.00	66.8	64.4	59.9	63.4	65.4	59.5	61.2	56.0	64.2	58.2	65.6	58.9
23	04.00 - 05.00	63.1	65.4	60.4	60.9	66.2	59.8	60.5	56.9	63.6	55.9	60.9	58
24	05.00 - 06.00	65.4	69.9	57.5	58.7	66.2	60.1	64.4	54.2	64.2	56.2	58.7	60

	Location		KAT	TUPALLI V	ILLAGE					KALANJI	VILLAGE	·	
	Month & Year	Oct - 18	Nov - 18	Dec-18	Jan-19	Feb-19	Mar-19	Oct - 18	Nov - 18	Dec-18	Jan-19	Feb-19	Mar-19
	Parameter & Unit	Leq dB(A)											
S.No.	Time of Sampling												
1	06.00 - 07.00 (Day)	62.4	57.0	58.4	54.4	67.7	66.4	62.0	61.3	56.3	54.9	60.6	63.6
2	07.00 -08.00	68.2	53.9	59.2	56.2	66.3	65.8	62.5	50.1	55.6	55.1	64.6	66.1
3	08.00 - 09.00	59.1	59.9	57.7	59.4	67.6	63.7	63.9	51.9	55.5	60	65.5	63.1
4	09.00 - 10.00	58.6	61.5	61.9	58	68	62.4	63.1	53.2	61.9	58.4	64.3	63
5	10.00 - 11.00	61.2	61.9	59.2	58.7	68.5	58.1	62.9	53.8	56.5	55.1	62.2	65.6
6	11.00 – 12.00	57.9	64.4	57.8	56	67.8	62	61.9	52.3	45.5	63.5	66	61.2
7	12.00 – 13.00	60.3	57.3	62.3	49	67.8	65.4	65.0	54.0	46.7	56.7	65.9	67.4
8	13.00 – 14.00	58.9	64.0	62.1	48.9	67.4	66.5	63.1	62.3	50.7	56.5	60	61.9
9	14.00 – 15.00	59.5	63.2	60.1	56.7	67.8	64.5	64.0	57.5	52.9	59	59.5	65
10	15.00 – 16.00	60.0	62.0	63.5	49.4	61.9	66.3	62.4	58.2	51.6	53	64.2	64.9
11	16.00 – 17.00	56.8	62.5	59.7	52.7	57.4	63.3	63.7	62.7	58.7	50.8	65.5	59.3
12	17.00 – 18.00	63.0	61.5	58.6	47.6	64.3	63.1	59.3	57.3	49.2	56.2	67.8	59.7
13	18.00 – 19.00	58.9	61.6	58.1	46.7	60.4	61.9	55.5	57.0	56.6	60.8	66.9	60.3
14	19.00 –20.00	58.4	61.9	58	60.4	57.7	62.2	54.0	58.4	57.6	55.9	67.2	60.1
15	20.00 – 21.00	57.5	61.5	58	50.9	60.2	61.7	55.0	52.6	59.4	58	65.7	62
16	21.00 – 22.00	57.4	62.6	58.1	46.8	60	60.5	58.6	56.3	61.7	59.8	65.1	57
17	22.00 – 23.00 (Night)	58.4	62.1	59.4	57.5	64.3	60.6	55.2	53.5	53.9	49.4	66.3	57.3
18	23.00 - 00.00	65.7	60.0	59.8	49	58.8	62	59.3	54.3	54.1	49.3	64.1	58.7
19	00.00 - 01.00	58.9	57.7	58.3	51.2	56.9	57.9	59.6	51.8	54.3	50.4	64.2	60
20	01.00 - 02.00	58.7	57.0	57.9	51.9	55.1	53.9	59.6	52.2	54.3	52.8	61.9	57
21	02.00 - 03.00	58.6	51.5	61.1	54.1	63.8	53.1	59.1	55.0	54.4	49.7	56	62.1
22	03.00 - 04.00	59.6	52.4	54.9	51.9	55	60.1	60.8	50.9	54.5	52.4	61.3	60.5
23	04.00 - 05.00	58.8	53.9	57.9	53.8	58	58.1	58.5	50.9	54.6	50.2	51.8	55.1
24	05.00 - 06.00	59.9	52.6	57.4	54	57.6	54.7	59.9	56.6	54.5	51.7	58	61.1

	STACK MONITORING												
	Location		DO	3 2000KV	4 - 1					DG 2000	KVA - 2		
	Month & Year	Oct - 18	Nov - 18	Dec-18	Jan-19	Feb-19	Mar-19	Oct - 18	Nov - 18	Dec-18	Jan-19	Feb-19	Mar-19
S.No.	Parameters												
1	Stack Temperature, °C	247	259	250	239	248	255	253	241	252	257	242	247
2	Flue Gas Velocity, m/s	21.86	22.39	22.87	22.12	22.96	21.26	22.51	21.06	22.03	21.34	20.83	22.31
3	Sulphur Dioxide, mg/Nm3	8.5	8.1	7.6	6.8	7.4	8.3	8.8	7.5	7.9	8.5	6.9	7.4
4	NOX (as NO2) in ppmv	186	194	185	170	190	186	190	179	188	194	178	181
5	Particular matter, mg/Nm3	34.8	33.1	31.7	33.9	35.2	33.1	32.2	30.6	32.5	30.3	32.6	34.9
6	Carbon Monoxide, mg/Nm3	50	59	62	65	74	80	55	57	60	71	78	83
7	Gas Discharge, Nm3/hr	5631	5638	5858	5787	5903	5393	5732	5488	5621	5393	5418	5747

				STP C	UTLET	WATER							
	Location		STP	30KLD O	UTLET					STP 5KLD	OUTLET		
	Month & Year	Oct - 18	Nov - 18	Dec-18	Jan-19	Feb-19	Mar-19	Oct - 18	Nov - 18	Dec-18	Jan-19	Feb-19	Mar-19
S.No.	Parameters												
1	pH @ 25°C	7.29	7.87	7.56	7.78	7.39	6.68	6.74	7.16	7.35	7.56	7.18	8.08
2	Total Suspended Solids, mg/L	16	13	15	12	10	9	12	15	13	17	15	10
3	BOD at 27°C for 3 days, mg/L	13	10	8	6	5	7	9.0	11	7.0	10.0	9.0	6
4	COD, mg/L	52	63	43	35	38	44	47	58	38	44	57	39
5	Ammonical Nitrogen as NH4-N, mg/L	4.83	5.14	4.21	3.68	2.93	3.29	2.96	2.35	3.89	3.21	3.88	2.75
6	Total Kjeldahl Nitrogen as N-Total, mg/L	6.94	7.06	6.37	5.91	4.47	5.16	5.21	4.83	5.73	5.05	5.42	4.9
7	Fecal Coliform, MPN/100ml	91	85	71	64	52	61	75	69	60	77	81	69

		DRINKI	NG WATE	R				
	Month & Year	Unit	Oct - 18	Nov - 18	Dec-18	Jan-19	Feb-19	Mar-19
S.No.	Parameters							
1	pH @ 25°C	-	6.92	6.53	7.97	6.59	6.70	6.57
2	Total Hardness as CaCo3	mg/L	13.0	4	11.0	BDL	12	4
3	Chloride as Cl	mg/L	12	11	12	14	16	22
4	Total Dissolved Solids	mg/L	47	20	32	21	30	41
5	Calcium as Ca	mg/L	5.6	0.8	3.6	BDL	4.0	1.2
6	Sulphate as SO4	mg/L		•	BDL	(DL:1.0)		
7	Nitrate as No3	mg/L			BDL	(DL:1.0)		
8	Total Alkalinity as CaCo ₃	mg/L	19	5	19	7.1	9.5	11
9	Magnesium as Mg	mg/L	0.96	0.48	0.72	BDL	0.48	0.24
10	Color	Hazen		•		-		
11	Odour	-			Unobje	ectionable		
12	Taste	-			Agr	eeable		
13	Turbidity	NTU				<0.5		
14	Iron as Fe	mg/L			BDL(DL 0.05)		
15	Total Residual Chlorine	mg/L	BDL(DL 0.1)					
16	Copper as Cu	mg/L	BDL(DL 0.05)					
17	Manganese as Mn	mg/L	BDL(DL 0.05)					
18	Fluoride as F	mg/L	BDL(DL 0.1)					
19	Phenolic compounds as C ₆ H ₅ OH	mg/L			BDL(E	DL 0.001)		
20	Mercury as Hg	mg/L			BDL(E	DL 0.001)		
21	Cadmium as Cd	mg/L			BDL(E	DL 0.003)		
22	Selenium as Se	mg/L			BDL(DL 0.01)		
23	Arsenic as As	mg/L			BDL(DL 0.01)		
24	Lead as Pb	mg/L			BDL(DL 0.01)		
25	Zinc as Zn	mg/L			BDL(DL 0.05)		
26	Anionic Detergents as MBAS	mg/L				Nil		
27	Total Chromium as Cr	mg/L			BDL(DL 0.05)		
28	Phenolphthalein Alkalinity as CaCo ₃	mg/L				Nil		
29	Aluminium as Al	mg/L			BDL(DL 0.05)		
30	Boron as B	mg/L	BDL(DL 0.1)					
31	Mineral Oil	mg/L	Nil					
32	Polynuclear Aromatic Hydrocarbons as [PAH]	mg/L	Nil					
33	Pesticides	mg/L						
34	Cyanide as CN	mg/L				DL : 0.01)		
35	E. coli	MPN/100ml						
36	Total Coliform	MPN/100ml						
			l		AU	JU.100		

Location Per Date Per Date Per Per						MARIN	NE WAT	ΓER							
The page Proposed Proposed		Location			CB - 1 St	urface V	Vater				(CB - 2 S	urface W	/ater	
Per Per			Unit	Oct-18	Nov - 18	Dec-18	Jan-19	Feb-19	Mar-19	Oct - 18	Nov - 18	Dec-18	Jan-19	Feb-19	Mar-19
Total Suspended Solids				7.40				7.61	7 22	7.0			7.04	7.02	7.5
3 1031 Superinded Solids															
Second 2 of 2 of 2 of 3 of 3 of 3 of 2 of 3 of 3			_					-					-	-	-
Salmont Per 100 m Absence Per 100 m Absence	4	BOD at 27 °C for 3 days						-	11					9	12
No. Series Migrate as No. mg/L 1.56 5.88 6.47 6.56 5.4 6.24 6.13 6.77 7.25 7.28 6.22 5.55			mg/L		4.2									-	
Selection Per 100 ml	_			31.8	32.1			35.5	37.7	33.2	32		_	45.5	43.9
Section Minimal Network				7.56	F 00			F 4	6.24	6 12	6 77		<u> </u>	6 27	F 0F
10		•													
12 Selected Nitrogen as N mg/L 207 2-94 2-71 305 3.11 4.07 1.06 1.84 2.08 2.67 3.19 3.84 3.86		Ammonical Nitrogen as N	_												
13 Total phosphates as POA mg/L 207 2.94 2.71 3.05 3.11 4.07 1.06 1.84 2.08 2.67 3.19 3.84															
14 Total Mitrogen mg/L Mg/L 3066 3181 36802 33290 34895 33200 34895 3051 34891 34002 38654 39842 38254 38264 39842 38254 38264 39842 38254 38264 39842 38254 38264 39842 38254 38264 382															
15 Total Dissolved Solids				2.07	2.94			3.11	4.07	1.06	1.84			3.19	3.84
16 COD				34672	33086			33290	34895	36015	34891			39842	38254
18 Scherichts Colliforms	16			65	78	85	93	104	112	87	103	96		101	120
19 Scherichia Coli Per 100 ml				81	85			85	78	70	82			80	86
Shige la															
21 Shigella															
22 Vistrio chalemenolytics Per 100 ml Selection Per 100 ml Per 100 ml Selection Per 100 ml	_														
24 Enterococi	22	Vibrio cholerae	Per 100 ml												
25 Octane															
25 Noane				124	127			131	100	1/10	125			165	147
27 Decane				154	12/			121	103	148	122			100	14/
18															
10 Tetradecane	28												,		
131 Pertadecane μg/L BDL(DL 0.1) BDL(DL				5.9	6.6			6.8	7.6	7.1	7.8			8.9	8.3
12 Hexadecane															
33 Nonadecane													<u> </u>		
Monadecane													<u> </u>		
36 Primary Productivity	34	Nonadecane	μg/L												
37 Chlorophyli a mg/m² 5.41 5.65 5.98 6.37 6.98 7.29 6.86 6.23 6.83 7.16 7.83 6.95								0.70	0.00						0.00
Section Sect															
39 Oxidisable Paticular Organic	_	· · ·													
A Bacteriastrum hyalinum nos/ml 14 13 10 14 16 14 8 11 8 12 14 12															
10 Bacteriastrum varians nos/ml 14 13 10 14 16 14 8 11 8 12 14 12	39	Oxidisable Paticular Organic	mg /L	3.97	4.98				0.36	6.11	5.44	5.01	3.30	3.33	0.10
14 Bacteriastrum varians	40	Bacteriastrum hvalinum	nos/ml	14	13				14	8	11	8	12	14	12
1 1 1 1 1 1 1 1 1 1								11	10						
Hemidiscus hardmanianus Hemidiscus hardm		Chaetoceros didymus					-	-					_		
45 Ditylum brightwellii	_				-									-	
A6 Gyrosigma sp															
A7 Cladophyxis sps nos/ml Nil Ni															
Age Coscinodiscus granii							Nil						Nil	Nil	Nil
Societation					_					_			-	-	
Hemidiscus hardmanianus nos/ml 8							_	-					-		
S2 Laudaria annulata nos/ml 13 10 7 8 10 13 15 11 16 13 10 16 15 17 16 19 10 10 10 10 10 10 10															
Sample S															
Section Peterosigma angulatum Peterosigma angula						Nil		Nil	Nil	Nil		Nil	Nil	Nil	Nil
Section Sect	54	Pleurosigma angulatum													
State Stat															
SR Rhizosolena impricata nos/ml Nil Ni															
Signature Sign							Nil								
Thalassionema nitzschioides															
Ceratium trichoceros nos/ml Nil Ni	60	Thalassionema nitzschioides	nos/ml				17	13	8				21	23	19
Ceratium furca nos/ml Nil Ni															
Nil Nil															
Nil Nil			•												
Corporation Continue Corporation Cor															
67 Acrocalanus sp nos/ml Nil Nil Nil Nil Nil Nil Nil Nil Nil Ni				*										<u>_</u>	
68 Paracalanus parvus nos/ml 5 7 10 12 14 12 16 12 16 18 15 10 69 Eutintinus sps nos/ml 10 12 14 17 13 10 9 13 11 14 10 14 70 Centropages furcatus nos/ml 16 13 17 15 10 8 21 18 12 9 8 11 71 Corycaeus dana nos/ml Nil Nil <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
69 Eutintinus sps nos/ml 10 12 14 17 13 10 9 13 11 14 10 14 70 Centropages furcatus nos/ml 16 13 17 15 10 8 21 18 12 9 8 11 71 Corycaeus dana nos/ml Nil															
70 Centropages furcatus nos/ml 16 13 17 15 10 8 21 18 12 9 8 11 71 Corycaeus dana nos/ml Nil															
71 Corycaeus dana nos/ml Nil Nil															
72 Oithona brevicornis nos/ml 9 11 8 11 8 11 15 17 19 17 13 73 Euterpina acutifrons nos/ml 13 15 13 14 16 14 10 14 10 12 14 17 74 Metacalanus aurivilli nos/ml Nil N															
74 Metacalanus aurivilli nos/ml Nil	72	Oithona brevicornis	nos/ml	9	11	8	11	8	11	11	15	17	19	17	13
75 Copipod nauplii nos/ml 7 9 11 9 12 15 18 11 13 15 13 18 76 Cirripede nauplii nos/ml Nil															
76 Cirripede nauplii nos/ml Nil															
77 Bivalve veliger nos/ml 19 16 12 10 15 17 12 18 18 11 9 15															

				CD 1 D	\						CD 2.D	-44 14	/a.t.a.u	
	Location Month & Year	Unit	Oct - 18	CB - 1 Bo	Dec-18	Vater Jan-19	Feb-19	Mar-19	Oct - 18	Nov - 18		ottom W Jan-19	Feb-19	Mar-19
S.No.	Parameters	UIIIL	011-18	NOV - 18	Dec-19	Jan-19	L6D-13	IVIdI-19	001-18	NOV - 10	Dec-19	Jan-13	ren-19	IVIdI-19
1	pH @ 25°C	-	7.43	7.59	7.81	7.63	7.59	7.34	7.64	7.73	7.59	7.76	7.84	7.59
2	Temperature	°C	29	29	29	29	29	29	29	29	29	29	29	29
3	Total Suspended Solids	mg/L	16	20	24	36	32	29	18	20	27	32	27	24
4	BOD at 27 °C for 3 days	mg/L	8	11	13	15	14	13	12	15	16	19	16	14
5	Dissolved oxygen	mg/L	2.2	2.5	2.2	1.8	2.5	2.7	2.1	2.4	2.1	1.7	2.2	3
7	Salinity at 25 °C	//	26.4	28.9	37.2	37.6 DL 1.0)	41.8	36.8	31	31.6	35.5	36.4 L(DL 1.0)	39.1	41.1
8	Oil & Grease Nitrate as No ₃	mg/L mg/L	6.43	7.01	7.86	7.98	9.14	8.44	4.87	5.91	6.83	7.08	8.43	7.93
9	Nitrite as No ₂	mg/L	5.65	5.98	6.25	6.46	7.38	5.29	3.2	4.08	4.59	4.91	5.99	6.2
10	Ammonical Nitrogen as N	mg/L	5.05	0.50		DL 1.0)	7.00	0.25	0			L(DL 1.0)	0.55	U. _
11	Ammonia as NH3	mg/L				DL 0.01)						(DL 0.01))	
12	Kjeldahl Nitrogen as N	mg/L			BDL(DL 1.0)					BD	L(DL 1.0)		
13	Total phosphates as PO4	mg/L	1.9	2.43	2.19	2.87	3.32	5.71	2.43	2.17	2.85	3.22	4.05	4.54
14	Total Nitrogen	mg/L	24705	22000		DL 1.0) 34012	27002	25007	22440	24265		L(DL 1.0) 41568	42457	44242
15 16	Total Dissolved Solids COD	mg/L mg/L	31785 70	32868 83	33317 72	91	37003 98	35987 108	33119 78	34265 89	40233 76	80	42157 110	41342 118
17	Total bacterial count	cfu/ml	76	70	64	69	76	70	82	73	80	89	94	87
18	Coliforms	Per 100 ml				ence						sence	· ·	0.
19	Escherichia coli	Per 100 ml			Abs	ence					Al	sence		
20	Salmonella	Per 100 ml				ence						osence		
21	Shigella	Per 100 ml				ence						osence		
22	Vibrio cholerae	Per 100 ml				ence						osence		
23	Vibrio parahaemolyticus Enterococci	Per 100 ml				ence						osence osence		
25	Colour	Hazan	5	10	15	10	15	10	10	15	12	15	10	5
26	Odour	-	,	10		ctionab		10	10	13		ectional	_	,
27	Taste	-				reeable						greeable		
28	Turbidity	NTU	10	25	32	35	41	37	11.8	14.2	18.1	20.6	18.3	15.7
29	Calcium as Ca	mg/L	332	351	398	341	374	357	351	394	417	494	501	451
30	Chloride as Cl	mg/L	14641	15997	20612	20839	23156	20348	17243	17491		20136	21464	22800
31	Cyanide as CN	mg/L	17071	13331		DL 0.01)	23130	20340	1,243	1/731		(DL 0.01)		22000
32	Fluoride as F	mg/L	0.37	0.44	0.53	0.72	0.8	0.72	0.46	0.4	0.52	0.6	0.66	0.75
33	Magnesium as Mg	mg/L	1120	1282	1205	1148	1261	1124	1248	1303	1376	1412	1510	1392
34	Total Iron as Fe	mg/L	0.19	0.27	0.32	0.37	0.55	0.69	0.41	0.48	0.44	0.49	0.52	0.46
35	Residual Free Chlorine	mg/L		I	BDL(DL 0.1)				1	BD	(DL 0.1)	I	
36	Phenolic Compounds as C6H5OH	mg/L			BDL(DL 1.0)						L(DL 1.0)		
37	Total Hardness as CaCO3	mg/L	5497	6219	6016	5636	6189	5576	6078	6414	6776	7118	7544	6928
38	Total Alkalinity as CaCO3	mg/L	168	205	289	255	276	311	162	196	214	272	290	324
39	Sulphide as H2S	mg/L	2224	2100		DL 0.5)	2265	2042	2512	2242		L(DL 0.5)	21.47	2020
40 41	Sulphate as SO4 Anionic surfactants as MBAS	mg/L mg/L	2334	2198	2042 BDI/	2083 DL 1.0)	2265	2043	2513	2242	2150 RD	2216 L(DL 1.0)	2147	2039
42	Monocrotophos	μg/L			•	DL 0.01)						(DL 0.01))	
43	Atrazine	μg/L				DL 0.01)						(DL 0.01)		
44	Ethion	μg/L			BDL(I	DL 0.01)					BDL	(DL 0.01)		
45	Chiorpyrifos	μg/L				OL 0.01)						(DL 0.01)		
46	Phorate	μg/L				DL 0.01)						(DL 0.01)		
47	Mehyle parathion	μg/L				DL 0.01)						(DL 0.01)		
48	Malathion DDT (o,p and p,p-Isomers of DDT,DDE	μg/L				DL 0.01)						(DL 0.01)		
49	and DDD	μg/L			BDL(I	DL 0.01)					BDL	(DL 0.01))	
50	Gamma HCH (Lindane)	μg/L			BDL(I	DL 0.01)					BDL	(DL 0.01)		
51	Alppha HCH	μg/L			BDL(I	DL 0.01)					BDL	(DL 0.01))	
	Beta HCH	μg/L				DL 0.01)						(DL 0.01)		
	Delta HCH	μg/L				OL 0.01)						(DL 0.01)		
	Endosulfan (Alpha,beta and sulphate) Butachlor	μg/L μg/L				OL 0.01) OL 0.01)						(DL 0.01) (DL 0.01)		
	Alachlor	μg/L μg/L			•	DL 0.01)						(DL 0.01)		
	Aldrin/Dieldrin	μg/L				DL 0.01)						(DL 0.01)		
58	Isoproturon	μg/L			BDL(I	DL 0.01)					BDL	(DL 0.01)		
	2,4-D	μg/L				DL 0.01)		-				(DL 0.01		-
60	Polychlorinated Biphenyls (PCB)	μg/L			BDL(I	OL 0.01)					BDL	(DL 0.01))	
61	Polynuclear aromatic hydrocarbons (PAH)	μg/L			BDL(I	DL 0.01)					BDL	(DL 0.01))	
62	(PAH) Arsenic as As	mg/L				DL 0.01)						(DL 0.01)		
63	Mercury as Hg	mg/L				L 0.001)					DL 0.001		
	Cadmium as Cd	mg/L				L 0.003						DL 0.003		
65	Total Chromium as Cr	mg/L			BDL(I	OL 0.05)					BDL	(DL 0.05))	
66	Copper as Cu	mg/L				DL 0.05)						(DL 0.05)		-
67	Lead as Pb	mg/L				DL 0.01)						(DL 0.01)		
68	Manganese as Mn	mg/L				DL 0.05)						(DL 0.05)		
69 70	Nickel as Ni Selenium as Se	mg/L mg/L				OL 0.05) OL 0.01)						(DL 0.05) (DL 0.01)		
	Barium as Ba	mg/L mg/L				DL 0.01)						L(DL 0.01)		
	Silver as Ag	mg/L				DL 0.1)						(DL 0.01)		
73	Molybdenum as Mo	mg/L				DL 0.01)						(DL 0.01)		
74	Octane	μg/L	140	149	156		169	151	146	141	166	181	170	162
75	Nonane	μg/L				DL 0.1)	-					L(DL 0.1)		
76	Decane	μg/L		T = =		DL 0.1)				_		L(DL 0.1)		
77	Undecane Tridecane	μg/L	6.5	7.2	7.8	8.6 DL 0.1\	8.1	6.2	7	7	7.3	8.5	8	7.1
78 79	Tridecane Tetradecane	μg/L μg/L				DL 0.1) DL 0.1)						L(DL 0.1) L(DL 0.1)		
80	Pentadecane	μg/L μg/L				DL 0.1)						L(DL 0.1)		
	Hexadecane	μg/L				DL 0.1)						L(DL 0.1)		
		ro, -												

	Location			CB - 1 B	ottom V	Vater					CB - 2 B	ottom W	/ater	
	Month & Year	Unit	Oct - 18	Nov - 18	Dec-18	Jan-19	Feb-19	Mar-19	Oct - 18	Nov - 18	Dec-18	Jan-19	Feb-19	Mar-19
S.No.	Parameters													
82	Heptadecane	μg/L				DL 0.1)						L(DL 0.1)		
83	Octadecane	μg/L				DL 0.1)						L(DL 0.1)		
84	Nonadecane	μg/L				DL 0.1)						L(DL 0.1)		
85	Elcosane	μg/L		1		DL 0.1)						L(DL 0.1)		
86	Primary Productivity	mg C/m³ /hr	8.02	8.96	8.09	8.56	8.91	8.42	9.55	9.13	9.74	9.12	9.46	8.91
87	Chlorophyll a	mg/m³	4.4	6.01	6.76	6.99	7.45	8.01	4.27	5.79	7.12	8.05	8.27	7.43
88	Phaeophytin	mg/m³	0.93	0.78	0.83	0.78	0.72	0.67	0.72	0.91	0.8	0.89	0.85	0.81
89	Oxidisable Paticular Organic	mg /L	4.89	6.15	7.05	7.74	7.08	7.59	5.94	6.78	6.23	6.61	6.24	6.9
					PHYTO	PLANKT	ON				•			
90	Bacteriastrum hyalinum	nos/ml	17	15	18	20	19	17	20	17	13	16	18	15
91	Bacteriastrum varians	nos/ml	12	9	11	15	14	13	14	18	15	19	17	12
92	Chaetoceros didymus	nos/ml	5	13	16	13	16	14	8	12	10	11	14	11
93	Chaetoceros decipiens	nos/ml	10	12	14	16	10	12	12	15	18	20	11	9
94	Biddulphia mobiliensis	nos/ml	15	17	13	11	9	10	17	11	14	15	16	13
95	Ditylum brightwellii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
96	Gyrosigma sp	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
97	Cladophyxis sps	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
98	Coscinodiscus centralis	nos/ml	9	14	18	14	17	15	16	19	11	12	8	14
99	Coscinodiscus granii	nos/ml	11	16	12	19	15	11	20	23	19	22	19	16
100	Cylcotella sps	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
101	Hemidiscus hardmanianus	nos/ml	6	5	9	12	18	10	10	13	7	8	9	6
102	Laudaria annulata	nos/ml	16	7	10	7	11	15	12	8	11	10	7	10
103	Pyropacus horologicum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
104	Pleurosigma angulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
105	Leptocylindrus danicus	nos/ml	11	14	17	21	14	16	7	10	12	17	20	17
106	Guinardia flaccida	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
107	Rhizosolenia alata	nos/ml	8	11	15	13	20	18	19	21	16	10	13	15
108	Rhizosolena impricata	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
109	Rhizosolena semispina	nos/ml	19	10	8	10	12	7	14	11	9	11	20	21
110	Thalassionema nitzschioides	nos/ml	17	11	13	15	21	16	21	19	17	20	25	18
111	Triceratium reticulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
112	Ceratium trichoceros	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
113	Ceratium furca	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
114		nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
115		nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
113	ceraciam iongipes	1103/1111	1411	1411		ANKTO		1411	1411	1411		1411	1411	1411
116	Acrocalanus gracilis	nos/ml	8	11	18	16	13	15	10	8	10	13	15	17
117	Acrocalanus sp	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
118	·	nos/ml	10	9	12	15	18	14	8	10	15	17	19	15
119	·	nos/ml	13	15	17	19	15	12	11	14	8	11	16	13
120	·	nos/ml	12	14	11	10	12	10	15	17	14	12	11	9
121	Corycaeus dana	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
122		nos/ml	7	10	13	17	14	16	14	19	12	15	20	18
123	Euterpina acutifrons	nos/ml	15	17	9	11	19	13	9	12	16	18	12	16
123	Metacalanus aurivilli		Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
124		nos/ml nos/ml	14	NII 8	14	12	16	NII 11	NII 12	NII 7	NII 9	14	17	NII 20
_	Copipod nauplii		Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
126	Cirripede nauplii	nos/ml												
127	Bivalve veliger	nos/ml	16	19	15	13	17	19	20	22	17	15	10	14
128	Gastropod veliger	nos/ml	11	16	10	16	10	17	13	15	11	19	17	10

					SEA S	EDIMEN	IT							
	Location			CB - 1 S	ea Sedii	ment					CB - 2 S	ea Sedin	nent	
	Month & Year	Unit	Oct - 18	Nov - 18	Dec-18	Jan-19	Feb-19	Mar-19	Oct - 18	Nov - 18	Dec-18	Jan-19	Feb-19	Mar-19
S.No.	Parameters													
1	Total organic matter	%	0.41	0.49	0.55	0.61	0.50	0.47	0.45	0.51	0.47	0.53	0.6	0.55
2	% Sand	%	24	28	31	27	25	23	30	27	29	25	22	26
3	%silt	%	30	25	20	22	20	21	28	22	25	23	28	22
4	%Clay	%	46	47	49	51	55	56	42	51	46	52	50	52
5	Iron (as Fe)	mg/kg	15.9	18.1	15.2	16.7	14.2	15.8	10	12.5	10.8	11.4	13.1	16.4
	Aluminium (as Al)	mg/kg	12947	11096	10542	10126	10917	11146	13102	12348	11543	11086	10439	10953
7	Chromium (as cr)	mg/kg	44	53	47	39	44	40	47	52	60	55	48	42
	Copper (as cu)	mg/kg	50	65	74	65	60	65	61	74	77	84	71	79
	Manganese (as Mn)	mg/kg	393	301	278	286	306	340	412	319	302	317	320	361
	Nickel (as Ni)	mg/kg	11.8	13.6	11.3	12.8	15.7	12.8	13.4	14.6	15.7	16.2	17.4	14.6
11	Lead (as Pb)	mg/kg	35	27	25	29	32	29	48	51	44	40	39	33
	Zinc (as Zn)	mg/kg	225	298	270	291	245	238	270	247	239	259	261	250
	Mercury(as Hg)	mg/kg	0.39	0.43	0.38	0.32	0.38	0.44	0.44	0.4	0.46	0.41	0.45	0.51
	Total phosphorus as P	mg/kg	121	135	124	117	121	132	136	139	132	139	130	140
	Octane	mg/kg				DL 0.1)						L(DL 0.1)		
	Nonane	mg/kg				DL 0.1)						L(DL 0.1)		
	Decane	mg/kg				DL 0.1)						L(DL 0.1)		
18	Undecane	mg/kg	0.4	0.42	0.46	0.53	0.56	0.5	0.3	0.35	0.31	0.37	0.47	0.59
	Dodecane	mg/kg				DL 0.1)						L(DL 0.1)		
	Tridecane	mg/kg				DL 0.1)						L(DL 0.1)		
	Tetradecane	mg/kg				DL 0.1)						L(DL 0.1)		
	Phntadecane	mg/kg				DL 0.1)						L(DL 0.1)		
	Hexadecane	mg/kg				DL 0.1)						L(DL 0.1)		
	Heptadecane	mg/kg				DL 0.1)						L(DL 0.1)		
_	Octadecane	mg/kg				DL 0.1)						L(DL 0.1)		
	Nonadecane	mg/kg				DL 0.1)						L(DL 0.1)		
	Elcosane	mg/kg			BDL(DL 0.1)					BD	L(DL 0.1)		
	atoda													
	Oncholaimussp	nos/m²	15	17	14	15	11	14	18	15	11	13	15	11
	Tricomasp	nos/m²	10	13	16	18	16	16	14	10	14	17	20	18
	aminifera													
	Ammoniabeccarii	nos/m²	8	11	10	13	19	18	11	13	16	14	18	12
	Quinqulinasp	nos/m²	20	24	21	17	15	12	17	19	12	19	11	15
	Discorbinellasp.,	nos/m²	13	18	15	11	10	8	15	20	17	15	17	10
	Bolivinaspathulata	nos/m²	9	12	17	19	14	17	12	9	13	18	12	14
	Elphidiumsp	nos/m²	17	10	12	14	12	10	20	14	10	12	16	21
	Noniondepressula	nos/m²	21	15	18	23	20	15	16	12	15	16	13	17
	Iolluscs-Bivalvia		,	,	,	,			,					
	Meretrixveligers	nos/m²	19	16	19	16	18	22	22	17	21	17	9	13
37	Anadoraveligers	nos/m²	24	22	13	10	17	13	21	25	28	15	19	16
<u> </u>	Total No. of individuals	nos/m²	156	158	155	156	152	145	166	154	157	156	150	147
L	Shanon Weaver Diversity Index		2.24	2.27	2.28	2.27	2.28	2.27	2.28	2.26	2.25	2.29	2.27	2.28

CONSENT ORDER NO. 1808215430679

DATED: 17/09/2018.

PROCEEDINGS NO.T1/TNPCB/F.0420GMP/RL/GMP/A/2018 DATED: 17/09/2018

SUB: Tamil Nadu Pollution Control Board - RENEWAL OF CONSENT -M/s. MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED, S.F.No. 14-18B, 15, 168-1&2, 169, 170-1&2, 171-1&2, 172-1&2, 173-1&2, 174, 175, 176, 177, 178-1,2,3&4,179-1, 2, 3&4, 180, 181, 182, 183, 184-1, 2&3, 186, 187, 188-1, 2A, 2B& 2C,189, 190,191, 192-1&2, 193-1, 2, 3&4, 194, 195, 196, 197-1,2&3, 199, 200-1&2, 202-1&2, 203, 206-1,2A,2B,3,4A&4B, 207-2B, 208-2, 209-1,2&3, 210-1&2, 211-1,2,3,4,5,6&7, 212, 213, 214-1,2,3&4,215-1&2,216,217,218-1,2,3,4&5,219-1&2,220, 223-1&2, 224-1,2,3,4&5, 225, 226, 227, 228-1,2,3,4&5, 229, 230, 231-1,2,3,4&5, 232, 233-1,2,3&4, 234-1,2,3&4, 235-1B, 2-3B, 236-3B, 4, 242-1&2, 243-2B, 244-2, 247-1, 248-1&2, 249-1A2,2B, 198-1, 205-1A,1B,2,5, 1 (part)-4A1 Pt,4A2,4B Pt,5 Pt, 11 (part), 16 (part)-1&2,17 (part)-1, 2, 3A&3B, 143 (part), 151 (part)-1,2,3&4,152 (part), 153 (part), 154 (part)-1&2, 166 (part), 167 (part)-1&2, 204(part)-1,2&3, 221(part), 222 (part)-1&2, 330 (part)-1,2,3&4, 12 (Part),16-3, 198-2, 201, 205-3, 205-4, KATTUPALLI village, Ponneri Taluk and Tiruvallur District - Renewal of Consent for the operation of the plant and discharge of emissions under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) -Issued- Reg.

REF: 1. PROCEEDINGS NO.T5/TNPCB/F.0661AMB/RL/AMB/W&A/2017 DATED: 09/02/2017. 2. IR.No: F.0420GMP/RL/AE/GMP/2018 dated 16/08/2018.

RENEWAL OF CONSENT is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) (hereinafter referred to as "The Act") and the rules and orders made there under to

The Chief Executive Officer

M/s.MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED,

S.F.No. 14-18B, 15, 168-1&2, 169, 170-1&2, 171-1&2, 172-1&2, 173-1&2, 174, 175, 176, 177, 178-1,2,3&4,179-1, 2, 3&4, 180, 181, 182, 183, 184-1, 2&3, 186, 187, 188-1, 2A, 2B& 2C,189, 190,191, 192-1&2, 193-1, 2, 3&4, 194, 195, 196, 197-1,2&3, 199, 200-1&2, 202-1&2, 203, 206-1,2A,2B,3,4A&4B, 207-2B, 208-2, 209-1,2&3, 210-1&2, 211-1,2,3,4,5,6&7, 212, 213, 214-1,2,3&4,215-1&2,216,217,218-1,2,3,4&5,219-1&2,220, 223-1&2, 224-1,2,3,4&5, 225, 226, 227, 228-1,2,3,4&5, 229, 230, 231-1,2,3,4&5, 232, 233-1,2,3&4, 234-1,2,3&4, 235-1B, 2-3B, 236-3B, 4, 242-1&2, 243-2B, 244-2, 247-1, 248-1&2, 249-1A2,2B, 198-1,205-1A,1B,2,5, 1 (part)-4A1 Pt,4A2,4B Pt,5 Pt, 11 (part), 16 (part)-1&2,17 (part)-1, 2, 3A&3B, 143 (part), 151 (part)-1,2,3&4,152 (part), 153 (part), 154 (part)-1&2, 166 (part), 167 (part)-1&2, 204(part)-1,2&3, 221(part), 222 (part)-1&2, 330 (part)-1,2,3&4, 12 (Part),16-3, 198-2, 201, 205-3, 205-4,

KATTUPALLI village,

Ponneri Taluk,

Tiruvallur District.

Authorizing the occupier to operate the industrial plant in the Air Pollution Control Area as notified by the Government and to make discharge of emission from the stacks/chimneys.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2019

TAMILNADU POLLUTION CONTROL BOARD

P. KANNAN Digitally signed by R. KANNAN Date: 2018.09.21 17:42:51 +05'30'

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

SPECIAL CONDITIONS

1. This renewal of consent is valid for operating the facility for the manufacture of products (Col. 2) at the rate (Col. 3) mentioned below. Any change in the products and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

Sl. No.	Sichering course at 6 and Description of the attitude softling transport political course at the course of the cou	Quantity	phuna col Unit 1000 BBARO TAWALAMAD POLLU
BOAR	Product Details	PAINE MADE POLITICAL CONTROL	DEBOARD TAVILHABUPULLU
TANI SOASI	Containers Contain South Containers Containers Containers Containers Containers Container Contai	1.8 RADUPOLLUTION COMEN TARMEMAND POLLUTION CONTRO TARMEMAND POLLUTION CONTRO TO THE TOTAL OF THE POLLUTION CONTROL	Million TEU / Annum (21.60 MTPA)
2.	Ro-R0 (Nos) (Automobiles)	149899	Nos / Annum (0.22 MTPA)
3.	Project Cargo	440000	MT / Annum (0.44 MTPA)
4.	Breakbulk / General Cargo (Barytes/Gypsum/Limestone/Granite/Steel Cargo)	1820000	MT / Annum (1.82 MTPA)

2. This renewal of consent is valid for operating the facility with the below mentioned emission/noise sources along with the control measures and/or stack. Any change in the emission source/control measures/change in stack height has to be brought to the notice of the Board and fresh consent/Amendment has to be obtained.

Inhub	Point source emission with sta	ack:	San State of the Control of the	asmirah sabihesi mas sad
Stack No.	Point Emission Source	Air pollution Control measures	Stack height from Ground Level in m	Gaseous Discharge in Nm3/hr
LEBARB LEBARB	DG Set 2000 KVA	Acoustic enclosures with stack	34 CONTROL OF CONTROL	sundand selderah com mil colonia talukunga paleutian debarah pedebarah com mil talukunga talukunga com mil talukunga com mil
2 ARD COMMENTS LISTANDO COMENTS LISTANDO COMMENTS LISTANDO COMMENTS LISTANDO COMMENTS LISTANDO COMMENTS LISTANDO COMMENTS LISTANDO COMMENTS LISTANDO COMMENT	DG Set 2000 KVA	Acoustic enclosures with stack	34 CHIEF GOVER	CLEGAGE TAMENARY POLLOTUDIA ADMINISTRATION OF A CONTROL ADMINISTRATION O
II	Fugitive/Noise emission :	9 (Sala 1994)	ening core elbacid	ank summer sammen pale und seine entificie schliegisch ware sein
Sl. No.	Fugitive or Noise Emission sources	Type of emission	Control measures	andició subjecto una milia de come con control de contr
L SU/10 indical L BOARD indical	DG Set 2000 KVA-2 nos	Noise Maria Dania	Acoustic Enclosures are Provided	Jeurno tariendo poletida maliede sede en en en e el edado tariendo poletida modero mediano med

TAMILNADU POLLUTION CONTROL BOARD

Additional Conditions:

1. The unit shall operate and maintain the APC measures efficiently and continuously so as to satisfy the Ambient Air Quality / emission standards prescribed by the Board.

2. The unit shall adhere to the Ambient Noise Level standards prescribed by the Board.

3. The unit shall provide one Continuous Ambient Air Quality Monitoring station for the parameters PM 10, PM 2.5 and VOC and shall connect the same to the care Air Centre, TNPCB, Gunidy.

4. The unit shall utilize the Power obtained from the DG Sets for captive use only and shall not supply Power to Grid.

5. The unit shall have the Environmental Management Cell with full fledged laboratory facilities and qualified trained staff with environmental policy for regular monitoring of stack emission and ambient air quality and implementation of environmental management system and to preserve the ecology of that locality.

6. The unit shall ensure that the internal roads shall be paved with concrete/bitumen and provided with water sprinkling arrangement to arrest dust, and the speed of vehicles less than 10 km/hr so as to

ensure ambient air quality standards

7. The unit shall liable to pay the consent fee and shall remit the difference in amount in case of any revision of consent fee by the Government.

R. KANNAN Digitally signed by R.
R. KANNAN NAME Date: 2018.09.21 17:43:10
405'30'
For Member Secretary,
Tamil Nadu Pollution Control Board,
Chennai

To

The Chief Executive Officer,

M/s.MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED,

Kattupalli Port, Post box no: 001, Kattupalli Village,

Pin: 600120

Copy to:

1. The Commissioner, THIRUVALLUR-Panchayat Union, Ponneri Taluk, Tiruvallur District.

- 2. The District Environmental Engineer, Tamil Nadu Pollution Control Board, GUMMIDIPOONDI.
- 3. The JCEE-Monitoring, Tamil Nadu Pollution Control Board, Chennai.
- 4. File

CONSENT ORDER NO. 1808115430679

DATED: 17/09/2018.

PROCEEDINGS NO.T1/TNPCB/F.0420GMP/RL/GMP/W/2018 DATED: 17/09/2018

SUB: Tamil Nadu Pollution Control Board - RENEWAL OF CONSENT INFRASTRUCTURE DEVELOPER PRIVATE LIMITED, S.F.No. 14-18B, 15, 168-1&2, 169, 170-1&2, 171-1&2, 172-1&2, 173-1&2, 174, 175, 176, 177, 178-1,2,3&4,179-1, 2, 3&4, 180, 181, 182, 183, 184-1, 2&3, 186, 187, 188-1, 2A, 2B& 2C,189, 190,191, 192-1 & 2, 193-1, 2, 3 & 4, 194, 195, 196, 197-1,2&3, 199, 200-1&2, 202-1&2, 203, 206-1,2A,2B,3,4A&4B, 207-2B, 208-2, 209-182, 203, 206-182, 206-1 1,2&3, 210-1&2, 211-1,2,3,4,5,6&7, 212, 213, 214-1,2,3&4,215-1&2,216,217,218-1,2,3,4&5,219-1&2,220, 223-1&2, 224-1,2,3,4&5, 225, 226, 227, 228-1,2,3,4& 5, 229, 230, 231-1,2,3,4&5, 232, 233-1,2,3&4, 234-1,2,3&4, 235-1B, 2-3B, 236-3B, 4, 242-1&2, 243-2B, 244-2, 247-1, 248-1&2, 249-1A2,2B, 198-1, 205-1A,1B,2,5, 1 (part)-4A1 Pt,4A2,4B Pt,5 Pt, 11 (part), 16 (part)-1&2,17 (part)-1, 2, 3A&3B, 143 (part), 151 (part)-1,2,3&4,152 (part), 153 (part), 154 (part)-1&2, 166 (part), 167 (part)-1&2, 204(part)-1,2&3, 221(part), 222 (part)-1&2, 330 (part)-1,2,3&4, 12 (Part),16-3, 198-2, 201, 205-3, 205-4, KATTUPALLI village, Ponneri Taluk and Tiruvallur District -Renewal of Consent for the operation of the plant and discharge of sewage and/or trade effluent under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act 6 of 1974) - Issued- Reg.

REF: 1. PROCEEDINGS NO.T5/TNPCB/F.0661AMB/RL/AMB/W&A/2017 DATED: 09/02/2017. 2. IR.No: F.0420GMP/RL/AE/GMP/2018 dated 16/08/2018.

RENEWAL OF CONSENT is hereby granted under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act, 6 of 1974) (hereinafter referred to as "The Act") and the rules and orders made there under to

The Chief Executive Officer

M/s.MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED.

S.F.No. 14-18B, 15, 168-1&2, 169, 170-1&2, 171-1&2, 172-1&2, 173-1&2, 174, 175, 176, 177, 178-1,2,3&4,179-1, 2, 3&4, 180, 181, 182, 183, 184-1, 2&3, 186, 187, 188-1, 2A, 2B& 2C,189, 190,191, 192-1 & 2, 193-1, 2, 3 & 4, 194, 195, 196, 197-1,2&3, 199, 200-1&2, 202-1&2, 203, 206-1,2A,2B,3,4A&4B, 207-2B, 208-2, 209-1,2&3, 210-1&2, 211-1,2,3,4,5,6&7, 212, 213, 214-1,2,3&4,215-1&2,216,217,218-1,2,3,4&5,219-1&2,220, 223-1&2, 224-1,2,3,4&5, 225, 226, 227, 228-1,2,3,4& 5, 229, 230, 231-1,2,3,4&5, 232, 233-1,2,3&4, 234-1,2,3&4, 235-1B, 2-3B, 236-3B, 4, 242-1&2, 243-2B, 244-2, 247-1, 248-1&2, 249-1A2,2B, 198-1, 205-1A,1B,2,5, 1 (part)-4A1 Pt,4A2,4B Pt,5 Pt, 11 (part), 16 (part)-1&2,17 (part)-1, 2, 3A&3B, 143 (part), 151 (part)-1,2,3&4,152 (part), 153 (part), 154 (part)-1&2, 166 (part), 167 (part)-1&2, 204(part)-1,2&3, 221(part), 222 (part)-1&2, 330 (part)-1,2,3&4, 12 (Part),16-3, 198-2, 201, 205-3, 205-4, KATTUPALLI Village,

Ponneri Taluk,

Tiruvallur District.

Authorising the occupier to make discharge of sewage and /or trade effluent.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2019

TAMILNADU POLLUTION CONTROL BOARD

P. KANNAN Date: 2018.09.21 17:43:45 +05'30'

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

SPECIAL CONDITIONS

1. This renewal of consent is valid for operating the facility for the manufacture of products/byproducts (Col. 2) at the rate (Col 3) mentioned below. Any change in the product/byproduct and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

Sl. No.	Description County Description County County Description	Quantity	nhand eld Unitable for the control of the control o
nuluu a	Product Details	TAMERAND PRESUTED SUBTROL	BOARD TAMIENADO PALLOTI
HARL SIMALIO SOANI SIMALIO	Containers ON CONTROL EDANG TAMILIADO POLLUTION CONTROL EDANG TAMILIADO PO	1.8 кон роциной сантни сантни сантни выпрату сан — (Вланф — каминацироциной сонтам выбраф но — «приламо в	Million TEU / Annum (21.60 MTPA)
2.	Ro-R0 (Nos) (Automobiles)	149899	Nos / Annum (0.22 MTPA)
3.	Project Cargo	440000	MT / Annum (0.44 MTPA)
4.	Breakbulk / General Cargo (Barytes/Gypsum/Limestone/Granite/Steel Cargo)	1820000	MT / Annum (1.82 MTPA)

2. This renewal of consent is valid for operating the facility with the below mentioned outlets for the discharge of sewage/trade effluent. Any change in the outlets and the quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

Outlet No.	Description of Outlet	Maximum daily discharge in KLD	Point of disposal
Effluent Ty	pe : Sewage	Lores er (Minum) and in and in a	TULLING FURNISHAT DAR BALUUTT VIDENSE OUTBING (OUTSIDE OUTBING)
militaro 1 radioana	Sewage 1	45.0	On land for gardening

TAMILNADU POLLUTION CONTROL BOARD

Additional Conditions:

1. The unit shall operate and maintain the Sewage Treatment Plant efficiently and continuously so as to satisfy the standards prescribed by the Board.

2. The unit shall utilize the treated sewage on its own land for gardening purposes thereby developing

green belt.

3. The unit shall analyze the sewage effluent in the TNPCB laboratory and furnish the report periodically.

4. The unit shall ensure that no trade effluent shall be generated from their activity under any

circumstances.

5. The unit shall not stake the material Barytes/Gypsum/ Limestone/Steel Cargo in the open yard under any circumstances.

6. The unit shall not carry out any capital dredging under any circumstances.

- 7. The unit shall ensure that the operation of the port activity will not create any impact on the livelihood of the fishermen.
- 8. The unit shall ensure that the operation of port activity shall not create any adverse effect on the marine eco system or marine water quality of the sea water intake point of M/s. Chennai Water Desalination Plant.

9. The unit shall ensure that the operation activity of the unit shall not crate any hindrances to the

Kattupalli village under any circumstances.

10. The unit shall ensure that no oil spill shall occur in the marine coastal areas due to the operation activities.

11. The unit shall comply with the provisions under Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016.

12. The unit shall adhere to the conditions as stipulated in the Letter No.: 10 - 130 / 2007 - IA.III, Dated: 03.07.2009, 17.12.2014, 12.05.2010 and 09.02.2018 issued by the Ministry of Environment, Forests and Climate Change, Government of India.

13. The unit shall develop green belt of 25 % of plot area (400 trees/Hec) comprising of tall trees (min.2m height) and various species according to local soil conditions I consultation with local DFO / Horticulture Department / Authorised Consultant and shall furnish the proposal for the same along with the layout map indicating the existing and proposed green belt details within six months.

14. The Port shall ensure that the dredged material arising from dredging operations shall not be dumped in the areas attracting CRZ Notification and the material shall be used for further beneficial

use.

15. The Port shall have containment Boom facility with skimmer to contain and recover the spillages of Liquid Cargo in to the sea if any.

16. The Port shall ensure that the dredged material shall not be dumped in the areas attracting CRZ

Notification and the material shall be used for further beneficial use.

17. The unit shall maintain the water quality of Marine Sea so as to meet the Marine Water quality prescribed for Harbour Sea Water and ensure that the marine water quality is monitored at regular intervals by engaging competent agencies.

18. The port shall ensure that there shall be no spillage of Marine Liquid in the sea while unloading from ship to pipelines/Road Vessels

19. The unit shall furnish carry out impact assessment study once in a year with respect to marine and land environment and the report shall be furnished to Board.

20. The Port shall ensure that adequate oil spill response equipment shall be made available as per the Appendix B of the Tamil Nadu State Oil Spill Disaster Contingency Plan, September 2016.

21. The Port shall ensure participation in the oil spill combating training along with the State Agencies such as Tamil Nadu Maritime Board organized by the Indian Coast Guard time to time.

22. The port shall ensure the formation and regular functioning of dedicated Environment Cell and Oil Spill Contingency Response Cell in order to have timely response to incidents of oil spill and any other contingency in the Port area.

23. Continuous monitoring of the marine environment shall be under taken by an institute like Faculty of Marine Biology, Annamalai university and to furnish a report to the Board every 6 months.

24. The unit shall not use 'use and throwaway plastics' such as plastic sheets used for food wrapping, spreading on dining table etc., plastic plates, plastic coated tea cups, plastic tumbler, water pouches and packets, plastic straw, plastic carry bag and plastic flags irrespective of thickness, within the industry premises. Instead it shall encourage use of eco friendly alternative such as banana leaf, areca nut palm plate, stainless steel, glass, porcelain plates/cups, cloth bag, Jute bag etc.,

25. The unit shall furnish exact green belt area ear marked/developed in the unit premises and furnish

photographs along with latitude and longitude co-ordinates.

26. The unit shall liable to pay the consent fee and shall remit the difference in amount in case of any revision of consent fee by the Government.

P. KANNAN KANNAN Date: 2018.09.21 17:44:03

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

To

The Chief Executive Officer,

M/s.MARINE INFRASTRUCTURE DEVELOPER PRIVATE LIMITED,

Kattupalli Port, Post box no: 001, Kattupalli Village,

Pin: 600120

Copy to:

1. The Commissioner, THIRUVALLUR-Panchayat Union, Ponneri Taluk, Tiruvallur District.

- 2. The District Environmental Engineer, Tamil Nadu Pollution Control Board, GUMMIDIPOONDI.
- 3. The JCEE-Monitoring, Tamil Nadu Pollution Control Board, Chennai.
- 4. File

Annexure - 5

Compliance to Tamil Nadu Coastal Zone Management Authority (TNCZMA) vide letter no. 6064/EC.3/2014-1 dated 26.06.2014

SI. No	Conditions	Compliance
i	The unit shall compliance with all the	Being complied
	conditions stipulated in Environment	
	Clearance issued in No. 10-130/2007-IA-III,	
	Ministry of Environment & Forest,	
ii	Government of India, dated 3rd July 2009	This EC is just a bifurcation of
·	The proposed activities should not cause coastal erosion and alter the beach configuration. The shoreline changes shall be monitored continuously	original EC of LTSB. In past, LTSB has been continuously monitoring shoreline studies through Institute of Ocean Management, Anna University, Chennai.
		Further, MIDPL also engaged Institute of Ocean Management, Anna University, Chennai. for shoreline studies of the concerned area.
iii	Chemical waste generated and the sewage	Complied
	generated, if any should not be discharged in to the sea and shall be properly handled	No chemical waste generated.
	to the sea and shall be properly handled	Sewage waste water generated is
		being treated in STP for further usage in horticulture / greenbelt
iv	The waste water generated shall be	Complied.
	collected, treated and reused properly	Domestic waste water generated is being treated in STP. Treated water is being reused for Horticulture / green belt purpose
V	The proponent shall implement oil spill	Complied.
	mitigation measures without fail	Oil Spill contingency plan (OSCP) is being implemented at site. OSCP along with list of Oil spill control equipment already submitted.
vi	Disaster management plan shall be	Complied
	implemented and mock drills shall be carried out properly and periodically.	MIDPL has already formulated detailed Disaster Preparedness & Management Plan to handle any Natural and industrial hazards at site.
		Regular Mock Drills are conducted as per the Crisis Management Plan. The details of drills conducted towards dock safety for the period Oct-2018 to Mar-2019 is enclosed as
		Annexure- 6.

Mock Drills Oct-2018 to Mar-2019

S.No.	Date	Time	Scenario	Participants
1	24.10.18	13:30	Gardening Staff got Snake Bite in front of PAB.	19
2	13.01.19	11:08	Electrical cable short circuit at refer yard	17
3	24.01.19	12:00	Emergency fire evacuation from Port operations building	63
4	04.02.19	15:02	Fire in dry grass at backside of container scanner building	19
5	10.02.19	12:56	A Lasher working nearby bollard no.4 accidently slipped and fell into the water	25
6	31.03.19	15:55	Smoke at out gate of customs building Electrical panel room	10

CLASSIFIEDS MART

TO ADVERTISE VISIT:

www.thehinduads.com

Call: 044-28575711 • 28575714 • 28575757

or Contact your nearest Authorised space sellers

PERSONAL CHANGE OF NAME

I, SHILPA Bojudu Nirmala alias B.N. Shilba, daughter of Thiru Boiyes Ballati, horn on 4th Juna

looking for Distributors in all major cities / towns.

BLOOD TUBING FOR HAEMODIALYSIS

Selected Distributors will be considered for areawise or one-for-all on long term business partnership based on mutual agreement.

Please send us your detailed profile on the contact details as under:

ANGIPLAST PRIVATE LIMITED

Email:

marketing1@angiplast.co m Phone/WhatsApp: +91-9099928652

COACHING

BANK PO/CLERK Exam Coaching Daily Batches Feb 26(7.30-9/10-11.30)am & Sunday Batch Feb 25 (1.30pm-6pm)*CSB* Ph: 24323346, www. csbindia.com

COMPUTERS

BUYING/SERVICE LAPTOP/PC Any Condition@Yr Doorstep-24811009/ 9381255017

ELECTRICAL ACCESSORIES

(E) TMTL

year teaching exp as (Asst. Professor) in any MCI recognized teaching institution.

Salary as per institutional rules Accommodation Provided (Subject to Availability)

Application should be sent by post to "The Principal, Christian Medical College, Bagayam, Vellore – 632 002 or email to: princi@cmcvellore.ac.in with bidata, certificates and testimonial copies with contact phone number, e-mail ID & address

On or before 10.03.2018

SPRINGFIELD

MAT. HR. SEC. SCHOOL #15, 50°St, 9°Sector, K.K.Nogar, Ch-78

REQUIRES

Experienced PGT'S in Commerce, Mathematics, English & Physics

Apply With Full Bio-Data / Email: springfieldschool1975@gmail.com

FINANCIAL

SPOT CASH for 2&4 Wheeler even under Finance Ct:9600195992; 9884594310

SPOT CASH 2/4wheler even undr Fin Electronic MR- 9789315362, 9080931485

FINANCIAL

SPOT CASH 2/4 Wheeler Even Under finance low int 9791234977/ 8122252444

BANK BALANCE FD-Visa, free Courselling, Limelight. 9841593363/ 24918477

BANK BALANCE SBFD VISA Free Counselling. Kurnar's Limelight: 9841026448

FURNITURE

SPOT CASH Old Furnitures, Antiques, A/C, Fridge,TV 9840807897/ 24742897

SSUPANICE

www.agarwalpackers.com

PAINTINGS

ASIAN PAINTING for Home Interior & Outer Free Wall Design 9043045656

PUBLIC NOTICE

M/s L & T Shipbuilding Limited Ground Floor, TC-1 Building, L&T Construction Gamplex, Mout Forwardles Res. Managing. Compr. 480 (05) The Hamil

NOTICE FOR PUBLIC

This is to notify the general public that the bifurcation of the existing Environmental & CRZ Clearance Issued vide Letter No. 10-130/2007-IA.III dated July 03, 2009 in favour of M/s L & T Shipbuilding Limited (Joint venture of L&T and TIDCO) for the development of Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluk, Tiruvallur. District/Tamil Nadu in to L&T Shipbuilding Limited (LTSB) and Marine Infrastructure Developer Privata Limited (MIDPL) has been granted under the EIA Notification 2006 (as amended) and CRZ Notification 2011 (as amended) by Ministry of Environment, Forest and Climate Change (IA-III Division) vide their letter no. F. No.10-130/2007-IA.III dated February 09, 2018.

The copy of the above letter of Environment and CRZ Clearances is available with the Tamil Nadu Pollution Control Board (TNPCB) and may also be seen at website of MoEF&CC at http://environment.io.

Date: February 19, 2018

SITUATION

SITUATION VACANT

BPO

BPO MED.BILLING @ Royapettah Fresh/ Exp Charges & Payment Posting-28130 124/9940109520/suresh@flagshipmd.com

FINANCE

PUBLIC NOTICE

N/s Marine Infrastructure Developer Private Limited Ground Floor, TC-1 Building, L4T Construction Complex. Navnt Processed on Road, Masspolium, Chaesa'- 600 183 (Tomil Varia)

NOTICE FOR PUBLIC

This is to notify the general public that the bifurcation of the existing Environmental & CRZ Clearance issued vide Letter No. 10-130/2007-IA.III dated July 03, 2009 in favour of M/s L & T Shipbuilding Limited (Joint venture of L&T and TIDCO) for the development of Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluk, Tiruvallur District Tamil Nadu in to L&T Shipbuilding Limited (LTSB) and Marine Infrastructure Developer Private Limited (MIDPL) has been granted under the EIA Notification 2006 (as amended) and CRZ Notification 2011 (as amended) by Ministry of Environment, Forest and Climate Change (IA-III Division) vide their letter no. F. No.10-130/2007-IA.III dated February 09, 2018.

The copy of the above letter of Environment and CRZ Clearances is available with the Tamil Nadu Pollution Control Board (TNPCB) and may also be seen at website of MoEF&CC at http://environment.

Date: February 19, 2018

PEST CONTROL

43YRS EXP TranscendTermite Control Free Inspection-24936569/9840298708

விளம்பா

விளம்பர வரிகள் உங்கள் விரல் நுனியில்..! WWW.the உங்கள் விளம்பரங்களை நீங்களே வடிவமைத்து பு

வரி விளம்பர தொடர்புக்கு: 044

_நடகள் தேவை

பொது

eading Business Group Invites **NSIONERS** USE WIFF

oin for a business mity. Attractive earnings. re details register with 88416 / 9952087692

தொழில்

நகைக்கடன்

\$கால்டு:தங்க <u>ந</u>கைகளை அடகு நகைகளை அதிக விலைக்கு விற்க is: 7550366388

கை கி.ரு.2900 வரை அடகு கி.ரூ.2400 வரை ள வட்டியில் பெற சூப்பர் கால்டு சென்னை செல்: 2424.

கை அடகு கிராமிற்கு வரை 1.ள வட்டி 5 நகை திருப்பி கிராம் வரை விற்று உடனே ப்பற அட்சயா கோல்டு : 9003528444

பொது

திசேவைகள்

ங்கள் பழைய தகையை மீட்டு ய மார்க்கைப **த விற்க**

பாது

பொது அறிவிப்பு

எல் அண்டு டி அப்பில்புங் விபிபட்ட தரைதளம் TC-1 கட்டிடம், எம் கூர்தளம் TC-1 கட்டிடம், எம் கூர்த ஏன்றுக்கு வர்களைக்குகள், முக்கள் நேர்த மண்றுக்கர், கூக்கள - 500 (86 (arkipus)) போது அறிவிப்பு

SI

u

EI

R4

Co

26

an

(1.

24

P

M

U

N

.

01

5, 5 Ne

போது அறிவியு எல் அண்டு டி விப்பில்டிய் விடுபட் (கூட்டு நிறுவனான எல் அண்டு டி மற்றம் டிட்கோ நிறுவனத்திரு அதல் என்.10–130/2007–1AII/ 03.07.2009ல் தமிழ்நாடு திருவன்குர் மாவட்டம் பொன்னேர் தாழக்கா, காட்டுப் பன்வியில் கப்பல கட்டுமானம் மேம்படுத்துதல் மற்றும் இறைமுக வளாகம் அமைப்பது சம்மந்தமாக கற்றுகுழல் மற்றும் CRZ வழங்கிய அனுமத் தற்போது எல் அண்டு டி அப்பில்டிய் விடுபட் (LTSB) மற்றும் மனரன் இனிராஸ்டிரக்கர் டெவல்பர் பிரைவேட் லிடிபட் (LTSB) மற்றும் மனரன் இனிராஸ்டிரக்கர் கொடிர் புருவநிலை மாற்றம் (A-III பிரிவினர்ம்) பருவநாலை பாற்றம் (A-III biffielianus) அமைசகத்தால், EIA 2006 (இருத்தப்பட்ட) மற்றும் CRZ 2011 (இருத்தப்பட்ட) படிவங்களின்படி அறிவிக்கப்பட்டு அதம் என். FNo.10-130/2007-IA-III/ 09.02.2018 வாக்கப்பட்டுள்ளது.

பேற்குறிப்பிட்ட எற்றுகுழல் மற்றும் CRZ அனுமதி கடிதம் நகல் தமிழ்நாடு மாக கட்டுப்பாடு வளியம் (TNPCB) மற்றும் MOEF&Ccல் உள்ள http://envfor.nic.in என்ற வலை தனத்திலும் தெரிவிக்கப் பட்டுள்ளது.

தேதி 19.2.2018

Hopin Schippitchif Handuf darfan dalat' 55 soop gerrik T C-1 as List Lib, ak dealy y delituuskaja anlauskaj mark alastad Gyrs, matariskaj, arkas - 60 08 (sektosa) GLITEL apparlit.

மையர்கர் சல்கை ல குடிக்கு பெர்கர் பெர்கர் அன்டு டி ஒப்பில்கும் லிடுட்ட (கட்டு இறுகளை என் அன்டு டி மற்றம் ஆட்கள் இறுகளைச்சிற்கு கூதகம் என். 10-130/2007-1AIII/ 03.07.2009ல் தமிழ்நாடு திருகள்குள் மாவட்டம் என் என். தா து க் கா , காடுப்பள்ளியில் கட்பல் கட்டுமானம் மேம்படுத்துதல் மற்றம் அறைபுக வளாகம் அமைப்பது எம்மந்தமாக கற்றுகுழல் மற்றும் CRZ வழக்கிய அறும்கிற சிருக்கும் மற்றும் CRZ வழக்கிய வரைச் இன்பிராஸ்டிரக்கர் டெலல்பள் பின்றுக்க விடுட்ட (MDPL) என்கிற நிறுவனர்களுக்கு கழக்கப்பட்டு மேற்பத் ஆணை கற்றுக்கும் மற்றும் GRZ மற்றும் நிறுவனர்களுக்கு கழக்கப்பட்டு மேற்பத் ஆணை கற்றுக்கும் மற்றும் காடு / முதுதிகை யற்றும் (A-III பிரிவின்பத) அமைக்குக்கு வழக்கப்பட்டு மேற்பத் அன்றுக்கும் மற்றும் காடு / முதுதிகை யற்றும் (A-III பிரிவின்பத) அமைக்குக்கு வழக்கப்பட்டு தேத்கப்பட்டு மற்றும் காடு / முதுத்கரம், EIA 2006 (இத்தப்பட்ட) மற்றும் CRZ 2011 (திருத்தப்பட்ட) படிவிக்கர்காக் நில 10-130/2007-IAIII/ 09022018 வரங்கப்பட்டுள்ளது. வுங்கப்பட்டுள்ளது.

மேற்குறிப்பிட்ட எற்றுசூழல் மற்றும் CRZ அனுமதி கடிதம் நகல் தமிழ்நாடு மாசு கட்டுப்பாடு வாரியம் (TNPCB) மற்றும் M o E F & C C ம் உள் எ http://envfor.nlc.in என்ற வலைதனத் திலும் தெரிவிக்கப்பட்டுள்ளது. G寿最 19.2.2018

ए कंकि।किका तंगातंत्रमा ॥ मेकि कंकि

sthesia es

dent with Age ars Professor esthesia) least one as (Asst. any MCI eaching

utional rules Provided ilability)

be sent by al, Christian Bagayam. or email to: ac.in with biates and with contact -mail ID &

0.03.2018

IFI D SCHOOL K.Nagar, Ch-78

GT'S in hematics, ysics

Data / Email: 5@gmail.com

IAL

heeler even un-2t:9600195992,

even undr Fin 9789315362

ADVII

AGARWAL PACKERS AND MOVERS LTD. Limca Record for Largest Mover

19 300 300 300

PAINTINGS

ASIAN PAINTING for Home Interior & Outer Free Wall Design 9043045656

PUBLIC NOTICE M/s L & T Shipbuilding Limited Ground Floor, TC-1 Building, L&T Construction Complex,

Mount Poonamailee Road, Manapakkam, Chennai - 600 089 (Tamii Nado NOTICE FOR PUBLIC

This is to notify the general public that the bifurcation of the existing Environmental & CRZ Clearance issued vide Letter No. 10-130/2007-IA.III dated July 03, 2009 in favour of M/s L & T Shipbuilding Limited (Joint venture of L&T and TIDCO) for the development of Shipyard-cum-Minor Port Complex at Kattupalli, Ponneri Taluk, Tiruvallur. District Tamil Nadu in to L&T Shipbuilding Limited (LTSB) and Marine Infrastructure Developer Private Limited (MIDPL) has been granted under the EIA Notification 2006 (as amended) and CRZ Notification 2011 (as amended) by Ministry of Environment, Forest and Climate Change (IA-III Division) vide their letter no. F. No.10-130/2007-IA.III dated February 09, 2018.

The copy of the above letter of Environment and CRZ Clearances is available with the Tamil Nadu Pollution Control Board (TNPCB) and may also be seen at website of MoEF&CC at http://envfor.nic.in

Date: February 19, 2018

drasisautomation.com

SMARTPHONE WORK@ Home 21-65 Qual:12+ Facebook. 9840072598 wolmal.com

BANKING GROUP requires VRS/Retired officials for details Ct:9384461479

AKSHAY SCANS Chromepet req Typist cum Receptionist (F) Ct :9994160325

WORK WHEN free jobmin Businessman 25K P/T 984 Rtd

MNC BANKING Group Pa age 40+ Sal+Huge Allow from Home. Dr. Selvaraj -

PUBLIC NOTICE

M/s Marine Infrastructure Developer Private Limited Ground Floor, TC-1 Building, L&T Construction Complex, Mount Poonamaliee Road, Manapakkam, Chennai - 600 089 (Tamii Nadu)

NOTICE FOR PUBLIC

NOTICE FOR PUBLIC
This is to notify the general public that
the bifurcation of the existing
Environmental & GRZ Clearance issued
vide Letter No. 10-130/2007-IA.III
dated July 03, 2009 in favour of M/s L &
T Shipbuilding Limited (Joint venture
of L&T and TIDCO) for the development
of Shipyard-cum-Minor Port Complex
at Kattupalli, Ponneri Taluk, Tiruvallur
District Tamil Nadu in to L&T
Shipbuilding Limited (LTSB) and
Marine Infrastructure Developer
Private Limited (MIDPL) has been Marine Infrastructure Developer Private Limited (MIDPL) has been granted under the EIA Notification 2006 (as amended) and CRZ Notification 2011 (as amended) by Ministry of Environment, Forest and Climate Change (IA-III Division) vide their letter no. F. No.10-130/2007-IA.III dated February 09, 2018.

The copy of the above letter of Environment and CRZ Clearances is available with the Tamil Nadu Pollution Control Board (TNPCB) and may also be seen at website of MoEF&CC at

Date: February 19, 2018

PEST CONTROL

43YRS EXP TranscendTermite Control Free Inspection-24936569/9840298708

NETLON SAINTGOBAIN SS Trading Authorised 9940386715

PEST CONT

TENDER

भारतीय विमानपत्त A AIRPORTS AUTHOR

ARPORTS AUTHOF

e-Tender Notic

(Tender-Id: 2018_AAI

Tenders are invited th

CPP portal by Joint

Manager (IT), RHQ, S

Authority of India, O

Offices Complex,

600027 on behalf

Chairman, Airports Au

India from the eligible C

for the work of "Compres for the work of "Compre Annual Maintenance of Desktop Com Laptops, Printers, S UPS, etc. at Regior Quarters, Southern Chennai" at an estim of ₹ 2,13,11,862/-. Las submission of te of Desktop Com submission of te 03.03.2018 up to 06:00 further details plea https://www.aai.a tender/tender-sea https://etenders. eprocure/app. I clarifications / corrige this regard, if any, shall only on CPP portal.

