

AHPL/MoEF8CC/2022-23/03

Date: 29.11.2022

To

Deputy Director/Scientist C Integrated Regional Office (IRO) -Gandhinagar Ministry of Environment Forest & Climate Change

(Govt. of India)

Email: iro.gandhingr-mefcc@gov.in, eccompliance-guj@gov.in

_pl.

Dear Sir,

Sub.: Six Monthly Compliance Report of conditions stipulated in Environment and CRZ Clearance for the development of Multi Cargo Port with Supporting Utilities and Infrastructure Facilities at Hazira, Surat, Gujarat for the period: **April 2022-September 2022.**

Ref.: 1). Environmental and CRZ Clearance issued by MoEF & CC, New Delhi vide letter No.: 11-150/2010-IA.III dated 03rd May, 2013.

2). CRZ Recommendations issued by Forests & Environment Department, Govt. of Gujarat to MoEF & CC, New Delhi vide letter No.: ENV-10-2012-30-E dated 11th May, 2012.

Please find enclosed herewith point wise compliance report of conditions stipulated in the above referred letters regarding Environment Clearance and Coastal Regulation Zone Clearance for the period of **April 2022-September 2022.**

For, M/s Adani Hazira Port Limited,

(Anil Kishore Singh) Authorized Signatory

Encl.: As above

Cc to:

- Add. Secretory, Ministry of Environment, Forest and Climate Change, Regional Office (WZ), E-5, Kendriya Paryavaran Bhawan, Arera Colony, Link Road-3, Ravishankar Nagar, Bhopal - 462016 (Madhya Pradesh)
- 2. The Director (Monitoring IA Division), Ministry of Environment, Forests & Climate Change, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi-110 003.
- 3. The Director, Forests & Environment Department, Block 14, 8th Floor, Sachivalaya, Gandhinagar, Gujarat 382 010.
- The Zonal Officer, Central Pollution Control Board, Zonal Office Vadodara, Parivesh Bhawan, Opp. VMC Ward Office No.:10, Subhanpura, Vadodra-390 023.
- 5. The Chairman, Gujarat Pollution Control Board, Parvayaran Bhawan, Sector 10A, Gandhinagar-382 010 (Gujarat)
- The Regional Officer, Gujarat Pollution Control Board, Belgium Square, Ring Road, Surat-395003, (Gujarat).

Adani Hazira Port Ltd. At 8 Po Hazira Choryashi Surat 394 270 Gujarat India CIN U4509GJ2009PTC058789 Tel +91 261 220 7780 Fax +91 261 220 7777 Info@adani com www adani com

SIX MONTHLY COMPLIANCE REPORT

OF

ENVIRONMENT AND CRZ CLEARANCE ISSUED BY MOEF & CC, NEW DELHI

VIDE LETTER NO.: <u>11-150/2010-IA.III, DATED 03RD MAY 2013</u>

FOR

THE DEVELOPMENT OF MULTI CARGO PORT WITH SUPPORTING UTILITIES AND INFRASTRUCTURE FACILITIES AT HAZIRA, SURAT, GUJARAT

COMPLIANCE PERIOD- April 2022 to September 2022

SUBMITTED BY

M/s. ADANI HAZIRA PORT. LTD. HAZIRA, TAL-CHORYASI, DIST-SURAT GUJARAT

3.00

LIST OF APPENDIXES

APPENDIX	DETAILS
1.	Compliance To The Conditions Stipulated In CRZ Recommendations Issued By Forests & Environment Department, Government Of Gujarat To MOEF & CC, New Delhi Vide Letter No.: ENV-10-2012-30-E, Dated 11 th May, 2012.

From: April 2022 to September 2022

LIST OF ANNEXURES

ANNEXURE NO.	DETAILS
1	Action Plan And Compliance Status On The Issues Raised During The Public Hearing.
2.	Details Of The CSR Activities Along With Budgetary Provisions And Expenditures For the Compliance Period April 2022 to September 2022
3	Compliance Status of Environmental Management Plan As Per Integrated EIA Report - September, 2012.
4.	Environmental Monitoring / Analysis Results For The Period From April 2022 to September 2022
5	Shore Line Change Assesment Report prepared by GUIDE
6	Photographs of Air Pollution Control Measures and Green Belt area
7	Organogram Of AHPL - Environment Management Cell.
8	Environmental Budget And Expenditure of Compliance Period
9	Copy of renewed CCA
10	Copy of Public Liablity Insurance
11	Copy of Environment Statement of FY 2021-22
12	Details of Liquid/Wastes Collection & Disposed off from Vessels by GPCB Approved Third Party during period April 2022 to September 2022

From: April 2022 to September 2022

A. Six Monthly Compliance Report for Environmental and CRZ Clearance issued by MoEF & CC, New Delhi vide letter No.: 11-150/2010-IA.III dated 03rd May, 2013 for the development of Multi Cargo Port with supporting utilities and infrastructure facilities at Hazira, Surat, Gujarat by M/s. Adani Hazira Port Ltd (Earlier Known as Adani Hazira Port Pvt Ltd).: -

S. No.	Stipulated Conditions	Compliance Status as on 30.09.2022				
6.	Specific Conditions					
i.	"Consent for Establishment" shall be obtained from State Pollution Control Board under Air & Water Act and a copy shall be submitted to the Ministry before start of any construction work at	and the same was submit and CRZ clearances. Subwere also submitted to the given below: -	itted to the Min sequently there	C) from Gujarat Pollution Control Board on 16.05.20 stry on 05.10.2012 prior to obtaining the Environm were amendments in the Consent to Establish where start of respective construction as per the det	nent nich	
	site.	Consent No.	sued On	Submitted To MoEF & CC On		
		CTE_ 05.		with Six Monthly Compliance Report dated .2014 & 19.05.2017.		
		CTE- 26.	-	with Six Monthly Compliance Report dated .2015 & 19.05.2017.		
		CTE- 74330		with Six Monthly Compliance Report dated .2016 & 19.05.2017.		
		CTE- 16.	-	with the Six Monthly Compliance Report dated .2016 & 19.05.2017.		
		CTE- 20. 101590		with the Six Monthly Compliance Report dated .2019		
		CTE- 04.1		with the Six Monthly Compliance Report October March 2022 period. Email dated 31.05.2022		
		The port is in operation	with valid CC&	A (Consent to Operate).		
ii.	The action plan on the issues raised during public hearing shall be submitted to the Pollution Control Board. The action plan shall be implemented without fail. Report on compliance shall be submitted to the Regional Office, MOEF along with the six-monthly reports.	adequately and to the sof the issues are being along with the Six-Mont. The key points raised due. 1) Preference to be gontracts. M/s. AHPL is giving pois engaged for provide for skilled local can	satisfaction of the submitted to the submitted to the ship EC Compliant or the submitted to	n 14.08.2012. All the issues have been address the stakeholders. The action taken for implementate Ministry as well as Gujarat Pollution Control Bonce report. Cal people for employment and transport & ot e locals for contracts, such as M/s. Hazira Vikas Sarcilities to employees. M/s. AHPL also giving preference ployment as per suitable requirements. As on 39 on roll employees are from Gujarat.	cher miti	

S. No.	Stipulated Conditions	Compliance Status as on 30.09.2022
		Villagers were anxious about their displacement due to port development. M/s. AHPL has developed the port in uninhabited land area by reclamation and there is no acquisition of private property. The details action status of all other issues raised during the public hearing is enclosed as
		Annexure-1
iii.	All the recommendations of SCZMA shall be complied with.	All the recommendations of the Gujarat Coastal Zone Management Authority (GCZMA) are being complied. Compliance status of the conditions stipulated in GCZMA recommendations vide letter dated 11/05/2012 bearing No.: ENV-10-2012-30-E is enclosed as Appendix-1 .
iv.	Periodical study on shore line changes shall be conducted and mitigation carried out if necessary. The details shall be submitted along with six monthly monitoring reports.	Complied. Shorelines change study was conducted through NIO, Vizag during the period from November 2014 to December 2015. Report of the shoreline change study was submitted along with compliance report dated 21.11.2016. Study confirms that there is no significant change in the shoreline near by the port except for the approved layout of the AHPL. The report did not warrant any mitigation measures for protection of shoreline. A study on Shoreline Change Assessment in 10 km area around the port has been carried out by Gujarat Institute of Desert Ecology. Study also confirms that there is no significant change in the shoreline near by the port except for the approved layout of the AHPL. The report did not warrant any mitigation measures for protection of shoreline. The report is attached herewith as Annexure 5
v.	Oil spills if any shall be properly collected and disposed as per Rules. Proper Oil Contingency Management Plan shall be put in the place.	 Complied. There was no Oil Spill during the compliance period. Also no oil spill has occurred till date at the port and in nearby area. Oil Spill Contingency Plan has been prepared and the same was approved by Indian Coast Guard (Letter No.: 7563, dated 09.01.2014). The same has been implemented at site to properly collect and dispose oil spills (if any). The last Mock drill on scenario of Oil Spill was jointly organized with Shell LNG Terminal-Hazira, Reliance Industries Limited- Petrochemicals-Hazira, Sun Petro and CIL-Hazira on 21st December 2021. Photographs of oil Spill Mock drill are as under

S. No.	Stipulated Conditions	Compliance Status as on 30.09.2022
		Mobilization of Tier 1 and Tier 2 Equipment -BOOM
		ANYA ANYA ANYA ANYA ANYA ANYA ANYA ANYA
		Mobilization of Tier 1 and Tier 2 Equipment
		Beach clean-up activity
vi.	The detailed plan with budgetary provisions for	 Complied. CSR activities are carried out by Adani Foundation in four verticals i.e.: - (1) Education, (2). Community Health, (3). Sustainable Livelihood and (4). Rural Infrastructure Development.

S. No.	Stipulated Conditions	Compliance Status as on 30.09.2022					
	the CSR shall be submitted to the ministry.	 Detail of the CSR activities along with budgetary provisions and progress are regularly submitted to MoEF & CC as part of six-monthly compliance reports. The budget of current Financial Year for CSR activities and expenditure in the compliance period is as under- 					
		Sr. No.	Vertical	Approved Budget for FY 2022-23 (In Lacs Rupees)	Utilization amount (In Lacs Rupees)		
		1	Education	143.05	62.69		
		2	Health	27.58	4.05		
		3	Sustainable Livelihood Development	186.56	18.46		
		4	Civil Infrastructure Development	88.16	66.99		
		5	General Management and Administration for CSR activities	31.75	10.66		
			Total	477.1	162.85		
vii.	All the recommendation of	<u>Annexu</u>	tus of the CSR activities carri re-2.	ied out during the Com	pliance Period is enclo	osed as	
	the EMP and DMP shall be complied within letter and spirit.					ertified Monthly pliance to Joint ng with ERP &	
viii.	 as Annexure 5 through e mail dated 28.05.2021. Periodical monitoring of the sea water quality at the outlet shall be carried out to check the discharge is meeting the standard and not causing any impact to marine life. Marine water quality is being monitored through M/s. Pollucon Laboratories, Surat MoEF&CC recognized and NABL accredited laboratory). The sea surface and bottom water quality is being monitored periodically. The trends wirespect to baseline is being observed to ensure that the quality of sea water is not changin significantly. Monitoring of sea water quality at three locations is being done on monthly basis. Copy the Sea Water Quality Monitoring /Analysis Reports for the period of April 2022 September 2022 is enclosed as Annexure-4D. 				ds with nanging		

S. No.	Stipulated Conditions	Compliance Status as on 30.09.2022						
		The Summary of Sea Surface and bottom water quality for key physico chemical parameters are as under-						
						Overall		
		SR.NO.	TEST PARAMETERS	UNIT	Min	Max	Avg	
		1	рН		8.02	8.34	8.17	
		2	Temperature	оС	29.40	30.50	29.99	
		3	Total Suspended Solids	mg/L	113.00	187.00	149.03	
		4	BOD (3 Days @ 27 oC)	mg/L	1.82	3.34	2.56	
		5	Dissolved Oxygen	mg/L	5.10	6.00	5.85	
		6	Salinity	ppt	33.98	35.94	34.93	
		7	Oil & Grease	mg/L	0.00	0.00	0.00	
		8	Nitrate as NO3	μmol/L	2.17	3.59	2.78	
		9	Nitrite as NO2	μmol/L	0.19	0.83	0.54	
		10	Ammonical Nitrogen as NH3	μmol/L	1.41	2.41	2.15	
		11	Phosphates as PO4	μmol/L	1.92	2.64	2.28	
		12	Total Nitrogen	μmol/L	3.90	6.22	5.47	
		13	Petroleum Hydrocarbon	μg/L	0.00	0.00	0.00	
		14	Total Dissolved Solids	mg/L	34518.00	36962.00	36035.64	
		15	COD	mg/L	7.00	14.72	11.13	
ix.		quality wi life. • AHPL has	monitoring report it is evident the respect to standards of base not discharged any treated/united.	seline level w	hich could ha	ive impact o		
IX.	Transport of cargo shall in closed system and dust control viz. water sprinkler, along conveyor and transfer points shall be provided.	Following cor - 1. Transpo convey 2. Waters	sprinklers in the coal yard,	o coal storage	e yard throu			
		 Water Sprinkers in the Coal Yard, Dust arresting sprinklers are installed on Coal Discharge Chute Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute, Water spray through Water Browsers, Water Mist Canon / Fog System, Wind Brake Shield of 14 meters high and 1900 meters long, Transportation of cargo from port to hinterland is being done through dumpers / true covered with tarpaulin, Regular cleaning of roads through Road Sweeping Machines, and Company has set up dedicated greenbelt area for plantation at periphery / aven plantation / landscaping etc. Total greenbelt area developed so far is approx. 78.79 within the port premises. 						

S. No.	Stipulated Conditions	Compliance Status as on 30.09.2022
		The photographs of Covered Conveyor belts, Mist Canyon and water sprinkling system, Green Belt area, Wind break shield, Road sweeping machines are attached herewith as Annexure 6
x.	Construction activity shall be carried out strictly as per the provisions of CRZ notification 2011. No construction work other than those permitted in Coastal Regulation Zone Notification shall be carried out in Coastal Regulation Zone.	 No construction work other than those permitted in CRZ Notification has been done. Development of the port and other ancillary facility is being done as per the approval received under CRZ Notification, 2011 and EIA Notification, 2006.
xi.	The project shall be executed in such a manner that there shall not be any disturbance to the fishing activity.	 AHPL is regularly working with fishermen to understand their needs and provide required support as part of CSR activities. AHPL is carrying out various CSR activities in the vicinity of port through Adani Foundation (AF), in the field of Education, Community Health, Sustainable livelihood development and Community Infrastructure development and also particular for fishermen community since 2012, the support was extended for providing gears to fishermen, house repairing and construction of house for Halpati community, education to kids from Halpati community and health camps. An amount of 1.88 Cr is spent during last six years on various activities specifically for fishermen community in and around the port area.
xii.	It shall be ensured that there is no displacement of people, houses or fishing activity as a result of the project.	 Complied. There is no displacement of people, houses or fishermen as the port is being developed on reclamation land and land allotted by Government also there is no acquisition of private land. Majority of fishing activities are in the river TAPI estuary region which is approx. 3-4 KM away from the project site. There are few "PAGADIA" fishermen doing fishing near the project area. They are continuing with their activities without any disturbance
xiii.	The project proponent shall set up separate Environment Management Cell for effective implementation of the stipulated environmental safe guards under the supervision of a Senior Executive.	 Complied. Environment Management Cell has been set up with qualified staff to ensure the effective implementation of environmental safeguards at the Port. The Head of Environment Management Cell is CEO of the Port. In addition to the site Environment Management Cell a well-established corporate environment cell also ensures effective implementation of the environmental safeguards. Environment Management Cell Organogram is enclosed as Annexure-7
xiv. 7.	The funds earmarked for environment management plan shall be included in the budget and this shall not be diverted for any other purposes. General Conditions	 Separate budget has been allocated for the Environment Management. Allocated budget for the FY: 2022-23 is INR 558.04 Lacs and total expenditure during the compliance Period is INR 223.26 Lakhs regarding environment management. Detail of the environment budget of the current FY and expenditure incurred during compliance period is enclosed as Annexure-8 Environment budget is not being diverted to any other purpose.

S. No.	Stipulated Conditions		Complianc	ce Status a	as on 3	80.09.20	22		
i.	Appropriate measures must be taken while undertaking digging activities to avoid any degradation of water quality.	taken while digging No digging activities were carried out during the compliance period. No major digging activities were carried out. Proper care is taken to ensure that			ucon nthly oring C, 4D				
		SR. NO.	PARAMETERS	UNIT	N	/lin	Max	Average	
		1	Colour	Hazen	2	.00	4.00	3.08	
		2	Odour			.00	0.00	0.00	
		3	Taste			.00	0.00	0.00	
		4	Turbidity	NTU		.12	0.35	0.20	
		5	pH Value		7.	.49	7.96	7.74	
		6	Total Hardness as CaCO3	mg/L	31	8.00	532.00	423.08	
		7	Chloride as Cl	mg/L	10	7.00	172.00	134.17	
		8	Fluoride as F	mg/L	0	.07	0.26	0.15	
		9	Total Dissolved Solids	mg/L	80	9.00	1312.00	1060.17	
		10	Calcium as Ca	mg/L	56	5.40	94.00	77.17	
		11	Magnesium as Mg	mg/L	36	5.00	77.52	55.84	
		12	Sulphate as SO4	mg/L	19	9.68	46.80	34.65	
		13	Nitrate Nitrogen as NO3	mg/L	3	.12	7.20	5.34	
		14	Alkalinity	mg/L	27	3.00	392.00	309.75	
		15	Coliform	/100 ml	0	.00	0.00	0.00	
		16	E-Coli	/100 ml	0	.00	0.00	0.00	
		Summar	ry of Surface Water Quality (Pond Wat	ter) is				1
		Sr. No.	. TEST PARAMETER	UI	NIT	Surf	face (Pond) Villa	Water Mora ge	
						Min	Max	Average]
		1	Odour			0	0	0]
		2	Colour	Ha	azen	2	4	3.00]
		3	Taste			0	0	0	
		4	pH Value			7.49	7.8	7.62	
		5	Turbidity		ΓU	0.12		0.20	1
		6	Total Dissolved Solids	m	g/L	561	712	648	

S. No.	Stipulated Conditions	Compliance Status as on 30.09.2022						
		7	Total Hardness as CaCO3	mg/L	198	256	226	
		8	Chloride as Cl	mg/L	59.9	92	70	┪
		9	Fluoride as F	mg/L	0.17	0.44	0.27	
		10	Iron as Fe	mg/L	0	0	0	_
				/100				7
		11	Coliform	ml	0	0	0	
		12	E-Coli	/100 ml	0	0	0	
			y marine water quality (Annex Condition(i.)	cure 4D) is i	mentioned	d on abov	e page in re	ply of
ii.	Full support shall be extended to the officers of this Ministry /Regional Office at Bhopal by the project proponent during inspection of the project for monitoring purposes, by furnishing full details and action plans including the action taken reports in respect of mitigation measures and other environmental protection activities.	to the content of the	regularly submitting six monthly productions stipulated in Environment Management Plan, environment Was submitted through e materiany authorities such as MoEF ded and AHPL provides all a pin. by representative of MoEF & 22. We have extended all requifrom Regional Office, Gujarat	nment and (nment monial on 31.05. &CC, GPCB additional in & CC, IRO, ired support	CRZ clears itoring rep 2022 to all and GMB of formation Gandhina is during h	ance, action ports etc. Il concerne etc. visit the seek by gar visited sis visit.	on taken reped authorities e port, full su them durin	ort of s. apport g the ira on
iii.	A six-monthly monitoring report shall need to be submitted by the project proponents to the Regional Office of this Ministry at Bhopal regarding the implementation of the stipulated conditions.	are regul Last rep	blied hly monitoring reports regardir arly submitted to the RO - MoEl ort was submitted through e d on company website. The link	F & CC, Bhop mail on 31	oal and oth 05.2022.	ner author The cop	ities the last r by of same is	report s also
iv.	Ministry of Environment & Forests or any other competent authority may stipulate any additional conditions or modify the existing ones, if necessary subsequently, if deemed necessary for environmental protection, which shall be complied with.							
V.	The Ministry reserves the right to revoke this clearance, if any of the conditions stipulated are not complied with to the satisfaction of this Ministry.	Noted and a	greed to comply					

S. No.	Stipulated Conditions	Compliance Status as on 30.09.2022
vi.	In the event of a change in project profile or change in the implementation agency, a fresh reference shall be made to Ministry of Environment and Forests.	Complied Name of the port was changed from Adani Hazira Port Private Limited to Adani Hazira Port Limited and the letter received from MoEF&CC regarding the name change was submitted with last EC compliance report as Annexure 9 on 28.05.2021.
vii.	The project proponents shall inform the Regional Office as well as the Ministry the date of financial closure and final approval of the project by the concerned authorities and the date of start of Land Development Work.	Complied Financial Closure date was 29 th September, 2011. Approval from GMB to commence work was obtained on 09 th April, 2010 vide letter No.: GMB/N/PVT/923(10)/42/458. Copy of the same has been submitted to the MoEF & CC and other concerned authorities along with the six monthly compliance report dated 19.05.2017.
viii.	A copy of the clearance letter shall be marked to concerned Panchayat/ Local NGO, if any from whom any suggestions/ representations has been received while processing the proposal.	Complied. Copy of the clearance letter was sent to the concerned Panchayat and local NGO. Copy of the RPAD receipt were submitted to MoEF&CC along with six monthly compliance report dated 27.11.2013 and again along with the six-monthly compliance report dated 19.05.2017.
ix.	State Pollution Control Board shall display a copy of the clearance letter at the Regional Office, District Industries Center and Collector's Office/Tehsildar's Office for 30 days.	This condition does not belong to AHPL.
8.	These stipulations would be enforced among others	Noted and Complying with the provisions of Water (Prevention and Control of Pollution) Act 1974, the Air (Prevention and Control of Pollution) Act 1981, the Environment (Protection) Act 1986, the Public Liability (Insurance) Act 1991 and EIA notification 2006, including the amendments. AHPL has obtained: - Environmental and CRZ Clearance issued by MoEF & CC, New Delhi vide letter No.: 11-150/2010-IA.III dated 03 rd May, 2013. Consolidated Consent and Authorization under the provisions of Water (Prevention and Control of Pollution) Act 1974, the Air (Prevention and Control of Pollution) Act 1981 vide Consent Order No.: AWH-118804 valid till 12.07.2027. Attached herewith as Annexure 9 Public Liability Insurance (PLI) vide Policy No.: 41068925, IFFCO TOKIO General Insurance Company Limited valid up to 31 st March, 2023. Attached herewith as Annexure 10
9.	All other statutory clearance such as the approvals for storage of diesel from Chief Controller of Explosive, Fire	Complied. All applicable clearances from respective authorities have been obtained i.e.: -

S. No.	Stipulated Conditions	Compliance Status as on 30.09.2022
	Department, Civil Aviation Department, Forest Conservation Act, 1980 and Wildlife (Protection) Act, 1972 etc. shall be obtained, as applicable by project proponent from the respective competent authorities.	 PESO License from Chief Controller of Explosive, Nagpur vides Order No.: P/HQ/GJ/15/5294 (P270337), Renewed and valid till 31/12/2025. Copy of the PESO License was submitted with last Six Monthly EC Compliance Report. License to work a Factory Adani Hazira Port Pvt. Ltd. (Liquid Terminal) from Director of Industrial Safety and Health, Govt. of Gujarat their vide Registration No.: 3502 / 51410 / 2013 and License No.: 18757, Renewed on 03-11-2018, valid till 23rd December 2023. Copy of the license to work a factory is submitted with the Six-monthly EC compliance Report AHPL/MoEFF&CC 2019-20/001 dated 27.11.2019 Fire NOC for Liquid Terminal- Obtained NOC from Fire Officer, Surat, (Latest on 7th March 2019) and NOC from commissioner of Police (Dated-12th May 2019)
10.	The project proponent shall advertise in at least two local newspapers widely circulated in the region, one of which shall be in the vernacular language informing that the project has been accorded Environment and CRZ clearance and copies of clearance letters are available with the State Pollution Control Board and may also be seen at Website of the Ministry of Environment & Forests at http://www.envfor.nic.in . The advertisement should be made within 10 days from the date of issue of the clearance letter and a copy of the same should be forwarded to the Regional Office of this Ministry at	Advertisements were published in Gujarat News Paper "Gujarat Mitra" and English News Paper "The Times of India" on 13/05/2013 (within 10 days of receipt of EC & CRZ clearance). Copy of the advertisement is submitted to MoEF&CC along with the six monthly compliance report dated 27 th November, 2013.
11.	Bhopal. This clearance is subject to final order of the Hon'ble	Noted.
	Supreme Court of India in the matter of Goa Foundation Vs. Union of India in Writ Petition (Civil) No.: 460 of 2004 as may be applicable to this project.	
12.	Status of Compliance to the various stipulated environmental conditions and environmental safeguards will be uploaded by the project proponent in its website.	Complied. Compliance report of conditions stipulated in Environment and CRZ Clearance is being uploaded periodically on the company website i.e.: http://www.adaniports.com/ports-downloads

S. No.	Stipulated Conditions	Compliance Status as on 30.09.2022
13.	Any appeal against this clearance shall lie with the National Green Tribunal, if preferred, within a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.	Noted.
14.	A copy of the clearance letter shall be sent to concerned Panchayat, Zila Parishad/ Municipal Corporation, Urban Local Body and the Local NGO, if any from whom suggestions/ representations if any, were received while processing the proposal. The Clearance letter shall also be put on the website of the company by the proponent.	 Closed, Copy of the clearance letter was sent to the concerned Panchayat and local NGO from whom the suggestions/ representations received. Copy of the RPAD receipt is submitted to MoEF & CC along with Six Monthly Compliance Report dated 27.11.2013 and again along with the six monthly compliance report dated 19.05.2017. Clearance letter is available on website at http://www.adaniports.com/ports-downloads
15.	The Proponent shall upload the status of compliance of the stipulated EC conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of MOEF, the respective Zonal Office of CPCB and the SPCB.	Complied. The six monthly compliance report comprising of the status of compliance of the stipulated EC conditions, including results of monitored data is being uploaded on the company website at http://www.adaniports.com/ports-downloads Also the compliance report was submitted to following: 1. IRO -MoEF&CC, Gandhinagar 2. RO - MoEF & CC, Bhopal, 3. MoEF & CC, New Delhi, 4. DoEF, Gandhinagar, 5. Zonal Office - CPCB, Vadodara, 6. HO - GPCB, Gandhinagar, and 7. RO - GPCB, Surat. Last report was submitted on 31.05.2022 through E mail.
16.	The Environmental Statement for each financial year ending 31 st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules 1986, as amended subsequently, shall also be	Complied. The Environment Statement in Form-V for the Financial Year: 2021-22 is attached herewith as Annexure 11. http://www.adaniports.com/ports-downloads .

		From: April 2022 to
the late of	ADANI HAZIR PORT LIMITED	September 2022

S. No.	Stipulated Conditions	Compliance Status as on 30.09.2022
	put on the website of the company along with status of compliance of EC Conditions and shall also be sent to the respective Regional Offices of MoEF by e-mail.	

From: April 2022 to September 2022

APPENDIX-1:

COMPLIANCE TO THE CONDITIONS STIPULATED IN CRZ RECOMMENDATIONS

ISSUED BY FORESTS & ENVIRONMENT DEPARTMENT,

GOVERNMENT OF GUJARAT TO MOEF & CC, NEW DELHI

VIDE LETTER NO.: ENV-10-2012-30-E, DATED 11TH MAY, 2012

FOR MODIFICATION / EXPANSION OF MULTI - CARGO PORT FACILITY AT HAZIRA, DIST. - SURAT BY M/S.

ADANI HAZIRA PORT PVT. LIMITED

Appendix -1: Compliance to the conditions stipulated in CRZ recommendation issued by Forests & Environment Department, Government of Gujarat to MoEF & CC, New Delhi vide letter No.: ENV-10-2012-30-E dated 11th May, 2012 for modification / expansion of Multi-Cargo Port Facility at Hazira, Dist. - Surat by M/s. Adani Hazira Port. Limited: -

S. No.	Conditions	Compliance Status
A.	Specific Condition	
1.	The provision of CRZ Notification 2011 shall be strictly adhered by M/s. AHPPL. No activity in contradiction to the provision of CRZ Notification shall be carried out by M/s. AHPPL.	 Complied. Construction activities are carried out as as per the provisions of CRZ Notification, 2011. No construction work other than those permitted in CRZ Notification has been done. Development of the port and other ancillary facility is being done as per the approval received under CRZ Notification, 2011 and EIA Notification, 2006 and subsequent amendments.
2	M/s. AHPPL shall not construct any storage facilities for material / chemicals in the CRZ area except for those permissible as per Annexure - II of CRZ Notification 2011 also for other hazardous chemicals, outside CRZ Areas, the AHPPL shall consult SDMA for Disaster Management Plan.	 Only permissible activities being carried out in CRZ area. Disaster Management Plan has been prepared prior to the commissioning of multi-cargo port

S. No.	Conditions	Compliance Status		
		Last Update of ERP & DMP: 28.03.2022 Last submission of ERP & DMP to Chief Controller		
		of Explosive on 29 th March 2022 and Joint Director Industrial Safety and Health on 20.06.2022.		
3.	All necessary permissions from different Government Departments / agencies shall be obtained by M/s. AHPPL before commencing the activities.			

S. No.	Conditions	Compliance Status
		 Environment and CRZ Clearance from MoEF & CC, GOI vide order No.: F.No.:11-150/2010-IA-III dated 03.05.2013, CTE & CC&A from Gujarat Pollution Board (For details Please PESO License from Chief Controller of Explosive, Nagpur License to work a Factory Adani Hazira Port Pvt. Ltd. (Liquid Terminal) from Director of Industrial Safety and Health, Govt. of Gujarat. Please referrer EC condition 9 for details.
4.	The AHPPL shall ensure that there shall be no damage to the existing mangrove patches near the site and also ensure the free flow of water to avoid damage to the mangrove.	Noted and complied with. There are no adverse impacts on mangrove as well as flow of water with respect to development activities.
5.	No dredging, reclamation or any other project related activities shall be carried out in CRZ area categorized as CRZ-I (A) and it shall have to be ensured that the mangrove habitats and other ecologically important and significant areas, if any in the region are not affected due to any of the project activities.	Complied. There is no dredging and reclamation activities in CRZ I (A) area during the compliance period. The mangrove habitats near by the port are being protected by AHPL.
6.	The dredging material shall be disposed of at the location already approved by the Ministry of Environment and Forests, Government of India.	Complied. As per communication from MoEF&CC dated 12 th November 2003 bearing letter No.: J-16011/ 11/2003-IA-III- Hazira Port Pvt Ltd conditions states "dumping of dredged spoils should be dumped at the sites A & C as per the following coordinates: - (A) 21°03′ to 21°05′ N & 72°28′ to 72°30′ E (C) 21°03′ to 21°05′ N & 72°30′ to 72°32′ E The maintenance dredging is being carried out through Water Injection dredger in which no Dredging material is generated. Some part of dredging is being carried out through Cutter Section Dredger and in this process Dredging material is being generated. No disposal has been done till date. All the dredging material is being utilized for level rising, reclamation and apart from the above activity, if any excess material generated will be disposed of at the location already approved by the MoEF&CC.
7.	All the recommendations and suggestions given by M/s. NIO and Cholamandalam MS Risk Services Ltd, Chennai in their EIA reports	Complied. All the recommendations and suggestions for conservation/protection and betterment of

S. No.	Conditions	Compliance Status
	for conservation / protection and betterment of environment shall be implemented strictly by M/s. AHPL.	environment are being implemented strictly. Recommendation given in EMP is being complied in letter and spirit. Status of the same is enclosed as Annexure-3 .
8.	The construction and operational activities shall be carried out in such a way that there is no negative impact on mangroves, if any and other important coastal / marine / habitats. The construction activities shall be carried out only under the guidance / supervision of reputed institute / organization.	Complied. There are no mangroves and other important coastal / marine / habitats presents within the port development area. There is no construction activity in the compliance period. The Port development work is supervised by Gujarat Maritime Board (GMB).
9.	M/s. AHPPL shall strictly ensure that no	Complied.
	creeks or rivers are blocked due to any activity at Shipyard.	All the activities are carried out as per EC & CRZ clearance and no creeks are blocked due to development activities. Shipyard is not envisaged in our proposal.
10.	The construction debris and / or any other type of waste shall not be disposed of into the sea, creek or in CRZ areas. The debris shall be removed from construction site immediately after the construction is over.	Complied Construction and Demolition waste is being managed as per Construction and Demolition waste rules 2016.
11.	The construction camps shall be located outside the CRZ area and the construction labour shall be provided with the necessary amenities, including sanitation, water supply and fuel and it shall be ensured that the environmental conditions are not deteriorated by construction labours.	Complied. During construction phase labors have been managed through contractors and they are from surrounding villages so they stay in their own residential facilities in the surrounding villages. Drinking water, toilets and rest shelters are being provided to the labors during work.
12.	M/s. AHPPL shall prepare and regularly update their Local Oil Spill Contingency and Disaster Management Plan in consonance with National Oil Spill and Disaster Contingency Plan and shall submit the same to this department after having it vetted through Indian Coast Guard.	Oil Spill Contingency Plan is prepared and the same was approved by Indian Coast Guard (Letter No.: 7563, dated 09.01.2014)


S. No.	Conditions	Compliance Status
42		 Suggestions were incorporated and revised plan was submitted to GSDMA on 23.05.2014. Regular mock drill to ensure the compliance and preparedness is being done. Last Mock Drill (On Site) was on :31.03.2022 Last Update of ERP & DMP : 28.03.2022 Last submission of ERP & DMP to Chief Controller of Explosive on 29.03.2022
13.		Noted and agreeing to bear the cost of external agency, if any that may be appointed by this department.
14.	The jetty and most of the approach would be supported on piles allowing adequate flow of water without significant obstruction.	Complied. Jetty approach is supported by piles allowing adequate flow of water.
15.	The ground water shall not be tapped within the CRZ areas by the AHPPL to meet with the water requirements in any case.	Being Complied Ground water is not being used for any purpose in the Port. The industrial water requirement is being met through 2000KL of treated wastewater from M/s. KRIBHCO and domestic water requirement is met through tanker water.
16.	M/s. AHPPL shall take up massive greenbelt development activities in consultation with Forest Dept. / GEER Foundation / Gujarat Ecology Commission. A comprehensive plan for this purpose has to be submitted to the Forests and Environment Department.	Being Complied The Green Belt is being developed by AHPL. The total Green Belt area developed till 30 th September 2022 is 78.79 Ha. Photograph of Green Belt area is attached herewith as Annexure 6
17.	Mangrove plantation in 200 Ha. shall be carried out in consultation with Gujarat Ecology Commission / Forest Dept. by M/s. AHPPL with in a period of two years from the issuance of CRZ clearance by MoEF, GoI and an action plan in this regard shall be submitted to this Department along with satellite images and GPS readings with Latitudes and Longitudes.	Complied Company has carried out mangrove afforestation in an area of 200 hectares i.e.: 50 hectares in Kantiyajal and 150 hectares in Village Nada-Devla of District - Bharuch and same is completed. Consolidated report on mangrove plantation on an area of 200 hectares at Village: Kantiyajal, Taluka: Hansot and Village: Nada-Devla, Taluka: Jambusar, District: Bharuch (Gujarat) developed by M/s. Saline Area Vitalization Enterprise (SAVE) Limited, Ahmedabad. Supporting documents of the same submitted to MoEF & CC and other authorities along with the six-monthly compliance report dated 20.11.2017.

S. No.	Conditions	Compliance Status			
		plantat	The ecological health assessment of the mangrove plantation is being carried out by Gujarat Institute of Desert Ecology.		
18.	The AHPPL shall have to take up bio-shielding development programme as part of CSR in consultation with Forest Department / PCCF and action plan in this regard shall have to be submitted to the MoEF - GoI and this Department.	• AHF Ban (Gu loca (SA) The ed	● AHPL has developed Bio-Shield at Village - Tankari Bandar, Taluka - Jambusar, District - Bharuch (Gujarat) in an area of 18 hectares with the help of a local NGO named Saline Area Vitalization Enterprise (SAVE) Limited. The ecological health assessment of the Bioshield plantation is being carried out by Gujarat Institute of Desert Ecology.		
19.	M/s. AHPPL shall have to contribute financially for taking up the socio-economic upliftment activities in this region in consultation with Forest and Environment Dept. and the District Collector / District Development Officer.				unity Health, (3). I Infrastructure ing made to the ies and Forest & also included. catus of the CSR
		Sr. No. Vertical Approved Budget for FY 2022-23 (In Lacs Rupees) Utilization amount (Apr 2022-23 (In Lacs Rupees)			amount (Apr 22 to Sep-22
		1	Education	143.05	62.69
		2	Health	27.58	4.05
		Development Civil 88.16		18.46	
				66.99	
		5	General Management and Administration for CSR activities	31.75	10.66
			Total	477.1	162.85

From: April 2022 to September 2022

S. No.	Conditions	Compliance Status
20.	A separate budget shall be earmarked for environment management and socio-economic activities including green belt development / mangrove plantation and details thereof shall be furnished to this Department as well as the MoEF, GoI. The details with respect to the expenditure from this budget head shall also be furnished along with the compliance report.	 Environmental Management Plan is in place and the funds earmarked are being utilized for effective implementation of environmental safeguards and environment monitoring. Key components are Environment monitoring, Mangrove plantation,
21.	A separate Environment Management Cell with qualified personnel shall be created for environmental monitoring and management during construction and operational phases of the project.	Complied. • Environment Management Cell has been set up with
22.	Environment Audit Report including the changes, if any, with respect to baseline environmental quality in the coastal and marine environment shall be submitted every year by M/s. AHPL to this Department as well as MoEF, GoI.	Complied.
23.	A six monthly report on compliance of the conditions mentioned in this letter shall have to be furnished by M/s. AHPL on a regular basis to this Department as well as MoEF, Gol.	Noted and complied with.
24.	Any other condition that may be stipulated by this Department / MoEF, Gol from time to time for environment protection / management purpose shall have to be complied with by M/s. AHPL.	Noted and comply with the additional conditions stipulated by the MoEF & CC, if any.

From: April 2022 to September 2022

ANNEXURE-1:

ACTION PLAN AND COMPLIANCE STATUS ON THE ISSUES RAISED DURING THE PUBLIC HEARING

<u>Annexure-1</u>: Action plan and compliance status on the issues raised during the public hearing:

S. No.	Name	Details of Representation	Response during PH	Status as on 30 th September
				2022
1	Rohitbhai Jayantibhai Patel, Sarpanch, Hazira	On behalf of Hazira village, I welcome the expansion project of M/s. Adani Hazira Port Pvt. Ltd. at Hazira. Priority will be given to thousands of people of Hazira and surrounding villages for transport, business and employment opportunities. Company has provided training to the people of Hazira and surrounding villages for crane operation at Mundra and given employment as crane operator at Hazira Port. I believe that company will install latest technology for pollution control. Proposed project will surely care for human life. Due to proposed port Hazira people will surely get water, health and education facilities. I request that company would take required precautions for accident prevention and safety. Adani Foundation has provided required support as and when needed by Hazira village. I request that fishermen's concerns be taken care. I welcome this port as we are getting transport related business opportunities and we hope that same would be continued in future. Please clarify how much priority will be given to people from Hazira and surrounding areas for employment. Forest land is also requested for development of port at Hazira. So kindly clarify for compensation/afforestation. Please clarify what arrangements have been made by company if calamities	Rohitbhai, we are happy to note that on behalf of Hazira gram panchayat you have given warm welcome for this project. We whole heartedly thank you for this gesture. We assure you that our Conduct and Approach in managing activities would be in reciprocation to your welcome. • National Highway –6 is being widened. On completion the constriction and congestion that we see today will be behind us. As mentioned in the EIA in the first 5 years of the multi cargo port maximum number of 1200 trucks is expected to ply in the national highway connecting the port. After the railway line is developed and the trains start plying 60% of the transportation load will be conveyed through rail transport only 40% will come on the national	Closed. Point is about welcoming the project and does not warrant any further action. Widening of the National Highway – 6 is completed. Currently there is no traffic congestion on National Highway – 6. Railway line for transport of cargo is yet to be developed.
		like Tsunami, Earthquake or Flood arise after implementation of the proposed project.	highway. That is a moderate load.	

	I	T	Г	
2.	Dharmedrab hai Bhikhubhai Patel, Ex-deputy Sarpanch, Hazira	We welcome this public hearing. It is good that you are giving preference to local affected people and hearing them during public hearing. We don't have any objection against the development of Adani Group along with other industrial development in Hazira leading to development of Gujarat and the Nation. Adani company is complying with the environmental laws promulgated by the State and Union Government. In fact, it is duty of Adani Port to do so. Under their CSR activities Adani Group should provide support for development of Hazira village and employment to unemployed people. All transport businesses should be given to small & big local transporters of Hazira only. Youth from families of affected fishermen should be provided required training and employment. New transport route should be proposed as the present route to take containers is very narrow. We thank Adani Group for giving support for the construction of classrooms for standard 11 & 12 in Navchetan school.	This port will have focus on container cargo. Container cargo comes in boxes and is clean by nature. So the question of fugitive dust emission on the road is not expected to be severe for this port.	Closed. Major cargo handled at the port is container and liquid which do not increase the fugitive dust. AHPL is monitoring ambient air quality at five locations in and around project through a NABL accredited and MoEF recognized laboratory M/s Pollucon laboratories, Surat. Report confirms that ambient air quality is well within the NAAQS. Copy of the reports are enclosed as
		I thank you for making me successful in providing compensation to the affected fishermen.	The coal handling will be done taking care that all the trucks are properly covered so	Annexure – 4A Complying with.
		I request for employment to locals people and transport contract to local transporters only. We support the development of Adani Port in our area. We don't have any objection to the project in this public hearing.	that there is no dust emitted on the road. As you know practically all our transporters are from this area. It is their responsibility to take	All the trucks carrying coal and other dusty cargo are being covered through tarpaulin. AHPL
3	Bhagubhai Maniram Patel, Sarpanch, Junagam	As this is biggest port in the South Gujarat and as there is no government land left, we wish that there will not be resettlement of the Junagam village due to this proposed expansion project of Adani Port.	care of overloading. If transporters do not overload, there would not be any spillage on the roads. It is not only	also ensures that no truck goes out of the port with overload.

There is a fear in the people of the village that they will have to vacate the village in future. So we request collector to give us guarantee in writing that we will be able to live with peace where we are today.

Berths will be developed through dredging up to -15 meters. We are getting ground water from the depth of 20 to 65 ft in some of the areas, which we are using for drinking purpose. What will be the impact on the ground water due to dredging upto -15 meters?

After construction of liquid berth No.3 which will handle & store 1.95 Million Tones by 2017-18, what emergency steps would be required to save the human life incase just like Bhopal if there will be gas leakage due to Tsunami, Earthquake or terrorist activities.

We welcome Adani Port & they require land for the container and coal storage. However, all industries located in the Hazira area have acquired government land and another 2000 acre land is allotted to tourism department. Sir therefore, I request you to declare remaining land of Junagam, Suvali. Damka & Bhatlai as residential area or agricultural zone. This is to ensure that in future we will not be displaced. As the port is to be constructed at the coast line, there are chances of spillage of liquid into sea and impact of solid hazardous waste. In this condition explain plan to mitigate impact on fisher man community.

Secondly there is a question of unemployment of the youth of the Hazira area. As told by the company 700 people will be employed, youth from local families presently engaged in farming, animal husbandry and fisheries should be trained. Due to development of the port people from different states of India will come and

responsibility of GPCB or the company but we all have to collectively work together for spillage free coal transportation.

- Junagam sarpanchshri expressed apprehension we will take away government land and lands belonging to farmers in Junagam village. We want to assure you that we do not intend to take any private land of farmers or any house site land. If you carefully see the development plan we have just presented, the map will alleviate vour uncalled fears. There would not be any question rehabilitation of any village. Moreover, we will take care that your property. Your assets convenience are not jeopardized by our action.
- You talked about vultures; I would like to point out that there is no sanctuary or national park near by the port. In the EIA, we have studied the entire area and we will take due care to preserve the environment.

Closed.

There is nο displacement of people, houses or fishermen as the port is being developed on reclaimed land and land allotted by Government as there is no acquisition of private land.

• Closed.

There is no sanctuary or national park near by the port. In the EIA, we have studied the entire area and

	T.	T., 6 .,	I	
		therefore, there are chances of crime such as gang rape, hooliganism and terrorist attack. Is there any plan to control these potential evils? Training to unemployed women and employment is being planned. In future we and Adani Port would like to work together with full cooperation. On behalf of Jungam village and villagers, I welcome the expansion of the terminal.	We re-emphasize that we will comply with all the laws and in doing so we would be guided by GPCB and other concerned authorities. Some of you have expressed concerned about terrorist.	we will take due care to preserve the environment. • Complied. AHPL is operating the port in compliance with all rules and regulations.
4	Alpeshkumar Thakor – Fisherman, Hazira.	Plantation of the mangroves has been carried out between well numbers 4 to 7. This plantation has been destroyed by dredging and area is filled up. In this area fisherman used to catch prawns, crabs and sustain their livelihood. Through dredging company has destroyed Mangroves. There are approximately 2500 fishermen, belonging to Halpathi and Koli Patel communities living in the village. These people will be unemployed as fishing activity will be stopped due to dredging up to 20 meter by the company. Is it development or destruction? If fishermen get sand from the river by the boat in the Magdalla area, they have to pay royalty for the same. But why companies are given permission for dredging without royalty? What about approximately 2500 fishermen?	about terrorist activity creating great risk to our chemical terminals with attendant adverse consequences in our neighbourhood. We are going to be ISPS compliant; as a result of this discipline, only authorized persons and material can enter into the port. More over district administration and police also take precautionary measures to intercept terrorist activities. Coast guards contribute to this effort. In a sense the entire nation is collectively fighting against terrorism.	Complied. AHPL security system is in compliance with ISPS. ISPS Statement of compliance Ref Number is: MMD/KDL/SOC/030 and valid up to 10.02.2026. AHPL has access control system in place to avoid unauthorized entry of men and material.
5	Babubhai Aahir (Sarpanch, Suvali)	As our friends have already given suggestion for safety and employment, it is not required to repeat the same. Foundation should provide employment opportunity to the land looser, fisherman, individual engaged in animal husbandry who are above 50 years and uneducated. Unemployed youth of this area should be provided training and given opportunity for the employment. Company should control the pollution arising due to transportation of chemical or coal. Earlier "Shell" company used to avoid overloading.	• In the context of natural calamities, we have done modeling studies to understand the risk of oil spillage. We have also prepared Disaster Management Plan. This plan is being presented to the District Collector. After his approval it will go to State Disaster	• Complied. Regional DMP for the Hazira Peninsula, covering all major industries and the port has been prepared in

	T	1	I	1
		So Adani Port should also not do the	Management	consultation with
		overloading to prevent the accidents.	Authority at	District
		There is no medical facility available	Gandhinagar for	Authorities and
		for treatment in case of emergency.	necessary approval	same is being
		As there is drought this year,	and guidance. During	implemented.
		company should consider providing	natural calamities all	0.1
		drinking water in surrounding area.	local industrial units	Oil Spill
	5: 111 :	(2 :	and government	Contingency Plan
6	Divyeshbhai,	(During the representation of the Shri.	organizations work	has been
	Hazira	Divyeshbhai	together to mitigate	prepared and the
		there was a aggressive	impacts of natural calamities. In that	same was approved/ vetted
		representation of Shri. Jayesh Patel	situation we would	by Indian Coast
		resident of village Dihen, that he	work under the	Guard (Letter
		wants to present his questions.	guidance of District	No.: 7563, dated
		Hangurable Collector raplied that	Collector and police	09.01.2014).
		Honourable Collector replied that resident or stakeholders from	authorities to do the	09.01.2014).
		affected villages should represent	needful. Disaster	In addition, AHPL
		first. During this time Shri. Jayesh	Management Plan is	has developed
		Patel and other people created	structured in such a	and implemented
		disturbance which was controlled by	way.	ER & DMP.
		Panel and then representation from	way.	Regular mock drill
		Mr. Divyeshbhai continued.)		to ensure the
				compliance and
		Why this public hearing is kept at		preparedness is
		Junagam even it is of Hazira Village?		being done.
		Now we will talk about the pollution.	• In regard to impact	
		Lots of dust is observed in the houses	on fisherman, I want	Last Mock Drill
		of the hazira village during the night	to point out the real	(On Site) was on:
		hours. As per information particles of	situation that we are	27.09.2022.
		dust have been found in the lungs of	not in the river	
		the woman. If this information proves	mouth, but just	Last Update of
		to be true we will file a pitition in the	outside of it. The port	ERP & DMP:
		High Court. During the widening of	development is only	28.03.2022.
		the National Highway No. 6 land in	in a stretch of 4 km of	
		the surroundings villages will be	coast line. We have	
		taken. As National Highway is not passing through Hazira, the villagers	not displaced any	
		need to travel 8 Kilometres extra.	fisherman. The	
		Why it is not extended straight?	surrounding areas	
		Fishermen are being told that there is	are open for fishing,	
		no fish in the sea but slags are cast in	nevertheless we have	
		the corners of the sea due to which	compensated	
		some fish die. Dolphin is also found at	fisherman who were	
		present in the Hazira area. We	identified by the	
		welcome the project if the port	Grampanchayat to be	
		company is ready to give written	active in the areas	
		assurance regarding employment.	where we are now	
		accurate regarding employment.	operating. As	
7	Jayeshbhai	I raise my objections against proposed	Susmaben	
	Patel,	expansion project of AHPL for which	mentioned we will	
		public hearing is organized and I	support fisherman by	
	Resident of		giving them tools,	
	Dihen village		nets etc. and be	

From: April 2022 to September 2022

ADANI HAZIR PORT LIMITED

and
President,
Gujarat State
Farmers
Samaj

request that my objections should be included.

M/s. Shell India has got environmental clearance in

2003 in which clearance was given for development of three berths. These berths are constructed at places other than shown earlier. So I request collector to remove these three berths.

Out of proposed 7 berths for container and 4 for bulk terminal, 3 have been already constructed and port is functional. In this situation, I request to include in this public hearing what actions have been taken by collector against Adani for functioning of port & disposal of coal in Hazira and what actions have been taken by GPCB against company for disposal of coal in open.

This project is being developed on the mouth of river Tapi therefore it is my feeling and request that it should not be given Environmental Clearance.

EIA study does not include the objections of the report of Sugnyaben Bhatt Commission which was set up by Gujarat Government in 2006 in the aftermath of Surat flood. So it is my request that this public hearing and Environmental Clearance should be cancelled.

Hazira is located on the mouth of Mindhola & Tapi river. As per ICMAM report of Tapi river, erosion effect had spread up to Dumas because of filling of Tapi river due to Industrialization in this area. Erosion of shore is up to 2500 meter towards Dumas.

ICMAM report is not studied. There is no clarity on what steps are required to control the erosion of shore near Dumas, so it is my request that it should not be given Environment Clearance.

helpful to them.

(At this stage Shri Sheikh and Shri Jayeshbhai started shouting disturbing the clarification of the project proponent. The chairperson told them repeatedly not disturb the proceedings)

 We would help sons and daughters of fisherman to educate them and trained.
 We would do everything practicable to achieve this end.

• Closed.

CSR activities carried out by Adani Foundation in four verticals i.e.: (1)Education, (2).Community Health, (3). Sustainable Livelihood and (4). Rural Infrastructure Development.

Appropriate financial contribution is being made. Schemes promoted by **District Authorities** and Forest Environment Department, GoG are also included. Please refer the Annexure-2 the status of the CSR activities carried out during Compliance period.

We are developing

This area is declared reserved for vultures. As per survey there are about 150 vultures in the forest area. This report does not include what would happen to vultures, where they would go and what would be impact on Environment. So it is my request that it should not be given Environmental Clearance.

There are approximately 2500-3000 fishermen families. There will be crisis for their livelihood.

There is no clarity for rehabilitation and resettlement from Adani. So it is my feeling and request that it should not be given Environmental Clearance.

Routes to sea are almost closed specifically for "Pagadia fishermen", who do fishing on foot. There is a big problem of their livelihood. Due to loss of fishing activities now they will not get thousands of crores of rupees which they were supposed to get due to fishing activities. Rs. 15 lacs is not sufficient compensation for that.

This area comes under CRZ-IA. Specific fish called "Levta" grows in the mudflat and fishermen catch that fish in this mud and earn their livelihood. Due to excavation and reclamation there will be damage to biological mud and destruction of marine ecology. EIA report does not have clarity on what actions are required. So it is my feeling and request that it should be clarified in EIA report or not be given Environmental Clearance.

Before Adani came there was mangrove forest in the area of 40 ha. As per survey today mangroves survive in the area of 15 ha only. Due to destruction of mangrove there will be damage to environment and coastal erosion. This study is not covered in EIA so it is my feeling and request that it should not be given Environmental Clearance.

Five ports from 15 different companies and two big ports within 5

the port by reclamation. This cannot any way cause salinity ingress in the ground water. We are going to investigate the quality of ground water every year

 Complied Proper care is being taken during construction activity to avoid salinity ingress and any degradation water quality. M/s. AHPL is the monitoring Ground Water Quality at one location on monthly basis. Results show no significant change in the quality. Ground water quality is being monitored through M/s. Pollucon Laboratories, Surat (a MoEF&CC recognized NABL accredited laboratory).

Please refer the Annexure-4B for the Environmental Monitoring / Analysis Reports for the period April 2022 to September 2022

• Complied.

CSR activities carried out by Adani Foundation in four verticals i.e.: (1)Education, (2).Community Health, (3).Sustainable Livelihood and (4). Rural

• Our EIA has been done by M/s. Cholamandlam MS Risk Service Limited and M/s. National Institute Oceanography. These are well respected and neutral expert organizations a head quartered outside Gujarat. Their studies have been accepted

Km are coming in this area. The cumulative impact on road & rail transport due to operation of both ports Adani & Essar is not studied while preparing the impacts on land environment. Six-lane-road is also not going to be sufficient for this. So I request that Environment clearance should be given only after doing cumulative study.

As reported, level of Suspended Solids & Petroleum Hydrocarbon is high as compared to desired levels in water. Level of pollution in the areas of water, air and land is already high as compared to other locations in the country. EIA report does not have clarity on what steps will be taken to bring down the pollution. So it is my feeling and request that it should not be given Environmental Clearance.

(It is to be noted that Mr. Jayeshbhai Patel belongs to "Dihen village" which is approximately 18 Km away from the port site)

8 Dhansukhbh ai Patel, President Hazira Coastal Area Employment is given to 30-35 people in the form of contract but we insist that it should be permanent in nature.

For this liquid cargo transport, it will be storage of chemicals or processing of chemicals? If it is chemical processing then hazard will increase, so I request to provide information on what measures Adani will take for health and safety?

Please provide information if this project has got any clearance from Central Government like what they have got from State Government.

Adani has declared only 4-5 villages as affected. Will there not be any impact on Mora, Kawas or Interior of Ichhapur while trucks pass through them?

There are 10-12 big companies in this area and they have developed residential township with all facilities for their employees. Is it not possible that each company will take one village from 10-12 villages and also

by Gujarat Coastal Zone Management Authority. Thus we want to work with you and be helpful to you.

(At this stage some of the individuals asked clarification for employment in the company. Collector Shri directed the company representative to answer it, and advised audience to listen to the representative peacefully.)

The port has opportunities for both technical and non-technical employment. Moreover indirect employment transport and other services will also be there. All these opportunities may be taken by local residents. facilitate them to take this opportunity will provide necessary training to enhance their competence, so that they may not only get employment m Adani port but else were also.

(At this stage Jayeshbhai and other peoples repeatedly disturbed the hearing and stopped the company representative to elaborate further. Collector repeatedly

Infrastructure
Development.
Please refer the
Annexure-2 for
the status of the
CSR activities
carried out during
the Compliance
period.

Closed

Point does not warrant any further action.

• Complied.

AHPL has always given employment priority to local qualified persons and in future the same will be continued. As on 30th of September 2022 total 206 out of 239 On roll employees are from Gujarat.

		provide them same facilities? For this, MOU is necessary and matters related to self-employment & development of village should be mentioned. We will be benefited in future; only if there will be MOU. (It is to be noted that Mr. Dhansukhbhai Patel belongs to Kawas village which does not fall within 10 Km radius of the study area)	asked all concerned to maintain calm mul listen to the company representative. All major points being over collector concluded the public hearing.)	
9	Kamlaben Rohitbhai Patel, Choryasi Taluka Panchayat, Leader of opposition party	I welcome the expansion project of Adani company. Due to proposed port priority would be given to Hazira and surrounding area for employment and business. I request that fishermen's concerned would be taken care by this project. Adani Foundation of Adani Company has given commitment for the various activities for the development of village. So I welcome the project and declare my support for the Port of Adani Company at Hazira.		
10	Mohanbhai Ambubhai Patel,	(Collector informed Mohanbhai to raise those issues only, which were not raised earlier)		
	Village: Vaswa	Adani Company has told that 700 people will be employed. Please clarify whether it will be permanent or contractual basis? Thousands of people are working on contractual basis in the surrounding companies but nobody gets permanent employment.		
		(Then Regional Officer, GPCB again informed the concerned persons to raise other issues if any. The employment issue will be addressed by the company.)		
		As per survey carried out by NIO out of 1600 km of Gujarat coast nearly 25% is already filled due to construction of ports at other places. As a consequence of this, there will be huge damage to agriculture in the surrounding area and there would also be ingress of sea water in the area.		
		Adani Company has decided to pay compensation of Rs. 15 lacs to 40		

			From: April 2022 to
the late of	ADANI HAZIR	PORT LIMITED	September 2022

		fishermen but what arrangement company will make for the 4000 fishermen in the surrounding villages?
		Adani Company is developing their project on 31428 ha of land. Is this land private or government? If it is on private land then whole Junagam village would be vacated. Survey numbers are also not shown for this land.
		(It is to be noted that Mr. Mohanbhai Patel belongs to Vanswa village which does not fall within 10 Km radius of the study area)
11	Jayantibhai Khalasi President,	You all will go away after this public hearing but whom should we contact regarding pollution in our area?
	Fish Progress Union, Hazira	(Then Collector informed him that regarding pollution he may contact GPCB.
		Regional Officer, GPCB also informed him that regarding pollution he can submit in writing.)

From: April 2022 to September 2022

ANNEXURE-2:

DETAILS OF THE CSR ACTIVITIES CARRIED OUT AND BUDGET EXPEDITURE FOR FY 2021-22

The Budget and Expenditure of CSR activities in Compliance Period (April -September 2022) is as follows

Sr. No.	Verticals/Thematic Area	Approved Budget for FY 2022-23 (In Lacs Rupees)	Utilization amount (In Lacs Rupees)
1	Education	143.05	62.69
2	Health	27.58	4.05
3	Sustainable Livelihood Development	186.56	18.46
4	Civil Infrastructure Development	88.16	66.99
5	General Management and Administration for CSR activities	31.75	10.66
	Total	477.1	162.85

Details of CSR Expenditure of last three Financial Years

S.NO	FY	Budget (In INR Lacs)	Expenditure (In INR Lacs)
1	2019-20	330.53	265.75
2	2020-21	255.13	223.61
3	2021-22	668.89	469.35

From: April 2022 to September 2022

<u>Details of Corporate Social Responsibility Activities Carried out during April 2022-September 2022 by Adani</u>

<u>Hazira Port Limited</u>

Adani Foundation (AF) is working as a Corporate Social Responsibility (CSR) wing of Adani Group and the CSR activities are being conducted by Adani Foundation team in the four major thrust areas. Adani Hazira Port Limited is conducting it's CSR activities through Adani Foundation team in following four thrust area mainly.

MAJOR THRUST AREAS OF CSR ACTIVITIES

A. Education:

Major Highlights of Activities Carried Out in Education during April-2022 to September 2022

I. Navchetan Vidhyalay Junagam

The school is a Gujarati medium, GSEB affiliated primary school approved by DPEO, Gujarat. It is established in 2003 by local trust, Navchetan Vikas Mandal, Junagam, to provide quality education to children coming from surrounding rural areas from 2014, it is sponsored and managed (academically & administratively) by Adani foundation.

The school is equipped with Smart Class, Science Laboratory and Computer Laboratory and Activity class, Library and big play ground. This year Adani Foundation has constructed alternative staircase at primary wing building of **Navchetan Vidyalaya**, Junagam, Keeping in view of fire safety guidelines of Gujarat state government for schools. The pedagogy includes activity-based learning, each one teach one learning method, special remedial classes to slow learners, regular Unit tests in school. Adani foundation provides academic materials like Notebooks, Workbooks, and Textbooks. Students from class III to have got chance to learn off campus by exposure visit. "Education is a shared commitment between dedicated teachers, motivated students and enthusiastic parents".

The school has arranged a PRAVESHOTSAV program to welcome the students of Class-I. Educational kits with a flower plant provided to the students of Class-I. Rapport building activities for KG students and revision work with activity-based education.

From: April 2022 to September 2022

5-S is a system for organizing spaces so work can be performed efficiently, effectively, and safely. 381 students and Teacher's remain present in the session.

Disaster management program was arranged for the students 347 Students from Class- V to XII attended the same.

Baseline assessment of under NIPUN BHARAT project of NEP is executed. Baseline assessment of students of Class- I to IV for Foundational Literacy and Numeracy (FLN) was carried out. 2nd dose of vaccination against COVID, for the age group of 12 to 15 years students were completed on 28/07/2022

On 05/08/2022, a session on "Indian Armed Forces, Introduction, Roles and Responsibilities" was organized. The keynote speaker was Captain Prasan Tokas (Ex. Army and AGM, Security, AHPL, Hazira). A total of 312 students of Class VIII to XII and 12 teachers remain present

76th Independence Day was celebrated with great enthusiasm and patriotic fervor. On this special occasion, the program started with flag hoisting.

II. Project Utthan

The future of India depends upon the quality of education imparted to our children. We believe that it is the joint responsibility of the Government and citizens to improver school education. With an aim to enhance the

quality of primary education in Surat District, Adani Foundation proposed to adopt 10 government schools of Hazira coastal area of 08 villages under the project 'Utthan', and from December-2019 the project starts with form MoU signed between Adani Foundation representative and DPEO, Surat. By this intervention, Adani Foundation seeks to facilitate; Focus on progressive learners (PRIYA VIDYARTHI) and celebrate their progress, make learning joyful, provides adequate resources and facilities, strengthen the curricula to provide basic skills, especially in the areas of literacy, numeracy and skills for life and focus on Teachers' capacity building.

The strength of 25 Utthan Schools of Hazira site is 2926 of class-I to VIII, among them 1308 students are of Class-III to VII. 1764 students were assessed.

Training and capacity building of Utthan Sahayaks make important contribution to raise a school to the apex of excellence. It increases the productivity and internal efficiency of teachers.

Utthan Sahayaks have received 22 certificates, which includes Course offered by DiKSHA of GoG, Webinar/Seminar arranged by Universities or International Educational institutes.

In last six months with support of 16 Utthan Sahayak, 86 progressive students are main streamed, and they have achieved 295 competencies.

Independence Day was celebrated with great enthusiasm and patriotic fervor in 25 Utthan Schools Students, Teachers' and Utthan Sahayaks took out a rally to create awareness of the "Har Ghar Tiranga" initiative on 14th & 15th August 2022. Students have prepared drawings and various best out of waste of tricolor. Every month Mother's meet is conducted in which 575+ mothers remain present.

B lock	Identified Progressive Students	No. of Competencies to be achieved	Progressive students main streamed in Aug. & Sep. 2022	Competencies achieved in Aug. & Sep. 2022	No. of Progressive students Yet to be main streamed	No. of Competencies Yet to be achieved
Choryasi	812	2199	98	376	714	1823
Olpad	496	1236	89	243	407	993
Total	1308	3435	187	619	1121	2816

From: April 2022 to September 2022

B. Sustainable Livelihood Development:

Highlights of Major Activities Carried Out in Sustainable Livelihood Development during April-2022 to September 2022

The Adani Foundation is the Corporate Social Responsibility arm of Adani Group with a vision to "Accomplish passionate commitment to the social obligations towards communities fostering sustainable development thus improving quality of life". It's an integrated infrastructure conglomerate that is committed to inclusive growth and sustainable development in not only the communities it operates in, but also in contributing towards nation building. The Adani Foundation – Hazira has been running several activities and catering to the needs of the local community residing in 8 core and 15 peripheral villages. The mainly OBC dominated population in this area.

Adani Foundation in collaboration with BAIF institute for Sustainable Development (BISLD), Adani Foundation has conducted 26 trainings batches in various villages for ideal and profitable Sex Sorted Semen, AI, Nutrition and animal Health. 545+ Animal keepers have attended these trainings

2300 Mango Saplings distributed to 289 beneficiaries in 6 Villages Junagaam, Suvali, Damka, Vasva, Bhatlai and Hazira.

Work in started solar irrigation system setup under energy project at Lavachha and aadmor Villages, Olpad block.

35 Self Helping Groups (SHGs) member from 6 SHGs of Ghanavad village were trained in production of Papad, Pickle and Spices in collaboration with the RSETI Center.

10 Sakhi Mandal members from 3 villages were trained in Costume Jewelry in collaboration with the RSETI Center.

2 new Halpati community SHG groups were formed in Vansva village. We have planned for stitching center. 6 new SHG formed at Umarpada

From: April 2022 to September 2022

C. Community Health:

Highlights of Major Activities Carried Out in Community Health during April-2022 to September 2022

Spectacles distribution program organized at Govt. primary school, Mora with support from Rotary club, Surat & Prizma eye care, Surat.18 students got spectacles during program, those who diagnosed earlier during eye checkup camp in school. Earlier 281 students benefitted from eye check up camp in school out of which 18 students required spectacles. Regular Check up camps supports in early detection of any kind of eye related issues and treatment and helps in spreading awareness regarding eye care.

21 days residential De-addiction program conducted with support from Parivartan trust, Surat. Various engagement activity conducted during residential program like personal counselling, Group discussion, Yoga & Meditation etc. for continuous engagement of patients and distract them from addiction. Total 16 patients got treatment at de-addiction center till September 2022. We have also conducted awareness program, Street plays in villages.

AF has supported Jagruti Sakhi Mandal (SHG), Songadh, Tapi to start production of 2.5 lakh sanitary pads which will further distributed among Adolescent Girls of Anganwadi Centers across Tapi District.

Multi–specialty general health check up camp organized at Barbodhan village in Olpad block of Surat district. Total 170+ patients get benefitted through medical camp. AF Conducted gynecologist visits in villages regarding health issues for women & adolescent girls. Total 7 visits conducted till September 2022.

D. Community Infrastructure Development

Highlights of Major Activities Carried Out in Community Infrastructure Development during April-2022 to September 2022

Adani foundation has developed 3 ponds at Damka, Suvali & Bhatlai villages . The Suvali and Bhatlai ponds were developed as Amrit Sarovar under Azadi ka Amrit Mahotsav. Plantation was done around Suvali-pond.

Fencing on Road divider was provided from Mora circle to Mora village by Adani foundation, Hazira. Plantation was carried on road divider near Mora Circle.

From: April 2022 to September 2022

Two rooms of 11m X 6.m each was built by Adani Foundation, Hazira for residing of 75 girls of Vanraj Ashram Shala. Inauguration of girls' hostel at Vanraj Ashram Shala, Umarda village of Umarpada block by Shri Capt.

A.K. Singh sir, CEO – Adani Hazira Port Ltd.

Construction of community Hall (1st floor) was done by Adani foundation, Hazira at Damka village.

From: April 2022 to September 2022

World Environment Day 2022 Celebration with Community

In Rajgiri Gram Panchayat, School Students, Youth, talati and Sarpanch were participated in Awareness Campaign organized by Adani Foundation and Adani Hazira Port Limited. Total 45 school students, yoth and villagers were paraticipated in awareness program and plantation drive. **90** plants of Indigenous species Gulmohar, Peepal, Badam, Ashok were planted with help of school students, youths and Sarpanch of Rajgiri Villages . The saplings were distributed among children to create their interest towards nature.

Budget and Expenditure details of the period April 2022 to September 2022

Thrus	st Area	Annual Budget (Amount in Lacs INR)	In Q1 (Amount in Lacs INR)	In Q2 (Amount in Lacs INR)	Till Q2 (Amount in Lacs in INR)	Utilization in %
Education	Other activities	70.16	5.9	15.31	21.21	30.23%
	Utthan	72.89	5.23	36.25	41.48	56.91%
Community Health		27.58	1.97	2.08	4.05	14.67%
Sustainable Livelihood Development		186.56	4.94	13.52	18.46	9.90%
Community Infrastructure Development		88.16	48.44	18.55	66.99	75.99%
General Ma	anagement istration	31.75	3.34	7.32	10.66	33.56%
		477.10	Total	93.03	162.85	34.13%

From: April 2022 to September 2022

Media Coverage of CSR Activities of AHPL (April 2022-September 2022)

लोकतेज

epaper.loktej.com 11 Jun 2022 - Page 2

पर्यावरण संरक्षण व हरित विकास के संदेश के साथ हजीरा बंदरगाह पर मनाया पर्यावरण सप्ताह

ड्राइंग, कविता, स्लोगन प्रतियोगिता और जूट बैग वितरण, नेचर वॉक, वृक्षारोपण कायक्रम

लोकतेज संवाददाता

सूरत। अदानी हजीरा पोर्ट ली. (एएचपीएल) में अडानी ग्रुप द्वारा विश्व पर्यावरण सप्ताह के तहत विभिन्न पर्यावरण जागरूकता कार्यक्रम आयोजित किए गए। ऑनलाइन क्रिज, वेबिनार, ऑफलाइन क्रिज, कार्यकर्ताओं और ग्रामीणों के बीच पर्यावरण जागरूकता बार्ता, ड्राइंग, कविता, स्तोगन प्रतियोगिता और जूट बैंग वितरण, नेचर बॉक, वृक्षारोपण जैसे कार्यक्रम आयोजित किए गए।

हजीरा के पास राजगरीगाम में वृक्षारोपण के अलावा प्राथमिक विद्यालय के बच्चों में %प्लास्टिक नहीं% की शपथ के तहत तुलसी और बादाम के पौधे बांटे गए। पर्यावरण सप्ताह के तहत आयोजित विभिन्न प्रतियोगिताओं के विजेताओं के सम्मान में पुरस्कार वितरित किए गए। इस अवसर पर मुख्य परिचालन अधिकारी अधिनराय कुंडलिया ने बंदरगाह परिसर में पर्यावरण संरक्षण और प्रदूषण रोकथाम, जैव विविधता और ट्रिपलबॉटम लाइन के बारे में भी बताया।

પર્યાવરણ અંગેની અદાણી ગ્રુપની પ્રતિબધ્ધતા એક દિવસ નહીં અદાણી હજીરા પોર્ટે ઉજવ્યો પર્યાવરણ સપ્તાહ

હરીત વિકાસ મહે પ્રતિમહ અદાવાસ્થિતી સુરત નજીક આવેલા અપથી હજારા પોર્ટ IL IAHPLIN RA પર્યાવસ્થા દિવસની પરંપરાગત એક દિવસની ઉજવણીની જગ્યાએ આખો સમાહ પર્યાવર્થ જગ્નિના વિવિધ leibie all breed bil હતી. આભી હજરાવાર્ટ (LIPIA) SUPIN

मानवार्धन क्रिका, बेबिनार, vito-auder (Pun, umera) ખને સમદાયો વર્ષ્ય પર્વાવરવા પ્રાપૃતિ વાર્તાલાય, વિત્ર સ્વર્ધા, કરિતા, સ્લોગન સ્પર્ધ અને જ્યુટ મેગ વિતરમાં, તેમુરલીક, नुवारोपण पेचा सर्वत्रमोनु શેષભા સમસ્ત દરમિયાને આવોજન કર્યું હતું.

ધર્માં વસ્ત્રા સમાહની. ઉપવર્શની શરૂઆત અધ્યવી હજારાપોર્ટ લિપિટેડ(AHPL), હજારા ખાતે જનજાગૃતિ માટેના ઇ હોકે લાઉ સપાડના અને Berze भेनरसमार्थने वर्छ અલાવવિષ્ણાર્ટના કર્મચારીઓ અને કહવાંગીઓ યાટે ઓનલાઇન અને ઓક્લાઇન ધને પ્રસરની

ક્લિક સ્થમાંનુ આવેલન વયુ હતુ. કન્ટેનર ટર્મિનલ હેન્કસિંગ એરિયા, કામ કર્યા ઓપરેશન મંદિયા, જેટી મંદિયા અને ટર્મિનલ ઓપરેશનએરિયામાં અને માસ ટુલ લોક્સ પર પર્યાવસ્થીય સરમથ સ્પાદિવિદ્યાનું આવ્ય ગામા આવ્યું હતું. અને कुष्याचारीका माटे पर्याचाय પાકૃતિ માટે વક્તવ્ય અને Benn ga મામિકોને પાસ્ટીઓ ઉપયોગ પટાડપા લાગૃત કરવા માટે પ્રયુટવેંગનુ वितरण प्रयामा आण्य बतुः હજારા નજીક આવેલા રહેવા પર ખાન કેન્દ્રિત કરવા

અને આધાવી

પર્યાવરકીય જાગૃતિ અને પ્રેરક

પ્રવૃત્તિઓ દરવા પદલ તેમનો

આવાર વાક્ત કર્યો, તેવલે કહ્યું

કે માત્ર પર્યાવસ્થાની જ રહ્યાં

કરવાની પ્રકૃષ્ટ નથી પરંતુ ભાષિ

#I5-38I4-4

2014 NA2 વિસ્તારને મજબૂત કરવા પોર્ટપરિસરમાં યુવારોપણ કરાયુ तत्, श्रीपर्धयं वनस्पतिर्धाः अने प्रेय विविधवाना महत्त्व असमी -યદ્યતિ લાવવામાટે અગ કર્મચારીઓ, સહયોગીઓ અને งอง จองเป็น มหายอังเ ઓજપીય છોડના રોપાઓનુ Geren begint burg ag. પૈકીને પ્રાપ્તિ સાથે સુમેળવા સ્વાલી 4.9931912-01

માટે ચાર સત્રના લેપિનાર અને લાઇન વિશે પક્ષ સમજાન વિલ સ્પર્યાનું અમોજન હતું.સમાયન કરતા HSEFના ध्याचा भाग् वर् વર્ષાવરવા

સમારોહમાં વિવિધ સ્પર્યાના વિજેતાઓનું સન્યાત કરી र्धनाम फिरमेश पत्र पत्र बत् સમાયન્ય સમારોહના વકતા તરીકે અધિનશાય કુડલીયા, યોક ઓપરેટિંગ ઓક્રિયર એ બદર પરિસરમા पर्यावस्थानु सरवाश अने मधुषम निवासम् हेवी दीने मक्त्यपूर्व छ भेनी बात इसी તેમમાં દરિયાઇ duffiften den unner કર્મમાઉઓ અને સતયોગીઓ અને દકાઉપવાનીQપવાયોટય

વડા તો રૂપેલપરમુકીએ તમામ સતભાગીઓને વિનતી કરી કે જવાભદારી સ્ટ્રેની કરજ છે. જો हरें। व्यक्ति राज भीत है भीपू મેઇ પૂર્વ કરશે અને તેઓ આ ભાગને કહે હતી કરે તો કેઇ કેરકાર થયે નહી. તેમણે ઉભાગ કર્યો કે મેરિટીની શાકભાત પરથી પાય છે તેવી है। अधितमें श्रेतानी प्रतापी શરૂઆત કરવી પડશે અને पर्यावरकता करतक तेपप પ્રકૃતિના શરથણ માટે સલરાત્વા મોગદાન આપવુ MIÑ.

अदानी हजीरा पोर्टः जागरुकता कार्यक्रम, पौधरोपण के साथ मनाया पर्यावरण सप्ताह

सूरत | पर्यावरण संवर्धन और हरित विकास के लिए कटिबद्ध अदानी ग्रुप की स्र्रत के निकट स्थित अदानी हजीरा पोर्ट ने विश्व पर्यावरण दिवस एक दिन मनाने की जगह पूरे सप्ताह पर्यावरण जागरूकता के कार्यक्रमों के माध्यम से मनाया। हजीरा पोर्ट ने ऑनलाइन विञ्चज, वेविनार. ऑफलाइन विञ्चज, कामदारों और समुदायों के बीच पर्यावरण जागृति वार्ता, चित्र स्पर्धा, कविता, स्लोगन प्रतियोगिता, जूट बेग वितरण, नेचर वॉक पौधरोपण कार्यक्रमों का पूरे सप्ताह आयोजन किया गया। हजीरा के निकट राजगरी गांव के मंदिर और कम्यूनिटी होल परिवार

में पीपल, आसोपालव, गुलमोहर जैसे पौधों का रोपण बच्चों और प्रामीणों को साथ रखकर किया। राजगरी गांव के सरपंच धनसुख पटेल ने अदानी हजीरा पोर्ट और अदानी फाउंडेशन की पर्यावरण जागरूकता और प्रेरक गतिविधियों के लिए आभार व्यक्त किया। पर्यावरण सप्ताह के समापन पर आयोजित समारोह में सभी प्रतियोगिता के विजेताओं को सम्मानित किया गया। समापन समारोह के मुख्य बक्ता अश्विन रायकुंडलीया (चीफ ऑपरेटिंग ऑफीसर) ने बंदरगाह परिसर में पर्यावरण संरक्षण और प्रदूषण निवारण किस तरह महत्वपूर्ण है, इस पर बात की।

<u>પર્યાવરણ અંગેની અદાણી ગ્રૂપની પ્રતિબધ્ધતા</u> અદાણી હજીરાપોર્ટે ઉજવ્યો પર્યાવરણ સપ્તાહ

(શિટી ટૂડે)સુરત,તા.૧૦ પર્યાવરમાં સવર્ષન અને હરીત વિકાસ માટે પ્રતિશ્વત અદાવી ગૂપની સરત નજીક આવેલા અદાશી હજીરા પોર્ટલી. (AHPL)એ વિશ્વ પર્યાવરણ દિવસની પરંપરાગત એક દિવસની ઉજવણીની જગ્યાએ આપ્લે सप्तरत पर्यावरण भागृतिना विविध કાર્યક્રમો પડી ઉજવણી કરી હતી. અદાવી હજરા પોર્ટ ક્ષિમિટેડ (AHPL)એ ઓનલાઈનક્વિઝ, વેશિનાર, અરેક-શાઇન ક્વિઝ, કામદારો અને સમુદાયો વચ્ચે પર્યાવરલ જાગૃતિ વાર્તાલાય, ચિત્ર સ્પર્ધા, કળિતા, સ્લોગન સ્પર્ધા અને જ્યુટ લેગ વિતરણ, નેચરવો ક, વુલારોપભજેવા કાર્યક્રમોનું સમગ્ર સમાત દરમિયાન આયોજન કર્ય હતું. પર્યાવરના સમાહનીઉજવણીની શરૂઆત અદાવી હજરા પોર્ટ Riffies (AHPL), work had જનભાગતિ માટેના ઇકો ઇંડલી

કાપડના અને ડિજિટલ બેનર લગાડીને થઈ હતી. અદાવીપોર્ટના કર્મચારીઓ અને સહયોગીઓ માટે ઓનલાઈન અને ઓક્લાઇન બને પ્રકારની ઉપઝ સ્પર્ધાનું આવોજન થયું હતું. કન્ટેનર ટર્મિનલ હેન્દ્રલિંગ એરિયા, ડ્રાય કાર્ગી ઓપરેશન એરિયા, જેટી એરિયા અને સિક્યિક टर्मिनस औपरेशन औरियामा अने માસ ટૂલ લોક્સ પર પર્યાવરથીય સંરથળ પર ઓન ૧ સ્પોટક્વિઝનું આપોજન કરવામાં આવ્યું હતું. કોન્ટ્રાક્ટકામદારો અને સુપરવાઇઝર માટે પર્યાવરલ જાગૃતિ માટે વક્તવ્ય અને મમિકોને સિંગલ યુઝ પ્લાસ્ટીકનો ઉપયોગ પટાડવા જાગૃત કરવા માટે જમુટબેગનું વિતરસ કરવામાં આવ્યું હતું. હજારા નજીક આવેલા રાજગરીગામના મંદિર અને કોમ્યુનિટીહોલના પરિસરમાં પીપળી, આસોપાલવ, ગુલમહોર જેવા સ્થાનિક વૃક્ષનું બાળકો અને

સામજનોને સાથે રાખીને રોપલાકડ્ડું હતું. રાજગરી ગામના સરપંચ ધનસુખ પટેલે જલાવ્યું હતું કે, અદલી હજારાપોર્ટ મિસ્કિટ અને અદાલ

શિમિટેડ અને અદાશી કાઉન્ડેશનને આવી પર્યાવરલીય જાગૃતિ અને પ્રેરક પ્રવૃત્તિઓ કરવા લદ્યા તેમનો અત્યાર વ્યક્ત કર્યાં, તેમલે કહ્યું કે માત્ર પર્યાવરલની જ રસા કરવાની જરૂર નથી પરંતુ ભાવિ પેકીને પ્રધૃતિ સાથે સુમેળમાં રહેવા પર પ્યાવ કેન્દ્રિત કરવા માટે શિશિત કરવાની પળ જરૂર છે, પ્રાથમિક શાયાના માળતેને 'નો પ્લાસ્ટિક'ના સપય લેવડાવીને તુલસી અને મદાપના રોપાઓનું વિતરળ કરાયું હતું. અદરના ગ્રીન લેક્ટ વિસ્તારને મજબૂત કરવા પોર્ટપરિસરમાં વૃશારીયલ કરાયું હતું.ઓપથીય

વનસ્પતિઓ અને જૈવ વિવિધતાના મહત્વ અંગે જાગૃતિ હાવવામાટે કર્મચારીઓ, સહયોગીઓ અને કરાર આપારિત કામકારોમાં ઓપાર્યો હાલું હતું. અદલ્લી હજીરા પોર્ટના કર્મચારીઓ અને સહયોગીઓ માટે ચાર સત્રના વેબિનાર અને ચિત્ર સ્પર્યાનું આયોજન કરલામાં અદ્યાં હતું. પર્યાવર સત્રના વેબિનાર અને ચિત્ર સ્પર્યાનું આયોજન કરલામાં અદ્યાં હતું. પર્યાવર સત્રના વેબિનાર અને ચિત્ર સ્પર્યાનું આયોજન કરલામાં અદ્યાં હતું. પર્યાવર સામાહની ઉજવણીના સમાપન સમારોહમાં વિવિધ સ્પર્યાના વિજેતાઓનું સન્માન કરી ઈનામ વિતરણ સ્પૃત્ર પર્યુ હતું. સમાપન સમારોહના મુખ્ય વક્તા તરીકે અચિનરાય દુંદલીયા, ચીક ઓપરેટિંગ

ઓહિસર એ પંદર પરિસરમાં પર્યાવરતાનું સંરક્ષણ અને પ્રદુષણ નિવારણ કેવી રીતે મહત્વપૂર્ણ છે એની વાત કરી હતી. તેમલે દરિયાઈ જૈવવિવિષતા તેના

સંરક્ષણ અને ટકાઇ પણાની ટ્રિપલ એટમ લાઇન વિશે પણ સમજા વૃદ્ધાં, સમાપન કરતાં HSE³ના વડા રૂપેશ જાંભુડીએ તમામ સહભાગીઓને વિનંતી કરી કે પર્યાવરણની સુરદ્યાની જવાબદારી સૌની કરજ છે.

જો દરેક વ્યક્તિ રાહ જોશે કે બીજું કોઈ કાર્ય કરશે અને તેઓ આ બાબતે કંઈ નહીં કરે તો કોઈ ફેરકાર થશે નહીં, તેમણે ઉલ્લેખ કર્યો કે ચેરિટીની શરૂઆત પરથી થાય છે તેથી દરેક વ્યક્તિએ પોતાની જાતથી શરૂઆત કરવી પડશે અને પર્યાવરણના સંરકાશ તેમજ પ્રકૃતિના સંરકાશ ખાટે સકારાત્મક પોલાના આપવું પડશે.

સાથે ભમરડા, લીંબુ-ચમચી, કાંગારૂ રોડ, સુરત ખાતે રમાશે,

હજીરા પોર્ટ ખાતે પર્યાવરણ સંવર્ધન અને હરીત વિકાસના સંદેશ સાથે પર્યાવરણ સપ્તાહ ઉજવાયું

વિવિધ કાર્યક્રમો યોજાયા હતા. જેમાં સમજાવ્યું હતું.

ધબકાર પ્રતિનિધિ, કરાયું હતું. આ પ્રસંગે ચીફ ઓપરેટિંગ

સુરત,તા.૧૦ ઓફિસર અશ્વિનરાય કુંડલીયાએ અદાશી હજીરા પોર્ટ લિ. ખાતે બંદર પરિસરમાં પર્યાવરણનું સંરક્ષણ અદાણી ગ્રુપ દ્વારા વિશ્વ પર્યાવરણ અને પ્રદૂષણ નિવારણ, જૈવવિવિધતા સપ્તાહ હેઠળ પર્યાવરણ જાગૃતિના અને ટ્રિપલ બોટમ લાઇન વિશે પણ

હાઉરિ

ભાન્ય સરનામું : ૨૦૧-૨૦

सिड्योरिटाईजेशन એन्ड रीडन ૨૦૦૨ (એક્ટ)ની કલમ ૧૩

अहीं नीये सही 5२-हर **कार्डिशंज डेयरायमेल्ड इंग्डलल्स डोर्पेरेशल दि**. (द ૨૦૦૨ તેઠળ અને સિક્યોરિટી ઈન્ટરેસ્ટ (એન્ફોસંમેન્ટ) રૂલ્સ ૨૦૦૨ ના નિયમા સા હેઠળ ડિમાન્ડ નોટિસ પાઠવવામાં આવેલ છે. જે અનુસાર જે તે ડિમાન્ડ નોટિસમાં નોડિ છેલ્લામાં છેલ્લા જાણીતા સરનામાનાં સ્થળે આ નોટિસ ચોટદદવાની ફરજ પડેલ. આ નોડિ ઓફિસ કામકાજના દિવસોએ કામકાજના સામાન્ય સમય દરમિયાન મેળવી શકે છે.

ઉપરોક્ત બાબતના અનુસંધાનમાં આ સાથે કરી એકવાર બોરોઅર (સં)/હીંગલ દર્શાવ્યા મુજબની વાર્ષિક ૧૮% વ્યાજ સહિત, નીચે કોલમ(સી) માં દર્શાવેલ તારીખધી ભાકી નીકળતી રકમ, પરત ચુકવલીની રકમ સામે ઉપરોક્ત બોરોઅર(સે) દ્વારા **એચડી**ક બોરોઅર(સે)/ કાયદેસરના વારસ (દારો)/ કાયદેસરના પ્રતિનિધિ(ઓ)નું ધ્યાન

અનુ. નં.	બોરોઅર(સી)/ગેરન્ટર(સી) કાયદેસરના વારસદાર(રો) અને કાયદેસરના પ્રતિનિધિ(ઓ)નાં નામ
(એ)	(예)
9	શ્રી સંજયભાઇ બળદેવભાઇ પ્રજાપતિ (બોરોઅર) ૧૪૧૦૫૯-૬૨૧૧७૩૩૩૬, ૬૧૮૮७૯૪૩૯
9	ક્રી તુપાર મરાઠે (બોરોઅર) ક્રી રાજેન્દ્ર મરાઠે (કો-બોરોઅર) શ્રીમતી સુરેખા રાજેન્દ્ર મરાઠે (કો-બોરોઅર) શ્રી સાગર મરાઠે (કો-બોરોઅર) શ્રી ગારોશ કે. મરાઠે (ગેરન્ટર) ૧૨૯૪૬-૬૩૬૬૩૮૬૦૪, ૬૩૮૫૦૦૧૯૯
3	श्रीभती અલ્પાબેન હિતેષભાઇ વસાણી (બોરોઅર) શ્રી હિતેષભાઇ જી. વસાણી (કો-બોરોઅર) ૧૨૯૦૩૪-૬૪૪૫૪૯૮૦७, ૬૧૧૩૨૨૬૨૪
×	શ્રી હેમલ પ્રવિણચંદ્ર ભીમાણી (બોરોઅર) ૧૨૯૩૮૫-૬૨૪૧૯૩૫૪૯
ч	શ્રી શૈલેપભાઇ ગોહાભાઇ પોકીયા (બોરોઅર) શ્રીમતી ગીતાબેન શૈલેપભાઇ પોકીયા (કો-બોરોઅર) શ્રી ભરતભાઇ ગોહાભાઇ પોકીયા (કો-બોરોઅર) ૧૧૯૯૬-૬૩૦૮૮૦૯૫૬, ૬૩૦૮૮૦૯૩૨
ş	શ્રી રામુભાઇ આર. પટેલ (બોરોઅર) શ્રી પ્રદુલ રામુભાઇ પટેલ (કો-બોરોઅર) ૧૧૯૮૦૬-૬૧૪૦૦७૩૫૯, ૬૦૮૬૨૪૩૪૮
6	ਗੀ વિલીશમ એમ. જેમ્સ (બોરોઅર)

ઓનલાઇન ક્વિઝ. વેબિનાર, ઓફ-ક્વિઝ. લાઇન શ્રમિકો અને ગ્રામજનો વચ્ચે પર્યાવરણ જાગૃતિ વાર્તાલાપ, ચિત્ર, કવિતા, સ્લોગન સ્પર્ધા અને જ્યુટ બ ગ વિતરણ, નેચરવોક, વૃક્ષારોપણ જેવા કાર્યેક્રમોનું આયોજન કરાયું હતું. હજીરા નજીક આ વેલા રાજ ગરી ગામેં બાળકો સાથે મળીને વુક્ષ રોપ ઉપરાંત પ્રાથમિક શાળાના બાળકોને પ્લાસ્ટિક' ના શપથ લેવડાવીને તલસી અને બદામના રોપાઓનં વિતરણ કરાયું હતું. પર્યાવરણ સપ્તાહના ભાગરૂપે યોજાયેલા વિવિધ સ્પધા ના વિજેતાઓનું સન્માન કરી ઇનામ વિતરણ

il ipal.gov.in) 🕮

From: April 2022 to September 2022

अदाणी फाउंडेशन ने मानसून में टपकती छत के नीचे रहने वाली आदिवासी लड़कियों की मदद की

लोकतेज संवाददाता

सूरत । सूरत जिले के आदिवासी बहुल इलाके उमरपादा कलुका के छोटे से उमरदा गांव के बनताज आध्रम स्कूल में पढ़ने बाल करीब 25 खाउँ ने मानसून में एक जर्बर और टफको छत बाले घर को हॉस्टल के तीर घर इस्तेमाल करते थे। अदानी फाउँडेशन, हजीय ने आध्रम स्कूल और प्रणासन से तालमेल बिडाते हुए तुरंत वाजाबास बनाना नुरू कर दिया।

प्राणावाल का उदारन हजीय अदाणी फोर्ट के लोईओ केप्टन अनिसा किशोर सिंह ने किया।

अदानी फावंडेशन, हजोरा ने इन गरीब आदिवासी लड़िकारों की दुर्दशा को सब्द्रा है और इस प्रगाली को तुर्दत स्थापित करने के लिए संगठन के साथ सहयोग किया है। अब वे खता इस मानसून में रहने को चिंता किए बिना पड़ाई कर सकेंगे।

वर्धानिर्मत रहाजाबाम में दो अलग-अलग होल हैं जिनमें 75 खात्र रह सकते हैं। पहले इन छात्रों को एक पृत्रने और वार्थर भवन के नीने रहना पढ़ता था। मानसून के दौरान जब होल में छत से पानी आता है तो उनके लिए जीना मुश्किल हो जाता था। नह खात्राबाद में उनको परितानी का लमाधान हुआ है अब साल भर पहाई में जब बीहें बाधा नहीं आदगी। कैप्टान अनित किप्टेश लिंह, लीईओ- अदायोहजीत पोर्ट लिमिन्टेड ने व्यक्तिगत रूप से स्कूल का दौरा किया और आज बनराज आवार उन्होंने हाजों के सबस बातबीत को और उन्हों एक सफल करियर और अले के समुद्ध जीवन का मार्ग प्रशस्त करने के लिए प्रोतसाहत किया। इन्हों के समुद्ध जीवन का मार्ग प्रशस्त करने के लिए प्रोतसाहत किया। इन्हों के समुद्ध जीवन का मार्ग प्रशस्त करने के लिए प्रोतसाहत किया। इन्हों के पर तक्ला के लिएक होने हो असा बातबीत के अति उन्हों करने के लिए प्रोतसाहत किया। इन्हों के पर तक्ला के लिएक होना हो तही ने अदायी फाउंडेशन इन्होंगा के अम को संवहना की गई।

અદાણી ફાઉન્ડેશન ચોમાસામાં ટપકતી છત નીચે રહેતી આદિવાસી કન્યાઓની વ્હારે આવ્યું

સુરત તા.૯: સુરત જિલ્લાના આદિવાસી બહુલ એવા ઉમરપાડા તાલુકાના ખોબા જેવડા ઉમરદાગામમાં આવેલી વનરાજ આશ્રમ શાળામાં રહીને અભ્યાસ કરતી ૭૫ જેટલી છાત્રા એક જર્જરિત થયેલી અને ચોમાસમાં ટપકતી છતવાળા મકાનનો હોસ્ટેલ તરીકે ઉપયોગ કરતી હતી. છાત્રાઓ માટે હોસ્ટેલની જરૂરિયાત છે એની જાણ અદાણી ફાઉન્ડેશન, હજીરાને થતાં આશ્રમ શાળા અને વહીવટી તંત્ર સાથે સંકલન સાધીને તાતકાલિક હોસ્ટેલનું મકાન બનાવવાની શરૂઆત કરી હતી. હજીરા અદાણી પોર્ટના સીઈઓ શ્રી કેપ્ટન અનિલ કિશોર સિંહના હસ્તે આ હોસ્ટેલનું લોકાર્પણ થયું હતું.અદાણી ફાઉન્ડેશન, હજીરાએઆ ગરીબ આદિવાસી કન્યાઓની વ્યથા સમજીને તુરંત આ વ્યવસ્થા ઊભી કરવા માટે સંસ્થાને સહયોગ આપ્યો છે. હવે આ વિદ્યાર્થિનીઓ આ ચોમાસે રેહવાની ચિંતા કર્યા વગર અભ્યાસ કરી શકશે.

નવનિર્મિત છાત્રાલયમાં બે અલગ–અલગ હોલ છે જેમાં ૭૫ વિદ્યાર્થીનીઓ રહી શકશે. અગાઉ આ વિદ્યાર્થીનીઓએ જૂની અને જર્જરીત ઈમારત નીચે રહેવું પડતું હતું. ચોમાસા દરમિયાન જયારે હોલમાં છત પરથી પાણી આવતું ત્યારે તેમના માટે રહેવું મુશ્કેલ થતું. નવી છાત્રાલયમાં એમની મુશ્કેલીનું નિરાકરણ થતાં સમગ્ર વર્ષ

દરમિયાન એમના શિક્ષણમાં હવે કોઈ ખલેલ નહી પડે. શ્રી કેપ્ટન અનિલ કિશોર સિંહ, CEO-અદાણી હજીરા પોર્ટ લિ.એ અંગત રીતે સમય કાઢી શાળાની મુલાકાત લીધી અને આજે વનરાજ આશ્રમશાળા, ઉમરદા ખાતે નવનિર્મિત હોસ્ટેલ બિલ્ડીગનું ઉદ્ઘાટન કર્યું. તેમણે વિદ્યાર્થીઓ સાથે વાર્તાલાપ કર્યો અને તેમને સફળ કારકિર્દી અને આગળ સમૃદ્ધ જીવન માટેનો માર્ગ મોકળો કરવા પ્રોત્સાહિત કર્યા.આ પ્રસંગે શાળાના શિક્ષકો, આગેવાનોએ અદાણી ફાઉન્ડેશન, હજીરાના આ કાર્યને બિરદાવયું હતું.

અદાણી ગ્રામીણ ક્રિકેટમાં 52 ટીમો વચ્ચે

કાંઠા વિસ્તારમાં અદાશી ગ્રામીશ ક્રિકેટ મોરભગવાની ટીમે ટોસ જીતી શિવાલય ટર્નામેંટનો કાર્નિવલ જામ્યો હતો. સમગ્ર ચોર્યાસી અને ઓલપાડ તાલુકાના 40 ગામોની 52 ટીમના લગભગ 780 ખેલાડીઓએ આ ટુર્નામેન્ટ માં ઉત્સાહભેર ભાગ લીધો હતો. આ ટુર્નામેન્ટ નવચેતન ક્રિકેટ ગ્રાઉન્ડ, જૂનાગામ અને મોટાવાડા ક્રિકેટ ગ્રાઉન્ડ ઉપર ૨માઈ હતી. દરેક ખેલાડીને અદાણી ફાઉન્ડેશન તરફથી ટી-શર્ટ અપાયા હતા. ટુર્નામેન્ટ ની ફાઈનલમાં વિજેતા ટીમ અને પરાજિત ટીમને રોકડ ઈનામ અને ટ્રોફી ઉપસ્થિત મહાનભાવોના હસ્તે એનાયત કરવામાં આવી હતી.

આ ટુર્નામેન્ટના આયોજનનો મુખ્ય હેતુ કાંઠા વિસ્તારના યુવા રમતવીરો ખેલદિલી અને પરસ્પર ભાઇચારાની ભાવના વિકસાવવાનો રહ્યો છે. આ 167 રન બનાવ્યા હતા, જેમાં સૌથી વધુ હતા, શિવાલય તરફથી નીરવ પટેલે 4

ઇલેવન, જુનાગામ અને મોરભગવા કેતન સારંગે 4 ઓવરમાં 35 રન આપી છેલ્લા દોઢ મહિનાર્થી હજીરાના ઇલેવન ટીમ વચ્ચે ૨માઈ હતી. ૩ વિકેટ લીધી હતી. અંતમાં મોરભગવા ઇલેવનને બેટિંગ આપી હતી. શિવાલય 130 રન જ કરી શકી હતી. જેમાં કેવિન ઇલેવને 20 ઓવરમાં 7 વિકેટ ગુમાવી

ઇલેવન 17.3 ઓવરમાં 10 વિકેટ ગુમાવી પટેલે સૌથી વધુ 37 બોલમાં 31 રન કર્યા

હતુ કાઠા ાવસ્તારના યુવા રમતવારા અને એમની રમતગમતના કૌશલ્યને હજીરા કાંઠા વિસ્તારના ચોર્યાસી અને ઓલપાડ તાલુકાના પ્રોત્સાહન મળે તથા એ વિસ્તારના ગામો વચ્ચે સંવાદ અને એકતા વધે, લોકો વચ્ચે 40 ગામની 52 ટીમના 780 ખેલાડીઓએ ભાગ લીધો હતો

ટુર્નામેંટમાં 52 સ્થાનિક ટીમોએ ભાગ ૨ન ચિરાગ પટેલે 28 બોલમાં 31 ૨ન ઓવરમા 24 ૨ન આપી 4 વિકેટ લઇ લીધો હતો અને ફાઇનલ મેચ શિવાલય કર્યા હતા, મોરભગવા ઇલેવન તરફથી જીતનો પાયો નાખ્યો હતો.

બારડોલી-વ્યારા ભાસ્કર 24-05-2022

ચોર્ચાસી અને ઓલપાડ તાલુકાના 40 ગામમાંથી 780 ખેલાડીઓએ ક્રિકેટ ટુનામેન્ટમાં ભાગ લીધો

ભારકર ન્યૂઝ ! બારડોલી

વિસ્તારના કાંઠા યુવા રમતવીરોમાં રમતગમતના કૌશલ્યને પ્રોત્સાહન મળે તથા એ વિસ્તારના ગામો વચ્ચે સંવાદ અને એકતા વધે, લોકો વચ્ચે ખેલદિલી અને પરસ્પર ભાઈચારાની ભાવના વિકસિત થાય એવા હેતુથી અદાશી કાઉન્ડેશન-હજીરા દ્વારા હજીરા કાંઠા વિસ્તારમાં અદાશી ગ્રામીશ ક્રિકેટ ટ્રનામેન્ટ યોજાઈ હતી. જેમાં સમગ્ર ચોર્યાસી અને

ખેલાડીને અદાણી ફાઉન્ડેશન ઓલપાડ તાલુકાના 40 ગામોની તરફથી ટી-શર્ટ તેમજ ટુર્નામેન્ટની પર ટીમના 780 ખેલાડીઓએ ફાઈનલમાં વિજેતા ટીમ અને ટુર્નામેન્ટમાં ઉત્સાહભેર ભાગ પરાજિત ટીમને રોકડ ઈનામ અને લીધો હતો. આ ટુર્નામેન્ટ ટ્રોફી ઉપસ્થિત મહાનુભાવોના નવચેતન ક્રિકેટ ગ્રાઉન્ડ, હસ્તે એનાયત કરવામાં આવી જૂનાગામ અને મોટાવાડા ક્રિકેટ હતી. ફાઈનલ મેચના અંતે કાંઠા ડો.આશુતોષ ઠાકર ઉપસ્થિત ગ્રાઉન્ડ ઉપર રમાઈ હતી. દરેક વિસ્તાર સહકારી મંડળીના મંત્રી રહ્યા હતા.

રમેશભાઈ પટેલ, મોટાવાડા સ્પોર્ટ્સ એસોસિએશનના પ્રમુખ નવીન પટેલ, જનાગામના સરપંચ ભગુભાઈ પટેલ, અદાશી ફાઉન્ડેશનના CSR હેડ પ્રિયેશ રાઠોડ, પ્રોગ્રામ મેનેજર

વેકેશનમાં પણ બાળકો ને અભ્યાસ સાથે જોડી રાખવાનો ઉમદા પ્રયાસ

હજીરા કાંઠા વિસ્તારની સરકારી પ્રાથમિક શાળાઓના ધો-૪ થી ૮ના બાળકો માટે સમર કેમ્પનું આયોજન

ન્યાયદર્શન.સુરત, બાળકો વેકેશનને મન મુકીને માણે, બાળકોની સહઅભ્યાસિક મનપસંદ શૈક્ષણિક પ્રવૃત્તિઓ પ્રત્યે પોતાની રુચિ જળવાયેલી રહે, બાળકોની કુતુહલતા અને જિજ્ઞાસાવૃત્તિ સંતો પાય, બાળકોમાં એકતા, સહકાર, સમૂહ ભાવના, ખેલદિલી, ધીરજ જેવા ગુણોનો વિકાસ હાથરૂમાલ અને ટીશર્ટ થાય, બાળકોમાં કોઠાસૂઝ પેઇન્ટિંગ, શબ્દ રમત, પેપર વિકસે, શાળા સાથેનું જોડાણ બેગ, ગ્રીટિંગ્સ કાર્ડ બનાવવા જળવાઈ રહે અને બાળકો વધુ જેવી વિવિધ પ્રવૃતિઓ કાર્યદક્ષ બને તેવા હેતુસર કરાવવામાં આવી રહી છે. અદાણી ફાઉન્ડેશન દ્વારા હજીરા કાંઠા વિસ્તારના આઠ બાળકોના સર્વાંગી વિકાસ ગામના ધોરણ- ૪ થી ૮

સરકારી પ્રાથમિક શાળાઓમાં સમર કેમ્પ નું આયોજન કરવામાં આવ્યું છે.

આ કેમ્પમાં બાળકોને અક્ષર સુધારણા (ગુજરાતી, હિન્દી, અંગ્રેજી), ઓરીગામી, સમૂહ વાંચન, પપેટ બનાવવા. અંક અને ઘડિયા લેખન, સંદર્ભે ઉત્થાન પ્રોજેક્ટ અંતર્ગત ધોરણના કુલ ૪૧૨ બાળકો

ખુબ ઉત્સાહભેર સમર કેમ્પમાં ભાગ લઇ રહ્યા છે. કેમ્પમાં ભાગ લઈ રહેલા બાળકો ઉત્થાન સહાયક પાસેથી વિવિધ પ્રવૃત્તિ શીખી રહ્યા છે. આ સમર કેમ્પ પૂર્ણ થશે ત્યારે બાળકો દ્વારા તૈયાર થયેલ નમૂના નું પ્રદર્શન ગોઠવાશે, પ્રદર્શનમાં બી.આર. કૉ-ઓર્ડીનેટર સી.આર.સી., મુખ્ય શિક્ષકો, શાળા વ્યવસ્થાપન સમિતિના સભ્યો, સરપંચઓ બહોળા પ્રમાણમાં વાલીઓએ આમંત્રિત કરાશે. જેથી બાળકોને પ્રોત્સાહન પૂરું પાડી શકાય.

अदानी फाउंडेशन, हजीरा द्वारा आयोजित अदाणी ग्रामीण क्रिकेट टूर्नामेंट में जूनागाम की शिवालय इलेवन चैंपियन बनी

चोर्यासी और ओलपाड तालुका के 40 गांवों के 52 टीमों के 780 खिलाड़ियों ने भाग लिया

लोकतेज संवाददाता

सरत । पिछले डेढ महीने से हजीरा के तटवर्ती इलाके में अदाणी ग्रामीण ऋिकेट टूर्नामेंट का कार्निवल समाप्त हो गया था। पूरे चौरासी और ओलपाड तालुका के 40 गांवों की 52 टीमों के करीब 780 खिलाडियों ने टर्नामेंट में बढ-चढकर हिस्सा लिया। जुनागाम और मोटावाडा क्रिकेट ग्राउंड पर सभी मेच खेली गई। अदाणी फाउंडेशन की ओर से खिलाड़ी को टी-शर्ट दी गई। टूर्नामेंट के विजेता टीम और फाइनल में हारने वाली टीम को नकद पुरस्कार और टाफियां पुरस्कार यहा उपस्थित गणमान्य व्यक्तियों द्वारा प्रदान किया गया।

इस टूर्नामेंट के आयोजन का मुख्य उद्देश्य तटीय क्षेत्र के युवा एथलीट हैं और उनके खेल कौशल को प्रोत्साहित किया जाता है और गांवों के बीच संवाद और एकता बढती है, लोगों में खेल भावना और पारस्परिकता बढती है जो भाईचारे की भावना को विकसित करना है। इस टूर्नामेंट में 52 स्थानीय टीमों ने भाग लिया और फाइनल मैच शिवालय इलेवन, जुनागम और मोरभगवा इलेवन टीम के बीच खेला गया

मोरभगवा की टीम ने टॉस जीतकर बल्लेबाजी चुनी थी। शिवालय इलेवन ने 20 ओवर में 7 विकेट खोकर 167 रन बनाए जिसमें सबसे अधिक रन चिराग पटेल ने 28 गेंदों में 31 रन बनाए । मोरभगवा इलेवन की ओर से केतन सारंग ने 4 ओवर में 35 रन देकर 3 विकेट लिए। मोरभगवा इलेवन ने 17.3 ओवर में 10 विकेट गंवाए और 130 रन ही बना सके। जिसमें केविन पटेल ने दामका के कपिल पटेल और सबसे अधिक 37 गेंद में 31 रन डाभरी के कमलेश पटेल को बनाए थे। शिवालय इलेवन की सर्वश्रेष्ठ गेंदबाज और प्लेयर ऑफ ओर से नीरव पटेल 4 ओवर में द सीरीज का पुरस्कार दिया गया।

24 रन देकर 4 महत्वपूर्ण विकट लेकर टीम में जीत की नींव रखी थी। फाइनल मैच के अंत में तटीय क्षेत्र सहकारी समिति के मंत्री रमेशभाई पटेल, मोटावाडा स्पोर्ट्स एसोसिएशन के अध्यक्ष, नवीन पटेल, जूनागम सरपंच भागभाई पटेल, अदानी फाउंडेशन के सीएसआर हेड प्रियेश राठौर, कार्यक्रम प्रबंधक डॉ. आशुतोष ठाकर जैसे गणमान्य व्यक्तियों के हाथों पुरस्कार वितरण किया गया। मैन ऑफ द फाइनल मैच शिवालय इलेवन के नीरव पटेल. ट्रामिंट के सर्वश्रेष्ठ बल्लेबाज

From: April 2022 to September 2022

बाका नेते दहसतों के सबसे में पलता हूं,और देश हैं! नाथ लेकर आगे बढ़ता हूं,बाधा तू मुझसे नकर ना फैरना कभी, इक तू ही हैं किसके सक्तरें में चलता हूँ,11 जब शी श्यास.

संपादकः रजनीश एस.लिल्हा

🛥 यर्षः १०

॥ अंकः २४1

www.atulyahindustan.com

सुरत, मंगलवार, 24 मई, 2022
 पृष्ठ : 8 = मुल्य: 1

चोर्यासी और ओलपाड तानुका के 40 गांवों के 52 टीमों के 780 खिलाड़ियों ने भाग लिया

अदाणी ग्रामीण क्रिकेट टूर्नामेंट में 52 टीमों में जूनागम की शिवालय इलेवन चैंपियन बनी

अस्तुन्य हिन्दुस्तान संवाददाता स्वाददाता स्वाददाता स्वावदाता स्वावद्यां प्रणाने क्षेत्र क्ष्मिन से अध्योग प्रणाने क्षाने द्वारेन्द्र से हो राक है। घोषांची और अस्त्याह सत्ताह्यां के 40 पार्ची की 52 टोमी के लगभग 750 विवाहित्यों से दलामाएं क्ष्मिन द्वारी से में मा दिखा। द्वारीट, नयभेतन हिलेक्ट प्रावंड, जूनमा और अंताबादा क्रिकेट प्रावंड से खेला गया था। अदाग्ये फाइक्टेशन की और से हर खिलाही को एक टिन्टर वे गाई दुर्गिक्ट के फाउडेशन को ओर से हर खिलाड़ी को एक टी-डार्ट दी गई। दुर्नारेट फाइन्स्ट में बिजेता टीम और हारने बाली टीम को उपस्थित गणमान्य व्यक्तियों द्वारा नकद पुरस्कर और द्राफियां प्रदान की गई।

कथा प्रदान का गड़ा इस टुर्नामेंट के आयोजन का मुख्य उदेश्य तटीय क्षेत्र के युवा

खिलादियों और उनके खेल कौशल को बढ़ावा देना और क्षेत्र के गांवों में

प्रकार प्रकार के अपने क्षांत्र के अपने क्षांत्र प्रकार के अपने का निवास के अववाद कर की अववाद कर की अववाद के अव

केविन पटेल ने 37 पेंद्रों में 31 रन वनाप, शिकालय इलेकन के मीरक

અદાણી ફાઉન્ડેશન,હજીરા આયોજિત

અદાશી ગ્રામીણ ક્રિકેટ ટુર્નામેન્ટમાં જૂનાગામની શિવાલય ઇલેવન પર ટીમ વચ્ચે ચેમ્પિયન બની

હજીરાના કાંઠા વિસ્તારમાં અદાણી મળે તથા એ વિસ્તારના ગામો વચ્ચે પ્રામીણ ક્રિકેટ ટુર્નામેંટનો કાર્નિવલ સંવાદ અને એકતા વધે, લોકો વચ્ચે જામ્યોહતો. સમગ્ર ચોર્યાસી અને ખેલદિલી અને પરસ્પર ભાઇચારાની ઓલપાડ તાલુકાના ૪૦ ગામોની પર ભાવનાવિકસાવવાનો રહ્યો છે. ટીમના લગભગ ૭૮૦ ખેલાડીઓએ આ ટુર્નામેન્ટ માં ઉત્સાહભેર ભાગ ટીમોએ ભાગ લીધો હતો અને લીધો હતો. આ ટુર્નામેન્ટનવચેતન ફાઇનલ મેચ શિવાલય ઇલેવન, ક્રિકેટ ગ્રાઉન્ડ, જૂનાગામ જૂનાગામ અને મોરભગવા ઇલેવન અનેમોટાવાડા ક્રિકેટ ગ્રાઉન્ડ ઉપર ટીમ વચ્ચે ૨માઈ રમાઈ હતી. દરેક ખેલાડીને અદાશી મોરભગવાની ટીમે ટોસ જીતી ફાઉન્ડેશન તરફથી ટી-શર્ટ અપાયા શિવાલય ઇલેવનને બેટિંગ આપી હતા. ટુર્નામેન્ટ ની ફાઈનલમાં વિજેતા હતી. શિવાલય ઇલેવને ૨૦ ટીમ અને પરાજિત ટીમને રોકડ ઈનામ ઓવરમાં ૭ વિકેટ ગુમાવી ૧૬૭ રન અને ટ્રોફી ઉપસ્થિત મહાનુભાવોના બનાવ્યા હતા, જેમાંસૌથી વધુ રન હસ્તે એનાયત કરવામાં આવી હતી. ચિરાગ પટેલે ૨૮ બોલમાં ૩૧ રન

યુવારમતવીરો અને એમની રન આપી ૩ વિકેટ લીધી હતી.

સુરત ઃ છેલ્લા દોઢ મહિનાથી રમતગમતના કૌશલ્યને પ્રોત્સાહન

આ ટુર્નામેંટમાં પર સ્થાનિક આ ટુર્નામેન્ટના આયોજનનો કર્યા હતા, મોરભગવા ઇલેવન મુખ્ય હેતુ કાંઠા વિસ્તારના તરફથી કેતનસારંગે૪ ઓવરમાં ૩૫

અદાણી ફાઉન્ડેશન-હજીરાના ઉત્થાન પ્રોજેક્ટ અંતર્ગત

વેકેશનમાં પણ બાળકોને અભ્યાસ સાથે જોડી રાખવાનો ઉમદા પ્રયાસ

હજીરા કાંઠા વિસ્તારની સરકારી પ્રાથમિક શાળાઓના ધો.૪ થી ૮ના બાળકો માટે સમર કેમ્પનું આયોજન

ધબકાર પ્રતિનિધિ,

માણે, મનપસંદ સહઅભ્યાસિક રહી છે. હજીરાકાંઠા વિસ્તારના આઠ શૈક્ષણિક પ્રવૃત્તિઓ પ્રત્યે રૂચિ કેળવે ગામના ધો.૪થી ૮ કુલ ૪૧૨ બાળકો એ માટે શાળા સાથેનું જોડાણ જળવાઇ રહે અને બાળકો વધુ કાર્યદક્ષ બને લઇ રહ્યા છે. તેવા હેતુસર અદાણી ફાઉન્ડેશન દ્વારા ઉત્થાન પ્રોજેક્ટ અંતર્ગત સરકારી પાસેથી વિવિધ પ્રવૃતિ શીખી રહ્યા છે. પ્રાથમિક શાળાઓમાં સમર કેમ્પનું કેમ્પ પૂર્ણ થશે ત્યારે બાળકો દ્વારા આયોજન કરવામાં આવ્યું છે. જેમાં તૈયાર થયેલ નમુનાઓનું પ્રદર્શન બાળકોને અક્ષર સુધારણા (ગુજરાતી, ગોઠવાશે. પ્રદર્શનમા બી.આર. કો-હિન્દી,અંગ્રેજી), ઓરીંગામી, ઓર્ડીનેટર સી.આર.સી., શિક્ષકો, સમૂહવાંચન, પપેટ બનાવવા, અંક શાળા વ્યવસ્થાપન સમિતિના સભ્યો, અને ઘડિયા લેખન, હાથરૂમાલ અને સરપંચો બાળકોને પ્રોત્સાહિત કરશે.

ટીશર્ટપે સ્ટિંગ, શબ્દરમતો. સુરત, તા. ૦૬ પેપરબેગ, ગ્રીટિંગ્સ કાર્ડ બનાવવા જેવી બાળકો વેકેશનને મન મુકીને વિવિધ પ્રવૃતિઓ કરાવવામાં આવી ખુબ ઉત્સાહભેર સમર કેમ્પમાં ભાગ

કેમ્પમાં બાળકો ઉત્થાન સહાયક

From: April 2022 to September 2022

हजीरा कांठा क्षेत्र के शासकीय प्राथमिक विद्यालयों के समर केम्प का आयोजन

अदानी फाउंडेशन ने उत्थान परियोजना के तहत आयोजित समर कैंप के दौरान 412 छात्रों ने उत्साहपूर्वक भाग लिया

लोकतेज संवाददाता

स्रत। गर्मी की छट्टियों में बच्चों की रचनात्मक शक्ति को बढाने का प्रयास किया जा रहा है। समर कैंप के दौरान 412 छात्रों ने उत्साहपूर्वक अभिनव गतिविधियां कीं। कक्षा 4 से 8 के लात्र गीष्म अवकाश में रचनात्मक कार्य करते हुए स्कूल में परीक्षाएं पूरी होने के बाद अब गर्मी की छुट्टी घोषित कर दी गई है। इन दिनों के दौरान छात्र पाठयपस्तकों का अध्ययन नहीं करते बल्कि पाठ्येतर गतिविधियों में संलग्न होते हैं और अपनी रचनात्मक शक्ति को बढ़ाते हैं। अदानी फाउंडेशन ने उत्थान परियोजना के तहत एक ग्रीष्मकालीन शिविर का आयोजन किया है जिसमें छात्र विभिन्न गतिविधियों में लगे हुए हैं। बच्चे छुट्टियों का आनंद लेते हैं, उनकी पसंदीदा सह-पाठयक्रम शैक्षिक गतिविधियों में उनकी रुचि बनी रहती है, बच्चों की जिज्ञासा संतुष्ट होती है, बच्चों में एकता, सहयोग, टीम भावना, चंचलता, धैर्य जैसे गुण विकसित होते हैं, बच्चों में कुशलता का विकास होता है। अदाणी फाउंडेशन ने बच्चों के

सर्वांगीण विकास के लिए उत्थान परियोजना के तहत सरकारी प्राथमिक विद्यालयों में समर कैंप का आयोजन किया है। इस शिविर में पत्र सुधार (गुजराती, हिंदी, अंग्रेजी), ओरिगामी, ग्रुप रीडिंग, कठपुतली बनाना, नंबर और घडियाँ लिखना, रूमाल और टी-शर्ट पेंटिंग, वर्ड गेम, पेपर बेग बनाना, ग्रीटिंग कार्ड बनाना जैसी विभिन्न गतिविधियां की जा रही हैं। समर कैंप में हजीरा कांठा क्षेत्र के आठ गांवों में आठवीं से आठवीं करना क से कुल 412 बच्चे बड़े उत्साह के साथ भाग ले रहे हैं। कैंप में भाग

लेने वाले बच्चे उत्थान सहायक से विभिन्न गतिविधियां सीख रहे हैं। इस समर कैंप के पूरा होने पर बच्चों द्वारा तैयार किए गए नमूनों के युवस्था की जाएगी। यह बच्चों में रचनात्मक प्रवृत्ति को प्रोत्साहित करने और उनमें आत्मविधास पैदा करने के उद्देश्य से आयोजित किया जाएगा पर्यांनी में बी.आर. समन्वयक, सीआरसी, शिक्षक, स्कूल प्रबंधन समित के सदस्य, सरपंचों अभिभावकों को बड़ी संख्या में आमंत्रित किया जाएगा जिससे बच्चों को प्रोत्साहत मिलेगा।

श्री माँ मेलड़ी तांत्रिक

कामकी 151 प्रतिशत गारूरी. लव गुरू अंतिम उपाय (अधुरा प्रेम वशिकरण द्वारा जीवन साथी बनाओं)

ज्योतिष करे बारम बार मेरा काम एक बार

प्रेम में धोरवा खाया, बहन-भाई एक बार कॉल करे. प्रेम लम्न, सौतन मुक्ति, मेली वस्तु, मुठचोट, सासरिया में दुरवी, छुटाछएडा, लव प्रोब्लम, दारू मुक्ति, काला जादु इच्छीत व्यक्ति मिलन, प्रेमी पंरिवडा खास मिले

क्या आपका प्रेमी आपको इंग्लोर कर रहा है माँ मेलडी ने चाहा तो दु:ख भरे आसु किसी को पीने नहीं दुंगा।

सरत. मो. 9672436740

એક ઉમદા પ્રયત્ન વેકેશનમાં પણ બાળકોને અભ્યાસ સાથે જોડી રાખવાનો પ્રયાસ

અદાણી ફાઉન્ડેશન હજીરાના ઉત્થાન પ્રોજેક્ટ અંતર્ગત હજીરા કાંઠા વિસ્તારની સરકારીપ્રાથમિકશાળાઓના ધોરણ ૪થી ૮ના બાળકો માટે સમર કેમ્પનું આયોજન

સુરત,તા.૦૬ બાળકો વેકેશનને મન મૂકીને માશે, બાળકો ની મનપસંદ સહઅભ્યાસિક શૈક્ષણિક પ્રવૃત્તિઓ પ્રત્યે પોતાની રુચિ જળવાયેલીરહે, બાળકોની કુતુહલતા અને જિજ્ઞાસાવૃત્તિ સંતોષાય, બાળકોમાં એકતા,સહકાર,સમૂહભાવના, ખેલદિલી,ધીરજજેવા ગુણોનો વિકાસ થાય, બાળકોમાં કોઠાસૂઝ વિકસે, શાળા સાથેનું જોડાણ

સંતો ખાય, બાળકો માં જળવાઈ રહેઅને બાળકો વધુ એકતા,સહકાર,સમૂહભાવના, કાર્યદક્ષ બને તેવા હેતુસર અદાણી ખેલદિલી,ધીરજજેવા ગુણો નો ફાઉન્ડેશન દ્વારા બાળકોના સર્વાંગી વિકાસ થાય, બાળકોમાં કોઠાસૂઝ વિકાસ સંદર્ભે ઉત્થાન પ્રોજેક્ટ વિકસે, શાળા સાથેનું જોડાણ અંતર્ગતસરકારી પ્રાથમિક શાળાઓમાં સમરકેમ્પનું આયોજન કરવામાં આવ્યું છે. આ કેમ્પમાં બાળકોને અક્ષર સુધારણા (ગુજરાતી, હિન્દી, અંગ્રેજી), ઓરીગામી, સમૂહ વાંચન, પપેટ બનાવવા,અંક અને

ઘડિયા લેખન,હાથરૂમાલ અને ટીશર્ટ પેન્ટિંગ, શબ્દ રમતો, પેપર બેગ, ગ્રીટિંગ્સ કાર્ડ બનાવવાજેવી વિવિધ પ્રવૃતિઓ કરાવવામાં આવી રહી છે.

BluntTimes®

અદાણી ફાઉન્ડેશન દ્વારા હજીરાના કાંઠા વિસ્તારના ગામોમાં વિવિધ વિકાસ કાર્યો કરાયા

ભટલાઇ, દામકા અને સુવાલી ખાતે તળાવ ઉડા કરવાની કામગીરી સહિત મોરા સર્કલથી ગામ સુધી ફેન્સીંગ અને વૃક્ષારોપણ કરવામાં આવ્યું

ધબકાર પ્રતિનિધિ, સુરત, તા. ૦૬

અદાણી ફાઉન્ડેશન હજીરા કાંઠા વિસ્તારના અને ગામોમાં આરોગ્ય, શિક્ષણ, તાલીમ અને માળખાગત સુવિધાના વિકાસને લગતી અનેક પ્રવૃતિ સાથે સંકળાયેલું છે. અદાણી ફાઉન્ડેશન ભારતના વિવિધ પ્રદેશોમાં સમુદાયના ટકાઉ આજીવિકા વિકાસમાં સંકળાયેલું હોવાથી વિવિધ કામગીરી માટે વિનંતી આવતી હોય છે. એ અંતર્ગત જ હજીરાના કાંઠા વિસ્તાર મોરા, ભટલાઇ, દામકા, સુવાલી ગામમાંથી આવેલી વિવિધ વિનંતીની કામગીરી તાજેતરમાં જ પૂર્ણ થઇ છે.

સુરતના ચોર્યાસી તાલુકામાં મહત્તમ ગામો દરિયાકાંઠે છે એથી ભૂગર્ભ જળ ખાડું હોવાથી સિંચાઇ હેતુ માટે તેનો ઉપયોગ કરી શકાતો નથી. મોટાભાગના વિસ્તારોમાં સિંચાઇ માટે તાજા પાણીની પહોંચ પડકારજનક મુદ્દો છે. વરસાદને સાચવવો અને ચોમાસા પછી સિંચાઇ

માટે તેનો ઉપયોગ કરવો પ્રદેશો માટેનો એક ઉપાય છે. સરકાર 'આઝાદી કા અમૃત મહોત્સવ' અંતર્ગત તળાવ ઉડા કરવાનું પણ આયોજન કરી રહી છે. અદાણી ફાઉન્ડેશનને ગ્રામ પંચાયત તરફથી મળેલી વિનંતીને આધારે હજીરા વિસ્તારના દામકા, સુવાલી અને ભટલાઇ ગામમાં નવા ૦૩ તળાવ બનાવવાની કામગીરી ચોમાસા અગાઉ કરી હતી. એક તળાવની ક્ષમતા લગભગ ૨૦,૦૦૦ ઘન મીટર જેટલી છે. જેનો ઘરેલું, સિંચાઇ હેતુ અને પશુઓ માટે ઉપયોગ કરી શકશે. આખરે તો પાણી આ વિસ્તારના લોકોની આર્થિક સ્થિતિને સુધારવામાં મદદ કરશે. ઉપરાંત ભૂગર્ભ જળને રિચાર્જ કરશે અને તેની ગુણવત્તામાં પણ સુધારો કરશે.

હજીરાના કોંઠા વિસ્તારમાં મોરા ગામ અને એની મધ્યનો બજાર મહત્વનો છે. મોરા ગામના મુખ્ય રસ્તાની બંને બાજુ દુકાનો છે અને ફેરિયાઓ ફળ-શાકભાજી

વેચવા માટે બેસે છે. રસ્તાને જુદું પાડતું રોડ ડિવાઇડર ખુલ્લુ હતું એની ઉપર કોઇ ફેક્ષિળંગ ન હતી. જેથી ફેરિયાઓ આ ડિવાઇડરની વચ્ચે કચરો નાખી જતાં તેથી રખડતા પશુઓ આવી ચઢતા હતા. તેમજ લોકો પણ રસ્તો ક્રોસ કરવા માટે આ ડિવાઇડર ઓળંગીને જતાં. અનેક વખત અહી નાના-મોટા અકસ્માતો, ટ્રાફિક જામ જેવી અનેક સમસ્યાઓ હતી. આ બધા કારણોસર મોરા ગામના સરપંચે એક વિનંતી અનુસાર મુખ્ય માર્ગ ઉપર આવેલા રોડ ડિવાઈડરને વ્યવસ્થિત કરીને એની ઉપર નવી ફેહ્નિળંગ કરી આપવાની રજૂઆત કરી હતી. તેથી મોરા ગામના મુખ્ય માર્ગ ઉપરના ડિવાઇડરની ઉપર નવી અને મજબૂત રેલિંગ બનાવી વૃક્ષારોપણ કરી પર્યાવરણને ઉપયોગી થઇ સુશોભનનું પણ કાર્ય કરવામાં આવ્યું છે. નવા ડિવાઇડર સુંદર થયાની સાથે મુખ્ય માર્ગ પર અકસ્માતના જોખમમાં પણ નોંધપાત્ર ઘટાડો કરશે.

Annexure-3: Compliance Status of EMP as mentioned in the Integrated EIA Report, Sep. 2012:

S.	EMP Conditions	Compliance Status as on 30 th September				
No.	AC DED TERRECTRIAL FAULTROAMACAITAL MADACT	2022				
ı.	AS PER TERRESTRIAL ENVIRONMENTAL IMPACT ASSESSMENT REPORT: -					
Α	CONSTRUCTION PHASE:-					
1.	Dredged Soils Management Plan:	Complied.				
	AHPL has been permitted to dredge about 37 million	No disposal was done till date. All the				
	cubic meter of soil, which shall be reused for backfilling	dredging material was utilized for level				
	in the project site. The dredged soil samples will be	raising, reclamation.				
	collected and analysed periodically for designated	If any excess material generated will be				
	pollutants as per the recommendations of statutory	disposed of at the location already approved				
	authorities.	by the MoEF&CC.				
2.	Air Quality Management:	Being Complied				
	Fugitive dust will be generated during construction	Water sprinkling was being done on haulage				
	phase of the project due to handling of wet dredged and	roads on regular basis.				
	excavated soils. Dust control program will be					
	implemented to reduce the dust generation during					
	construction at project site. Water sprinkling will be					
	adopted on haulage roads and construction site.					
3.	Noise Control Programs:	Complied				
	1. Onsite fabrication activities should be undertaken at	Fabrication activities was done at a				
	a designated location, which should be located away	designated location away from the office				
	from the office buildings and any other working areas.	buildings and working areas.				
	2. In case noise emissions from the fabrication activities	Complied				
	exceed a level of 85 dB (A) at the fence-line of the	Noise level was below 85 dB(A) during the				
	fabrication yard, temporary noise barrier can be	fabrication. Currently no fabrication activities				
	installed.	are going on.				
	3. Portable diesel engine generators and diesel engine	Complied.				
	driven compressors, if any, should be covered with noise	In-built noise enclosures are available in				
	enclosures.	portable diesel engine generators and diesel				
		engine driven compressors to reduce the				
		noise level.				
4.	Sewage Management Program:	Being Complied				
	Sewage generated from the construction site will be	Sewage generated from the construction site				
	treated in modular STP and shall be used for green belt	is being treated in STP and treated water is				
	development / landscaping after achieving prescribed	being used for greenbelt development.				
-	standards by GPCB.	Pains Complied				
5.	Solid and Hazardous Waste Management Program:	Being Complied				
	The solid waste generated should be segregated and	All the wastes are being segregate at source				
	categorized under various rules such as HWM 2008,	and handled as per applicable rules/				
	SWM 2000, the Batteries Rules 2001 including	guidelines and disposed off through GPCB				
	processing of used oil by authorized recyclers should be	approved agency.				
	carried out by the rules and procedures prescribed by					
	CPCB and also meet the requirements of GPCB.					

From: April 2022 to September 2022

iii. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper Complied. Following control measures are effectively working at port to condust: - 1. Transportation of coal from storage yard through 1. conveyor belt with hood. 2. Water sprinklers in the coal 3. Dust Suppression System / 3 in Conveyor System an Chute, 4. Water spray through Water 5. Water Mist Canon / Fog System 1. Somplied. Following control measures are effectively working at port to condust: - 1. Transportation of coal from storage yard through 1. conveyor belt with hood. 2. Water sprinklers in the coal 3. Dust Suppression System / 3 in Conveyor System an Chute, 4. Water spray through Water 5. Water Mist Canon / Fog System 5. Water Mist Canon / Fog System 5.					
It has been recommended to adopt soil stabilization plans and storm water sedimentation basins to control the silt before discharging the storm water into sea. 7. Sanitation: The facilities presently available with the nearby villages will continued to be used during construction activities and no major sanitation problem is expected during construction period. The workers at the project site will be provided with proper sanitation arrangement. 8. OPERATION PHASE: 1. Air Quality Management: 1. Retrofitting the old equipment to meet the vehicular emission standards. 2. All the vehicles and equipment will be certified with PUC norms shall be deployed. 8. Standby Diesel Generators: DG Sets will be operated on clean diesel fuel with sulphur content less than 0.5%. Minimum stack height of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. 8. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper					
plans and storm water sedimentation basins to control the silt before discharging the storm water into sea. 7. Sanitation: The facilities presently available with the nearby villages will continued to be used during construction activities and no major sanitation problem is expected during construction period. The workers at the project site will be provided with proper sanitation arrangement. 8. OPERATION PHASE: 1. Air Quality Management: 1. Cargo-Handling Equipment: 2. All the vehicles and equipment to meet the vehicular emission standards. 2. All the vehicles and equipment will be certified with PUC norms shall be deployed. 8. Differentiation of the project site will be provided to dequipment to meet the vehicular emission standards. 2. All the vehicles and equipment will be certified with PUC norms shall be deployed. 8. Differentiation of the project site will be provided to generate on the puckets and equipment of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. 8. Differentiation of the project site will be provided to dequipment. 8. Design Complied All the deployed vehicles and endicate of the puckets are being operated or prower failure, DG are operated on class of the provided the adequate are being provided the adequate are	developed to				
The facilities presently available with the nearby villages will continued to be used during construction activities and no major sanitation problem is expected during construction period. The workers at the project site will be provided with proper sanitation arrangement. B. OPERATION PHASE: 1. Air Quality Management: 1. Retrofitting the old equipment to meet the vehicular emission standards. 2. All the vehicles and equipment will be certified with PUC norms shall be deployed. 3. Standby Diesel Generators: DG Sets will be operated on clean diesel fuel with sulphur content less than 0.5%. Minimum stack height of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. 3. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper (50 millow). 3. Complied Proper sanitation arrangem available for workers at project: available for workers at project side will be provided suit project side will be provided with project side will be provided with project side with sulphur content sides for project side with project side with sulphur content sides for project sides for workers at project side w	reveloped to				
7. Sanitation: The facilities presently available with the nearby villages will continued to be used during construction activities and no major sanitation problem is expected during construction period. The workers at the project site will be provided with proper sanitation arrangement. B. OPERATION PHASE: - 1. Air Quality Management: 1. Retrofitting the old equipment to meet the vehicular emission standards. 2. All the vehicles and equipment will be certified with PUC norms shall be deployed. 3. All the vehicles and equipment will be certified with sulphur content less than 0.5%. Minimum stack height of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. 3. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper Complied. Proper sanitation arrangem available for workers at projects available for workers at projects available for workers at projects available for workers at projects.					
The facilities presently available with the nearby villages will continued to be used during construction activities and no major sanitation problem is expected during construction period. The workers at the project site will be provided with proper sanitation arrangement. B. OPERATION PHASE: - 1. Air Quality Management: 1. Retrofitting the old equipment to meet the vehicular emission standards. 2. All the vehicles and equipment will be certified with PUC norms shall be deployed. 3. Standby Diesel Generators: DG Sets will be operated on clean diesel fuel with sulphur content less than 0.5%. Minimum stack height of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. 3. Pugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper The management of AHPL has proposed to adopt the following control measures are effectively working at port to consider the following control measures are effectively working at port to consider the following control measures are effectively working at port to consider the following control measures are effectively working at port to conveyor belt with hood. 2. Water sprinklers in the coal church, water spray through Water in Conveyor System of the following control measures are effectively working at port to conveyor belt with hood. 3. Dust Suppression System / to conveyor belt w					
will continued to be used during construction activities and no major sanitation problem is expected during construction period. The workers at the project site will be provided with proper sanitation arrangement. B. OPERATION PHASE: - 1. Air Quality Management: i. Cargo-Handling Equipment: 1. Retrofitting the old equipment to meet the vehicular emission standards. 2. All the vehicles and equipment will be certified with PUC norms shall be deployed. ii. Standby Diesel Generators: DG Sets will be operated on clean diesel fuel with sulphur content less than 0.5%. Minimum stack height of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. iii. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water into the air. The name fog is just what it implies small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper will be provided with proper sanitation arrangement. Being Complied All the deployed vehicles and ed PUC certified. All the deployed vehicles and ed PUC certified. DG Sets are being operated on power failure, DG are operat diesel fuel with sulphur conte diesel fuel with DG Sets are being operated or boset are being completed DS sets are being operated or boset are being completed are being completed. Complied. Following control measures are effectively working at port to conveyor belt	ents were				
and no major sanitation problem is expected during construction period. The workers at the project site will be provided with proper sanitation arrangement. B. OPERATION PHASE: - 1. Air Quality Management: 1. Retrofitting the old equipment to meet the vehicular emission standards. 2. All the vehicles and equipment will be certified with PUC norms shall be deployed. ii. Standby Diesel Generators: DG Sets will be operated on clean diesel fuel with sulphur content less than 0.5%. Minimum stack height of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. iii. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper					
construction period. The workers at the project site will be provided with proper sanitation arrangement. B. OPERATION PHASE: - 1. Air Quality Management: 1. Retrofitting the old equipment to meet the vehicular emission standards. 2. All the vehicles and equipment will be certified with PUC norms shall be deployed. ii. Standby Diesel Generators: DG Sets will be operated on clean diesel fuel with sulphur content less than 0.5%. Minimum stack height of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. iii. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper					
B. OPERATION PHASE: - 1. Air Quality Management: 1. Retrofitting the old equipment to meet the vehicular emission standards. 2. All the vehicles and equipment will be certified with PUC norms shall be deployed. ii. Standby Diesel Generators: DG Sets will be operated on clean diesel fuel with sulphur content less than 0.5%. Minimum stack height of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. iii. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper Being Complied All the deployed vehicles and expuce verified with PUC certified. All the deployed vehicles and expuce verified with PUC certified. All the deployed vehicles and expuce verified with PUC certified. Being Complied G Sets are being operated or diesel fuel with sulphur conte diesel fue					
B. OPERATION PHASE: - 1. Air Quality Management: i. Cargo-Handling Equipment: 1. Retrofitting the old equipment to meet the vehicular emission standards. 2. All the vehicles and equipment will be certified with PUC certified. 3. All the vehicles and equipment will be certified with PUC norms shall be deployed. 5. Standby Diesel Generators: DG Sets will be operated on clean diesel fuel with sulphur content less than 0.5%. Minimum stack height of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. 5. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper Being Complied All the deployed vehicles and ex PUC certified. Being Complied DG Sets are being operated or power failure, DG are operat diesel fuel with sulphur conted are being provided as per CPCB, to disperse the gases into the diesel fuel with sulphur conted diesel fuel with sulphur diesel fuel with sulphur conted diesel fuel with sulphur diesel fuel w					
1. Air Quality Management: i. Cargo-Handling Equipment: 1. Retrofitting the old equipment to meet the vehicular emission standards. 2. All the vehicles and equipment will be certified with PUC norms shall be deployed. ii. Standby Diesel Generators: DG Sets will be operated on clean diesel fuel with sulphur content less than 0.5%. Minimum stack height of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. iii. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper Being Complied. All the deployed vehicles and expuccionary and all the deployed vehicles and expuccionary and expuccionary and expuccionary and expuccionary and expuccionary and expuccionary and bruch at the deployed vehicles and expuccionary and expuccionary and expuccionary and bruch at the deployed vehicles and expuccionary and expuccionary and expuccionary and expuccionary and expuccionary are being provided as per CPCB, to disperse the gases into the accomplication of the provided das per CPCB, to disperse the gases into the accomplication of the accomplic					
i. Cargo-Handling Equipment: 1. Retrofitting the old equipment to meet the vehicular emission standards. 2. All the vehicles and equipment will be certified with PUC norms shall be deployed. ii. Standby Diesel Generators: DG Sets will be operated on clean diesel fuel with sulphur content less than 0.5%. Minimum stack height of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. iii. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper Being Complied All the deployed vehicles and energy PUC certified. Being Complied DG Sets are being operated on opwer failure, DG are operated on opwer failure, DG a					
1. Retrofitting the old equipment to meet the vehicular emission standards. 2. All the vehicles and equipment will be certified with PUC norms shall be deployed. ii. Standby Diesel Generators: DG Sets will be operated on clean diesel fuel with sulphur content less than 0.5%. Minimum stack height of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. iii. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper					
emission standards. 2. All the vehicles and equipment will be certified with PUC norms shall be deployed. ii. Standby Diesel Generators: DG Sets will be operated on clean diesel fuel with sulphur content less than 0.5%. Minimum stack height of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. iii. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper	uipment are				
2. All the vehicles and equipment will be certified with PUC norms shall be deployed. ii. Standby Diesel Generators: DG Sets will be operated on clean diesel fuel with sulphur content less than 0.5%. Minimum stack height of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper Being Complied DG Sets are being operated or power failure, DG are operat diesel fuel with sulphur conted acre being provided as per CPCB, to disperse the gases into the diesel fuel with sulphur conted diesel fuel with sulphu					
ii. Standby Diesel Generators: DG Sets will be operated on clean diesel fuel with sulphur content less than 0.5%. Minimum stack height of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. iii. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper					
ii. Standby Diesel Generators: DG Sets will be operated on clean diesel fuel with sulphur content less than 0.5%. Minimum stack height of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. iii. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper Being Complied DG Sets are being operated or diesel fuel with sulphur conted on.5% and provided the adequate are being provided as per CPCB, to disperse the gases into the at Complied. Following control measures are effectively working at port to consumpt to conveyor belt with hood. 2. Water sprinklers in the coal 3. Dust Suppression System / 1. Transportation of coal from storage yard through 1. Conveyor System and Chute, 4. Water spray through Water in Conveyor System and Chute, 5. Water Mist Canon / Fog System on System requiring bundreds of nozzles, e.g.: A large stockpile tripper					
DG Sets will be operated on clean diesel fuel with sulphur content less than 0.5%. Minimum stack height of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper DG Sets are being provided or power failure, DG are operated or power failure, DG are operated or power failure, DG are operated on the power failure, DG are operated diesel fuel with sulphur conted diesel fuel with s					
sulphur content less than 0.5%. Minimum stack height of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper	ly in case of				
of 30m will be provided to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper diesel fuel with sulphur conted 0.5% and provided the adequate are being provided the acquate are being provided the acquate are being provided the adequate are being provided the acquate are being provided the accupants are being provided to disperse the gases into the at the disperse the gases into the at the disperse the gases into the at the disperse the gases into the are being provided to disperse the gases into the are being provided to disperse the gases into the are being provided to disperse the gases into the are being provided to disperse the gases into the are being provided to disperse the gases					
atmosphere as per the guidelines suggested by Central Pollution Control Board. iii. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper 0.5% and provided the adequate are being provided as per CPCB, to disperse the gases into the at Complied. Following control measures are effectively working at port to condust: - 1. Transportation of coal from storage yard through 1. conveyor belt with hood. 2. Water sprinklers in the coal 3. Dust Suppression System / 9 in Conveyor System an Chute, 4. Water spray through Water 5. Water Mist Canon / Fog System 1.					
Pollution Control Board. iii. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air already adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper Complied. Following control measures are effectively working at port to condust: - 1. Transportation of coal from storage yard through 1. conveyor belt with hood. 2. Water sprinklers in the coal 3. Dust Suppression System / 9 in Conveyor System an Chute, 4. Water spray through Water 5. Water Mist Canon / Fog System 1.					
iii. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper Complied. Following control measures are effectively working at port to condust: - 1. Transportation of coal from storage yard through 1. conveyor belt with hood. 2. Water sprinklers in the coal 3. Dust Suppression System / 3 in Conveyor System an Chute, 4. Water spray through Water 5. Water Mist Canon / Fog System 1. Suppression System and Chute, 4. Water Spray through Water 5. Water Mist Canon / Fog System 1.	_				
iii. Fugitive Coal Dust Control Program: The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper Complied. Following control measures are effectively working at port to condust: - 1. Transportation of coal from storage yard through 1. conveyor belt with hood. 2. Water sprinklers in the coal in Conveyor System an Chute, 4. Water spray through Water System Mater Shield of 14 median in Conveyor System Syste	to disperse the gases into the atmosphere.				
The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper Following control measures are effectively working at port to conduct: - 1. Transportation of coal from storage yard through 1. conveyor belt with hood. 2. Water sprinklers in the coal 3. Dust Suppression System / 3. in Conveyor System an Chute, 4. Water spray through Water 5. Water Mist Canon / Fog System 1.					
following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper effectively working at port to condust: - 1. Transportation of coal from storage yard through 1. conveyor belt with hood. 2. Water sprinklers in the coal 3. Dust Suppression System an Chute, 4. Water spray through Water 5. Water Mist Canon / Fog System 1.	in place and				
 a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper dust: - 1. Transportation of coal from storage yard through 1. 2. Water sprinklers in the coal 3. Dust Suppression System / 1 in Conveyor System an Chute, 4. Water spray through Water 5. 5. Water Mist Canon / Fog System 1. 					
technique to control dust is " Dry Fog " system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper 1. Transportation of coal from storage yard through 1. 2. Water sprinklers in the coal 3. 3. Dust Suppression System / 3. in Conveyor System an Chute, 4. Water spray through Water System water spray through Water System of System Programment Countries of the coal 3. 5. Water Spray through Water System Programment Countries of System Programment Cou					
suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper storage yard through 1. Conveyor belt with hood. 2. Water sprinklers in the coal in Conveyor System an Chute, Water spray through 4. Water spray through 1.	ietty to coal				
what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper conveyor belt with hood. 2. Water sprinklers in the coal in Conveyor System an Chute, 4. Water spray through Water injected into conveyor belt with hood. 5. Water sprinklers in the coal in Conveyor belt with hood. 6. Water sprinklers in the coal in Conveyor System / Since the coal in Conveyor System in Conveyor belt with hood. 7. Water sprinklers in the coal in Conveyor belt with hood. 8. Water sprinklers in the coal in Conveyor System / Since the coal in Conveyor System in Conveyor belt with hood. 8. Water sprinklers in the coal in Conveyor belt with hood. 9. Water sprinklers in the coal in Conveyor belt with hood. 9. Water sprinklers in the coal in Conveyor System / Since the coal i					
the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper 2. Water sprinklers in the coal 3. Dust Suppression System / 5. Chute, 4. Water spray through Water 5. Water Mist Canon / Fog System 1.	_				
droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper 3. Dust Suppression System / 5. Water System and Chute, 4. Water spray through Water 5. Water Mist Canon / Fog System / 5. Wind Brake Shield of 14 med	yard,				
adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper in Conveyor System an Chute, 4. Water spray through Water System requiring the water of the water of the water and conveyor system and the conve					
fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper 6. Wind Brake Shield of 14 me	d Discharge				
pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper 6. Wind Brake Shield of 14 me					
low between 2 to 3 kW for a system requiring 5. Water Mist Canon / Fog System hundreds of nozzles, e.g.: A large stockpile tripper 6. Wind Brake Shield of 14 me	Browsers,				
hundreds of nozzles, e.g.: A large stockpile tripper 6. Wind Brake Shield of 14 me					
convoyer, giving considerable enerating cost savings 1000 meters long					
conveyor - giving considerable operating cost savings 1900 meters long,	_				
when compared to other techniques, The sprinkler 7. Transportation of cargo f	om port to				
droplet sizes should be maintained less than 100 hinterland is being do	ne through				
microns. dumpers / trucks covered w	_				
b. Sprinklers: Once stockpiled, water can be sprayed on 8. Regular cleaning of the ro					
the stockpiles to keep them damped down. Road Sweeping Machines, a					
Swivelling sprinklers should be used along the 9. Company has set up dedicate					
lengths of the stockpile with caution, however, as the area for plantation at peripl	_				
volume of water required can be significant, causing plantation / landscaping					
drainage and run-off treatment problems. greenbelt area develope					
approx. 78.79 ha withi					
premises.	•				
2. Noise Control Program: Complied.					

From: April 2022 to September 2022

The following source noise control plans have been • suggested: -

- > Covering of sound intensive components with insulation.
- Using noise absorbing building materials if required for housing compressors and diesel generators etc. as per the guidelines suggested by Central Pollution Control Board.
- Adopting low noise driving (Eco-driving)
- Using silent exhaustion pipes for major diesel engine vehicles and heavy trucks operated inside the port.
- > Planting trees which act as barrier to arrest dispersion of noise levels.
- Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible.

- All the sound intensive components (DG Set and Compressor) are with acoustic enclosures.
- Green belt development is in progress.
- All RTGs and Quay Cranes are electricity operated.

Waste Water Management:

Port handling operations would generate wastewater from the following sources: -

- 1. Ship ballast water,
- 2. Ship deck wastewater including sewage,
- 3. Rejects from desalination plant,
- vehicle maintenance shop 4. Workshop and wastewater,
- 5. Leachate from coal stock yard,
- 6. Floor cleaning and tank cleaning wastewater from the liquid tank farm.
- 7. Sewage from port facilities. The proposed wastewater treatment and reuse program has been presented hereunder: -

A variety of vessels use the waters within the port, including bulk coal ships, tugs and line boats. Discharges from bulk ships are not expected to occur within the port because these large ships normally have on-board storage and sewage treatment plants, allowing discharge of treated effluent at sea as per the provision of MARPOL.

- Except monsoon, leachate from coal stock yard is Dedicated coal dump pond is provided to not envisaged. However small quantities, if any, will be treated in the effluent treatment plant. Wastewater from vehicle work-shops will also be treated in the proposed onsite effluent treatment
- > As far as possible all chemical spills at liquid No spill has occurred till date. If, spills handling facilities will be treated with dry spill absorbing material and water will not be used. Spillage if any occurs will be treated in a dedicated onsite wastewater treatment plant, plantation purpose. which consists of an oil removal unit, primary chemical treatment unit and biological treatment

Being Complied

- AHPL is not accepting Ballast/ Sewage water from Ships.
- Desalination plant not yet installed.
- There is no effluent generation from workshop. Vehicle maintenance is not done in port premises.
- There is no leachate from dump pond.
- Tank cleaning wastewater is being treated into ETP.
- Domestic waste water is being treated in the STP and then used for horticulture purpose within the port premises.

Complied.

collect the runoff (if any) from coal yard and it is further reused for dust suppression purpose into coal yard.

Complied with.

occurred, spilled material/chemical will be treated into ETP and treated wastewater will be reused in greenbelt development /

From: April 2022 to September 2022

units followed by activated carbon unit. Biologically treated wastewater will be further treated in the central sewage treatment plant. Treated wastewater will be used for dust suppression and horticulture applications at the facility. No treated wastewater will be discharged outside the port facilities.

Storm Water Management Plan:

> Storm water from the coal stockpile area will be Garland drain for all bulk storage facilities are passed through a series of sediment traps to remove provided to avoid silting into the marine ecothe majority of the coal sediment before discharging system. Storm water from the coal stockpile into the natural drains. It has been proposed to construct a garland drain for all bulk storage facilities | the coal sediment. to avoid silting into the marine eco-system.

All liquid storage tanks will be provided with dykes to **Complied**. avoid any cross contamination of storm water from chemical spills. Storm water drains shall be designed in order to avoid any flooding of the coal stock yard and liquid chemical tank farm areas.

Solid and Hazardous Waste Management:

> Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel scrap etc.

> All the hazardous wastes and solid wastes such as Oil All the wastes are segregated at source and containing cargo residue, Chemical containing cargo residue and sludge, contaminated cotton waste, spent exchange resin and ETP Sludge, etc. shall be segregated at source and stored at the earmarked

- Recyclable wastes will be collected and disposed to **Complied**. waste recycling vendors through certified recyclers Recyclable waste is being collected and wherever applicable.
- > Hazardous wastes include contaminated chemical spills, spent dry adsorbing spill absorbing material used for large marine and onshore chemical spills, used lubricating oils and greases. The chemicals spill inventories and spent dry absorbing material will be stored in a dedicated onsite tank and will be disposed to authorized hazardous waste incinerators.

Complied

area is collected into dump ponds to remove

All liquid storage tanks are provided with dykes to avoid any cross contamination of storm water from chemical spills. Storm water drains and effluents drains are separate.

Complied.

- Solid wastes generated during port development i.e.: construction demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in greenbelt/plantation.
- Packaging materials generated from the cargo handling i.e.: Wood, Paper/Carton, Steel Scrap, Plastic/Tarpaulin etc. are collected and sold out to recyclers.

Complied.

stored at a dedicated Hazardous Waste storage shed/yard.

disposed of through CPCB/GPCB registered recyclers.

Complied.

No spill has occurred till date.

From: April 2022 to September 2022

- Spent lube oils and greases will be disposed to Complied. authorized used oil recycling vendors.
- > A dedicated and completely enclosed shed will be recyclers. identified to store the hazardous wastes in order to avoid any cross contamination from storm water.
- All the waste should be segregated, collected, categorized as per the HWM Rules 2008, SWM Rules 2000 and Batteries Rules 2001 prescribed by CPCB under Environmental Protection Act, 1986.

Greenbelt and Plantation:

- > AHPL will develop thick green belt plantation in and around the proposed project facility covering 81.27 Ha. Efforts will be taken to increase the green cover in and around the project boundary using local species with a view to ameliorating project related disturbances and enhancing the ecological value of the area. Greenbelt would be developed as per the CPCB guidelines.
- > A capital cost of Rs. 1.62 Crore and an annual recurring budget of Rs. 0.65 Crore will be earmarked for this purpose.

Community Development Plan:

AHPL has identified focused areas for community development and implement developmental program. The identified activities under CSR program are as follows: -

- 1. Infrastructure development for educational facilities like building of schools, computer rooms, multipurpose activity halls
- 2. Supporting education through distribution of stationary, scholarships, science kits, bicycles to children, conducting education camps, competitions.
- 3. Strengthening the community health by arranging health camps, AID awareness camps, providing financial support to senior citizens and poor people, building dispensaries and mobile dispensaries.
- 4. Improvement of rural sanitation by conducting mass helping villagers awareness campaign, constructing and maintaining household toilets, school toilets.
- 5. Improvement in animal husbandry and agriculture by arranging camps for farmers and cattle owners, conducting programs to use new irrigation technologies, organic farming, and free fodder supply.
- 6. Organizing need based skill development program to women and youth for their empowerment.
- 7. Rural infrastructure development by construction of rainwater harvesting ponds, check dams, roads, bus

Recyclable wastes is being collected and disposed off through CPCB/GPCB registered

Complied.

All the wastes are stored at a dedicated hazardous waste storage shed/yard.

Being Complied

All the wastes are being segregate at source and handled as per applicable rules/ guidelines.

Complied

Company has set up dedicated greenbelt area for plantation at periphery / avenue plantation / landscaping etc. Total greenbelt area developed so far is approx. 78.79 ha till 30th September 2022.

Horticulture budget for FY 2022-23 is Rs. 169 Lakhs and expenditure during compliance period is INR 54.23 Lakhs.

Complied.

- CSR activities carried out by Adani Foundation in four verticals i.e.: - (1) Education, (2). Community Health, (3). Sustainable Livelihood and (4). Rural Infrastructure Development.
- Detail of the CSR activities along with budgetary provisions and progress are regularly submitted to MoEF & CC as part of six monthly compliance reports.
- Please refer the Annexure-2 for the status of the CSR activities during the compliance period Financial Year: 2021-22. The total Expenditure in CSR activities in the Compliance period is INR 162.85 Lacs.

S.NO	FY	Budget (In INR Lacs)	Expenditure (In INR Lacs)
1	2019-	330.53	265.75
	20		
2	2020- 21	255.13	223.61
3	2021- 22	668.89	469.35

From: April 2022 to September 2022

stops, drainage systems, fish landing shed, solar street lamps.

AHPL has committed to spend about Rs. 8.21 Crore in the first five years of the operation towards rural upliftment and community development programs and tentative budget has been presented in the below table - Budgeted Expenditure for CSR and Community Development Activities:-

S. No.	Descriptions	Budgeted Amount For 1st 5 year Period (Amount rupees in Crore)
1	Education	2.29
2	Community Health	1.18
3	Sustainable Livelihood Activities	1.43
4	Rural Infrastructure Development	2.04
5	Entry Point Activities	1.27
	Total	8 21

II. MARINE ENVIRONMENT MANAGEMENT PLAN:

CONSTRUCTION PHASE: -

- The dredge spoil generated during capital dredging | Complied. will be used for land reclamation for the port No disposal has been done till date. All the development and associated utilities.
- > Unused dredged material will be disposed off at raising, reclamation. approved dump sites to the north of port area Complied including dredged soil generated through If any excess material generated will be maintenance dredging.
- Appropriate dredging methodology shall be adopted by the MoEF&CC. to control the generation of high levels of suspended solids. If the suspended solids concentration increases, the dredging operation should be stopped till the normal conditions are achieved.
- > General clean up along the corridor used for construction related activities, adjacent intertidal areas, creeks etc. should be undertaken and all the Being Complied. discarded materials must be removed from the site | Clean up of the area is regularly being done. and aesthetic quality of the surroundings to be restored, once the construction activities are completed.

OPERATION PHASE: -

during port operation: -

- > Sewage generated from the port operations will be treated in sewage treatment plant and treated water shall be used for horticulture and green belt Complied. development.
- ➤ All the solid waste generated from the port will be per the applicable rules. properly segregated, stored and disposed as per the applicable statutory requirement.
- All the structures shall be designed in such a way that any of our activity. it should not restrict the prevailing tidal ingress in the

dredging material is being utilized for level

disposed of at the location already approved

Noted & Being Complied

Monitoring of turbidity level in the sea water is being done and there is no abnormal increase observed.

Complied.

The following mitigation measures are recommended Sewage generated from the port operations is being treated in STP and treated water is being used for horticulture and green belt development.

All the solid waste generated from the port is properly segregated, stored and disposed as

Being Complied

Free flow to the mangrove is not restricted by

From: April 2022 to September 2022

creek and mangrove habitats in the vicinity to ensure good health condition.

Coastline between Suwali Point and Tapti Estuary mouth and around the port area will be periodically surveyed to assess erosion and accretion. Should the need arises the corrective action in terms of shore stabilization shall be undertaken.

- ➤ All the minor and major spillages of chemicals will be effectively controlled with appropriate tools and equipments.
- An oil/chemical spill management plan shall be evolved and be in place for tier-1 (100t) and tier-2 (700t) spills in consultation with Gujarat Maritime Board/Coast Guard.
- All the marine outfall shall meet the Gujarat Pollution Control Board Effluent Discharge Criteria for Seawater Disposal Standards.
- Monitoring of water area of the port and effluent disposal sited shall be studied for pH and Corg, Suspended Solids, DO, BOD in order to identify for deviations if any from the baseline environmental quality.
- The mitigation measures suggested for effluent release and maintaining of effluent disposal sites should also be adopted for effluent release by NIKO should be implemented.

Complied.

Shoreline change study was conducted by NIO, Vizag during the period from November, 2014 to December, 2015. Study confirms that there is no significant change in the nearby shoreline except for the approved layout of the AHPL. The report did not warrant any mitigation measures.

Noted and Being Complied.

Shoreline Change Assessment in the port boundary and nearby the area of 10 km radius is conducted by Gujarat Institute of Desert Ecology. The report is attached herewith as Annexure ...

There is no oil spill till date.

Complied.

Oil Spill Contingency Plan has been prepared and the same was approved/vetted by Indian Coast Guard (Letter No.: 7563, dated 09.01.2014).

Noted and Being Complied

No effluent is being discharged.

Complied.

Please refer the <u>Annexure-4D</u> for the Sea Water Quality Monitoring / Analysis Reports for the compliance period April 2022 to September 2022

AHPL is not discharging any effluent outside the port premises.

From: April 2022 to September 2022

ANNEXURE-4

Environmental Monitoring / Analysis Results For The Period From April 2022 to September 2022

AMBIENT AIR QUALITY MONITORING (APRIL - 2022 TO SEPTEMBER - 2022): -

Table-1.1: Ambient Air Quality Monitoring Results At Near Port Gate No.: 2

CON PO	UCON POLLUCON PO	Location-1: Near Port Gate No.: 2 (N 21° 05.426'E 72° 37.739')											
Sr. No.	Date of Sampling	PM ₁₀	PM _{2.5}	Pb	BaP	As	Ni	СО	C ₆ H ₆	NH ₃	SO ₂	NO _x	03
ON POLI	ULLUCON POLLUCON P	μg/m³	μg/m³	μg/m³	ng/m ³	ng/m ³	ng/m ³	mg/m ³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m ³
N TOTA	04-04-2022	81.64	43.23	ND*	ND*	ND*	ND*	0.58	ND*	38.73	23.27	38.3	22.17
2	08-04-2022	89.63	50.23	0.69	ND*	2.23	10.28	0.93	ND*	35.88	17.61	30.68	29.69
3	11-04-2022	72.56	38.47	ND*	ND*	ND*	ND*	0.78	ND*	43.86	24.23	36.91	26.44
4	15-04-2022	91.58	52.49	0.61	ND*	2.56	10.83	0.56	ND*	36.41	21.52	42.37	24.91
5	18-04-2022	82.49	42.95	ND*	ND*	ND*	ND*	0.57	ND*	25.24	18.74	34.59	28.61
6	22-04-2022	71.96	32.7	ND*	ND*	ND*	ND*	0.94	ND*	41.55	20.73	28.46	30.28
7	25-04-2022	84.29	44.23	0.56	ND*	2.46	10.61	0.38	ND*	37.33	26.41	39.54	25.79
8	29-04-2022	67.56	33.93	ND*	ND*	ND*	ND*	0.92	ND*	27.58	19.67	37.61	23.26
9	02-05-2022	86.23	47.23	0.82	ND*	2.3	10.21	0.72	ND*	34.59	24.62	40.28	30.28
10	05-05-2022	81.29	45.06	ND*	ND*	ND*	ND*	0.66	ND*	31.23	20.49	31.65	22.44
11	09-05-2022	74.57	34.64	ND*	ND*	ND*	ND*	0.61	ND*	28.32	23.7	37.59	29.44
12	12-05-2022	69.33	30.41	ND*	ND*	ND*	ND*	0.78	ND*	30.54	25.72	41.56	19.47
13	16-05-2022	78.58	39.2	ND*	ND*	ND*	ND*	0.82	ND*	41.79	22.51	29.42	27.52
14	19-05-2022	90.51	48.67	0.72	ND*	2.46	10.57	0.56	ND*	29.48	18.68	35.37	21.59
15	23-05-2022	77.54	43.23	ND*	ND*	ND*	ND*	0.6	ND*	33.51	14.29	32.59	28.86
16	26-05-2022	89.51	50.44	0.65	ND*	2.56	10.33	0.71	ND*	42.59	17.27	36.36	26.22
17	30-05-2022	79.44	41.92	ND*	ND*	ND*	ND*	0.68	ND*	47.54	19.56	28.45	24.88
18	02-06-2022	73.85	34.31	ND*	ND*	ND*	ND*	0.6	ND*	30.38	16.18	31.93	23.8
19	06-06-2022	84.26	48.27	0.58	ND*	2.46	10.33	0.88	ND*	38.29	22.71	38.63	19.44
20	09-06-2022	80.88	45.27	ND*	ND*	ND*	ND*	0.82	ND*	33.95	17.34	34.57	28.45
21	13-06-2022	63.48	37.2	ND*	ND*	ND*	ND*	0.87	ND*	42.43	24.22	39.32	25.71
22	16-06-2022	89.37	51.24	0.68	ND*	2.22	10.72	0.71	ND*	31.76	19.48	37.59	30.27
23	20-06-2022	72.12	36.37	ND*	ND*	ND*	ND*	0.46	ND*	39.66	15.31	26.83	24.55
24	23-06-2022	85.33	49.27	0.61	ND*	2.39	10.44	0.5	ND*	28.58	23.56	35.2	29.24
25	27-06-2022	78.69	42.6	ND*	ND*	ND*	ND*	0.86	ND*	25.88	18.61	41.61	27.67
26	30-06-2022	69.25	40.63	ND*	ND*	ND*	ND*	0.94	ND*	29.22	21.35	33.78	22.62
27	04-07-2022	80.12	43.6	0.68	ND*	2.26	10.57	0.8	ND*	42.63	18.53	32.42	26.53
28	07-07-2022	66.27	34.56	ND*	ND*	ND*	ND*	0.58	ND*	35.65	15.08	27.52	29.47

Authorized Signatory

● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

GPCB apprved

						and the second second				14-120-1-1-1-1-1			
29	11-07-2022	72.24	41.52	ND*	ND*	ND*	ND*	0.92	ND*	25.42	24.36	38.7	23.78
30	14-07-2022	59.27	29.62	ND*	ND*	ND*	ND*	0.66	ND*	40.55	14.43	33.56	28.46
31	18-07-2022	74.36	44.49	ND*	ND*	ND*	ND*	0.38	ND*	26.45	17.14	35.65	31.52
32	21-07-2022	81.62	40.58	0.58	ND*	2.34	10.39	0.9	ND*	32.23	23.66	29.24	25.4
33	25-07-2022	67.52	33.26	ND*	ND*	ND*	ND*	0.79	ND*	34.57	16.6	34.24	20.26
34	28-07-2022	71.46	38.1	ND*	ND*	ND*	ND*	0.65	ND*	38.66	21.89	39.2	24.21
35	01-08-2022	88.56	48.56	0.68	ND*	2.54	10.33	0.52	ND*	33.41	25.39	38.53	27.63
36	04-08-2022	79.33	40.56	ND*	ND*	ND*	ND*	0.7	ND*	26.33	18.37	29.53	25.89
37	08-08-2022	85.69	46.23	0.8	ND*	2.65	10.54	0.42	ND*	36.57	23.68	31.22	16.34
38	11-08-2022	74.35	42.66	ND*	ND*	ND*	ND*	0.76	ND*	39.55	21.3	36.36	21.56
39	15-08-2022	65.57	37.66	ND*	ND*	ND*	ND*	0.58	ND*	46.55	15.28	33.53	26.55
40	18-08-2022	78.69	44.5	ND*	ND*	ND*	ND*	0.81	ND*	40.25	17.53	27.38	28.36
41	22-08-2022	83.53	47.56	0.75	ND*	2.46	10.45	0.6	ND*	27.25	22.37	37.53	24.23
42	25-08-2022	72.18	35.47	ND*	ND*	ND*	ND*	0.92	ND*	44.25	20.51	32.63	29.51
43	29-08-2022	77.53	39.59	ND*	ND*	ND*	ND*	0.78	ND*	34.52	24.57	39.37	23.68
44	01-09-2022	69.21	33.64	ND*	ND*	ND*	ND*	0.62	ND*	40.22	22.4	35.67	28.45
45	05-09-2022	85.69	43.68	0.65	ND*	2.42	10.33	0.64	ND*	25.61	26.2	39.59	22.36
46	08-09-2022	66.42	39.27	ND*	ND*	ND*	ND*	0.7	ND*	44.26	19.81	32.5	26.33
47	12-09-2022	60.84	26.41	ND*	ND*	ND*	ND*	0.52	ND*	31.23	17.32	37.59	29.48
48	15-09-2022	54.62	28.45	ND*	ND*	ND*	ND*	0.46	ND*	35.35	20.57	40.27	16.52
49	19-09-2022	74.53	42.5	ND*	ND*	ND*	ND*	0.78	ND*	26.39	15.35	36.55	27.58
50	22-09-2022	91.54	48.6	0.78	ND*	2.56	10.45	0.87	ND*	36.82	23.91	30.22	18.31
51	26-09-2022	63.82	25.51	ND*	ND*	ND*	ND*	0.8	ND*	39.38	25.36	33.46	23.53
52	29-09-2022	80.26	44.26	0.55	ND*	2.22	10.17	0.92	ND*	22.49	21.53	38.59	30.54
	THE PURCH STATE OF THE PURCH STATE OF			41 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19 11 1 1 1 1 1 1		100 100 11 1 100	. 10/ 17/11/11	1 1 1 1 1 1 1 1 1 1 1 1 1		F 9F 9 3 3 N 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Observation: Above given Results are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-Idt: 18/11/2009 National Ambient Air Quality Standards, New Delhi, for 24 hourly or 8 hourly or 1 hourly monitored values

ND*: - Not Detected - Lead as Pb (µg/m³): 0.5

ND*: - Not Detected - Carbon Monoxide as CO (mg/m³): 0.01

ND*: - Not Detected - Benzene as C_6H_6 (µg/m³): 2

ND*: - Not Detected - Benzo (a) Pyrene (BaP) - Particulate Phase only (ng/m³): 0.5

ND*: - Not Detected - Arsenic as As (ng/m³): 2 Not Detected - Nickel as Ni (ng/m³): 5

Authorized Signatory

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

Table-1.2: Ambient Air Quality Monitoring Results at HSE Building Terrace

ON POLI	LLUCON POLLUCON P UCON POLLUCON P ILLUCON POLLUCON	CLLUCON P	Lo	cation-	2: HSE	Building	J Terrac	e (N 21	° 05.04	3' E 72	° 38.49	1′)	<u>POLLUCON</u> LLUCON P POLLUCON
Sr. No.	Date of Sampling	PM ₁₀	PM _{2.5}	Pb	BaP	As	Ni	СО	C ₆ H ₆	NH ₃	SO ₂	NO _X	03
ON POLI	UCON POLLUCON PO	μg/m ³	μg/m³	μg/m³	ng/m³	ng/m ³	ng/m ³	mg/m ³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
ON TOLL	04-04-2022	53.64	26.51	ND*	ND*	ND*	ND*	0.52	ND*	18.99	10.75	21.67	16.2
2	08-04-2022	48.54	18.97	ND*	ND*	ND*	ND*	0.63	ND*	15.18	6.42	14.59	13.77
3	11-04-2022	63.39	31.67	ND*	ND*	ND*	ND*	0.48	ND*	32.65	13.64	23.46	19.45
4	15-04-2022	68.62	34.53	ND*	ND*	ND*	ND*	0.34	ND*	24.33	9.27	30.26	28.89
N50L	18-04-2022	73.32	38.65	ND*	ND*	ND*	ND*	0.23	ND*	13.63	11.23	18.38	18.46
6	22-04-2022	46.47	20.38	ND*	ND*	ND*	ND*	0.76	ND*	16.51	14.88	22.45	24.64
7	25-04-2022	54.25	27.18	ND*	ND*	ND*	ND*	0.25	ND*	19.36	18.24	27.44	22.42
8	29-04-2022	45.65	24.5	ND*	ND*	ND*	ND*	0.14	ND*	10.86	15.42	16.61	11.65
9	02-05-2022	52.54	27.55	ND*	ND*	ND*	ND*	0.3	ND*	14.69	13.72	25.01	11.61
10	05-05-2022	60.79	31.92	ND*	ND*	ND*	ND*	0.34	ND*	19.26	9.33	19.69	18.12
0110	09-05-2022	42.85	17.4	ND*	ND*	ND*	ND*	0.24	ND*	16.88	6.52	21.3	20.28
12	12-05-2022	59.43	14.78	ND*	ND*	ND*	ND*	0.25	ND*	11.36	14.88	29.45	17.97
13	16-05-2022	47.81	20.83	ND*	ND*	ND*	ND*	0.52	ND*	22.75	17.59	16.45	13.88
14	19-05-2022	79.53	32.57	ND*	ND*	ND*	ND*	0.33	ND*	26.28	8.14	23.74	23.54
15	23-05-2022	62.58	35.58	ND*	ND*	ND*	ND*	0.42	ND*	28.99	16.9	26.47	19.37
16	26-05-2022	55.27	23.75	ND*	ND*	ND*	ND*	0.22	ND*	13.23	7.61	14.3	22.77
17	30-05-2022	63.52	26.49	ND*	ND*	ND*	ND*	0.26	ND*	34.24	10.52	22.42	14.54
18	02-06-2022	58.35	32.32	ND*	ND*	ND*	ND*	0.49	ND*	16.32	14.35	17.95	19.35
19	06-06-2022	66.75	38.4	ND*	ND*	ND*	ND*	0.57	ND*	21.21	18.49	24.62	16.57
20	09-06-2022	62.62	30.58	ND*	ND*	ND*	ND*	0.32	ND*	11.03	12.5	22.44	14.56
21	13-06-2022	42.61	15.24	ND*	ND*	ND*	ND*	0.58	ND*	26.37	16.22	16.88	22.57
22	16-06-2022	74.27	46.27	ND*	ND*	ND*	ND*	0.63	ND*	18.68	13.47	21.3	10.55
23	20-06-2022	44.26	22.63	ND*	ND*	ND*	ND*	0.45	ND*	23.39	10.26	15.35	17.68
24	23-06-2022	72.6	36.5	ND*	ND*	ND*	ND*	0.15	ND*	14.53	17.26	28.55	13.84
25	27-06-2022	68.44	27.55	ND*	ND*	ND*	ND*	0.38	ND*	12.49	11.29	19.52	21.14
26	30-06-2022	41.36	23.36	ND*	ND*	ND*	ND*	0.16	ND*	15.65	19.12	30.52	15.9
27	04-07-2022	68.42	33.57	ND*	ND*	ND*	ND*	0.13	ND*	26.19	11.21	25.94	16.47
28	07-07-2022	43.14	16.34	ND*	ND*	ND*	ND*	0.16	ND*	31.87	20.45	18.81	19.53
29	11-07-2022	53.28	29.45	ND*	ND*	ND*	ND*	0.72	ND*	14.53	13.45	24.23	15.24

● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

30	14-07-2022	49.57	17.5	ND*	ND*	ND*	ND*	0.46	ND*	19.43	8.7	17.51	26.37
31	18-07-2022	54.34	27.65	ND*	ND*	ND*	ND*	0.25	ND*	15.23	6.88	20.65	28.63
32	21-07-2022	58.54	19.5	ND*	ND*	ND*	ND*	0.61	ND*	21.63	9.36	13.56	22.33
33	25-07-2022	62.11	21.74	ND*	ND*	ND*	ND*	0.24	ND*	22.73	12.63	27.66	18.65
34	28-07-2022	56.59	18.48	ND*	ND*	ND*	ND*	0.55	ND*	28.67	16.25	21.53	23.63
35	01-08-2022	73.69	37.54	ND*	ND*	ND*	ND*	0.3	ND*	22.23	16.4	22.67	21.35
36	04-08-2022	52.64	23.57	ND*	ND*	ND*	ND*	0.36	ND*	12.79	11.67	26.31	13.29
37	08-08-2022	61.58	33.55	ND*	ND*	ND*	ND*	0.24	ND*	10.38	9.57	18.65	18.61
38	11-08-2022	51.67	30.36	ND*	ND*	ND*	ND*	0.31	ND*	17.53	15.37	28.67	14.27
39	15-08-2022	45.39	22.8	ND*	ND*	ND*	ND*	0.5	ND*	30.53	8.3	23.13	16.25
40	18-08-2022	56.32	28.44	ND*	ND*	ND*	ND*	0.14	ND*	27.57	12.4	17.26	23.32
41	22-08-2022	74.25	34.53	ND*	ND*	ND*	ND*	0.55	ND*	18.65	13.67	24.32	17.6
42	25-08-2022	58.33	21.62	ND*	ND*	ND*	ND*	0.19	ND*	21.28	7.26	15.71	19.25
43	29-08-2022	67.51	24.82	ND*	ND*	ND*	ND*	0.49	ND*	16.56	14.21	21.3	12.86
44	01-09-2022	53.63	21.57	ND*	ND*	ND*	ND*	0.41	ND*	27.61	18.67	28.63	25.42
45	05-09-2022	73.51	38.44	ND*	ND*	ND*	ND*	0.29	ND*	16.34	12.45	25.41	23.63
46	08-09-2022	60.82	35.48	ND*	ND*	ND*	ND*	0.18	ND*	22.63	10.27	19.35	11.29
47	12-09-2022	46.34	16.54	ND*	ND*	ND*	ND*	0.14	ND*	26.42	13.52	26.36	15.39
48	15-09-2022	42.68	18.62	ND*	ND*	ND*	ND*	0.37	ND*	17.51	15.2	35.34	18.53
49	19-09-2022	68.47	26.68	ND*	ND*	ND*	ND*	0.3	ND*	12.69	8.68	31.53	13.21
50	22-09-2022	81.59	45.4	ND*	ND*	ND*	ND*	0.38	ND*	10.75	6.48	21.34	16.67
51	26-09-2022	48.42	19.61	ND*	ND*	ND*	ND*	0.32	ND*	18.26	14.21	27.64	12.63
52	29-09-2022	62.63	23.52	ND*	ND*	ND*	ND*	0.61	ND*	14.35	11.69	23.11	19.31

Observation: Above given Results are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-Idt: 18/11/2009 National Ambient Air Quality Standards, New Delhi, for 24 hourly or 8 hourly or 1 hourly monitored values

ND*: - Not Detected - Lead as Pb (µg/m³): 0.5

ND*: - Not Detected - Carbon Monoxide as CO (mg/m³): 0.01

ND*: - Not Detected - Benzene as C_6H_6 (µg/m³): 2

ND*: - Not Detected - Benzo (a) Pyrene (BaP) - Particulate Phase only (ng/m³): 0.5

ND*: - Not Detected - Arsenic as As (ng/m³): 2

Not Detected - Nickel as Ni (ng/m³): 5

Authorized Signatory

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

Table-1.3: Ambient Air Quality Monitoring Results at Central Water Pump House

ON PO	DLUCON POLLUCON POLLUCON POLLUCON	POLLUCON N. POLLUCON	Loca	tion-3:	Central	Water	Pump H	louse (N	21° 04	.697′E	72° 38.4	420′)	POLLUCON P POLLUCON
Sr. No.	Date of Sampling	PM ₁₀	PM _{2.5}	Pb	BaP	As	Ni	СО	C ₆ H ₆	NH ₃	SO ₂	NO _X	O ₃
ON PO	Sampling	μg/m³	μg/m³	μg/m³	ng/m ³	ng/m ³	ng/m³	mg/m ³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
ON PO	04-04-2022	53.64	26.51	ND*	ND*	ND*	ND*	0.52	ND*	18.99	10.75	21.67	16.2
2	08-04-2022	48.54	18.97	ND*	ND*	ND*	ND*	0.63	ND*	15.18	6.42	14.59	13.77
3	11-04-2022	63.39	31.67	ND*	ND*	ND*	ND*	0.48	ND*	32.65	13.64	23.46	19.45
4	15-04-2022	68.62	34.53	ND*	ND*	ND*	ND*	0.34	ND*	24.33	9.27	30.26	28.89
5	18-04-2022	73.32	38.65	ND*	ND*	ND*	ND*	0.23	ND*	13.63	11.23	18.38	18.46
6	22-04-2022	46.47	20.38	ND*	ND*	ND*	ND*	0.76	ND*	16.51	14.88	22.45	24.64
7	25-04-2022	54.25	27.18	ND*	ND*	ND*	ND*	0.25	ND*	19.36	18.24	27.44	22.42
8	29-04-2022	45.65	24.5	ND*	ND*	ND*	ND*	0.14	ND*	10.86	15.42	16.61	11.65
9	02-05-2022	64.23	34.53	ND*	ND*	ND*	ND*	0.21	ND*	17.51	9.41	18.91	15.6
10	05-05-2022	54.22	27.48	ND*	ND*	ND*	ND*	0.55	ND*	15.25	6.17	15.35	20.56
110	09-05-2022	69.42	31.38	ND*	ND*	ND*	ND*	0.13	ND*	23.97	14.6	25.54	16.48
12	12-05-2022	48.47	17.37	ND*	ND*	ND*	ND*	0.18	ND*	14.51	16.75	22.71	12.45
13	16-05-2022	60.24	28.45	ND*	ND*	ND*	ND*	0.5	ND*	27.88	8.34	12.22	19.28
14	19-05-2022	66.38	24.66	ND*	ND*	ND*	ND*	0.19	ND*	16.56	15.99	14.69	25.38
15	23-05-2022	52.78	21.55	ND*	ND*	ND*	ND*	0.49	ND*	21.64	13.11	20.3	17.56
16	26-05-2022	70.51	36.35	ND*	ND*	ND*	ND*	0.57	ND*	29.58	10.21	26.38	24.58
17	30-05-2022	57.63	33.48	ND*	ND*	ND*	ND*	0.27	ND*	31.53	12.43	19.53	13.76
18	02-06-2022	52.47	20.2	ND*	ND*	ND*	ND*	0.41	ND*	24.66	11.25	25.69	25.36
19	06-06-2022	72.27	30.24	ND*	ND*	ND*	ND*	0.27	ND*	13.57	13.5	21.36	22.42
20	09-06-2022	46.91	23.67	ND*	ND*	ND*	ND*	0.25	ND*	25.44	6.53	19.44	19.27
21	13-06-2022	50.34	19.42	ND*	ND*	ND*	ND*	0.29	ND*	21.42	18.37	27.69	24.24
22	16-06-2022	56.38	27.53	ND*	ND*	ND*	ND*	0.68	ND*	14.35	7.71	14.62	26.26
23	20-06-2022	61.29	18.26	ND*	ND*	ND*	ND*	0.33	ND*	26.83	12.62	17.73	11.24
24	23-06-2022	53.12	28.58	ND*	ND*	ND*	ND*	0.22	ND*	16.54	14.2	23.56	16.36
25	27-06-2022	58.62	24.22	ND*	ND*	ND*	ND*	0.11	ND*	19.37	8.44	28.44	12.83
26	30-06-2022	45.35	17.28	ND*	ND*	ND*	ND*	0.7	ND*	23.45	10.36	24.75	21.77
27	04-07-2022	60.37	27.82	ND*	ND*	ND*	ND*	0.37	ND*	14.37	6.57	19.94	23.58
28	07-07-2022	50.75	24.8	ND*	ND*	ND*	ND*	0.71	ND*	16.82	8.45	22.46	15.57
29	11-07-2022	59.35	22.29	ND*	ND*	ND*	ND*	0.36	ND*	12.66	15.64	17.26	11.84

● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

30	14-07-2022	44.21	16.57	ND*	ND*	ND*	ND*	0.42	ND*	26.31	12.43	15.46	18.24
31	18-07-2022	57.56	25.56	ND*	ND*	ND*	ND*	0.34	ND*	20.57	9.3	24.87	16.55
32	21-07-2022	49.42	20.52	ND*	ND*	ND*	ND*	0.29	ND*	24.15	14.23	18.65	19.34
33	25-07-2022	54.52	18.41	ND*	ND*	ND*	ND*	0.3	ND*	29.21	7.11	21.43	12.58
34	28-07-2022	46.44	21.58	ND*	ND*	ND*	ND*	0.31	ND*	17.27	13.27	25.67	27.37
35	01-08-2022	66.55	32.6	ND*	ND*	ND*	ND*	0.18	ND*	15.57	18.69	26.42	14.57
36	04-08-2022	58.62	28.57	ND*	ND*	ND*	ND*	0.38	ND*	18.69	15.43	18.35	16.54
37	08-08-2022	68.57	36.87	ND*	ND*	ND*	ND*	0.56	ND*	28.49	19.29	28.4	12.55
38	11-08-2022	55.38	33.56	ND*	ND*	ND*	ND*	0.65	ND*	20.32	11.8	17.56	22.48
39	15-08-2022	51.55	26.4	ND*	ND*	ND*	ND*	0.46	ND*	25.67	10.54	15.61	19.53
40	18-08-2022	47.58	22.7	ND*	ND*	ND*	ND*	0.16	ND*	22.64	7.65	19.55	25.34
41	22-08-2022	56.68	27.58	ND*	ND*	ND*	ND*	0.66	ND*	14.36	12.35	27.5	15.82
42	25-08-2022	44.57	16.35	ND*	ND*	ND*	ND*	0.8	ND*	35.41	9.36	20.24	26.38
43	29-08-2022	62.42	30.3	ND*	ND*	ND*	ND*	0.32	ND*	21.51	13.86	31.52	13.62
44	01-09-2022	48.52	16.55	ND*	ND*	ND*	ND*	0.22	ND*	24.35	11.22	18.68	13.56
45	05-09-2022	67.55	26.31	ND*	ND*	ND*	ND*	0.63	ND*	12.88	20.4	23.3	17.53
46	08-09-2022	45.66	20.62	ND*	ND*	ND*	ND*	0.45	ND*	25.37	16.59	29.54	22.76
47	12-09-2022	40.37	14.52	ND*	ND*	ND*	ND*	0.17	ND*	18.37	10.38	16.56	19.16
48	15-09-2022	35.81	12.61	ND*	ND*	ND*	ND*	0.25	ND*	16.27	6.58	31.37	12.88
49	19-09-2022	51.59	21.4	ND*	ND*	ND*	ND*	0.56	ND*	19.53	15.42	26.22	24.7
50	22-09-2022	76.29	40.68	ND*	ND*	ND*	ND*	0.47	ND*	28.39	9.5	14.56	14.32
51	26-09-2022	58.62	23.46	ND*	ND*	ND*	ND*	0.57	ND*	20.38	12.89	19.55	20.66
52	29-09-2022	68.25	37.58	ND*	ND*	ND*	ND*	0.76	ND*	11.55	17.51	21.25	16.43

Observation: Above given Results are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-Idt: 18/11/2009 National Ambient Air Quality Standards, New Delhi, for 24 hourly or 8 hourly or 1 hourly monitored values

ND*: - Not Detected - Lead as Pb (µg/m³): 0.1

ND*: - Not Detected - Carbon Monoxide as CO (mg/m³): 0.01

ND*: - Not Detected - Benzene as C_6H_6 (µg/m³): 2

ND*: - Not Detected - Benzo (a) Pyrene (BaP) - Particulate Phase only (ng/m³): 0.5

ND*: - Not Detected - Arsenic as As (ng/m³): 2

Not Detected - Nickel as Ni (ng/m³): 5

Authorized Signatory

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

Table-1.4: Ambient Air Quality Monitoring Results at Container Terminal

JON POLL	UCON POLLUCON LLUCON POLLUCON	DLLUCON POLLUCON	POLLUCO POLLUCO N POLLUC	_ocation	1-4: Cor	ntainer '	Termina	al (N 21	° 05.18	7′E 72°	37.774	DUCON PC	POLLUCON P POLLUCON P
Sr. No.	Date of Sampling	PM ₁₀	PM _{2.5}	Pb	BaP	As	Ni Ni	СО	C ₆ H ₆	NH ₃	SO ₂	NO _x	O ₃
ON POLI	Sampling	μg/m³	μg/m³	μg/m³	ng/m³	ng/m ³	ng/m ³	mg/m ³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
ON POLI	04-04-2022	63.58	32.49	ND*	ND*	ND*	ND*	0.32	ND*	25.91	18.46	25.67	13.6
2	08-04-2022	70.28	38.27	ND*	ND*	ND*	ND*	0.61	ND*	27.63	13.84	28.52	21.59
3	11-04-2022	59.58	25.39	ND*	ND*	ND*	ND*	0.84	ND*	17.56	10.88	26.15	25.42
4	15-04-2022	73.73	37.57	ND*	ND*	ND*	ND*	0.29	ND*	15.24	19.54	32.57	27.3
5°L	18-04-2022	53.18	24.18	ND*	ND*	ND*	ND*	0.6	ND*	18.64	17.71	27.58	23.52
6	22-04-2022	66.54	29.87	ND*	ND*	ND*	ND*	0.71	ND*	29.64	12.53	19.63	20.26
7	25-04-2022	75.96	35.27	ND*	ND*	ND*	ND*	0.5	ND*	24.23	7.64	29.59	16.54
8	29-04-2022	58.73	30.25	ND*	ND*	ND*	ND*	0.26	ND*	19.24	9.8	22.42	22.36
9	02-05-2022	73.57	38.26	ND*	ND*	ND*	ND*	0.47	ND*	19.57	19.24	28.26	16.58
10	05-05-2022	65.34	36.44	ND*	ND*	ND*	ND*	0.8	ND*	25.39	10.65	21.34	13.32
0110	09-05-2022	48.53	26.36	ND*	ND*	ND*	ND*	0.64	ND*	12.47	8.97	19.54	23.43
12	12-05-2022	53.46	21.67	ND*	ND*	ND*	ND*	0.62	ND*	23.49	17.38	31.35	28.66
13	16-05-2022	66.21	32.4	ND*	ND*	ND*	ND*	0.84	ND*	31.85	15.75	20.52	25.68
14	19-05-2022	75.67	39.57	ND*	ND*	ND*	ND*	0.44	ND*	18.51	9.64	27.55	14.24
15	23-05-2022	67.54	26.99	ND*	ND*	ND*	ND*	0.74	ND*	26.87	11.59	16.79	20.65
16	26-05-2022	76.53	33.64	ND*	ND*	ND*	ND*	0.54	ND*	16.23	13.81	23.46	17.29
17	30-05-2022	46.23	17.6	ND*	ND*	ND*	ND*	0.41	ND*	41.21	6.29	17.64	11.28
18	02-06-2022	48.31	15.68	ND*	ND*	ND*	ND*	0.76	ND*	13.42	7.17	15.33	15.77
19	06-06-2022	52.46	21.52	ND*	ND*	ND*	ND*	0.56	ND*	29.51	19.61	26.53	11.54
20	09-06-2022	69.84	40.29	ND*	ND*	ND*	ND*	0.44	ND*	22.69	11.5	29.48	17.39
21	13-06-2022	54.34	22.42	ND*	ND*	ND*	ND*	0.72	ND*	33.45	20.3	34.37	26.31
22	16-06-2022	67.52	36.54	ND*	ND*	ND*	ND*	0.36	ND*	24.24	16.57	31.25	20.49
23	20-06-2022	49.53	25.69	ND*	ND*	ND*	ND*	0.54	ND*	28.76	14.89	16.44	27.27
24	23-06-2022	68.62	42.7	ND*	ND*	ND*	ND*	0.65	ND*	21.53	18.24	33.45	19.54
25	27-06-2022	63.84	34.22	ND*	ND*	ND*	ND*	0.4	ND*	15.35	15.71	24.34	10.19
26	30-06-2022	59.42	28.47	ND*	ND*	ND*	ND*	0.78	ND*	18.62	13.7	27.4	14.26
27	04-07-2022	64.52	30.52	ND*	ND*	ND*	ND*	0.26	ND*	20.62	13.55	21.2	18.54
28	07-07-2022	56.42	20.35	ND*	ND*	ND*	ND*	0.48	ND*	26.59	17.65	30.52	23.42
29	11-07-2022	66.52	33.47	ND*	ND*	ND*	ND*	0.54	ND*	10.41	19.26	28.98	10.64

Recognised by MoEF, New Delhi Under

Sec. 12 of Environmental (Protection) Act-1986

GPCB apprved schedule II auditor ● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under

30	14-07-2022	39.26	14.52	ND*	ND*	ND*	ND*	0.4	ND*	34.27	11.58	26.27	22.48
31	18-07-2022	65.42	37.88	ND*	ND*	ND*	ND*	0.44	ND*	18.68	10.57	29.53	19.29
32	21-07-2022	60.54	26.27	ND*	ND*	ND*	ND*	0.22	ND*	16.13	16.61	22.35	12.86
33	25-07-2022	57.42	29.21	ND*	ND*	ND*	ND*	0.19	ND*	31.53	9.62	32.21	15.37
34	28-07-2022	63.57	32.51	ND*	ND*	ND*	ND*	0.68	ND*	13.49	14.63	37.53	13.29
35	01-08-2022	59.38	28.6	ND*	ND*	ND*	ND*	0.41	ND*	26.62	21.51	34.95	24.57
36	04-08-2022	65.79	31.67	ND*	ND*	ND*	ND*	0.72	ND*	23.35	8.68	21.59	22.66
37	08-08-2022	74.56	27.28	ND*	ND*	ND*	ND*	0.11	ND*	19.48	15.65	25.47	11.54
38	11-08-2022	70.35	39.57	ND*	ND*	ND*	ND*	0.37	ND*	29.41	13.52	24.54	21.6
39	15-08-2022	56.52	29.31	ND*	ND*	ND*	ND*	0.62	ND*	33.55	6.57	26.53	23.82
40	18-08-2022	63.59	35.68	ND*	ND*	ND*	ND*	0.33	ND*	17.22	9.54	15.85	15.64
41	22-08-2022	79.52	32.42	ND*	ND*	ND*	ND*	0.39	ND*	24.55	16.27	30.54	10.53
42	25-08-2022	49.52	19.55	ND*	ND*	ND*	ND*	0.15	ND*	28.68	12.61	23.33	17.26
43	29-08-2022	55.42	26.51	ND*	ND*	ND*	ND*	0.4	ND*	13.57	18.53	35.6	19.83
44	01-09-2022	56.35	25.46	ND*	ND*	ND*	ND*	0.69	ND*	22.24	9.64	31.23	23.47
45	05-09-2022	61.54	22.6	ND*	ND*	ND*	ND*	0.5	ND*	15.23	16.29	20.23	15.68
46	08-09-2022	50.34	26.44	ND*	ND*	ND*	ND*	0.66	ND*	17.68	14.37	23.59	21.47
47	12-09-2022	55.42	19.54	ND*	ND*	ND*	ND*	0.55	ND*	11.66	12.78	21.51	24.31
48	15-09-2022	39.46	21.3	ND*	ND*	ND*	ND*	0.27	ND*	24.89	7.48	27.58	14.52
49	19-09-2022	57.58	24.35	ND*	ND*	ND*	ND*	0.65	ND*	21.67	11.55	29.48	16.86
50	22-09-2022	71.62	27.58	ND*	ND*	ND*	ND*	0.74	ND*	19.31	15.82	17.65	11.1
51	26-09-2022	53.36	20.31	ND*	ND*	ND*	ND*	0.54	ND*	29.38	18.31	24.53	18.23
52	29-09-2022	59.41	31.19	ND*	ND*	ND*	ND*	0.6	ND*	18.63	13.75	28.39	13.69

Observation: Above given Results are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-Idt: 18/11/2009 National Ambient Air Quality Standards, New Delhi, for 24 hourly or 8 hourly or 1 hourly monitored values

ND*: - Not Detected - Lead as Pb (µg/m³): 0.5

ND*: - Not Detected - Carbon Monoxide as CO (mg/m³): 0.01

ND*: - Not Detected - Benzene as C_6H_6 (µg/m³): 2

ND*: - Not Detected - Benzo (a) Pyrene (BaP) - Particulate Phase only (ng/m³): 0.5

ND*: - Not Detected - Arsenic as As (ng/m³): 2

Not Detected - Nickel as Ni (ng/m³): 5

Authorized Signatory

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

Table-1.5: Ambient Air Quality Monitoring Results at Hazira Village

ON PO	LUCON POLLUCON	POLLUCON N. POLLUCON	POLLUCO	Loca	tion-5:	Hazira	Village	(N 21° ()5.44′ E	72° 38	.44′)	ELUCON PC	DELLICON P
Sr. No.	Date of Sampling	PM ₁₀	PM _{2.5}	Pb	BaP	As	Ni	СО	C ₆ H ₆	NH ₃	SO ₂	NO _X	O ₃
ON PO	LUCON POLLUCON	μg/m³	μg/m³	μg/m³	ng/m ³	ng/m ³	ng/m³	mg/m ³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
OM10	04-04-2022	73.53	35.67	ND*	ND*	ND*	ND*	0.46	ND*	29.22	12.66	34.28	19.65
2	08-04-2022	81.51	40.64	0.64	ND*	2.12	10.18	0.11	ND*	17.32	16.25	24.26	27.53
3	11-04-2022	69.67	34.52	ND*	ND*	ND*	ND*	0.62	ND*	38.58	19.26	32.49	23.43
4	15-04-2022	83.59	42.29	0.55	ND*	2.56	10.45	0.15	ND*	27.47	17.27	36.23	30.39
5	18-04-2022	79.41	33.52	ND*	ND*	ND*	ND*	0.86	ND*	21.25	15.25	23.57	28.45
6	22-04-2022	61.56	27.69	ND*	ND*	ND*	ND*	0.44	ND*	25.32	10.23	16.25	18.97
7	25-04-2022	70.43	38.34	0.51	ND*	2.38	10.34	0.37	ND*	31.28	20.27	33.53	12.44
8	29-04-2022	63.44	28.54	ND*	ND*	ND*	ND*	0.64	ND*	36.55	13.5	31.34	20.34
9	02-05-2022	80.55	42.66	0.75	ND*	2.16	10.18	0.39	ND*	21.98	21.53	31.44	24.22
10	05-05-2022	71.61	38.88	ND*	ND*	ND*	ND*	0.45	ND*	29.04	15.33	25.54	21.27
0110	09-05-2022	58.23	29.21	ND*	ND*	ND*	ND*	0.76	ND*	19.06	18.38	29.62	15.34
12	12-05-2022	63.49	26.46	ND*	ND*	ND*	ND*	0.36	ND*	26.98	22.47	35.71	26.34
13	16-05-2022	72.43	36.49	ND*	ND*	ND*	ND*	0.4	ND*	35.54	14.21	24.62	29.38
14	19-05-2022	84.54	45.21	0.65	ND*	2.22	10.45	0.31	ND*	30.92	11.21	32.38	22.34
15	23-05-2022	73.45	41.18	ND*	ND*	ND*	ND*	0.46	ND*	17.41	7.71	36.27	25.89
16	26-05-2022	83.51	46.32	0.52	ND*	2.34	10.28	0.77	ND*	38.14	23.42	30.58	14.67
17	30-05-2022	70.26	37.56	ND*	ND*	ND*	ND*	0.23	ND*	44.51	20.25	23.65	23.78
18	02-06-2022	69.45	26.26	ND*	ND*	ND*	ND*	0.21	ND*	25.16	10.65	23.58	21.55
19	06-06-2022	77.62	45.33	0.62	ND*	2.22	10.18	0.24	ND*	35.53	17.52	18.66	20.34
20	09-06-2022	72.62	48.46	ND*	ND*	ND*	ND*	0.23	ND*	27.09	13.38	27.52	24.62
21	13-06-2022	58.69	25.33	ND*	ND*	ND*	ND*	0.52	ND*	37.97	21.6	37.41	29.39
22	16-06-2022	81.27	49.3	0.66	ND*	2.12	10.53	0.55	ND*	28.61	11.61	25.35	27.52
23	20-06-2022	57.53	33.29	ND*	ND*	ND*	ND*	0.66	ND*	34.95	8.67	22.49	25.48
24	23-06-2022	78.62	37.67	0.57	ND*	2.18	10.38	0.26	ND*	23.56	12.9	26.3	23.47
25	27-06-2022	73.45	29.25	ND*	ND*	ND*	ND*	0.81	ND*	32.22	19.27	35.49	26.43
26	30-06-2022	66.28	35.3	ND*	ND*	ND*	ND*	0.53	ND*	20.24	14.67	19.9	18.66
27	04-07-2022	75.19	37.56	0.62	ND*	2.46	10.41	0.53	ND*	28.37	15.26	36.58	28.57
28	07-07-2022	60.19	31.42	ND*	ND*	ND*	ND*	0.32	ND*	38.59	12.09	30.41	25.64
29	11-07-2022	43.27	38.5	ND*	ND*	ND*	ND*	0.64	ND*	22.82	20.72	34.54	20.45

Recognised by MoEF, New Delhi Under

Sec. 12 of Environmental (Protection) Act-1986

GPCB apprved schedule II auditor ● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under

ICOMI I	OLIVOR BOARCO	N POLLUCI	NA POLICIO	ON POLLI	ON POLL	CONLIDE	ICEVA ROL	HIGHLAND	LUCAN DO	100.00	DILLUCON I		I/A LLEGN
30	14-07-2022	54.58	24.79	ND*	ND*	ND*	ND*	0.27	ND*	30.26	18.18	29.85	24.54
31	18-07-2022	69.28	32.26	ND*	ND*	ND*	ND*	0.14	ND*	12.55	16.31	38.68	22.58
32	21-07-2022	65.25	35.72	0.52	ND*	2.16	10.18	0.56	ND*	29.46	21.23	26.33	18.93
33	25-07-2022	45.42	25.43	ND*	ND*	ND*	ND*	0.52	ND*	25.64	19.52	23.62	26.45
34	28-07-2022	67.17	30.46	ND*	ND*	ND*	ND*	0.41	ND*	33.45	17.96	33.85	21.52
35	01-08-2022	80.53	40.27	0.54	ND*	2.42	10.17	0.44	ND*	20.29	23.4	25.37	20.36
36	04-08-2022	72.54	36.49	ND*	ND*	ND*	ND*	0.87	ND*	15.76	10.28	23.55	27.56
37	08-08-2022	79.54	39.55	0.66	ND*	2.34	10.38	0.57	ND*	30.28	21.4	21.65	14.51
38	11-08-2022	65.69	35.38	ND*	ND*	ND*	ND*	0.73	ND*	35.36	19.37	30.42	28.61
39	15-08-2022	60.64	31.51	ND*	ND*	ND*	ND*	0.93	ND*	38.67	17.23	28.44	24.3
40	18-08-2022	73.58	38.43	ND*	ND*	ND*	ND*	0.82	ND*	33.66	11.3	24.65	19.61
41	22-08-2022	69.51	43.57	0.62	ND*	2.16	10.23	0.89	ND*	21.69	14.57	20.32	22.72
42	25-08-2022	63.54	32.64	ND*	ND*	ND*	ND*	1.03	ND*	24.66	18.48	29.67	16.81
43	29-08-2022	74.67	33.87	ND*	ND*	ND*	ND*	0.88	ND*	26.44	22.46	37.63	25.68
44	01-09-2022	62.83	30.32	ND*	ND*	ND*	ND*	0.26	ND*	34.23	21.92	24.37	19.51
45	05-09-2022	80.37	40.26	0.58	ND*	2.36	10.18	0.23	ND*	22.38	23.43	32.41	30.25
46	08-09-2022	56.3	23.64	ND*	ND*	ND*	ND*	0.39	ND*	28.59	12.7	20.52	28.62
47	12-09-2022	51.52	21.56	ND*	ND*	ND*	ND*	0.53	ND*	23.42	15.6	33.54	25.33
48	15-09-2022	49.38	24.23	ND*	ND*	ND*	ND*	0.33	ND*	21.54	13.47	23.44	20.37
49	19-09-2022	63.44	39.44	ND*	ND*	ND*	ND*	0.19	ND*	15.38	18.56	19.27	15.44
50	22-09-2022	86.29	50.61	0.71	ND*	2.26	10.38	0.42	ND*	30.47	17.65	26.45	21.53
51	26-09-2022	66.52	28.54	ND*	ND*	ND*	ND*	0.58	ND*	35.45	22.64	36.44	14.61
52	29-09-2022	73.76	36.81	0.52	ND*	2.16	10.17	0.24	ND*	20.29	20.65	34.52	26.2

Observation: Above given Results are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-Idt: 18/11/2009 National Ambient Air Quality Standards, New Delhi, for 24 hourly or 8 hourly or 1 hourly monitored values

ND*: - Not Detected - Lead as Pb (µg/m³): 0.1

ND*: - Not Detected - Carbon Monoxide as CO (mg/m³): 0.01

ND*: - Not Detected - Benzene as C_6H_6 (µg/m³): 2

ND*: - Not Detected - Benzo (a) Pyrene (BaP) - Particulate Phase only (ng/m³): 0.5

ND*: - Not Detected - Arsenic as As (ng/m³): 2 Not Detected - Nickel as Ni (ng/m³): 5

Authorized Signatory

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

Table-1.6: Ambient Air Quality Monitoring Results at Suvali Village

ON PO	LUCON POLLUCON	POLLUCON	POLLUCO	Loca	tion-6:	Suvali \	/illage ((N 21° 0	8.55′ E	72° 38.	.24′)	ELUCON PC	LLUCON P
Sr. No.	Date of Sampling	PM ₁₀	PM _{2.5}	Pb	BaP	As	Ni Ni	СО	C ₆ H ₆	NH ₃	SO ₂	NO _x	O ₃
ON PO	LUCON POLLUCON	μg/m³	μg/m³	μg/m³	ng/m ³	ng/m ³	ng/m ³	mg/m ³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
100	04-04-2022	43.43	21.53	ND*	ND*	ND*	ND*	0.24	ND*	24.43	15.38	30.28	12.57
2	08-04-2022	54.34	26.36	ND*	ND*	ND*	ND*	0.3	ND*	20.68	11.56	17.69	19.52
3	11-04-2022	47.53	17.81	ND*	ND*	ND*	ND*	0.16	ND*	13.64	14.54	15.93	14.38
4	15-04-2022	59.48	28.42	ND*	ND*	ND*	ND*	0.31	ND*	11.24	10.41	27.55	18.35
5	18-04-2022	68.36	36.21	ND*	ND*	ND*	ND*	0.19	ND*	19.54	16.54	20.37	25.36
6	22-04-2022	41.37	19.55	ND*	ND*	ND*	ND*	0.42	ND*	12.34	7.64	18.29	13.31
7	25-04-2022	48.23	24.28	ND*	ND*	ND*	ND*	0.27	ND*	14.39	13.52	22.41	24.57
8	29-04-2022	40.28	16.33	ND*	ND*	ND*	ND*	0.21	ND*	18.51	8.67	14.42	17.63
9	02-05-2022	56.28	24.57	ND*	ND*	ND*	ND*	0.14	ND*	10.22	16.37	23.36	19.88
10	05-05-2022	50.26	22.45	ND*	ND*	ND*	ND*	0.48	ND*	21.66	12.36	28.54	14.87
11	09-05-2022	64.31	19.52	ND*	ND*	ND*	ND*	0.32	ND*	12.68	10.56	17.58	12.68
12	12-05-2022	44.23	23.25	ND*	ND*	ND*	ND*	0.29	ND*	18.31	8.64	15.63	23.28
13	16-05-2022	55.38	25.31	ND*	ND*	ND*	ND*	0.38	ND*	16.58	6.25	27.4	11.59
14	19-05-2022	69.23	27.91	ND*	ND*	ND*	ND*	0.15	ND*	11.51	14.54	24.7	18.6
15	23-05-2022	47.55	31.28	ND*	ND*	ND*	ND*	0.37	ND*	15.23	9.35	29.5	13.54
16	26-05-2022	63.45	26.25	ND*	ND*	ND*	ND*	0.17	ND*	22.14	15.37	22.5	10.57
17	30-05-2022	53.15	28.86	ND*	ND*	ND*	ND*	0.16	ND*	26.37	7.59	12.72	20.41
18	02-06-2022	62.47	18.37	ND*	ND*	ND*	ND*	0.64	ND*	18.55	9.59	20.26	10.38
19	06-06-2022	59.39	25.45	ND*	ND*	ND*	ND*	0.19	ND*	25.62	6.65	13.37	12.38
20	09-06-2022	51.62	28.43	ND*	ND*	ND*	ND*	0.42	ND*	17.31	16.23	16.42	21.23
21	13-06-2022	45.64	17.5	ND*	ND*	ND*	ND*	0.14	ND*	14.58	7.59	24.26	17.58
22	16-06-2022	60.84	22.6	ND*	ND*	ND*	ND*	0.48	ND*	21.54	10.24	17.22	19.82
23	20-06-2022	53.62	15.31	ND*	ND*	ND*	ND*	0.39	ND*	15.36	13.4	19.55	15.4
24	23-06-2022	57.69	26.49	ND*	ND*	ND*	ND*	0.13	ND*	12.44	15.24	23.46	18.24
25	27-06-2022	49.41	19.54	ND*	ND*	ND*	ND*	0.47	ND*	23.45	12.46	15.4	16.49
26	30-06-2022	54.25	32.44	ND*	ND*	ND*	ND*	0.3	ND*	13.61	8.45	21.56	13.16
27	04-07-2022	55.51	22.66	ND*	ND*	ND*	ND*	0.45	ND*	16.79	8.29	22.43	21.94
28	07-07-2022	33.21	15.45	ND*	ND*	ND*	ND*	0.62	ND*	23.49	10.25	25.47	17.36
29	11-07-2022	38.27	26.47	ND*	ND*	ND*	ND*	0.15	ND*	18.25	6.58	27.53	13.52

● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

30	14-07-2022	34.55	19.54	ND*	ND*	ND*	ND*	0.33	ND*	12.61	9.25	19.55	10.27
31	18-07-2022	54.55	18.4	ND*	ND*	ND*	ND*	0.18	ND*	22.41	7.59	21.3	15.66
32	21-07-2022	43.78	16.64	ND*	ND*	ND*	ND*	0.47	ND*	10.78	12.68	15.95	11.56
33	25-07-2022	39.12	14.33	ND*	ND*	ND*	ND*	0.23	ND*	17.28	14.56	24.22	14.3
34	28-07-2022	50.55	17.67	ND*	ND*	ND*	ND*	0.63	ND*	14.25	11.57	16.57	19.61
35	01-08-2022	52.85	27.53	ND*	ND*	ND*	ND*	0.13	ND*	14.27	12.72	16.55	12.66
36	04-08-2022	46.26	16.53	ND*	ND*	ND*	ND*	0.29	ND*	21.93	9.57	24.43	18.53
37	08-08-2022	55.67	21.85	ND*	ND*	ND*	ND*	0.53	ND*	25.42	11.21	19.39	11.25
38	11-08-2022	59.53	25.5	ND*	ND*	ND*	ND*	0.25	ND*	15.36	15.37	25.69	23.75
39	15-08-2022	40.54	19.4	ND*	ND*	ND*	ND*	0.23	ND*	24.58	13.54	18.51	20.58
40	18-08-2022	51.26	24.38	ND*	ND*	ND*	ND*	0.27	ND*	16.21	6.58	14.52	13.55
41	22-08-2022	60.14	29.57	ND*	ND*	ND*	ND*	0.34	ND*	13.55	8.65	17.52	19.32
42	25-08-2022	68.54	26.34	ND*	ND*	ND*	ND*	0.26	ND*	19.34	10.24	23.51	22.86
43	29-08-2022	48.61	23.78	ND*	ND*	ND*	ND*	0.07	ND*	10.58	14.58	26.35	15.77
44	01-09-2022	40.22	13.48	ND*	ND*	ND*	ND*	0.21	ND*	13.36	14.34	15.51	11.37
45	05-09-2022	55.67	29.31	ND*	ND*	ND*	ND*	0.11	ND*	10.38	23.45	22.62	13.46
46	08-09-2022	41.28	19.63	ND*	ND*	ND*	ND*	0.34	ND*	19.32	12.36	18.65	23.37
47	12-09-2022	35.62	13.41	ND*	ND*	ND*	ND*	0.13	ND*	25.58	8.99	14.59	20.71
48	15-09-2022	46.35	15.65	ND*	ND*	ND*	ND*	0.4	ND*	12.27	11.22	19.55	10.35
49	19-09-2022	60.25	35.67	ND*	ND*	ND*	ND*	0.36	ND*	13.54	7.61	13.55	22.65
50	22-09-2022	66.35	30.61	ND*	ND*	ND*	ND*	0.15	ND*	25.63	13.49	8.54	17.34
51	26-09-2022	42.62	16.51	ND*	ND*	ND*	ND*	0.44	ND*	15.22	9.88	20.23	21.64
52	29-09-2022	51.34	34.54	ND*	ND*	ND*	ND*	0.49	ND*	17.51	15.37	17.59	24.52

Observation: Above given Results are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-Idt: 18/11/2009 National Ambient Air Quality Standards, New Delhi, for 24 hourly or 8 hourly or 1 hourly monitored values

ND*: - Not Detected - Lead as Pb (µg/m³): 0.1

ND*: - Not Detected - Carbon Monoxide as CO (mg/m³): 0.01

ND*: - Not Detected - Benzene as C_6H_6 (µg/m³): 2

ND*: - Not Detected - Benzo (a) Pyrene (BaP) - Particulate Phase only (ng/m³): 0.5

ND*: - Not Detected - Arsenic as As (ng/m³): 2 Not Detected - Nickel as Ni (ng/m³): 5

Authorized Signatory

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

4B. GROUND WATER QUALITY MONITORING: - POLICION POLICIO

Table-1.7A: Ground Water Quality Results for the period: April, 2022 to September, 2022

Sr.	OLLUCON POLLUCON POLLUCON POLLUCON POLLUCON POLLUCON POLLUCON POLLUCON POL	OLLUCI	N POLLUCON POLL	UCON POLLUCON TO	ROUND WAT	ER BORE WEL	ON POLLUCON POL	LEGICON POLILICON
NO.	TEST PARAMETERS	UNIT	Apr-22	May-22	Jun-22	Jul-22	Aug-22	Sep-22
	POLLUCON POLLUCON POL	LUCON	28-04-2022	30-05-2022	30-06-2022	29-07-2022	29-08-2022	30-09-2022
110	Colour	Hazen	POLLUCG POLLUC	ON POLL3CON POL	LICON P2 LUCON	orracoi3 borraco	2	JCON PO3 LICON
2	Odour POLLLICON POI	LUEON	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
3	Taste Tollicon rol	FREGUN	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
4	Turbidity	NTU	0.18	0.12	0.14	0.22	0.26	0.17
5	pH Value	OLLUCE	7.67	7.96	7.56	7.75	7.95	7.81
6	Total Hardness as CaCO ₃	mg/L	439	478	462	490	518	532
7	Iron as Fe	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
8	Chloride as Cl	mg/L	112	129	142	160	166	172
9	Residual Free Chlorine	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
10	Fluoride as F	mg/L	0.13	0.126	0.098	0.15	0.22	0.26
11	Total Dissolved Solids	mg/L	1018	1135	1073	1190	1312	809
12	Calcium as Ca	mg/L	69.6	86.4	80.8	OLLUCC 90 OLLUCC	N POLL 94 N POLL	83.6 CON
13	Magnesium as Mg	mg/L	63.6	62.88	62.4	63.6	67.92	77.52
14	Copper as Cu	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
15	Manganese as Mn	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
16	Sulphate as SO ₄	mg/L	27.64	41.88	34.6	39.8	46.8	41.95
17	Nitrate Nitrogen as NO ₃	mg/L	5.83	5.39	6.32	7.2	6.4	5.83
18	Phenolic compounds as C ₆ H ₅ OH	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
19	Mercury as Hg	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
20	Cadmium as Cd	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
21	Selenium as Se	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
22	Arsenic as As	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
23	Cyanide as CN	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
24	Lead as Pb	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
25	Zinc as Zn	mg/L	0.29	0.17	0.21	0.19	0.22	0.31
26	Anionic Detergents as MBAS	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
27	Chromiumas Cr ⁺⁶	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
28	Mineral Oil	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
29	Alkalinity	mg/L	328	284	273	290	N POLI310 N POLL	286
30	Aluminum as Al	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
31	Boron as B	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32	Pesticides	оппсо	N POLLUCON POLL	UCON POLLUCON P	DELUCON POLLUCO	N POLLUCON POLLU	CON POLLUCON PO	LUCON POLLUCO
32.1	Alachor	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected

Authorized Signatory

● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

Sr.	OLLUCON POLLUCON P	DILLUCC	N POLLUCON POLL	UCON POLLUCON	ROUND WAT	ER BORE WEL	LON POLLLICON PO	LLUCON POLLUCON
NO.	TEST PARAMETERS	UNIT	Apr-22	May-22	Jun-22	Jul-22	Aug-22	Sep-22
	LLUCON POLLUCON POL	LUCON	28-04-2022	30-05-2022	30-06-2022	29-07-2022	29-08-2022	30-09-2022
32.2	Atrazine	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.3	Aldrin/Dieldrine	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.4	Alpha HCH	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.5	Beta HCH	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.6	Butachlor NO	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.7	Chlorpyriphos	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.8	Delta HCH POLLUCON P	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.9	2,4- Dichlorophrnoxy acetic acid	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.10	DDT (o,p&p,p- Isomers of DDT, DDE & DDD	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.11	Endosulfan (alpha, beta, and sulphate)	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.12	Ethion	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.13	Gamma – HCH (Lindane)	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.14	Isoproturon	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.15	Malathion POLLUCON P	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.16	Methyl Parathion	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.17	Monocrotophos	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.18	Phorate	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
33	Coliform	/100 ml	Absent	Absent	Absent	Absent	Absent	Absent
34	E-Coli	/100 ml	Absent	Absent	Absent	Absent	Absent	Absent

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Ground

Authorized Signatory

Recognised by MoEF, New Delhi Under GPCB apprved
Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor ● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under

Table-1.7B: Ground Water Quality Results for the period: April, 2022 to September, 2022

Sr.	LLUCON POLLUCON PO	LUCON	POLLUCON POLLUC	ON POLLUCON PO	GROUND WAT	ER OPEN WEL	N POLLUCON POLL	UCON POLLUCON
NO.	TEST PARAMETERS	UNIT	Apr-22	May-22	Jun-22	Jul-22	Aug-22	Sep-22
	OLLUCON POLLUCON P	OTTREC	28-04-2022	30-05-2022	30-06-2022	29-07-2022	29-08-2022	30-09-2022
cl _N	Colour	Hazen	N POLILIAON POLL	ICON POS UCON P	ILLUCON 3 OLLUCO	POLLUC3 N POLLU	CON POLAICON PO	LUCON 3)LLUCO
2	Odour	LUCON	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
3	Taste NOLLICON PO	LUEON	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
4	Turbidity	NTU	0.19	0.18	0.13	0.18	0.24	0.35
5	pH Value	OLLLICO	7.76	7.75	7.49	7.62	7.81	7.73
6	Total Hardness as CaCO ₃	mg/L	369	360	318	340	365	406
7	Iron as Fe	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	0.093
8	Chloride as Cl	mg/L	N POLL131N POLL	ON P112 CON P	107	119 10111	ON PO125 ON PO	135co
9	Residual Free Chlorine	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
10	Fluoride as F	mg/L	0.094	0.073	0.081	0.11	0.18	0.23
11	Total Dissolved Solids	mg/L	1068	982	1029	1108	1183	815 ON
12	Calcium as Ca	mg/L	56.4	62.4	72.4	76	80	74.4
13	Magnesium as Mg	mg/L	54.72	48.96	40.08	POLLU36 POLLU	39.6	52.8
14	Copper as Cu	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
15	Manganese as Mn	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
16	Sulphate as SO ₄	mg/L	19.68	25.89	29.58	34.8	41.2	31.95
17	Nitrate Nitrogen as NO ₃	mg/L	4.73	3.12	4.15	5.1	4.8	5.23
18	Phenolic compounds as C ₆ H ₅ OH	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
19	Mercury as Hg	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
20	Cadmium as Cd	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
21	Selenium as Se	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
22	Arsenic as As	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
23	Cyanide as CN	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
24	Lead as Pb	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
25	Zinc as Zn	mg/L	0.190	0.130	0.093	0.140	0.098	0.180
26	Anionic Detergents as MBAS	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
27	Chromiumas Cr ⁺⁶	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
28	Mineral Oil	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
29	Alkalinity	mg/L	386	286	274	296	312	392
30	Aluminum as Al	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
31	Boron as B	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32	OLLUCON POLLUCON I	OFFRED	N POLLUCON POLL	ON POLITICON POL	LUCON POLITICON	N POLLUCON POLLUC	CON POLLUCON PO	LLUCON POLLUCO
32.1	Alachor No Lucon I	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.2	Atrazine	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.3	Aldrin/Dieldrine	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected

● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

Sr.	POLLUCON POLLUCON P	DILLUCC	N POLLUCON POLL	UCON POLLUCON	ROUND WAT	ER OPEN WEL	TON POLLUCON PO	LLUCON POLLUCON
NO.	TEST PARAMETERS	UNIT	Apr-22	May-22	Jun-22	Jul-22	Aug-22	Sep-22
ON PO	LLUCON POLLUCON POL	LUCON	28-04-2022	30-05-2022	30-06-2022	29-07-2022	29-08-2022	30-09-2022
32.4	Alpha HCH	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.5	Beta HCH	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.6	Butachlor	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.7	Chlorpyriphos	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.8	Delta HCH	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.9	2,4- Dichlorophrnoxy acetic acid	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.10	DDT (o,p&p,p- Isomers of DDT, DDE & DDD	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.11	Endosulfan (alpha, beta, and sulphate)	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.12	Ethion	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.13	Gamma – HCH (Lindane)	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.14	Isoproturon	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.15	Malathion	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.16	Methyl Parathion	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.17	Monocrotophos	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.18	Phorate	μg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
33	Coliform	/100 ml	Absent	Absent	Absent	Absent	Absent	Absent
34	E-Coli	/100 ml	Absent	Absent	Absent	Absent	Absent	Absent

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Ground Water.

Authorized Signatory

Recognised by MoEF, New Delhi Under GPCB apprved
Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor ● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under

SURFACE WATER QUALITY MONITORING: - JOON POLLIC

Surface Water (Pond) Quality Results for the period: April, 2022 to September, 2022

	LUCON POLLUCON POLLUCON	POLLUCC NV POLLUC		At Mo	ra Village (Su	rface Water –	Pond)	
Sr. No.	Parameters	Unit	Apr-22	May-22	Jun-22	Jul-22	Aug-22	Sep-22
	TOLLUCON POLLUCON POLLUCON LLUCON POLLUCON POLLUCON	N POLLUCO	28-04-2022	30-05-2022	30-06-2022	29-07-2022	29-08-2022	30-09-2022
JCON DN1PC	Odour	POLILU POLILUCC	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
2	Colour	Hazen	N POLL 3	DILUCO 3 POLLUC	2 POLL	TUCON LOSTRICON	POLLUCON POLLU	TON POLALICON
3	Taste N POLLICON POLLICO	N POLLUCC	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
4	pH Value	N POLLU	7.59	7.65	7.49	7.8	7.72	7.49
5	Turbidity	NTU	0.2	0.12	0.18	0.25	0.19	0.25
6	Total Dissolved Solids	mg/L	712	708	659	572	561	673
7	Total Hardness as CaCO ₃	mg/L	240	256	230	206	198	228
8	Chloride as Cl	mg/L	92	72.47	67.97	62.9	59.9	63
9	Fluoride as F	mg/L	0.176	0.25	0.17	0.22	0.44	0.37
10	Iron as Fe	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
IC11	Coliform	/100 ml	Absent	Absent	Absent	Absent	Absent	Absent
12	E-Coli	/100 ml	Absent	Absent	Absent	Absent	Absent	Absent

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Surface Water.

Authorized Signatory

Recognised by MoEF, New Delhi Under
Sec. 12 of Environmental (Protection) Act-1986

GPCB apprved
schedule II auditor ● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under

4D. SEA WATER QUALITY MONITORING: -

Table-1.9: Sea Water Quality Analysis Results of CB2 South End towards Landside from the Sea Basin for the period: April, 2022 to September, 2022

TEST			CB2 SC	UTH END				-			E 72°37'!	56.58")	
PARAMETERS	UNIT	28/04		1									/2022
		Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Botton
рН		8.14	8.03	8.17	8.11	8.09	8.02	8.19	8.06	8.34	8.29	8.21	8.14
Temperature	°C	30.5	30.4	30.4	30.2	30.2	30	30.1	29.8	29.7	29.5	29.9	29.7
Total Suspended Solids	mg/L	129	113	173	168	153	138	187	186	163	142	147	128
BOD (3 Days @ 27 °C)	mg/L	3.34	2.69	2.8	2.71	2.68	2.4	2.49	1.97	2.56	2.33	2.98	2.5
Dissolved Oxygen	mg/L	5.9	5.8	5.9	5.75	6	5.95	5.1	5.95	6	5.85	5.9	5.8
Salinity	ppt	35.36				34.86		34.48	34.92	34.16	34.3	34.56	34.86
Oil & Grease	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detecte
Nitrate as NO ₃	μmol /L	2.91	2.83	3.06	2.91	2.73	2.64	2.61	2.53	2.39	2.17	3.59	3.27
Nitrite as NO ₂	μmol /L	0.59	0.51	0.63	0.56	0.82	0.76	0.75	0.64	0.41	0.32	0.3	0.19
AmmonicalNitro genas NH ₃	μmol /L	2.41	2.35	2.34	2.28	2.19	2.08	1.98	1.81	1.65	1.41	2.18	2.06
Phosphates as PO ₄	μmol /L	2.27	2.2	2.51	2.45	2.35	2.16	2.24	2.06	2.09	1.92	2.57	2.41
Total Nitrogen	μmol /L	5.91	5.69	6.03	5.75	5.74	5.48	5.34	4.98	4.45	3.9	6.07	5.52
Petroleum Hydrocarbon	μg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
Total Dissolved Solids	mg/L	36542	36814	36372	36684	35996	36312	35628	36112	35396	35492	35692	35974
COD	mg/L	13.94	12.38	13.18	12.26	11.52	10.38	10.78	9.94	9.8	8.4	11.6	9.9
Phytoplankton			•	•			•						
Chlorophyll	mg/ m³	3.09	2.96	2.96	2.72	2.61	2.5	2.45	2.24	2.32	2.23	2.64	2.56
Phaeophytin	mg/ m³	1.61	0.29	1.65	0.45	0.64	2.11	1.41	1.51	1.38	0.66	0.78	0.97
Cell Count	No.x 10 ³ /L	240	172	242	164	220	168	147	121	186	158	201	198
Name of Group Number and name of group species of each group	1	Cyclotell a sp., Lepto Cylindru s Sp., Thallasi osira sp., Peridini um sp., Navicula	Nitzschi a sp., Pleurosi gma sp., Scenede smus sp., Synedra sp.	Skeleto nema sp., Scenede sma sp., Rhizosol enia sp., Coscino discus sp., Asterine	Nitzschi a sp., Navicula sp., Pleurosi gma sp., Pediastr um sp.	Skeleto nema sp., Peridini um sp., Thallasi osira sp., Leptocyl indrus sp., Cyclotell	Nitzschi a sp., Navicula sp., Fragillari a sp., Cymbell a sp.	Skeleto nema sp., Fragillari a sp., Thallasi osira sp., Asterion ella sp., Coscino discus	Nitzschi a sp., Navicula sp., Rhizosol enia sp., Cyclotell a sp.	Skeleto nema sp., Guinardi a sp., Rhizosol enia sp., Coscino discus sp., Pediastr	Synedra sp., Navicula sp., Pleurosi gma sp., Fragillari a sp., Cymbell a sp.	Skeleton ema sp., Rhizosol enia sp., Asterion ella sp., Coscino discus sp., Thallasi	Fragillal ia sp., Cyclotel a sp., Synedra sp., Leptocy inrus sp.
	pH Temperature Total Suspended Solids BOD (3 Days @ 27 °C) Dissolved Oxygen Salinity Oil & Grease Nitrate as NO ₂ AmmonicalNitro genas NH ₃ Phosphates as PO ₄ Total Nitrogen Petroleum Hydrocarbon Total Dissolved Solids COD Phytoplankton Chlorophyll Phaeophytin Cell Count Name of Group Number and name of group species of each	TEST PARAMETERS PH Temperature °C Total Suspended Solids BOD (3 Days @ 27 °C) Dissolved Oxygen Salinity Ppt Oil & Grease Nitrate as NO ₃ Nitrate as NO ₂ AmmonicalNitro genas NH ₃ Phosphates as PO ₄ Total Nitrogen Hydrocarbon Total Dissolved Solids COD Phytoplankton Chlorophyll Phaeophytin Cell Count Name of Group Number and name of group species of each	TEST PARAMETERS PARAMETERS PH 8.14 Temperature °C 30.5 Total Suspended mg/L 129 Solids BOD (3 Days @ 27 °C) mg/L 3.34 Dissolved Oxygen mg/L 5.9 Salinity ppt 35.36 Oil & Grease mg/L Not Detected Nitrate as NO₂ /L	TEST PARAMETERS UNIT 28/04/2022 Surface Bottom pH	Name of Group Name of Group Phases as pool of the properties of each group Phases as pool of the properties of each group Phases of each group Phases of each group Phases of group Parents of the properties of each group Parents of the properties of the	TEST PARAMETERS CB2 SOUTH END TOWARE	CB2 SOUTH END TOWARDS LANDS 28/04/2022 30/05/2022 16/06 Surface Bottom Surface Bottom Surface Su	Not Not	TEST PARAMETERS UNIT 28/04/2022 30/05/2022 16/06/2022 29/07	TEST PARAMETERS UNIT 28/04/2022 30/05/2022 16/06/2022 29/07/2022 20/07/2022 20/0	TEST PARAMETERS PARAMETER	PARAMETERS PAR	TEST PARAMETERS PARAMETER

Authorized Signatory

● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

				and the state of t	ma managa ta Sa Sa Sa Sa	DEC	ULTS OF	SEA WAT	ED OLIAL T	TV ANALY	VSTS	The second section is a second	September 1	a fix test a state to a second
Sr.	TEST			CB2 SO	UTH END		S LANDS		•			E 72°37'	56.58")	
No.	PARAMETERS	UNIT	28/04	/2022	30/05	/2022	16/06	/2022	29/07	/2022	29/08	3/2022	30/09	/2022
			Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom
В	Zooplanktons													
17. 1	Abundance (Population)	Nox103 /100m3	2	9	3	2	2	5	2	8	3	3	2	.6
17. 2	Name of Group Number and name of group species of each group	1	Copepods, Ostracods, Chaetognaths, Amiphipod		Cope Polych Deca Ostra	aetes, oods,	tes, Ostracods, ds, Amphinods		Ostra Cope	naetes, ncods, pods, opods	Polych Amph	pods, naetes, nipods, codes	Copepods, Polychaetes, Decapods, Chaetognaths	
17. 3	Total Biomass	ml/100 m ³	2.5	2.85 3.15 2.45		2.	75	3.15		2.45				
С	Microbiologica	l Paramo	eters											
18. 1	Total Bacterial Count	CFU/ml	24	10	25	00	26	70	24	10	22	270	2380	
18. 2	Total Coliform	/ml	Pres	sent	Pres	sent	Pres	sent	Pre	sent	Pre	sent	Pres	sent
18. 3	E.coli	/ml	Abs	sent	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	sent
18. 4	Enterococcus species	/ml	Pres	sent	Pres	sent	Pres	sent	Pre	sent	Pre	sent	Pres	sent
18. 5	Salmonella species	/ml	Abs	ent Absent Absent Absent		sent	Abs	sent	Abs	sent				
18. 6	Shigella species	/ml	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	sent	Abs	sent
18. 7	Vibrio species	/ml	Abs	sent	nt Absent Absent Absent		sent	Abs	sent	Abs	sent			

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Water.

Authorized Signatory

Recognised by MoEF, New Delhi Under GPCB apprved
Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor ● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under

Table-1.10: Sea Water Quality Analysis Results of MP1 West End towards Channel from the Sea Basin for the period: April, 2022 to September, 2022

Sr.	TEST			MP1 V	VEST END				ER QUALI I SEA BAS			: 72°37'24	4.48")	
No	PARAMETERS	UNIT	28/04	/2022	30/05			/2022	29/07		29/08		30/09	/2022
-			Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom
1	pH		8.19	8.14	8.18	8.13	8.23	8.19	8.17	8.13	8.29	8.24	8.15	8.09
2	Temperature	оС	30.5	30.3	30.4	30.2	30.1	29.9	30	29.8	29.6	29.5	29.8	29.5
	Total Suspended Solids	mg/L	136	120	173	160	156	138	173	159	162	143	153	132
4	BOD (3 Days @ 27 °C)	mg/L	2.8	2.59	3.1	2.86	2.74	2.56	2.39	2.06	1.96	1.82	2.35	2.17
5 1	Dissolved Oxygen	mg/L	5.95	5.8	5.95	5.8	5.85	5.8	6	5.9	5.95	5.8	5.9	5.85
6	Salinity	ppt	35.42	35.94	35.26	35.4	34.92	35.38	34.32	34.56	33.98	34.2	34.41	34.92
7	Oil & Grease	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
8	Nitrate as NO ₃	μmol /L	2.98	2.87	2.98	2.9	2.83	2.78	2.67	2.54	2.41	2.3	3.47	3.31
9	Nitrite as NO ₂	μmol /L	0.62	0.53	0.57	0.49	0.69	0.56	0.83	0.69	0.39	0.35	0.54	0.42
10	AmmonicalNitr ogenas NH₃	μmol /L	2.35	2.3	2.39	2.31	2.23	2.1	2.13	2.08	1.87	1.72	2.21	2.06
	Phosphates as PO ₄	μmol /L	2.12	2.06	2.41	2.36	2.28	2.24	2.39	2.27	2.15	2.06	2.39	2.33
12	Total Nitrogen	μmol /L	5.95	5.7	5.94	5.7	5.75	5.44	5.63	5.31	4.67	4.37	6.22	5.79
13	Petroleum Hydrocarbon	μg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
14	Total Dissolved Solids	mg/L	36470	36962	36346	36468	36114	36452	34518	35690	35198	35419	35608	36028
15	COD	mg/L	12.87	11.94	14.12	13.9	12.16	10.89	10.86	10.24	8.6	7.2	9.7	8.6
_	Phytoplankton													
16. 1	Chlorophyll	mg/ m³	3.04	2.77	2.91	2.69	2.56	2.48	2.35	2.21	2.43	2.1	2.75	2.62
16. 2	Phaeophytin	mg/ m³	0.47	0.49	0.45	0.54	0.67	1.18	1.31	1.24	0.62	0.36	0.22	0.95
16. 3	Cell Count	No.x 10 ³ /L	224	156	216	146	202	170	135	114	206	178	234	212
16. 4	Name of Group Number and name of group species of each group	1	Thallas ionema sp., Asterio nella sp., Rhizos olenia sp., Biddulp hia sp., Melosir a sp.	Navicul a sp., Synedr a sp., Pleuros igma sp., Ceratiu msp, Nitzsch ia sp.	Coscin odiscus sp., Rhizos olenia sp., Pleuros igma sp., Melosir a sp., Skeleto nema	Nitzsch ia sp., Navicul a sp., Synedr a sp., Guinar dia sp.	Thallas iosira sp., Rhizos olenia sp., Lepto Cylindr us sp., Cyclote lla sp., Pleuros igma	Nitzsch ia sp., Navicul a sp., Synedr a sp., Guinar dia sp., Skeleto nema sp.	Thallas iosira sp., Skeleto nema sp., Coscin odiscus sp., Guinar dia sp.	Nitzsch ia sp., Navicul a sp., Fragilla ria sp., Cyclote lla sp.	Rhizos olenia sp., Guinar dia sp., Cyclote lla sp., Skeleto nema sp.	Nitzsch ia sp., Navicul a sp., Coscin odiscus sp., Thallas ionema sp.	Thallas iosira sp., Skeleto nema sp., Coscin odiscus sp., Guinar dia sp., Cheato cerous	Lepticy lindrus sp., Navicu a sp., Nitzsch ia sp., Melosir a sp., Gyrosi gma sp.
			a sp.	l	sp.	l	sp.	I	1	I	1	I	1	ı SD.

● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

					min and the state of the Paris	DEC	III TC OF	CEA WAT	ED OLIAL T	TV ANALY	VCTC	Charles and the same	No. of Automotive Control	a transportation and the
0				MP1 V	VEST END		ULTS OF S OS CHANN		-			F 72°37'2	4.48")	
Sr. No.	TEST PARAMETERS	UNIT	28/04	/2022	30/05			/2022		/2022		3/2022		/2022
			Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom
В	Zooplanktons				•		•		•			•	•	•
17. 1	Abundance (Population)	Nox103 /100m3	3	0	3	4	2	8	3	1	2	26	3	33
17.	Name of Group Number and name of group species of each group		Amiphipod, Polychaetes, Ostracods, Decapods		Cope Polych Deca Gastro	aetes, oods,	Polychaetes		Polychaetes, Foraminiferans, Copepods, Gastropods		Foramii Cope	naetes, niferans, epods, nipods	Lamellibranches Amphipods, Copepods, Polychaetes	
17. 3	Total Biomass	ml/100 m ³	2.	95	3.	.3	2.	70	2.95		2.55		3.	20
С	Microbiologica	l Paramo	eters											
18. 1	Total Bacterial Count	CFU/ml	27	50	24	30	25	80	26	20	2590		24	160
18. 2	Total Coliform	/ml	Pres	sent	Pres	sent	Pres	sent	Pres	sent	Pre	sent	Pre	sent
18. 3	E.coli	/ml	Abs	sent	Abs	ent	Abs	ent	Abs	ent	Abs	sent	Abs	sent
18. 4	Enterococcus species	/ml	Pres	sent	Pres	sent	Pres	sent	Pres	sent	Pre	sent	Pre	sent
18. 5	Salmonella species	/ml Absent Absent Absent		sent	Abs	sent	Abs	sent	Abs	sent				
18. 6	Shigella species	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	sent	Abs	sent	Abs	sent
18. 7	Vibrio species	/ml	Abs	ent	Abs	ent	Absent Absent		Abs	sent	Abs	sent		

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Water.

Authorized Signatory

Recognised by MoEF, New Delhi Under GPCB apprved
Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor ● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under

Table-1.11: Sea Water Quality Analysis Results of CB1 End towards Channel from the Sea Basin for the period: April, **2022 to September, 2022**

r.	TEST			CB1	END TOV				ER QUALI BASIN (I			'2°37'40.	14")	
lo	PARAMETERS	UNIT	28/04	/2022	30/05	/2022	16/06	/2022	29/07	/2022	29/08	/2022	30/09	/2022
			Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom
1	pН		3.17	2.86	2.98	2.7	2.67	2.49	2.47	2.24	2.32	2.16	2.79	2.56
2	Temperature	оС	5.9	5.85	5.9	5.7	5.85	5.75	5.9	5.85	6	5.9	5.8	5.7
3	Total Suspended Solids	mg/L	35.39	35.92	35.24	35.56	34.96	35.32	34.28	34.4	34.12	34.39	34.58	35.14
† 2	BOD (3 Days @ 27 °C)	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
5 1	Dissolved Oxygen	mg/L	2.99	2.87	2.99	2.87	2.58	2.31	2.43	2.26	2.39	2.28	3.29	3.21
6 5	Salinity	ppt	0.63	0.56	0.57	0.41	0.67	0.56	0.79	0.68	0.38	0.29	0.47	0.35
7 (Oil & Grease	mg/L	2.34	2.29	2.31	2.25	2.23	2.17	2.06	1.97	2.25	2.14	2.41	2.39
1 8	Nitrate as NO₃	µmol /L	2.4	2.35	2.64	2.51	2.29	2.23	2.35	2.29	2.16	2.08	2.35	2.27
	Nitrite as NO ₂	µmol /L	5.96	5.72	5.87	5.53	5.48	5.04	5.28	4.91	5.02	4.71	6.17	5.95
.0	AmmonicalNitro genas NH ₃	μmol /L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
1 1	Phosphates as PO ₄	μmol /L	36482	36930	36314	36592	36152	36412	35493	35604	35268	35629	35796	36324
	Total Nitrogen	µmol /L	14.72	13.56	13.68	12.1	12.54	11.93	10.36	9.28	8.4	7	12	10
.3 I	Petroleum Hydrocarbon	μg/L	3.17	2.86	2.98	2.7	2.67	2.49	2.47	2.24	2.32	2.16	2.79	2.56
4 1	Total Dissolved Solids	mg/L	5.9	5.85	5.9	5.7	5.85	5.75	5.9	5.85	6	5.9	5.8	5.7
.5 (COD	mg/L	35.39	35.92	35.24	35.56	34.96	35.32	34.28	34.4	34.12	34.39	34.58	35.14
A I	Phytoplankton													
1	Chlorophyll	mg/ m³	2.93	2.85	2.93	2.69	2.56	2.34	2.4	2.26	2.56	2.34	2.69	2.53
2	Phaeophytin	mg/ m³	0.30	0.17	0.26	0.33	0.89	0.92	0.92	0.80	0.60	0.55	0.44	0.30
6. 3	Cell Count	No.x 10 ³ /L	238	136	232	142	216	134	154	140	178	152	225	205
6. a	Name of Group Number and name of group species of each group		Lepto Cylindr us Sp., Scened esmus sp., Coscin odiscus sp., Guinar dia sp., Rhizos olenia sn	Fragilla ria sp., Synedr a sp., Cyclote lla sp., Nitzsch ia sp., Navicul a sp.	Guinar dia sp., Melosir a sp., Lepto Cylindr us sp., Coscin odiscus sp., Thallas iosira sp.	Nitzsch ia sp., Navicul a sp., Rhizos olenia sp., Pleuros igma sp.	Lepto Cylindr us sp., Cyclote Ila sp., Guinar dia sp., Skeleto nema sp., Pediast rum sp.	Nitzsch ia sp., Navicul a sp., Thalas sionem a sp., Meurie gma sp., Thallas ionema sp.	Cyclote lla sp., Guinar dia sp., Skeleto nema sp., Pediast rum sp., Cymbel la sp.	Nitzsch ia sp., Navicul a sp., Cyclote lla sp., Fragilla ria sp.	Guinar dia sp., Melosir a sp., Pleuros igma sp., Thallas ionema sp., Rhizos olenia sp.	Nitzsch ia sp., Navicul a sp., Cyclote lla sp., Fragilla ria sp., Cymbel la sp.	Pbormi dium sp., Scened esmus sp., Closteri um Sp., Coscin odiscus sp., Skeleto nema	Lepticy lindrus sp., Thallas iosira sp., Navicul a sp., Nitzsch ia sp., Cyclote lla sp.
			sp.		·			l .	1		·			l '
				a sp.	iosira	sp.	rum	ionema	,		olenia	la sp.	Skeleto	

● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

			-21-50-04-04-04-04-04-04-04-04-04-04-04-04-04			RES	ULTS OF	SEA WAT	ER QUALI	TY ANAL	YSIS	0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		Children Children
_				CB1	END TOV				BASIN (72°37'40.	14")	
Sr. No.	TEST PARAMETERS	UNIT	28/04	/2022	30/05	/2022	16/06	/2022	29/07	/2022	29/08	/2022	30/09	/2022
			Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom
В	Zooplanktons													
17. 1	Abundance (Population)	Nox103 /100m3	2	8	3	1	2	5	3	0	2	.6	3	1
17. 2	Name of Group Number and name of group species of each group		Gastropods, Amiphipod		-		Foraminiferans, Amphipods, Polychaetes, Copepods		Amph Gastro Polych Cope	opods, aetes,	Polych Amph	opods, naetes, ipods, niferans		. ,
17. 3	Total Biomass	ml/100 m ³	2.	70	3.	05	2.45		2.90		2.55		2.	90
С	Microbiologica	l Paramo	eters											
18. 1	Total Bacterial Count	CFU/ml	26	30	25	40	24	10	26	30	26	550	23	90
18. 2	Total Coliform	/ml	Pres	sent	Pres	sent	Pre	sent	Pres	sent	Pre	sent	Pres	sent
18. 3	E.coli	/ml	Abs	sent	Abs	sent	Abs	sent	Abs	sent	Abs	sent	Abs	ent
18. 4	Enterococcus species	/ml	Pres	sent	Pres	sent	Pre	sent	Pres	sent	Pre	sent	Pres	sent
18. 5	Salmonella species	/ml	Abs	sent	Abs	sent	Abs	sent	Absent Abs		sent	Abs	sent	
18. 6	Shigella species	/ml	Abs	sent	Abs	sent	Abs	sent	Abs	sent	Abs	sent	Abs	sent
18. 7	Vibrio species	/ml	Abs	sent	Abs	sent	Abs	sent	Abs	sent	Abs	sent	Abs	ent

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Water.

Authorized Signatory

Recognised by MoEF, New Delhi Under GPCB apprved
Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor ● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under

4E. DUMP POND DISCHARGE WATER QUALITY MONITORING: - N. POLLUKOM POLLU

Table-1.12: Dump Pond Water Quality Analysis Results for the Period: April, 2022 to September, 2022

Sr.			30/05/2022	30/05/2022	29/08/2022	29/08/2022
No.	Parameters	Unit	OLD COAL YARD	PET COCK	OLD COAL YARD	PET COCK
1	pH		8.89	8.81	8.24	8.4
2	Total Dissolved Solids	mg/L	2419	2316	2080	1946
3	Total Suspended Solids	mg/L	69	58	70	64
4	Turbidity	NTU	13.1	9.8	9.8	8.1
5	BOD (3 Days @ 27 °C)	mg/L	25	38	34	40
6	Dissolved Oxygen	mg/L	6.2	6	6.2	6.4
7	COD	mg/L	174	184	134	152
8	Salinity	ppt	1.65	1.84	1.32	1.41
9	Oil & Grease	mg/L	Not Detected	Not Detected	Not Detected	Not Detected
10	Total Hardness as CaCO ₃	mg/L	210	185	184	174
11	Fluoride as F	mg/L	0.6	0.58	0.52	0.6
12	Chloride as Cl	mg/L	909	889	768	872
13	Zinc as Zn	mg/L	0.35	0.26	0.22	0.16
14	Cadmium as Cd	mg/L	Not Detected	Not Detected	Not Detected	Not Detected
15	Lead as Pb	mg/L	Not Detected	Not Detected	Not Detected	Not Detected
16	Mercury as Hg	mg/L	Not Detected	Not Detected	Not Detected	Not Detected

Detection Limit, Mercury as Hg: 0.00025 mg/L, Oil & Grease: 2.0 mg/L, Cadmium as Cd: 0.001 mg/L, Lead as Pb: 0.005 mg/L

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Dump Pond Discharge Water.

Authorized Signatory

● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

4F. AMBIENT NOISE LEVEL MONITORING: -

Table-1.13: Ambient Noise Level Monitoring Results during the Day Time in Leq. dB(A) for the period: April, 2022 to September, 2022 At Near Port Gate No.: 2

Sampling Location			1 - Near Por	t Gate No.: 2		
Longitude Latitude			N 21° 05.426	E 72°37.739′		
Date of Monitoring	04/04/2022	02/05/2022	02/06/2022	04/07/2022	01/08/2022	01/09/2022
06:00-07:00	67.6	68.5	72.5	69.7	72.5	70.5
07:00-08:00	62.1	62.3	65.6	62.1	65.6	58.3
08:00-09:00	65.8	72.4	69.4	72.6	69.4	69.4
09:00-10:00	60.7	63.8	66.8	70.5	66.5	65.1
10:00-11:00	55.4	58.7	61.3	64.2	61.2	60.3
11:00-12:00	61.7	64.5	61.4	66.8	60.3	71.5
12:00-13:00	53.9	60.9	63.6	60.0	58.9	62.8
13:00-14:00	56.4	51.4	55.7	59.2	55.2	56.2
14:00-15:00	67.2	70.3	68.3	70.4	67.4	67.4
15:00-16:00	56.8	66.9	64.7	61.2	69.3	56.3
16:00-17:00	52.6	61.4	60.4	58.2	64.4	63.6
17:00-18:00	62.4	52.3	55.6	59.8	57.9	54.2
18:00-19:00	59.1	63.7	66.9	64.3	59.1	61.8
19:00-20:00	55.3	58.9	62.4	66.5	53.3	67.7
20:00-21:00	58.9	65.2	67.8	70.2	68.9	65.8
21:00-22:00	65.3	57.3	61.2	67.4	61.3	69.2

 $^{^{\}sharp}$ dB(A) Leq. Denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm

Table-1.14: Ambient Noise Level Monitoring Results during the Night Time in Leq. dB(A) for the period: April, 2022 to September, 2022 At Near Port Gate No.: 2

Sampling Location			1 - Near Por	t Gate No.: 2		
Longitude Latitude			N 21° 05.426	'E 72°37.739'		
Date of Monitoring	04/04/2022 & 05/04/2022	02/05/2022 & 03/05/2022	02/06/2022 & 03/06/2022	04/07/2022 & 05/07/2022	01/08/2022 & 02/08/2022	01/09/2022 & 02/09/2022
22:00-23:00	64.9	51.6	55.4	52.4	54.5	50.4
23:00-00:00	59.0	55.1	60.6	58.9	58.9	53.3
00:00-01:00	60.4	50.3	53.4	55.6	53.2	51.2
01:00-02:00	59.9	55.7	58.6	53.7	51.1	55.6
02:00-03:00	55.3	60.4	63.4	62.5	57.3	60.8
03:00-04:00	55.1	52.2	56.1	58.4	55.6	55.3
04:00-05:00	54.8	49.3	54.3	52.1	52.4	58.9
05:00-06:00	49.7	53.2	57.5	60.8	55.0	63.3

[#]dB(A) Leq. Denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as perThe Noise Pollution (Regulation and Control) Rules 2000.

Authorized Signatory

 FSSAI Approved Lab
 ● Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

Table-1.15: Ambient Noise Level Monitoring Results during the Day Time in Leq. dB(A) for the period: April, 2022 to September, 2022 At HSE Building Terrace

Sampling Location			2 - HSE Buil	ding Terrace		
Longitude Latitude			N 21° 05.043′	E 72° 38.491′		
Date of Monitoring	11/04/2022	09/05/2022	09/06/2022	11/07/2022	08/08/2022	08/09/2022
06:00-07:00	61.3	71.9	69.5	65.4	69.5	62.4
07:00-08:00	54.7	66.4	68.6	71.5	70.4	73.6
08:00-09:00	67.5	69.9	66.2	69.6	65.1	64.2
09:00-10:00	59.6	57.2	60.1	63.8	61.3	58.9
10:00-11:00	54.1	63.1	67.9	65.2	66.9	68.7
11:00-12:00	63.6	68.5	71.4	67.3	72.4	61.6
12:00-13:00	63.4	59.8	62.3	65.5	57.3	59.4
13:00-14:00	61.5	71.4	69.1	72.6	68.5	69.3
14:00-15:00	60.8	54.2	56.5	59.4	51.3	54.2
15:00-16:00	61.7	69.6	72.4	70.1	65.4	68.4
16:00-17:00	65.6	59.3	57.4	60.6	63.6	63.8
17:00-18:00	69.5	69.4	65.3	61.4	66.5	56.7
18:00-19:00	60.2	62.8	65.7	60.5	59.8	58.6
19:00-20:00	61.6	54.3	60.2	64.6	52.2	59.8
20:00-21:00	56.3	61.1	64.3	61.9	67.4	60.3
21:00-22:00	57.4	52.5	54.2	53.7	54.4	56.1

[#]dB(A) Leq. Denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Table-1.16: Ambient Noise Level Monitoring Results during the Night Time in Leq. dB(A) for the period: April, 2022 to September, 2022 At HSE Building Terrace

Sampling Location			2 - HSE Build	ding Terrace		
Longitude Latitude			N 21° 05.043′	E 72° 38.491′		
Date of Monitoring	11/04/2022 & 12/04/2022	09/05/2022 & 10/05/2022	09/06/2022 & 10/06/2022	11/07/2022 & 12/07/2022	08/08/2022 & 09/08/2022	08/09/2022 & 09/09/2022
22:00-23:00	68.7	59.4	63.6	63.6	55.4	60.5
23:00-00:00	53.3	48.7	52.4	56.6	51.2	54.2
00:00-01:00	56.7	52.2	56.8	54.2	56.3	50.3
01:00-02:00	54.3	52.1	56.1	59.8	49.8	55.8
02:00-03:00	52.2	61.8	64.9	60.7	63.3	58.9
03:00-04:00	56.1	56.3	59.4	63.5	54.2	60.7
04:00-05:00	58.9	59.0	53.2	56.2	56.1	55.7
05:00-06:00	53.6	47.5	51.6	58.9	45.5	60.2

[#]dB(A) Leq. Denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as perThe Noise Pollution(Regulation and Control) Rules 2000.

Authorized Signatory

 FSSAI Approved Lab
 ● Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

- GPCB apprved

Table-1.17: Ambient Noise Level Monitoring Results during the Day Time in Leq. dB(A) for the period: April, 2022 to September, 2022 At Central Water Pump House

Sampling Location		3	3 - Central Wat	er Pump House	е	
Longitude Latitude			N 21° 04.697′	E 72° 38.420′		
Date of Monitoring	14/04/2022	12/05/2022	13/06/2022	14/07/2022	11/08/2022	12/09/2022
06:00-07:00	58.4	57.4	55.1	59.8	61.5	65.7
07:00-08:00	59.5	61.1	66.7	62.6	58.7	59.3
08:00-09:00	56.5	58.4	54.3	57.8	63.3	52.4
09:00-10:00	67.8	64.3	67.5	68.6	66.3	63.2
10:00-11:00	63.7	60.4	54.1	58.4	63.2	52.8
11:00-12:00	60.5	57.6	62.3	65.1	61.9	68.9
12:00-13:00	58.3	56.1	60.6	56.3	60.2	52.2
13:00-14:00	66.4	67.5	70.2	68.9	70.4	61.4
14:00-15:00	54.7	58.6	54.2	59.7	55.6	63.5
15:00-16:00	60.6	68.4	71.6	67.5	71.2	62.4
16:00-17:00	66.8	53.5	51.4	57.6	57.8	52.1
17:00-18:00	68.3	69.5	67.9	69.5	73.4	73.6
18:00-19:00	63.8	65.4	70.3	72.4	61.6	69.5
19:00-20:00	59.9	60.7	63.4	66.9	65.7	60.2
20:00-21:00	63.1	68.3	62.1	62.1 58.7		54.1
21:00-22:00	61.4	55.4	53.4	55.4	58.4	55.4

[#]dB(A) Leq. Denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human

Table-1.18: Ambient Noise Level Monitoring Results during the Night Time in Leq. dB(A) for the period: April, 2022 to September, 2022 At Central Water Pump House

Sampling Location		3	3 - Central Wat	er Pump Hous	е	
Longitude Latitude			N 21° 04.697	E 72° 38.420′		
Date of Monitoring	14/04/2022 & 15/04/2022	12/05/2022 & 13/05/2022	13/06/2022 & 14/06/2022	14/07/2022 & 15/07/2022	11/08/2022 & 12/08/2022	12/09/2022 & 13/09/2022
22:00-23:00	60.7	48.9	53.5	56.2	51.4	52.2
23:00-00:00	68.5	52.4	56.1	59.9	55.3	56.1
00:00-01:00	56.4	61.8	65.4	61.1	58.4	59.8
01:00-02:00	48.0	60.3	54.3	52.8	63.3	56.4
02:00-03:00	56.2	52.5	58.9	63.4	57.6	61.2
03:00-04:00	51.6	58.4	61.4	56.3	60.2	51.1
04:00-05:00	63.2	63.1	60.3	62.5	61.1	57.6
05:00-06:00	55.8	54.4	59.7	56.4	50.8	51.2

[#]dB(A) Leq. Denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Authorized Signatory

 FSSAI Approved Lab
 ● Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

Table-1.19: Ambient Noise Level Monitoring Results during the Day Time in Leq. dB(A) for the period: April, 2022 to September, 2022 At Container Terminal

Sampling Location			4 - Contain	er Terminal		
Longitude Latitude			N 21° 05.187′	E 72° 37.774′		
Date of Monitoring	08/04/2022	05/05/2022	06/06/2022	07/07/2022	04/08/2022	05/09/2022
06:00-07:00	62.5	69.3	73.4	70.1	66.4	67.5
07:00-08:00	65.1	71.2	69.5	65.3	69.5	62.3
08:00-09:00	59.2	64.9	61.4	64.5	61.2	60.8
09:00-10:00	57.0	57.5	55.2	58.4	54.6	54.1
10:00-11:00	52.1	62.6	65.6	62.1	65.1	65.6
11:00-12:00	54.6	51.4	56.9	59.4	56.3	56.2
12:00-13:00	59.3	63.5	67.4	70.5	59.7	64.3
13:00-14:00	66.5	57.9	54.2	57.8	54.1	59.7
14:00-15:00	65.7	59.1	63.6	66.8	63.8	61.6
15:00-16:00	62.9	61.3	67.9	62.3	57.4	67.8
16:00-17:00	70.9	56.5	52.1	55.8	60.2	51.2
17:00-18:00	55.1	70.6	61.0	64.2	67.4	67.9
18:00-19:00	68.7	68.9	68.5	70.6	70.5	71.8
19:00-20:00	61.9	62.4	60.4	57.1	66.1	53.6
20:00-21:00	54.2	64.7	67.5	65.5	61.3	63.7
21:00-22:00	67.0	61.5	58.3	60.6	57.6	59.5

[#]dB(A) Leq. Denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human

Table-1.20: Ambient Noise Level Monitoring Results during the Night Time in Leq. dB(A) for the period: April, 2022 to September, 2022 At Container Terminal

Sampling Location			4 - Contain	er Terminal			
Longitude Latitude			N 21° 05.187'	E 72° 37.774′			
Date of Monitoring	08/04/2022 & 09/04/2022						
22:00-23:00	66.2	58.7	62.5	59.7	57.7	54.3	
23:00-00:00	52.5	56.2	51.1	54.2	51.1	50.8	
00:00-01:00	61.3	50.3	54.6	56.3	47.5	52.4	
01:00-02:00	57.4	54.6	51.4	58.1	52.2	51.1	
02:00-03:00	53.4	58.4	53.6	55.5	51.8	52.8	
03:00-04:00	63.5	49.1	52.8	57.4	45.3	54.2	
04:00-05:00	56.9	52.3	56.4	53.2	55.6	50.4	
05:00-06:00	57.7	62.3	65.9	62.4	59.1	59.8	

[#]dB(A) Leq. Denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Authorized Signatory

 FSSAI Approved Lab
 ● Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

Table-1.21:Ambient Noise Level Monitoring Results during the Day Time in Leq. dB(A) for the period: April, 2022 to September, 2022 At Hazira Village

Sampling Location			5 - Hazir	a Village		
Longitude Latitude			N 21° 05.44′	E 72° 38.44′		
Date of Monitoring	18/04/2022	16/05/2022	16/06/2022	18/07/2022	15/08/2022	15/09/2022
06:00-07:00	68.9	70.5	65.3	62.4	71.4	66.8
07:00-08:00	60.0	66.9	64.1	60.6	64.6	56.2
08:00-09:00	63.7	63.7	68.5	65.1	59.8	63.7
09:00-10:00	64.1	60.1	55.4	59.8	65.7	55.6
10:00-11:00	42.4	64.5	67.8	64.4	60.5	68.9
11:00-12:00	62.1	67.4	71.4	68.5	71.2	64.2
12:00-13:00	69.1	69.2	68.3	64.2	67.3	61.5
13:00-14:00	61.6	62.3	59.6	62.5	59.6	58.7
14:00-15:00	63.5	66.6	62.1	59.7	69.5	63.8
15:00-16:00	71.8	58.5	62.6	66.3	61.2	69.5
16:00-17:00	64.6	67.3	64.3	63.3	70.5	67.9
17:00-18:00	60.1	61.2	58.5	61.2	69.8	59.6
18:00-19:00	66.4	55.3	52.1	55.5	58.4	51.4
19:00-20:00	67.7	67.9	72.4	69.6	63.1	72.6
20:00-21:00	70.2	66.1	63.2	66.7	71.6	61.3
21:00-22:00	62.3	69.6	65.4	69.8	65.4	65.8

^{*}dB(A) Leq. Denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Table-1.22: Ambient Noise Level Monitoring Results during the Night Time in Leq. dB(A) for the period: April, 2022 to September, 2022 At Hazira Village

Sampling Location			5 - Hazir	a Village		
Longitude Latitude			N 21° 05.44′	E 72° 38.44′		
Date of Monitoring	18/04/2022 & 19/04/2022	16/05/2022 & 17/05/2022	16/06/2022 & 17/06/2022	18/07/2022 & 19/07/2022	15/08/2022 & 16/08/2022	15/09/2022 & 16/09/2022
22:00-23:00	67.6	55.2	59.8	55.4	50.2	51.1
23:00-00:00	50.9	51.1	56.4	60.2	47.7	58.6
00:00-01:00	53.0	59.7	65.4	63.3	61.5	65.7
01:00-02:00	58.9	62.4	58.7	61.4	58.3	63.6
02:00-03:00	50.1	56.1	61.3	64.8	54.2	60.5
03:00-04:00	55.5	65.5	61.4	59.2	61.3	56.8
04:00-05:00	55.2	50.2	54.3	56.3	45.8	52.2
05:00-06:00	54.9	61.0	59.6	62.4	64.2	57.3

 $^{^{*}}$ dB(A) Leq. Denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Note: The Noise Level of Hazira Village is compare with the Industrial area Norms as Hazira Village is Surround By Numbers of industries.

Authorized Signatory

- FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor
- GPCB apprved

Table-1.23: Ambient Noise Level Monitoring Results during the Day Time in Leq. dB(A) for the period: April,2022 to September, 2022 At Suvali Village

Sampling Location			6 - Suva	li Village		
Longitude Latitude			N 21° 08.55′	E 72° 38.24′		
Date of Monitoring	22/04/2022	19/05/2022	21/06/2022	22/07/2022	18/08/2022	19/09/2022
06:00-07:00	53.6	44.2	46.8	50.4	48.9	48.7
07:00-08:00	54.1	51.9	53.6	55.1	55.4	52.3
08:00-09:00	48.2	63.7	59.5	62.4	60.2	59.8
09:00-10:00	47.4	58.4	55.4	52.6	63.9	50.3
10:00-11:00	50.6	45.1	49.2	54.8	48.7	51.1
11:00-12:00	53.4	56.3	53.1	56.2	52.3	54.2
12:00-13:00	49.6	54.2	57.8	60.3	57.1	63.8
13:00-14:00	47.3	51.8	56.7	54.2	56.3	52.2
14:00-15:00	52.5	56.7	61.3	63.8	59.8	61.7
15:00-16:00	47.6	54.9	52.1	49.8	53.1	47.2
16:00-17:00	53.8	46.2	50.3	53.2	43.6	50.8
17:00-18:00	51.2	57.8	61.8	58.9	53.3	54.3
18:00-19:00	48.6	45.6	48.7	51.1	42.1	55.8
19:00-20:00	52.4	51.1	57.4	55.3	56.8	58.9
20:00-21:00	49.7	44.8	49.3	49.3 53.6		51.7
21:00-22:00	54.6	51.2	56.4	52.8	56.2	53.3

[#]dB(A) Leq. Denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Table-1.24: Ambient Noise Level Monitoring Results during the Night Time in Leq. dB(A) for the period: April,2022 to September, 2022 At Suvali Village

Sampling Location			6 - Suva	li Village		
Longitude Latitude			N 21° 08.55′	E 72° 38.24′		
Date of Monitoring	22/04/2022 & 23/04/2022	19/05/2022 & 20/05/2022	21/06/2022 & 22/06/2022	22/07/2022 & 23/07/2022	18/08/2022 & 19/08/2022	19/09/2022 & 20/09/2022
22:00-23:00	45.1	45.5	50.5	48.7	50.6	53.6
23:00-00:00	50.4	47.9	45.1	49.3	44.2	47.5
00:00-01:00	44.2	42.6	40.6	43.5	46.1	45.1
01:00-02:00	43.9	43.8	44.8	49.8	41.1	52.6
02:00-03:00	48.7	46.3	49.7	52.2	48.9	49.7
03:00-04:00	42.5	44.2	49.3	51.4	47.5	55.3
04:00-05:00	48.9	52.8	55.4	50.6	56.4	46.1
05:00-06:00	44.6	44.6	49.1	47.2	49.3	50.5

[#]dB(A) Leq. Denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human

Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Authorized Signatory

- FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor
- GPCB apprved

Table-1.25: DG Sets Stack Monitoring Results for the period: April, 2022 to September, 2022

Table-1.25 (a): DG Sets Stack Monitoring Results:

Sr.	Parameters	Unit	DG SET TOYO DENKI -1		DG SET TOY	O DENKI -2	DG SET TOYO DENKI -3	
No.		Unit	23/05/2022	31/08/2022	23/05/2022	31/08/2022	23/05/2022	31/08/2022
1	Particulate Matter	mg/Nm ³	28.61	24.52	26.83	28.66	25.75	30.62
2	Sulphur Dioxide	ppm	6.62	4.44	6.18	6.39	4.5	7.46
3	Oxide of Nitrogen	ppm	36.5	34.23	33.86	36.25	35.84	38.63
4	Carbon Monoxide (CO)	mg/m ³	22.41	23.39	21.86	22.9	23.39	25.77
5	Non Methyl Hydro Carbon	mg/m ³	Not	Not	Not	Not	Not	Not
٦	(NMHC)	mg/m²	Detected	Detected	Detected	Detected	Detected	Detected

Table-1.25 (b): DG Sets Stack Monitoring Results:

Sr.	Parameters	Unit	SS-1 LT DO	SS-1 LT DG -320 KVA SS3 -DG -200 KVA		LT Phase -1 (625 KVA)		
No.	Parameters	Onit	23/05/2022	31/08/2022	24/05/2022	31/08/2022	24/05/2022	29/08/2022
1	Particulate Matter	mg/Nm ³	26.42	30.33	17.66	24.51	27.53	35.61
2	Sulphur Dioxide	ppm	5.27	6.46	5.12	7.13	6.54	5.21
3	Oxide of Nitrogen	ppm	33.43	35.64	29.61	33.51	37.23	35.46
4	Carbon Monoxide (CO)	mg/m ³	17.18	6.3	11.45	7.44	25.19	5.04
5	Non Methyl Hydro Carbon (NMHC)	mg/m ³	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected

Table-1.25 (c): DG Sets Stack Monitoring Results:

Sr.	Parameters	Unit	LT Phase -2	2 (750 KVA)	ER-1 (100 KVA)		
No.	Parameters	Unit	24/05/2022	29/08/2022	24/05/2022	31/08/2022	
1	Particulate Matter	mg/Nm ³	35.32	30.39	24.29	21.59	
2	Sulphur Dioxide	ppm	7.63	7.02	4.27	5.11	
3	Oxide of Nitrogen	ppm	35.65	38.61	36.29	34.24	
4	Carbon Monoxide (CO)	mg/m ³	27.48	6.3	14.89	5.27	
5	Non Methyl Hydro Carbon (NMHC)	mg/m ³	Not Detected	Not Detected	Not Detected	Not Detected	

Authorized Signatory

● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

GPCB apprved schedule II auditor

● ISO 14001:2004 ● OHSAS 18001:2007 ● ISO 9001:

Table-1.25 (d): DG Sets Stack Monitoring Results:

Sr.	Parameters	Unit	NDG Buildin	g (380 KVA)	Custom Buildi	Custom Building (320 KVA)		
No.	raidilleters	Oilit	24/05/2022	31/08/2022	23/05/2022	31/08/2022		
1	Particulate Matter	mg/Nm ³	20.32	22.66	23.57	26.57		
2	Sulphur Dioxide	ppm	7.42	6.34	6.1	5.12		
3	Oxide of Nitrogen	ppm	31.53	32.65	35.3	31.53		
4	Carbon Monoxide (CO)	mg/m ³	13.74	5.96	18.32	5.04		
5	Non Methyl Hydro Carbon (NMHC)	mg/m ³	Not Detected	Not Detected	Not Detected	Not Detected		

Table-1.26: DG Sets Noise Level Monitoring Results for the period: April, 2022 to September, 2022

	DG Set Average Noise Level In Leq. dB(A)							
Sr. No.	Sampling Location	At 1 M Distance From The Enclosure						
	Sampling Date	23/05/2022 & 24/05/2022	29/05/2022 & 31/05/2022					
1.	DG SET TOYO DENKI - 1	71.5	69.7					
2.	DG SET TOYO DENKI - 2	66.3	71.6					
3.	DG SET TOYO DENKI -3	62.1	65.4					
4.	SS-1 LT DG -320 KVA	70.8	72.2					
5.	SS3 -DG -200 KVA	64.5	66.5					
6.	LT PHASE -1 (625 KVA)	61.3	66.3					
7.	LT PHASE -2 (750 KVA)	58.7	60.5					
8.	ER-1 (100 KVA)	69.4	70.5					
9.	NDG BUILDING (380 KVA)	63.1	61.1					
10.	CUSTOM BUILDING (320 KVA)	65.2	68.3					

Authorized Signatory

Recognised by MoEF, New Delhi Under

Sec. 12 of Environmental (Protection) Act-1986

GPCB apprved
schedule II auditor ● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under

4H. SEA SEDIMENT QUALITY MONITORING: - M POLITICO M POLITICO

Table-1.27: Sea Sediment Quality Results of CB2 South End towards Landside for the period: April, 2022 to September, 2022

Sr.	PARAMETERS	UNIT	CB2 SOUTH END TOWARDS LANDSIDEFROM SEA BASIN (N 21° 5'1.92", E 72°37'56.58")						
No.		POLLUCON	28/04/2022	30/05/2022	16/06/2022	29/07/2022	29/08/2022	30/09/2022	
011 PC	Organic Matter	%	0.40	0.40	0.43	0.41	0.37	0.46	
2	Phosphorus as P	µg/g	658	598	639	678	568	641	
3	Texture	N POLLUCON	Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	
4	Petroleum Hydrocarbon	μg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	
5	Heavy Metals	ON POLLUC	ON POLLI ON PO	LLUCON POLLUCC	N P	CON POLLUCO	N POLLUCON POLL	LICON POLLLICO	
5.1	Aluminum as Al	%	4.89	4.8	4.99	5.14	4.62	5.26	
5.2	Total Chromium as Cr ⁺³	μg/g	112	120	132	118	129	104	
5.3	Manganese as Mn	μg/g	790	JCON 716 JCON	758	CON 1673 CON	708	ON 10617 CON	
5.4	Iron as Fe	%	5.24	4.72	5.12	4.95	4.72	4.85	
5.5	Nickel as Ni	μg/g	61.83	35.86	53.98	47.19	51.35	37.96	
5.6	Copper as Cu	μg/g	53.45	53.27	60.83	53.28	43.98	JCON 57.32 JCO	
5.7	Zinc as Zn	μg/g	106	128	107	139	124	115	
5.8	Lead as Pb	μg/g	2.29	2.18	1.94	1.38	1.76	2.35	
5.9	Mercury as Hg	μg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	
6	Benthic Organisms	POLLUCO	OLLUCON POLL	LICON POLLUCON	PO TON LI	ICON POLLICON	POLLUCON POLLU	CON POLLUCON I	
6.1	Macrobenthos (No and name of groups present, No and name of species of each group present)	N POLLUCY	Gastropods, Crustaceans, Polychaetes, Bivalves	Bivalves, Polychaetes, Amphipods, Gastropods	Bivalves, Polychaetes, Gastropods	Bivalves, Polychaetes, Gastropods, Amphipods	Polychaetes, Crustaceans, Gastropods	Bivalves, Polychaetes, Branchyurans	
6.2	MeioBenthos (No and name of groups present, No and name of species of each group present)	N FOLLICO POLLUCON N POLLUCO NO POLLUCO N POLLUCO N POLLUCO N POLLUCO N POLLUCO N POLLUCO N POLLUCO	Foraminiferan S	Forammiforms	Nematodes	LUCON PLLUCON CON POL LUCON LUCON POLLUCON	Foraminiferan S	Nematodes	
6.3	Population	No./m ²	437	353	324	412	441	417	

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Sediment.

Authorized Signatory

● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

Table-1.28: Sea Sediment Quality Results of MP1 West End towards Channel of Sea Basin for theperiod: April, 2022 to September, 2022

Sr.	PARAMETERS	UNIT	MP1 WEST END TOWARDS CHANNEL OF SEA BASIN (N 21° 5'9.78",E 72°37'24.48")						
No.		ON POLLUCE	28/04/2022	30/05/2022	16/06/2022	29/07/2022	29/08/2022	30/09/2022	
L.	Organic Matter	%	0.36	0.39	0.36	0.40	0.38	0.40	
2	Phosphorus as P	µg/g	640	630	618	673	592	658	
3	Texture Ollicon Pollico	W POLLUCO	Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	
4	Petroleum Hydrocarbon	μg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	
5	Heavy Metals	ON FOLLL	CON POLLUC NO	POLLUCON POLLUCO	ON P LUCON PO	LLUCON POLITICO	N POLLUCON POL	CON POLLUCO	
5.1	Aluminum as Al	%	4.86	4.81	DN 6 5.12	4.93	POL 4.73 N POL	5.06	
5.2	Total Chromium as Cr ⁺³	µg/g	105	112	129	114	97.68	119	
5.3	Manganese as Mn	µg/g	814	716	678	708	684	732	
5.4	Iron as Fe	%	5.18	4.92	5.24	4.8 UCON	4.62	ON PC5.14 ON	
5.5	Nickel as Ni	µg/g	56.73	48.87	59.86	47.36	55.34	40.37	
5.6	Copper as Cu	μg/g	49.25	43.65	55.73	52.64	43.98	53.15	
5.7	Zinc as Zn	µg/g	112	119	108	137	125	97.28	
5.8	Lead as Pb	µg/g	2.76	2.18	1.93	1.37	1.48	2.37	
5.9	Mercury as Hg	μg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	
6	Benthic Organisms	N POLLUCE	DN F LLUCON TO	LLUCON POLLUCO	VIP VICON GLL	UCON POLLUCON	POLLUCON POLLU	EON POLLUCON	
6.1	Macrobenthos (No and name of groups present, No and name of species of each group present)	N POLLUCION POLL	Ostracods, Gastropods, Bivalves, Polychaetes	Polychaetes, Bivalves, Gastropods	Polychaetes, Bivalves, Amphipods	Polychaetes, Bivalves, Gastropods	Polychaetes, Crustaceans, Bivalves	Crustaceans, Bivalves, Gastropods, Branchyurans	
6.2	MeioBenthos (No and name of groups present, No and name of species of each group present)	ON F LLL N P AUGO OF TOLL OF T	CON POLLUCON TO POLLUCON TO POLLUCON FOR POL	Nematodes, Forammiforms	Foraminiferan S	Nematodes	Nematodes	Foraminiferan S	
6.3	Population	No./m ²	471	439	351	380	409	526	

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea

Authorized Signatory

Recognised by MoEF, New Delhi Under
Sec. 12 of Environmental (Protection) Act-1986

GPCB apprved
schedule II auditor ● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under

Table-1.29: Sea Sediment Quality Results of CB1 End towards Channel for the period: April, 2022 to September,

Sr.	PARAMETERS	UNIT	CB1 WEST END TOWARDS CHANNEL OF SEA BASIN (N 21° 5'14.67", E 72°37'40.14")							
No.			28/04/2022	30/05/2022	16/06/2022	29/07/2022	29/08/2022	30/09/2022		
J.	Organic Matter	%	0.38	0.44	0.39	0.43	0.42	0.48		
2	Phosphorus as P	µg/g	632	624	687	706	632	712		
3	Texture FOLLICON POLLUC	ON POLLL	Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt		
4	Petroleum Hydrocarbon	µg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected		
5	Heavy Metals	LICON POL	LUCON POLLI ON	POLLUCON POLLUC	CON P .LUCON P	DELUCON POLICICO	ON POLLUCON POL	LUICON POLLUCON		
5.1	Aluminum as Al ICON POLL	%	1100 4.96 ON	POLIL 4.72 POLIL	CON P 5.10	4.91	4.76	UCON 5.13 UCO		
5.2	Total Chromium as Cr ⁺³	µg/g	103	123	116	118	109	129		
5.3	Manganese as Mn	µg/g	758	728	673	683	705	664		
5.4	Iron as Fe	%	CON P5.12 N P	4.85	4.96	4.97 UCON	4.8	4.92		
5.5	Nickel as Ni	µg/g	63.86	47.89	56.73	52.86	43.65	51.27		
5.6	Copper as Cu	µg/g	54.19	54.17	51.28	50.17	56.93	43.68		
5.7	Zinc as Zn POLLUCON POLL	µg/g	UCON 103 UCON	130	ON F(119 CON P	147	N POLI112 N POL	LICON 132 LICO		
5.8	Lead as Pb	µg/g	2.39	2.29	1.83	1.56	N POL 1.37 N POL	2.19		
5.9	Mercury as Hg	µg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected		
6	Benthic Organisms	ON POLLL	ICON F LLUCON IN	DILLICON POLLUCO	ONIR LICEN OF	LUCON POLLUCON	POLLUCON POLLU	ICON POLLLICON		
6.1	Macrobenthos (No and name of groups present, No and name of species of each group present)	ON POLLUCON POL ON POLLUCON POL JCON POLLUCON PO	Amphipods, Crustaceans, Bivalves, Polychaetes	Polychaetes, Bivalves, Gastropods, Ostracodes	Polychaetes, Bivalves, Gastropods	Polychaetes, Crustaceans, Gastropods	Polychaetes, Crustaceans, Gastropods, Ostracodes	Polychaetes, Crustaceans, Gastropods		
6.2	MeioBenthos (No and name of groups present, No and name of species of each group present)	ON POL LICON F L ON P ALL LICO POL ON OLLL LI AN POL	Foraminiferans	Nematodes	Nematodes	Nematodes	POLLUCON POLLU N POLLUCON POLLU POLLUCON POLLU N POLLUCON POLLU N POLLUCON POLLU N POLLUCON POLLU	Foraminiferans		
6.3	Population	No./m ²	412	408	350	379	321	496		

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Sediment.

Authorized Signatory

Recognised by MoEF, New Delhi Under
Sec. 12 of Environmental (Protection) Act-1986

GPCB apprved
schedule II auditor ● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under

4I. SOIL QUALITY MONITROING: -

Soil Quality Testing Results for the period: April, 2022 to September, 2022

ON POLLUCON	OLLIEON POLLICON POLLUCON POLLUCON PO	OLLUCON POLLUCON POLLUCON POL LUCON POLLUCON POLLUCON POL	NEAR PORT GATE NO. 2			
SR. NO.	PARAMETERS	OLLUCON POLLUCON POLLUCON POL OLLUCON POLLUCON POLLUCON P	16/06/2022	12/09/2022		
ON POLLUCON	Туре	OLLUCON POLLUCON POLLUCON POL	Sandy Loam	Sandy Loam		
Grain Size	e Analysis	OLITICON POLLUCON POLLUCON POL	DELUCON POLLUCON POLLUC	CON POLLUCON POLLUCON POLLUCON		
2	Gravel rollucon rollucon rolluc	% ICON FOL	JCON POL 2.7 M POLITICO	2.5		
N PO 3 UCON	Coarse Sand	OLLUCO POLLUCON % ICON POL	6.3 POLLUCO	6.5		
on 4 LLUCO	Medium Sand	oute %	Edon rolls	20		
ON TOLLUCON	Fine Sand	OLLUCO W LUCON POLLUCO W LUCON POL	UCON POLLUCON POLLUCO	40		
6 CON	Total Sand	Tugo Poutron % con rol	69	69		
ON POLLUCC	Silt + Clay	CON IN COM IN	UCON POLL312N POLLUCO	N POLLUCO 31 OLLUCO		
8	pH (1:5)	OLLUCON POLLUCON POLLUC IN POL	8.83	8.92		
ON 9 LUCON	Electricity Conductivity	μmho/cm	1925	1844		
10	Alkali matter	mg/kg	576	548		
on rolling	Cation Exchange Capacity	meq/100 gm	12.48	12.3		
12	Sodium Absorption Ratio	OLLUCON POLLUCON POLL	10.76	10.56		
13	Organic Matter	mg/kg	0.54	0.56		
14	Available Nitrogen	meq/100 gm	0.79	0.62		
PC15UCON	Available Potassium	mg/kg	8.36	7.2		
16	Available Phosphorus	mg/kg	0.74	0.86		
17	Available Sodium	mg/kg	11.28	ON POLLUTIN POLLU		
18	Permeability	cm/sec	1.40 x 10 ⁻⁷	1.1 x 10 ⁻⁷		

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Soil Quality.

Authorized Signatory

● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

Soil Quality Testing Results for the period: April, 2022 to September, 2022

N POLLUCON P	O LUCON POLLUCON POLLUCON FOLLUCON FOLLUCON POLLUCON POLLUCON POLLUCON POLLUCON POLLUCON POLLUCON POLLUCON POL	ICON POLLUCON POLLUCON POLL	NEAR LT CANTEEN PARKING			
SR. NO.	PARAMETERS NO POLICION POLICION POL	ICON POLLUCON UNIT ON POLLUCON POLLUCON POLLUCON POLLUCON POLLUCON POLLUCON POL	16/06/2022	12/09/2022		
ON POLLUCON	Type N POLLUCON POLLU	LUCON POLLUCON POLUCON POLLUCON POLLUCO	Sandy Loam	Sandy Loam		
Grain Size	Analysis Control Control	EUCON POLLUCON POLLUC	LEGON POLLUCON POLLUCO	N POLLUCON POLLUCO		
POLIZICON P	Gravel	LUCON POLLUCON WICON POLL	LUCON POLL 133N POLLUCO	1.8		
ON PC3LUCON	Coarse Sand	lucov rollucov % lucov ro	6.7 on rollu	8.2		
4	Medium Sand	LUCON POLLUCON %	26	23		
POLISICON P	Fine Sand	CON MICON % CONTOLL	38	44		
6 LUCON	Total Sand	MICON POLITICON %	ICON POLL 72 POLLUCO	77		
on r7.ucon	Silt + Clay	% UCON 10	28	23		
8	pH (1:5) CON POLLICON FOR ACON POLL	ICON POLLUCON POLLUC IN POLL	CON POLES	8.84		
rol 9 con n	Electricity Conductivity	μmho/cm	1946	1889		
10	Alkali matter	mg/kg	603	596		
ON P11 UCON P	Cation Exchange Capacity	meq/100 gm	12.64	12.5		
12	Sodium Absorption Ratio	LUCON POLLUCON POLLUC	10.93	10.66		
13	Organic Matter	mg/kg	0.6	0.62		
14	Available Nitrogen	meq/100 gm	0.68	0.66		
15 CON	Available Potassium	mg/kg	7.96	7.45		
16	Available Phosphorus	mg/kg	0.89	0.92		
17	Available Sodium	mg/kg	10.84	10.94		
18	Permeability	cm/sec	1.50 x 10 ⁻⁷	1.40 x 10 ⁻⁷		

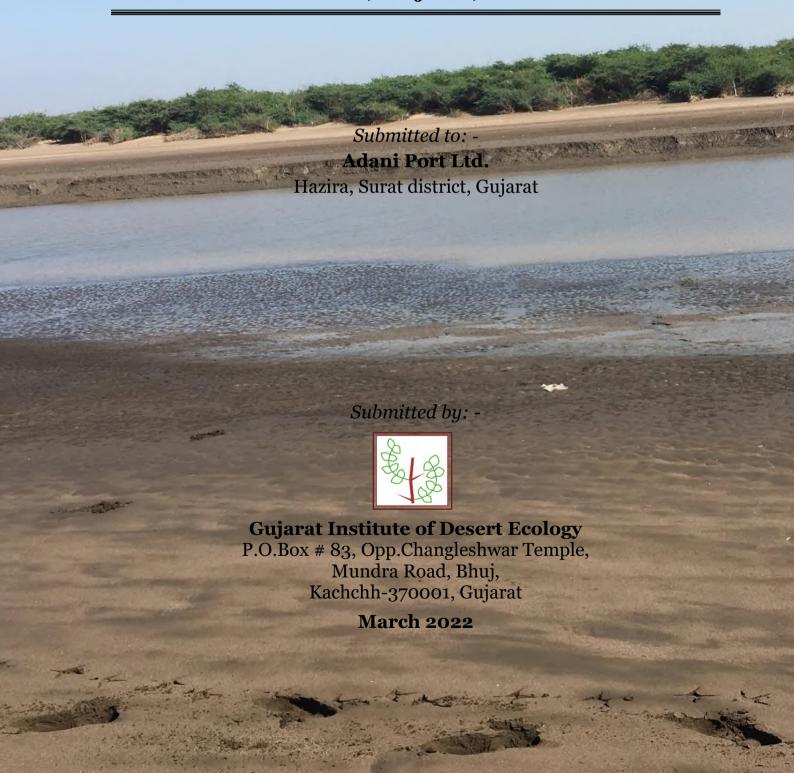
Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Soil Quality.

Authorized Signatory

Recognised by MoEF, New Delhi Under
Sec. 12 of Environmental (Protection) Act-1986

GPCB apprved
schedule II auditor ● FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under

ADANI HAZIRA PORT LIMITED


From: April 2022 to September 2022

ANNEXURE-5

Shore Line Assesment Report prepared by Gujarat Institute of Deserts Ecology

Final Report

A Study on the Shoreline Change Assessment Using Satellite Imagery at Adani Hazira Port, Surat district, Gujarat, India

Project Personnel

Project Coordinator Dr. V. Vijay Kumar, Director

Principal Investigator
Mr. Dayesh Parmar, Project Officer

Team Member
Mr. Chetanbhai Pandya & Team (DGPS Survey)

TABLE OF CONTENTS

List o	f figures	2
List o	f tables	3
List o	f Annexures	4
1.1.	Introduction	5
<i>1.2.</i>	Gujarat	5
1.2.1.	Gulf of Khambhat	5
<i>1.3.</i>	About Adani Hazira Port Ltd. (AHPL)	6
1.4.	Origin of the Study	6
<i>1.5.</i>	Objectives of Study	<i>7</i>
2.	Study area	8
2.1.	Location	8
<i>2.2.</i>	Climate	8
2.2.1.	Tidal Regime	9
2.2.2.	Currents	10
2.2.3.	Salinity	10
3.	methodology and data used	11
<i>3.1.</i>	Shoreline Change Analysis	
<i>3.2.</i>	Short Term Shoreline Change Analysis	
<i>3.3.</i>	Long Term Shoreline Change Analysis	12
<i>3.4.</i>	Data Used	13
3.4.1.	Pre-processing	14
<i>3.5.</i>	Field Work	16
4.	resultS and ANALYSIS	17
4.1.	Results For Shoreline Change Analysis From Satellite Images	
4.1.1.	Results for Overall Shoreline Change During 1990 and 2021	
4.1.2.	Results for Overall Shoreline Change During 2013 and 2021	
4.1.3.	Results Of Short-Term Shoreline Change for The Period 1990 to 2021	
4.1.4.	Results for Shoreline Chang Using High Resolution Satellite Images	
4.1.5.	Zones of High Erosion and High Accretion	
4.1.6.	Beach Profile	
5.	Conclusion	40
<i>5.1.</i>	Shoreline Changes	40
<i>5.2.</i>	Recommondations	40
Annex	cures	45

LIST OF FIGURES

Figure 2.1: Location map of the study area	9
Figure 3.1: Flowchart of the Methodology Adopted	11
Figure 3.2: Calculation of Short-Term Shoreline change analysis	12
Figure 3.3: Calculation of Long Term (LRR) Shoreline Change Analysis	13
Figure 3.4: Shoreline Digitization for Different Year Using Multi Date Satellite	
Imageries	15
Figure 3.5: Establishing DGPS Base Station (A) And Collecting Survey and Groun	nd
Truthing Data(B), (C), (D) Using Rover	16
Figure 4.1: Study Area Divided in Three Blocks	18
Figure 4.2: Shoreline Change Map Oct 1990- Oct 2021	19
The rate of change of shoreline has been calculated using high resolution (Ll	SS IV
5.8m) satellite images; the result has been processed since 2013 to 2021. Th	e
image on Figure 4.3 indicates that there is a high rate of erosion (-5 to -51 m	/year)
to the north of Hazira coast and at the bottom of the Southern tip of Hazira c	oast
whereas high accretion (5 to 71 m/year) was observed at the south coast	20
Figure 4.4: Shoreline Change Map Apr, 2013 and Oct 2021	20
Figure 4.5: Shoreline Change Map (Oct 1990, Nov 2001 to Jan-2002)	22
Figure 4.6: Shoreline Change Map (Nov 2001, Jan-2002 to Dec 2009)	23
Figure 4.7: Shoreline Change Map Dec 2009 and Oct 2021	24
Figure 4.8: Shoreline Change Map Apr 2013 - May 2015	26
Figure 4.9: Shoreline Change Map May 2015- April 2018	27
Figure 4.10 : Shoreline Change Map Apr 2018- Oct 2021	28
Figure 4.11: Zones of High Erosion and High Accretion	30
Figure 4.15: Shoreline Data Collected Using DGPS	31
Figure 4.16: NCSCM (National Centre for Coastal Management) Approved CRZ	Map
of 2017-18	32
Figure 4.17: Beach Profiles Location	34
Figure 4.18 : Beach Profile at Different Locations	35
Figure 4.19: Satellite View of Southern tip of Hazira During 1990, 2001, 2009 and	2021
	36
Figure 4.20: Satellite View of Suvali Beach During 1990, 2001, 2009 and 2021	37
Figure 4.21 : Satellite View of Ubhrat Beach During 1990, 2002, 2009 and 2021	
Figure 4.22 :(a) &(b) Northern Part of Suvali Beach, (c) Southern Part of Suva	ali
Beach, (d) North of Adani Port (e)&(f) Southern Hazira Coast	39

LIST OF TABLES

Table 3.1: Satellite Image Data Used for Decadal Shoreline Change Analysis	13
Table 3.2: Satellite Image Data on Shoreline Change Procured From NRSC	14
Table 4.1: Details of Average and Maximum Long Term Shoreline Changes	21
Table 4.2: Details of Average and Maximum Shoreline Changes Each Decade	22
Table 4.3: Details of Average and Maximum Short-Period Shoreline Changes	25

I	JST	UE	ΔN	INF	IIIX	SEC
	41.7 I	<i>\ ,</i> ı ·	$A \cap A$	11117	ЛІЛ	\ I ; .)

Annexure 1: Beach Profile at each I	Locations4	5
-------------------------------------	------------	---

1.1. Introduction

The shoreline is the place where large bodies like an ocean or lake meets the land. The coastal shoreline is the interface between the land and water and is very dynamic in nature which gets altered due to various coastal processes that govern it such as, wave characteristics, near-shore circulation, sediment characteristics and beach forms, etc. Shoreline change is a result of a process called littoral transport, which is responsible for moving eroded materials along the coasts by means of waves and currents in the near shore zone (Misra and Ramakrishnan, 2015). The developmental and maintenance activities such as construction of port, mining of beach sand, industrialization, garbage dump, urbanization, recreational activities, discharge of domestic sewage and industrial effluent, and reduction in sediment supply from rivers have amplified the processes of modifications, including changes in the shoreline (Kannan and Malarvannan, 2016).

Important aspect of shoreline is the sustainable development and protection of the coastal environment. Therefore, monitoring of coastline areas is the crucial subject since shorelines are the most important and dynamic of natural phenomenon (Tamassoki, Amiri, and Soleymani, 2014), where changes in one part affects the other parts, which will be a chain reaction.

1.2. Gujarat

Gujarat is situated in the western coast of India, on the Arabian Sea. Among the maritime states of India, Gujarat has the largest coastal stretch of around 28,000 km² or longest coastline of around 1650 km, which supports variety of marine flora and fauna. This state has two gulfs, the Gulf of Khambat and Gulf of Kachchh, and the coast is differentiated high rainfall area (2500 mm in south Gujarat) and low rainfall area (250 mm in north- west part of Kachchh). The coast experiences different range of tides, waves, cyclones and currents in the sea, affecting the physical as well as the biological conditions of the whole marine ecosystem.

1.2.1. Gulf of Khambhat

Gulf of Khambhat is located in the northern part of the Arabian sea, has a width of 80 km at mouth and funnels down to 25 km over the longitudinal reach of 140 km. The entire

bank surrounding the Gulf is bordered with large tidal flats nested into numerous tidal creeks. The Ambika, Purna, Kim, Tapti, Narmada, Mahi, Sabarmati and Dhadhar are the major rivers discharge into this Gulf. Mal Bank is a prominent sand shoal present at northern part of the Gulf. Middle part of the Gulf is deeper with depth ranging up to 30 m. Seabed in most part of the Gulf remains in quasi steady state and it moves as sand bars with tides. Many offshore oil, gas and chemical terminals exists and new installations are planned between Hazira and Dahej on the eastern part of the Gulf. On the other hand, the tides in the Gulf remain the largest of the Indian coast with spring tidal ranges of around 9 m resulting in strong currents. Due to strong flood and ebb tidal currents, the water remains always turbid with high bed and suspended sediment loads. Studies in the Gulf of Khambhat suggest that sand wave formation is under high-energy hydrodynamic conditions associated with the large tidal range. The sand waves, with the finer sediments concentrated at the crests, are derived from the coarse sediments supplied mainly by the Narmada and Tapti rivers. (Kumar and Kumar, 2010).

1.3. About Adani Hazira Port Ltd. (AHPL)

Adani Hazira Port Ltd. (AHPL) handles all types of cargo including bulk, break-bulk, bulk liquid chemicals, petroleum products and edible oil, containers, automotive and crude oil. In addition to its proximity to the Delhi-Mumbai Industrial Corridor, one of the world's largest high-tech industrial zones AHPL has excellent multi modal connectivity to the northern, north-western and central parts of India.

1.4. Origin of the Study

Adani Hazira Port Ltd. has obtained Environmental Clearance (EC) from the Ministry of Environment, Forests & Climate Change (MoEF&CC), Government of India, EC & CRZ Clearance condition issued vide File No. File No.: 11-150/2010-IA.1H dated 29th September, 2020, with the specification that Adani Hazira Port shall carry out intensive monitoring on shoreline changes and reporting once in six months through the Regional Office, to the MoEF&CC, New Delhi. The Adani Hazira port has been directed to undertake "Periodical study on shore line changes shall be conducted and mitigation carried out if necessary" as per the suggestions of EC & CRZ condition. Therefore, Adani Hazira Port Ltd. approached M/s. Gujarat Institute of Desert Ecology (GUIDE) to study the intensive

monitoring on shoreline changes through high resolution satellite imageries (LISS-IV). The present report compiles the results of shoreline change analysis by using satellite imageries and beach profile analysis of 20 km coastline stretch of Adani Hazira Port. Due to the dynamic nature of shoreline boundary, it's important to understand the long and short-term rate of shoreline changes for coastal vulnerabilities point of view.

1.5. Objectives of Study

- To map and compare shoreline behavior (changes) of 20 km (10 km on either side) coastline stretch of Adani Hazira Port breakwater using LISS IV high resolution satellite imageries during the years 2013 and 2015 before and after construction of port activities.
- 2. To monitor shoreline, change in every 3 years from 2015 onwards i.e., year 2018 and year 2021 using LISS IV, high resolution satellite imageries.
- 3. To identify the zones of high erosion and accretion using LISS IV, high resolution satellite imageries.
- 4. Collection of shoreline information and cross-sectional profiles using DGPS, at 20.00 Mt. interval along the route & offset between high tide line to low tide line, along the 10km stretch around the project site.
- 5. Shoreline change analysis by super imposing DGPS Survey data with satellite data.
- 6. Comparing shoreline changes results with NCSCM (National Centre for Sustainable Costal Management) CRZ data.

2. STUDY AREA

2.1. Location

The study area is located on the western coast of Gulf of Khambhat at Hazira in Surat District of Gujarat. Gulf of Khambhat coast experiences one of the highest tidal amplitudes and currents than anywhere along the Indian coast (Figure 2.1). Due to its funnel shape and the semi-enclosed nature at the head, the tidal height increases tremendously towards upstream. The highest spring tide recorded at Gulf is 12.5 m, which is second highest tidal amplitude anywhere in the world. This high tidal amplitude, particularly in the upper Gulf has huge intertidal extent of about 1.5 to 5 km, probably widest along the Indian coast. The long-shore currents by means of low wave dominate the open coasts along the Arabian Sea. Nevertheless, due to exceptionally strong flood and ebb tides, powerful tidal currents with a speed of 3 to 4 knots dominate the flow. The maximum velocities of 6 knots associated with high wave energy occur during mid-tide.

The study site is totally 20 km coastline stretch (10 km on either side) of Adani Hazira Port, located on the northern co-ordinates of site 21°8'14.59"N,72°37'17.174"E to Southern Co-ordinates of site 21°1'2.139"N,72°43'40.214"E, which is given in Figure 2.1.

2.2. Climate

The summer begins in early March and lasts until June. April and May are the hottest months, the average maximum temperature being 37 °C. Monsoon begins in late June. Surat city receives approximately 1,200 mm of rainfall by the end of September. October and November months experience the retreat of the monsoon and a return of high temperatures until late November. Winter starts in December and ends in late February, with average mean temperatures of around 23°C with insignificant rainfall.

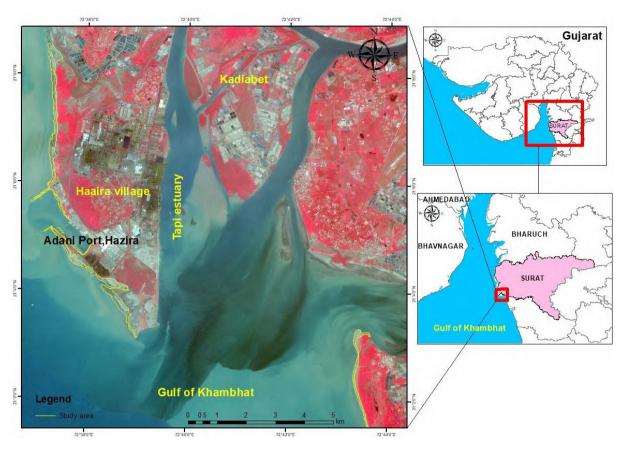


Figure 2.1: Location map of the study area

2.2.1. Tidal Regime

The tide in the Gulf is mixed semi-diurnal type, with large diurnal inequality and varying amplitude, which decrease from north to south. While, unique position of Gulf of Khambat, the coasts experience very high tidal amplitude; probably the highest anywhere along the Indian coast. Funnel shape and the semi-enclosed nature of Gulf lead to a tremendous increase in tidal height towards upstream(Gupta 2002). The maximum spring tide recorded is 8.1m (Mitra, Kumar and Jena, 2020). As a result, inter-tidal expanse is huge to the extent of 1.5 to 8 km, perhaps widest along the Indian coast. The Hazira mangrove area has bi-diurnal tidal regime (i.e., two ebb and flow tides per day). There were due to the funnel shape of the Gulf of Khambhat coupled with the resonance effect of exceptionally high tides. Along its eastern shore the mean spring high water range increases from 5.7 m. The Tapi estuary experiences fairly high tidal ranges in the mouth segment due to its proximity to the Gulf of Khambhat and hence marked changes in the tidal range and durations of flood and ebb phases, however, occur as the tide progresses along the length of the estuary. During neap, this decrease is from 2.3 m to 1.7 m at Hazira.

2.2.2. Currents

Long-shore currents with low wave dominate the open coasts along the Arabian Sea. In the Gulf due to exceptionally high flood and ebb tides, powerful tidal currents with maximum velocities of 6 knots associated with high wave energy occur during mid-tide. Currents in the Gulf, through tidal, are monsoonal in origin and dominated by barotropic tides(Alakkat, Shetye, and Michael 1999). The flow adjusts its directional orientation with the changing direction of wind affected by changing seasons of the year. The turnover residence times are quite short because of its shallow depth, large tidal amplitude and strong tidal current (Gupta, 2002).

The wave– current interaction process is studied by (Osuna and Monbaliu, 2004) using a coupling scheme which allows the synchronous data transfer between a wave and a tide/surge model. In most of the earlier studies of currents were up to 2 m/s (Masson, 1996) whereas in the Gulf of Khambhat, currents were more than 2 m/s and it was reported that this could be associated with interaction between high currents and the waves (Kumar and Kumar, 2010).

2.2.3. Salinity

Salinity is an indicator of the rate of freshwater inflow in the coastal waters and estuaries in particular. Normally, seawater salinity is 35–36 ppt, which may vary depending on the rate of evaporation and precipitation.

Flora and fauna inhabiting inshore and coastal waters are generally acclimatized to a certain range of salinity where they thrive. Evidently, wide changes in salinity during the monsoon, can result in adoption with modification and dominance of selected species in the lower order while higher order biota may migrate.

The estuarine salinity varies over a wide range on the annual cycle (George *et al.*, 2012). The salinity at a given location varies depending on the state and stage of the tide even during monsoon except in the inner estuary, which is fully fresh water dominated. Due to the proximity to the river flow, the salinity variations were over a wider range in the inner estuary in the dry season.

3. METHODOLOGY AND DATA USED

3.1. Shoreline Change Analysis

The methodology flowchart of the present study on the shoreline change is shown in

Figure 3.1. The shoreline change analysis has been carried out using multi-date satellite images to estimate the rate of change in terms of distance of the shore eroded or accreted using cross shore profile in terms of area and volume. From the satellite images, shoreline has been extracted after rectification and co-registration. The rate of shoreline changes from1990-2021 has been analysed and compared with DGPS survey and ground truth data for which Digital shoreline change analysis system (DSAS) software that works within the Geographic Information System (ArcGIS) software was applied. DSAS computes rate-of-change statistics for a time series of shoreline vector data. It is also useful for computing rates of change for other boundary change conditions that incorporate a clearly-identified feature position at discrete times (Himmelstoss *et al.*, 2018).

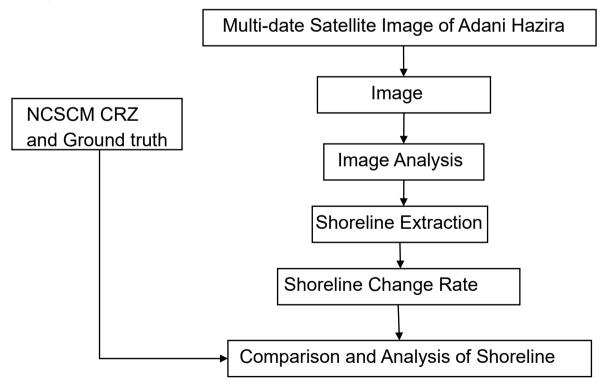


Figure 3.1: Flowchart of the Methodology Adopted

3.2. Short Term Shoreline Change Analysis

The end point rate (EPR) is calculated by dividing the distance of shoreline movement by the time elapsed between the oldest and the most recent shoreline (Figure 3.2). The major advantages of the EPR are the ease of computation and minimal requirement of only two shoreline dates. The major disadvantage is that in cases where more data are available, the additional information is ignored.

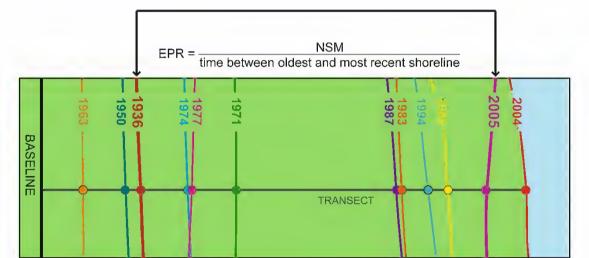


Figure 3.2: Calculation of Short-Term Shoreline change analysis (Sample image source:(Sweet *et al.* 2017))

3.3. Long Term Shoreline Change Analysis

A linear regression rate-of-change (LRR) statistics is determined by fitting a least-square regression line to all shoreline points for a particular transect Figure 3.3. The regression line is placed so that the sum of the squared residuals (determined by squaring the offset distance of each data point from the regression line and adding the squared residuals together) is minimized. The linear regression rate is the slope of the line. However, the linear regression method is susceptible to outlier effects and also tends to underestimate the rate of change relative to other statistics (Sutikno et al., 2017).

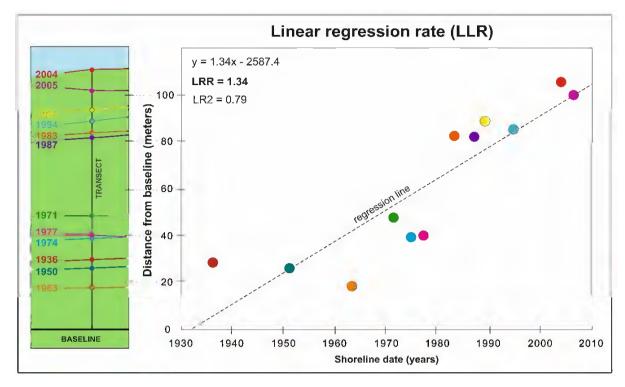


Figure 3.3: Calculation of Long Term (LRR) Shoreline Change Analysis (Sample image source:(Sweet *et al.* 2017))

3.4. Data Used

Some of Multi-date satellite imageries has been downloaded by various sources like Landsat imageries downloaded from websites https://earthexplorer.usgs.gov/and https://earthdata.nasa.gov/ respectively. Some of the LISS -IV Satellite imageries were procured from NRSC, Hyderabad was used for the analysis of the present study. The details of the satellite imagery used for the present study is given below.

Table 3.1: Satellite Image Data Used for Decadal Shoreline Change Analysis

Satellite	Date	Sensor	Resolution (m)
Landsat 5	19 October 1990	TM	30m
ASTER	10 November 2001	VNIR 1	15m
ASTER	20January 2002	VNIR 1	15m
ASTER	25 December 2009	VNIR 1	15m
IRS-R2	29 October 2021	LISS 4	5.8

Table 3.2: Satellite Image Data on Shoreline Change Procured From NRSC

Satellite	Date	Sensor	Resolution (m)
IRS-R2	9 April 2013	LISS 4	5.8
IRS-R2	17 May 2015	LISS 4	5.8
IRS-R2	07 April 2018	LISS 4	5.8
IRS-R2	29 October 2021	LISS 4	5.8

3.4.1. Pre-processing

Pre-processing of satellite data includes correction of geometric, atmospheric and radiometric aspects and clipping of the area in order to obtain the exact imagery of the project sites. The rectification operation aims to correct distorted images to create a more faithful representation of the original scene. It typically involves the initial processing of raw image data to correct for geometric distortions.

Radiometric Correction: Radiometric correction addresses variations in the pixel intensities (DNs) that have not caused by the object or scene scanned. These variations include differing sensitivities or malfunctioning of the detectors, topographic effects and atmospheric effects.

Geometric Correction: Geometric correction addresses errors in the relative positions of pixels. These errors induced by sensor viewing geometry or terrain variations. Geometric correction was done based on Ground Control Points (GCPs) and the image was re-sampled using nearest neighbourhood interpolation method.

Shoreline Extraction: Continuous shoreline positions were extracted automatically and digitized manually for seven different periods i.e., 1990, 2001, 2002, 2009, 2013, 2015, 2018 and 2021. Digital Shoreline Analysis System (DSAS) version 5.1, an extension of ESRI ArcGIS software was used to calculate shoreline rate of change statistics from a time series of multiple shoreline positions. The

shoreline positions were compiled in ArcGIS with 5 attribute fields that included Object ID (a unique number assigned to each transect), shape, shape length, ID, date (original survey year) and uncertainty values. All different shoreline features were then merged within a single line on the attribute table, which enabled the multiple coastline files to be appended together into a single shape file. The Shoreline change rate was calculated by End point rate (EPR) for short term and weighted linear regression (WLR) for long term period. DSAS is purely a statistical approach. A baseline was digitized onshore by closely digitizing the direction and shape of the outer shoreline, which was used as the starting point for all transects cast.

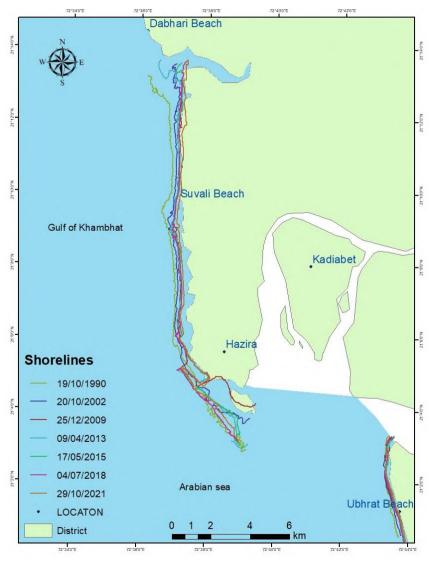


Figure 3.4: Shoreline Digitization for Different Year Using Multi Date Satellite Imageries.

3.5. Field Work

Field investigation is a very important part of the project. Fieldwork helps to check and collect most of the ground information required for shoreline mapping. The field work was conducted during the period between 22nd and 26th November 2021 for DGPS survey and collecting ground truthing data.

Figure 3.5: Establishing DGPS Base Station (A) And Collecting Survey and Ground Truthing Data(B), (C), (D) Using Rover.

4. RESULTS AND ANALYSIS

In the present study, the rate of shoreline change statistics on a time series of multiple shoreline positions of 20 km coastal stretch of Hazira coast (10 km either side of Adani Hazira Port) has been considered for the calculation by using satellite images. A total of 2289 transects were generated with 10m spacing along the shoreline. The length of each transect (Cross shore) was between 500 to 3000m. The variations on the rate of shoreline change were re-coded as N – S coast configuration. The shoreline change analysis carried out for 1990-2021 and 2013-2021 using LRR method, an overall long-term shoreline change analysis carried out using moderate to high resolution images such as Landsat, ASTER and LISS 4, whereas an overall short-term shoreline change analysis using high resolution images such as LISS-IV.

The shoreline change analysis has been carried out for the year 2013-2015 by using high resolution LISS-IV (5.8m) images to study the changes before 2014. Further, the shoreline change analysis has been carried out for the years 2015-2018, 2018-2021 to study the immediate changes after the commissioning of the port and initiation of the activities (December, 2011) for short term variation for the year 2013-2015, 2015-2018, 2018-2021 using EPR method has been carried out.

Based on the rate of change over the period, shoreline change has been categorized into 5 classes (NCSCM, 2014). They are; high accretion (>5m/year), moderate accretion (5-1m/year), stable coast (1 to -1m/year), moderate erosion (-1 to -5m/year) and high erosion (<-5m/year).

4.1. Results For Shoreline Change Analysis From Satellite Images

The erosion and accretion are highlighted with red and green colour respectively for better understanding. The study area is divided into three major blocks 1) Suvali beach 2) South Hazira coast and 3) Ubhrat Beach for accurate analysis as shown in Figure 4.1.

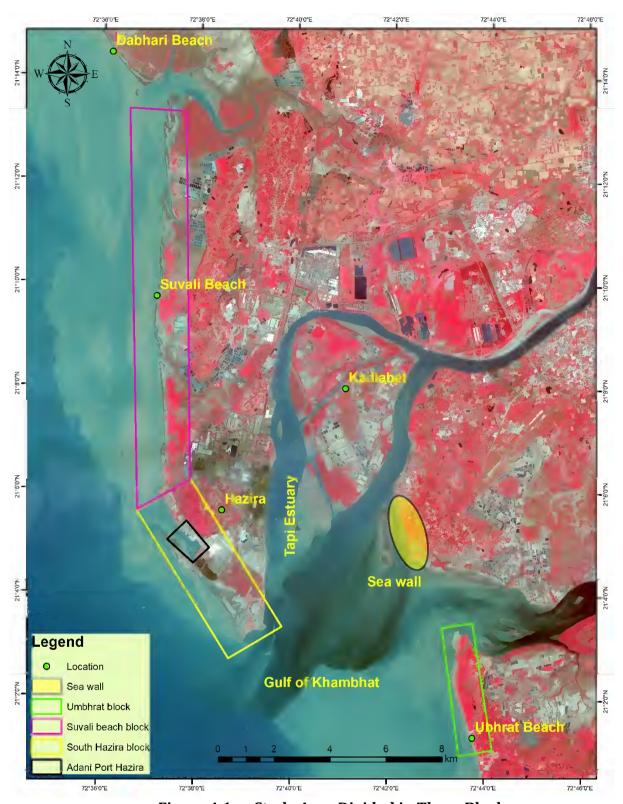


Figure 4.1: Study Area Divided in Three Blocks

4.1.1. Results for Overall Shoreline Change During 1990 and 2021

The images of low and high resolution (Landsat 30m and LISS IV 5.8m) for the period 1990 to 2021 (Figure 4.2) revealed that high erosion rate between northern tip of Hazira near Dabhari Beach to Adani Hazira port and between Adani Hazira port to Southern tip of Hazira coast (-5 to -54.7 m/year). Extreme southern tip of Hazira coast showed Moderate erosion due to high tidal currents and the open sea shows high erosion. High accretion (5 to 12.7 m/year) and stable coast are seen at Adani Hazira port, since wave action is protected by bunds in this area of the coast.

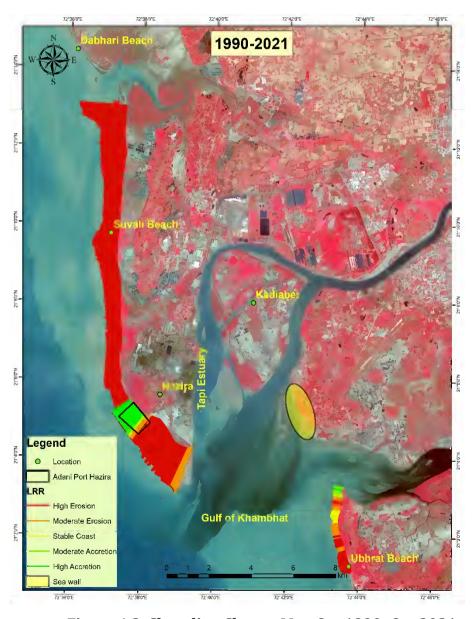


Figure 4.2: Shoreline Change Map Oct 1990- Oct 2021

4.1.2. Results for Overall Shoreline Change During 2013 and 2021

The rate of change of shoreline has been calculated using high resolution (LISS IV 5.8m) satellite images; the result has been processed since 2013 to 2021. The image on Figure 4.3 indicates that there is a high rate of erosion (-5 to -51 m/year) to the north of Hazira coast and at the bottom of the Southern tip of Hazira coast whereas high accretion (5 to 71 m/year) was observed at the south coast.

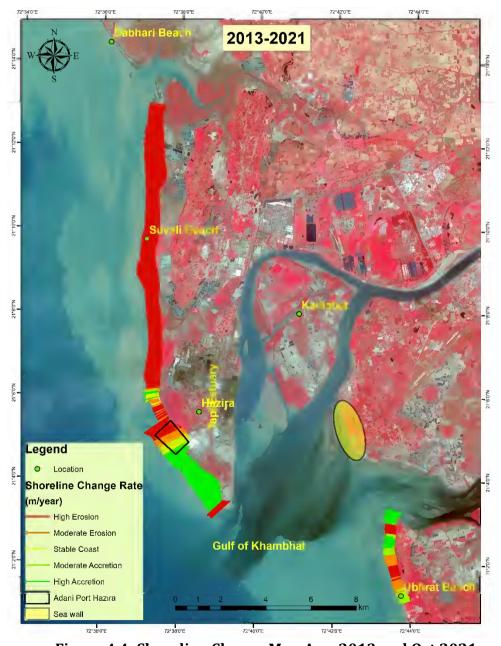


Figure 4.4: Shoreline Change Map Apr, 2013 and Oct 2021

Table 4.1: Details of Average and Maximum Long Term Shoreline Changes

Period	Name of the Places	Average Shoreline Change (m/yr)	Maximum Shoreline Change (m)
	Suvali Beach	-19.03	-54.73
1990-2021	Southern Hazira	-6.9	-24.58
	Ubhrat Beach	-3.79	-10.97
	Suvali Beach	-18.49	-51.03
2013-2021	Southern Hazira	18.61	71.37
	Ubhrat Beach	1.62	26.65

4.1.3. Results Of Short-Term Shoreline Change for The Period 1990 to 2021

Further short-term analysis was carried for study area separately from 1990-2001-02, 2001-02 to 2009 and from 2009 to 2021. The images (Figure 4.4) clearly depicts the high erosion (-154.2 m/year) pattern near Adani Hazira port whereas, the Ubhrat beach area showed high to moderate accretion (20.3 m/year) except southern portion of beach during the period of 1990 to 2001-02.

Similarly high erosion (-177 m/year) pattern was noticed along Hazira coast, except near Adani Hazira port with some area showing high accretion (50 m/year). At Ubhrat beach generally high erosion was noticed except at northern tip where high accretion was evident during the period of 2001-02 to 2009 by using moderate resolution (ASTER15m) satellite images (Figure 4.5).

The moderate to high resolution (ASTER15m and to LISS IV 5.8m) satellite images processed for 2009 to 2021 demonstrated high to moderate erosion (-1 to -44.2 m/year) on the northern parts of Hazira coast while Southern coast showed high accretion (166.3 m/year). At Ubhrat beach high erosion was found except at the northern tip where high accretion resulted (Fig 4.5) due to reduced wave action at the mouth of Tapi estuary. Details of average shoreline changes and maximum shoreline changes during each decade is summarised in Table 4.2.

Table 4.2: Details of Average and Maximum Shoreline Changes Each Decade.

Period	Name of the Places	Average Shoreline	Maximum
	Suvali Beach	-20.01	-121.93
1990-2001-02	Southern Hazira	-30.15	-154.26
	Ubhart Beach	0.92	20.23
2001-02-2009	Suvali Beach	-19.80	-52.07
	Southern Hazira	-73.82	-177.3
	Ubhart Beach	-7.68	-25.52
	Suvali Beach	-14.43	-44.2
2009-2021	Southern Hazira	53.14	166.3
	Ubhart Beach	-3.18	-15.68

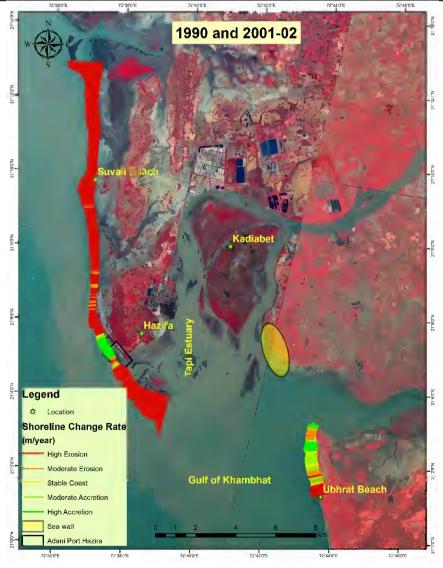


Figure 4.5: Shoreline Change Map (Oct 1990, Nov 2001 to Jan-2002)

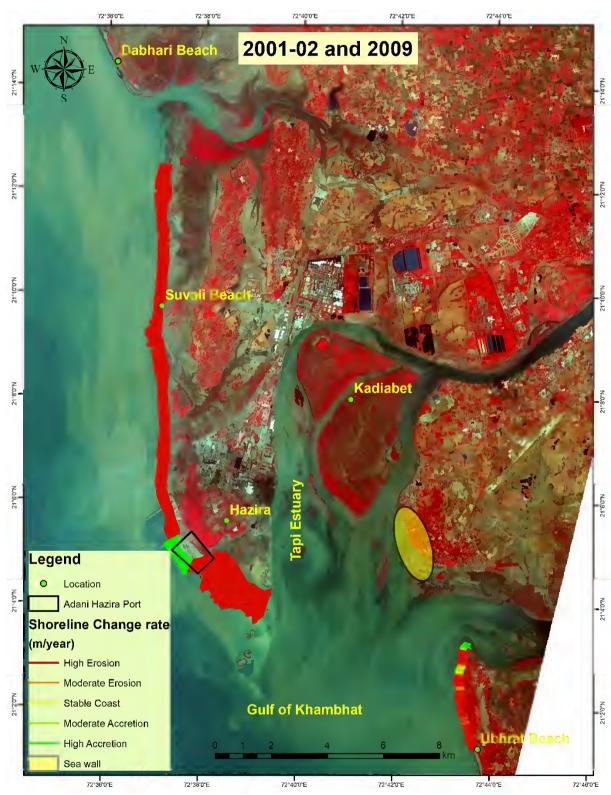


Figure 4.6: Shoreline Change Map (Nov 2001, Jan-2002 to Dec 2009)

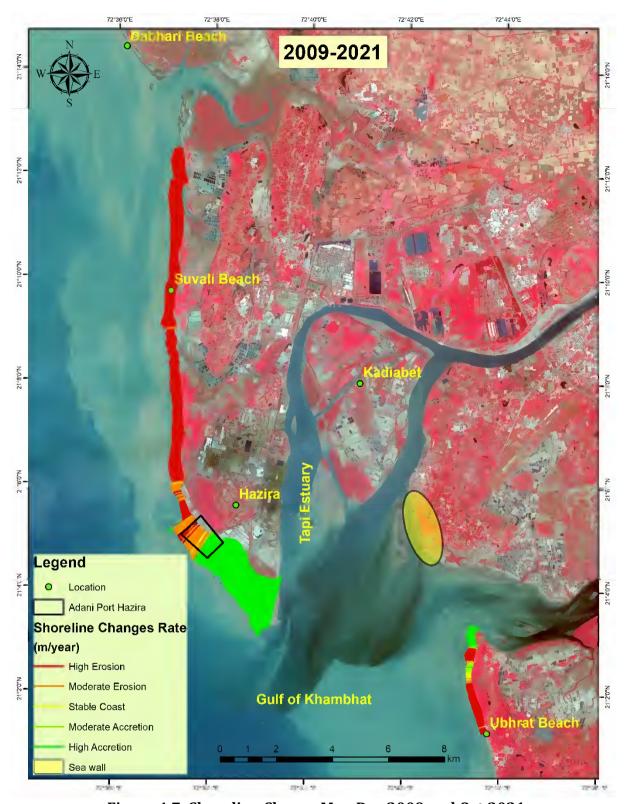


Figure 4.7: Shoreline Change Map Dec 2009 and Oct 2021

4.1.4. Results for Shoreline Chang Using High Resolution Satellite Images

The results on the imagery data analysed prior to the port activity (before 2014) using high resolution (LISS IV 5.8m) is presented in figure 4.7. According to the image validation, erosion (-173 m/year) has been noticed at the northern part of Hazira coast including Suvali beach and northern tip near Dabhari beach as well as at the bottom tip while at some area near Adani Hazira Port indicated high rate of accretion (208 m/year). Similarly, at northern tip of Ubhrat beach, high erosion was noticed high accretion during 2013 to 2015.

The high-resolution satellite images, obtained for the period 2015 to 2018 showed (Figure 4.9) high rate of accretion (257.5 m/year) at both Hazira coast and Ubhrat coast except a few pockets would have been resulted due to high tidal currents.

Table 4.3: Details of Average and Maximum Short-Period Shoreline Changes

Period	Name of the Places	Average Shoreline Change(m/yr)	Maximum Shoreline Change(m)
	Suvali Beach	-26.22	-123.87
2013-2015	Southern Hazira	-9.97	-173.19
	Ubhart Beach	-8.73	-32.25
2015-2018	Suvali Beach	7.21	125.71
	Southern Hazira	56.27	257.52
	Ubhart Beach	19.28	43.55
	Suvali Beach	-42.05	-117.92
2018-2021	Southern Hazira	-29.31	-156.81
	Ubhart Beach	-11.2	-28.49

The high resolution (LISS IV 5.8m) satellite images, processed for the period 2018 to 2021 have shown high rate of erosion (-5 to -156 m/year) along the Hazira coast except near Adani port where it was moderate due to the presence of accretion at the rate of 73.8 m/year. At Ubhrat beach area high erosion except at northern tip was observed (Figure 4.10). The details of the instantaneous rate of shoreline changes (Short interval time) recorded from 2013 to 2021 are summarised in Table 4.3. The data indicated that shore

line change was very much dynamic and no regular pattern was evident at all the study sites. However, the rate of change was comparatively less at Ubhart beach during 8 years.

Figure 4.8: Shoreline Change Map Apr 2013 - May 2015

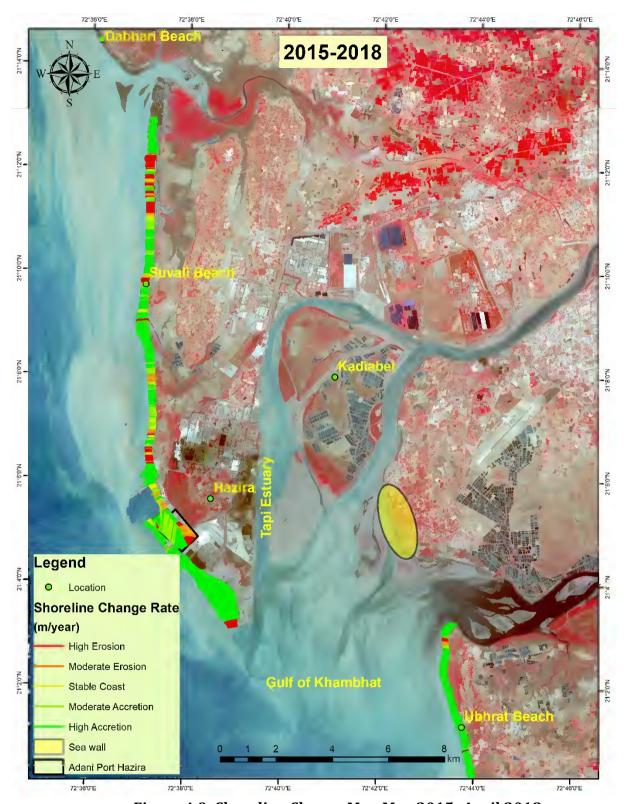


Figure 4.9: Shoreline Change Map May 2015- April 2018

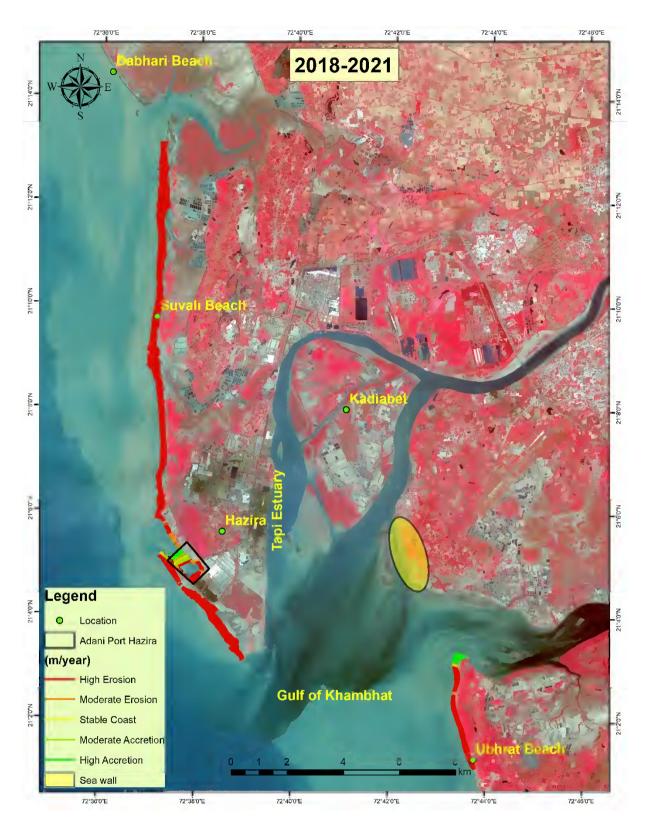


Figure 4.10: Shoreline Change Map Apr 2018- Oct 2021

4.1.5. Zones of High Erosion and High Accretion

For the present study on shoreline changes evaluation, two sets of data were considered. They are images from moderate to high resolution $(30\sim5m)$ satellite images for the period from 1990-2021 as well as the high resolution $(\sim5m)$ images for 2013-2021 and the results are presented in figure 4.10 to 4.15.

Based on the analysis of the imageries it is possible to delineate the study areas into zones for the ease of classification into high erosion and high accretion within the study limits. The images have indicated that a total distance of 11.8 km in the northern coast of Hazira from Suvali beach to Port area has been identified as zone of high erosion whereas from South Hazira coast approximately 3.6 km up to the northern tip of Ubhrat beach is the high accretion zones (Figure 4.11). Misra and Ramakrishnan (2015) have also reported high rate of erosion and accretion along northern tip of Ubhrat beach.

The change in the shoreline during last 30 years from 1990 to 2021 at Suvali beach block area the maximum erosion occurred at cross-section of ~804 m (Error! Reference source not found.) and that at Ubhrat beach ~359m cross section (Error! Reference source not found.).On the contrary at Southern Hazira block maximum deposition, (~903m) was found during 2009 to 2021(Error! Reference source not found.).

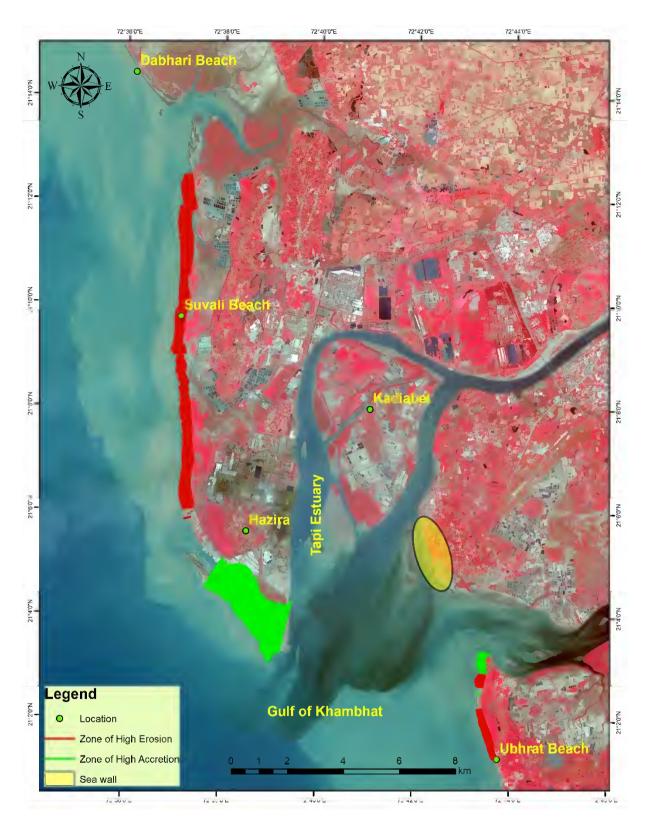


Figure 4.11: Zones of High Erosion and High Accretion

Validation of the shoreline data of the 20km (10km from either side of the port) stretch of Adani Hazira port, using Differential GPS (DGPS) during the period between 22^{nd} and 26^{th} November, 2021 (Figure 4.12). The results obtained with the higher resolution satellite

images on the field shoreline changes exactly match with the shoreline details derived from the satellite images.

The shoreline data drive from high resolution satellite imagery of 2018 has been compared with NCSCM (National Centre for Coastal Management) approved CRZ map Figure 4.13. Shoreline data drawn from high resolution satellite imagery of 2018 is quite similar to the shoreline configuration derived from the NCSCM (National Centre for Coastal Management) approved CRZ map of 2017-18.

Figure 4.12: Shoreline Data Collected Using DGPS

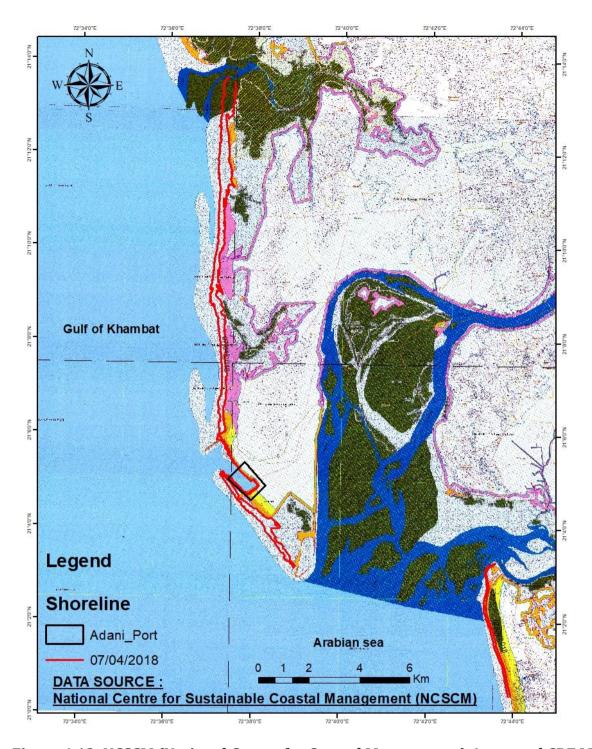


Figure 4.13: NCSCM (National Centre for Coastal Management) Approved CRZ Map of 2017-18

4.1.6. Beach Profile

Shoreline Change analysis using Cross section Profile (CSP) has been carried out using DGPS Survey. CSP data has been collected from 11 different locations along the Hazira Coast. The total profile line stretches of 20 km covering the area of approximately 10 km south and 10 km north of the existing port site was considered for the period between 22nd and 26th November 2021as shown in Figure 4.14.

The aim of this analysis was to create a baseline data for comparison for the future with profile data from same location for different seasons. Beach profiles were plotted location wise. The trends of beach profile were assessed qualitatively and is shown in Figure 4.15. This data shall serve to assess the beach profile at Hazira coast in future. Difference, if any, shall be investigated further to understand impact due the port activities in the shoreline evolution.

Beach profile is defined as a set of beach levels taken at recorded distances in a straight line (Figure 4.15). Beach profiles are meaningful in real sense if surveys are taken over a time at exactly the same place and directions.

Further, beach profile also suggests high erosion in these areas on an average 4 m (Figure 4.15) and also vertical changes is clearly seen along the northern part of Hazira coast, as there is high and the sediment is being deposited along the Sothern tip and northern tip of Ubhrat beach. The rate of shoreline changes may be also depended on the inflow of fresh water in to the estuarine area, during the rainy season.

Figure 4.14: Beach Profiles Location

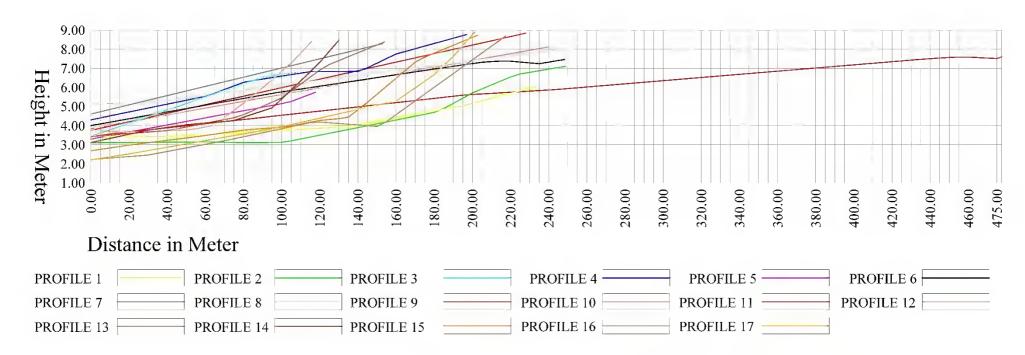


Figure 4.15: Beach Profile at Different Locations

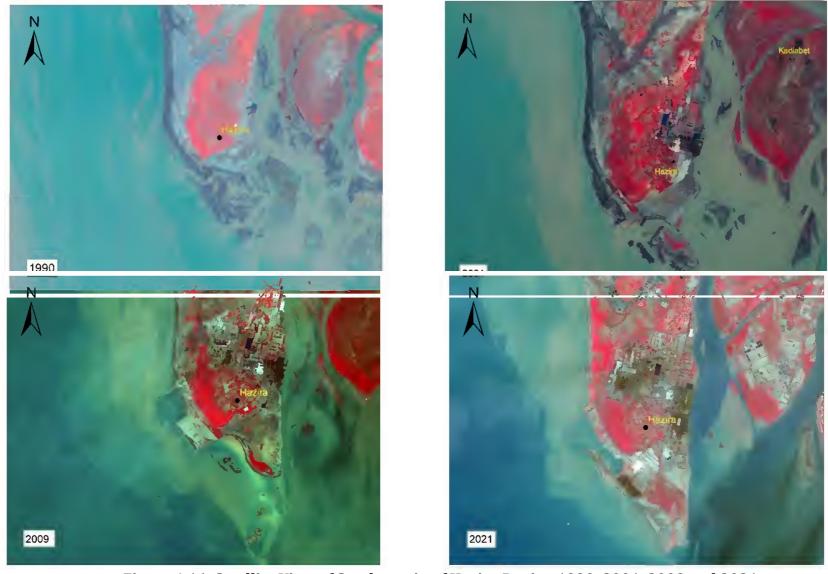


Figure 4.16: Satellite View of Southern tip of Hazira During 1990, 2001, 2009 and 2021

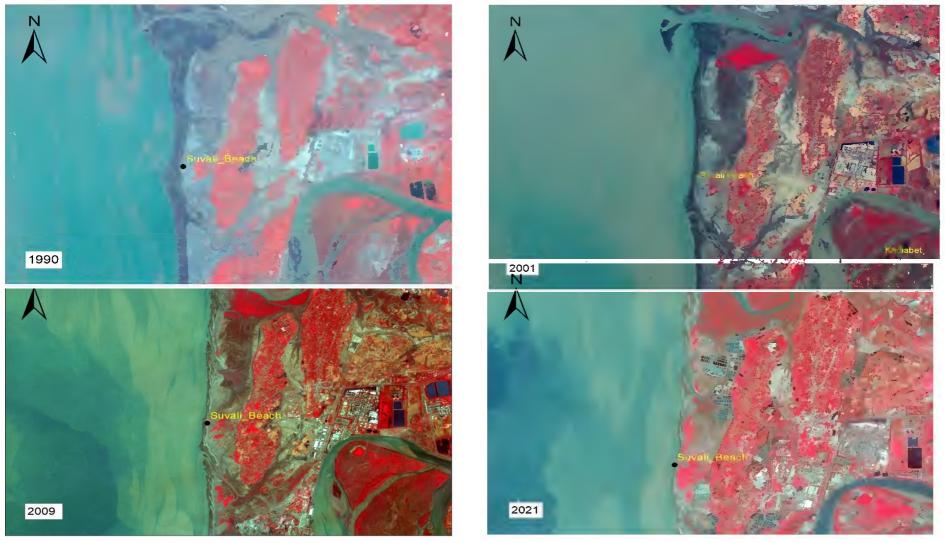
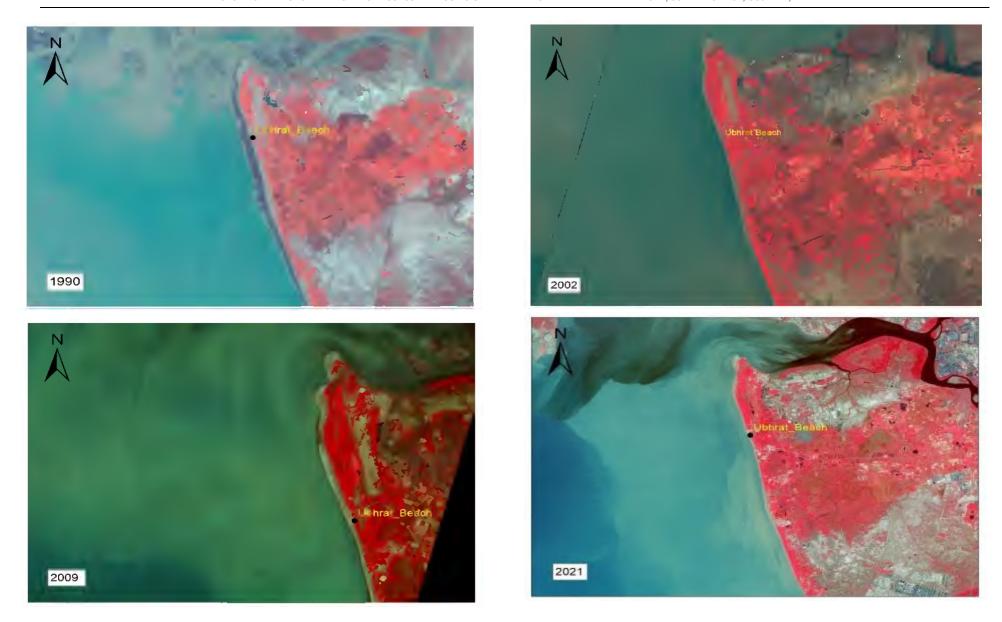



Figure 4.17: Satellite View of Suvali Beach During 1990, 2001, 2009 and 2021

 $Figure\ 4.18: Satellite\ View\ of\ Ubhrat\ Beach\ During\ 1990,\ 2002,\ 2009\ and\ 2021$

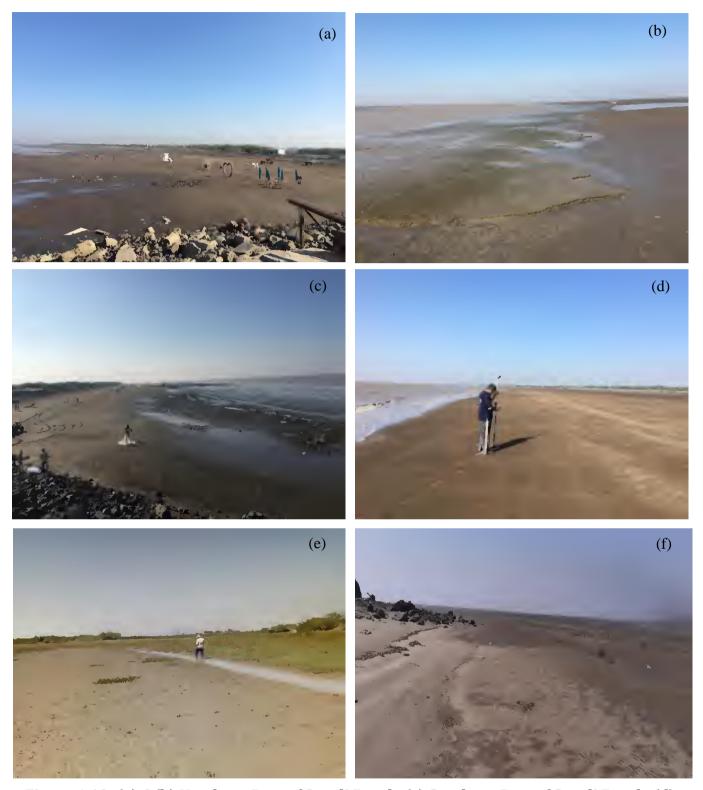


Figure 4.19:(a) &(b) Northern Part of Suvali Beach, (c) Southern Part of Suvali Beach, (d) North of Adani Port (e)&(f) Southern Hazira Coast.

5. CONCLUSION

5.1. Shoreline Changes

Shoreline change dynamics along the coastal districts of South Gujarat. The present Study confirms the usefulness of image processing techniques and GIS tools applied on multi-temporal and multispectral images of different satellite sensors for assessment of the changes along the shoreline, as the results obtained are fairly in agreement with those of in situ measurements from the analysis of DGPS surveyed and ground truthing data. The Hazira coast has been subjected to a number of significant changes in the last three decades (1990–2021). Within this 20-km coastal strip which includes Ubhrat beach, all possible trends have been observed, ranging from high accretion of 12.7 m/year to severe erosion of up to –54.7 m/year, at few parts of the coast, however, remained stable. Above value for both erosion and accretion may vary ±5m depending upon the time of the satellite imageries taken during high tide and low tide time.

The entire coastal stretch faced erosion during the natural calamities such as cyclone and high wave activities except mouth portion of Tapi estuary. The predominant causes of erosion are both natural as well as anthropogenic including (1) significant reduction of sediment supply to the coast due to the natural shifting of Tapi estuary course and mouth (2) Various construction/infrastructural activities carried out on the mouth of Tapi estuary by various industries disturbing the shoreline stability by inducing down drift accretion and up drift erosion, Conservation Plan indicated in below

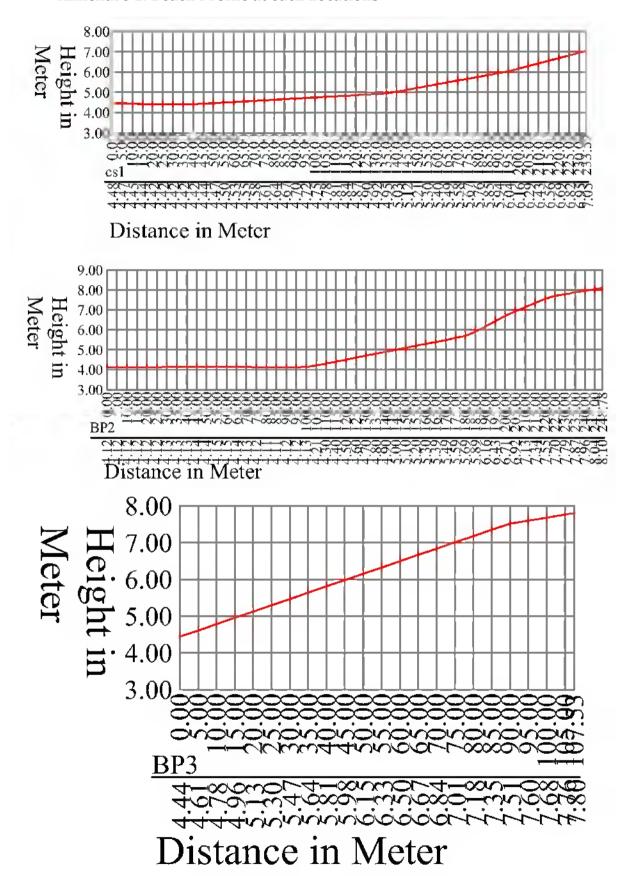
5.2. Recommondations

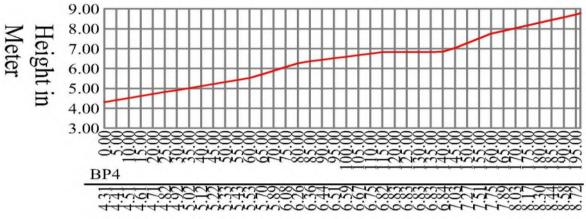
- Erosion, either man-made or natural is a major threat to intertidal habitats in Gulf
 environment due to altered hydrological regime and other natural causes.
 Observations carried out during the field surveys revealed those estuarine
 environments as well as many coastal stretches are facing erosion mainly due to high
 tidal amplitude. Hence, extensive surveys should be carried out to recommend suitable
 mitigation measures in this respect.
 - Artificial coastal structures help in controlling the coastal erosion and thereby enhance the intertidal and sub-tidal biodiversity as they accelerate the reef-building process.

Artificial reefs tend to last for decades supporting faunal components. Since such structures are built using natural materials (example dead gastropod and bivalves) they are environment-friendly and in due course become natural. They attract diverse marine fauna within short period of time with high potential to enhance biodiversity. The same could be implemented in Adani Hazira Port jurisdiction in consultation with the experts.

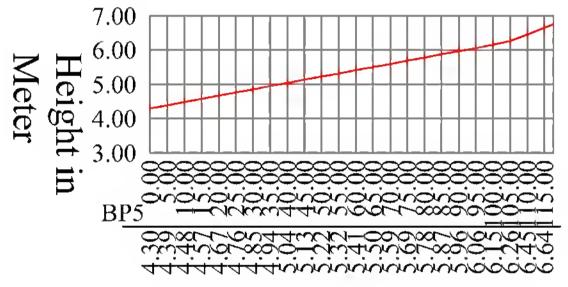
- Establishment of facilities and the expansion of infrastructure over the coming years will bring about notable changes in the landscape and seascape in and around the Adani Hazira Port. Long-term human centred/induced activity of this magnitude in any coastal belt will have repercussions on its natural resources and ecosystems. As mangroves, mudflats and tidal creeks are the major ecological entities within the Adani Hazira Port, their conservation and management warrants priority and calls for a holistic approach. Thus, measures should be taken to conserve and preserve the mudflats and mangroves within the Adani Hazira Port to retain their tangible and intangible ecological benefits. The conservation and management plan presented in the proceeding section has the following broad aspects and different activities under each aspect are dealt with.
- Creation of baseline information to track subsequent changes in natural shoreline formation within the Adani Hazira Port through GIS and RS tool is to be done. The GIS maps may be utilized for the purpose which could serve as base map. Changes in creek systems, shoreline configuration and other land use categories could be monitored through this exercise once in two or three years.
- Periodic monitoring, preferably once in 6 months, and comparison of results with baseline data to underline changes will pave way for formulation of mitigation and conservation efforts. Periodic monitoring of shoreline configuration and mudflats will help to assess their health and detect changes in shoreline. Assessment and earlier generated data could be used to check shoreline configuration in terms of short and long-term changes and its succession patterns.
- Mudflats and mangrove conservation and restoration measures could subsequently be undertaken based on the results of the monitoring programs.
- Research needs to be undertaken to assess the economic and ecological benefits through sustainable development of shoreline configuration.

 Awareness should be generated among local people about the shoreline configuration changes in the surrounding areas and the consequences, particularly to the fishermen community

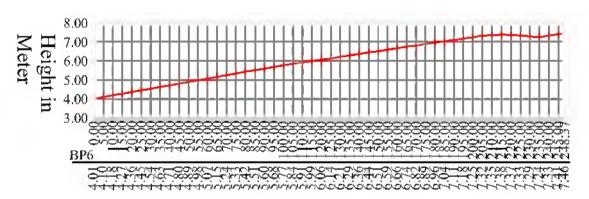

Reference:

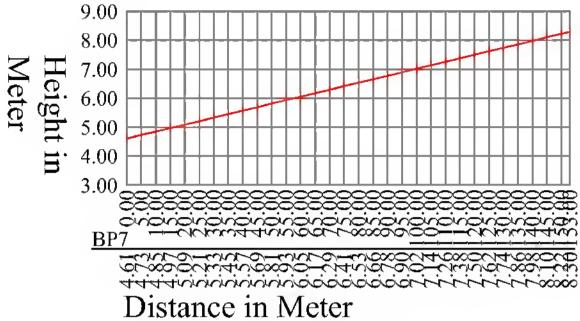

- Alakkat, Unnikrishnan, S.R. Shetye, and G Selvan Michael. 1999. "Tidal Propagation in the Gulf of Khambhat, Bombay High, and Surrounding Areas." *Proceedings of the Indian Academy of Sciences Earth and Planetary Sciences* 108 (September). https://doi.org/10.1007/BF02842329.
- George, Basil, J.I. Nirmal Kumar, and Rita N. Kumar. 2012. "Study on the Influence of Hydro-Chemical Parameters on Phytoplankton Distribution along Tapi Estuarine Area of Gulf of Khambhat, India." *The Egyptian Journal of Aquatic Research* 38 (3): 157–70. https://doi.org/10.1016/j.ejar.2012.12.010.
- Gupta, G.V.M. 2002. *Critical Habitat Information System for Gulf of Khambhat Gujarat*. https://doi.org/10.13140/RG.2.1.4962.5209.
- Himmelstoss, Emily A., Rachel E. Henderson, Meredith G. Kratzmann, and Amy S. Farris. 2018. "Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide." Report 2018–1179. Open-File Report. Reston, VA. USGS Publications Warehouse. https://doi.org/10.3133/ofr20181179.
- Kannan, Jayakumar, and S. Malarvannan. 2016. "Assessment of Shoreline Changes over the Northern Tamil Nadu Coast, South India Using WebGIS Techniques." *Journal of Coastal Conservation* 20 (December). https://doi.org/10.1007/s11852-016-0461-9.
- Kumar, V. Sanil, and K. Ashok Kumar. 2010. "Waves and Currents in Tide-Dominated Location Off Dahej, Gulf of Khambhat, India." *Marine Geodesy* 33 (2–3): 218–31. https://doi.org/10.1080/01490419.2010.492299.
- Masson, Diane. 1996. "A Case Study of Wave–Current Interaction in a Strong Tidal Current." *Journal of Physical Oceanography* 26 (3): 359–72. https://doi.org/10.1175/1520-0485(1996)026<0359:ACSOWI>2.0.CO;2.
- Misra, Ankita, and Balaji Ramakrishnan. 2015. "A Study on the Shoreline Changes and LAND-Use/ Land-Cover along the South Gujarat Coastline." *Procedia Engineering* 116 (December): 381–89. https://doi.org/10.1016/j. proeng. 2015.08.311.
- Mitra, Aditi, V. Sanil Kumar, and Basanta K. Jena. 2020. "Tidal Characteristics in the Gulf of Khambhat, Northern Arabian Sea Based on Observation and Global Tidal Model Data." *Oceanologia* 62 (4, Part A): 443–59. https://doi.org/10.1016/j.oceano.2020.05.002.
- Osuna, Pedro, and Jaak Monbaliu. 2004. "Wave-Current Interaction in the Southern North Sea." *Journal of Marine Systems* 52 (1–4): 65–87. https://doi.org/10.1016/j.jmarsys.2004.03.002.
- Sutikno, Sigit, Ari Sandhyavitri, Muhammad Haidar, and Koichi Yamamoto. 2017. "Shoreline Change Analysis of Peat Soil Beach in Bengkalis Island Based on GIS and RS." *International Journal of Engineering and Technology* 9 (January): 233–38. https://doi.org/10.7763/IJET.2017.V9.976.

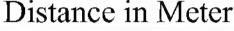
- Sweet, William (William VanderVeer), Robert Kopp E., Christopher P. Weaver, J. T. B. Obeysekera, Radley M. Horton, E. Robert (Edward Robert) Thieler 1965-, and Chris Eugene Zervas 1957-. 2017. "Global and Regional Sea Level Rise Scenarios for the United States." Edited by Center for Operational Oceanographic Products and Services (U.S.), NOAA technical report NOS CO-OPS; 83, https://doi.org/10.7289/v5/tr-nos-coops-083.
- Tamassoki, E, H Amiri, and Z Soleymani. 2014. "Monitoring of Shoreline Changes Using Remote Sensing (Case Study: Coastal City of Bandar Abbas)." *IOP Conference Series: Earth and Environmental Science* 20 (June): 012023. https://doi.org/10.1088/1755-1315/20/1/012023.
- Wolf, J, and D Prandle. 1999. "Some Observations of Wave-Current Interaction." *Coastal Engineering* 37 (3): 471–85. https://doi.org/10.1016/S0378-3839(99)00039-3.

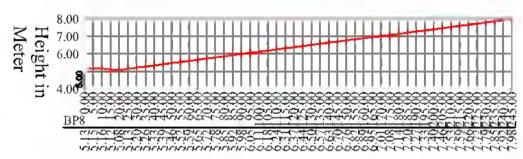

ANNEXURES

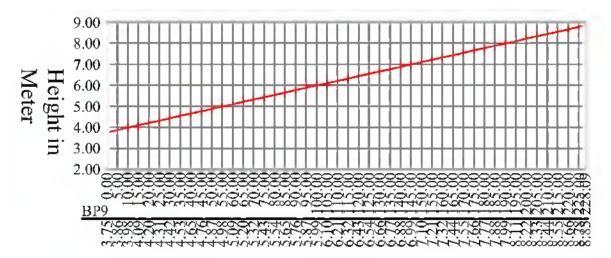
Annexure 1: Beach Profile at each Locations

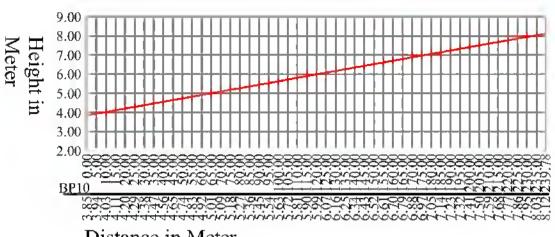


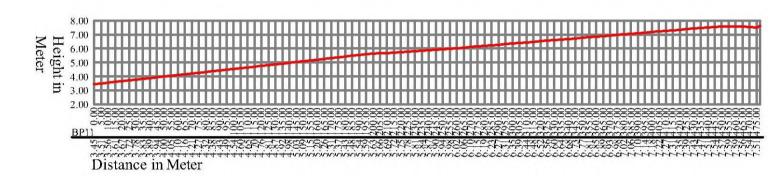

Distance in Meter

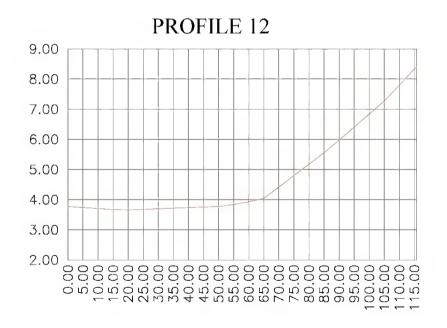



Distance in Meter

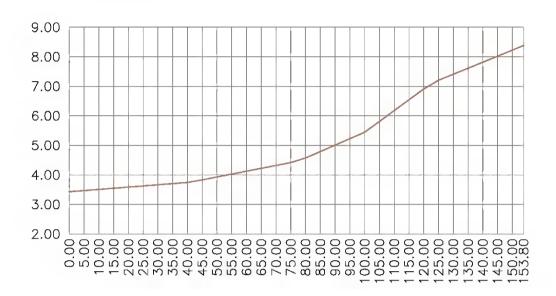

Distance in Meter

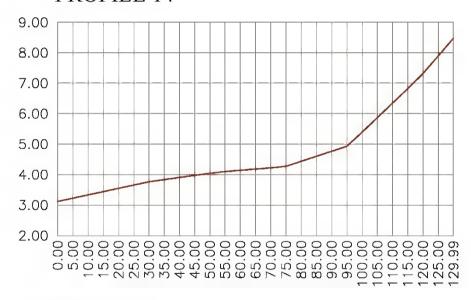


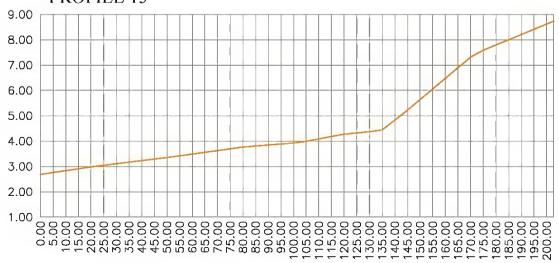

Distance in Meter

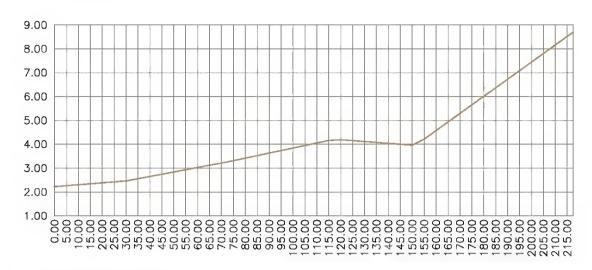


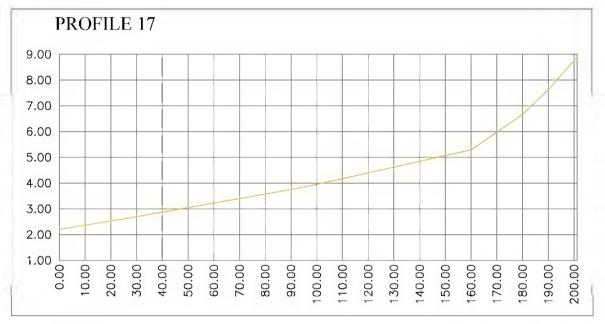
Distance in Meter






PROFILE 13


PROFILE 14



PROFILE 15

PROFILE 16

From: April 2022 to September 2022

ANNEXURE-6

Photographs of Air Pollution Control Measures and Green Belt Area

Wind Shield

Closed Conveyor System

Dust Suppression System Installed in Conveyor System

Mist Canyon for Dust Suppression

Coal Chute point having water Sprinkling System

Water Sprinklers installed for Dust Suppression

From: April 2022 to September 2022

Road Sweeping Machines

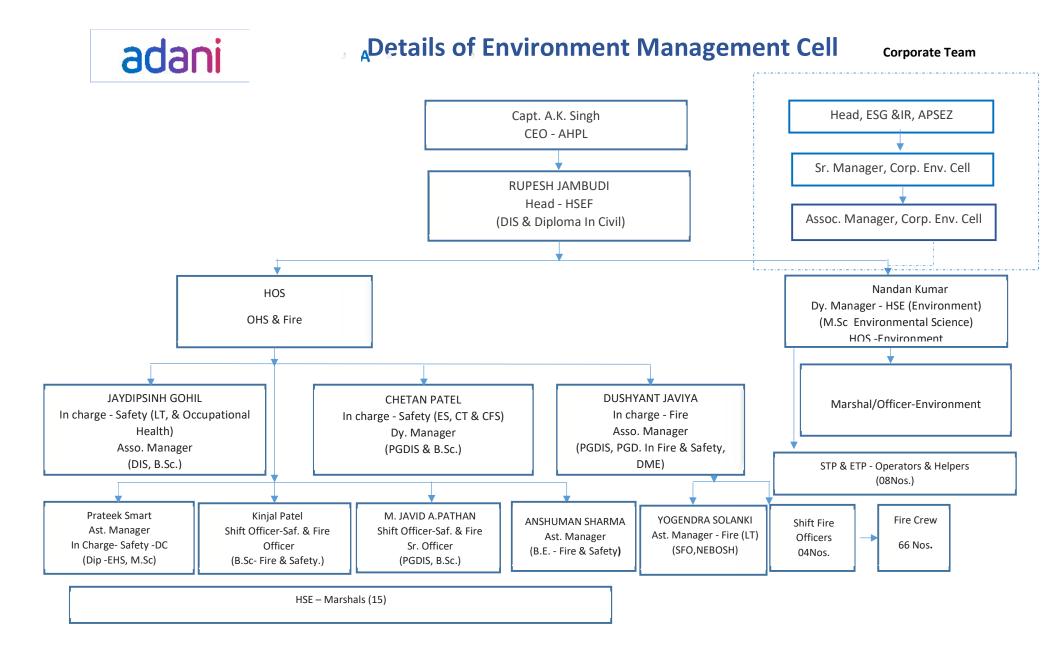
From: April 2022 to September 2022

Dry Bulk Cargo Covered with Tarpaulin to avoid dust generation

<u>Coal Transporting Trucks Covered with Tarpaulin to avoid dust generation</u>

Recent Photographs of Green Belt Area

From: April 2022 to September 2022



From: April 2022 to September 2022

ANNEXURE-7

DETAILS OF ENVIRONMENTAL MANAGEMENT CELL

From: April 2022 to September 2022

Annexure 8

Details of Environment Budget & Expenditure of Compliance Period (April-September 2022)

Environment Budget & Expenditure of FY 2022-23

Sr No	Activities	Budget for FY 2022-23	Expenditure (April-Sept 22)
		(In Lacs INR)	(In Lacs INR)
	Environmental		
	Study/Audit/Survey/Consultancy		
1	Services	32	0
2	Legal and Statutory Charges	10	7.75
3	Environmental Monitoring Services	21.04	4.3
4	Hazardous Waste Management	33.2	14.23
5	Horticulture Development – Greenery and Plantation	169	54.23
6	O&M of Sewage Treatment Plant and Effluent Treatment Plant	18	8.07
7	Disposal of Bio medical Waste	1.8	0.9
8	Water Sprinkling for dust suppression	250	124.28
9	Miscellaneous Environmental Initiatives and Salary of Environmental Professionals	20	9.5
	ISO 14001:2015 (EMS) audit, certification, and internal audit	20	5.5
10	training	3	0
	Total	558.04	223.26

Expenditure of last three Years

Year	Budget	Expenditure (In Lacs INR)
2019-20	363.80	326.76
2020-21	479.63	418.11
2021-22	571.80	443.70

the latest the latest

From: April 2022 to September 2022

Annexure 9

Copy of Renewed CC&A

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector-10-A, Gandhinagar-382 010

Phone : (079) 23226295

Fax : (079) 23232156 Website : www.gpcb.gov.in

By R.P.A.D

In exercise of the power conferred under section-25 of the Water (Prevention and Control of Pollution) Act-1974, under section-21 of the Air (Prevention and Control of Pollution)-1981 and Authorization under rule 6(2) of the Hazardous And Other Waste (Management and Transboundary) Rules, 2016 framed under the Environmental (Protection) Act-1986. This Board is empowered to Grant CC&A.

And whereas Board has received consolidated consent application letter no. 213029 dated 18-03-2022 for the Consolidated Consent and Authorization (CC & A) of this Board under the provisions / rules of the aforesaid Acts. Consents & Authorization are hereby granted as under:

CONSENTS AND AUTHORISATION:

(Under the provisions /rules of the aforesaid environmental acts)

To.

M/s. Adapi-hazira Port Pvt. Ltd.

Near Hazira LNG Pvt. Ltd.,

Hazira:- 394270,

Tal: Chorasi, Dist:- Surat.

- Consent Order No. <u>AWH-118804</u> Date of issue: 18-05-2022.
- 2. The consents shall be <u>valid upto 12-07-2027</u> for the use of outlet for the discharge of treated effluent and emission due to operation of industrial plant for manufacturing of the following items/products:

Sr. No. Product		Quantity as per CCA		
Multi Cargo Port				
1	Containers	36 MMTPA		
2	Coal - Local & Others	10.40 MMTPA		
3 Steel		6.20 MMTPA		
4	Other Dry Bulk 6.20 MM 1P/			
5	Automobiles	0.1 MMTPA		
6 Liquid Bulk		5.0 MMTPA		
Total 57.7 MM ³		57.7 MMTPA		

Subject to specific condition:

- Industry shall manage Solid Wastes generated from industrial activities as per Solid Waste Management Rules-2016 (solid waste as defined in Rule-3(46)).
- 2. To do retrofitting at D.G.Set for emission control and unit shall submit compliance with respect to Board circular No. GPCB/Air Action-03(1)(E)/599145/, dated: 27/08/2021 in the matter of NGT O.A. No. 681/2018.
- 3. You shall strictly comply with condition of Environmental Clearance issued by MOEF vide order no: 11-150/2010-IA-III, dated: 23/06/2020.

Page 1 of 8

M/s. Adani hazira Port Pvt. Ltd.(ID-35352)

- 4. You shall strictly comply with condition of Environmental Clearance issued by MOEF vide order no: 11-150/2010-IA-III, dated:- 03/05/2013.
- 5. You shall strictly comply with condition of Environmental Clearance issued by MOEF vide order no: 11-150/2010-1A-III, dated:- 29/09/2020.
- 6. To phase out FO and submit action plan for the phase in out.

3. CONDITIONS UNDER THE WATER ACT:

- 3.1. Source of Water:- tankers, treated water from KRIBHCO...
- 3.2. The quantity of the water consumption for industrial purpose shall not exceed 15,515 KL/Day. (14,500 KL/Day+ 2000 KL/Day from KRIBHCO industry shall provide fix pipeline for raining of treated industrial effluent from KRIBHCO with flow meter & maintain it's record.
- 3.3. The quantity of the fresh water consumption for domestic purpose shall not exceed 985 KL/Day.
- 3.4. The quantity of the industrial effluent to be generated from the manufacturing process and other ancillary industrial operations shall not exceed 10,190 KL/Day.
- 3.5. The quantity of domestic waste water shall not exceed 950 KL/Day.
- 3.6. Domestic effluent shall be disposed off through septic tank/soak pit system.

3.7. The applicant shall provide adequate effluent treatment system in order to achieve the quality of the treated effluent as per GPCB norms mentioned below:-

S. No.	Parameters	GPCB Norms
1.	pH	6.5 to 8.5
2.	Ten perature	40°C
3.	Colour	100 Units
4.	Suspended Solids	100 mg/1
5.	Oil & Grease	10 mg/l
6.	Phenolic Compound	1.0 mg/l
7.	Sulphide as S	2.0 mg/l
8.	Ammonical Nitrogen as NH ₃	50 mg/l
9.	Total Chromium as Cr'3	2.0 mg/l
10.	Hexavalent Chromium as Cr ⁺⁶	0.1 mg/l
11.	BOD (3 Days @ 27 °C)	30 mg/l
12.	COD	250 mg/l
13.	Total Dissolved Solids	2100 mg/l
14.	Percentage Sodium as Na	60%

Effluent having quality as above shall be conveyed through pipeline & shall be discharged at designated point as recommended by NIO.

3.8. Domestic effluent confirming to the below mentioned standards shall be reused for gardening/plantation within the port premises.

S. No.	Parameters	GPCB Norms
1,	BOD (3 Days @ 27°C)	20 mg/l

1

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector-10-A, Gandhinagar-382 010

Phone : (079) 23226295 Fax : (079) 23232156

Website: www.gpcb.gov.in

2.	Suspended Solids	30 mg/l	
3.	Residual Chlorine	Minimum 0.5 ppm	

All efforts shall be made to remove colour & unpleasant odour as far as practicable.

- 3.9. Industry shall provide fixed pipeline with flow meter for the reuse of treated effluent and maintain its records.
- 3.10. Domestic effluent shall be disposed off through septic tank/soak pit system.

4. CONDITIONS UNDER THE AIR ACT:

4.1. The following shall be used as a fuel in D.G. Sets (Stand by) and HWG respectively.

Sr. No.	Fuel	Total
1)	Diesel	33596 lit/day
2)	FO/HSD	2208 lit/day

- 4.2. The applicant shall install & operate comprehensive adequate air pollution control system in order to achieve prescribed norms.
- 4.3. The flue gas emission through stack attached to D.G. Sets (Stand by) and HWG shall conform to the following standards:

Stack No.	Stack attached to	Stack height in Meter	Parameters	Permissible Limit
1	DG Sets - 3 Nos. (Stand by - 1500 KVA each)	30	Particulate Matter SO ₂ NO _x	150 mg/NM ³ 100 ppm 50 ppm
2	DG Sets - 2 Nos. (325 KVA & 100 KVA) Stand by	(Each)	Particulate Matter SO ₂ NO _x	150 mg/NM ³ 100 ppm 50 ppm
3	DG Sets - 3 Nos. (Stand by) (625 KVA, 380 KVA, 200 KVA)	11 (Each)	Particulate Matter SO ₂ NO _x	150 mg/NM ³ 100 ppm 50 ppm
4	2 Nos. Hot Water Generated (HWG)(4,00,000 Kcal/Hr. each)	30	Particulate Matter SO ₂ NO _x	150 mg/NM ³ 100 ppm 50 ppm
5	DG Sets - I Nos. (750 KVA) Stand by	11	Particulate Matter SO ₂ NO _x	150 mg/NM ³ 100 ppm 50 ppm
6	DG Sets - 1 Nos. (200 KVA) Stand by	11	Particulate Matter SO ₂ NO _x	150 mg/NM ³ 100 ppm 50 ppm

ļ.

Page 3 of 8

M/s. Adani hazira Port Pvt. Ltd.(ID-35352)

- 4.4. There shall be no process emission from the manufacturing process as well as any other ancillary process.
- 4.5. Industry shall take adequate measure to control dusting due to storage, transportation & handling of Coal/Lignite & fly ash.
- 4.6. Industry shall comply with Coal handling guideline of the Board.
- 4.7. Industry shall comply with fly ash notification 1999 as amended from time to time.
- 4.8. Applicant shall comply with National Ambient Air Quality Standards notified by Central Pollution Control 30ard, New Delhi time to time under the provision of the Environment (Protection) Act-1986 for all the parameters. The concentration of all parameters in the ambient air within the premises of the industry and a distance of 10 meters from the sources (other than the stack/vent) shall not exceed than the permissible limit. Standards are as per Annexure.
- 4.9. The applicant shall provide portholes, ladder, platform etc at chimney(s) for monitoring the air emissions and the same shall be open for inspection to/and for use of Board's staff. The chimney(s) vents a tached to various sources of emission shall be designed by numbers such as S-1, S-2, etc. and these shall be painted/displayed to facilitate identification.
- 4.10. The industry shall take adequate measures for control of noise levels from its own sources within the premises so as to maintain ambient air quality standards in respect of noise to less than 75dB(A) during day time and 70 dB (A) during night time. Daytime is reckoned in between 6a.m. and 10 p.m. and nighttime is reckoned between 10 p.m. and 6 a.m.

4.11. D.G. SETS CONDITIONS

The D.G. Set shall have acoustic enclosure and shall comply sith the standards specified at Sr. no. 95 of Schedule-1 of the rule-3 of E.P. Rules -1986 and Noise pollution level as per the Air Act-1981.

D.G. Sets standards:-

The flue gas emission through stack attached to D.G. Sets shall conform to the following standards.

- a) The minimum height of stack to be provided with each of the generator set shall be H=h + 0.2 (KVA) ^{1/2}, where H= Total stack height in meter, h= height of the building in meters where or by the side of which the generator set is installed.
- a) Noise from DG set shall be controlled by providing an acoustic enclosure or by treating the room acoustically, at the users end.
- b) The acoustic enclosure or acoustic treatment of the room shall be designed for minimum 25 dB (A) insertion loss or for meeting the ambient noise standards, whichever is on the higher side (if the actual ambient noise is on the higher side, it may not be possible to check the performance of the acoustic enclosure/ acoustic treatment. Under such circumstances the performance may be checked for noise reduction up to actual ambient noise level, preferably, in the right time). The measurement for insertion loss may be done at different points at 0.5 m from the acoustic enclosure/room, and the averaged.
- c) The D.G. Set shall be provided with proper exhaust muffler with insertion loss of minimum 25 dB (A).
- d) All efforts shall be made to bring down the noise level due to the D.G.Set, outside the premises, within the ambient noise requirements by proper siting and control measures.
- e) Installation of a D.G. Sets must be strictly in compliance with the recommendations of the D.G.Set manufacturer.
- f) A proper routine and preventive maintenance procedure for the D.G.Set should be set and followed in consultation with the DG Set manufacture which would help prevent noise levels of the DG Set from deteriorating with use.

Page 4 of 8

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector-10-A, Gandhinagar-382 010

Phone : (079) 23226295 Fax : (079) 23232156

Website: www.gpcb.gov.in

5. AUTHORIZATION as per HAZARDOUS AND OTHER WASTE (MANAGEMENT AND TRANSBOUNDARY) RULES, 2016 Form-2 [See rule 6 (2)]

Form for grant of authorization for occupier or operator handling Hazardous waste

5.1 Authorization order No:- AWH-118804 date of Issue: 18-05-2022.

5.2 M/s. Adani hazira Port Pvt. Ltd.. is hereby granted an authorization to operate facility of below for following hazardous wastes on the premises situated at Near Hazira LNG Pvt.

Ltd., Hazira: - 394270, Tal: - Chorasi, Dist: - Surat.

C	Ltd., Hazira:- 394270, Tal:	Quantity	Schedule-I/	Facility
Sr	waste	MT/Year	Category	Facinity
1	Oil-Containing Cargo Residue, Washing Water And Sludge / Cargo residue, washing water and sludge containing oil	6000	3.1	This shall be treated to meet GPCB norms & then REUSE within the premises for green belt development in an area of 69.88 Ha, and also for fire fighting.
2	Chemical Containing Cargo Residue And Sludge / Cargo residue and sludge containing chemicals	240 MT/Year	3.2	Collection, Storage, Transportation for recycling to 1) M/s. Amidhara(ID-33739), Dist: Kheda, Authorization No: AWH-85333, valid upto- 27/02/2022. 2) M/s. Daxesh Petrochem Pvt. Ltd, (ID-15625), Dist-Bharuch, Authorization No: H-91610, valid upto- 27/11/2021. 3) Yash Enterprise (ID-3686) Dist-Valsad-Sarigam, Authorization No: AWH-92657, valid upto- 18/01/2023.
3	Sludge and filters contaminated with oil	18	3.3	Collection, Storage, Transportation and disposal by incineration in the approved CHWIF. RECEPTION from ships coming to the port only
4	Ballast/Bilge/Slop Water Containing With Oil From Ship/Tag		3.4	Collection, Storage, Transportation and disposal by incineration in the approved CHWIF. This shall be treated to meet GPCB norms & then REUSE within the premises for green belt development in an area of 69.88 Ha, and also for firefighting
5	Used / Spent Oil	120	5.1	Collection, storage, transportation and disposal by selling to Registered re- refiners. RECEPTION from ships coming to the port only
6	Wastes Residues Containing	180	5.2	Collection, Storage, Transportation and disposal by incineration in the approved CHWIF. CO-PROCESSING/ RECOVERY may be explored.

)_

Page 5 of 8

M/s. Adani hazira Port Pvt. Ltd.(ID-35352)

7	Contaminated Cotton Rags or Other Cleaning Materials	180	33.2	Collection, Storage, Transportation and disposal by incineration in the approved CHWIF.
8	Oil and Grease Skimm ng	12	35,4	Collection, Storage, Transportation and disposal by incineration in the approved CHWIF.

5.3 The authorization shall be valid up to 12-07-2027.

5.4 The authorization is subject to the conditions stated below and such other conditions as may be specified in the rules from time to time under the Environment (Protection) Act-1986.

5.5 The authorization is granted to operate a facility for collection, storage within factory premises transportation and ultimate disposal of Hazardous wastes as per condition no.5.2 to the industry having valid CCA of this Board.

6. TERMS AND CONDITIONS OF AUTHORISATION

- The applicant shall comply with the provisions of the Environment (Protection) Act-1986 and the rules made there under.
- The authorization cr its renewal shall be produced for inspection at the request of an officer authorized by the Gujarat Pollution Control Board.
- The persons authorized shall not rent, lend, sell, and transfer or otherwise transport the hazardous wastes without obtaining prior permission of the Gujarat Pollution Control Board.
- Any unauthorized change in personnel, equipment or working conditions as mentioned in the authorization order by the persons authorized shall constitute a breach of this authorization.
- 5. The person authorized shall implement Emergency Response Procedure (ERP) for which this authorization is being granted considering all site specific possible scenarios such as spillages, leakages, fire etc. and their possible impacts and also carry out mock drill in this regard at regular interval of time;
- 6. The person authorized shall comply with the provisions outlined in the Central Pollution Control Board guidelines on "Implementing Liabilities for Environmental Damages due to Handling and Disposal of Hazardous Wastes and Penalty"
- 7. It is the duty of the authorized person to take prior permission of the Gujarat Pollution Control Board to close down the facility.
- 8. The imported hazardous and other wastes shall be fully insured for transit as well as for any accidental occurrence and its clean-up operation.
- The record of consemption and fate of the imported hazardous and other wastes shall be maintained.
- 10. The hazardous and other wastes which gets generated during recycling or reuse or recovery or pre-processing or utilization of imported hazardous or other wastes shall be treated and disposed of as per specific conditions of authorization.
- 11. The importer or exporter shall bear the cost of import or export and mitigation of damages if any.
- 12. An application for the renewal of an authorization shall be made as laid down in rules 6(2) under Hazardous Weste and Other Waste Rules, 2016.
- 13. Any other conditions for compliance as per the Guidelines issued by the Ministry of Environment, Forest and Climate Change or Central Pollution Control Board from time to time.
- 14. The waste generator shall be totally responsible for (i.e. collection, storage, transportation and ultimate disposal) the wastes generated.

Page 6 of 8

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector-10-A, Gandhinagar-382 010

: (079) 23226295 Phone : (079) 23232156 Fax

Website: www.gpcb.gov.in
15. Records of waste generation, its management and annual return shall be submitted to Gujarat Pollution Control Board in Form-4 by 30th day of June of every year for the preceding period April to March.

16. In case of any accident, details of the same shall be submitted on Form-11 to Gujarat Pollution Control Board.

17. As per "Public Liability Insurance Act-91" company shall get Insurance Policy, if applicable.

18. Empty drums and containers of toxic and hazard material shall be treated as per guideline published for "Management & Handling of discarded containers". Records of the same shall be maintained and forwarded to Gujarat Pollution Control Board regularly.

- 19. In case of transport of hazardous wastes to a facility for (i.e. treatment, storage and disposal) existing in a State other than the State where hazardous wastes are generated, the occupier shall obtain 'No Objection Certificate' from the State Pollution Control Board or Committee of the concerned State of Union Territory Administration where the facility exists.
- 20. Unit shall take all concrete measures to show tangible results in waste generation, reduction, avoidance, reuse and recycle. Actions taken in this regard shall be submitted within three months and also along with Form-4.
- 21. Industry shall have to display the relevant information with regards to hazardous waste as indicated in the Hon. Supreme Court's Order in W.P. No.657 of 1995 dated 14th October,
- 22. Industry shall have to display on-line data outside the main factory gate with regard to quantity and nature of hazardous chemicals being handled in the plant, including wastewater and air emissions and solid hazardous wastes generated within the factory premises.

7. SPECIFIC CONDITIONS:-

- 7.1. The authorized actual user of hazardous and other wastes shall maintain records of hazardous and other wastes purchased in a passbook issued by the State Pollution Control Board along with the authorization.
- 7.2. Handling over of the hazardous and other wastes to the authorized actual user shall be only after making the entry in the passbook of the actual user.
- 7.3.1n case of renewal of authorization, a self-certified compliance report in respect of effluent, emission standards and the conditions specified in the authorization for hazardous and other wastes shall be submitted to SPCB.
- 7.4. The occupier of the facility shall comply Standard operating procedure/guidelines published by MOEF&CC or CPCB or GPCB from time to time.
- 7.5. Unit shall comply provisions of E-Waste Management Rules-2016.
- 7.6. The disposal of Hazardous Waste shall be carried out as per the waste Management hierarchy.
- 7.7. The occupiers of facilities shall not store the hazardous and other wastes for a period not exceeding ninety days. Prior permission of the Board shall be obtained for extension of the storage period.
- 7.8. The occupier shall maintain the records of generation, sale, storage, transport, recycling, co processing and disposal of hazardous waste and make available during the inspection.
- 7.9. The transportation of the hazardous waste shall be carried out in GPS mounted dedicated vehicles.

8. GENERAL CONDITIONS: -

&1. Any change in personnel, equipment or working conditions as mentioned in the consents form/order should immediately be intimated to this Board.

Page 7 of 8

M/s. Adani hazira Port Pvt. Ltd.(ID-35352)

- 8.2. Applicant shall also comply with the general conditions given in annexure I.
- 8.3. Whenever due to accident or other unforeseen act or ever, such emissions occur or is apprehended to occur in excess of standards laid down such information shall be forthwith reported to Board, concerned Police Station, Office of Directorate of Health Service, Department of Explosives. Inspectorate of Factories and local body.
- 8.4. In case of failure of pollution control equipments, the production process connected to it shall be stopped. Remedial actions/measures shall be implemented immediately to bring entire situation normal.
- 8.5. The Environmental Management Unit/Cell shall be setup to ensure implementation on and monitoring of environmental safeguards and other conditions stipulated by statutory authorities. The Environmental Management Cell/Unit shall directly report to the Chief Executive of the organization and shall work as a focal point for internalizing environmental issues. These cells/units also coordinate the exercise—of environmental audit and preparation of environmental statements.
- 8.6. The Environmental audit shall be carried out yearly and the environmental statements pertaining to the previous year shall be submitting to this State Board latest by 30th September every year.

For and on behalf of Gujarat Pollution Control Board

(Smt. S. V. Bhargava) Unit Head, Surat

Date:-

NO: GPCB/CCA-SRT-1314(10)/ID 35352/

Issued to:

M/s. Adani hazira Port Pvt. Ltd. Near Hazira LNG Pvt. Ltd., Hazira:- 394270,

Tal:- Chorasi, Dist:- Surat,

Adani hazira

Page 8 of 8

M/s. Adani hazira Port Pvt. Ltd.(ID-35352)

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN, SECTOR 10-A, GANDHINAGAR - 382010,

(T) 079-23232152

"CCA - Correction"

BY R.P.A.D.

NO: GPCB/CCA-SRT-1314(10)/ID 35352/

Date:

Tο.

M/s. Adani Hazira Port Ltd. Near Hazira LNG Pvt. Ltd.

Hazira - 394270

Tal: Chorasi, Dist: Surat.

SUB: Correction in the consolidated consent & Authorization of the Board.

REF: 1) This office CCA order No: AWH-118804 Dated: 08/06/2022 under various Environmental Acts/Rules.

In exercise of the power conferred under section-25 of the Water (Prevention and Control of Pollution) Act-1974 and under section-21 of the Air (Prevention and Control of Pollution)-1981. The Board has granted CTE vide this office letter no: CCΛ-SRT-1314(10)/ID-35352/674464 dated 08/06/2022, valid upto 12/07/2027.

The Board has right to review and amend/correct the conditions of the said CCA.

The said CCA order is further corrected as below:

- 1. The name the unit shall be read as issued to M/s. Adani Hazira Port Ltd. in place of M/s. Adani Hazira Port Pvt. Ltd. in CCA order No. AWH-118804.
- 2. Condition no. 6.2 (Table Point No.: 2) mentioned under the head "6. AUTHORIZATION as per HAZARDOUS AND OTHER WASTE (MANAGEMENT AND TRANSBOUNDARY) RULES, 2016 Form-2 [See rule 6 (2)]" of the said CCA order is corrected as below:

M/s. Adani Hazira Port Pvt. Ltd., is hereby granted an authorization to operate facility for following hazardous wastes on the premises situated at Near Hazira LNG Pvt. Ltd., Hazira – 394270, Tal: Chorasi, Dist: Surat.

Sr. No	Waste	Quantity MT/Year	Schedule- I/ Category	Facility
2	Chemical Containing Cargo Residue And Sludge / Cargo residue and sludge containing chemicals		3.2	Reception from ships coming to the port and Collection, Storage, Transportation and disposal by incineration in approved CHWIF and or send for recycling to 1) M/s. Amidhara (ID-33739), Dist: Kheda, Authorization No: AWII-85333, valid upto- 27/02/2022. 2) M/s. Daxesh Petrochem Pvt. Ltd., (ID-15625), Dist: Bharuch, Authorization No: H-91610, valid upto- 27/11/2021. 3) Yash Enterprise (ID-3686) Dist: Valsad-Sarigam, Authorization No: AWII-92657, valid upto- 18/01/2023.

Page 1 of 2

Clean Gujarat Green Gujarat

Website: https://gpcb.gujarat.gov.in

3. The rest of the conditions of the above referred CCA order AWH-118804 order shall remain unchanged. You are directed to comply with these conditions.

For and on behalf of Gujarat Pollution Control Board

(M. R. Macwana) Unit Head, Surat

Oil Emarca 30° 683760 7 A. 109 12022

ADANI HAZIRA PORT LIMITED

From: April 2022 to September 2022

Annexure 10

Copy of Public Liability Insurance of AHPL

CONTRACT OF INSURANCE

INSURED NAME: ADANI HAZIRA PORT LIMITED.

INSURER: IFFCO TOKIO General Insurance Company Limited

Policy Type - Public Liability - Act

Polic Period - 01/04/2022 to 31/03/2023

Servicing Branch:

AHMEDABAD

Policy Issuing Office:

IFFCO TOKIO GEN INSU, CO. LTD. Ground Floor, IFFCO Bhavan Bh Maruti Arcade, Shivranjani Cross Rd,

Satellite AHMEDABAD, GUJARAT - 380015

Issuing Office GSTIN:

24AAACI7573H1ZI

Corporate Office:

IFFCO TOKIO GEN INSU. CO. LTD.4th - 5th Floor, IFFCO TowersPlot No 3, Sector 29, GURGAON

(HARYANA) - 122001

Policy No:

41068925

Unique Invoice No:

41068925

Invoice Date:

22/04/2022

SAC:

997139

Intermediary Details:

ACE INSURANCE BROKERS PVT LTD

Attaching & forming Part of policy no. 41068925

Page 1

POLICY SCHEDULE CUM TAX INVOICE

Insured	ADANI HAZIRA PORT LIMITED,						
GSTIN	24AAICA0970E1Z1		. discon				
	Adani House, Nr Mithakhali Six						
	Road, Navrangpura						
Address	Ahmadabad (m Corp.)	*					
	India						
	Pin Code 380009						
Place of Supply	GUJARAT	***					
Business Description	Port Operation, Cargo handling, stev	edoring					
Policy Period	01/04/2022-31/03/2023						
Co Insurance Details	NA						
	Cover						
Limit of Liability	50,000,000 per occurrence and 150	000,000 in the aggregate					
Deductible	NA						
Territorial Limits	INDIA						
Jurisdiction	INDIA						
Turnover Details	INR 14,600,000,000						
Policy Type	Occurrence Based	4					
Premium	Premium Excluding Taxes: CESS (0%): GST - SGST (9%): - UGST (0%): - CGST (9%): - IGST (0%): ERF Amount:	INR 5,875.00 INR 0.00 INR 528.75 INR 0.00 INR 528.75 INR 0.00 INR 5,875.00					
	Total Premium / Invoice Value :	JNR _ 12,808.00	<u> </u>				
GST Related Declarations	Whether GST is Payable on Rever	se Charge Basis- No					
Other Terms and Conditions	All Other terms & conditions as per P	olicy Wordings attached.					

Toll Free: 1-800-103-5499; SMS "claim" to 56161

SAC Code: 9971

Regd. Office: IFFCO SADAN, C1 Distt Centre, Saket, New Delhi -110017
Corporate Identification Number (CIN) U74899DL2000PLC107621, IRDA Reg. No. 106
Consolidated Stamp Duty Deposited as per the order of Government of Hannal Capital Territory of Delhi

Toklo General Insurance Company Um

Authorised Signatory

Regd, Office IFFC., Sadan C-1 Dist, Cai Ire, Saket, New Delhi-110017 CIN UT48990129009210107621

POLICY FORM (PUBLIC LIABILITY INSURANCE -- ACT ONLY POLICY)

1. OPERATIVE CLAUSE

Whereas the Insured Owner, named in the Schedule hereto and carrying on business described in the said Schedule, has applied to IFFCO-TOKIO General Insurance Co. Ltd. (hereinafter called the Company) for the indemnity hereinafter contained and has made a written proposal and declaration which shall be the basis of this contract and is deemed to be incorporated herein and has paid the premium and statutory contribution towards the Environment Relief Fund as per the provisions of the Public Liability Insurance Act and the rules framed thereunder.

NOW THIS POLICY WITNESSETH that subject to the terms, exceptions and conditions contained herein or endorsed hereon , the company will indemnify the insured owner against the statutory liability arising out of accidents occurring during the currency of the policy due to handling hazardous substances as provided for in the said act and the rules framed thereunder.

2. DEFINITIONS

- a) "Act" unless otherwise specifically mentioned shall mean the Public Liability Insurance Act, 1991.
- b) "Accident" means an accident involving a fortuitous or sudden or unintentional occurrence while handling any hazardous substance resulting in continuous, intermittent or repeated exposure to death of, or injury to any person or damage to any property but does not include an accident by reason only of war or radio-activity.
- c) "Handling" in relation to any hazardous substance, means the manufacture, processing, treatment, package, storage, transportation by vehicle. use, collection, destruction, conversion, offering for sale, transfer or the like of such hazardous substance.
- d) "Hazardous Substance" means any substance or preparation which is defined as hazardous substance under the Environment (Protection) Act, 1986, and exceeding such quantity as may be specified, by notification, by the Central Government.
- e) "Owner" means a person who owns, or has control over handling any hazardous substance at the time of accident and includes:-
- (i) in the case of a firm, any of its partners:
- (ii) in the case of an association, any of its members, and
- (iii) in the case of a company, any of its directors, managers, secretaries or other officers who is directly in-charge of and is responsible to the company for the conduct of the business of the company.
- (f) "Turnover" shall mean -
- i) Manufacturing units Annual Gross Sales including all levies and taxes.
- ii) Godown/warehouse owners Annual rental receipts.
- iii) Transport Operators Annual freight receipts
- iv) Others Annual gross receipts

3. EXCLUSIONS

This Policy does not cover liability:

- (1) arising out of willful or intentional non-compliance of any Statutory Provisions.
- (2) in respect of fines, penalties, punitive and/or exemplary damages.
- (3) arising under any other legislation except in so far as is provided for in Section 8 Sub-Section (1) and (2) of the Act.
- (4) arising out of damage to property owned, leased or hired or under hire purchase or on loan to the Insured or otherwise in the Insured's control. care or custody.
- (5) directly or indirectly occasioned by, happening through or in consequence of war, invasion, act of foreign enemy, hostilities (whether war be declared or not), civil war, rebellion, revolution, insurrection or military or usurped power.

Signature Not Verified Digitally signed by SUBRATA MONDAL
Date: 2022.04.22 14:53:14 IST
Reason: Valid Policy Copy
Location: IFFCO Tokio General Insurance Company Ltd, India

- (6) directly or indirectly caused by or contributed to by
- a) ionizing radiations or contamination by radio activity from any nuclear fuel or from any nuclear waste from the combustion of nuclear fuel.
- b) the radioactive, toxic, explosive or other hazardous properties of any explosive nuclear assembly or nuclear component thereof.

4. CONDITIONS

- (1) The Insured Owner shall give written notice to the Company as soon as reasonably practicable of any claim made against the Insured Owner or any specific event or circumstance that may give rise to a claim. The Insured shall immediately give to the Company copies of notice of application(s) forwarded by the Collector and all such additional information and or assistance that the Company may require,
- (2) No admission, offer, promise or payment shall be made or given by or on behalf of the Insured owner under this policy without the written consent of the Company.
- (3) The Company shall not be liable for any claims for relief made after five years from the date of occurrence of the accident.
- (4) The insured Owner shall keep record of annual turnover, and at the time of renewal of insurance declare such turnover and all other details as may be required by the Company. The Company shall at all reasonable times have full rights to call for and examine such records.
- (5) If at the time of happening of any accident, resulting in a claim under this policy, there be any other insurance covering the same liability, then the Company shall not be liable to pay or contributes more than its ratable proportion of such liability.
- (6) This Policy may be cancelled by the Insured Owner by giving 30 days notice in writing to the Company in which event the Company will reta. premium at short period scale subject to there not having occurred an accident during the policy period which may give rise to a claim(s), failing which no refund of premium shall be allowable.
- (7) This Policy may also be cancelled by the Insurer by giving 30 days notice in writing to the Insured Owner in which event the Company shall be liable to repay on demand a rateable proportion of the premium for the unexpired term from the date of cancellation,
- (8) If the Company shall disclaim liability to the Insured Owner for any claim hereunder and such claim shall not within 12 calendar months from the date of such disclaimer have been made the subject matter of a suit in a competent court of law, then the claim for all practicable purposes shall be deemed to have been abandoned and shall not thereafter be recoverable hereunder or be made the subject matter of any suit.
- (9) The Company shall not be liable to make any payment in respect of any claim if such claim shall be in any manner fraudulent or supported by any person on behalf of the Insured and/or if the insurance has been continued in consequence of any material mis-statement or non-disclosure of any material information by or on behalf of the Insured. In such a case, if the Company pays any amount to the claimant due to any statutory provisions, such amount shall be recoverable from the insured.
- (10) The Policy and the Schedule shall be read together as one contract and any word or expression to which a specific meaning has been assigned in the Act and the Rules framed thereunder or this Policy shall bear such specific meaning.
- (11) Any dispute regarding interpretation of the terms, conditions and exceptions of this Policy shall be determined in accordance with the law and practice of a court of competent jurisdiction within India.

Signature Not Verified Digitally signed by SUBRATA MONDAL
Date: 2022.04.22 14:53:14 IST
Reason: Valid Policy Copy
Location: IFFCO Tokio General insurance Company Ltd, India

ADANI HAZIRA PORT LIMITED

From: April 2022 to September 2022

Annexure 11

Copy of Environment Statement of FY 2021-22

AHPL/GPCB/2022-23/03

Ltd.

Date: 28.06.2022 GPCB ID: 35352

To

The Member Secretary, Gujarat Pollution Control Board, Paryavaran Bhavan, Sector-10A, Gandhinagar-382 010 (Gujarat)

Dear Sir,

3010 UT COTHEON LO HERD NO. 10-A. Environmental Statement in Form-V for the financial year 2020-21 of M/s. Adani Hazira Port Sub.:

Ref.:

I. Consolidated consent and authorization (CC&A) vide consent order no. AWH-87176 dated 17.07.2017 and its subsequent amendments AW-104319, Ref. No.: GPCB/CCA-SRT-1314(8)/ ID 35352/528583 dated 02.12.2019 and CCA order No: H-I 11966, Dated-16/04/2021.

II. Consolidated consent and authorization (CC&A) vide consent order no. AWH-118804 dated 18.05.2022

With reference to above subject matter, please find enclosed herewith Environmental Statement -Form-V prescribed under Rule, 14 of the Environment (Protection) Rules, 1986 of M/s. Adami Hazira Port Ltd., At & PO: Hazira, Taluka: Choryasi, District: Surat (Gujarat) for the financial year 2021-22.

This is for your kind reference and record please.

Thanking You,

For Adani Hazira Port Ltd.

(Anil Kishore Singh) **Authorized Signatory**

Environmental Statement in Form-V for the Financial Year: 2021-22

Cc to: - The Regional Officer, Gujarat Pollution Control Board, 338, Belgium Square, Opp. Linear Bus Stand, Ring Road, Surat-364 002 (Gujarat)

Logistics

AHPL/GPCB/2022-23/03

Date: 28.06.2022 GPCB ID: 35352

To

The Member Secretary, Gujarat Pollution Control Board, Paryavaran Bhavan, Sector-10A, Gandhinagar-382 010 (Gujarat)

Dear Sir,

Sub.: Environmental Statement in Form-V for the financial year 2020-21 of M/s. Adami Hazira Port

Ltd.

Ref.: I. Consolidated consent and authorization (CC&A) vide consent order no. AWH-87176 dated 17.07.2017 and its subsequent amendments AW-104319, Ref. No.: GPCB/CCA-SRT-1314(8)/

ID 35352/528583 dated 02.12.2019 and CCA order No: H- | 11966, Dated-16/04/2021.

II. Consolidated consent and authorization (CC&A) vide consent order no. AWH-118804 dated

18.05.2022

With reference to above subject matter, please find enclosed herewith Environmental Statement - Form-V prescribed under *Rule*, 14 of the Environment (Protection) Rules, 1986 of M/s. Adani Hazira Port Ltd., At & PO: Hazira, Taluka: Choryasi, District: Surat (Gujarat) for the financial year 2021-22.

This is for your kind reference and record please.

Thanking You,

For Adani Hazira Port Ltd.

(Anil Kishore Singh)

Authorized Signatory

Encl.: - Environmental Statement in Form-V for the Financial Year: 2021-22

Cc to: - The Regional Officer, Gujarat Pollution Control Board, 338, Belgium Square, Opp. Linear Bus Stand, Ring Road, Surat-364 002 (Gujarat)

FORM - V (See Rule 14)

Environmental Statement for the Financial Year ending 31st March 2022

PART - A

(i)	Name and address of the Owner/ Occupier of the Industry Operation or Process	:	Anil Kishore Singh, Chief Executive Officer, M/s. Adani Hazira Port Ltd., At & Post: Hazira, Taluka: Choryashi, District: Surat (Gujarat)	
(ii)	Industry Category Primary (STC Code) Secondary (STC Code)	;	Red - Large Not Applicable Not Applicable	
(iii)	Production Capacity	:	57.7 MMTPA (Total Cargo Handling Capacity)	
(iv)	Year of Establishment	:	2010	-
(v)	Date of Last Environment Statement Submitted	:	25 th June 2021	

<u>PART - B</u> Water and Raw Material Consumption

(i) Water Consumption:

Water Consumption Cu. Mtr./Day						
Process	Approx. 1464.68 m³/day in Firefighting, Dust Suppression,					
Cooling	Sprinkling Washing Activities, and horticulture etc.					
Domestic	Approx. 220.38 m³/day in Domestic Purpose					

Name of Products	Process Water Consumption Per Unit Of Product Output					
	During the Previous Financial Year	During the Current Financial Year				
	Total Water Consumption during the FY: 2020-21 is 720665.52 m³ in the Dust Suppression, Fire Fighting, Cooling, LT - Washing Activities, Horticulture and Domestic purpose etc.	Total Water Consumption during the FY: 2021-22 is 615045.19 m³ in the Dust Suppression, Fire Fighting, Cooling, LT - Washing Activities, Horticulture and Domestic purpose etc.				

The Water consumption per unit of	The Water consumption per unit of
cargo handling is 0.032 m ³ /MT.	cargo handling is 0. 0.0247 m³/MT.

^{*} The Unit does not carry out any manufacturing process. The water consumed was mainly in Firefighting, Dust Suppression, Water Sprinkling, Washing Activities and Horticulture & Domestic Purpose etc.

(ii) Raw Material Consumption:

N	N	Consumption of Raw Material per Unit of output				
Name of Raw Material	Name of Products	During the previous Financial Year	During the current Financial Year			
Not Applicable	Not Applicable	Not Applicable	Not Applicable			

^{*} Unit does not carry out any manufacturing process.

Pollutants discharged to Environment Unit of Out ut

(Parameters as specified in consent issued)

Pollutants	Quantity of Concentrations of pollutants pollutants in from prescribed standards with reasons (Mass/day) (Mass/Volume)					
(a) Water		Nil*				
(b) Air	power failure. The height of		er source and used during B/GPCB standards. All the prescribed limits.			
Particulate Matter (mg/Nm³)			Nil			
Sulphur Dioxide (ppm)		nexure-1.	Nil			
Nitrogen Oxide (ppm)			Nil			

* The Unit does not carry out any manufacturing process, as it is a service industry i.e. Port engaged in Handling and Storage of General Dry Cargo, Liquid Cargo and Containers. The source of effluent/ waste water generation is washing activities of liquid tanks, pipelines and floor washing during any spillage and/or leakage of liquid cargo and other domestic activities. During the Financial Year: 2021-22. There is no discharge of treated effluent / water discharged to the environment. All the treated Effluents and Sewage are utilized in horticulture purpose.

There was approx. 59.75 KL/Day Sewage Generation. The sewage was treated in the Sewage Treatment Plants (STP's) and treated water confirming to prescribe standards was reused in gardening and plantation activities. There was approx. 80.88 KL/Day of Effluents generation, and all of the generated effluents were treated in Effluents Treatment Plant and utilized in Horticulture Purpose.

PART - D

Hazardous Wastes

(as specified under Hazardous waste (Management and Handlin) Rules 2016

Hazardous Wastes	Total Quantity (Kg.)									
Hazardous vvastes	During the Previous Financial Year	During the Current Financial Year								
a) From Process	Quantity of Hazardous Waste generated is given below:	Quantity of Hazardous Waste generated is given below:								
	Cat3.2: 101860 Kg. of cargo residue containing chemicals.	Cat3.2: 87730 Kg. of cargo residue containing chemicals.								
	Cat3.3: 1840 Kg. of Used Oil Filters.	Cat3.3: 1090 Kg. of Used Oil Filters.								
	Cat5.1: 44800 Kg. of Used/Spent Oil/Bilge.	Cat 3.4: 4200 Kg of Bilge water Containing oils								
	Contaminated Foam	Cat-33.11: 2960 Kg of contaminated empty barrel								
	Pigs. Cat21.1: 8970 Kg. of Empty Paint	Cat 33.2: 5850 Kg of oily Cotton rags								
	Drums/ Tins. Cat 33.2: 10260 Kg of oily Cotton	Cat5.1: 19440 Kg. of Used/Spent Oil.								
	rags Cat 35.1: Approx. 5000 Kg of gas cleaning residues CMS	Cat5.2: 18830 Kg. of Oil Contaminated Foam Pigs.								
		Cat 35.1: 2400 Kg of gas cleaning residues CMS.								
b) From Pollution Control facilities	Nil	Nil								

<u>PART - E</u> <u>Solid Waste</u>

		Total Quantit	y (MT/Annum)	
	Solid Waste	During the Previous Financial Year	During the Current Financial Year	
(a)	From Process (Ash)			
(b)	From Pollution Control facilities			
(C-1)	Quantity recycled or reutilized within the unit	7.59 MT (Kitchen & Food Waste was Converted in to Manure through Organic Waste Converter)	5.772 MT (Kitchen & Food Waste was Converted in to Manure through Organic Waste Converter)	
(C-2)	Sold			
(C-3)	Disposed	Approx. 182.139 MT (Garbage Wastes)	Approx. 222.14 MT (Garbage Wastes) processed through Solid Waste Management Facility of Surat Municipal Corporation	

Note: Scrap is collected in designated scrap yard at Central Store and sold to scrap vendor.

PART - F

Please specify the characterization (in terms of Composition and quantum) of Hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes:

- Total quant hazardous waste disposed off during the financial year 2021-22 is 142.50 MT. Out of which 115.90 MT of Incinerable hazardous waste was disposed off through GPCB authorized CHWIF M/s Saurashtra Enviro Projects Pvt Ltd Kutch. Approx. 26.6 MT of recyclable hazardous waste are sent to GPCB registered recyclers.
- Approx. 23.64 MT Used/Spent Oil/Bilge Water were generated (including opening were sold out to GPCB registered recycler/refiner at M/s. Unity Petroleum Co., Ahmedabad. The Waste Oils were stored in barrels in hazardous waste storage shed.
- Approx. 2.96 MT Empty Paint Drums/Tins were sold out to GPCB registered recycler at M/s Shahara Enterprises Ahmedabad.
- Oily Cotton rags were generated from various maintenance and operational activities, which were kept in covered hazardous waste storage area. 5.85 MT of oily cotton rags Wastes were disposed off through GPCB authorized CHWIF Saurashtra Enviro Projects Pvt Ltd Kutch and 18.830 MT of Oil

contaminated Foam pigs was disposed off through GPCB authorized CHWIF Saurashtra Enviro Projects Pvt Ltd Kutch.

- Used Oil filters of 1.09 MT was disposed off through GPCB authorized CHWIF Saurashtra Enviro Projects Pvt Ltd Kutch
- Cargo residue containing chemicals of 87.73 MT was disposed off through GPCB authorized CHWIF Saurashtra Enviro Projects Pvt Ltd Kutch

PART - G

Impact of the pollution abatement measures taken on conservation of natural resources and on the cost of production: -

- Unit has installed Sewage Treatment Plants of 75 KLD capacity and Effluent Treatment Plant (ETP)
 of 90 KLD Capacity for treatment of the Sewage water and Effluent being generated at site. The
 treated water is being reused within port premises.
- Unit has installed Organic Waste Converter (OWC) to convert the organic wastes into organic manure i.e.: Kitchen/Food Waste and Horticultural Waste being generated at site. The manure is being reused within port premises.
- M/s. AHPL has developed mangrove afforestation on an area 200 hectares i.e.: 20 hectares near Village: Kantiyajal, Sea coast area and 180 hectares near Village: Nada-Devla, District: Bharuch (Gujarat).
- M/s. AHPL has developed a Bio-Shield Pilot Project on an area of 18 hectares at near Village: Tankari Bandar, Taluka: Jambusar, District: Bharuch (Gujarat).
- The Unit has been used recycled water i.e. treated sewage of KRIBHCO for industrial used which caters more than 80% of total water consumption.
- The Unit has installed Photo voltaic Solar Panel of 3.5 MW and reduced its grid Power consumption and 2 MW of Wind mills at Rojmal near Rajkot for renewal energy generation.
- During the financial year: 2021-22, the total cost incurred on environmental protection measures is enclosed as <u>Annexure-2</u>.

PART - H

Additional measures /investment/ proposal for environmental protection including abatement of pollution, prevention of pollution.

- Unit is carrying out regular environmental monitoring within the Port and surrounding area through reputed MoEF&CC and NABL accredited laboratory. All the environmental parameters are found well within specified limits and the details of monitored data is regularly submitting to GPCB, CPCB, MoEF&CC and other concerned authorities.
- Unit has installed STP's and ETP for the treatment of the domestic waste water and effluent being generated at site and the treated water is being used for horticulture (plantation & gardening) purpose. Unit has also provided dump pond and conveyance channel for collection of runoff generated from Coal Yard.
- Unit has provided sprinklers at coal yard & conveyer system and carrying out regular water spreading to control the dust exposure. Wind breaking shield is provided around the periphery of Coal Yard.
- Unit has a dedicated horticulture department & developing green belt within port premises.
- Unit uses mist canon to suppress the fugitive coal dust at coal yard.
- Unit has deployed four road sweeping machines to control the fugitive dust emissions.
- Unit has installed wind break shield around coal yard and Rock Phosphate Yard to suppress dust emission.
- Unit has laid 1.7 km of closed conveyor system having dust suppression system for handling of coal from Jetty to coal yard.
- Unit has laid approx. 17 km of underground of pipeline for receiving treated wastewater from KRIBHCO and all the industrial requirement of water is being fulfilled through the recycled water.
- Unit has developed greenbelt area of 78.49 hectare till March, 2022.

PART - I

Any other particulars for improving the quality of environment:

- Trainings on Environment Management and Waste Management were organized for employees, associates and contractual workers.
- Environmental awareness programs have been conducted during the year for employees, contractual employees, school children and local community of nearby villages.
- Integrated housekeeping management is undertaken on top priority to maintain neat and clean working environment in the port premises.
- World Environment Day and other important environment related days are being celebrated to raise awareness among employees, associates and contractor's workmen, The participants of the programs organized on these days were motivated by providing prizes and certificates.
- The Port has initiated "Single Use Plastic Free Port" initiative and Confederation of Indian Industry has been engaged for certifying the protocol and implementation of the same.
- The Port has an ISO 14001:2015 certified system for Environment Management System, ISO 19001:2015 certified system for Quality Management System, ISO 45001: 2018 certified system for Occupational Health and Safety Management System and ISO 50001: 2018 certified system for Energy Management System.
- 200 ha of Mangrove plantation and 18 ha of Bio shield development carried out in Tankari Village of Jambusar taluka, district- Bharuch, Gujarat and these are being maintained and monitored through one NGO and SHG.

Date: 27.06.2022

(Authorized Signatory)

Name:

Anil Kishore Singh

Designation:

Chief Executive Officer (CEO)

Address:

At & Post: Hazira, Taluka: Choryashi,

District: Surat (Gujarat)

ANNEXURE-1

DG SETS STACK EMISSION AND NOISE LEVEL MONITORING: -

Note: DG sets are provided as standby power source and used during power failure.

46. DG SETS STACK EMISSION AND NOISE LEYEL MONITURING: -Table-1.25: DG Sets Stack Monitoring Results for the period: October, 2021 to March, 2022

Table-1.25 (a): DG Sets Stack Monitoring Results:

Sr.			DG SET TOYO DENKI -1		DG SET TOYO DENKI -2		DG SET TOYO DENKI -3	
No.		Unit	25/11/2021	25/02/2022	25/11/2021	25/02/2022	25/11/2021	25/02/3022
T	Particulate Macter	mg/Nm ³	29.41	26.33	25.35	23,76	27.55	24.56
2	Sulphur Dioxide	ppm	4.53	5.34	6.83	4.52	7.75	6,46
3	Oxide of Nitrogen	ppm	36.66	34.35	34.78	31.51	38.7	36.4
4	Darbon Monovide (CDI)	mg/m³	17.92	22.90	15.75	20.91	17.87	23.90
1 5	Non Meshyl Hydro Caroon (NPS-IC)	mg/m³	hot Detected	Not Determit	Not Detacted	Not Detricted	Not Detacted	Mot Det≕t=f

Table-1.25 (b): DG Sets Stack Monitoring Results:

Sr.	Paramethre	N-h	SS-1 LT DG -320 KVA		953 -DG -200 KVA		LT Phone -1 (625 KVA)	
No.		Unit	25/11/2021	25/02/2022	25/11/2021	25/02/2022	25/11/2021	25/02/2022
Т	Particulace Macter	me/ym/	25.65	22.45	26.33	28.33	32.41	24.51
2	Sulphur Dioxide	ppm	7.97	6.48	6.00	4.64	6.85	7.12
3	Dylde of Nitrogen	ppm	32.46	35.63	38.47	34.59	39.43	35.41
4	Carbon Monoxide (CD)	mg/m²	\$6.03	14.89	14.89	12.60	12,60	20.51
- 5	Non Methyl Hydro Caroon (AMAC)	tad'ux ₃	hot Detected	Hot Denormal	Not Detected	Not Detected	Hot Detected	Not Detected

Table-1.25 (c): DG Sets Stack Monitoring Results:

Sr.	Parini eterš	Unit	LT Phase ~2 (750 KVA)		ER-1 (100 KVA)	
No.			25/11/3021	25/02/2022	25/11/30/1	25/02/2022
1	Particulate Master	mg/Hm³	36.34	32.45	30.23	28.42
Z	Sulphur Diaxide	ppm	5.33	5.21	7.51	5.23
3	Childe of Nitrogen	ppm	34,48	37.6	33,76	37.55
4	Carbon Monoxida (CO)	mg/m²	20.61	22.90	9.16	11.45
5	Non-Methy(Hydro Carton (NMHC)	mg/m³	Not Detected	Hot Detected	Not Detected	Hot Delected

●PSSAE Approved Lake ★ Recognized by Mod? Nove Dath Uniter ← GPUB approved Sec. 52 of Rechnique tel [Provedicy] Act 2006 ← GPUB approved aclassical Residue

"Pellucon Huuse", Plot No.5til, Opullalay Industrial Society. Old Shantmath Bill Mill Lene, Near Gaytri Forein Mart, Marjiwan Circle, Umana Magdalla Road, Sweat-395097, Qujarat, India

Phone . 0261-263650, 0261-2635731, 6291-263975, 070 10600174, WeB. work policential com, E. mail: policent@pred.com, info@policentels.com

Table-1.25 (d): DG Sets Stack Monitoring Results:

Sr.	Parameters	Unit	NDG Building (380 KVA)		Custom Building (320 KVA)	
No.			25/11/2021	25/02/2021	25/11/2021	25/01/2022
1	Particulate Hatter	ភាព្ធភិពពាធិ	20.37	22.66	22.61	19,55
2	Sulphur Dibxide	ppm	5.84	6.44	6.26	7,00
3	Shide of Narogen	ppm .	30.18	28.65	34.59	32.42
4	Darbon Manoxide (CO)	mç, m	11.45	16.03	13.74	13.74
5	Non Methyl Hydro Carben (NMHC)	mg/m²	Not Detected	Not Entected	Not Detected	Hot Detected

Table-1.26: DG Sets Noise Level Monitoring Results for the period: October, 2021 to March, 2022

	DG Set A	verage Noise Level In Leq. dB(A)		
Sr. No.	Sampling Location	At 1 M Distance From The Enclosure		
	Sampling Date	25/11/2021	25/02/2022	
l.	DG SET TOYO DEWE - 1	66.8	67.4	
2.	DG SET TOYO DENKI - 2	65.4	63.2	
Э,	DG SET TOYO DENKI -3	63.1	66.5	
4.	SS-1 LT OG -320 KVA	66.5	69,3	
5.	953 -DG -208 KVA	64.4	62.5	
б.	LE PHASE-1 (625 KVA)	64.2	58.4	
7.	LT PHASE -2 (750 KVA)	60.3	60.1	
B,	ER-1 (300 KVA)	60.B	66.7	
9,	NOG BUILDING (380 KVA)	63.6	58.5	
10.	CUSTOM BUILDING (328 KVA)	62.1	61.5	

"Politicon Rouse", Plot No.5/8, Opp.Baraji Industrial Society, Old Shantinuth Size Mith Lines, Near Caytri Farans Mart, Maylivae Circle, Udhana Magdalla Read, Surse-195047, Oujarat, India.

Photo D251-2635/50, 0261-2635/51, 9281-2633/75, 07018595174, WEB: www.portucontab.com. E. mail: politicontylymaticom, arto@portucontab.com

4G. DG SETS STACK EMISSION AND NOISE LEVEL NONLTORENCE -

Table-1.22: DG Sets Stack Monitoring Results for the period: April, 2023 to September, 2021

Table-1.22 (n): DG Sets Stock Monitoring Remain:

Sri	Parameters	Unit	DE SET TOYO DENKI -1		BG SET TOYD DERKT -2		DG SET TOYO DENKI -3	
Nu,			30,/06/2021	30/08/2021	20/05/2021	30/04/2501	20/09/2021	30/03/3431
1	Particulate Mother	mg/km³	22.6	24.3 .	20.3	22.59	28.49	23.4
3	Sulptur Dioxide	ppitti	6.68	5.47	5.6	4,56	7.67	6,34
3	Coude of Hibrogen	bbus	30.2	33.54	34,5	29.4	37,49	35,57
4	Cartrer Municide (CO)	Dell'enty	21.86	17.18	19.63	15.\$	14,94	29,42
5	Mos Midding Hydro Carbon (NYHC)	rig/m³	Not Detected	Not Detected	Not Detected	Apt Detected	Not Detected	Not Desected

Table-1,22 (b): CG Sate Stack Monitoring Results:

Sit. No.	Рагипоўст s	Unit	55-1 LT 00: -330 AVA		\$53 -DG -200 KVA		LT Phase -1 (625 KVA)	
			20/05/2021	1000(90)01	26/05/2021	30/98/2021	25/05/2021]1/08/2021
Ŀ	Porticulate Matter	mg/filmi	15.59	22,41	19.27	21.68	26-52	30.53
2	Sulphur Dicoide	ppm	5.07	6.28	6.13	6.06	8.06	7.27
3	Oxide of Mirogen	ppin.	37.21	35.43	31.54	35.01	37.59	34.56
4	Carlton Honoride (CD)	mg/m³	11.45	13,74	0.02	6.97	13.74	14,89
5	Non Nestyl Hydro Carbon (NHHC)	mg/ne ³	Not. Detected	Not Detected	Not Debected	Not Detected	Not Detected	Net Detected

Table-1.22 (c): DG Sets Stack Monitoring Results:

Sr. No.	Päramebura	Unit	LT #6aso ×2 (750 KVA)		ER-1 (100 KVA)	
			15/95/3021	3170615051	23/05/2021	20/00/2021
1	Particulate Netter	mg/Km ^{li}	26,52	32.45	24.52	27.53
Z	Sulphur Dizzide	рон	7.05	10.0	5,23	6.3
3	Oxide of Nitrogen	ppm	39.52	36.35	23.42	36.37
4	Earbon Noncode (CD)	mg/sts3.	11.45	17.18	9.16	12.6
5	Kon Heibyl Hydra Carson (XMHC)	mgkmil	Not Detected	Not Detected	Not Detected	Not Detected

Authorized Seguatory

GPCB approad actachda B aptition

#180 T4001

190 45000

• ISO 9001

"Polluton House", Piet No. 6 & 6, Opp. Balaji Industrial Scenty, Old Standardth Sait Mill Lane, Near Gaytri Fare an Mart, Nasjivan Cirolo Udhana Magdalia Road, Sund-316087, Objent, India.

Phone : 9291-2611768, 8251-2615751, 9261-2615775, 0/916605174, Well: www.policonstableom, E. mait: policeon@gmoil.com, 8:fe@policeon.pt.com

Table-1.22 (d): DG Sets Stack Monitoring Results:

şr, No.	Parmine term	linit	NDC Building (300 KVA)		Custom Building (520 RVA)	
			25/05/1001	31/06/2021	25/05/3033	30/00/2021
	Particulate Matter	angulan il	21.57	17/52	17.61	19.54
2	Sulprum Dispoide	ppin	7.25	6.95	4.35	5.32
3	Oxide of hitrogen	ррт	36.27	33.5	33,41	31,57
4	Outhor Monocide (CO)	mg/m ¹	10.31	9.16	19,74	31.45
5	Not Methyl Hydro Carbon (MMHC)	ing/m ¹	Not Desected	Not Detected	Nor Detected	Not Datemen

Table-1.23: D6 Seta Maise Level Monitoring Results for the period: April, 2021 to September, 2021

ir. Ne.	DG Set Average Nova Level In Leq. dB(A)					
or rest	Sampling Location	At 1 M Distance From The Englosure				
	Sampling Date	25 & 20/05/2021	30 4 31/08/2021			
1	DG SET TOYO DENKI - 1	65 6	67.5			
2	DG SET TOYO DENKI - 2	64.8	-56.4			
3.	DG SET TOYO DENK! -3	t2	65.6			
4,	55-1 LT DG -320 KVA	65.4	54,Z			
5	553 -DIG -300 KVA	1.28	67.2			
6.	TT PHASE -1 (625 KWA)	70.4	68.8			
7.	LT PIASE -2 (750 KVA)	63.2	66.4			
B.	E%-1-(100 KVA)	67.8	65.3			
9.	KD2 BAILDINE (350 KAY)	55.6	62.3			
1.01.	CLISTOM GUILDING (320 KWA)	64.2	62.8			

Authorized Migratury

♥P\$Stall (प्रकृष्णकार) Lab

 Incognized by MATE, New Balls Under Sec. 12 of Excisectional (Periodical Art 1968)

OPCH approved recision

♦ \$50 taggr - ♦ 390-45701

P 150F 9001

"Polision Flower", Plot No. 5 & 4, Opp Reisji Indusirial Sectory. Old Shankasti Sak Mit Lana, Hasr Gayori Parasa Mart, Navjiran Cirola, Sidonan Magdalia Road, Surai 36607, Sujarai, India.

Phone - EDET-0812796, 8261-3613751, 8261-3103075, 07016505174, WEB, www.pettrocniab.com, E-minit-pottrocnipgened.com, infraffyoritacentab.com

ANNEXURE - II

Environment Budget & Expenditure of FY 2021-22

Sr No	Activities	Budget for FY 2021-22	Expenditure
		(In Lacs INR)	(In Lacs INR)
	Environmental		
	Study/Audit/Survey/Consultancy		
1	Services	50	25.78
2	Legal and Statutory Charges	15	19.75
3	Environmental Monitoring Services	22	17.07
4	Hazardous Waste Management	33	6.97
5	Horticulture Development – Greenery and Plantation	160	137.58
6	O&M of Sewage Treatment Plant and Effluent Treatment Plant	18	13.91
7	Disposal of Bio medical Waste	1.8	1.92
8	Water Sprinkling for dust suppression	250	202.52
9	Miscellaneous Environmental Initiatives and Salary of Environmental Professionals	20	17.00
_	ISO 14001:2015 (EMS) audit, certification, and internal audit		
10	training	2	1.2
	Total	571.80	443.70

Expenditure of last three Years

Year	Budget	Expenditure (In Lacs INR)
2018-19	270.69	1344.71
2019-20	363.80	326.76
2020-21	479.63	418.11

ADANI HAZIRA PORT LIMITED

From: April 2022 to September 2022

Annexure 12

Details of Liquid/Wastes Collection & Disposed off from Vessels by GPCB Approved Third Party During compliance period from April 2022 to September 2022

From: April 2022 to September 2022

Details of Liquid/Wastes Collection & Disposed off from Vessels by GPCB Approved Third Party During period April 2022 to September 2022

Detail of Wastes Collection & Disposed Off From Vessels							
SR No.	Date	Vessel Name	Party Name	Quantity (CBM)			
1	07.05.2022	MT.ARCTOS	HARISH A. PANDYA	2.740 CBM			
2	18.05.2022	MT DVINA GULF	HARISH A. PANDYA	4.000 CBM			
3	22.05.2022	MV.ANGLO ALEXANDRIA	HARISH A. PANDYA	3.000 CBM			