

AHPL/MoEF&CC/2021-22/03

Date: 29.11.2021

To Inspector general of Forest/Scientist C Integrated Regional office Ministry of Environment Forest and Climate Change Aranya Bhavan, A Wing, Room Number 409, Near CH-3 Circle Sector 10A Gandhinagar – 382007 Gujarat Email: rowz.bpl-mef@nic.in, eccompliance-guj@gov.in

Dear Sir,

- Sub.: Six Monthly Compliance Report of conditions stipulated in Environment and CRZ Clearance for the development of Multi Cargo Port with Supporting Utilities and Infrastructure Facilities at Hazira, Surat, Gujarat for the period: April 2021 to September 2021.
- **Ref.**: 1). Environmental and CRZ Clearance issued by MoEF & CC, New Delhi vide letter No.: 11-150/2010-IA.III dated 03rd May, 2013.
 - CRZ Recommendations issued by Forests & Environment Department, Govt. of Gujarat to MoEF & CC, New Delhi vide letter No.: ENV-10-2012-30-E dated 11th May, 2012.

Please find enclosed herewith point wise compliance report of conditions stipulated in the above referred letters regarding Environment Clearance and Coastal Regulation Zone Clearance for the period of **April 2021 to September 2021.**

For, M/s Adani Hazira Port Limited,

(Pranav Choudhary) Authorized Signatory Encl.: As above

Cc to:

- Add. Secretory, Ministry of Environment, Forest and Climate Change, Regional Office (WZ), E-5, Kendriya Paryavaran Bhawan, Arera Colony, Link Road-3, Ravishankar Nagar, Bhopal - 462016 (Madhya Pradesh)
- 2. The Director (Monitoring IA Division), Ministry of Environment, Forests & Climate Change, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi-110 003.
- The Director, Forests & Environment Department, Block 14, 8th Floor, Sachivalaya, Gandhinagar, Gujarat - 382 010.
- 4. The Zonal Officer, Central Pollution Control Board, Zonal Office Vadodara, Parivesh Bhawan, Opp. VMC Ward Office No.:10, Subhanpura, Vadodra-390 023.
- 5. The Chairman, Gujarat Pollution Control Board, Parvayaran Bhawan, Sector 10A, Gandhinagar-382 010 (Gujarat).
- 6. The Regional Officer, Gujarat Pollution Control Board, Belgium Square, Ring Road, Surat-395003, (Gujarat).

Adani Hazira Port Ltd.Tel +91 261 220 7780At & Po HaziraFax +91 261 220 7777Choryashiinfo@adani.comSurat 394 270www.adani.comGujarat, IndiaUN: U4509GJ2009PTC058789Registered office: Adani Corporate House, Shantigram, Near Vaishno Devi Circle, S. G. Highway, Khodiyar, Ahmedabad-382421,Gujarat, India

SIX MONTHLY COMPLIANCE REPORT

OF

ENVIRONMENT AND CRZ CLEARANCE ISSUED BY MOEF & CC, NEW DELHI

VIDE LETTER NO.: 11-150/2010-IA.III, DATED 03RD MAY, 2013

FOR

THE DEVELOPMENT OF MULTI CARGO PORT WITH SUPPORTING UTILITIES AND INFRASTRUCTURE FACILITIES AT HAZIRA, SURAT, GUJARAT

COMPLIANCE PERIOD- APRIL 2021 to SEPTEMBER 2021

SUBMITTED BY

M/s. ADANI HAZIRA PORT. LTD. HAZIRA, TAL-CHORYASI, DIST-SURAT GUJARAT

LIST OF APPENDIXES

APPENDIX	DETAILS
1.	Compliance To The Conditions Stipulated In CRZ Recommendations Issued By Forests & Environment Department, Government Of Gujarat To MOEF & CC, New Delhi Vide Letter No.: ENV-10-2012-30-E, Dated 11 th May, 2012.

LIST OF ANNEXURES

ANNEXURE NO.	DETAILS
1	Action Plan And Compliance Status On The Issues Raised During The Public Hearing.
2.	Details Of The CSR Activities Along With Budgetary Provisions And Expenditures For the compliance period April 2021 to September 2021
3	Compliance Status of Environmental Management Plan As Per Integrated EIA Report - September, 2012.
4.	Environmental Monitoring / Analysis Results For The Period From April 2021 to September 2021
5.	Photographs of Air Pollution Control Measures and Green Belt area
6	Organogram Of AHPL - Environment Management Cell.
7	Details of Environment Management Budget and Expenditure for the Compliance Period April 2021-September 2021
8	Copy of renewed PESO Licence
9	Copy of Form V (Environment Statement) for FY 2020-21
10	Details of Liquid/Wastes Collection & Disposed off from Vessels by GPCB Approved Third Party during period October 2020 to March 2021

A. Six Monthly Compliance Report for Environmental and CRZ Clearance issued by MoEF & CC, New Delhi vide letter No.: 11-150/2010-IA.III dated 03rd May, 2013 for the development of Multi Cargo Port with supporting utilities and infrastructure facilities at Hazira, Surat, Gujarat by M/s. Adani Hazira Port Ltd (Earlier Known as Adani Hazira Port Pvt Ltd).: -

S. No.	Stipulated Conditions	Compliance Status					
6.	Specific Conditions						
i.	Establishment" shall be obtained from State Pollution Control Board under Air & Water Act and a copy shall be submitted to the Ministry before	Board on 05.10.201 Subseque were also	Complied , AHPL obtained Consent to Establish (NOC) from Gujarat Pollution Contro Board on 16.05.2012 and the same was submitted to the Ministry or 05.10.2012 prior to obtaining the Environment and CRZ clearances Subsequently there were amendments in the Consent to Establish which were also submitted to the MoEF&CC before start of respective construction as per the details given below: -				
	work at site.	Consent No.	Issued On	Submitted To MoEF & CC On			
		CTE_ 49766	05.10.2012	Along with Six Monthly Compliance Report dated 19.11.2014 & 19.05.2017.			
		CTE- 64900	26.09.2014	Along with Six Monthly Compliance Report dated 12.05.2015 & 19.05.2017.			
		CTE- 74330	13.01.2016	Along with Six Monthly Compliance Report dated 23.05.2016 & 19.05.2017.			
		CTE- 77767	16.04.2016	Along with the Six Monthly Compliance Report dated 21.11.2016 & 19.05.2017.			
		CTE- 101590	20.05.2019	Along with the Six Monthly Compliance Report dated 27.11.2019			
			is in operatio	n with valid CC&A (Consent to Operate).			
ii.	The action plan on the issues raised during public hearing shall be submitted to the Pollution Control Board. The action plan shall be implemented without fail. Report on compliance shall be submitted to the Regional Office, MOEF along with the six-monthly reports.	Public hea addressec action tak Ministry a Monthly E The key p 1) Prefere & othe M/s. Al Hazira employ for em	l adequately cen for imple as well as G C Compliance oints raised of ence to be given r contracts. HPL is giving Vikas Samily rees. M/s. AH ployment as	as conducted on 14.08.2012. All the issues have and to the satisfaction of the stakeholde ementation of the issues are being submitted ujarat Pollution Control Board along with t ereport. during PH were: - ven to the local people for employment and tr preference to the locals for contracts, such ti is engaged for providing transport facil PL also giving preference for skilled local can per suitable requirements. As on 30 th Sep of 228 on roll employees are from Gujarat.	ers. The d to the the Six- ansport as M/s. ities to didates		

S. No.	Stipulated Conditions	Compliance Status
		 Villagers were anxious about their displacement due to port development. M/s. AHPL has developed the port in uninhabited land by area reclamation and there is no acquisition of private property.
		The details action status of all other issues raised during the public hearing is enclosed as <u>Annexure-1</u>
iii.	All the recommendations of SCZMA shall be complied with.	Being Complied All the recommendations of the Gujarat Coastal Zone Management Authority (GCZMA) are being complied. Compliance status of the conditions stipulated in GCZMA recommendations vide letter dated 11/05/2012 bearing No.: ENV-10-2012-30-E is enclosed as Appendix-1 .
iv.	Periodical study on shore line changes shall be conducted and mitigation carried out if necessary. The details shall be submitted along with six monthly monitoring reports.	Complied . Shorelines change study was conducted through NIO, Vizag during the period from November 2014 to December, 2015. Report of the shoreline change study was submitted along with compliance report dated 21.11.2016. Study confirms that there is no significant change in the shoreline near by the port except for the approved layout of the AHPL. The report did not warrant any mitigation measures for protection of shoreline. There are no marine construction activities on shore after Dec 2016. M/s AHPL has issued the work order for Shoreline Change Assessment in the port boundary and nearby the area to a reputed Institute for carrying out shoreline change assessment and the report will be submitted after completion of the study.
V.	Oil spills if any shall be properly collected and disposed as per Rules. Proper Oil Contingency Management Plan shall be put in the place.	 Complied. There was no Oil Spill during the compliance period. Also no oil spill has occurred till date at the port and in nearby area. Oil Spill Contingency Plan has been prepared and the same was approved by Indian Coast Guard (Letter No.: 7563, dated 09.01.2014). The same has been implemented at site to properly collect and dispose oil spills (if any). The last Mock drill on scenario of Oil Spill was jointly organized with Shell LNG Terminal-Hazira, Reliance Industries Limited- Petrochemicals-Hazira, Sun Petro and CIL-Hazira on 27th January 2021. Photographs of the Mock drill are as under

S. No.	Stipulated Conditions	Compliance Status
		Pre deployment Briefing
		Mobilization of Tier 1 and Tier 2 Equipment -BOOM
		Mobilization of Tier 1 and Tier 2 Equipment
		Beach clean up activity – Using Minivac and Star tank rigged for oil collection

S. No.	Stipulated Conditions	Compliance Status					
vi.	The detailed plan with budgetary provisions for the CSR shall be submitted to the ministry.	• CSR activities are carried out by Adani Foundation in four verticals i.e.: - (1) Education (2) Community Health (3) Sustainable Livelibood and (4)					
		Sr. No.	Vertical	Approved Budget (In Lacs Rupees)	Utilization amount (In Lacs Rupees)		
		1	Education	142.80	19.01		
		2	Health	104.45	46.79		
		3	Sustainable Livelihood Development	147.43	18.02		
		4	Civil Infrastructure Development	248.03	24.17		
		• The status of the CSR activities carried out during the Compliance				pliance Period	
vii.		• Recommendation given in EMP is being complied in letter and spirit.					
	the sea water quality at the outlet shall be carried out to check the discharge is meeting the standard and not causing any impact to marine life.	 Additional and the set of the set o					

S. No.	Stipulated Conditions	Compliance Status Reports for the period April 2021 to September 2021 is enclosed as Annexure-4D. The Summary of Sea Surface and bottom water quality for key physico chemical parameters are as under-						
		SR.NO	TEST PARAMETERS	UNIT	Min	Max	Avg	Limit as per Standards Harbor Water
		1	рН		7.92	8.19	8.02	6.0-9.0
		2	Temperature	°C	29.6	30.4	29.97	
		3	Total Suspended Solids	mg/L	112	261	212.28	
		4	BOD (3 Days @ 27 °C)	mg/L	ND	4.1	1.56	<5.0
		5	Dissolved Oxygen	mg/L	5.6	6.0	5.82	>3.0
		6	Salinity	ppt	21.48	32.2	29.4	-
		7	Oil & Grease	mg/L	ND	ND	ND	-
		8	Nitrate as NO ₃	µmol/L	2.10	4.29	3.043	-
		9	Nitrite as NO ₂	µmol/L	0.43	1.76	1.05	-
		10	Ammonical Nitrogen as NH₃	µmol/L	2.10	2.89	2.39	-
		11	Phosphates as PO ₄	µmol/L	1.49	3.18	2.21	-
		12	Total Nitrogen	µmol/L	5.60	7.89	6.49	-
		13	Petroleum Hydrocarbon	µg/L	ND	17.60	3.88	-
		14	Total Dissolved Solids	mg/L	24612	33560	31320	-
		15	COD	mg/L	8.26	25.8	13.76	-
ix.	Transport of cargo shall in	chango level w • AHPL period		er quality impact o	v with re n the ma	spect to rine life.	standard	s of baselin
	closed system and dust control viz. water sprinkler, along conveyor	Following	g control measur ugitive dust: -	es are in	place an	d effectiv	vely work	ing at port t
			sportation of coa covered convey		tty to co	al storag	e yard th	rough 1.7 Kn

S. No.	Stipulated Conditions	Compliance Status
	and transfer points shall be provided.	 Water sprinklers in the coal yard, Dust arresting sprinklers are installed on Coal Discharge Chute Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute, Water spray through Water Browsers, Water Mist Canon / Fog System, Wind Brake Shield of 14 meters high and 1900 meters long, Transportation of cargo from port to hinterland is being done through dumpers / trucks covered with tarpaulin, Regular cleaning of roads through Road Sweeping Machines, and Company has set up dedicated greenbelt area for plantation at periphery / avenue plantation / landscaping etc. Total greenbelt area developed so far is approx. 78.49 ha within the port premises. The photographs of Covered Conveyor belts, Mist Canyon and water sprinkling system, Green Belt area, Wind break shield, Road sweeping machines are attached herewith as <u>Annexure 5</u>
х.	Construction activity shall be carried out strictly as per the provisions of CRZ notification 2011. No construction work other than those permitted in Coastal Regulation Zone Notification shall be carried out in Coastal Regulation Zone.	 No construction work other than those permitted in CRZ Notification has been done. Development of the port and other ancillary facility is being done as per the approval received under CRZ Notification, 2011 and EIA Notification,
xi.	The project shall be executed in such a manner that there shall not be any disturbance to the fishing activity.	 AHPL is regularly working with fishermen to understand their needs and provide required support as part of CSR activities. AHPL is carrying out various CSR activities in the vicinity of port through Adani Foundation (AF), in the field of Education, Community Health, Sustainable livelihood development and Community Infrastructure development and also particular for fishermen community since 2012, the support was extended for providing gears to fishermen, house repairing and construction of house for Halpati community, education to kids from Halpati community and health camps. An amount of <i>1.88 Cr is spent from</i> 2015-16 to 2019-20 on various activities specifically for fishermen community in and around the port area.
xii.	It shall be ensured that there is no displacement of people, houses or fishing activity as a result of the project.	 Complied. There is no displacement of people, houses or fishermen as the port is being developed on reclamation land and land allotted by Government also there is no acquisition of private land. Majority of fishing activities are in the river TAPI estuary region which is approx. 3-4 KM away from the project site. There are few "PAGADIA" fishermen doing fishing near the project area. They are continuing with their activities without any disturbance
xiii.	The project proponent shall set up separate Environment	Complied.

S. No.	Stipulated Conditions			Co	ompliance St	atus		
	effective implementation of the stipulated	 ensure the effective implementation of environmental safeguards at the Port. The Head of Environment Management Cell is CEO of the Port. In addition to the site Environment Management Cell a well-established corporate environment cell also ensures effective implementation of the environmental safeguards. Environment Management Cell Organogram is enclosed as <u>Annexure-6</u> 						
xiv.	environment management plan shall be included in the budget and this shall not be diverted for any other purposes.	 Complied. Separate budget has been allocated for the Environment Management. Allocated budget for the FY: 2021-22 is INR 571.80 and total expenditure during compliance period is INR 230.69 Lakhs regarding environment management Detail of the environment budget of the current FY and expenditure incurred during compliance period is enclosed as <u>Annexure-7</u> Environment budget is not being diverted to any other purpose. 						
7.	General Conditions							
i.	Appropriate measures must be taken while undertaking digging activities to avoid any degradation of water quality.	 No digging activities were carried out during the compliance period. No major digging activities were carried out. Proper care is taken to 						
		Sr. TEST No. PARAMETER UNIT Min Max Avg						
		1	Odour		Agreeable	Agreeable	Agreeable	
		2 Colour Hazen 2 4 3.25						
		3 Taste Agreeable Agreeable Agreeable						
		4 pH Value 7.42 8.13 7.765						
		5 Turbidity NTU 0.12 0.19 0.15						
		6	Total Dissolved Solids	mg/L	928	1423	1142	

S. No.	Stipulated Conditions	Compliance Status						
		7	Total Hardness as CaCO3	mg/L	356	420	383.19	
		8	Chloride as Cl	mg/L	102	140	125.25	
		9	Fluoride as F	mg/L	ND	0.37	0.17	
		10	Iron as Fe	mg/L	ND	ND	ND	
		11	Coliform	/100 ml	Absent	Absent	Absent	
		12	E-Coli	/100 ml	Absent	Absent	Absent	
		Sun Sr. No.	nmary of Surface TEST PARAMETER	Water GUNIT	Min	under- Max	Avg.	
		1	Odour		Agreeable	Agreeabl	e Agreeable	
		2	Colour	Hazen	2	7	4	4
		3	Taste		Agreeable		· ·	1
		4	pH Value		7.19	7.64	7.38	1
		5	Turbidity	NTU	0.11	0.15	0.13	1
		6	Total Dissolved Solids	mg/L	608	738	685	
		7	Total Hardness as CaCO₃	mg/L	216	336	288.16	
		8	Chloride as Cl	mg/L	86	116	101.33]
		9	Fluoride as F	mg/L	0.17	0.27	0.22	1
		10	Iron as Fe	mg/L	ND	ND	ND	4
		11	Coliform	/100 ml	Present	Present	Present	
		12	E-Coli	/100 ml	Absent	Absent	Absent	
ii.	Full support shall be extended to the officers of this Ministry /Regional	pag Being	nmary marine w e in reply of Gen Complied PL is regularly s	ieral Con	dition i.			
	Of this Ministry /Regional Office at Bhopal by the project proponent during inspection of the project	con CRZ	AHPL is regularly submitting six monthly compliance reports which comprise compliance to the conditions stipulated in Environment and CRZ clearance, action taken report of Environment Management Plan, environment monitoring reports etc.					

S. No.	Stipulated Conditions	Compliance Status
	for monitoring purposes, by furnishing full details and action plans including the action taken reports in respect of mitigation measures and other environmental protection activities.	 acknowledgement on 03.06.2021. Whenever any authorities such as MoEF&CC, GPCB and GMB etc. visit the port, full support is extended and AHPL provides all additional information seek by them during the inspection. Last visit by representative of MoEF & CC - RO, Bhopal was on 4th August 2021. Mr. Subrat Mohapatra, Deputy Director General of Forest (Central) visited at AHPL Hazira on 04th August 2021. We have extended all required supports during his visit.
		 During the compliance period, GPCB officials Mr. D M Rathod, DEE and N M Kavar, Scientific Officer have visited the port on 16th September 2021 and we extended all required supports during their visit.
.	A six-monthly monitoring report shall need to be submitted by the project proponents to the Regional Office of this Ministry at Bhopal regarding the implementation of the stipulated conditions.	
iv.	Ministry of Environment & Forests or any other competent authority may stipulate any additional conditions or modify the existing ones, if necessary subsequently, if deemed necessary for environmental protection, which shall be complied with.	
V.		Noted and agreed to comply
vi.	In the event of a change in project profile or change in the implementation agency, a fresh reference shall be made to Ministry of Environment and Forests.	Complied Name of the port was changed from Adani Hazira Port Private Limited to Adani Hazira Port Limited and the letter received from MoEF&CC regarding the name change was submitted with last EC compliance report as Annexure 9 on 28.05.2021 through E mail and acknowledgement of the same was received on 03.06.2021.
vii.	The project proponents shall inform the Regional Office as well as the	Complied

S. No.	Stipulated Conditions	Compliance Status
	Ministry the date of financial closure and final approval of the project by the concerned authorities and the date of start of Land Development Work.	Financial Closure date was 29 th September, 2011. Approval from GMB to commence work was obtained on 09 th April, 2010 vide letter No.: GMB/N/PVT/923(10)/42/458. Copy of the same has been submitted to the MoEF & CC and other concerned authorities along with the six monthly compliance report dated 19.05.2017.
viii.	A copy of the clearance letter shall be marked to concerned Panchayat/ Local NGO, if any from whom any suggestions/ representations has been received while processing the proposal.	Complied . Copy of the clearance letter was sent to the concerned Panchayat and local NGO. Copy of the RPAD receipt were submitted to MoEF&CC along with six monthly compliance report dated 27.11.2013 and again along with the six monthly compliance report dated 19.05.2017.
ix.	State Pollution Control Board shall display a copy of the clearance letter at the Regional Office, District Industries Center and Collector's Office/Tehsildar's Office for 30 days.	This condition does not belong to AHPL.
8.	provisions of Water (Prevention and Control of Pollution) Act 1974, the Air (Prevention and Control of Pollution) Act 1981, the Environment (Protection) Act 1986, the Public Liability (Insurance) Act 1991 and EIA notification 1994, including the amendments and rules thereafter.	 of Pollution) Act 1974, the Air (Prevention and Control of Pollution) Act 1981, the Environment (Protection) Act 1986, the Public Liability (Insurance) Act 1991 and EIA notification 2006, including the amendments. AHPL has obtained: - Environmental and CRZ Clearance issued by MoEF & CC, New Delhi vide letter No.: 11-150/2010-IA.III dated 03rd May, 2013. Consolidated Consent and Authorization under the provisions of Water (Prevention and Control of Pollution) Act 1974, the Air (Prevention and Control of Pollution) Act 1974, the Air (Prevention and Control of Pollution) Act 1974, the Air No.: AWH-87176 valid till 14.04.2022. Public Liability Insurance (PLI) vide Policy No.: 41059889 valid up to 31st March, 2022
9.	All other statutory clearance such as the approvals for storage of diesel from Chief Controller of Explosive, Fire Department, Civil Aviation Department, Forest Conservation Act, 1980 and Wildlife (Protection) Act, 1972 etc. shall be obtained, as applicable by project proponent from the	 i.e.: - PESO License from Chief Controller of Explosive, Nagpur vides Order No.: P/HQ/GJ/15/5294 (P270337), Renewed and valid till 31/12/2025. Copy of the PESO License is attached herewith as <u>Annexure 8</u> License to work a Factory Adani Hazira Port Pvt. Ltd. (Liquid Terminal) from Director of Industrial Safety and Health, Govt. of Gujarat their vide Registration No.: 3502 / 51410 / 2013 and License No.: 18757, Renewed on 03-11-2018, valid till 23rd December, 2023. Copy of the license to work a factory is submitted with the Six monthly EC compliance Peropt

S. No.	Stipulated Conditions	Compliance Status
	respective competent authorities.	 Fire NOC for Liquid Terminal- Obtained NOC from Fire Officer, Surat, (Latest on 7th March 2019) and NOC from commissioner of Police (Dated- 12th May 2019)
10.	The project proponent shall advertise in at least two local newspapers widely circulated in the region, one of which shall be in the vernacular language informing that the project has been accorded Environment and CRZ clearance and copies of clearance letters are available with the State Pollution Control Board and may also be seen at Website of the Ministry of Environment & Forests at <u>http://www.envfor.nic.in</u> . The advertisement should be made within 10 days from the date of issue of the clearance letter and a copy of the same should be forwarded to the Regional Office of this Ministry at Bhopal.	 Advertisements were published in Gujarat News Paper "Gujarat Mitra" and English News Paper "The Times of India" on 13/05/2013 (within 10 days of receipt of EC & CRZ clearance). Copy of the advertisement is submitted to MoEF & CC along with the six monthly compliance report dated 27th November, 2013.
11.	This clearance is subject to final order of the Hon'ble Supreme Court of India in the matter of Goa Foundation Vs. Union of India in Writ Petition (Civil) No.: 460 of 2004 as may be applicable to this project.	
12.	Status of Compliance to the various stipulated environmental conditions and environmental safeguards will be uploaded by the project proponent in its website.	Compliance report of conditions stipulated in Environment and CRZ Clearance is being uploaded periodically on the company website i.e.: http://www.adaniports.com/ports-downloads
13.	Any appeal against this clearance shall lie with the National Green Tribunal, if preferred, within a period of 30 days as prescribed under	

S. No.	Stipulated Conditions	Compliance Status
14.	Section 16 of the National Green Tribunal Act, 2010. A copy of the clearance letter shall be sent to concerned Panchayat, Zila Parishad/ Municipal Corporation, Urban Local Body and the Local NGO, if any from whom suggestions/ representations if any, were received while processing the proposal. The Clearance letter shall also be put on the website of the company by the proponent.	 Copy of the clearance letter was sent to the concerned Panchayat and local NGO from whom the suggestions/ representations received. Copy of the RPAD receipt is submitted to MoEF & CC along with Six Monthly Compliance Report dated 27.11.2013 and again along with the six monthly compliance report dated 19.05.2017. Clearance letter is available on website at http://www.adaniports.com/ports-downloads
15.	The Proponent shall upload the status of compliance of the stipulated EC conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of MOEF, the respective Zonal Office of CPCB and the SPCB.	Complied. The six monthly compliance report comprising of the status of compliance of the stipulated EC conditions, including results of monitored data is being uploaded on the company website at <u>http://www.adaniports.com/ports- downloads</u> Also the compliance report was submitted to following: 1. IRO -MoEF&CC, Gandhinagar 2. RO - MoEF&CC, Gandhinagar 2. RO - MoEF&CC, Bhopal, 3. MoEF & CC, New Delhi, 4. DoEF, Gandhinagar, 5. Zonal Office - CPCB, Vadodara, 6. HO - GPCB, Gandhinagar, and 7. RO - GPCB, Surat. Last report was submitted on 28.05.2021 through E mail and acknowledgement of the same was received on 03.06.2021.
16.	The Environmental Statement for each financial year ending 31 st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules 1986, as amended subsequently, shall also be put on the website of the company along with status of compliance of EC Conditions and shall	Complied. The Environment Statement in Form-V for the Financial Year: 2020-20 is attached herewith as Annexure 9 also uploaded on company website at http://www.adaniports.com/ports-downloads .

S. No.	Stipulated Conditions	Compliance Status
	also be sent to the respective Regional Offices of MoEF by e-mail.	

APPENDIX-1:

COMPLIANCE TO THE CONDITIONS STIPULATED IN CRZ RECOMMENDATIONS

ISSUED BY FORESTS & ENVIRONMENT DEPARTMENT,

GOVERNMENT OF GUJARAT TO MOEF & CC, NEW DELHI

VIDE LETTER NO.: ENV-10-2012-30-E, DATED 11TH MAY, 2012

FOR MODIFICATION / EXPANSION OF MULTI - CARGO PORT FACILITY AT HAZIRA, DIST. -SURAT BY M/S. ADANI HAZIRA PORT PVT. LIMITED

Appendix -1: Compliance to the conditions stipulated in CRZ recommendation issued by Forests & Environment Department, Government of Gujarat to MoEF & CC, New Delhi vide letter No.: ENV-10-2012-30-E dated 11th May, 2012 for modification / expansion of Multi-Cargo Port Facility at Hazira, Dist. - Surat by M/s. Adani Hazira Port. Limited:

S. No.	Conditions	Compliance Status
Α.	Specific Condition	
1.	The provision of CRZ Notification 2011 shall be strictly adhered by M/s. AHPL. No activity in contradiction to the provision of CRZ Notification shall be carried out by M/s. AHPPL.	Construction activities are carried out as as post the provisions of CB7 Notification, 2011
2	M/s. AHPPL shall not construct any storage facilities for material / chemicals in the CRZ area except for those permissible as per Annexure - II of CRZ Notification 2011 also for other hazardous chemicals, outside CRZ Areas, the AHPL shall consult SDMA for Disaster Management Plan.	 Only permissible activities being carried out in CRZ area. Disaster Management Plan has been prepared prior to the commissioning of
3.	All necessary permissions from different Government Departments / agencies shall be obtained by M/s. AHPPL before commencing the activities.	Complied . All the statutory permissions from the concerned statutory authorities are obtained i.e.: - - Environment and CRZ Clearance from MoEF
		& CC, GOI vide order No.: F.No.:11- 150/2010-IA-III dated 03.05.2013,

S. No.	Conditions	Compliance Status
		 CTE & CTO from Gujarat Pollution Board PESO License from Chief Controller of Explosive, Nagpur License to work a Factory Adani Hazira Port Pvt. Ltd. (Liquid Terminal) from Director of Industrial Safety and Health, Govt. of Gujarat.
		Please referrer EC condition 9 for details.
4.	The AHPPL shall ensure that there shall be no damage to the existing mangrove patches near the site and also ensure the free flow of water to avoid damage to the mangrove.	Noted and complied with . There are no adverse impacts on mangrove as well as flow of water with respect to development activities.
5.	No dredging, reclamation or any other project related activities shall be carried out in CRZ area categorized as CRZ-I (A) and it shall have to be ensured that the mangrove habitats and other ecologically important and significant areas, if any in the region are not affected due to any of the project activities.	Complied . There is no dredging and reclamation activities occurred in CRZI (A) area during the compliance period. The mangrove habitats near by the port are being protected by AHPL.
6.	The dredging material shall be disposed of at the location already approved by the Ministry of Environment and Forests, Government of India.	Complied . As per communication from MoEF&CC dated 12 th November, 2003 bearing letter No.: J- 16011/ 11/2003-IA-III- Hazira Port Pvt Ltd conditions states "dumping of dredged spoils should be dumped at the sites A & C as per the following coordinates: -
		(A) 21°03' to 21°05' N & 72°28' to 72°30' E
		(C) 21°03' to 21°05' N & 72°30' to 72°32' E
		The maintenance dredging is being carried out through Water Injection dredger in which no Dredging material is generated. Some part of dredging is being carried out through Cutter Section Dredger and in this process Dredging material is being generated. No disposal has
		been done till date. All the dredging material is being utilized for level rising, reclamation and apart from the above activity, if any excess material generated will be disposed of at the location already approved by the MoEF&CC. Complied .

S. No.	Conditions	Compliance Status
	Chennai in their EIA reports for conservation / protection and	All the recommendations and suggestions for conservation/protection and betterment of environment are being implemented strictly. Recommendation given in EMP is being complied in letter and spirit. Status of the same is enclosed as <u>Annexure-3</u> .
8.	The construction and operational	Complied.
	activities shall be carried out in such a way that there is no negative impact on mangroves, if any and other important coastal / marine / habitats. The	There are no mangroves and other important coastal / marine / habitats presents within the port development area.
	construction activities shall be carried out only under the guidance / supervision of reputed institute /	There is no construction activity in the compliance period.
	organization.	The Port development work is supervised by Gujarat Maritime Board (GMB).
9.	M/s. AHPPL shall strictly ensure that no	Complied.
	creeks or rivers are blocked due to any activity at Shipyard.	All the activities are carried out as per EC & CRZ clearance and no creeks are blocked due to development activities. Shipyard is not envisaged in our proposal.
10.	The construction debris and / or any	Complied
	other type of waste shall not be disposed of into the sea, creek or in CRZ areas. The debris shall be removed from construction site immediately after the construction is over.	Construction and Demolition waste is being managed as per Construction and Demolition waste rules 2016.
11.		Complied.
	located outside the CRZ area and the construction labour shall be provided with the necessary amenities, including sanitation, water supply and fuel and it shall be ensured that the environmental conditions are not deteriorated by construction labours.	During construction phase labors have been managed through contractors and they are from surrounding villages so they stay in their own residential facilities in the surrounding villages. Drinking water, toilets and rest shelters are
		being provided to the labors during work.
12.	M/s. AHPPL shall prepare and regularly update their Local Oil Spill Contingency and Disaster Management Plan in consonance with National Oil Spill and Disaster Contingency Plan and shall submit the	the same was approved by Indian Coast Guard (Letter No.: 7563, dated 09.01.2014).

S. No.	Conditions	Compliance Status
	same to this department after having it vetted through Indian Coast Guard.	 DMP has been submitted to GSDMA vide letter dated 20.10.2012. Comments were received from authority vide letter no. GSDMA /SM / Ind.safety/ 770560 dated 03.12.2012. Suggestions were incorporated and revised plan was submitted to GSDMA on 23.05.2014. Regular mock drill to ensure the compliance and preparedness is being done. Last Mock Drill (On Site) was on :15.09.2021 Last Update of ERP & DMP : 03.02.2021 Last submission of ERP & DMP to Directorate Industrial Safety & Health (DISH) on 10.03.2021
13.		Noted and agreeing to bear the cost of external agency, if any that may be appointed by this department.
14.	The jetty and most of the approach would be supported on piles allowing adequate flow of water without significant obstruction.	Complied . Jetty approach is supported by piles allowing adequate flow of water.
15.	The ground water shall not be tapped within the CRZ areas by the AHPPL to meet with the water requirements in any case.	Being Complied Ground water is not being used for any purpose in the Port. The industrial water requirement is being met through 2000KL of treated waste water from M/s. KRIBHCO and domestic water requirement is met through tanker water.
16.	M/s. AHPPL shall take up massive greenbelt development activities in consultation with Forest Dept. / GEER Foundation / Gujarat Ecology Commission. A comprehensive plan for this purpose has to be submitted to the Forests and Environment Department.	Being Complied The Green Belt is being developed by AHPL. The total Green Belt area developed till 30 th September 2021 is 78.49 Ha. Photograph of Green Belt area is attached herewith as Annexure 5
17.	Mangrove plantation in 200 Ha. shall be carried out in consultation with Gujarat Ecology Commission / Forest Dept. by M/s. AHPPL with in a period of two years from the issuance of CRZ clearance by MoEF, Gol and an action plan in this regard shall be submitted to this Department along with satellite	Complied Company has carried out mangrove afforestation in an area of 200 hectares i.e.: 20 hectares in Kantiyajal and 180 hectares in Village Nada-Devla of District - Bharuch and same is completed. Consolidated report on mangrove plantation on an area of 200 hectares at Village: Kantiyajal, Taluka: Hansot and Village: Nada-Devla, Taluka:

S. No.	Conditions		Compliance		e Status	
	images and GPS readings with Latitudes and Longitudes.	Jambusar, District: Bharuch (Gujarat) develope by M/s. Saline Area Vitalization Enterpris (SAVE) Limited, Ahmedabad. Supportin documents of the same submitted to MoEF CC and other authorities along with the si monthly compliance report dated 20.11.2017.		n Enterprise Supporting d to MoEF & with the six		
18.	The AHPPL shall have to take up bio- shielding development programme as part of CSR in consultation with Forest Department / PCCF and action plan in this regard shall have to be submitted to the MoEF - Gol and this Department.	 AHP at Jam area 	 Complied AHPL has developed Bio-Shield Pilot Project at Village - Tankari Bandar, Taluka - Jambusar, District - Bharuch (Gujarat) on an area of 18 hectares with the help of a local NGO named SAVE. 			
19.	M/s. AHPPL shall have to contribute financially for taking up the socio- economic upliftment activities in this region in consultation with Forest and Environment Dept. and the District Collector / District Development Officer.	CSR activities carried out by Adani Foundation in four verticals i.e.: - (1) Education, (2). Community Health, (3). Sustainable Livelihood and (4). Rural Infrastructure Development. Appropriate financial contribution is being made to. Schemes promoted by District			lucation, (2). ole Livelihood opment. on is being by District Environment d. Please refer of the CSR	
		Sr. No.	Vertical	Approved Budget (In Lacs Rupees)	Utilization amount (In Lacs Rupees	
		1	Education	142.80	19.01	
		2	Health	104.45	46.79	
		3	Sustainable Livelihood Developmen t	147.43	18.02	
		4	Civil Infrastructur e Developmen t	248.03	24.17	
20.	A separate budget shall be earmarked for environment management and socio-economic activities including green belt development / mangrove plantation and details thereof shall be furnished to this Department as well as the MoEF, Gol. The details with respect to the expenditure from this budget	 Envi and for envi mon Envi 	the funds e effective ronmental s itoring. I ronment	Nanagement PI armarked are t implemen afeguards and Key compo monitoring, onmental studi	being utilized Itation of environment nents are Mangrove	

S. No.	Conditions	Compliance Status
	head shall also be furnished along with the compliance report.	 Please refer the <u>Annexure-6</u> for details of budget and Expenditure for Environment Management for the FY: 2020-21. CSR activities carried out by Adani Foundation in four verticals i.e.: - (1) Education, (2). Community Health, (3). Sustainable Livelihood and (4). Rural Infrastructure Development. Please refer the <u>Annexure-2</u> for the status of the CSR activities planned and carried out during the Financial Year: 2020-21.
21.	A separate Environment Management Cell with qualified personnel shall be created for environmental monitoring and management during construction and operational phases of the project.	 Complied. Environment Management Cell has been set up with qualified staff to ensure the effective implementation of environmental safe guards. In addition to the site Environment Management Cell a well-established corporate environment cell also ensures effective implementation of the environmental safeguards. Please refer the <u>Annexure-7</u> for Environment
22.	Environment Audit Report including the changes, if any, with respect to baseline environmental quality in the coastal and marine environment shall be submitted every year by M/s. AHPL to this Department as well as MoEF, Gol.	-
23.	A six monthly report on compliance of the conditions mentioned in this letter shall have to be furnished by M/s. AHPL on a regular basis to this Department as well as MoEF, Gol.	 Noted and complied with. Six monthly compliance reports are being submitted to all the concerned authorities on regular basis. Last report was submitted on 28.05.2021 through E mail and acknowledgement of the same was received on 03.06.2021.
24.	Any other condition that may be stipulated by this Department / MoEF, Gol from time to time for environment protection / management purpose shall have to be complied with by M/s. AHPL.	Noted and comply with the additional conditions stipulated by the MoEF & CC, if any.

adani	Adani Hazira Port Limited	From: April 2021 to September 2021
		September 2021

ANNEXURE-1:

ACTION PLAN AND COMPLIANCE STATUS ON THE ISSUES RAISED DURING THE PUBLIC HEARING

<u>Annexure-1</u>: Action plan and compliance status on the issues raised during the public hearing:

S. No	Name	Details of Representation	Response during PH	Status as on 31 st March
•			Rohitbhai, we are	2021
1	Rohitbhai Jayantibhai Patel, Sarpanch, Hazira	On behalf of Hazira village, I welcome the expansion project of M/s. Adani Hazira Port Pvt. Ltd. at Hazira. Priority will be given to thousands of people of Hazira and surrounding villages for transport, business and employment opportunities. Company has provided training to the people of Hazira and surrounding villages for crane operation at Mundra and given employment as crane operator at Hazira Port.	happy to note that on behalf of Hazira gram panchayat you have given warm welcome for this project. We whole heartedly thank you for this gesture. We assure you that our Conduct and Approach in managing activities would be in reciprocation to your	 Closed. Point is about welcoming the project and does not warrant any further action.
		I believe that company will install latest technology for pollution control. Proposed project will surely care for human life. Due to proposed port Hazira people will surely get water, health and education facilities. I request that company would take required precautions for accident prevention and safety. Adani Foundation has provided required support as and when needed by Hazira village. I request that fishermen's concerns be taken care. I welcome this port as we are getting transport related business opportunities and we hope that same would be continued in future.	 National Highway 6 isbeing widened. On completion the constriction and congestion that we see today will be behind us. As mentioned in the EIA in the first 5 years of the multi cargo port maximum number of 1200 trucks is expected to ply in the national highway conpecting the 	 Widening of the National Highway – 6 is completed . Currently there is no traffic congestio n on National Highway – 6. Railway lina for
		Please clarify how much priority will be given to people from Hazira and surrounding areas for employment. Forest land is also requested for development of port at Hazira. So kindly clarify for compensation/afforestation. Please clarify what arrangements have been made	connecting the port. After the railway line is developed and the trains start plying 60% of the transportation load will be conveyed through rail transport only 40% will come on	line for transport of cargo is yet to be developed.

		by company if calamities like	the national	
		Tsunami, Earthquake or Flood arise after implementation of the proposed project.	highway. That is a moderate load.	
2.	Dharmedra bhai Bhikhubhai Patel, Ex-deputy Sarpanch, Hazira	We welcome this public hearing. It is good that you are giving preference to local affected people and hearing them during public hearing. We don't have any objection against the development of Adani Group along with other industrial development in Hazira leading to development of Gujarat and the Nation. Adani company is complying with the environmental laws promulgated by the State and Union Government. In fact, it is duty of Adani Port to do so. Under their CSR activities Adani Group should provide support for development of Hazira village and employment to unemployed people. All transport businesses should be given to small & big local transporters of Hazira only. Youth from families of affected fishermen should be provided required training and employment. New transport route should be proposed as the present route to take containers is very narrow.	 This port will have focus on container cargo. Container cargo comes in boxes and is clean by nature. So the question of fugitive dust emission on the road is not expected to be severe for this port. 	 Closed. Major cargo handled at the port is container and liquid which do not increase the fugitive dust. AHPL is monitoring ambient air quality at five locations in and around project through a NABL accredited and MoEF recognized laboratory M/s Pollucon laboratories, Surat. Report confirms that ambient air quality is well within the
		support for the construction of classrooms for standard 11 & 12 in Navchetan school.	• The coal handling	NAAQS. Copy of the reports are enclosed as Annexure – 4A
		I thank you for making me successful in providing compensation to the affected fishermen.	will be done taking care that all the trucks are properly covered so that there is no	 Complying with. All the trucks
		I request for employment to locals people and transport contract to local transporters only. We support the development of Adani Port in our area. We don't have any	dust emitted on the road. As you know practically all our transporters are from this area. It is	and other dusty cargo are being covered through

		objection to the project in this public hearing.	their responsibility to take care of	tarpaulin. AHPL also ensures that
3	Bhagubhai Maniram Patel, Sarpanch, Junagam	As this is biggest port in the South Gujarat and as there is no government land left, we wish that there will not be resettlement of the Junagam village due to this proposed expansion project of Adani Port. There is a fear in the people of the village that they will have to vacate the village in future. So we request collector to give us guarantee in writing that we will be able to live with peace where	take care of overloading. If transporters do not overload, there would not be any spillage on the roads. It is not only responsibility of GPCB or the company but we all have to collectively work together for spillage free coal transportation.	ensures that no truck goes out of the port with overload.
		we are today. Berths will be developed through dredging up to -15 meters. We are getting ground water from the depth of 20 to 65 ft in some of the areas, which we are using for drinking purpose. What will be the impact on the ground water due to dredging upto -15 meters? After construction of liquid berth No.3 which will handle & store 1.95 Million Tones by 2017-18, what emergency steps would be required to save the human life incase just like Bhopal if there will be gas leakage due to Tsunami, Earthquake or terrorist activities. We welcome Adani Port & they require land for the container and coal storage. However, all industries located in the Hazira area have acquired government land and another 2000 acre land is allotted to tourism department. Sir therefore, I request you to declare remaining land of Junagam, Suvali. Damka & Bhatlai as residential area or agricultural zone. This is to ensure that in future we will not be displaced. As the port is to be constructed	 Junagam sarpanchshri expressed apprehension that we will take away government land and lands belonging to farmers in Junagam village. We want to assure you that we do not intend to take any private land of farmers or any house site land. If you carefully see the development plan we have just presented, the map will alleviate your uncalled fears. There would not be any question of rehabilitation of any village. Moreover, we will take care that your property. Your assets and convenience are not jeopardized by our action. 	 Closed. There is no displacement of people, houses or fishermen as the port is being developed on reclaimed land and land allotted by Government as there is no acquisition of private land.

		at the coast line, there are chances of spillage of liquid into sea and impact of solid hazardous waste. In this condition explain plan to mitigate impact on fisher man community. Secondly there is a question of unemployment of the youth of the Hazira area. As told by the company 700 people will be employed, youth from local families presently engaged in farming, animal husbandry and fisheries should be trained. Due to development of the port people from different states of India will come and therefore, there are chances of crime such as gang rape, hooliganism and terrorist attack. Is there any plan to control these potential evils? Training to unemployed women and employment is being planned. In future we and Adani Port would like to work together with full cooperation.	 You talked about vultures; I would like to point out that there is no sanctuary or national park near by the port. In the EIA, we have studied the entire area and we will take due care to preserve the environment. We re-emphasize that we will comply with all the laws and in doing so we would be guided by GPCB and other concerned authorities. 	 Closed. There is no sanctuary or national park near by the port. In the EIA, we have studied the entire area and we will take due care to preserve the environment. Complied. AHPL is operating the port in compliance with all rules and regulations.
		On behalf of Jungam village and villagers, I welcome the expansion of the terminal.	• Some of you have expressed concern about	• Complied. AHPL security
4	Alpeshkum ar Thakor – Fisherman, Hazira.	Plantation of the mangroves has been carried out between well numbers 4 to 7. This plantation has been destroyed by dredging and area is filled up. In this area fisherman used to catch prawns, crabs and sustain their livelihood. Through dredging company has destroyed Mangroves. There are approximately 2500 fishermen, belonging to Halpathi and Koli Patel communities living in the village. These people will be unemployed as fishing activity will be stopped due to dredging up to 20 meter by the company. Is it development or destruction? If fishermen get sand from the river by the boat in the Magdalla	terrorist activity creating great risk to our chemical terminals with attendant adverse consequences in our neighbourhood. We are going to be ISPS compliant; as a result of this discipline, only authorized persons and material can enter into the port. More over district administration and police also take precautionary measures to intercept terrorist	system is in compliance with ISPS. ISPS Statement Number is: MMD/KDL/SO C/014 and the verification audit for renewal of certificate is successfully completed and issuance of certificate is Under Process. AHPL has access control system in place to avoid

		0
20	20	١
		J

5	Babubhai	area, they have to pay royalty for the same. But why companies are given permission for dredging without royalty? What about approximately 2500 fishermen? As our friends have already	activities. Coast guards contribute to this effort. In a sense the entire nation is collectively fighting against terrorism.	unauthorized entry of men and material.
	Aahir (Sarpanch, Suvali)	given suggestion for safety and employment, it is not required to repeat the same. Foundation should provide employment opportunity to the land looser, fisherman, individual engaged in animal husbandry who are above 50 years and uneducated. Unemployed youth of this area should be provided training and given opportunity for the employment. Company should control the pollution arising due to transportation of chemical or coal. Earlier "Shell" company used to avoid overloading. So Adani Port should also not do the overloading to prevent the accidents. There is no medical facility available for treatment in case of emergency. As there is drought this year, company should consider providing drinking water in surrounding area.	 In the context of natural calamities, we have done modeling studies to understand the risk of oil spillage. We have also prepared Disaster Management Plan. This plan is being presented to the District Collector. After his approval it will go to State Disaster Management Authority at Gandhinagar for necessary approval and guidance. During natural calamities all local industrial units and 	 Complied. Regional DMP for the Hazira Peninsula, covering all major industries and the port has been prepared in consultation with District Authorities and same is being implemented. Oil Spill Contingency
6	Divyeshbha i, Hazira	(During the representation of the Shri. Divyeshbhai there was a aggressive representation of Shri. Jayesh Patel resident of village Dihen, that he wants to present his questions. Honourable Collector replied that resident or stakeholders from affected villages should represent first. During this time Shri. Jayesh Patel and other people created disturbance which was controlled by Panel and then representation from Mr. Divyeshbhai continued.) Why this public hearing is kept at Junagam even it is of Hazira	government organizations work together to mitigate impacts of natural calamities. In that situation we would work under the guidance of District Collector and police authorities to do the needful. Disaster Management Plan is structured in such a way.	Plan has been prepared and the same was approved/ vetted by Indian Coast Guard (Letter No.: 7563, dated 09.01.2014). In addition, AHPL has developed and implemented ER & DMP. Regular mock drill to ensure the compliance and

,				o co o o co do e e e
		Village? Now we will talk about the pollution. Lots of dust is		preparedness is being done.
		observed in the houses of the		is being bone.
		hazira village during the night	• In regard to	Last Mock Drill
		hours. As per information	 In regard to impact on 	(On Site) was
		particles of dust have been	fisherman, I want	on: 15.09.2021
		found in the lungs of the	to point out the	
		woman. If this information	real situation that	Last Update of
		proves to be true we will file a	we are not in the	ERP & DMP:
		pitition in the High Court.	river mouth, but	03.02.2021
		During the widening of the	just outside of it.	Last
		National Highway No. 6 land in	The port	submission to
		the surroundings villages will be	development is	Directorate
		taken. As National Highway is	only in a stretch of	Industrial
		not passing through Hazira, the	4 km of coast line.	Safety &
		villagers need to travel 8	We have not	Health (DISH)
		Kilometres extra. Why it is not	displaced any	on 10.03.2021
		extended straight? Fishermen are being told that there is no	fisherman. The	
		fish in the sea but slags are cast	surrounding areas are open for	
		in the corners of the sea due to	are open for fishing,	
		which some fish die. Dolphin is	nevertheless we	
		also found at present in the	have	
		Hazira area. We welcome the	compensated	
		project if the port company is	fisherman who	
		ready to give written assurance	were identified by	
		regarding employment.	the	
			Grampanchayat to	
7	Jayeshbhai	I raise my objections against	be active in the	
	Patel,	proposed expansion project of	areas where we	
	Resident of	AHPL for which public hearing is	are now	
	Dihen	organized and I request that my objections should be included.	operating. As Susmaben	
	village and		mentioned we will	
	President,		support fisherman	
	Gujarat	M/s. Shell India has got	by giving them	
	State	environmental clearance in	tools, nets etc.	
	Farmers	2003 in which clearance was	and be helpful to	
	Samaj	given for development of three	them.	
		berths. These berths are	(At this stage Shri	
		constructed at places other than	Sheikh and Shri	
		shown earlier. So I request	Jayeshbhai started	
		collector to remove these three	shouting &	
		berths.	disturbing the	
			clarification of the	
			project proponent.	
		Out of proposed 7 berths for	The chairperson	
		container and 4 for bulk	told them	
		terminal, 3 have been already constructed and port is	repeatedly not to disturb the	
		functional. In this situation, I	proceedings)	Closed.
		request to include in this public	proceedings/	
1				
		hearing what actions have been		CSR activities carried out by

 1		,
for functioning of port & disposal of coal in Hazira and what actions have been taken by GPCB against company for disposal of coal in open.	 We would help sons and daughters of fisherman to educate them and trained. We would 	Adani Foundation in four verticals i.e.: - (1) Education, (2). Community
This project is being developed on the mouth of river Tapi therefore it is my feeling and request that it should not be given Environmental Clearance.	do everything practicable to achieve this end.	Health, (3). Sustainable Livelihood and (4). Rural Infrastructure
EIA study does not include the objections of the report of Sugnyaben Bhatt Commission which was set up by Gujarat Government in 2006 in the aftermath of Surat flood. So it is my request that this public hearing and Environmental Clearance should be cancelled.		Development. Appropriate financial contribution is being made. Schemes promoted by District
Hazira is located on the mouth of Mindhola & Tapi river. As per ICMAM report of Tapi river, erosion effect had spread up to Dumas because of filling of Tapi river due to Industrialization in this area. Erosion of shore is up to 2500 meter towards Dumas.		Authorities and Forest & Environment Department, GoG are also included. Please refer the <u>Annexure-2</u> for the status of
ICMAM report is not studied. There is no clarity on what steps are required to control the erosion of shore near Dumas, so it is my request that it should not be given Environment Clearance.		the CSR activities carried out during the Compliance period.
This area is declared reserved for vultures. As per survey there are about 150 vultures in the forest area. This report does not include what would happen to vultures, where they would go and what would be impact on Environment. So it is my request that it should not be given Environmental Clearance.	 We are developing the port by reclamation. This cannot any way cause salinity ingress in the ground water. We are going to 	• Complied Proper care is being taken during construction activity to avoid salinity ingress and any degradation of
There are approximately 2500- 3000 fishermen families. There will be crisis for their livelihood. There is no clarity for rehabilitation and resettlement from Adani. So it is my feeling and request that it should not be given Environmental Clearance.	investigate the quality of ground water every year	water quality. M/s. AHPL is monitoring the Ground Water Quality at one location on monthly basis. Results show

		a a a f a a f a a a a a a a a a a a a a
Routes to sea are almost closed specifically for "Pagadia fishermen", who do fishing on foot. There is a big problem of their livelihood. Due to loss of fishing activities now they will not get thousands of crores of rupees which they were supposed to get due to fishing activities. Rs. 15 lacs is not sufficient compensation for that. This area comes under CRZ-IA. Specific fish called "Levta" grows in the mudflat and fishermen catch that fish in this mud and earn their livelihood. Due to excavation and reclamation there will be damage to biological mud and destruction of marine ecology. EIA report does not have clarity on what actions are required. So it is my feeling and request that it should be clarified in EIA report or not be given	• Our EIA has been	no significant change in the quality. Ground water quality is being monitored through M/s. Pollucon Laboratories, Surat (a MoEF&CC recognized and NABL accredited laboratory). Please refer the <u>Annexure-4B</u> for the Environmental Monitoring / Analysis Reports for the period October 2020 to March 2021
Due to excavation and reclamation there will be damage to biological mud and destruction of marine ecology. EIA report does not have clarity on what actions are required. So it is my feeling and request that it should be clarified in EIA	• Our EIA has been done by M/s.	for the Environmental Monitoring / Analysis Reports for the period October 2020 to March 2021
Before Adani came there was mangrove forest in the area of 40 ha. As per survey today mangroves survive in the area of 15 ha only. Due to destruction of mangrove there will be damage to environment and coastal erosion. This study is not covered in EIA so it is my feeling and request that it should not be given Environmental Clearance.	Cholamandlam MS Risk Service Limited and M/s. National Institute of Oceanography. These are well respected and neutral expert organizations a head quartered outside Gujarat. Their studies have	• Complied. CSR activities carried out by Adani Foundation in four verticals i.e.: - (1) Education, (2). Community Health, (3). Sustainable Livelihood and
Five ports from 15 different companies and two big ports within 5 Km are coming in this area. The cumulative impact on road & rail transport due to operation of both ports Adani & Essar is not studied while preparing the impacts on land environment. Six-lane-road is also not going to be sufficient for this. So I request that Environment clearance should be given only after doing cumulative study.	been accepted by Gujarat Coastal Zone Management Authority. Thus we want to work with you and be helpful to you. (At this stage some of the individuals asked clarification for employment in the company. Collector Shri	(4). Rural Infrastructure Development. Please refer the <u>Annexure-2</u> for the status of the CSR activities carried out during the Compliance period.

		As reported, level of Suspended	directed the	Closed
		Solids & Petroleum	company	- CIUSEU
		Hydrocarbon is high as	representative to	Point does not
		compared to desired levels in	answer it, and	warrant any
		water. Level of pollution in the	advised audience to	further action.
		areas of water, air and land is	listen to the	
		already high as compared to	representative	
		other locations in the country.	peacefully.)	
		EIA report does not have clarity		
		on what steps will be taken to		
		bring down the pollution. So it	• The port has	 Complied.
		is my feeling and request that it	opportunities for	
		should not be given	both technical	AHPL has
		Environmental Clearance.	and non-technical	always given
		(It is to be noted that Mr.	employment.	employment
		Jayeshbhai Patel belongs to	Moreover indirect	priority to local
		"Dihen village" which is	employment in	qualified
		approximately 18 Km away	transport and	persons and in future the same
		from the port site)	other services will	will be
	Dhaacatatat		also be there. All	continued. As
8	Dhansukhb	Employment is given to 30-35	these	on 30 th
	hai Patel, President	people in the form of contract but we insist that it should be	opportunities may	September
	Hazira	permanent in nature.	be taken by local	2021 total 195
	Coastal	permanent in natore.	residents. To	out of 228 On
	Area	For this liquid cargo transport, it	facilitate them to	roll employees
	/	will be storage of chemicals or	take this	are from
		processing of chemicals? If it is	opportunity we	Gujarat.
		chemical processing then hazard	will provide	
		will increase, so I request to provide information on what	necessary training to enhance their	
		measures Adani will take for	competence, so	
		health and safety?	that they may not	
			only get	
		Please provide information if this	employment m	
		project has got any clearance	Adani port but	
		from Central Government like what they have got from State	else were also.	
		Government.	(At this stage	
			Jayeshbhai and	
		Adani has declared only 4-5	other peoples	
		villages as affected. Will there not be any impact on Mora,	repeatedly	
		Kawas or Interior of Ichhapur	disturbed the	
		while trucks pass through them?	hearing and	
			stopped the	
		There are 10-12 big companies in	company	
		this area and they have	representative to elaborate further.	
		developed residential township with all facilities for their	elaborate further. Collector	
		employees. Is it not possible that	repeatedly asked all	
		each company will take one	concerned to	
		village from 10-12 villages and	maintain calm mul	
		also provide them same	listen to the	
		facilities?	company	
		For this MOLL is popossory and	representative. All	
		For this, MOU is necessary and	1	

20	20	1

		matters related to self- employment & development of village should be mentioned. We will be benefited in future; only if there will be MOU. (It is to be noted that Mr. Dhansukhbhai Patel belongs to Kawas village which does not fall within 10 Km radius of the study area)	major points being over collector concluded the public hearing.)	
9	Kamlaben Rohitbhai Patel, Choryasi Taluka Panchayat, Leader of opposition party	I welcome the expansion project of Adani company. Due to proposed port priority would be given to Hazira and surrounding area for employment and business. I request that fishermen's concerned would be taken care by this project. Adani Foundation of Adani Company has given commitment for the various activities for the development of village. So I welcome the project and declare my support for the Port of Adani Company at Hazira.		
10	Mohanbhai Ambubhai Patel,	(Collector informed Mohanbhai to raise those issues only, which were not raised earlier)		
	Village: Vaswa	Adani Company has told that 700 people will be employed. Please clarify whether it will be permanent or contractual basis? Thousands of people are working on contractual basis in the surrounding companies but nobody gets permanent employment.		
	-	700 people will be employed. Please clarify whether it will be permanent or contractual basis? Thousands of people are working on contractual basis in the surrounding companies but nobody gets permanent		

20	-	
au		

		water in the area.
		Adani Company has decided to pay compensation of Rs. 15 lacs to 40 fishermen but what arrangement company will make for the 4000 fishermen in the surrounding villages?
		Adani Company is developing their project on 31428 ha of land. Is this land private or government? If it is on private land then whole Junagam village would be vacated. Survey numbers are also not shown for this land.
		(It is to be noted that Mr. Mohanbhai Patel belongs to Vanswa village which does not fall within 10 Km radius of the study area)
11	Jayantibhai Khalasi President, Fish	You all will go away after this public hearing but whom should we contact regarding pollution in our area?
	Progress Union, Hazira	(Then Collector informed him that regarding pollution he may contact GPCB.
		Regional Officer, GPCB also informed him that regarding pollution he can submit in writing.)

ANNEXURE-2:

DETAILS OF THE CSR ACTIVITIES CARRIED OUT AND BUDGET EXPEDITURE FOR THE COMPLIANCE PERIOD OF FY 2021-22

Half Yearly Report of Adani Foundation - Hazira (H1-FY 2021-22)

Adani Foundation is working as a CSR wing of Adani Group and the CSR activities are being conducted in the four major thrust areas.

A. Education:

• UTTHAN PROJECT :

The future of India depends upon the quality of education imparted to our children. We believe that it is the joint responsibility of the Government and citizens to improver school education. With an aim to enhance the quality of primary education in Surat District, Adani Foundation is has implemented this *Utthan* Project in 10 Government Primary Schools of Hazira area from December-2019. The project is running successfully. Under this project focus is on progressive learners (PRIYA VIDYARTHI) and celebrate their progress, make learning joyful, provides adequate resources and facilities, strengthen the curricula to provide basic skills, especially in the areas of literacy, numeracy and skills for life and focus on Teachers' capacity building. During the first half of the FY 2021-22, the continuous focused was made on slow learners by Utthan Sahayak. Various days celebrations, organising mothers meet, support for Jawahar Navodaya and National Mean Merit Scholarship entrance exam preparation etc. activities were done during the first half year of the FY 2021-22. Also, activities/trainings for enhancement of skills of Utthan Sahayak were carried out during this period.

• NAVCHETAN VIDHYALAY - JUNAGAM:

Adani Foundation has been sponsoring this primary school in nearby village Junagam (Shivrampur) academic & administratively for last 8 years. The number of students are increasing every year in the school which is against the normal trend of reducing students in primary schools in rural area. The ratio of boys and girls are also at par, which shows the good academic facilities provided by Adani Foundation has motivated village people to send their girl child to school.

Due to the COVID19 scenario, Govt. of Gujarat has only permitted physical presence for class 6 and above students. However, online education to all the students were continuously given.

B. Sustainable Livelihood Development:

• Project KAMDHENU

Adani Foundation has signed MoU with BAIF for designing and implementing its activities related to Animal Husbandry. Under this project, awareness is created for best livestock management practices. Different types of trainings are imparted to cattle owners during the first half of FY 2021-22. Artificial Insemination (AI) is one of the very popular and most demanding activity under this project. Also to save energy and to do sustainable irrigation, the process for providing solar pump is initiated. Two dedicated centres are set up at Junagam (Shivrampur) and Barbodhan to undertake various activities by BAIF in nearby villages. The activities covered under this project are listed below:

- a) Trainings/Meetings to adopt best livestock practices
- b) Exposure Visits
- c) Calf rearing
- d) Deworming
- e) Infertility Camps
- f) Model Fodder Plot Development
- g) Sex Sorted Semen
- h) Artificial Insemination
- i) Vaccination for livestocks
- j) Mineral Mixers

• SELF HELP GROUP

Adani Foundation is working with SHGs groups in nearby 8 villages. The focus is on development of new SHGs and to empower them/make them self-sustained. Exposure visits are conducted for SHGs and material support is extended by Adani Foundation. During the first half of the FY 2021-22, various trainings and meetings conducted for SHGs.

C. Community Health:

The Adani Foundation firmly believe that improving the health of citizens can directly result in economic growth of the nation. Healthy people can utilise growth opportunities made available to them in a better way. Adani Foundation have committed itself to raising the standards of and strengthening healthcare systems in and around our operational village in Hazira area to ensure healthy lives and promote well-being at all ages in alignment with Sustainable Development Goals of the UN.

De-addiction Programme and Health Camps are regular activities which are carried out during the FY2021-22.

Media Coverage of the Adani Foundation – Hazira Activities during H1 – FY 2021-22

નેશનલ મિન્સ મેટીર સ્કોલરશીપ માટે ७० વિદ્યાર્થીઓની પસંદગી

સુરતઃ સમાજના નલળા વિશાર્ષીઓને પુરું પાડવામાં આવ્યું સ્કોલ રશીપ મળશે. અદાણી વર્ગમાંથી આવતાં વિદ્યાર્થીઓને હતું.ગત કેલ્નુઆરી મહિનામાં કાઇન્ડેશન દ્વરા છેલ્લા બે વર્ષથી રયર્પાત્મક પરીક્ષાઓ માટે સક્રક લેવાયેલી નેશનલ મિન્સ મેરીટ NMMS તથા જવાતર નવોદય કરવા માટે અદાવી કાઉન્ડેશન- સ્કોલરશીય પરીક્ષ ઉજળો દેખાવ - પ્રવેશ પરીક્ષા માટે કાંઠા વિસ્તાર હજી રા દ્વારા સુરત પાલિકા કરતાં આ ઉપ૪ વિદ્યાર્થીઓ પૈકી હજી રામાં કોચિંગ કલાસ સાથે સંચાલિત ૧૫ શાળાઓ અને ૭૦ વિદ્યાર્થીઓ ઉંચા મેરીટ સાથે જરૂરી શૈયસિક સાહિત્ય પૂરું સુરત જિલ્લા પંચાયત સંચાલિત ઉત્તીર્લથયા છે. મેરીટમાં આવનાર પાડવામાં આવે છે અને કોયિંગ ગ્રામ્ય વિસ્તારની ૧૭ શાળાઓના દરેક વિદ્યાર્થીને ચાર વર્ષ સુધી કલાસમાં નિષ્ણાંત શિક્ષકો દ્વરા કુલ ૩૫૪ વિદ્યાર્થીઓને નેશનલ સરકાર દ્વારા રૂ. ૧૨ હજા રની બાળકોને આયોજનબદ્ધ તૈયારી મિન્સ મેરીટ સ્કોલરશીય આર્થિક મદદ કરવામાં આવશે ને કરાવવામાં આવે છે. ઉપરોક્ત (NMMS) પરીક્ષાની તૈયારી સીપા લાભાર્થીના ખાતામાં જમા પ્રયાસોના કળસ્વરૂપે આ વર્ષે માટે પ્રોત્સાહિત અને તાલીમબઢ થશે. ઉતીર્લ થનાર ૭૦ મોરા ગામની એક વિદ્યાર્થીનીને કરાયા હતા. જે માટે પ્રશ્ન બેકસાવે વિદ્યાર્થીઓને ચાર વર્ષમાં કુલ જવાહર નવોદય શાળામાં અન્ય શૈક્ષણિ કસાહિત્ય આ રૂ. ૩૩ લાખ ૧૦ હજા રની એડમિશન પણ મળ્યું છે.

લારા વિદ્યાર્થીઓને તાલીમ અપાઈ હતી

યુ અત કહ્યુચ્ચારી માહેતમારાં NAMS તથા. જાવસાર ત્વાંગ પ્ માન બાળતા વગીપાંચી, લેવા પેલી તે તે સ્વત્ર ભાગ પ્રત્યે કે પ્રત્યે સુધાવા માટે કાંગરે. સ્વત્ર પ્રત્યો માટે કાંગરે સાચીઓને સ્પર્ધાત્મક સ્ક્ષેતવશીય પ્રતીક્ષા ઉજા પો દેખાવા, શાહ્યામાં કોચિંગ, ક્લાસાર સાથે શાટે સાકાર કેવવા માટે કરતાં તો ગાડપદ વિધાર્થીઓ પૈકી, જાાગૂરી શ્રીક્ષાય ક્લાસિત્મ પૂછે તે ગોટના ત્વાક્ય હતા, છે ગાઉ ગાળ પાર્ટિનો બે પોટીટ સાથે પાડવામાં આવે છે. અને બોલિંગ ઉત્તીર્થ થયા છે. મેવીટમાં આવના ૨ દરેક વિદ્યાર્થીને ચાર વર્ષ સુધી પંચાયતા અને સુકતા છળવાં કરકાવચાતાને મારે પંચ સુધાં ગાયતાને આપાલ મળતા સ્વ પંચાયતા સંચાલતા ગ્રાપ્ત કરકાર હતા રૂ. ૧૨ તાલ વર્તી કરાવવામાં આવે છે. ઉપરોક્ત વિસ્તારની ૧૦ શાળાઓના ઠુલ: આ ચિંકમદદ કરવામાં આવશે ને પ્રયાસોના દ જાવસ્વરૂપે આ વા ૩૪૪ વિસ્વાર્થીઓને નેશનલ પિન્સ સીધા લાભાર્થીના ખાતામાં જમાં મોરા ગાયની એકવિચાર્થીની મેટીટ સ્કોલ સ્વીધ (VILMUS) પરીક્ષાની તૈપારી મોટે પ્રોલાહિત વિદ્યાર્થીઓ ને ચાર લગ્ધમાં ઠુલ: એડમિટન પક્ષ મળ્યું છે

સમાજના નભળા વર્ગમાંથી આવતાં વિદ્યાર્થીઓને સ્પર્ધત્મક પરીક્ષાઓ માટે સાર કરવા માટે પાસાળાં ગાઉનોશન તાલરા વાગ સુરત મહાનગરપાલિકા સંચાલિત ૧૫ શાળાઓ અને સુરત જિલ્લા

41.10

માટે પ્રસ બેક સાથે અન્ય શૈયશિક સ્કોલવગીપ મળશે. સાહિત્ય આ વિદ્યાર્થીઓને પૂરું નોંધનીય છે સાહામ આવ્યું હતું. ગત કેંબ્રુઆરી મહિનામાં

નોંધનીય છે. કે. અદાળી

કાઉન્ડેશન દાસ છેલ્લા ભે વર્ષથી NMMS તથા જવાહર નવોદય

કલાક્ષમાં નિષ્ણાંત શિલકો દારા બાળકોને આયોજનબદ તૈયારી

કરાવવામાં આવે છે. ઉપરોક્ત પ્રયાસોના ઠળસ્વરૂપે આ વર્ષે મોરા ગામની એક વિદ્યાર્થીનીને

7

Sr. No.	Vertical	Activities/	Approved Budget (In Lacs)	Utilization amoun (In Lacs)	Beneficiaries
1	Education	 Adani foundation is sponsoring and managing the Primary wing of Navchetan Vidyalaya, Junagam. 430 students of Class JRKG to 8 are studying. Students came from 08 nearby villages and very lower socio economical families. 10 Government Primary schools are taken under project Utthan in coastal area of Hazira. AF has provided one Utthan Sahayak (Teacher) in each school, they are teaching slow learners and low achievers. During closure of school, Utthan teachers have taken classes at Faliya and Maholla. AF has also provided hardware and software study materials to the students who have enrolled themselves for Navodaya Vidyalaya Entrance Examination -2020-'21, 22 student have cracked entrance examination and selected. 	142.80	19.01	D: 1821 ID: 5463 Total: 7248
	Health	 Adani foundation is working with PARIVARTAN trust for addicted people in Choryasi and Olpad blocks. PARIVARTAN treats addicted patients for de-addiction at their center, the program is 21 days residential. Total 13 patients got treatment in this year. Adani Foundation has organized a multi-specialty medical camp in Damka. 86 patients were treated. Regular gynecologist's visit is going on, in villages of Hazira coastal area of Choryasi. During these visits doctor treated adolescent girls, pregnant and lactating mothers and others women of villages total 9 visits conducted and 180 patients treated. Adani foundation has provided oxygen plants to Govt. hospital, Chikhli and Municipal hospital, Surat. To provide better healthcare facilities in Govt. hospital and improve facilities to serve community. 	104.45	46.79	D; 1049 ID: 3147 Total: 4196
	Sustainable Livelihood Development	 Training of SHG members at Damka village was carried out to prepare mouth-fresheners. A faculty was from KRISHI VIGYAN KENDRA, Surat, 13 members of SHG trained. Adani Foundation is conducting separate activities in 31 villages of Choryasi and Olpad talukas under animal husbandry business, in which 786 animals have been artificially inseminated so far, 339 farmers of 12 villages have been trained in animal husbandry business. Animal Health Camps were conducted in 4 villages were given BNH-10 for green fodder, to provide nutritious food to the animals, 328 farmers of 9 villages were given 984 kg mineral mixture for livestock development. AF selected 34 progressive farmers and provided 425 Kgs. of Paddy – GNR 3 seeds for the demonstration purpose. AF selected 03 Primary Schools of Junagam, Hazira, Damka and started Eco Club project. To educate and sensitize students on ecological concepts and environment issues and ways for regenerating their schools and local surrounding. 150 students and two interested teachers are selected as PARYAVARN RAKSHAK. Completed snake awareness program in three school and 03 villages. 	147.43	18.02	D: 1335 ID: 4005 Total: 5340
	Civil Infrastructure Development	• NA	248.03	24.17	0 Beneficiaries,

D: Direct Beneficiaries, ID: Indirect Beneficiaries

<u>Annexure-3</u>:

Compliance Status of EMP as mentioned in the Integrated EIA Report, Sep. 2012:

Compliance Status of EMP as mentioned in the Integrated EIA Report, Sep., 2012:

S. No.	EMP Conditions	Compliance Status as on 30.09.2021
Ι.	AS PER TERRESTRIAL ENVIRONMENTAL IMPACT ASSESSMENT REPORT: -	
Α	CONSTRUCTION PHASE:-	
1.	Dredged Soils Management Plan: AHPL has been permitted to dredge about 37 million cubic meter of soil, which shall be reused for backfilling in the project site. The dredged soil samples will be collected and analysed periodically for designated pollutants as per the recommendations of statutory authorities.	dredging material was utilized for level raising, reclamation. If any excess material generated will be disposed of at the location already approved by the MoEF&CC.
2.	Air Quality Management: Fugitive dust will be generated during construction phase of the project due to handling of wet dredged and excavated soils. Dust control program will be implemented to reduce the dust generation during construction at project site. Water sprinkling will be adopted on haulage roads and construction site.	haulage roads on regular basis.
3.	 Noise Control Programs: Onsite fabrication activities should be undertaken at a designated location, which should be located away from the office buildings and any other working areas. In case noise emissions from the fabrication activities exceed a level of 85 dB (A) at the fence-line of the fabrication yard, temporary noise barrier can be installed. Portable diesel engine generators and diesel engine driven compressors, if any, should be covered with noise enclosures. 	office buildings and working areas. Complied Noise level was below 85 dB(A) during the fabrication. Currently no fabrication activities are going on. Complied . In-built noise enclosures are available
4.	Sewage Management Program: Sewage generated from the construction site will be treated in modular STP and shall be used for green belt development / landscaping after achieving prescribed standards by GPCB.	Being Complied Sewage generated from the construction site is being treated in
5.	Solid and Hazardous Waste Management Program: The solid waste generated should be segregated and categorized under various rules such as HWM 2008, SWM 2000, the Batteries Rules 2001 including processing of used oil by authorized recyclers should be carried out by the rules and procedures prescribed by CPCB and also meet the requirements of GPCB.	All the wastes are being segregate at source and handled as per applicable rules/ guidelines and disposed off through GPCB approved agency.
6.	Construction Phase Storm Water Runoff:	Complied

From: April 2021 to September 2021

1		
		Separate storm water was developed
		to discharge the storm water.
	sedimentation basins to control the silt before	
	discharging the storm water into sea.	
7.	Sanitation:	Complied
	The facilities presently available with the nearby	Proper sanitation arrangements were
	villages will continued to be used during	available for workers at project site.
	construction activities and no major sanitation	
	problem is expected during construction period.	
	The workers at the project site will be provided	
	with proper sanitation arrangement.	
В.	OPERATION PHASE: -	
1.	Air Quality Management:	
i.	Cargo-Handling Equipment:	Being Complied
	1. Retrofitting the old equipment to meet the	
	vehicular emission standards.	equipment are PUC certified.
	2. All the vehicles and equipment will be	
	certified with PUC norms shall be deployed.	
ii.	Standby Diesel Generators:	Being Complied
		-
	DG Sets will be operated on clean diesel fuel with sulphur content less than 0.5%. Minimum	
	stack height of 30m will be provided to disperse	
	the gases into the atmosphere as per the	·
	guidelines suggested by Central Pollution	
	Control Board.	provided as per CPCB/GPCB norms to
		disperse the gases into the
		atmosphere.
•••		
iii.	Fugitive Coal Dust Control Program:	Complied.
iii.	The management of AHPL has proposed to	Complied . Following control measures are in
iii.	The management of AHPL has proposed to adopt the following fugitive coal dust control	Complied . Following control measures are in place and effectively working at port to
iii.	The management of AHPL has proposed to adopt the following fugitive coal dust control measures: -	Complied . Following control measures are in place and effectively working at port to control fugitive dust: -
111.	The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost	Complied . Following control measures are in place and effectively working at port to control fugitive dust: - 1. Transportation of coal from jetty
iii.	The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry	Complied . Following control measures are in place and effectively working at port to control fugitive dust: - 1. Transportation of coal from jetty to coal storage yard through 1.7
iii.	The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the	Complied. Following control measures are in place and effectively working at port to control fugitive dust: - 1. Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood.
111.	 The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small 	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - 1. Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. 2. Water sprinklers in the coal yard,
iii.	 The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. 	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - 1. Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. 2. Water sprinklers in the coal yard, 3. Dust Suppression System / Spray
111.	The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - 1. Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. 2. Water sprinklers in the coal yard, 3. Dust Suppression System / Spray Nozzles in Conveyor System and
111.	The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - 1. Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. 2. Water sprinklers in the coal yard, 3. Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute,
111.	The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - 1. Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. 2. Water sprinklers in the coal yard, 3. Dust Suppression System / Spray Nozzles in Conveyor System and
111.	The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. Water sprinklers in the coal yard, Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute, Water spray through Water
111.	The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. Water sprinklers in the coal yard, Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute, Water spray through Water
iii .	The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. Water sprinklers in the coal yard, Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute, Water spray through Water Browsers,
iii .	The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. Water sprinklers in the coal yard, Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute, Water spray through Water Browsers, Water Mist Canon / Fog System,
iii .	The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. Water sprinklers in the coal yard, Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute, Water spray through Water Browsers, Water Mist Canon / Fog System, Wind Brake Shield of 14 meters
iii .	The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. Water sprinklers in the coal yard, Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute, Water spray through Water Browsers, Water Mist Canon / Fog System, Wind Brake Shield of 14 meters high and 1900 meters long,
iii .	The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper conveyor - giving considerable operating cost	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. Water sprinklers in the coal yard, Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute, Water spray through Water Browsers, Water Mist Canon / Fog System, Wind Brake Shield of 14 meters high and 1900 meters long, Transportation of cargo from port to hinterland is being done
iii .	The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper conveyor - giving considerable operating cost savings when compared to other techniques,	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. Water sprinklers in the coal yard, Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute, Water spray through Water Browsers, Water Mist Canon / Fog System, Wind Brake Shield of 14 meters high and 1900 meters long, Transportation of cargo from port to hinterland is being done through dumpers / trucks covered
iii .	The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper conveyor - giving considerable operating cost savings when compared to other techniques, The sprinkler droplet sizes should be	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. Water sprinklers in the coal yard, Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute, Water spray through Water Browsers, Water Mist Canon / Fog System, Wind Brake Shield of 14 meters high and 1900 meters long, Transportation of cargo from port to hinterland is being done through dumpers / trucks covered with tarpaulin,
iii .	The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper conveyor - giving considerable operating cost savings when compared to other techniques, The sprinkler droplet sizes should be maintained less than 100 microns.	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - 1. Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. 2. Water sprinklers in the coal yard, 3. Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute, 4. Water spray through Water Browsers, 5. Water Mist Canon / Fog System, 6. Wind Brake Shield of 14 meters high and 1900 meters long, 7. Transportation of cargo from port to hinterland is being done through dumpers / trucks covered with tarpaulin, 8. Regular cleaning of the roads
iii .	 The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper conveyor - giving considerable operating cost savings when compared to other techniques, The sprinkler droplet sizes should be maintained less than 100 microns. b. Sprinklers: Once stockpiled, water can be 	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - 1. Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. 2. Water sprinklers in the coal yard, 3. Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute, 4. Water spray through Water Browsers, 5. Water Mist Canon / Fog System, 6. Wind Brake Shield of 14 meters high and 1900 meters long, 7. Transportation of cargo from port to hinterland is being done through dumpers / trucks covered with tarpaulin, 8. Regular cleaning of the roads through Road Sweeping Machines,
iii .	 The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper conveyor - giving considerable operating cost savings when compared to other techniques, The sprinkler droplet sizes should be maintained less than 100 microns. b. Sprinklers: Once stockpiles to keep them 	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. Water sprinklers in the coal yard, Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute, Water spray through Water Browsers, Water Mist Canon / Fog System, Wind Brake Shield of 14 meters high and 1900 meters long, Transportation of cargo from port to hinterland is being done through dumpers / trucks covered with tarpaulin, Regular cleaning of the roads through Road Sweeping Machines, and
iii .	 The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper conveyor - giving considerable operating cost savings when compared to other techniques, The sprinkler droplet sizes should be maintained less than 100 microns. b. Sprinklers: Once stockpiled, water can be sprayed on the stockpiles to keep them damped down. Swivelling sprinklers should 	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. Water sprinklers in the coal yard, Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute, Water spray through Water Browsers, Water Mist Canon / Fog System, Wind Brake Shield of 14 meters high and 1900 meters long, Transportation of cargo from port to hinterland is being done through dumpers / trucks covered with tarpaulin, Regular cleaning of the roads through Road Sweeping Machines, and Company has set up dedicated
iii .	 The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper conveyor - giving considerable operating cost savings when compared to other techniques, The sprinkler droplet sizes should be maintained less than 100 microns. b. Sprinklers: Once stockpiled, water can be sprayed on the stockpiles to keep them damped down. Swivelling sprinklers should be used along the lengths of the stockpile 	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. Water sprinklers in the coal yard, Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute, Water spray through Water Browsers, Water Mist Canon / Fog System, Wind Brake Shield of 14 meters high and 1900 meters long, Transportation of cargo from port to hinterland is being done through dumpers / trucks covered with tarpaulin, Regular cleaning of the roads through Road Sweeping Machines, and Company has set up dedicated greenbelt area for plantation at
iii .	 The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper conveyor - giving considerable operating cost savings when compared to other techniques, The sprinkler droplet sizes should be maintained less than 100 microns. b. Sprinklers: Once stockpiled, water can be sprayed on the stockpiles to keep them damped down. Swivelling sprinklers should be used along the lengths of the stockpile with caution, however, as the volume of 	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. Water sprinklers in the coal yard, Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute, Water spray through Water Browsers, Water Mist Canon / Fog System, Wind Brake Shield of 14 meters high and 1900 meters long, Transportation of cargo from port to hinterland is being done through dumpers / trucks covered with tarpaulin, Regular cleaning of the roads through Road Sweeping Machines, and Company has set up dedicated greenbelt area for plantation at periphery / avenue plantation /
iii .	 The management of AHPL has proposed to adopt the following fugitive coal dust control measures: - a. Dry Fog System - A new, proven and cost effective technique to control dust is "Dry Fog" system to suppress the dust from the air. The name fog is just what it implies small droplets of water injected into the air. Fogging works by releasing very small droplets of water into the air. Airborne dust particles adhere to the water droplet and agglomerate. If the fog is generated in the right way, by using pressurized water, the energy required can be very low between 2 to 3 kW for a system requiring hundreds of nozzles, e.g.: A large stockpile tripper conveyor - giving considerable operating cost savings when compared to other techniques, The sprinkler droplet sizes should be maintained less than 100 microns. b. Sprinklers: Once stockpiled, water can be sprayed on the stockpiles to keep them damped down. Swivelling sprinklers should be used along the lengths of the stockpile 	 Complied. Following control measures are in place and effectively working at port to control fugitive dust: - Transportation of coal from jetty to coal storage yard through 1.7 Km. long conveyor belt with hood. Water sprinklers in the coal yard, Dust Suppression System / Spray Nozzles in Conveyor System and Discharge Chute, Water spray through Water Browsers, Water Mist Canon / Fog System, Wind Brake Shield of 14 meters high and 1900 meters long, Transportation of cargo from port to hinterland is being done through dumpers / trucks covered with tarpaulin, Regular cleaning of the roads through Road Sweeping Machines, and Company has set up dedicated greenbelt area for plantation at

		area developed so far is approx.
		78.49 ha within the port premises.
2.	Noise Control Program:	Complied.
	 The following source noise control plans have been suggested: - Covering of sound intensive components with insulation. Using noise absorbing building materials if required for housing compressors and diesel 	 All the sound intensive components (DG Set and Compressor) are with acoustic enclosures. Green belt development is in progress.
	 generators etc. as per the guidelines suggested by Central Pollution Control Board. Adopting low noise driving (Eco-driving) Using silent exhaustion pipes for major diesel engine vehicles and heavy trucks operated inside the port. Planting trees which act as barrier to arrest dispersion of noise levels. Using electricity powered equipment inside the port instead of diesel powered ones will 	 All RTGs and Quay Cranes are electricity operated.
	be explored to the extent possible.	
3.	 Waste Water Management: Port handling operations would generate wastewater from the following sources: - 1. Ship ballast water, 2. Ship deck wastewater including sewage, 3. Rejects from desalination plant, 4. Workshop and vehicle maintenance shop wastewater, 5. Leachate from coal stock yard, 6. Floor cleaning and tank cleaning wastewater from the liquid tank farm, 7. Sewage from port facilities. The proposed wastewater treatment and reuse program has been presented hereunder: - 	 Being Complied AHPL is not accepting Ballast/ Sewage water from Ships. Desalination plant not yet installed. There is no effluent generation from workshop. Vehicle maintenance is not done in port premises. There is no leachate from dump pond. Tank cleaning wastewater is being treated into ETP. Domestic waste water is being treated in the STP and then used for horticulture purpose within the port premises.
	 A variety of vessels use the waters within the port, including bulk coal ships, tugs and line boats. Discharges from bulk ships are not expected to occur within the port because these large ships normally have on-board storage and sewage treatment plants, allowing discharge of treated effluent at sea as per the provision of MARPOL. Except monsoon, leachate from coal stock yard is not envisaged. However small quantities, if any, will be treated in the effluent treatment plant. Wastewater from vehicle work-shops will also be treated in the proposed onsite effluent treatment plant. As far as possible all chemical spills at liquid handling facilities will be treated 	Dedicated coal dump pond is provided to collect the runoff (if any) from coal yard and it is further reused for dust suppression purpose into coal yard. Complied with . No spill has occurred till date. If, spills

adani

	with dry spill absorbing material and water	
	will not be used. Spillage if any occurs will	
	be treated in a dedicated onsite	development / plantation purpose.
	wastewater treatment plant, which	
	consists of an oil removal unit, primary	
	chemical treatment unit and biological	
	treatment units followed by activated	
	-	
	carbon unit. Biologically treated	
	wastewater will be further treated in the	
	central sewage treatment plant. Treated	
	wastewater will be used for dust	
	suppression and horticulture applications	
	at the facility. No treated wastewater will	
	be discharged outside the port facilities.	
4.	Storm Water Management Plan:	Complied
	 Storm water from the coal stockpile area will 	-
	be passed through a series of sediment traps	
	to remove the majority of the coal sediment	
	before discharging into the natural drains. It	
	has been proposed to construct a garland	
	drain for all bulk storage facilities to avoid	the coal sediment.
	silting into the marine eco-system.	
	> All liquid storage tanks will be provided with	Complied.
	dykes to avoid any cross contamination of	All liquid storage tanks are provided
	storm water from chemical spills. Storm	with dykes to avoid any cross
	water drains shall be designed in order to	contamination of storm water from
	avoid any flooding of the coal stock yard and	
5	liquid chemical tank farm areas.	effluents drains are separate.
5.	liquid chemical tank farm areas. Solid and Hazardous Waste Management:	effluents drains are separate. Complied .
5.	liquid chemical tank farm areas. Solid and Hazardous Waste Management: > Solid wastes generated from the port	effluents drains are separate. Complied . - Solid wastes generated during port
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: ➢ Solid wastes generated from the port handling facilities consist of packaging 	effluents drains are separate. Complied . - Solid wastes generated during port development i.e.: construction &
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel 	effluents drains are separate. Complied . - Solid wastes generated during port development i.e.: construction & demolition wastes are reused for
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: ➢ Solid wastes generated from the port handling facilities consist of packaging 	effluents drains are separate. Complied . - Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel 	effluents drains are separate. Complied . - Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food,
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel 	effluents drains are separate. Complied . - Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel 	effluents drains are separate. Complied . - Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food,
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel 	effluents drains are separate. Complied . - Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel 	effluents drains are separate. Complied . - Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel 	effluents drains are separate. Complied . - Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel 	effluents drains are separate. Complied . - Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in greenbelt/plantation.
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel 	 effluents drains are separate. Complied. Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in greenbelt/plantation. Packaging materials generated from
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel 	 effluents drains are separate. Complied. Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in greenbelt/plantation. Packaging materials generated from the cargo handling i.e.: Wood,
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel 	 effluents drains are separate. Complied. Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in greenbelt/plantation. Packaging materials generated from the cargo handling i.e.: Wood, Paper/Carton, Steel Scrap,
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel 	 effluents drains are separate. Complied. Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in greenbelt/plantation. Packaging materials generated from the cargo handling i.e.: Wood, Paper/Carton, Steel Scrap, Plastic/Tarpaulin etc. are collected
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel 	 effluents drains are separate. Complied. Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in greenbelt/plantation. Packaging materials generated from the cargo handling i.e.: Wood, Paper/Carton, Steel Scrap,
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel scrap etc. 	 effluents drains are separate. Complied. Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in greenbelt/plantation. Packaging materials generated from the cargo handling i.e.: Wood, Paper/Carton, Steel Scrap, Plastic/Tarpaulin etc. are collected and sold out to recyclers.
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel scrap etc. All the hazardous wastes and solid wastes 	 effluents drains are separate. Complied. Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in greenbelt/plantation. Packaging materials generated from the cargo handling i.e.: Wood, Paper/Carton, Steel Scrap, Plastic/Tarpaulin etc. are collected and sold out to recyclers. Complied.
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel scrap etc. All the hazardous wastes and solid wastes such as Oil containing cargo residue, 	 effluents drains are separate. Complied. Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in greenbelt/plantation. Packaging materials generated from the cargo handling i.e.: Wood, Paper/Carton, Steel Scrap, Plastic/Tarpaulin etc. are collected and sold out to recyclers. Complied. All the wastes are segregated at source
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel scrap etc. All the hazardous wastes and solid wastes such as Oil containing cargo residue, Chemical containing cargo residue and 	 effluents drains are separate. Complied. Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in greenbelt/plantation. Packaging materials generated from the cargo handling i.e.: Wood, Paper/Carton, Steel Scrap, Plastic/Tarpaulin etc. are collected and sold out to recyclers. Complied. All the wastes are segregated at source and stored at a dedicated Hazardous
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel scrap etc. All the hazardous wastes and solid wastes such as Oil containing cargo residue, 	 effluents drains are separate. Complied. Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in greenbelt/plantation. Packaging materials generated from the cargo handling i.e.: Wood, Paper/Carton, Steel Scrap, Plastic/Tarpaulin etc. are collected and sold out to recyclers. Complied. All the wastes are segregated at source and stored at a dedicated Hazardous
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel scrap etc. All the hazardous wastes and solid wastes such as Oil containing cargo residue, Chemical containing cargo residue and 	 effluents drains are separate. Complied. Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in greenbelt/plantation. Packaging materials generated from the cargo handling i.e.: Wood, Paper/Carton, Steel Scrap, Plastic/Tarpaulin etc. are collected and sold out to recyclers. Complied. All the wastes are segregated at source and stored at a dedicated Hazardous
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel scrap etc. All the hazardous wastes and solid wastes such as Oil containing cargo residue, Chemical containing cargo residue and sludge, contaminated cotton waste, spent 	 effluents drains are separate. Complied. Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in greenbelt/plantation. Packaging materials generated from the cargo handling i.e.: Wood, Paper/Carton, Steel Scrap, Plastic/Tarpaulin etc. are collected and sold out to recyclers. Complied. All the wastes are segregated at source and stored at a dedicated Hazardous
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel scrap etc. All the hazardous wastes and solid wastes such as Oil containing cargo residue, Chemical containing cargo residue and sludge, contaminated cotton waste, spent exchange resin and ETP Sludge, etc. shall be 	 effluents drains are separate. Complied. Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in greenbelt/plantation. Packaging materials generated from the cargo handling i.e.: Wood, Paper/Carton, Steel Scrap, Plastic/Tarpaulin etc. are collected and sold out to recyclers. Complied. All the wastes are segregated at source and stored at a dedicated Hazardous
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel scrap etc. All the hazardous wastes and solid wastes such as Oil containing cargo residue, Chemical containing cargo residue and sludge, contaminated cotton waste, spent exchange resin and ETP Sludge, etc. shall be segregated at source and stored at the earmarked area. 	 effluents drains are separate. Complied. Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in greenbelt/plantation. Packaging materials generated from the cargo handling i.e.: Wood, Paper/Carton, Steel Scrap, Plastic/Tarpaulin etc. are collected and sold out to recyclers. Complied. All the wastes are segregated at source and stored at a dedicated Hazardous Waste storage shed/yard.
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel scrap etc. All the hazardous wastes and solid wastes such as Oil containing cargo residue, Chemical containing cargo residue and sludge, contaminated cotton waste, spent exchange resin and ETP Sludge, etc. shall be segregated at source and stored at the earmarked area. Recyclable wastes will be collected and 	 effluents drains are separate. Complied. Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in greenbelt/plantation. Packaging materials generated from the cargo handling i.e.: Wood, Paper/Carton, Steel Scrap, Plastic/Tarpaulin etc. are collected and sold out to recyclers. Complied. All the wastes are segregated at source and stored at a dedicated Hazardous Waste storage shed/yard.
5.	 liquid chemical tank farm areas. Solid and Hazardous Waste Management: Solid wastes generated from the port handling facilities consist of packaging waste such as wood, paper/carton, steel scrap etc. All the hazardous wastes and solid wastes such as Oil containing cargo residue, Chemical containing cargo residue and sludge, contaminated cotton waste, spent exchange resin and ETP Sludge, etc. shall be segregated at source and stored at the earmarked area. 	 effluents drains are separate. Complied. Solid wastes generated during port development i.e.: construction & demolition wastes are reused for level rising of low lying area within the port premises. Kitchen/ Food, Horticulture/Garden wastes are being sent to Organic Waste Converter (OWC) to convert it into compost and reused as manure in greenbelt/plantation. Packaging materials generated from the cargo handling i.e.: Wood, Paper/Carton, Steel Scrap, Plastic/Tarpaulin etc. are collected and sold out to recyclers. Complied. All the wastes are segregated at source and stored at a dedicated Hazardous Waste storage shed/yard.

20	20

	 Hazardous wastes include contaminated chemical spills, spent dry adsorbing spill absorbing material used for large marine and onshore chemical spills, used lubricating oils and greases. The chemicals spill inventories and spent dry absorbing material will be stored in a dedicated onsite tank and will be disposed to authorized hazardous waste incinerators. Spent lube oils and greases will be disposed to authorized near y used oil recycling vendors. A dedicated and completely enclosed shed will be identified to store the hazardous wastes in order to avoid any cross contamination from storm water. All the waste should be segregated, collected, categorized as per the HWM Rules 2008, SWM Rules 2000 and Batteries Rules 	and disposed of through CPCB/GPCB registered recyclers. Complied . No spill has occurred till date. Complied . Recyclable wastes is being collected and disposed off through CPCB/GPCB registered recyclers. Complied . All the wastes are stored at a dedicated hazardous waste storage shed/yard. Being Complied All the wastes are being segregate at	
	2001 prescribed by CPCB under Environmental Protection Act, 1986.		
6.	Greenbelt and Plantation:> AHPL will develop thick green belt plantation	Complied	
	 in and around the proposed project facility covering 81.27 Ha. Efforts will be taken to increase the green cover in and around the project boundary using local species with a view to ameliorating project related disturbances and enhancing the ecological value of the area. Greenbelt would be developed as per the CPCB guidelines. A capital cost of Rs. 1.62 Crore and an annual 	greenbelt area for plantation at periphery / avenue plantation / landscaping etc. Total greenbelt area developed so far is approx. 78.49 ha till 30 th September 2021.	
	recurring budget of Rs. 0.65 Crore will be earmarked for this purpose.	Rs. 160 Lakhs.	
7.	Community Development Plan:	Complied.	
	 community development and implement developmental program. The identified activities under CSR program are as follows: - 1. Infrastructure development for educational facilities like building of schools, computer rooms, multipurpose activity halls 2. Supporting education through distribution of stationary, scholarships, science kits, bicycles to children, conducting education camps, competitions. 3. Strengthening the community health by arranging health camps, AID awareness camps, providing financial support to senior citizens and poor people, building dispensaries and mobile dispensaries. 	 CSR activities carried out by Adani Foundation in four verticals i.e.: - (1) Education, (2). Community Health, (3). Sustainable Livelihood and (4). Rural Infrastructure Development. Detail of the CSR activities along with budgetary provisions and progress are regularly submitted to MoEF & CC as part of six monthly compliance reports. Please refer the <u>Annexure-2</u> for the status of the CSR activities during the compliance period Financial Year: 2021-22. 	
	4. Improvement of rural sanitation by conducting mass awareness campaign,		

20	201
	<u>a u</u>

	l ł	elping villagers fo	r constructing and	
	r I	naintaining household	toilets, school toilets.	
		-	mal husbandry and	
		•	•	
			ng camps for farmers	
	ā	ind cattle owners, co	nducting programs to	
	ι ι	ise new irrigation l	cechnologies, organic	
	f	arming, and free fodd	er supply.	
			ed skill development	
			and youth for their	
		-	and youth for them	
		mpowerment.		
		Rural infrastructure	, , ,	
			ater harvesting ponds,	
	0	heck dams, roads,	bus stops, drainage	
	S	ystems, fish landing sl	ned, solar street lamps.	
			o spend about Rs. 8.21	
			years of the operation	
			ral upliftment and	
		community developm	•	
		,		
			peen presented in the	
			d Expenditure for CSR	
	<u> </u>	ind Community Develo		
			Budgeted Amount For	
	S.	Descriptions	1 st 5 year Period	
	No		(Amount rupees in	
			Crore)	
	1	Education	2.29	
	2	Community Health	1.18	
	3	Sustainable	1.43	
		Livelihood Activities	1.49	
	4	Rural Infrastructure	2.04	
	-	Development	2.04	
	5	Entry Point Activities	1.27	
		Total	8.21	
II.	MA	RINE ENVIRONMENT	MANAGEMENT PLAN:	
Α.	100	ISTRUCTION PHASE:	-	
	> 1	he dredae spoil aen	erated during capital	Complied.
				No disposal has been done till date. All
		he port developme		the dredging material is being utilized
		itilities.		
			ial will be diseased off	for level raising, reclamation.
		-	ial will be disposed off	•
				If any excess material generated will be
		rea including dred		disposed of at the location already
		hrough maintenance (approved by the MoEF&CC.
				Noted & Being Complied
	ā	dopted to control th	e generation of high	Monitoring of turbidity level in the sea
	1	evels of suspended so	lids. If the suspended	water is being done and there is no
				abnormal increase observed.
			topped till the normal	
		conditions are achieve		
				Raine Complied
			the corridor used for	
			•	Clean up of the area is regularly being
			eks etc. should be	done.
	ι	Indertaken and all th	e discarded materials	
1	l r			
		nust be removed from	the site and aesthetic	
			the site and aesthetic idings to be restored,	

	once the construction activities are		
	completed.	Operation	
В.	 OPERATION PHASE: - The following mitigation measures are recommended during port operation: - > Sewage generated from the port operations will be treated in sewage treatment plant and treated water shall be used for horticulture and green belt development. 	Complied . Sewage generated from the port operations is being treated in STP and treated water is being used for horticulture and green belt development. Complied . All the solid waste generated from the	
	All the solid waste generated from the port will be properly segregated, stored and disposed as per the applicable statutory requirement.	port is properly segregated, stored and disposed as per the applicable rules. Being Complied Free flow to the mangrove is not	
	All the structures shall be designed in such a way that it should not restrict the prevailing tidal ingress in the creek and mangrove habitats in the vicinity to ensure good health	Complied.	
	 condition. Coastline between Suwali Point and Tapti Estuary mouth and around the port area will be periodically surveyed to assess erosion and accretion. Should the need arises the corrective action in terms of shore stabilization shall be undertaken. 	Shoreline change study was conducted by NIO, Vizag during the period from November, 2014 to December, 2015. Study confirms that there is no significant change in the nearby shoreline except for the approved layout of the AHPL. The report did not warrant any mitigation measures. Noted and Being Complied .	
		M/s AHPL has issued the work order for Shoreline Change Assessment in the port boundary and nearby the area to a reputed Institute for carrying out shoreline change assessment and the report will be submitted after completion of the study.	
		There is no oil spill till date. Complied . Oil Spill Contingency Plan has been prepared and the same was	
	 All the minor and major spillages of chemicals will be effectively controlled with appropriate tools and equipments. An oil/chemical spill management plan shall 	approved/vetted by Indian Coast Guard (Letter No.: 7563, dated 09.01.2014). Noted and Being Complied No effluent is being discharged.	
	be evolved and be in place for tier-1 (100t) and tier-2 (700t) spills in consultation with Gujarat Maritime Board/Coast Guard.	Complied . Please refer the <u>Annexure-4D</u> for the Sea Water Quality Monitoring / Analysis Reports for the compliance	
	All the marine outfall shall meet the Gujarat Pollution Control Board Effluent Discharge Criteria for Seawater Disposal Standards.	period April 2021 to September 2021 Noted,	
	Monitoring of water area of the port and effluent disposal sited shall be studied for pH and Corg, Suspended Solids, DO, BOD in order	AHPL is not discharging any effluent outside the port premises.	

adani	Adani Hazira Port Limited	From: April 2021 to September 2021
baseline er The mitig effluent re disposal s	y for deviations if any from the nvironmental quality. gation measures suggested for elease and maintaining of effluent ites should also be adopted for release by NIKO should be red.	

		From: April 2021 to
adani	Adani Hazira Port Limited	September 2021

ANNEXURE-4

Environmental Monitoring / Analysis Results For The Period From April 2021 to September 2021

4A. AMBIENT AIR QUALITY MONITORING (APRIL 2021 TO SEPTEMBER 2021): -

Table-1.1: Ambient Air Quality Monitoring Results At Near Port Gate No.: 2

~			Lo	cation-	1: Near	Port G	ate No.:	2 (N 2	1° 05.4	26'E 72	° 37.73	39')	
Sr. No.	Date of Sampling	PM10	PM _{2.5}	Pb	BaP	As	Ni	со	C ₆ H ₆	NH ₃	SO ₂	NOx	03
Rulis	Con Population in	µg/m ³	µg/m ³	µg/m ³	ng/m ³	ng/m ³	ng/m ³	mg/m ³	µg/m ³	µg/m ³	µg/m ³	µg/m ³	µg/m
1	01/04/2021	74.25	38.51	ND*	ND*	ND*	ND*	0.74	ND*	38.15	19.25	33.45	28.33
2	05/04/2021	80.36	44.22	0.75	ND*	2.42	ND*	0.64	ND*	22.52	24.72	38.32	24.59
3	08/04/2021	75.57	34.54	ND*	ND*	ND*	ND*	0.95	ND*	33.55	20.63	41.54	29.55
4	12/04/2021	88.22	42.59	ND*	ND*	ND*	ND*	0.71	ND*	30.35	22.20	45.35	21.67
5	15/04/2021	77.55	37.85	ND*	ND*	ND*	ND*	0.86	ND*	23.27	13.82	34.24	27.23
6	19/04/2021	92.51	50.58	0.80	ND*	2.34	ND*	0.92	ND*	37.34	26.31	39.51	25.35
7	22/04/2021	81.22	47.55	ND*	ND*	ND*	ND*	0.98	ND*	25.73	17.83	35.38	23.58
8	26/04/2021	90.34	40.32	ND*	ND*	ND*	,ND*	0.90	ND*	27.64	25.27	42.56	18.24
9	29/04/2021	87.54	48.82	0.62	ND*	2.26	ND*	0.65	ND*	41.57	18.4	31.53	19.46
10	03/05/2021	90.22	51.51	0.72	ND*	2.52	10.43	0.53	ND*	33.75	21.57	32.46	21.56
11	06/05/2021	81.34	47.65	ND*	ND*	ND*	ND*	0.46	ND*	27.27	23.20	35.61	18.38
12	10/05/2021	80.27	41.57	ND*	ND*	ND*	ND*	0.87	ND*	23.46	17.65	29.66	23.55
13	13/05/2021	93.63	53.40	0.84	ND*	2.62	10.66	0.80	ND*	31.57	25.30	38.65	22.22
14	20/05/2021	88.26	49.57	ND*	ND*	ND*	ND*	0.56	ND*	29.46	19.45	33.42	29.43
15	24/05/2021	92.45	52.37	0.75	ND*	2.35	10.61	0.71	ND*	40.22	24.32	37.28	26.52
16	27/05/2021	83.41	46.26	ND*	ND*	ND*	ND*	0.64	ND*	25.65	26.38	45.35	24.77
17	31/05/2021	78.65	38.52	ND*	ND*	ND*	ND*	0.78	ND*	37.12	15.85	40.62	28.33
18	03/06/2021	94.27	53.54	0.85	ND*	2.22	10.43	0.94	ND*	29.44	20.59	38.55	22.47
19	07/06/2021	84.54	45.22	ND*	ND*	ND*	ND*	0.87	ND*	32.44	22.53	32.57	26.73
20	10/06/2021	74.57	40.24	ND*	ND*	ND*	ND*	1.03	ND*	26.27	16.55	30.47	24.37
21	14/06/2021	91.54	52.64	0.76	ND*	2.68	10.70	0.96	ND*	34.51	26.23	39.69	20.46
22	17/06/2021	78.37	36.53	ND*	ND*	ND*	ND*	0.98	ND*	28.67	24.35	28.56	28.23
23	21/06/2021	85.71	41.19	ND*	ND*	ND*	ND*	0.73	ND*	36.87	18.75	35.66	13.81
24	24/06/2021	93.53	50.37	0.77	ND*	2.22	10.55	0.82	ND*	39.15	25.34	40.42	25.36
25	28/06/2021	87.51	43.61	ND*	ND*	ND*	ND*	0.76	ND*	37.12	21.58	34.29	23.47
26	01/07/2021	93.48	52.37	0.66	ND* ·	2.64	10.37	0.76	ND*	34.82	22.59	37.54	28.8
27	05/07/2021	78.55	42.39	ND*	ND*	ND*	ND*	0.74	ND*	20.14	19.23	40.38	21.65
28	08/07/2021	86.51	50.30	0.77	ND*	2.45	10.24	0.61	ND*	29.92	24.55	33.62	30.42
29	12/07/2021	77.81	30.36	ND*	ND*	ND*	ND*	0.46	ND*	26.36	20.50	34.42	23.77

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 • GPCB apprved schedule II auditor

• ISO 14001 • ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

POLLUCON LABORATORIES PVT. LTD.

30	15/07/2021	89.55	47.21	ND*	ND*	ND*	ND*	0.85	ND*	30.39	18.71	39.29	27.2
31	19/07/2021	69.32	44.77	ND*	ND*	ND*	ND*	0.95	ND*	37.67	16.43	36.27	26.33
32	22/07/2021	85.34	48.25	0.68	ND*	2.56	10.77	1.03	ND*	22.53	23.31	42.71	29.51
33	26/07/2021	79.52	41.53	ND*	ND*	ND*	ND*	0.55	ND*	27.41	17.85	30.36	25.8
34	29/07/2021	90.22	49.28	ND*	ND*	ND*	ND*	0.86	ND*	35.66	21.28	38.58	20.87
35	02/08/2021	76.35	43.40	ND*	ND*	ND*	ND*	0.87	ND*	27.57	16.63	39.56	21.47
36	05/08/2021	85.60	51.53	ND*	ND*.	ND*	ND*	0.65	ND*	35.35	20.60	34.66	16.36
37	09/08/2021	92.42	47.64	0.85	ND*	2.76	10.88	0.98	ND*	31.47	26.35	44.57	27.94
38	12/08/2021	78.39	44.20	ND*	ND*	ND*	ND*	0.64	ND*	37.64	21.73	42.71	22.90
39	16/08/2021	86.36	48.62	ND*	ND*	ND*	ND*	0.71	ND*	41.38	17.65	36.40	29.47
40	19/08/2021	75.31	42.23	ND*	ND*	ND*	ND*	0.82	ND*	25.66	19.31	33.94	24.32
41	23/08/2021	94.28	52.36	0.58	ND*	2.42	10.49	0.90	ND*	34.33	12.40	30.34	26.17
42	26/08/2021	89.31	45.27	ND*	ND*	ND*	ND*	1.03	ND*	28.45	25.15	41.57	28.78
43	30/08/2021	79.42	40.34	ND*	ND*	ND*	ND*	0.97	ND*	32.31	23.51	35.36	25.42
44	02/09/2021	69.34	32.40	ND*	ND*	ND*	ND*	0.63	ND*	22.48	23.46	34.44	19.56
45	06/09/2021	79.52	48.33	0.63	ND*	2.56	10.66	1.01	ND*	33.46	15.84	37.70	15.62
46	09/09/2021	72.69	34.54	ND*	ND*	ND*	ND*	0.89	ND*	20.33	21.59	32.45	22.42
47	13/09/2021	67.51	31.65	ND*	ND*	ND*	ND*	0.95	ND*	32.49	18.34	36.36	25.36
48	16/09/2021	78.62	44.34	ND*	ND*	ND*	ND*	1.00	ND*	26.32	20.61	31.72	23.49
49	20/09/2021	80.62	49.68	0.80	ND*	2.42	10.37	0.71	ND*	29.41	25.51	38.49	18.38
50	23/09/2021	77.52	37.65	ND*	ND*	ND*	ND*	0.85	ND*	23.68	17.84	26.52	20.68
51	27/09/2021	70.62	30.37	ND*	ND*	ND*	ND*	0.92	ND*	31.59	22.38	33.8	24.66
52	30/09/2021	81.36	43.58	0.72	ND*	ND*	10.60	0.73	ND*	28.64	19.35	39.49	21.52

Observation: Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-Idt: 18/11/2009 National Ambient Air Quality Standards, New Delhi , for 24 hourly or 8 hourly or 1 hourly monitored values

- ND*: Not Detected Lead as Pb (µg/m³): 0.5
- ND*: Not Detected Carbon Monoxide as CO (mg/m³): 0.01
- ND*: Not Detected Benzene as C₆H₆ (µg/m³): 2
- ND*: Not Detected Benzo (a) Pyrene (BaP) Particulate Phase only (ng/m³): 0.5
- ND*: Not Detected Arsenic as As (ng/m³): 2
- ND*: Not Detected Nickel as Ni (ng/m3): 5

CHICKLET CHICKLETCHE NOT THE

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor • ISO 14001

ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

Table-1.2: Ambient Air Quality Monitoring Results at HSE Building Terrace

Cr.	Data of	LUCORS .	Lo	cation-	2: HSE	Building	Terra	ce (N 21	° 05.04	43' E 72	° 38.49	91')	n de a Li
Sr. No.	Date of Sampling	PM10	PM _{2.5}	Pb	BaP	As	Ni	со	C ₆ H ₆	NH ₃	SO2	NOx	03
POLL	TOM YOU UPON IN	µg/m ³	µg/m ³	µg/m ³	ng/m ³	ng/m ³	ng/m ³	mg/m ³	µg/m ³	µg/m ³	µg/m ³	µg/m ³	µg/m
1	01/04/2021	50.27	24.37	ND*	ND*	ND*	·ND*	0.34	ND*	16.53	13.69	28.24	26.25
2	05/04/2021	62.33	32.51	ND*	ND*	ND*	ND*	0.57	ND*	10.52	11.65	23.66	18.33
3	08/04/2021	52.37	26.32	ND*	ND*	ND*	ND*	0.70	ND*	12.36	16.43	31.62	23.44
4	12/04/2021	69.27	30.67	ND*	ND*	ND*	ND*	0.60	ND*	21.63	10.39	26.21	25.83
5	15/04/2021	71.21	31.58	ND*	ND*	ND*	ND*	0.79	ND*	13.73	8.93	21.63	16.29
6	19/04/2021	63.64	36.37	ND*	ND*	ND*	ND*	0.55	ND*	23.44	12.63	25.26	13.55
7	22/04/2021	70.63	33.55	ND*	ND*	ND*	ND*	0.78	ND*	14.46	15.10	19.5	11.57
8	26/04/2021	54.26	28.74	ND*	ND*	ND*	ND*	0.63	ND*	18.27	18.68	22.44	14.43
9	29/04/2021	80.21	45.66	ND*	ND*	ND*	ND*	0.53	ND*	22.34	14.31	24.34	12.30
10	03/05/2021	77.55	41.25	ND*	ND*	ND*	ND*	0.44	ND*	12.62	11.58	21.56	15.23
11	06/05/2021	64.51	36.83	ND*	ND*	ND*	ND*	0.60	ND*	17.52	16.56	28.23	20.24
12	10/05/2021	70.25	38.28	ND*	ND*	ND*	ND*	0.45	ND*	15.36	13.44	25.37	12.56
13	13/05/2021	55.36	27.62	ND*	ND*	ND*	ND*	0.76	ND*	13.43	15.68	27.52	14.57
14	20/05/2021	72.43	35.52	ND*	ND*	ND*	.ND*	0.66	ND*	16.33	14.38	30.24	26.86
15	24/05/2021	58.36	26.53	ND*	ND*	ND*	ND*	0.37	ND*	19.56	8.40	16.44	22.38
16	27/05/2021	73.55	39.27	ND*	ND*	ND*	ND*	0.26	ND*	14.24	12.26	24.21	18.29
17	31/05/2021	50.24	19.67	ND*	ND*	ND*	ND*	0.49	ND*	27.54	10.40	29.32	23.45
18	03/06/2021	84.23	45.68	ND*	ND*	ND*	ND*	0.62	ND*	19.52	12.58	24.62	12.55
19	07/06/2021	60.22	35.41	ND*	ND*	ND*	ND*	0.44	ND*	15.32	18.53	27.23	21.57
20	10/06/2021	69.44	32.48	ND*	ND*	ND*	ND*	0.84	ND*	13.41	9.55	18.70	16.23
21	14/06/2021	58.63	28.35	ND*	ND*	ND*	ND*	0.45	ND*	16.53	19.52	36.47	18.27
22	17/06/2021	68.22	30.44	ND*	ND*	ND*	ND*	0.65	ND*	25.34	14.33	23.74	24.54
23	21/06/2021	80.22	34.26	ND*	ND*	ND*	ND*	0.48	ND*	20.47	16.98	31.26	11.26
24	24/06/2021	62.51	23.44	ND*	ND*	ND*	ND*	0.29	ND*	18.94	11.51	20.31	23.68
25	28/06/2021	72.53	37.54	ND*	ND*	ND*	ND*	0.49	ND*	27.52	13.53	25.83	17.83
26	01/07/2021	82.39	43.88	ND*	ND*	ND*	ND*	0.54	ND*	18.52	14.62	20.62	18.3
27	05/07/2021	68.58	34.58	ND*	ND*	ND*	ND*	0.37	ND*	11.49	11.45	23.68	14.68
28	08/07/2021	60.48	33.53	ND*	ND*	ND*	ND*	0.56	ND*	21.59	18.28	27.61	20.33
29	12/07/2021	56.36	23.66	ND*	ND*	ND*	ND*	0.27	ND*	29.67	16.90	29.58	15.68
30	15/07/2021	75.31	36.54	ND*	ND*	ND*	ND*	0.77	ND*	26.46	13.27	32.35	16.32
31	19/07/2021	53.99	22.76	ND*	ND*	ND*	ND*	0.81	ND*	23.69	10.50	21.63	21.35

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor ISO 45001

• ISO 14001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

POLLUCON LABORATORIES PVT. LTD.

32	22/07/2021	63.49	35.43	ND*	ND*	ND*	ND*	0.65	ND*	17.55	19.61	34.27	25.34
33	26/07/2021	66.78	32.57	ND*	ND*	ND*	ND*	0.32	ND*	19.33	15.32	26.69	12.81
34	29/07/2021	70.28	37.02	ND*	ND*	ND*	ND*	0.38	ND*	22.77	12.54	31.70	24.28
35	02/08/2021	54.66	24.31	ND*	ND*	ND*	ND*	0.34	ND*	14.37	8.74	31.60	23.44
36	05/08/2021	71.28	42.65	ND*	ND*	ND*	ND*	0.57	ND*	21.22	10.35	21.67	18.14
37	09/08/2021	76.52	35.83	ND*	ND*	ND*	ND*	0.29	ND*	18.39	16.52	26.49	13.57
38	12/08/2021	68.57	27.51	ND*	ND*	ND*	ND*	0.70	ND*	15.94	18.58	32.47	14.99
39	16/08/2021	81.69	44.36	ND*	ND*	ND*	ND*	0.42	ND*	31.54	11.29	16.54	26.54
40	19/08/2021	70.29	25.35	ND*	ND*	ND*	ND*	0.62	ND*	10.97	13.53	24.37	17.41
41	23/08/2021	57.34	34.35	ND*	ND*	ND*	ND*	0.50	ND*	23.54	6.29	15.62	20.19
42	26/08/2021	74.55	39.47	ND*	ND*	ND*	ND*	0.86	ND*	20.32	17.83	27.86	22.34
43	30/08/2021	69.33	32.42	ND*	ND*.	ND*	ND*	0.74	ND*	29.31	19.53	30.66	19.51
44	02/09/2021	55.31	25.48	ND*	ND*	ND*	ND*	0.46	ND*	16.39	15.64	18.36	22.65
45	06/09/2021	70.65	36.33	ND*	ND*	ND*	ND*	0.26	ND*	19.58	12.72	30.47	12.16
46	09/09/2021	50.62	22.48	ND*	ND*	ND*	ND*	0.80	ND*	13.66	17.35	19.70	18.55
47	13/09/2021	46.36	18.60	ND*	ND*	ND*	ND*	0.65	ND*	17.85	10.71	24.28	20.37
48	16/09/2021	54.50	26.51	ND*	ND*	ND*	ND*	0.57	ND*	20.58	16.28	21.55	11.67
49	20/09/2021	63.55	34.43	ND*	ND*	ND*	ND*	0.50	ND*	12.61	19.72	27.48	15.71
50	23/09/2021	68.43	28.45	ND*	ND*	ND*	ND*	0.37	ND*	15.63	8.59	23.62	10.80
51	27/09/2021	71.36	33.45	ND*	ND*	ND*	ND*	0.52	ND*	11.49	14.47	20.36	17.78
52	30/09/2021	59.57	35.35	ND*	ND*	ND*	'ND*	0.62	ND*	18.28	6.56	16.37	16.24

Observation: Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-Idt: 18/11/2009 National Ambient Air Quality Standards, New Delhi , for 24 hourly or 8 hourly or 1 hourly monitored values

- ND*: Not Detected Lead as Pb (µg/m³): 0.5
- ND*: Not Detected Carbon Monoxide as CO (mg/m³): 0.01
- ND*: Not Detected Benzene as C₆H₆ (µg/m³): 2
- ND*: Not Detected Benzo (a) Pyrene (BaP) Particulate Phase only (ng/m³): 0.5
- ND*: Not Detected Arsenic as As (ng/m³): 2
- ND*: Not Detected Nickel as Ni (ng/m³): 5

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor • ISO 14001

ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

Table-1.3: Ambient Air Quality Monitoring Results at Central Water Pump House

-	acceleration and accel	OU MARKED	Loca	tion-3:	Central	Water	Pump H	louse (N	21º 04	4.697'E	72° 38.	420')	- 191
Sr. No.	Date of Sampling	PM10	PM _{2.5}	Pb	BaP	As	Ni	со	C ₆ H ₆	NH ₃	SO ₂	NOx	03
	Camping	µg/m ³	µg/m ³	µg/m ³	ng/m ³	ng/m ³ .	ng/m ³	mg/m ³	µg/m ³	µg/m ³	µg/m ³	µg/m ³	µg/m ³
1	01/04/2021	56.36	28.67	ND*	ND*	ND*	ND*	0.29	ND*	18.51	6.48	21.26	17.58
2	05/04/2021	67.66	37.29	ND*	ND*	ND*	ND*	0.18	ND*	27.24	18.26	30.34	11.66
3	08/04/2021	58.24	20.24	ND*	ND*	ND*	ND*	0.48	ND*	21.53	10.32	25.37	14.26
4	12/04/2021	62.44	24.25	ND*	ND*	ND*	ND*	0.37	ND*	14.54	15.61	32.33	19.31
5	15/04/2021	57.27	29.55	ND*	ND*	ND*	ND*	0.69	ND*	11.27	17.52	29.43	22.23
6	19/04/2021	72.26	32.83	ND*	ND*	ND*	ND*	0.72	ND*	19.21	13.56	20.54	18.15
7	22/04/2021	54.31	26.11	ND*	ND*	ND*	ND*	0.49	ND*	12.81	7.50	17.54	15.52
8	26/04/2021	65.44	31.62	ND*	ND*	ND*	ND*	0.39	ND*	22.41	11.35	26.37	10.88
9	29/04/2021	71.52	41.52	ND*	ND*	ND*	ND*	0.26	ND*	25.65	8.30	28.68	21.46
10	03/05/2021	62.45	26.50	ND*	ND*	ND*	ND*	0.38	ND*	10.25	9.55	16.55	19.57
11	06/05/2021	75.66	39.54	ND*	ND*	ND*	ND*	0.36	ND*	25.35	14.63	25.24	16.47
12	10/05/2021	64.23	25.30	ND*	ND*	ND*	ND*	0.30	ND*	20.32	11.31	19.35	17.26
13	13/05/2021	50.33	22.40	ND*	ND*	ND*	ND*	0.52	ND*	11.23	17.23	23.55	12.30
14	20/05/2021	52.41	24.54	ND*	ND*	ND*	ND*	0.18	ND*	21.86	12.37	18.68	22.61
15	24/05/2021	76.26	40.22	ND*	ND*	ND*	ND*	0.29	ND*	34.23	16.42	24.63	24.23
16	27/05/2021	60.55	36.28	ND*	ND*	ND*	ND*	0.50	ND*	18.53	10.53	29.44	13.43
17	31/05/2021	55.81	23.59	ND*	ND*	ND*	ND*	0.32	ND*	22.51	13.55	26.22	25.52
18	03/06/2021	68.53	25.62	ND*	ND*	ND*	ND*	0.40	ND*	21.22	7.66	15.38	20.58
19	07/06/2021	72.65	29.86	ND*	ND*	ND*	ND*	0.24	ND*	28.42	15.28	24.35	17.65
20	10/06/2021	46.21	18.63	ND*	ND*	ND*	ND*	0.63	ND*	22.66	12.31	20.51	12.76
21	14/06/2021	66.56	30.57	ND*	ND*	ND*	ND*	0.70	ND*	13.95	9.67	26.86	14.63
22	17/06/2021	70.63	33.45	ND*	ND*	ND*	ND*	0.38	ND*	10.82	6.27	12.65	16.68
23	21/06/2021	62.34	26.25	ND*	ND*	ND*	ND*	0.64	ND*	23.51	8.33	25.63	24.24
24	24/06/2021	71.56	37.64	ND*	ND*	ND*	ND*	0.37	ND*	30.73	14.52	30.62	19.38
25	28/06/2021	67.04	32.12	ND*	ND*	ND*	ND*	0.22	ND*	20.57	16.27	21.35	11.54
26	01/07/2021	76.55	37.56	ND*	ND*	ND*	ND*	0.50	ND*	23.59	17.54	26.37	13.6
27	05/07/2021	58.47	24.27	ND*	ND*	ND*	ND*	0.40	ND*	17.27	7.68	19.6	11.25
28	08/07/2021	68.66	36.31	ND*	ND*	ND*	ND*	0.14	ND*	25.34	9.66	22.34	18.68
29	12/07/2021	61.36	28.61	ND*	ND*	ND*	ND*	0.33	ND*	15.52	11.6	14.61	10.33
30	15/07/2021	55.66	22.54	ND*	ND*	ND*	ND*	0.44	ND*	19.52	16.43	21.34	12.30
31	19/07/2021	46.72	19.66	ND*	ND*	ND*	ND*	0.34	ND*	28.37	6.27	17.54	23.48

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor

• ISO 14001

ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

POLLUCON LABORATORIES PVT. LTD.

52.2	I The second second	1	1		1		-	-	_	Constant State			in the second
32	22/07/2021	74.53	35.56	ND*	ND*	ND*	ND*	0.62	ND*	12.62	10.33	16.38	21.25
33	26/07/2021	56.22	25.33	ND*	ND*	ND*	ND*	0.39	ND*	24.59	12.59	23.52	15.38
34	29/07/2021	62.33	32.18	ND*	ND*	ND*	ND*	0.48	ND*	27.32	15.84	35.29	17.52
35	02/08/2021	51.51	27.34	ND*	ND*	ND*	ND*	0.60	ND*	19.54	6.59	19.59	17.18
36	05/08/2021	62.46	32.57	ND*	ND*	ND*	ND*	0.80	ND*	26.52	18.37	30.48	12.26
37	09/08/2021	70.35	40.27	ND*	ND*	ND*	ND*	0.46	ND*	10.34	10.51	33.61	15.33
38	12/08/2021	58.65	23.57	ND*	ND*	ND*	ND*	0.40	ND*	23.48	12.45	22.70	11.16
39	16/08/2021	48.64	26.37	ND*	ND*	ND*	ND*	0.66	ND*	28.69	14.55	28.38	19.67
40	19/08/2021	52.46	30.26	ND*	ND*	ND*	ND*	0.56	ND*	13.33	11.31	14.74	14.33
41	23/08/2021	77.22	44.56	ND*	ND*	ND*	ND*	0.58	ND*	18.56	8.36	18.38	23.62
42	26/08/2021	65.23	33.53	ND*	ND*	ND*	ND*	0.55	ND*	15.38	15.56	24.62	18.66
43	30/08/2021	54.28	25.68	ND*	ND*	ND*	ND*	0.63	ND*	21.63	17.19	21.54	13.41
44	02/09/2021	45.43	19.36	ND*	ND*	ND*	ND*	0.49	ND*	19.22	18.19	23.91	12.54
45	06/09/2021	51.31	27.36	ND*	ND*	ND*	ND*	0.31	ND*	14.38	13.38	27.60	17.61
46	09/09/2021	61.61	29.47	ND*	ND*	ND*	ND*	0.34	ND*	18.65	11.42	21.40	11.33
47	13/09/2021	57.35	24.57	ND*	ND*	ND*	ND*	0.76	ND*	13.42	14.70	31.31	23.39
48	16/09/2021	50.36	35.45	ND*	ND*	ND*	ND*	0.24	ND*	10.34	8.29	18.65	15.37
49	20/09/2021	55.38	28.42	ND*	ND*	ND*	ND*	0.25	ND*	25.49	12.25	24.35	13.61
50	23/09/2021	63.45	23.47	ND*	ND*	ND*	ND*	0.47	ND*	17.69	15.4	20.38	19.26
51	27/09/2021	59.42	26.45	ND*	ND*	ND*	ND*	0.42	ND*	21.63	19.53	17.55	14.79
52	30/09/2021	75.42	42.60	ND*	ND*	ND*	ND*	0.56	ND*	15.54	7.59	22.64	18.13

Observation: Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-Idt: 18/11/2009 National Ambient Air Quality Standards, New Delhi , for 24 hourly or 8 hourly or 1 hourly monitored values

ND*: - Not Detected - Lead as Pb (µg/m³): 0.1

ND*: - Not Detected - Carbon Monoxide as CO (mg/m³): 0.01

ND*: - Not Detected - Benzene as C₆H₆ (µg/m³): 2

ND*: - Not Detected - Benzo (a) Pyrene (BaP) - Particulate Phase only (ng/m³): 0.5

ND*: - Not Detected - Arsenic as As (ng/m³): 2

ND*: - Not Detected - Nickel as Ni (ng/m³): 5

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor • ISO 14001

ISO 45001

ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

Table-1.4: Ambient Air Quality Monitoring Results at Container Terminal

Sr.	Data of	N LON	L	ocation	1-4: Con	tainer	Termin	al (N 21	° 05.18	37'E 72	° 37.774	4)	
No.	Date of Sampling	PM10	PM _{2.5}	Pb	BaP	As	Ni	со	C ₆ H ₆	NH ₃	SO2	NOx	03
+		µg/m ³	µg/m ³	µg/m ³	ng/m ³	ng/m ³	ng/m ³	mg/m ³	µg/m ³	µg/m ³	µg/m ³	µg/m ³	µg/m ³
1	01/04/2021	69.35	32.49	ND*	ND*	ND*	ND*	0.44	ND*	29.67	11.58	25.15	19.53
2	05/04/2021	75.66	41.40	ND*	ND*	ND*	ND*	0.73	ND*	22.46	6.16	26.15	16.32
3	08/04/2021	64.51	31.21	ND*	ND*	ND*	ND*	0.33	ND*	25.21	13.27	22.32	21.27
4	12/04/2021	74.54	36.59	ND*	ND*	ND*	ND*	0.61	ND*	16.34	19.08	36.16	17.28
5	15/04/2021	61.51	27.89	ND*	ND*	ND*	ND*	0.85	ND*	14.35	10.68	24.28	18.67
6	19/04/2021	82.41	42.30	ND*	ND*	ND*	ND*	0.68	ND*	26.21	15.25	31.43	15.32
7	22/04/2021	65.36	45.70	ND*	ND*	ND*	ND*	0.54	ND*	10.63	9.70	23.53	22.08
8	26/04/2021	60.21	34.34	ND*	ND*	ND*	ND*	0.50	ND*	17.54	17.27	30.64	12.37
9	29/04/2021	58.62	35.57	ND*	ND*	ND*	ND*	0.58	ND*	30.65	12.27	20.26	14.66
10	03/05/2021	68.57	31.59	ND*	ND*	ND*	ND*	0.81	ND*	16.26	13.66	26.36	17.66
11	06/05/2021	53.67	21.66	ND*	ND*	ND*	ND*	0.27	ND*	20.21	11.24	21.24	22.41
12	10/05/2021	59.35	29.22	ND*	ND*	ND*	ND*	0.22	ND*	18.56	7.66	23.31	10.24
13	13/05/2021	78.37	42.38	ND*	ND*	ND*	ND*	0.55	ND*	21.63	12.63	20.47	16.26
14	20/05/2021	62.87	28.51	ND*	ND*	ND*	ND*	0.47	ND*	25.44	16.21	22.32	24.32
15	24/05/2021	70.67	36.51	ND*	ND*	ND*	ND*	0.65	ND*	28.41	14.83	28.68	15.34
16	27/05/2021	52.64	24.35	ND*	ND*	ND*	ND*	0.41	ND*	11.52	18.3	34.56	11.38
17	31/05/2021	67.51	34.19	ND*	ND*	ND*	ND*	0.62	ND*	17.51	8.63	31.25	13.11
18	03/06/2021	60.36	34.55	ND*	ND*	ND*	ND*	0.52	ND*	24.51	14.27	27.51	18.62
19	07/06/2021	68.61	26.51	ND*	ND*	ND*	ND*	0.81	ND*	12.57	12.51	20.63	24.66
20	10/06/2021	50.44	21.56	ND*	ND*	ND*	ND*	0.55	ND*	15.55	15.64	24.29	16.33
21	14/06/2021	77.65	39.37	ND*	ND*	ND*	ND*	0.33	ND*	10.54	17.74	29.49	10.27
22	17/06/2021	56.55	23.43	ND*	ND*	ND*	ND*	0.47	ND*	18.65	11.36	17.57	13.40
23	21/06/2021	70.52	29.45	ND*	ND*	ND*	ND*	0.31	ND*	14.57	10.20	21.55	25.20
24	24/06/2021	78.65	40.66	ND*	ND*	ND*	ND*	0.25	ND*	26.53	16.83	25.47	17.53
25	28/06/2021	55.34	27.33	ND*	ND*	ND*	ND*	0.27	ND*	19.96	6.35	31.57	14.51
26	01/07/2021	70.51	33.84	ND*	ND*	ND*	ND*	0.66	ND*	29.45	8.52	34.55	21.51
27	05/07/2021	65.69	28.47	ND*	ND*	ND*	ND*	0.17	ND*	13.73	18.51	30.49	19.57
28	08/07/2021	77.52	45.25	ND*	ND*	ND*	ND*	0.63	ND*	16.59	16.53	19.36	Ĩ5.21
29	12/07/2021	72.62	35.60	ND*	ND*	ND*	ND*	0.21	ND*	22.81	14.25	32.57	18.47
30	15/07/2021	66.24	27.57	ND*	ND*	ND*	ND*	0.53	ND*	15.33	10.25	18.44	24.59
31	19/07/2021	59.35	34.18	ND*	ND*	ND*	ND*	0.57	ND*	32.26	12.30	31.60	11.50

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 • GPCB apprved schedule II auditor

• ISO 14001 ISO 45001 • ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

32	22/07/2021	67.52	41.29	ND*	ND*	ND*	ND*	0.97	ND*	14.39	17.66	21.28	14.39
33	26/07/2021	46.53	21.52	ND*	ND*	ND*	ND*	0.30	ND*	21.29	9.37	17.36	20.21
34	29/07/2021	79.14	43.69	ND*	ND*	ND*	ND*	0.58	ND*	18.39	11.43	25.52	12.94
35	02/08/2021	73.52	36.31	ND*	ND*	ND*	ND*	0.41	ND*	22.59	12.64	23.71	25.64
36	05/08/2021	55.30	25.38	ND*	ND*	ND*	ND*	0.49	ND*	20.59	13.69	26.37	14.85
37	09/08/2021	65.34	31.50	ND*	ND*	ND*	ND*	0.37	ND*	14.59	20.76	29.49	17.64
38	12/08/2021	70.38	38.57	ND*	ND*	ND*	ND*	0.89	ND*	33.37	16.35	27.56	20.39
39	16/08/2021	54.37	30.46	ND*	ND*	ND*	ND*	0.61	ND*	36.58	19.29	24.23	21.79
40	19/08/2021	60.58	35.35	ND*	ND*	ND*	ND*	0.47	ND*	21.37	9.44	20.29	19.35
41	23/08/2021	71.55	39.37	ND*	ND*	ND*	ND*	0.31	ND*	15.36	15.46	33.28	18.59
42	26/08/2021	53.59	24.53	ND*	ND*	ND*	ND*	0.14	ND*	26.41	18.46	30.54	24.54
43	30/08/2021	62.57	28.30	ND*	ND*	ND*	ND*	0.24	ND*	17.66	14.62	18.45	15.61
44	02/09/2021	50.31	22.59	ND*	ND*	ND*	ND*	0.58	ND*	13.33	13.68	27.38	18.46
45	06/09/2021	58.39	39.55	ND*	ND*	ND*	ND*	0.38	ND*	23.58	8.46	23.52	11.45
46	09/09/2021	46.33	19.43	ND*	ND*	ND*	ND*	0.48	ND*	15.46	12.35	28.45	16.69
47	13/09/2021	52.45	21.59	ND*	ND*	ND*	ND*	0.53	ND*	10.63	9.58	21.63	13.53
48	16/09/2021	62.55	31.63	ND*	ND*	ND*	ND*	0.41	ND*	22.68	6.37	15.68	19.65
49	20/09/2021	67.62	42.46	ND*	ND*	ND*	ND*	0.64	ND*	18.34	14.21	19.32	10.53
50	23/09/2021	49.32	26.31	ND*	ND*	ND*	ND*	0.45	ND*	12.41	11.16	16.38	17.53
51	27/09/2021	54.36	23.69	ND*	ND*	ND*	ND*	0.27	ND*	19.33	17.61	26.37	12.21
52	30/09/2021	64.33	38.42	ND*	ND*	ND*	ND*	0.6	ND*	11.32	10.22	29.19	14.28

Observation: Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-Idt: 18/11/2009 National Ambient Air Quality Standards, New Delhi , for 24 hourly or 8 hourly or 1 hourly monitored values

ND*: - Not Detected - Lead as Pb (µg/m³): 0.5

ND*: - Not Detected - Carbon Monoxide as CO (mg/m³): 0.01

- ND*: Not Detected Benzene as C₆H₆ (µg/m³): 2
- ND*: Not Detected Benzo (a) Pyrene (BaP) Particulate Phase only (ng/m³): 0.5

ND*: - Not Detected - Arsenic as As (ng/m³): 2

ND*: - Not Detected - Nickel as Ni (ng/m³): 5

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor • ISO 14001

ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

Table-1.5: Ambient Air Quality Monitoring Results at Hazira Village

6-	Data of	O. Hug	POLICICO	Loca	tion-5:	Hazira	Village	(N 21°	05.44' 8	72° 38	3.44')		
Sr. No.	Date of Sampling	PM10	PM _{2.5}	Pb	BaP	As	Ni	со	C ₆ H ₆	NH ₃	SO2	NOx	⁻ O ₃
NO LO	TON COLLECT	µg/m ³	µg/m ³	µg/m ³	ng/m ³	ng/m ³	ng/m ³	mg/m ³	µg/m ³	µg/m ³	µg/m ³	µg/m ³	µg/m ³
1	01/04/2021	79.36	35.36	ND*	ND*	ND*	ND*	0.96	ND*	30.57	15.75	30.58	23.67
2	05/04/2021	85.34	48.43	0.84	ND*	2.62	ND*	0.81	ND*	33.46	22.35	35.65	21.57
3	08/04/2021	70.36	37.55	ND*	ND*	ND*	ND*	0.87	ND*	15.61	18.77	39.11	25.64
4	12/04/2021	83.44	45.50	ND*	ND*	ND*	ND*	0.66	ND*	26.55	26.26	42.36	27.58
5	15/04/2021	66.52	34.80	ND*	ND*	ND*	ND*	1.01	ND*	20.55	20.33	38.45	24.27
6	19/04/2021	87.67	46.58	0.69	ND*	2.52	ND*	0.76	ND*	32.45	23.43	36.23	28.27
7	22/04/2021	75.21	40.36	ND*	ND*	ND*	ND*	0.89	ND*	22.63	13.42	27.66	18.58
8	26/04/2021	86.26	44.17	ND*	ND*	ND*	ND*	0.62	ND*	25.34	21.25	33.33	16.64
9	29/04/2021	93.43	38.26	0.50	ND*	2.45	ND*	0.45	ND*	28.37	24.25	40.35	13.23
10	03/05/2021	82.66	46.29	0.62	ND*	2.26	10.18	0.58	ND*	25.55	16.8	28.56	25.33
11	06/05/2021	89.36	43.51	ND*	ND*	ND*	ND*	0.72	ND*	23.54	21.2	31.36	27.86
12	10/05/2021	75.34	34.64	ND*	ND*	ND*	ND*	0.40	ND*	13.67	15.25	35.42	21.67
13	13/05/2021	88.25	47.58	0.72	ND*	2.42	10.51	0.74	ND*	24.20	23.51	32.56	24.55
14	20/05/2021	77.63	45.57	ND*	ND*	ND*	ŃD*	0.82	ND*	33.43	22.3	37.65	20.85
15	24/05/2021	87.62	48.54	0.65	ND*	2.15	10.33	0.61	ND*	37.52	20.26	33.66	28.12
16	27/05/2021	78.81	42.24	ND*	ND*	ND*	ND*	0.57	ND*	21.56	24.51	40.24	22.58
17	31/05/2021	86.45	30.66	ND*	ND*	ND*	ND*	0.39	ND*	34.37	18.53	36.44	18.53
18	03/06/2021	89.61	49.37	0.73	ND*	2.34	10.26	0.86	ND*	33.44	17.49	35.45	15.34
19	07/06/2021	78.55	42.55	ND*	ND*	ND*	ND*	0.6	ND*	20.17	20.46	32.39	22.58
20	10/06/2021	64.27	28.52	ND*	ND*	ND*	ND*	0.71	ND*	18.23	14.59	27.60	18.89
21	14/06/2021	86.52	50.25	0.62	ND*	2.42	10.44	0.88	ND*	30.22	22.96	33.47	23.52
22	17/06/2021	62.42	25.31	ND*	ND*	ND*	ND*	0.78	ND*	21.53	16.72	25.36	25.58
23	21/06/2021	75.64	38.67	ND*	ND*	ND*	ND*	0.61	ND*	28.82	21.24	40.24	21.22
24	24/06/2021	85.33	44.25	0.65	ND*	2.16	10.39	0.92	ND*	25.41	23.49	34.6	27.52
25	28/06/2021	77.21	40.87	ND*	ND*	ND*	ND*	0.85	ND*	34.35	15.34	28.69	29.27
26	01/07/2021	88.63	47.54	0.56	ND*	2.46	10.60	0.98	ND*	31.59	25.37	31.25	23.56
27	05/07/2021	72.61	31.25	ND*	ND*	ND*	ND*	0.84	ND*	24.46	16.27	37.37	25.61
28	08/07/2021	81.53	48.23	0.61	ND*	2.25	10.14	0.90	ND*	35.38	21.56	30.54	19.41
29	12/07/2021	68.47	30.26	ND*	ND*	ND*	ND*	0.42	ND*	32.56	18.47	26.91	21.83
30	15/07/2021	82.46	43.38	ND*	ND*	ND*	ND*	0.60	ND*	38.63	20.29	35.36	22.67
31	19/07/2021	64.51	40.66	ND*	ND*	ND*	ND*	0.73	ND*	40.25	14.54	28.36	29.25

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

• GPCB apprved schedule II auditor

• ISO 14001

• ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

POLLUCON LABORATORIES PVT. LTD.

32	22/07/2021	80.27	45.33	0.54	ND*	2.40	10.44	0.52	ND*	26.58	22.33	38.69	20.8
33	26/07/2021	73.57	35.80	ND*	ND*	ND*	ND*	0.47	ND*	33.66	19.63	33.44	24.36
34	29/07/2021	85.53	46.35	ND*	ND*	ND*	ND*	0.80	ND*	30.61	17.36	29.34	26.46
35	02/08/2021	66.31	32.43	ND*	ND*	ND*	ND*	0.68	ND*	18.65	18.64	37.60	25.16
36	05/08/2021	77.5	38.44	ND*	ND*	ND*	ND*	1.02	ND*	33.52	15.28	23.47	28.47
37	09/08/2021	82.68	45.32	0.75	ND*	2.36	10.11	0.88	ND*	27.33	22.32	38.54	22.66
38	12/08/2021	52.67	20.32	ND*	ND*	ND*	ND*	0.76	ND*	36.43	19.63	29.40	27.59
39	16/08/2021	74.32	42.34	ND*	ND*	ND*	ND*	0.94	ND*	24.51	24.54	32.57	23.21
40	19/08/2021	65.42	39.21	ND*	ND*	ND*	ND*	0.44	ND*	15.65	17.56	27.39	20.27
41	23/08/2021	86.85	47.54	0.75	ND*	2.24	10.70	0.85	ND*	31.37	20.35	39.63	29.37
42	26/08/2021	80.35	41.62	ND*	ND*	ND*	ND*	0.96	ND*	23.68	23.64	34.32	16.16
43	30/08/2021	73.67	36.45	ND*	ND*	ND*	ND*	0.92	ND*	26.33	21.67	28.55	21.51
44	02/09/2021	62.49	28.39	ND*	ND*	ND*	ND*	0.78	ND*	24.31	21.61	30.72	13.86
45	06/09/2021	75.6	42.63	0.55	ND*	2.18	10.39	0.61	ND*	29.64	18.61	33.73	16.57
46	09/09/2021	66.38	30.27	ND*	ND*	ND*	ND*	0.74	ND*	23.49	13.27	25.38	25.73
47	13/09/2021	61.36	27.52	ND*	ND*	ND*	ND*	0.86	ND*	22.33	16.58	27.65	19.38
48	16/09/2021	67.52	38.63	ND*	ND*	ND*	ND*	0.77	ND*	30.63	19.14	26.27	21.24
49	20/09/2021	79.49	45.7	0.69	ND*	2.36	10.18	0.94	ND*	16.64	22.42	34.26	24.35
50	23/09/2021	73.46	33.55	ND*	ND*	ND*	ND*	0.79	ND*	19.48	14.67	29.4	14.67
51	27/09/2021	64.36	29.44	ND*	ND*	ND*	ND*	0.88	ND*	21.65	24.54	36.53	22.15
52	30/09/2021	70.54	40.65	0.62	ND*	ND*	10.22	0.69	ND*	25.38	20.24	32.70	18.66

Observation: Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-Idt: 18/11/2009 National Ambient Air Quality Standards, New Delhi , for 24 hourly or 8 hourly or 1 hourly monitored values

ND*: - Not Detected - Lead as Pb (µg/m³): 0.1

ND*: - Not Detected - Carbon Monoxide as CO (mg/m³): 0.01

ND*: - Not Detected - Benzene as C₆H₆ (µg/m³): 2

ND*: - Not Detected - Benzo (a) Pyrene (BaP) - Particulate Phase only (ng/m³): 0.5

ND*: - Not Detected - Arsenic as As (ng/m³): 2

ND*: - Not Detected - Nickel as Ni (ng/m3): 5

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor • ISO 14001

ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

4B. GROUND WATER QUALITY MONITORING: -

Table-1.6A: Ground Water Quality Results for the period: April, 2021 to September, 2021

Sr.	CONTRACTICIST POLICIE	IINTT	CHANN POLITICON	G	ROUND WAT	ER BORE WE	LL	Sector, end of
NO.	TEST PARAMETERS	UNIT	APR-21	MAY-21	JUN-21	JUL-21	AUG-21	SEP-21
0.15	AREA RECORDED FOR	ices to	15/04/2021	06/05/2021	25/06/2021	29/07/2021	31/08/2021	29/09/2021
1	Colour	Hazen	3	4	3	4	2	2
2	Odour	-	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
3	Taste		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
4	Turbidity	NTU	0.12	0.15	0.17	0.18	0.17	0.13
5	pH Value		7.58	7.42	7.69	7.58	7.61	7.74
6	Total Hardness as CaCO ₃	mg/L	362	386	413	364	420	406
7	Iron as Fe	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
8	Chloride as Cl	mg/L	152	132	140	128	148	114
9	Residual Free Chlorine	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
10	Fluoride as F	mg/L	0.3	0.37	0.28	0.36	0.17	0.21
11	Total Dissolved Solids	mg/L	1423	1327	1293	1328	1248	984
12	Calcium as Ca	mg/L	38.4	42.4	46.4	48.4	52	74.4
13	Magnesium as Mg	mg/L	63.84	67.2	71.28	58.32	62.88	52.8
14	Copper as Cu	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
15	Manganese as Mn	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
16	Sulphate as SO4	mg/L	72.4	79.0	72.3	69.3	22.9	24.6
17	Nitrate Nitrogen as NO3	mg/L	13.80	11.20	9.64	7.46	7.20	5.32
18	Phenolic compounds as C ₆ H ₅ OH	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
19	Mercury as Hg	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
20	Cadmium as Cd	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
21	Selenium as Se	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
22	Arsenic as As	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
23	Cyanide as CN	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
24	Lead as Pb	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
25	Zinc as Zn	mg/L	0.093	0.120	0.150	0.210	0.180	0.240
26	Anionic Detergents as MBAS	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
27	Chromiumas Cr ⁺⁶	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
28	Mineral Oil	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
29	Alkalinity	mg/L	623	593	524	413	416	403
30	Aluminum as Al	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
31	Boron as B	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32	Pesticides	(No. Compares		Service and a	CONTRACTOR OF THE		
32.1	Alachor	µg/I	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.2	Atrazine	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.3	Aldrin/Dieldrine	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.4	Alpha HCH	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.5	Beta HCH	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.6	Butachlor	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
32.7	Chlorpyriphos	µg/I	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor ISO 45001

• ISO 9001

ISO 14001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

Sr.	CONTURINON POLLU		LOT DI LIG &	G	ROUND WAT	ER BORE WE	LLericaria	(Automotion)
NO.	TEST PARAMETERS	UNIT	APR-21	MAY-21	JUN-21	JUL-21	AUG-21	SEP-21
100	A SIDE FOR LERING WE FREE LE	1. Con 1.	15/04/2021	06/05/2021	25/06/2021	29/07/2021	31/08/2021	29/09/2021
32.8	Delta HCH	µg/l	Not Detected					
32.9	2,4- Dichlorophrnoxy acetic acid	µg/l	Not Detected					
32.10	DDT (o,p&p,p-Isomers of DDT, DDE & DDD	µg/l	Not Detected					
32.11	Endosulfan (alpha, beta, and sulphate)	µg/l	Not Detected					
32.12	Ethion	µg/l	Not Detected					
32.13	Gamma – HCH (Lindane)	µg/l	Not Detected					
32.14	Isoproturon	µg/l	Not Detected					
32.15	Malathion	µg/l	Not Detected					
32.16	Methyl Parathion	µg/l	Not Detected					
32.17	Monocrotophos	µg/l	Not Detected					
32.18	Phorate	µg/l	Not Detected					
33	Coliform	/100 ml	Absent	Absent	Absent	Absent	Absent	Absent
34	E-Coli	/100 ml	Absent	Absent	Absent	Absent	Absent	Absent

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Ground Water.

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved
 ISO 14001
 schedule II auditor

ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

Table-1.6B: Ground Water Quality Results for the period: April, 2021 to September, 2021

Sr.	REALERAL CECH, NAME	UNIT	GROUND WATER OPEN WELL											
NO.	TEST PARAMETERS	UNIT	APR-21	MAY-21	JUN-21	JUL-21	AUG-21	SEP-21 29/09/2021						
	LICE IN LICE MILL	and the second	15/04/2021	06/05/2021	25/06/2021	29/07/2021	31/08/2021							
1	Colour	Hazen	4	3	4	3	4	3						
2	Odour		Agreeable	Agréeable	Agreeable	Agreeable	Agreeable	Agreeable						
3	Taste		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable						
4	Turbidity	NTU	0.16	0.12	0.15	0.19	0.15	0.17						
5	pH Value		8.13	8.03	7.93	7.86	7.78	7.83						
6	Total Hardness as CaCO ₃ m		382	364	402	392	360	356						
7	Iron as Fe	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
8	Chloride as Cl mg/L 102 112		112	123	112	132	108							
9	Residual Free Chlorine	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
10	Fluoride as F	mg/L	Not Detected	Not Detected	0.075	0.093	0.093	0.098						
11	Total Dissolved Solids	mg/L	1026	1056	1027	1168	928	906						
12	Calcium as Ca	mg/L	67.2	62.8	56.8	58.4	48.0	52.8						
13	Magnesium as Mg	mg/L	51.36	49.68	62.4	59.04	57.6	53.78						
14	Copper as Cu	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
15	Manganese as Mn	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
16	Sulphate as SO4	mg/L	30.6	35.4	31.8	35.8	18.4	16.4						
17	Nitrate Nitrogen as NO3	mg/L	9.84	7.56	5.92	6.39	5.68	4.28						
18	Phenolic compounds as C ₆ H ₅ OH	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
19	Mercury as Hg	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
20	Cadmium as Cd	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
21	Selenium as Se	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
22	Arsenic as As	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
23	Cyanide as CN	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
24	Lead as Pb	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
25	Zinc as Zn	mg/L	0.14	0.19	0.17	0.19	0.14	0.12						
26	Anionic Detergents as MBAS	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
27	Chromiumas Cr ⁺⁶	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
28	Mineral Oil	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
29	Alkalinity	mg/L	376	365	328	304	312	326						
30	Aluminum as Al	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
31	Boron as B	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
32	AND STATES PARTY	1.61.51.61	1000			A Sectoreal	1000	The rest from						
32.1	Alachor	µg/I	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
32.2	Atrazine	µg/I	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
32.3	Aldrin/Dieldrine	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
32.4	Alpha HCH	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
32.5	Beta HCH	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
32.6	Butachlor	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
32.7	Chlorpyriphos	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						
32.8	Delta HCH	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected						

Authorized Signatory

FSSAI Approved Lab

• Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 • GPCB apprved schedule II auditor

• ISO 14001 • ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

POLLUCON LABORATORIES PVT. LTD.

Sr.	CON INVALIACENT FOLLS		GROUND WATER OPEN WELL										
NO.	TEST PARAMETERS	UNIT	APR-21	MAY-21	JUN-21	JUL-21	AUG-21	SEP-21					
	CON INSULACES IF ALL	1000	15/04/2021	06/05/2021	25/06/2021	29/07/2021	31/08/2021	29/09/2021					
32.9	2,4- Dichlorophrnoxy acetic acid	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected					
32.10	DDT (o,p&p,p-Isomers of DDT, DDE & DDD	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected					
32.11	Endosulfan (alpha, beta, and sulphate)	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected					
32.12		µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected					
32.13	Gamma – HCH (Lindane)			Not Detected									
32.14	Isoproturon	1/94	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected					
32.15	Malathion	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected					
32.16	Methyl Parathion	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected					
32.17	Monocrotophos	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected					
32.18	Phorate	µg/l	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected					
33	Coliform	/100 ml	Absent	Absent	Absent	Absent	Absent	Absent					
34	E-Coli	/100 ml	Absent	Absent	Absent	Absent	Absent	Absent					

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Ground Water.

FSSAI Approved Lab

Authorized Signatory

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor • ISO 14001

ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

4C. SURFACE WATER QUALITY MONITORING: -

Table-1.7:	Surface Water (Pond)	Quality Results for the period: A	pril, 2021 to September, 2021
------------	----------------------	-----------------------------------	-------------------------------

	MOW PREMOVE RELAT	- FOUL	At Mora Village (Surface Water – Pond)										
Sr. No.	Daramotore	Unit	APR-21	MAY-21	JUN-21	JUL-21	AUG-21	SEP-21					
16 10	standi ketaran pananan	NUCK ST	15/04/2021	06/05/2021	25/06/2021	29/07/2021	31/08/2021	29/09/2021					
1	Odour		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable					
2	Colour	Hazen	7	. 5	4	3	2	3					
3	Taste	0 1	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable					
4	pH Value		7.59	7.31	7.19	7.36	7.21	7.64					
5	Turbidity	NTU	0.13	0.15	0.13	0.15	0.11	0.12					
6	Total Dissolved Solids	mg/L	714	702	719	629	608	738					
7	Total Hardness as CaCO ₃	mg/L	309	324	336	298	216	246					
8	Chloride as Cl	mg/L	108	116	110	96	86	92					
9	Fluoride as F	mg/L	0.23	0.19	. 0.27	0.25	0.17	0.26					
10	Iron as Fe	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected					
11	Coliform	/100 ml	Absent	Absent	Absent	Absent	Absent	Absent					
12	E-Coli	/100 ml	Absent	Absent	Absent	Absent	Absent	Absent					

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Surface Water.

FSSAI Approved Lab

Authorized Signatory

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor • ISO 45001

• ISO 9001

• ISO 14001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

4D. SEA WATER QUALITY MONITORING: -

Table-1.8: Sea Water Quality Analysis Results of CB2 South End towards Landside from the Sea Basin for the period: April, 2021 to September, 2021

s.	TEST PARAMETERS	2011	RESULTS OF SEA WATER QUALITY ANALYSIS CB2 SOUTH END TOWARDS LANDSIDE FROM SEA BASIN(N 21° 5'1.92", E 72°37'56.5											A.155
NO.		UNIT	APF	APR-21		MAY-21		V-21		L-21	AUG-21		1	-21
10		Doi 173	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom
1	pН		8.17	8.13	7.93	7.89	8.14	8.07	8.05	8.01	7.98	7.92	8.01	8.05
2	Temperature	°C	30.3	30.1	30.4	30.2	30.2	30.1	29.9	29.7	29.7	29.6	29.9	29.7
3	Total Suspended Solids	mg/L	259	227	267	248	247	228	228	203	236	228	128	112
4	BOD (3 Days @ 27 °C)	mg/L	3.2	Not Detected	4.1	Not Detected	3.6	Not Detected	3.2	Not Detected	3.0	Not Detected	2.3	Not Detected
5	Dissolved Oxygen	mg/L	5.8	5.7	5.9	5.7	6.0	5.8	5.8	5.6	5.9	5.7	6.0	5.8
6	Salinity	ppt	31.2	31.6	30.4	30.6	30.1	30.3	30.86	30.52	30.52	30.79	22.84	23.98
7	Oil & Grease	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
8	Nitrate as NO3	µmol /L	3.93	3.62	4.26	3.98	3.19	2.87	2.37	2.18	2.63	2.41	2.39	2.28
9	Nitrite as NO ₂	µmol /L	0.85	0.51	1.13	0.87	0.71	0.69	1.7	1.76	1.38	1.19	1.25	1.14
10	AmmonicalNitrog enas NH ₃	µmol /L	2.76	2.47	2.5	2.41	2.89	2.73	2.51	2.37	2.42	2.37	2.34	2.23
11	Phosphates as PO ₄	µmol /L	2.19	1.93	3.18	2.90	2.63	2.48	1.62	1.79	1.98	1.83	2.19	1.94
12	Total Nitrogen	µmol /L	7.54	6.6	7.89	7.26	6.79	6.29	6.58	6.31	6.43	5.97	5.98	5.65
13	Petroleum Hydrocarbon	µg/L	15.0	Not Detected	17.4	Not Detected	13.6	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
14	Total Dissolved Solids	mg/L	32576	32490	32296	32483	32107	32218	32738	32420	32496	32674	24612	25714
15 A	COD Phytoplankton	mg/L	25.3	19.2	23.4	18.2	19.4	Not Detected	18.0	Not Detected	14.8	12.0	9.6	Not Detected
		ma/											-	
16.1	Chlorophyll	mg/ m ³ mg/	2.76	2.4	2.67	2.38	2.72	2.46	2.63	2.44	2.52	2.35	2.61	2.56
6.2	Phaeophytin	m ³ No.x	0.26	0.17	0.36	0.19	0.3	0.11	0.37	0.13	0.55	0.22	1.98	2.03
16.3	Cell Count	10 ³ / L	174	86	150	96	124	102	158	106	124	84	150	106
16.4	Name of Group Number and name of group species of each group	-	Navicul a sp. Closteri um sp. Scened esmus sp. Rhizoso lenia sp. Skeleto nema sp.	Nitzschi a sp. Fragilla ria sp. Synedr a sp. Melosir a sp.	Scened esmus sp. Spirulin a sp. Thallasi osira sp. Biddulp hia sp. Skeleto nema sp.	Nitzschi a sp. Navicul a sp. Melosir a sp. Cyclotel la sp.	Ankistr odesm us sp. Coscino discus sp. Nitzschi a sp. Melosir a sp.	Navicul a sp. Thallasi osira sp. Synedr a sp. Cyclotel la sp.	Rhizoso lenia sp. Thallasi onema sp. Pleuros igma sp. Coscino discus sp.	Nitzschi a sp. Navicul a sp. Synedr a sp. Biddulp hia sp.	Biddulp hia sp. Thallasi onema sp. Scened esmus sp. Skeleto nema sp Melosir a sp.	Nitzschi a sp. Navicul a sp. Synedr a sp. Gyrosig ma sp.	Rhizoso lenia sp. Skeleto nema sp. Peridini um sp. Navicul a sp. Scened esmus sp.	Nitzsch a sp. Ankistr odesm us sp. Peridini um sp. Synedr a sp.

Bat

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor • ISO 14001

ISO 45001

ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

S. NO.	TEST PARAMETERS		ALCOURT OF DATE	CB2 S	OUTH ENI	RE: D TOWAR	SULTS OF	SEA WAT	ER QUALI M SEA BAS	TY ANALY	/SIS 9 5'1.92".	E 72°37'5	6.58")	
		UNIT	APF	R-21	MAY-21		JUN-21		JUL-21		AUG-21		SEP-21	
	HUDDIN TOL		Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Botton
в	Zooplanktons	UN IG	THE R. P.	ILLUCOR P	OLUSION.	COLOCON.	1203/02	PONDO	No. DOLLARS	Section 1	1000	1. C. C. L.	R. S. C.	I. I fee
17.1	Abundance (Population)	Nox10 3/100 m3	30		27		20		24		21		18	
17.2	Name of Group Number and name of group species of each group	-	Hydrozoans Polychaetes Bivalves Ostracodes		Copepods Polych Decapods Cope Chaetognathes Deca		pods	Polychaetes Decapods Amphipods		Copepods Polychaetes Amphipods		Copepods Polychaetes Chaetognaths Amphipods		
17.3	Total Biomass	ml/10 0 m ³	2.	95	2.60		2.	05	2.10		2.05		1.85	
с	Microbiological	Parame	ters	-11 - OF				1000	NAME OF BRIDE			North N	10110	1000
18.1	Total Bacterial Count	CFU/ ml	24	70	2550		2819		2710		2650		2540	
18.2	Total Coliform	/ml	Pres	sent	Pres	sent	Present		Present		Present		Present	
18.3	E.coli	/ml	Abs	ent	Abs	ent	Abs	ent	Absent		Absent		Absent	
18.4	Enterococcus species	/ml	Pres	sent	Pres	ent	Pres	Present		Present		Present		sent
18.5	Salmonella species	/ml	Abs	ent	Abs	ent	Absent		Absent		Absent		Absent	
18.6	Shigella species	/ml	Abs	ent	Abs	ent	Abs	ent	Absent		Absent		Absent	
18.7	Vibrio species	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Absent		Absent	

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Water.

Authorized Signatory

FSSAI Approved Lab

• Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

 GPCB apprved schedule II auditor • ISO 14001 • ISO 45001 • ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.
Table-1.9: Sea Water Quality Analysis Results of MP1 West End towards Channel from the Sea Basin for the period: April, 2021 to September, 2021

s.	TEST	UNIT	0.03	MP1	WEST EN	RE ID TOWAR	SULTS OF	SEA WAT	ER QUALI	TY ANALY	(SIS 5'9.78".F	72º37'24	1.48")	olution
NO.	PARAMETERS	UNIT	APR-21			Y-21		N-21	and the second second	L-21		G-21	SEP-21	
-			Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Botton
1	pH		8.19	8.15	8.03	7.98	8.15	8.03	7.96	7.93	7.95	7.92	7.98	8.02
2	Temperature	oC	30.3	30.1	30.4	30.2	30.2	30.1	29.7	29.5	29.8	29.6	29.9	29.8
3	Total Suspended Solids	mg/ L	256	238	261	247	245	229	231	214	245	230	158	139
4	BOD (3 Days @ 27 ℃)	mg/ L	3.5	Not Detected	3.3	Not Detected	3.1	Not Detected	2.8	Not Detected	2.9	Not Detected	2.5	Not
5	Dissolved Oxygen	mg/ L	5.8	5.7	5.9	5.8	6.0	5.9	5.8	5.7	5.9	5.8	6.0	5.9
6	Salinity	ppt	31.1	31.6	30.3	30.5	30	30.4	31.1	31.42	30.84	30.98	23.3	24.46
7	Oil & Grease	mg/ L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not . Detected	Not Detected	Not
8	Nitrate as NO ₃	µmo I/L	3.98	3.75	4.17	3.92	3.26	3.15	2.56	2.10	2.45	2.35	2.34	2.28
9	Nitrite as NO ₂	µmo I/L	0.83	0.61	0.92	0.81	0.58	0.46	1.27	1.58	1.35	1.33	1.29	1.17
10	AmmonicalNitrog enas NH ₃	µmo I/L	2.64	2.48	2.51	2.23	2.19	2.10	2.35	2.29	2.53	2.48	2.24	2.18
11	Phosphates as PO ₄	µmo I/L	2.13	1.97	2.47	2.29	2.51	2.37	1.67	1.49	1.86	1.73	1.98	1.86
12	Total Nitrogen	µmo I/L	7.45	6.84	7.60	6.96	6.03	5.71	6.18	5.97	6.33	6.16	5.87	5.63
13	Petroleum Hydrocarbon	µg/L	17.6	Not Detected	15.8	Not Detected	13.6	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detecte
14	Total Dissolved Solids	mg/ L	32964	33502	32207	32396	31924	32316	32924	33264	32714	32865	25128	26184
15	COD	mg/ L	23.50	19.30	25.80	17.40	18.90	Not Detected	17.80	Not Detected	13.98	11.80	11.32	8.26
A	Phytoplankton									Peteeteu				
16.1	Chlorophyll	mg/ m ³	2.61	2.24	2.56	2.18	2.71	2.37	2.52	2.14	2.34	1.97	2.56	2.45
16.2	Phaeophytin	mg/ m ³	0.52	0.12	0.58	0.17	0.23	0.20	0.51	0.25	0.69	0.43	2.03	2.37
16.3	Cell Count	No.x 10 ³ / L	170	86	148	94	136	104	126	92	118	86	152	106
16.4	Name of Group Number and name of group species of each group		Thalasi onema sp. Skeleto nema sp. Coscino discus sp. Rhizoso lenia sp. Melosir a sp.	Nitzschi a sp. Navicul a sp. Fragilla ria sp. Ceratiu m sp.	Nitzschi a sp. Coscino discus sp. Biddulp hia sp. Skeleto nema sp. Thallasi osira sp.	Thalas sio thrix sp. Navicul a sp. Melosir a sp. Cyclote Ila sp.	Thallasi onema sp. Nitzschi ⁻ a sp. Gyro sigma sp. Coscino discus sp.	Nitzsch ia sp. Cheato cerous sp. Synedr a sp. Melosir a sp.	Skeleto nema sp. Thallasi onema sp. Scened esmus sp. Coscino discus sp. Pleuros igma sp.	Nitzschi a sp. Navicul a sp. Peridini um sp. Cyclotel la sp.	Melosir a sp. Thallasi onema sp. Scened esmus sp. Coscino discus sp.	Nitzschi a sp. Synedr a sp. Pleuros igma sp. Cyclotel la sp.	Peridini um sp. Scened esmus sp. Ankistr odesm us sp. Thallasi osira sp. Skeleto nema sp.	Navicul a sp. Nitzsch a sp. Melosir a sp. Coscinc discus sp.

Continue...

• ISO 9001

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor • ISO 14001

ISO 45001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

s.	TEST	1.5	1130	MP1	WEST EN	RES D TOWAR	SULTS OF	SEA WAT	ER QUALI	TY ANALY	SIS 5'9.78".E	72°37'24	.48")	00000
NO.	PARAMETERS	UNIT	APR-21		MAY-21		JUN-21		JUL-21		AUG-21		SEP-21	
the state	ACTECS/10/1		Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom
B	Zooplanktons		CLILLION.	COLUCTION IN	10110-01	STREET, N		Set be with		1. 1. 19 A. D. M.		COCKER V		
17.1	Abundance (Population)	Nox10 3/100 m3	28		24		26		21		20		1	7
17.2	Name of Group Number and name of group species of each group	0.01 8.10 	Hydrozoans Polychaetes Bivalves Gastropods		Deca Amph	gnathes pods lipods naetes	Polychaetes Amphipods Decapods		Polychaetes Amphipods Copepods		Polychaetes Isopods Decapods		Copepods Amphipods Polychaetes Ostracods	
17.3	Total Biomass	ml/10 0 m ³	2.0	2.65		2.10		25	1.	90	1.	95	1.	65
С	Microbiological	Parame	ters			- 11 July 1	P-05-65		9. Hallon 14					
18.1	Total Bacterial Count	CFU/ ml	2390		2510		2690		24	50	25	40	2610	
18.2	Total Coliform	/ml	Pres	ent	Pres	sent	Pres	ent	Pre	sent	Pres	sent	Pres	sent
18.3	E.coli	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	sent	Abs	ent	Abs	ent
18.4	Enterococcus species	/ml	Pres	ent	Pres	sent	Pres	ent	Pre	sent		sent		sent
18.5	Salmonella species	/ml	Abs	ent	Abs	ent	Absent		Absent		Absent		Absent	
18.6	Shigella species	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent
18.7	Vibrio species	/ml	Abs	ent	Abs	ent	Abs	ent	Absent Absent		Absent		Absent	

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Water.

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved
 ISO 14001
 schedule II auditor

ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

Table-1.10: Sea Water Quality Analysis Results of CB1 End towards Channel from the Sea Basin for the period: April, 2021 to September, 2021

s.	TEST			CB	1 END TO	WARDS C	SULTS OF	SEA WAT	ER QUAL	TY ANAL	SIS	2°37'40.1	(4")	10.00
NO.	PARAMETERS	UNIT	APF	2-21		Y-21		N-21	and the second second second	L-21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	G-21	SEP-21	
19	ARD MUTCH COM	1.000	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Botton
1	pH		8.2	8.16	7.98	7.92	8.13	8.1	7.99	8.02	7.98	7.94	7.96	8.03
2	Temperature	oC	30.3	30	30.4	30.2	30.2	30	29.8	29.7	29.9	29.8	29.8	29.6
3	Total Suspended Solids	mg/ L	259	231	278	249	239	217	224	209	231	219	146	123
4	BOD (3 Days @ 27 °C)	mg/ L	3.30	Not Detected	3.60	Not Detected	3.34	Not Detected	3.10	Not Detected	3.00	Not Detected	2.46	Not
5	Dissolved Oxygen	mg/ L	5.8	5.7	5.8	5.6	5.9	5.8	5.9	5.7	5.9	5.8	6	5.9
б	Salinity	ppt	31.2	31.6	30.1	30.4	30	30.3	30.34	31.74	30.76	30.94	21.48	22.68
7	Oil & Grease	mg/ L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not	Not
8	Nitrate as NO ₃	µmo I/L	4.13	3.87	4.28	4.17	3.21	3.15	2.47	2.28	2.58	2.49	2.31	2.2
9	Nitrite as NO ₂	µmo I/L	0.69	0.43	0.91	0.83	0.78	0.63	1.72	1.35	1.43	1.37	1.27	1.21
10	Ammonical Nitrogen as NH ₃	µmo I/L	2.71	2.35	2.37	2.25	2.28	2.1	2.38	2.19	2.49	2.41	2.23	2.19
11	Phosphates as PO ₄	µmo I/L	2.34	2.17	2.5	2.39	2.39	2.25	2.8	3.17	2.37	2.26	2.16	2.06
12	Total Nitrogen	µmo 1/L	7.53	6.65	7.56	7.25	6.27	5.88	6.57	5.82	6.5	6.27	5.81	5.6
13	Petroleum Hydrocarbon	µg/L	15	Not Detected	17.4	Not Detected	14.6	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
14	Total Dissolved Solids	mg/ L	33198	33476	32018	32306	31942	32368	32246	33560	32642	32812	23286	24464
15	COD	mg/ L	24.3	18.5	21.9	17.6	20.3	Not Detected	17.8	Not Detected	14.8	13.6	10.38	8.32
A	Phytoplankton	mat 1					1000					1.1.1		
16.1	Chlorophyll	mg/ m ³	2.65	2.18	2.69	2.20	2.56	2.36	2.60	2.21	2.46	2.24	2.40	2.18
16.2	Phaeophytin	mg/ m ³	0.29	0.13	0.25	0.11	0.58	0.21	0.54	0.15	0.67	0.12	2.19	2.00
16.3	Cell Count	No.x 10 ³ / L	178	84	144	90	136	102	148	102	136	94	158	102
16.4	Name of Group Number and name of group species of each group		Skeleto nema sp. Pleuros igma sp. Thalasi osira sp. Rhizoso lenia sp.	Navicul a sp. Nitzschi a sp. Melosir a sp. Synedr a sp.	Scened esmus sp. Skeleto nema sp. Thallasi onema sp. Coscino discus sp. Rhizoso lenia sp.	Nitzschi a sp. Navicul a sp. Biddulp hia sp. Synedr a sp.	Biddulp hia sp. Thallasi osira sp. Cheato cerous sp. Rhizoso lenia sp. Thallasi onema sp.	Nitzschi a sp. Melosir a sp. Synedr a sp. Navicul a sp.	Coscino discus sp. Thallasi onema sp. Rhizoso lenia sp. Thallasi onema sp.	Navicul a sp. Melosir a sp. Synedr a sp. Cyclotel la sp.	Coscino discus sp. Skeleto nema sp Rhizoso lenia sp. Thallasi onema sp. Melosir a sp.	Navicul a sp. Pleuros igma sp. Synedr a sp. Fragilla ria sp. Nitzschi a sp.	Navicul a sp. Ankistr odesm us sp. Scened esmus sp. Rhizoso lenia sp.	Nitzschi a sp. Thallasi osira sp. Melosir a sp. Synedr a sp.

OLIVION POLISCON POLI

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor ISO 45001

• ISO 9001

• ISO 14001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

101	
/ 1	POLLUCON LABORATORIES PVT. LTD.
$ \rightarrow) $	

	ASCEN MALLER		Uncert in	СВ	1 END TO	RE: WARDS C	SULTS OF	SEA WAT	ER QUALI	TY ANALY	YSIS 4.67" , E 7	2°37'40.1	4") ⁷	1.000
S. NO.	TEST PARAMETERS	UNIT			MAY-21		JUN-21		JUL-21		AUG-21		SEP-21	
PER	HOOM DOWN	0. 6	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom
в	Zooplanktons	ox rou	LINT	N. K. CHI	opucas	million of	522033	101-0	0.0.0.00	of total	COLONES	KON TOP	ICTS IN	1.000
17.1	Abundance (Population)	Nox10 3/100 m3	2	28		25		3	20		22		18	
17.2	Name of Group Number and name of group species of each group	-	Ostracodes Mysids Polychaetes Gastropods		Gastr	pods sids opods pods	Copepods Polychaetes Ostracods		Copepods Polychaetes Decapods Bivalves		Copepods Polychaetes Ostracods Isopods		Chaetognaths Amphipods Copepods	
17.3	Total Biomass	ass ml/10 0 m ³ 2.4 2.10 2.05 1.90		90	2.	15	1.	75						
с	Microbiological	Parame	ters	14-29		1.82	199		Jan I	12.00	a para	-	ILA SA TAS	
18.1	Total Bacterial Count	CFU/ ml	23	80	24	50	25	90	23	00	24	80	25	10
18.2	Total Coliform	/ml	Pres	sent	Pres	ent	Pres	sent	Pre	sent	Pres	sent	Pres	sent
18.3	E.coli	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent
18.4	Enterococcus species	/mì	Pres	ent	Pres	ent	· Pres	ent	Pres	sent	Pres	sent	Pres	ent
18.5	Salmonella species	/ml	Abs	ent	Abs	ent	ent Absent Absent		ent	Absent		Abs	ent	
18.6	Shigella species	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent
18.7	Vibrio species	/ml	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Abs	ent	Absent	

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Water.

Authorized Signatory

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor • ISO 14001

• ISO 45001 • ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

4E. DUMP POND DISCHARGE WATER QUALITY MONITORING: -

Table-1.11:	Dump Pond Water Qual	Analysis Results for the Period: April	, 2021 to September, 2021
-------------	----------------------	--	---------------------------

Sr.	Darametera	Ilait	20/05/2021	20/05/2021	31/08/2021	31/08/2021
No.	Parameters	Unit	OLD COAL YARD	РЕТ СОСК	OLD COAL YARD	PET COCK
1	pН		8.37	8.71	7.46	7.82
2	Total Dissolved Solids	mg/L	2568	1986	2021	1216
3	Total Suspended Solids	mg/L	57	65	49	62
4	Turbidity	NTU	14.2	13.8	12.8	9.7
5	BOD (3 Days @ 27 °C)	mg/L	32	30.8	34	24
6	Dissolved Oxygen	mg/L	5.9	5.7	5.9	6
7	COD	mg/L	168	139	142	112
8	Salinity	ppt	1.55	1.3	1.48	0.76
9	Oil & Grease	mg/L	Not Detected	Not Detected	Not Detected	Not Detected
10	Total Hardness as CaCO ₃	mg/L	172	162	175	139
11	Fluoride as F	mg/L	0.38	0.41	0.46	0.27
12	Chloride as Cl	mg/L	859	725	819	418
13	Zinc as Zn	mg/L	0.61	0.37	0.58	0.23
14	Cadmium as Cd	mg/L	Not Detected	Not Detected	Not Detected	Not Detected
15	Lead as Pb	mg/L	Not Detected	Not Detected	Not Detected	Not Detected
16	Mercury as Hg	mg/L	Not Detected	Not Detected	Not Detected	Not Detected

Detection Limit, Mercury as Hg: 0.00025 mg/L, Oil & Grease: 2.0 mg/L, Cadmium as Cd: 0.001 mg/L, Lead as Pb: 0.005 mg/L **Observation:** From the above results it is concluded that there is No Significant Changes in the Quality of Dump Pond Discharge Water.

-A-D-

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor • ISO 14001

ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

4F. AMBIENT NOISE LEVEL MONITORING: -

Table-1.12: Ambient Noise Level Monitoring Results during the Day Time in Leq. dB(A) for the period: April, 2021 to September, 2021 At Near Port Gate No.: 2

Sampling Location	With the second	Peter Boold Incol. Of	1 - Near Por	t Gate No.: 2	ALL RECEIPTION OF LODGE	A CONTRACTOR OF THE
Longitude Latitude				5'E 72°37.739'		100 10 10 10 10 10 10 10 10 10 10 10 10
Date of Monitoring	01/04/2021	03/05/2021	03/06/2021	01/07/2021	02/08/2021	02/09/2021
6:00-7:00	71.6	70.8	53.9	52.8	68.4	67.4
7:00-8:00	60.8	60.4	63.1	66.0	65.1	60.8
8:00-9:00	68.2	67.9	61.0	61.1	52.9	66.1
9:00-10:00	65.7	64.7	62.3	62.2	51.3	64.3
10:00-11:00	69.1	68.3	58.4	59.8	52.0	50.0
11:00-12:00	71.1	70.5	52.8	53.1	66.0	59.9
12:00-13:00	58.7	58.5	69.3	67.4	65.7	66.6
13:00-14:00	64.8	64.2	65.6	66.6	57.3	67.9
14:00-15:00	61.9	61.5	57.2	57.2	63.1	66.7
15:00-16:00	57.7	57.5	55.6	54.3	61.0	56.6
16:00-17:00	55.3	55.2	63.7	63.8	58.3	48.5
17:00-18:00	63.9	63.9	64.9	64.6	65.2	53.3
18:00-19:00	53.2	53.1	64.8	65.7	65.6	58.5
19:00-20:00	62.6	61.8	65.2	67.1	58.1	66.8
20:00-21:00	69.4	69.3	67.0	66.8	52.3	59.6
21:00-22:00	67.7	66.8	59.0	58.3	57.1	62.0

human hearing.

Day Time shall mean from 6:00 am to 10:00 pm

Table-1.13: Noise Level Monitoring Results during the Night Time in Leq. dB(A) for the period: April, 2021 to September, 2021At Near Port Gate No.: 2

Sampling Location	1 - Near Port Gate No.: 2										
Longitude Latitude	1 1 1 1 1 M	5	N 21º 05.426	'E 72°37.739'	1.	Second Second					
Date of Monitoring	01/04/2021 & 02/04/2021	03/05/2021 & 04/05/2021	03/06/2021 & 04/06/2021	01/07/2021 & 02/07/2021	02/08/2021 & 03/08/2021	02/09/2021 & 03/09/2021					
22:00-23:00	62.4	61.6	56.7	55.7	51.5	51.3					
23:00-00:00	61.5	61.0	62.2	61.8	53.2	51.6					
00:00-01:00	64.0	63.5	59.6	58.1	48.7	46.3					
01:00-02:00	58.4	57.7	50.8	49.4	53.7	45.2					
02:00-03:00	51.2	51.0	57.4	59.9	51.8	52.8					
03:00-04:00	60.7	59.8	59.2	57.7	49.2	55.5					
04:00-05:00	58.6	57.9	57.7	58.6	54.3	56.2					
05:00-06:00	55.4	54.6	59.9	61.0							
05:00-06:00 [#] dB(A) Leq. Denotes the human hearing. Night Time shall mean	he time weighte	d average of the			55.2	58.9					

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

 GPCB apprved ISO 14001 ISO 45001 • ISO 9001 schedule II auditor

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

Table-1.14: Ambient Noise Level Monitoring Results during the Day Time in Leq. dB(A) for the period: April, 2021 to September, 2021 At HSE Building Terrace

Sampling Location	CON STUDIOS	California de Las se	2 - HSE Buil	ding Terrace	11.70% Store	INSERTION FOR
Longitude Latitude	autors following	TRUE DOLLAR AND THE		E 72º 38.491'		A ROLL NO
Date of Monitoring	08/04/2021	06/05/2021	10/06/2021	08/07/2021	09/08/2021	09/09/2021
6:00-7:00	57.4	56.7	58.9	60.2	70.2	58.6
7:00-8:00	61.5	61.3	57.9	57.1	68.7	62.2
8:00-9:00	69.6	69.2	60.5	61.4	66.1	62.7
9:00-10:00	58.3	57.9	54.3	52.9	66.3	66.0
10:00-11:00	67.4	66.5	56.4	55.5	57.7	67.8
11:00-12:00	67.8	66.9	58.1	60.0	63.5	70.6
12:00-13:00	65.4	64.5	59.8	61.3	59.7	65.8
13:00-14:00	55.9	55.1	66.9	66.4	66.9	65.9
14:00-15:00	67.3	66.6	64.3	64.3	55.2	62.9
15:00-16:00	63.7	63.4	66.2	68.6	68.9	59.1
16:00-17:00	70.8	70.4	60.2	61.5	57.9	59.3
17:00-18:00	54.9	54.8	62.1	60.1	62.4	60.0
18:00-19:00	56.5	55.7	57.8	56.0	57.6	64.4
19:00-20:00	55.2	54.9	68.7	71.6	59.8	62.1
20:00-21:00	63.4	62.5	56.1	57.3	61.9	56.2
21:00-22:00	63.8	63.6	53.4	53.8	56.1	68.9
[#] dB(A) Leq. Denotes th human hearing. Day Time shall mean fr		STREET, BUILDING	level of sound ir	decibels on sca	le A which is rel	atable to

Table-1.15: Noise Level Monitoring Results during the Night Time in Leq. dB(A) for the period: April, 2021 to September, 2021 At HSE Building Terrace

2 - HSE Building Terrace										
N 21° 05.043' E 72° 38.491'										
8/04/2021 & 9/04/2021	06/05/2021 & 07/05/2021	10/06/2021 & 11/06/2021	08/07/2021 & 09/07/2021	09/08/2021 & 10/08/2021	09/09/2021 & 10/09/2021					
60.0	59.1	59.1	60.0	54.0	56.9					
66.5	65.9	55.3	52.8	53.6	55.9					
54.7	54.4	54.5	54.2	51.0	52.6					
61.8	61.2	61.5	62.5	50.6	50.2					
59.9	59.0	64.6	63.7	52.2	48.3					
58.1	57.6	55.0	54.1	51.9	57.0					
65.8	65.7	57.5	57.2	52.1	55.6					
60.8	60.7	60.0	58.2	54.2	54.8					
	& 60.0 66.5 54.7 61.8 59.9 58.1 65.8	& & Ø/04/2021 07/05/2021 60.0 59.1 66.5 65.9 54.7 54.4 61.8 61.2 59.9 59.0 58.1 57.6 65.8 65.7	N 21° 05.043° 8/04/2021 06/05/2021 10/06/2021 & & & 0/04/2021 07/05/2021 11/06/2021 60.0 59.1 59.1 66.5 65.9 55.3 54.7 54.4 54.5 61.8 61.2 61.5 59.9 59.0 64.6 58.1 57.6 55.0 65.8 65.7 57.5	N 21° 05.043' E 72° 38.491' 8/04/2021 06/05/2021 10/06/2021 08/07/2021 & & & & & 0/04/2021 07/05/2021 11/06/2021 09/07/2021 60.0 59.1 59.1 60.0 66.5 65.9 55.3 52.8 54.7 54.4 54.5 54.2 61.8 61.2 61.5 62.5 59.9 59.0 64.6 63.7 58.1 57.6 55.0 54.1 65.8 65.7 57.5 57.2	N 21° 05.043' E 72° 38.491' 8/04/2021 06/05/2021 10/06/2021 08/07/2021 09/08/2021 & & & & & & & & & 09/08/2021 &					

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor • ISO 14001

ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

Table-1.16: Ambient Noise Level Monitoring Results during the Day Time in Leq. dB(A) for the period: April, 2021 to September, 2021 At Central Water Pump House

Sampling Location	access and the case of	3 - Central Water Pump House										
Longitude Latitude	LAUCON NOLLEVAL	Add the state of a		E 72º 38.420'	ALCOLD PORTION	A SCHOOL N						
Date of Monitoring	12/04/2021	10/05/2021	14/06/2021	12/07/2021	12/08/2021	13/09/2021						
6:00-7:00	68.3	68.0	56.2	56.9	67.7	59.8						
7:00-8:00	64.4	63.5	56.8	55.9	51.6	56.5						
8:00-9:00	67.1	66.7	60.9	63.4	55.8	52.6						
9:00-10:00	60.7	59.8	65.8	67.5	59.9	61.3						
10:00-11:00	65.9	65.6	69.0	69.9	58.4	63.4						
11:00-12:00	68.4	67.7	68.9	70.8	67.3	55.4						
12:00-13:00	62.0	61.2	68.5	69.1	55.4	56.4						
13:00-14:00	57.6	56.8	65.9	66.7	53.4	59.4						
14:00-15:00	66.1	65.5	59.3	57.7	56.5	51.2						
15:00-16:00	69.2	68.6	61.5	60.9	65.5	58.1						
16:00-17:00	58.9	58.2	61.2	62.3	53.2	58.7						
17:00-18:00	61.7	60.7	61.7	63.7	65.0	60.9						
18:00-19:00	56.8	56.6	63.2	61.2	61.2	52.3						
19:00-20:00	60.6	59.7	62.0	63.6	53.1	57.0						
20:00-21:00	56.6	55.9	67.2	69.8	66.7	64.8						
21:00-22:00	54.7	53.9	67.5	66.1	64.6	51.8						

Day Time shall mean from 6:00 am to 10:00 pm.

Table-1.17: Noise Level Monitoring Results during the Night Time in Leq. dB(A) for the period: April, 2021 to September, 2021 At Central Water Pump House

Sampling Location		3	- Central Wat	er Pump Hous	e	8.1 (A) (F)			
Longitude Latitude	N 21° 04.697' E 72° 38.420'								
Date of Monitoring	12/04/2021 & 13/04/2021	10/05/2021 & 11/05/2021	14/06/2021 & 15/06/2021	12/07/2021 & 13/07/2021	12/08/2021 & 13/08/2021	13/09/2021 & 14/09/2021			
22:00-23:00	58.5	58.1	56.5	57.3	53.5	59.2			
23:00-00:00	62.5	61.8	60.5	58.8	56.3	55.2			
00:00-01:00	62.2	61.9	58.9	58.3	60.7	61.4			
01:00-02:00	57.6	56.9	57.6	57.4	58.7	63.5			
02:00-03:00	60.1	59.3	60.1	62.4	63.1	58.4			
03:00-04:00	53.8	53.4	53.8	54.3	54.9	60.8			
04:00-05:00	56.1	56.0	56.1	58.9	62.7	57.8			
05:00-06:00	59.2	58.2	56.6	57.1	56.9	63.2			

Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor • ISO 14001 • ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

 Table-1.18: Ambient Noise Level Monitoring Results during the Day Time in Leq. dB(A) for the period: April, 2021 to September, 2021 At Container Terminal

Sampling Location			4 - Contain	er Terminal	A CONTRACTOR OF MULTING	
Longitude Latitude	COM REGISTERIA	CONTRACTOR CONTRACTOR		'E 72° 37.774'	UNCOP FOUND ON	POLIDER'S FOL
Date of Monitoring	05/04/2021	13/05/2021	07/06/2021	05/07/2021	06/08/2021	06/09/2021
6:00-7:00	63.5	63.1	65.7	65.8	65.3	67.5
7:00-8:00	60.3	59.3	55.4	58.2	56.9	62.6
8:00-9:00	65.3	65.2	52.5	51.7	62.5	54.6
9:00-10:00	59.9	59.0	60.8	59.6	51.8	54.4
10:00-11:00	58.0	57.8	59.5	61.8	61.8	70.2
11:00-12:00	61.1	61.0	56.5	54.8	50.3	66.5
12:00-13:00	66.7	65.8	53.5	52.7	55.3	66.9
13:00-14:00	68.9	68.1	60.6	60.3	51.1	54.5
14:00-15:00	68.5	68.2	66.6	68.4	51.7	54.1
15:00-16:00	57.2	57.0	66.1	67.8	49.5	55.8
16:00-17:00	54.6	53.7	66.5	64.5	53.7	61.0
17:00-18:00	58.1	57.4	56.6	57.0	63.6	57.6
18:00-19:00	66.2	66.2	65,3	66.5	50.8	69.1
19:00-20:00	62.5	61.9	55.2	56.2	50.1	55.3
20:00-21:00	54.0	53.4	66.4	68.3	64.1	65.7
21:00-22:00	56.4	56.3	55.5	54.5	53.0	68.2

Day Time shall mean from 6:00 am to 10:00 pm.

Table-1.19: Noise Level Monitoring Results during the Night Time in Leq. dB(A) for the period: April, 2021 to September, 2021 At Container Terminal

Sampling Location	and Party Brown	and service of	4 - Contain	er Terminal	and the second second	1.1.5.4.2.0
Longitude Latitude		and a second	N 21º 05.187	E 72º 37.774		and the line of
Date of Monitoring	05/04/2021 & 06/04/2021	13/05/2021 & 14/05/2021	07/06/2021 & 08/06/2021	05/07/2021 & 06/07/2021	06/08/2021 & 07/08/2021	06/09/2021 & 07/09/2021
22:00-23:00	65.4	65.1	56.4	56.9	60.8	48.6
23:00-00:00	61.3	61.1	55.9	58.5	55.9	47.3
00:00-01:00	63.8	62.8	61.6	59.8	53.8	58.0
01:00-02:00	56.6	55.9	58:2	57.9	57.8	57.3
02:00-03:00	62.6	61.7	58.5	59.5	53.4	52.3
03:00-04:00	60.2	59.9	53.5	50.2	61.5	56.8
04:00-05:00	53.3	53.1	62.8	61.5	49.9	60.9
05:00-06:00	55.8	55.7	56.2	58.7		
05:00-06:00 #dB(A) Leq. Denotes the human hearing. Night Time shall mean f	e time weighted	average of the			48.8 le A which is rela	50.3 atable to

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

 GPCB apprved schedule II auditor • ISO 14001 • ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

Table-1.20:Ambient Noise Level Monitoring Results during the Day Time in Leq. dB(A) for the period: April, 2021 to September, 2021 At Hazira Village

Sampling Location		So cuche Birria.	5 - Hazir	a Village	ALC: NO DOUGHT	
Longitude Latitude	Second Boltowice	NO DE CELENCIER		E 72º 38.44'	and the second states	A tech marches are
Date of Monitoring	15/04/2021	20/05/2021	17/06/2021	17/07/2021	16/08/2021	16/09/2021
6:00-7:00	58.6	58.1	57.5	58.4	62.1	60.3
7:00-8:00	64.0	63.8	63.6	62.0	63.4	58.9
8:00-9:00	54.3	53.6	51.6	50.2	57.2	62.5
9:00-10:00	59.8	59.5	52.1	50.8	63.3	70.0
10:00-11:00	62.4	61.7	63.9	63.5	64.0	63.9
11:00-12:00	59.1	58.3	60.3	60.4	59.2	59.0
12:00-13:00	52.2	51.3	53.7	52.4	56.3	70.1
13:00-14:00	56.7	56.5	55.1	55.7	58.8	64.9
14:00-15:00	63.6	63.2	55.0	55.0	62.8	63.2
15:00-16:00	51.5	51.2	54.9	54.7	63.9	68.1
16:00-17:00	56.3	56.1	51.3	51.6	60.1	71.5
17:00-18:00	54.8	54.3	57.0	55.6	58.9	63.1
18:00-19:00	65.2	64.3	58.8	61.7	57.8	67.6
19:00-20:00	65.6	65.1	63.0	63.1	58.0	65.1
20:00-21:00	61.8	61.4	61.3	63.9	61.6	62.4
21:00-22:00	66.8	66.1	63.5	62.4	56.7	58.2

Day Time shall mean from 6:00 am to 10:00 pm.

 Table-1.21:
 Noise Level Monitoring Results during the Night Time in Leq. dB(A) for the period: April, 2021 to September, 2021 At Hazira Village

5 - Hazira Village									
N 21° 05.44' E 72° 38.44'									
15/04/2021 & 16/04/2021	20/05/2021 & 21/05/2021	17/06/2021 & 18/06/2021	17/07/2021 & 18/07/2021	16/08/2021 & 17/08/2021	16/09/2021 & 17/09/2021				
56.2	55.6	50.3	49.8	61.2	56.4				
50.9	50.1	61.2	59.2	55.1	50.6				
61.0	60.0	51.9	51.2	53.0	52.5				
59.6	59.4	58.6	60.3	60.3	60.6				
58.0	57.8	54.4	55.8		59.1				
63.7	63.1	61.8	63.0		56.5				
64.9	64.8	55.4	54.8		58.1				
59.1	58.7	60.3			62.2				
	& 16/04/2021 56.2 50.9 61.0 59.6 58.0 63.7 64.9	& & L6/04/2021 21/05/2021 56.2 55.6 50.9 50.1 61.0 60.0 59.6 59.4 58.0 57.8 63.7 63.1 64.9 64.8	N 21° 05.44' L5/04/2021 20/05/2021 17/06/2021 & & & & & & L6/04/2021 21/05/2021 18/06/2021 56.2 55.6 50.3 50.9 50.1 61.2 61.0 60.0 51.9 59.6 59.4 58.6 58.0 57.8 54.4 63.7 63.1 61.8 64.9 64.8 55.4	N 21° 05.44' E 72° 38.44' L5/04/2021 20/05/2021 17/06/2021 17/07/2021 & & & & & L6/04/2021 21/05/2021 17/06/2021 17/07/2021 & 56.2 55.6 50.3 49.8 50.9 50.1 61.2 59.2 61.0 60.0 51.9 51.2 59.6 59.4 58.6 60.3 58.0 57.8 54.4 55.8 63.7 63.1 61.8 63.0 64.9 64.8 55.4 54.8	N 21° 05.44' E 72° 38.44' L5/04/2021 20/05/2021 17/06/2021 17/07/2021 16/08/2021 &				

Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000. Note: The Noise Level of Hazira Village is compare with the Industrial area Norms as Hazira Village is Surround By Numbers of industries.

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved
 schedule II auditor

• ISO 14001 • ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

4G. DG SETS STACK EMISSION AND NOISE LEVEL MONITORING: -

Table-1.22: DG Sets Stack Monitoring Results for the period: April, 2021 to September, 2021

Table-1.22 (a): DG Sets Stack Monitoring Results:

Sr.	Parameters	Unit	DG SET TOY	O DENKI -1	DG SET TOYO DENKI -2		DG SET TOYO DENKI -3	
No.			20/05/2021	30/08/2021	20/05/2021	30/08/2021	20/05/2021	30/08/2021
1	Particulate Matter	mg/Nm ³	22.6	24.3	20.3	22.59	28.49	23.4
2	Sulphur Dioxide	ppm	6.68	5.47	5.6	4.56	7.67	6.34
3	Oxide of Nitrogen	ppm	30.2	33.54	34.5	29.4	37.49	35.57
4	Carbon Monoxide (CO)	mg/m ³	21.86	17.18	19.63	16.8	14.94	19.42
5	Non Methyl Hydro Carbon (NMHC)	mg/m ³	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected

Table-1.22 (b): DG Sets Stack Monitoring Results:

Sr.	Parameters	Unit	SS-1 LT DO	5 -320 KVA	SS3 -DG	-200 KVA	LT Phase -1 (625 KVA)	
No.			20/05/2021	30/08/2021	25/05/2021	30/08/2021	25/05/2021	31/08/2021
1	Particulate Matter	mg/Nm ³	15.59	22.41	19.27	21.68	26.52	30.53
2	Sulphur Dioxide	ppm	5.07	6,28	6.13	6.06	8.06	7.27
3	Oxide of Nitrogen	ppm	37.21	35.43	31.54	35.61	37.59	34.56
4	Carbon Monoxide (CO)	mg/m ³	11.45	13.74	8.02	6.87	13.74	14.89
5	Non Methyl Hydro Carbon (NMHC)	mg/m ³	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected

Table-1.22 (c): DG Sets Stack Monitoring Results:

Sr.	Parameters	Unit	LT Phase -2	2 (750 KVA)	ER-1 (100 KVA)		
No.	rundineters	Unic	25/05/2021	31/08/2021	25/05/2021	30/08/2021	
1	Particulate Matter	mg/Nm ³	28.52	32.45	24.52	27.53	
2	Sulphur Dioxide	ppm	7.05	6.91	5.23	6.3	
3	Oxide of Nitrogen	ppm	39.52	38.32	33.41	36.37	
4	Carbon Monoxide (CO)	mg/m ³	11.45	17.18	9.16	12.6	
5	Non Methyl Hydro Carbon (NMHC)	mg/m ³	Not Detected	Not Detected	Not Detected	Not Detected	

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor ISO 14001

ISO 45001

ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

Table-1.22 (d): DG Sets Stack Monitoring Results:

Sr.	Parameters	Unit	NDG Buildin	ig (380 KVA)	Custom Building (320 KVA)		
No.	rarameters	onic	25/05/2021	31/08/2021	25/05/2021	30/08/2021	
1	Particulate Matter	mg/Nm ³	21.57	17.52	17.61	19.54	
2	Sulphur Dioxide	ppm	7.33	6.95	4.35	5.32	
3	Oxide of Nitrogen	ppm	36.27	33.5	33.41	31.57	
4	Carbon Monoxide (CO)	mg/m ³	10.31	9.16	13.74	. 11.45	
5	Non Methyl Hydro Carbon (NMHC)	mg/m ³	Not Detected	Not Detected	Not Detected	Not Detected	

Table-1.23: DG Sets Noise Level Monitoring Results for the period: April, 2021 to September, 2021

Sr. No.	DG Set A	verage Noise Level In Leq. dB(A)	
SF. NO.	Sampling Location	At 1 M Distance F	rom The Enclosure
	Sampling Date	25 & 20/05/2021	30 & 31/08/2021
1.	DG SET TOYO DENKI - 1	65.6	67.5
2.	DG SET TOYO DENKI - 2	64.8	66.4
3.	DG SET TOYO DENKI -3	64.2	65.8
4.	SS-1 LT DG -320 KVA	66.4	64.2
5.	SS3 -DG -200 KVA	65.1	67.2
6.	LT PHASE -1 (625 KVA)	70.4	68.8
7.	LT PHASE -2 (750 KVA)	63.2	66.4
8.	ER-1 (100 KVA)	67.8	65.1
9.	NDG BUILDING (380 KVA)	65.6	62.3
10.	CUSTOM BUILDING (320 KVA)	64.2	62.8

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor • ISO 14001 • ISO 45001

ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

4H. SEA SEDIMENT QUALITY MONITORING: -

Table-1.24: Sea Sediment Quality Results of CB2 South End towards Landside for the period: April, 2021 to September, 2021

S. NO	PARAMETERS	UNIT				LANDSIDEFR E 72°37'56.5		N
	ndala maanifaha sebuhaan	TO G LEAD	APR-21	MAY-21	JUN-21	JUL-21	AUG-21	SEP-21
1	Organic Matter	%	0.53	0.45	0.40	0.43	0.39	0.36
2	Phosphorus as P	µg/g	734	592	613	634	678	623
3	Texture		Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt
4	Petroleum Hydrocarbon	µg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
5	Heavy Metals			ALL YAR SHALL	La Columb			
5.1	Aluminum as Al	%	4.63	4.72	4.91	4.58	4.87	4.72
5.2	Total Chromium as Cr ⁺³	µg/g	127	135	128	117	138	117
5.3	Manganese as Mn	µg/g	615	582	613	572	654	620
5.4	Iron as Fe	%	4.70	4.63	4.86	4.64	4.73	4.58
5.5	Nickel as Ni	µg/g	41.30	32.90	42.70	38.00	38.49	29.13
5.6	Copper as Cu	µg/g	29.80	25.70	36.90	29.40	31.58	36.28
5.7	Zinc as Zn	µg/g	112	103	123	106	112	134
5.8	Lead as Pb	µg/g	3.18	2.91	2.76	1.93	2.37	2.29
5.9	Mercury as Hg	µg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
6	Benthic Organisms			1.1.2				Dettottod
6.1	Macrobenthos (No and name of groups present, No and name of species of each group present)	-	Polychaetes Gastropods Crustancean S	Polychaetes Gastropods Crustancean S	Polychaetes Gastropods Bivalves	Polychaetes Copepods Decapods	Polychaetes Bivalves Crustaceans	Polychäetes Gastropods Decapods
6.2	MeioBenthos (No and name of groups present, No and name of species of each group present)		Nematodes	Foraminifera ns	Nematodes	Foraminifera ns	Foraminifera ns	Nematodes
6.3	Population	No./m ²	324	293	263	294	294	234

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Sediment.

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor ISO 45001

• ISO 9001

ISO 14001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

Table-1.25: Sea Sediment Quality Results of MP1 West End towards Channel of Sea Basin for theperiod: April, 2021 to September, 2021

S. NO.	PARAMETERS	UNIT	in the second second	MP1 WEST (ND TOWARD 21° 5'9.78",	S CHANNEL O E 72°37'24.48	F SEA BASIN 3")	10 La 10 4
110.	TRUE INTELECTION POLICIES	No Inco	APR-21	MAY-21	JUN-21	JUL-21	AUG-21	SEP-21
1	Organic Matter	%	0.54	0.47	0.39	0.43	0.37	0.35
2	Phosphorus as P	µg/g	729	. 529	504	576	546	614
3	Texture		Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt
4	Petroleum Hydrocarbon	µg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
5	Heavy Metals		and a state of the					
5.1	Aluminum as Al	%	4.65	4.89	4.92	4.58	4.69	4.7
5.2	Total Chromium as Cr ⁺³	µg/g	139	102	134	113	124	108
5.3	Manganese as Mn	µg/g	658	593	608	568	708	659
5.4	Iron as Fe	%	4.52	4.76	4.83	4.69	4.86	4.62
5.5	Nickel as Ni	µg/g	43.60	35.90	45.20	37.80	27.93	23.80
5.6	Copper as Cu	µg/g	37.5	26.8	37.6	29.4	39.8	34.9
5.7	Zinc as Zn	µg/g	108	115	129	134	124	107
5.8	Lead as Pb	µg/g	2.70	3.46	2.83	2.56	2.39	2.18
5.9	Mercury as Hg	µg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
6	Benthic Organisms			2.12				
6.1	Macrobenthos (No and name of groups present, No and name of species of each group present)		Polychaetes Crustaceans Ostracods Bivalves	Polychaetes Crustaceans Gastropods	Polychaetes Crustaceans Gastropods	Polychaetes Bivalves Amphipods	Polychaetes Bivalves Crustaceans	Decapods Polychaetes Gastropods
6.2	MeioBenthos (No and name of groups present, No and name of species of each group present)	-	Foraminifera ns	Nematodes	-	Foraminifera ns	Foraminifera ns	-
6.3	Population	No./m ²	382	294	235	264	234	263

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Sediment.

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 • GPCB apprved • ISO 14001 schedule II auditor

ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

Table-1.26: Sea Sediment Quality Results of CB1 End towards Channel for the period: April, 2021 to September, 2021

S. NO.	PARAMETERS	UNIT	CBI WEST END TOWARDS CHANNEL OF SEA BASIN									
NO.			APR-21	MAY-21	JUN-21	JUL-21	AUG-21	SEP-21				
1	Organic Matter	%	0.56	0.48	0.38	0.41	0.37	0.34				
2	Phosphorus as P	µg/g	613	561	610	569	629	579				
3	Texture		Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt Sandy Silt		Sandy Silt				
4	Petroleum Hydrocarbon	µg/g	Not Detected	Not .Detected	Not Detected	Not Detected	Not Detected	Not Detected				
5	Heavy Metals				and the second							
5.1	Aluminum as Al	%	4.79	4.82	4.90	4.90 4.68		4.68				
5.2	Total Chromium as Cr ⁺³	µg/g	135	113	128	113	139	112				
5.3	Manganese as Mn	µg/g	680	579	610	610 529		608				
5.4	Iron as Fe	%	4.73	4.63	4.76	4.76 4.53		4.59				
5.5	Nickel as Ni	µg/g	45.9	31.9	41.2	38.6	32.8	27.3				
5.6	Copper as Cu	µg/g	27.6	22.4	35.8	29.4	37.5	32.94				
5.7	Zinc as Zn	hð/ð	120	108	119	107	118	105				
5.8	Lead as Pb	µg/g	27.6	3.17	2.74	1.93	2.14	2.19				
5.9	Mercury as Hg	µg/g	Not Detected	Not Detected	Not Detected	Not Not		Not Detected				
6	Benthic Organisms	1007-00	te la terre de la composition de la com	and the second		10 10 10 10 10 10 10 10 10 10 10 10 10 1	Detected					
6.1	Macrobenthos (No and name of groups present, No and name of species of each group present)	7	Polychaetes Gastropods Amphipods	Polychaetes Crustaceans Gastropods	Polychaetes Gastropods Bivalves	Polychaetes Bivalves Crustaceans	Polychaetes Bivalves Copepods	Decapods Polychaetes Gastropods				
6.2	MeioBenthos (No and name of groups present, No and name of species of each group present)	-	Foraminifera ns	Nematodes	. –	Foraminifera Foraminife ns ns						
6.3	Population	No./m ²	322	263	381	323	235	265				

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Sediment.

-A-D-

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor

ISO 14001

ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

41. SOIL QUALITY MONITROING: -

Table-1.27A: Soil Quality Testing Results for the period: April, 2021 to September, 2021

SR. NO.	PARAMETERS	UNIT	NEAR PORT GATE NO. 2			
SR. NO.	PARAMETERS	UNIT	29/06/2021	29/09/2021		
1	Туре	essa a chang <u>es</u> a media	Sandy Loam	Sandy Loam		
Grain Siz	e Analysis	a de la construcción de la const				
2	Gravel	%	1.6	2.0		
3	Coarse Sand	%	7.4	9.0		
4	Medium Sand	%	27	25		
5	Fine Sand	%	39	41		
6	Total Sand	%	75	77		
7	Silt + Clay	%	25	23		
8	рН (1:5)		8.63	8.52		
9	Electricity Conductivity	µmho/cm	1648	·1701		
10	Alkali matter	mg/kg	590	542		
11	Cation Exchange Capacity	meq/100 gm	15.24	13.90		
12	Sodium Absorption Ratio		10.39	10.25		
13	Organic Matter	mg/kg	0.58	0.52		
14	Available Nitrogen	· meq/100 gm	0.69	0.45		
15	Available Potassium	mg/kg	6.42	6.90		
16	Available Phosphorus	mg/kg	0.86	0.62 -		
17	Available Sodium	mg/kg	7.42	10.80		
18	Permeability	cm/sec	1.56 × 10 ⁻⁷	1.45 x 10 ⁻⁷		

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Soil Quality.

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor • ISO 14001

ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

SR. NO.	PARAMETERS	LINITT	NEAR LT CANTEEN PARKING			
SK. NO.	PARAMETERS	UNIT	29/06/2021	29/09/2021		
1	Туре		Sandy Loam	Sandy Loam		
Grain Size	Analysis					
2	Gravel	%	2.3	2.8		
3	Coarse Sand	%	7.7	7.2		
4	Medium Sand	%	18	21		
5	Fine Sand	%	45	40		
6	Total Sand	%	73	71		
7	Silt + Clay	%	27	29		
8	рН (1:5)		8.86	8.75		
9	Electricity Conductivity	µmho/cm	2014	1984		
10	Alkali matter	mg/kg	512	. 496		
11	Cation Exchange Capacity	meq/100 gm	11.28	11.10		
12	Sodium Absorption Ratio	-	10.56	10.30		
13	Organic Matter	mg/kg	0.47	0.40		
14	Available Nitrogen	meq/100 gm	0.68	0.48		
15	Available Potassium	. mg/kg	6.42	7.20		
16	Available Phosphorus	mg/kg	0.57	0.45		
17	Available Sodium	mg/kg	6.93	10.40		
18	Permeability	cm/sec	1.15 x 10 ⁻⁷	1.10 × 10 ⁻⁷		

Table-1.27B: Soil Quality Testing Results for the period: April, 2021 to September, 2021

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Soil Quality.

Authorized Signatory

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor

• ISO 14001

ISO 45001

• ISO 9001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

Adani Hazira Port Limited	From: April 2021 to September 2021
---------------------------	---------------------------------------

ANNEXURE-5

Photographs of Air Pollution Control Measures and Green Belt Area

Mist Canon System To Arrest Dust: -

Regular Water Sprinkling On Coal Heaps

Cargo Covered With Tarpaulin

Dumper Covered With Tarpaulin

Road Sweeping

Green Belt Area

adani	Adani Hazira Port Limited	From: April 2021 to September 2021
-------	---------------------------	---------------------------------------

ANNEXURE-6

DETAILS OF ENVIRONMENTAL MANAGEMENT CELL

Annexure 7

Details of Environment Budget & Expenditure for the Compliance Period (April 2021 to September 2021)

Sr No	Activities	Budget for FY 2021-22	Expenditure
		(In Lacs INR)	(In Lacs INR)
	Environmental Study/Audit/Survey/Consultancy		
1	Services	50	14.7
2	Legal and Statutory Charges	15	12
3	Environmental Monitoring Services	22	6.05
4	Hazardous Waste Management	33	3.8
5	Horticulture Development – Greenery and Plantation	160	65.04
6	O&M of Sewage Treatment Plant and Effluent Treatment Plant	18	8.55
7	Disposal of Bio medical Waste	1.8	0.81
8	Water Sprinkling for dust suppression	250	109.04
9	Miscellaneous Environmental Initiatives and Salary of Environmental Professionals ISO 14001:2015 (EMS) audit, certification, and internal audit training	20	9.5
	Total	571.80	230.69

Environment Budget & Expenditure of FY 2021-22

Expenditure of last three Years

Year	Budget	Expenditure (In Lacs INR)
2018-19	270.69	1344.71
2019-20	363.80	326.76
2020-21	479.63	418.11

ANNEXURE-8

Copy of renewed PESO Licence

प्ररूप XV (प्रथम अनुसूची का अनुच्छेद 6 देखिए) FORM XV (see Article 6 of the First Schedule)

अधिष्ठापनों में पेट्रोलियम के आयात और भंडारकरण के लिए अनुज्ञप्ति LICENCE TO IMPORT AND STORE PETROLEUM IN AN INSTALLATION

अनुज्ञप्ति सं. (Licence No.) : P/HQ/GJ/15/5294(P270337)

फीस रूपए (Fee Rs.) 50000/- per year

Chief Controller of Explosives

M/s. Adani Hazira Ports Pvt Ltd, At & Post Hazira, Taluka: Choriyasi, District: SURAT, State: Gujarat, PIN: 394270 को केवल इसमें यथा विनिर्दिष्टु वर्ग और मात्राओं में पेट्रोलियम 379900.00 KL आयात करने के लिए और उसका, नीचे वर्णित और अनुमोदित नक्शा संख्या P/HQ/GJ/15/5294(P270337) तारीख 11/11/2020 जो कि इससे उपाबद्ध हैं, में दिखाए गए स्थान पर भण्डारकरण के लिए पेट्रोलियम अधिनियम, 1934 के उपबंधों या उसके अधीन बनाए गए नियमों तथा इस अनुज्ञप्ति की अतिरिक्त शर्तों के अधीन रहते हुए, यह अनुज्ञप्ति अनुदत्त की जाती हैं।

Licence is hereby granted to M/s. Adani Hazira Ports Pvt Ltd, At & Post Hazira, Taluka: Choriyasi, District: SURAT, State: Gujarat, PIN: 394270 valid only for the importation and storage of 379900.00 KL Petroleum of the class and quantities as herein specified and storage thereof in the place described below and shown on the approved plan No P/HQ/GJ/15/5294(P270337) dated 11/11/2020 attached hereto subject to the provisions of the Petroleum Act, 1934 and the rule made thereunder and to the further conditions of this Licence.

यह अनुज्ञपि 31st day of December **2025** तक प्रवृत रहेगी । The Licence shall remain in force till the 31st day of December **2025**

पेट्रोलियम का विवरण /Description of Petroleum	अनुज्ञप्त मात्रा (किलोलीटरों में) /Quantity licenced in KL		
वर्ग क प्रपुंज पेट्रोलियम /Petroleum Class A in bulk	379900.00 KL		
वर्ग क प्रपुंज पेट्रोलियम से भिन्न /Petroleum Class A, otherwise than in bulk	NIL		
वर्ग ख प्रपुंज पेट्रोलियम /Petroleum Class B in bulk	NIL		
वर्ग ख प्रपुंज पेट्रोलियम से भिन्न /Petroleum Class B, otherwise than in bulk	NIL		
वर्ग ग प्रपुंज पेट्रोलियम /Petroleum Class C in bulk	NIL		
वर्ग ग प्रपुंज पेट्रोलियम से भिन्न /Petroleum Class C,otherwise than in bulk	NIL		
कुल क्षमता /Total Capacity	379900.00 KL		

October 31, 2013

- 1). Amendment dated 14/11/2013
- 2). Amendment dated 24/01/2014
- 3). Amendment dated 03/07/2014 4). Amendment dated - 16/09/2014
- 5). Amendment dated 10/03/2014
- 6). Amendment dated 11/12/2015

अनुज्ञप्त परिसरों का विवरण और अवस्थान DESCRIPTION AND LOCATION OF THE LICENSED PREMISES

अनुज्ञप्त परिसर जिसकी विन्यास सीमाएं अन्य विशिष्टयां संलग्न अनुमोदित नक्शों में दिखाई गई हैं Plot No: -, Hazira Port, Hazira, Taluka: Choriyasi, District: SURAT, State: Gujarat, PIN: 394270 स्थान पर अवस्थित है तथा उसमें निम्नलिखित 108 Above Ground tank(s) for CLASS A , सम्मिलित हैं |

The licensed premises, the layout, boundaries and other particulars of which are shown in the attached approved plan are situated at Plot No: -, Hazira Port, Hazira, Taluka: Choriyasi, District: SURAT, State: Gujarat, PIN: 394270 and consists of 108 Above Ground tank(s) for CLASS A, together with connected facilities.

Note:-This is system generated document does not require signature.

<u>Annexure 9</u>

Copy of Form V Environment Ststement of FY 2020-2021

AHPPL/GPCB/2021-22/05

Date: 24.06.2021 GPCB ID: 35352

То

The Member Secretary, Gujarat Pollution Control Board, Paryavaran Bhavan, Sector-10A, Gandhinagar-382 010 (Gujarat)

Dear Sir,

Sub.: Environmental Statement in Form-V for the financial year 2020-21 of M/s. Adani Hazira Port Pvt. Ltd.

Ref.: I. Consolidated consent and authorization (CC&A) vide consent order no. AWH-87176 dated 17.07.2017
 II. Amended CC&A granted vide Order No.: AW-104319, Ref. No.: GPCB/CCA-SRT-1314(8)/ ID_35352/528583 dated 02.12.2019.
 III. CCA order No: H- I 11966, Dated-16/04/2021

With reference to the above subject and reference, please find enclosed herewith Environmental Statement in Form-V prescribed under Rule, 14 of the Environment (Protection) Rules, 1986 for M/s. Adani Hazira Port Pvt. Ltd., At & PO: Hazira, Taluka: Choryashi, District: Surat (Gujarat) for the financial year ending 31st March'2021.

This is for your kind reference and record please.

Thanking You,

Yours faithfully, For Adani Hazira Port Ltd.

(Pranav Choudhary) Authorized Signatory

Encl.: - Environmental Statement in Form-V for the Financial Year: 2020-21.

C to: - The Regional Officer, Gujarat Pollution Control Board, 338, Belgium Square, Opp. Linear Bus Stand, Ring Road, Surat-364 002 (Gujarat)

Adani Hazira Port Ltd At & PO Hazira Choryashi Surat 394 270 Gujarat, India CIN: U45209GJ2009PTC058789 Tel +91 261 220 7780 Fax +91 261 220 7777 info@adani.com www.adaniports.com

Registered Office: Adani Corporate House, Shantigram, Nr Vaishno Devi Circle, S G Highway, Khodiyar, Ahmedabad 382 421, Gujarat, India

AHPPL/GPCB/2021-22/05

Date: 24.06.2021 GPCB ID: 35352

To

The Member Secretary, Gujarat Pollution Control Board, Paryavaran Bhavan, Sector-10A, Gandhinagar-382 010 (Gujarat)

Dear Sir,

- Sub.: Environmental Statement in Form-V for the financial year 2020-21 of M/s. Adani Hazira Port Pvt. Ltd.
- Ref.: I. Consolidated consent and authorization (CC&A) vide consent order no. AWH-87176 dated 17.07.2017
 II. Amended CC&A granted vide Order No.: AW-104319, Ref. No.: GPCB/CCA-SRT-1314(8)/ ID_35352/528583 dated 02.12.2019.
 III. CCA order No: H- I 11966, Dated-16/04/2021

With reference to the above subject and reference, please find enclosed herewith Environmental Statement in Form-V prescribed under Rule, 14 of the Environment (Protection) Rules, 1986 for M/s. Adani Hazira Port Pvt. Ltd., At & PO: Hazira, Taluka: Choryashi, District: Surat (Gujarat) for the financial year ending 31st March'2021.

This is for your kind reference and record please.

Thanking You,

Yours faithfully, For Adani Hazira Port Ltd.

(Pranav Choudhary) Authorized Signatory

Encl.: - Environmental Statement in Form-V for the Financial Year: 2020-21.

Cc to: - The Regional Officer, Gujarat Pollution Control Board, 338, Belgium Square, Opp. Linear Bus Stand, Ring Road, Surat-364 002 (Gujarat)

Adani Hazira Port Ltd At & PO Hazira Choryashi Surat 394 270 Gujarat, India CIN: U45209GJ2009PTC058789 Tel +91 261 220 7780 Fax +91 261 220 7777 info@adani.com www.adaniports.com

FORM - V

(See Rule 14)

Environmental Statement for the Financial Year ending 31st March, 2021

(i)	 Name and address of the Owner/Occupier of the Industry Operation or Process 		Pranav Choudhary, Chief Executive Officer, M/s. Adani Hazira Port Ltd., At & Post: Hazira, Taluka: Choryashi, District: Surat (Gujarat)	
(ii)	Industry Category Primary (STC Code) Secondary (STC Code)		Red - Large Not Applicable Not Applicable	
(iii)	Production Capacity		57.7 MMTPA (Total Cargo Handling Capacity)	
(iv)	Year of Establishment	:	2010	
(v)	Date of Last Environment Statement Submitted	:	02 nd June 2020	

PART - A

PART - B Water and Raw Material Consumption

(i) Water Consumption:

Water Consumption Cu. Mtr./Day		
Process	Approx. 1742.751 m ³ /day in Firefighting, Dust	
Cooling	Suppression, Sprinkling Washing Activities and horticulture etc.	
Domestic	Approx. 231.67 m³/day in Domestic Purpose	

Name of	Process Water Consumption Per Unit Of Product Output					
Products	During the Previous Financial Year	During the Current Financial Year				
Handling and Storage of General Dry Cargo, Liquid Cargo and Containers*	Total Water Consumption during the FY: 2019-20 is 593025 m ³ in the Dust Suppression, Fire Fighting, Cooling, LT - Washing Activities, Horticulture and Domestic purpose etc.	during the FY: 2020-21 is				

Water consumption is 0.025 m ³	Water m ³	consumption	is	0.032
---	-------------------------	-------------	----	-------

* The Unit does not carry out any manufacturing process. The water consumed was mainly in Firefighting, Dust Suppression, Water Sprinkling, Washing Activities and Horticulture & Domestic Purpose etc.

(ii) Raw Material Consumption:

Name of Raw	Name of	Consumption of Raw Material per Unit of ou				
Material	Name of Products	During the previous Financial Year	During the current Financial Year			
Not Applicable	Not Applicable	Not Applicable	Not Applicable			

* Unit does not carry out any manufacturing process.

PART - C

Pollutants discharged to Environment/Unit of Output (Parameters as specified in consent issued)

Pollutants	Quantity of pollutants discharged (Mass/day)	Concentrations of pollutants in discharges (Mass/Volume)	Percentage of variation from prescribed standards with reasons
(a) Water	Nil*		
(b) Air	during powe • The height o	r failure. f DG stacks as per CP	power source and used CB/GPCB standards. All bund within prescribed
Particulate Matter (mg/Nm³)	DG set emissio	on report is enclosed	Nil
Sulphur Dioxide (ppm)	A medicane of the manager of the second	nnexure-1.	Nil
Nitrogen Oxide (ppm)			Nil

* The Unit does not carry out any manufacturing process, as it is a service industry i.e. Port engaged in Handling and Storage of General Dry Cargo, Liquid Cargo and Containers. The source of effluent/ waste water generation is washing activities of liquid tanks, pipelines and floor washing during any spillage and/or leakage of liquid cargo and other domestic activities. During the Financial Year: 2020-21. There is no discharge of treated effluent / water discharged to the environment. All the treated Effluents and Sewage are utilized in horticulture purpose.

There was approx. 66.2 KL/Day Sewage Generation. The sewage was treated in the Sewage Treatment Plants (STP's) and treated water confirming to prescribe standards was reused in gardening and plantation activities. There was approx. 78.5 KL/Day of Effluents generation and all of the generated effluents were treated in Effluents Treatment Plant and utilized in Horticulture Purpose.

PART - D

Hazardous Wastes

(as specified under Hazardous waste (Management and Handling) Rules, 2016

	Total Quantity (Kg. or KL)						
Hazardous Wastes	During th	ne Previous Financia Year	I During	During the Current Financial Year			
a) From Process		v of Hazardous Wast ed is given below:		y of Hazardous Waste ed is given below:			
	Cat3.3:	Approx. 1100 Kg. o Used Oil Filters.	of Cat3.2:	Approx. 101860 Kg. of cargo residue			
	Cat5.1:	Approx. 59670 Kg of Used/Sper		containing chemicals.			
	Cat5.2:	Oil/Bilge. Approx. 78100 Kg		Approx. 1840 Kg. of Used Oil Filters.			
			y Cat5.1:	Approx. 44800 Kg. of Used/Spent Oil/Bilge.			
	Cat21.1:	Approx. 5967 Kg. c Empty Paint Drums Tins.	10	Approx. 38770 Kg. of Oily Contaminated Foam Pigs.			
	Cat3.2:	Approx. 60600 Kg of cargo residu containing		Approx. 8970 Kg. of Empty Paint Drums/ Tins.			
		chemicals.	Category	33.2: Approx. 10260 Kg of oily Cotton rags			
			Category	35.1: Approx. 5000 Kg of gas cleaning			

		residues CMS
c) From Pollution Control facilities	Nil	Nil

	Total Quanti	ty (MT/Annum)
Solid Waste	During the Previous Financial Year	During the Current Financial Year
(a) From Process (Ash)	Nil	
(b) From Pollution Control facilities	Nil	
(C-1) Quantity recycled or reutilized within the unit	10.314 MT (Kitchen & Food Waste was Converted in to Manure through Organic Waste Converter)	7.59 MT (Kitchen & Food Waste was Converted in to Manure through Organic Waste Converter)
(C-2) Sold		
(C-3) Disposed	Approx. 118.815 MT (Garbage Wastes)	Approx. 182.139 MT (Garbage Wastes)

PART - E Solid Waste

Note: Scrap is collected in designated scrap yard at Central Store and sold to scrap vendor.

PART - F

Please specify the characterization (in terms of Composition and quantum) of Hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes:

- Total hazardous waste disposed off during the financial year: 2020-21 is approx. 211.50 MT. Out of which 157.7 MT of Incinerable hazardous waste was disposed off through GPCB authorized CHWIF M/s Saurashtra Enviro Projects Pvt Ltd Kutch. Approx. 53.77 MT of recyclable hazardous waste are sent to GPCB registered recyclers.
- Approx. 44.80 MT Used/Spent Oil/Bilge Water were generated (including opening were sold out to GPCB registered recycler/refiner at M/s. Unity Petroleum Co., Ahmedabad. The Waste Oils were stored in barrels in hazardous waste storage shed.

- Approx. 8.97 MT Empty Paint Drums/Tins were sold out to GPCB registered recycler/refiner at M/s. Jawrawala Petroleum , Ahmedabad and M/s Shahara Enterprises Ahmedabad.
- Oily Cotton rags were generated from various maintenance and operational activities, which were kept in covered hazardous waste storage area. 10.2 MT of oily cotton rags Wastes were disposed off through GPCB authorized CHWIF Saurashtra Enviro Projects Pvt Ltd Kutch and 38.770 MT of Oil contaminated Foam pigs was disposed off through GPCB authorized CHWIF Saurashtra Enviro Projects Pvt Ltd Kutch.
- Used Oil filters of 1.840 MT was disposed off through GPCB authorized CHWIF Saurashtra Enviro Projects Pvt Ltd Kutch
- Cargo residue containing chemicals of 101.86 MT was disposed off through GPCB authorized CHWIF Saurashtra Enviro Projects Pvt Ltd Kutch

PART - G

Impact of the pollution abatement measures taken on conservation of natural resources and on the cost of production: -

- Unit has installed Sewage Treatment Plants and Effluent Treatment Plant (ETP) for treatment of the Sewage water and Effluent being generated at site. The treated water is being reused within port premises.
- Unit has installed Organic Waste Converter (OWC) to convert the organic wastes into organic manure i.e.: Kitchen/Food Waste and Horticultural Waste being generated at site. The manure is being reused within port premises.
- M/s. AHPL has developed mangrove afforestation on an area 200 hectares i.e.: 20 hectares near Village: Kantiyajal, Sea coast area and 180 hectares near Village: Nada-Devla, District: Bharuch (Gujarat).
- M/s. AHPPL has developed a Bio-Shield Pilot Project on an area of 18 hectares at near Village: Tankari Bandar, Taluka: Jambusar, District: Bharuch (Gujarat).
- The Unit has been used recycled water i.e. treated sewage of KRIBHCO for industrial used which caters more than 85% of total water consumption.
- The Unit has installed Photo voltaic Solar Panel of 3.5 MW and reduced its grid Power consumption and 2 MW of Wind mills at Rojmal near Rajkot for renewal energy generation.
- During the financial year: 2020-21, the total cost incurred on environmental protection measures is enclosed as <u>Annexure-2</u>.

PART - H

Additional measures /investment/ proposal for environmental protection including abatement of pollution, prevention of pollution.

- Unit is carrying out regular environmental monitoring within the Port and surrounding area through reputed MoEF&CC and NABL accredited laboratory. All the environmental parameters are found well within specified limits and the details of monitored data is regularly submitting to GPCB, CPCB, MoEF&CC and other concerned authorities.
- Unit has installed STP's and ETP for the treatment of the domestic waste water and effluent being generated at site and the treated water is being used for horticulture (plantation & gardening) purpose. Unit has also provided dump pond and conveyance channel for collection of runoff generated from Coal Yard.
- Unit has provided sprinklers at coal yard & conveyer system and carrying out regular water spreading to control the dust exposure. Wind breaking wall is provided around the periphery of Coal Yard.
- Unit has a dedicated horticulture department & developing green belt within port premises.
- Unit uses mist canon to suppress the fugitive coal dust at coal yard.
- Unit has deployed four road sweeping machines to control the fugitive dust emissions.
- Unit has installed wind break shield around coal yard and Rock Phosphate Yard to suppress dust emission.
- Unit has developed greenbelt area of 78.90 hectare till March, 2021.

PART - I

Any other particulars for improving the quality of environment:

 Environmental awareness programs have been conducted during the year for employees, contractual employees, school children and local community of nearby villages.

- Integrated housekeeping management is undertaken on top priority to maintain neat and clean working environment in the port premises.
- World Environment Day, International Biodiversity day and other important environment related days are being celebrated to raise awareness among employees, associates and contractor's workmen, The participants of these days were motivated by providing prizes and certificates.
- The Port has initiated " Single Use Plastic Free Port" initiative and Confederation of Indian Industry has been engaged for certifying the protocol and implementation of the same.
- The Port is ISO 14001:2015 certified for Environment Management System, ISO 19001:2015 for Quality Management System, ISO 45001: 2018 for Occupational Health and Safety Management System and ISO 50001: 2018 for Energy Management System.
- · 200 ha of Mangrove plantation and 18 ha of Bioshield development carried out in Jambusar district and these are being maintained and monitored through NGO and SHG.

Date: 23.06.2021

(Authorised Signatory)

Name:

Pranav Choudhary Designation: Chief Executive Officer (CEO)

Address: At & Post: Hazira, Taluka: Choryashi, District: Surat (Gujarat)

Page 8 of 12

ANNEXURE-1

DG SETS STACK EMISSION AND NOISE LEVEL MONITORING: -

.

۰.

e

DG SETS STACK EMISSION AND NOISE LEVEL MONITORING: -4G.

Table-1.22: DG Sets Stack Monitoring Results for the period: October, 2020 to March, 2021

Table-1.22 (a): DG Sets Stack Monitoring Results:

			DG SET TOY	O DENKI -1	DG SET TOY	O DENKI -2	DG SET TOY	O DENKI -3
Sr. Na.	Parameters	Unit	26/11/2020	15/02/2021	26/11/2020	15/02/2021	26/11/2020	15/02/2021
1	Particulate Matter	mg/tim ²	26.62	28.44	28.61	26.41	32.43	24.62
2	Sulphur Dioxide	ppm	6.23	5.79	7.68	4.9	8.57	6.45
1	Oxide of Nitrogen	ppm	30.56	27.39	33.63	30.41	36.43	33.53
4	Carbon Monoxide (CO)	mg/m ³	14.31	14.94	21.93	22.9	18.23	18.61
5	Non Methyl Hydro Carbon (NMHC)	mg/m ³	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected

Table-1.22 (b): DG Sets Stack Monitoring Results:

Sr.			SS-1 LT DO	G -320 KVA	SS3 -DG	-200 KVA	LT Phase -1	(625 KVA)
No.	Parameters	Unit	26/11/2020	15/02/2021	27/11/2020	16/02/2021	27/11/2020	16/02/2021
1	Particulate Matter	mg/Nm ³	19.67	17.53	17.58	15.52	14.5	18.62
2	Sulahur Dioxide	or m	5.02	4.2	6.99	4.52	6.39	7.27
3	Oxide of Nitrogen	ppm	35.63	33.48	30.56	28.66	33.5	- 34.54
4	Carbon Monoxide (CO)	mo/m ³	18.32	13.74	9.16	6.87	14.89	12.6
5	Non Methyl Hydro Carbon (NMHC)	mg/m ³	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected

Table-1.22 (c): DG Sets Stack Monitoring Results:

Sr.			LT Phase -2	(750 KVA)	ER-1 (1	00 KVA)
No.	Parameters	Unit	27/11/2020	16/02/2021	27/11/2020	16/02/2021
1	Particulate Matter	mg/Nm ³	24.55	26.57	19.52	21.58
2	Sulphur Dioxide	ppm	7.4	8.82	5.45	6.87
3	Oxide of Nitrogen	ppm	38.69	36.5	31.57	35.39
4	Carbon Monoxide (CO)	mg/m ³	19.47	9.16	10.31	14.89
5	Non Methyl Hydro Carbon (NMHC)	mg/m ³	Not Detected	Not Detected	Not Detected	Not Detected

Authorized Signatory

FISSALApproved Lab
 Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection] Act-1986

• GPCB apprved schedule II auditor

• ISO 14001 ISO 45001 • ISO 9001

"Pollucon House", Plot No. 5 & 6, Cpp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

Page 10 of 12

Table-1.22 (d): DG Sets Stack Monitoring Results:

	1		NDG Buildin	g (380 KVA)	Custom Buildi	ng (320 KVA)
Sr. No.	Parameters	Unit	27/11/2020	16/02/2021	27/11/2020	16/02/2021
	Particulate Metter	ma/Nm ³	21.38	23.41	15.64	21.59
1	Sulphur Dioxide	com	5.98	6.84	4.46	5.48
	Oxide of Nitrogen	com	38.56	35.57	32.57	30.56
3	Carbon Monoxide (CO)	mg/m ³	11.45	8.02	16.03	í1.45
4	Non Methyl Hydro Carbon (NMHC)	mo/m ³	Not Detected	Not Detected	Not Detected	Not Detected

Table-1.23: DG Sets Noise Level Moritoring Results for the period: October, 2020 to March, 2021

	DG Set A	verage Noise Level In Leq. dB(A)		
Sr. No.	Sampling Location	At 1 M Distance From The Enclosure		
	Sampling Date	26 & 27/11/2020	15 & 16/02/2021	
1.	DG SET TOYO DENKI - 1	68.8	67.2	
2.	DG SET TOYO DENKI - 2	67.1	68.9	
3	DG SET TOYO DENKI -3	69.2	70.2	
4.	55-1 LT DG -320 KVA	64.2	63.5	
5.	SS3 -DG -200 KVA	70.6	69.5	
6.	LT PHASE -1 (625 KVA)	65.9	64.8	
7.	LT PHASE -2 (750 KVA)	67.7	66.2	
8.	ER-1 (100 KVA)	65.6	64.9	
9.	NDG BUILDING (380 KVA)	68.4	65.8	
10.	CUSTOM BUILDING (320 (VA)	68.8	67.2	

Authorized Signatory

PSSAI Approved Lab
 Recognised by MoEE. New Delhi Under Sec. 12 of Environmental (Protection) Act-1966

GPCB apprved schedule II auditor

• ISO 14001 ISO 45001

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

Note: DG sets are provided as standby power source and used during power failure.

Page 11 of 12

ISO 9001

ANNEXURE - II

Details of Environment Management Budget For The Financial Year 2019-20: -

Sr No	Activities	Budget	Expenditure
		(In Lacs)	(In Lacs)
1	Environmental Study/Audit/Survey/Consultancy Services	58.51	58.51
2	Legal and Statutory Charges	11	10.25
3	Environmental Monitoring Services	15	11.93
4	Hazardous Waste Management	19	17.34
5	Horticulture Development –Greenery and Plantation	143.12	139
6	O&M of Sewage Treatment Plant and Effluent Treatment Plant	20	19.19
7	Treatment & Disposal of Bio medical Waste	2	1.78
8	Water Sprinkling for dust suppression	190	127
9	Miscellaneous Environmental Initiatives and Salary of Environmental Professionals	20	32.11
10	ISO 14001:2015 (EMS) audit, certification, and internal audit training	1.0	1.0
	Total	479.63	418.11

nvironment Budget & Expenditure of FY 2020-21

Expenditure of last three Years

Year	Budget	Expenditure		
2018-19	270.69	1344.71		
2019-20	363.80	326.76		
2020-21	479.63	418.11		

Annexure 10

Details of Liquid/Wastes Collection & Disposed off from Vessels by GPCB Approved Third Party During compliance period from April 2021 to September 2021

Details of Liquid/Wastes Collection & Disposed off from Vessels by GPCB Approved Third Party During period April 2021 to September 2021

Detail of Wastes Collection & Disposed Off From Vessels				
SR No.	Date	Vessel Name	Party Name	Quantity (CBM)
1	15.06.2021	MV.PORTITISSA	CHITARAKUT TRADING AND IND.	4.5 CBM
2	31.07.2021	MT.PACIFIC BLUE	CHITARAKUT TRADING AND IND.	2.2 CBM
3	03.08.2021	MT.GS FUTURE	HARISH A. PANDYA	5.54 CBM
4	13.08.2021	CLARKE QUAY	HARISH A. PANDYA	4 CBM
5	16.08.2021	MT.BOW CHAIN	HARISH A. PANDYA	3 CBM
6	24.08.2021	CAPE SUPPLIER	HARISH A. PANDYA	2 CBM
7	15.09.2021	MV.CYMONA GLORY	HARISH A. PANDYA	3.55
8	17.09.2021	MV.SCARLET LADY	HARISH A. PANDYA	16.13
9	24.09.2021	MV.GCL MAHANADI	HARISH A. PANDYA	3 CBM
10	28.09.2021	TUG AB 3000	HARISH A. PANDYA	0.01 CBM
11	01.10.2021	MT HAKUBA GALAXY	HARISH A. PANDYA	1.2 CBM
12	13.10.2021	TUG COASTAL COMMANDOR	HARISH A. PANDYA	1.056 CBM
13	14.10.2021	MV.CEYLON PRINCESS	HARISH A. PANDYA	4.9 CBM
14	21.10.2021	MT.MARITIME POLARIS	HARISH A. PANDYA	3 CBM