

AECTPL/ENV/KPL/HYC/2023/03

Date: 30.01.2023

To.

The General Manager (Marine Services) Kamarajar Port Limited, 23, Rajaji Salai, Chennai - 600 001

Dear Sir,

- Sub: Development of container terminal at Kamarajar Port Limited on DBFOT basis. KPL awarded to Adani Ennore Container Terminal Private Limited (AECTPL)-Submission of Half yearly Compliance (July 2022 to December 2022) of Environmental Clearance issued to Kamarajar Port Limited in various stages of development with regards to Container Terminal - Reg.
- Ref: 1. Vide order no: 10-28/2005-IA-III dated 19th May, 2006
 - 2. Vide order no: 10-28/2005-IA-III dated: 10/09/2007 and validity extension date: 31.03/2017
 - 3. Vide order no: 10-28/2005-IA-III dated: 24/12/2014

With reference to the above captioned subject, Adani Ennore Container Terminal **Private Limited** is submitting the **Half yearly compliance report** (for the period July 2022 to December 2022) of applicable conditions to the Environmental & CRZ Clearance obtained by the M/s. Kamarajar Port Limited in various stages of development as referred above.

Kindly acknowledge us the receipt of the same.

For M/s. Adani Ennore Container Terminal Private Limited,

R. Sathish Kumar Head - Environment

Encl.: As above.

Adani Ennore Container Terminal Pvt Ltd Adani House C/o. Kamarajar Port Limited Ponneri Taluk, Tiruvallur District Tamil Nadu- 600 120.

Tel +91 44 2824 3062

info@adani.com www.adani.com

CIN: U61200GJ2014PTC078795

Registered Office: Ramcon Fortuna Towers, 4th floor No 1/2, Kodambakkam High Road, Nungambakkam, Chennai- 600034

AECTPL/ENV/KPL/HYC/2023/03

Date: 30.01.2023

To,

The General Manager (Marine Services) Kamarajar Port Limited, 23, Rajaji Salai, Chennai - 600 001

Dear Sir,

- Sub: Development of container terminal at Kamarajar Port Limited on DBFOT basis, KPL awarded to Adani Ennore Container Terminal Private Limited (AECTPL)-Submission of Half yearly Compliance (July 2022 to December 2022) of Environmental Clearance issued to Kamarajar Port Limited in various stages of development with regards to Container Terminal - Reg.
- **Ref:** 1. Vide order no: 10-28/2005-IA-III dated 19th May, 2006
 - 2. Vide order no: 10-28/2005-IA-III dated: 10/09/2007 and validity extension date: 31.03/2017
 - 3. Vide order no: 10-28/2005-IA-III dated: 24/12/2014

With reference to the above captioned subject, Adani Ennore Container Terminal Private Limited is submitting the Half yearly compliance report (for the period July 2022 to December 2022) of applicable conditions to the Environmental & CRZ Clearance obtained by the M/s. Kamarajar Port Limited in various stages of development as referred above.

Kindly acknowledge us the receipt of the same.

For M/s. Adani Ennore Container Terminal Private Limited,

R. Sathish Kumar Head - Environment

Encl.: As above.

Adani Ennore Container Terminal Pvt Ltd Adani House C/o. Kamarajar Port Limited Ponneri Taluk, Tiruvallur District Tamil Nadu- 600 120. Tel +91 44 2824 3062

info@adani.com <u>www.adani.com</u>

CIN: U61200GJ2014PTC078795

Registered Office: Ramcon Fortuna Towers, 4th floor No 1/2, Kodambakkam High Road, Nungambakkam, Chennai- 600034

ADANI ENNORE CONTAINER TERMINAL PRIVATE LIMITED (AECTPL) C/o. KAMARAJAR PORT LIMITED, VALLUR POST, PONNERI TALUK, ENNORE, TIRUVALLUR DISTRICT, CHENNAI- 600 120 TAMIL NADU

CRZ & Environmental Clearance [File no: 10-28/2005- IA.III dated: 19/05/2006]

Compliance Report

for the Period JULY 2022 TO DECEMBER 2022

Index

Sr.No.		Details of Annexure	Page No.		
1.		CRZ & Environmental Clearance Compliance Report [File no: 10-28/2005- IA.III dated: 19/05/2006]			
		CRZ & Environmental Clearance Compliance Report [Order no: 10-28/2005-IA-III dated: 10/09/2007 and validity extension date: 31.03/2017]			
	CRZ & Environmental Clearance Compliance Report [Vide order no: 10-28/2005-IA-III dated: 24/12/2014]				
2.	Enclosures				
	Annexure I Environmental Monitoring reports for the period July 2022 to December 2022				
	Annexure II Environmental Statement – Form V for the FY 2021-22				

CRZ & ENVIRONMENTAL CLEARANCE COMPLIANCE REPORT

S. No.	Conditions	Compliance Status
Specifi	c Conditions	
I.	All the conditions stipulated in the NOC from TNPCB vide their letter No. T12/TNPCB/Misc./F.3322/TVLR/05, dated 07.12.2005 should be strictly implemented.	Status by KPL.
II.	Groins and other suitable structures should be constructed to prevent the closing of the month of Ennore Creek.	Status by KPL.
111.	The DPR and the technical details to be awarded to the BOT operator should provide to MoEF for post project monitoring within 6 months from the date of receipt of this letter.	Complied. Container Terminal DPR submitted vide letter number EPL/MS/49/2008 dt. 13/03/2008.
IV.	The marine terminal should be set up outside CRZ area.	Status by KPL.
V.	Recommendations of Risk Analysis report should be strictly implemented, and a comprehensive quantitative Risk Analysis should be carried out before operationalizing the project.	Complied Operational Risk Assessment carried out and the recommendations are being implemented. Operational Risk Assessment report submitted vide Letter No. AECTPL/KPL/EC-compliance/Env/02 dt. 13.07.2018.
VI.	Approval form Chief Controller of Chief Explosives should be obtained	Not Applicable.
	for hazardous chemicals storage, transfer and related activities.	AECTPL is not storing any Hazardous chemicals. Hence not applicable.
VII.	The reclamation of the port area should be carried out with the dredged materials. Dredged material should not be dumped into the sea. No reclamation should be carried outside the port limits.	Status by KPL.

S. No.	Conditions	Compliance Status
VIII.	The coastal protection works should be carried out after detailed hydrodynamic modelling studies and it should be ensured that no erosion or accretion takes place in the shore protection works.	Status by KPL.
IX.	Reclamation of 500 acres should be carried out only for the port development. The height of the reclaimed area will be maintained above the maximum flood level.	Status by KPL.
X.	The wave tranquillity study and the ship manuring studies carried out should be taken into account while operating the port.	Status by KPL.
XI.	The project proponent should ensure that doing construction and operation of the port there will been impact on the livelihood of the fisherman. The fishermen should be provided free access to carry out the fishing activity.	Status by KPL.
XII.	All necessary precaution while undertaking construction and operation of the port should be taken keeping in view the bathymetric changes caused due to tsunami.	Status by KPL.
XIII.	All development in the port should be accordance with the Coastal Regulation Zone Notification, 1991 and approved Coastal Zone Management Plan of Tamil Nadu.	Status by KPL.

S. No.	Conditions	Compliance Status
XIV.	The project proponent should undertake a comprehensive hydrodynamic modelling study with regard to river diversion and submit the report to the Ministry within 6 months from the date of receipt of this letter. Further the unit should comply with all the findings/recommendations of the study.	Status by KPL.
XV.	Construction labour camps should be located outside of CRZ area and should be provided with adequate cooking and sanitation facilities.	Complied. Construction of container terminal is completed, and the terminal is under operation
XVI.	The project affected people, of any should be properly compensated and rehabilitated.	Status by KPL.

S. No.	Conditions	Compliance Status
GENER	AL CONDITIONS:	
I.	Development of the proposed channel should be undertaken meticulously conforming to the existing Central/Local rules and regulations including CRZ Notification, 1991 and its amendments. All the construction designs/drawings relating to the proposed development activities must have approvals of the concerned State Govt. Depts./Agencies.	Status by KPL.
11.	A well-equipped laboratory with suitable instruments to monitor the quality of air and water shall be set up as to ensure that the quality of ambient air and water conforms to the prescribed standards. The laboratory will also equipped with qualified manpower including a marine biologist so that the marine water quality is regularly monitored in order to ensure that the marine life is not adversely affected as a result of implementation of the said project. The quality of ambient air and water shall be monitored periodically in all the seasons and the results should be properly maintained for inspection of concerned pollution control agencies. The periodic monitoring reports at least once in 6 months must be send to this Ministry (RO at Bangalore) and Pollution Control Committee.	Complied. AECTPL is engaging NABL accredited laboratory for regular monitoring of Ambient Air Quality, Ambient Noise Level, DG Stack Emission, Meteorological data, Soil Quality, Marine Surface & Bottom Water quality and Sea Sediment quality. The monitored results are submitted to KPL and Tamil Nadu Pollution Control Board on monthly basis and also as part of Six-monthly compliance report. Monitoring reports are properly maintained and made available for inspection to Pollution Control Agencies, as and when required. Environment Monitoring report for the period July 2022 – December 2022 is attached as Annexure - I.

S. No.	Conditions	Compliance Status					
111.	Adequate provisions for infrastructure facilities such as water supply, fuel for cooking, sanitation etc. must be provided for the labourers during the construction period in order to avoid damage to the environment. Colonies for the labourers should not be located in CRZ area. It should also be ensured that the construction workers do not cut trees including mangroves for fuel wood purpose.	Complied. Construction of terminal is in of		minal	is con	npleted, a	nd
IV.	To prevent discharge of sewage and other liquid wastes into the water bodies, adequate system for collection and treatment of the waste must be provided. No Sewage and other liquid wastes without treatment should be allowed to enter into the water bodies.	Treatment Plan generated from water from ca office buildings reused for gre premises after outlet charact monitored an laboratory. The monitorin December'22 is Summary of ST compliance per Parameter pH TSS BOD	AECTPL is operating 25 KLD capacity S Treatment Plant to treat the domestic effluen generated from various sources such as w water from canteen and toilet flushing wate office buildings. The entire treated sewage w reused for green belt maintenance within th premises after confirming permissible limit. outlet characteristic of Sewage water is re- monitored and analysed by NABL acc laboratory.The monitoring results for the period July December'22 is enclosed as Annexure - I.Summary of STP treated water analysis results compliance period as mentioned below.ParameterUnitMinMaxTNP Lim		ffluent bei as washi water fro age water hin the po limit. Inlet is regula accredit d July'22 esults duri TNPCB Limit 6.5 to 9 30 20	ng om ort & arly ced to	
		COD Faecal Coliform	mg/l MPN/100ml	42 110	84 240	100 <1000	

S. No.	Conditions	Compliance Status
		All the parameters are well within the prescribed norms.
V.	Appropriate facility should be created for the collection of solid and liquid wastes generated by the barges/vessels and their safe treatment and disposal should be ensured to avoid possible contamination of the water bodies.	Status by KPL.
VI.	Necessary navigational aids such as channel markers should be provided to prevent accidents. Internationally recognized safety standards shall be applied in case of barge/vessel movements.	Status by KPL.
VII.	The project authorities should take appropriate community development and welfare measures for villagers in the vicinity of the project site, including drinking water facilities. A separate fund should be allocated for the purpose.	Status by KPL. However, AECTPL has implemented CSR activities like Evening Education centre(480 Students benefited), Computer SMAR Lab for +1 & +2 Students, distribution of 475 bicycles to 9th and 10th Standard Government School students, Mobile Health Care Unit, Suposhan Program, bio-fertilizers(including Neem cake & Neem oil) provided to 300 farmers, Constructed community toilets, De-siltation of Kattupalli Pond, etc., in the vicinity of the Port area. Expenses incurred for CSR during the compliance period is Rs.175.06 Lakhs and the breakup details are as follows;

S. No.	S. No. Conditions		Compliance Statu	JS
		S.No	Description	Amount (Rs in Lakhs)
		1	Education	18.40
		2	Health	37.62
		3	Sustainable Livelihood Development	45.97
		4	Community Infrastructure Development	73.07
			Total	175.06
VIII.	The quarrying material required for the construction purpose should be obtained only from the approved quarries/borrow areas. Adequate safeguards measures shall be taken to ensure that the overburden and rocks at the quarry site do not find their way in water bodies.	Constr in oper	uction of terminal is comple	ted and terminal is
IX.	For employing unskilled, semi-skilled and skilled workers for the project, preference should be given to local people.	t,		
Х.	The recommendations made in the EMP and DMP, as contained in the EIA and RA reports of the projects shall be effectively implemented.	Status	by KPL.	

S. No.	Conditions	Compliance Status
XI.	A separate EMC with suitable qualified staff to carry out various environment should be set up under the charge of a Senior Executive who will report directly to Chief Executive of the Company.	Complied. A separate EMC with suitable qualified staff has been put in place by AECTPL for taking care of various day- to-day Environmental monitoring compliance and allied activities. Environment Department is headed by Deputy General Manager – Environment, who is reporting directly to Chief Executive Officer of the company. He is well supported by Environment Management Team at H.O. Environment Team - ORGANOGRAM CEO (Southern Ports) Corporate OFFICE Head - Environment Team (Sustainability (APSE2) Used - Environment Sustainability (APSE2) Used - Environment (Sustainability (Charpiton (B Executives) Environment Mab.Accredited Lieb) Wate Management (Sustainability (Sustainability (Sustainability (Sustainability (Secutives) (B Executives)

S. No.	Conditions		Compliance Stat	us
XII.	The funds earmarked for environment protection measures should be maintained in a separate account and there should be no diversion of these funds for any other purpose. A year- wise expenditure on environmental safeguards should be reported to this Ministry.	Separate budget for the Environment Protection earmarked every year. All the expenses are reco in advanced accounting system of the organiza Expenditure for Environment Management mea during, July 2022 to December 2022 is Rs. 19.0		nses are recorded the organization. agement measures 22 is Rs. 19.03
		S.No	Description	Amount (Rs in Lakhs)
		1	Environmental Monitoring	6.26
		2	Greenbelt	2.53
		3	STP – O&M	3.77
		4	Housekeeping	4.13
		5	Integrated Waste Management System	2.34
			Total	19.03
×III.	Full support should be extended to the officers of the Ministry's Regional office at Bangalore and the officer of the Central and SPCB by the project proponent during this inspection for monitoring purposes, by furnishing full details and action plans including the action plans including the action taken reports in respect if mitigative measures and other environmental protection activities.	Full su MoEF inspec month the ne	for compliance. pport is being extended to & CC, Chennai, CPCB & T tion and site visit. During the ly visits were made by TNP cessary supports were exte e continued in future also.	NPCB during their e compliance period CB Officials and all

S. No.	Conditions	Compliance Status
XIV.	In case there is an intension of deviation or alternation in the project including the implementing agency, a fresh reference should be made to this Ministry for modification in the clearance conditions or imposition of new ones for ensuring environmental protection. The project proponents should be responsible for implementing the suggested safeguard measures.	Noted for compliance
XV.	The Ministry reserves right to revoke this clearance, if any of the conditions stipulated are not compiled with to the satisfaction of this Ministry.	Noted.
XVI.	This Ministry or any other competent authority may stipulate additional conditions subsequently, if deemed necessary for environmental protection, which shall be complied with.	Noted for Compliance

S. No.	Conditions	Compliance Status
XVII.	The project proponent should advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned available with the SPCB and may also be seen at Website of the Ministry of Environment & Forests at <u>http:www.envforenic.in</u> . The advertisement should be made within 7 days from the date of issue of the clearance letter and a copy of the same should be forwarded to the Regional Office of the Ministry at Bangalore.	Status by KPL.
XVIII.	The project proponents should inform the RO as well as the Ministry the date of financial closure and final approval of the project by the concerned authorities and the date of start of Land Development Work.	Status by KPL.

Half yearly Compliance report on conditions stipulated in CRZ & Environmental Clearance [Vide order no: 10-28/2005-IA-III dated: 10/09/2007 and validity extension date: 31.03/2017]

A. SPECIFIC CONDITIONS:

S.No	Environmental Clearance conditions	Compliance Status
i	It should be ensured that no mangroves are destroyed during reclamation.	Status by KPL.
ii	The proposed extension to the project should not cause any shoreline change abutting Ennore Port.	Status by KPL.
iii	Adequate provision for beach nourishment and sand bypass should be provided.	Status by KPL.
iv	The dredged material obtained should be utilized for filling up of back up area.	Status by KPL.
V	All conditions stipulated in the environmental clearance letter of even number dated 19.05.2006 should be strictly complied with.	Complied All stipulated conditions applicable to AECTPL in the environmental clearance letter of even number dated 19.05.2006 are being complied and compliance reports are regularly submitted to KPL. Last compliance report for the period January 2022 to June 2022 was submitted to KPL vide letter No. AECTPL / KPL / HYC / ENV / 2022 / 117 dated 08.08.2022.
vi	The additional dredged material of 4 million cu. Mts. obtained from the project should not be disposed of into the sea.	Status by KPL.
vii	The reclaimed area should be used as containers stack yard only.	Status by KPL.

S.No	Environmental Clearance conditions	Compliance Status
viii	Adequate drainage facilities should be provided in the reclaimed are along with collection and treatment system for treating the run off from the container stack yards.	Status by KPL.
ix	Necessary approvals/clearances should be obtained from the Tamil Nadu Coastal Zone Management Authority and Tamil Nadu Pollution Control Board before implementing the project.	Complied TNCZMA recommendation was obtained by KPL. Tamil Nadu Pollution Control Board accorded Renewal of Consent to Operate orders vide their order nos: 2108136876855 & 2108236876855 under Water and Air Acts dated: 24.08.2021 valid till 31.03.2026

B. GENRAL CONDITIONS:

S.No	Environmental Clearance conditions	Compliance Status
i	Construction of the proposed structures should be undertaken meticulously confirming to the existing Central/ local rules and regulations including Coastal Regulation Zone Notification 1991 & its amendments. All the construction design drawings relating to the proposed construction activities must have approvals of the concerned State Government Departments / Agencies.	
ii	Adequate provisions for infrastructure facilities such as water supply, fuel, sanitation etc. should be ensured for construction workers during the construction phase of the project so as to avoid felling of trees/ Mangroves and pollution of water and the surroundings.	

S.No	Environmental Clearance conditions	Compliance Status
iii	The project authorities mush make necessary arrangements for disposal of solid wastes and for the treatment of effluents by providing a proper wastewater treatment plant outside the CRZ area. The quality of treated effluents, solid wastes and noise level etc. must conform to the standards laid down by the competent authorities including the Central/State Pollution Control Board and the Union Ministry of Environment and Forests under the Environment (Protection) Act, 1986, whichever are more stringent.	Complied AECTPL has installed and operating 25 KLD sewage treatment plant to collect and treat the sewage generated from the terminal. The entire treated sewage water is reused for green belt maintenance within the port premises after confirming permissible limit. Inlet & outlet characteristic of Sewage water is regularly monitored and analysed by NABL accredited laboratory.
		AECTPL has implemented Integrated Waste Management System (IWMS) - Waste Segregation Yard.
		All the Solid waste generated is being handled in line to Solid Waste Management Rules, 2016 as amended. AECTPL vision is based on adoption of 5R principle of waste management i.e Reduce, Reuse, Reprocess, Recycle & Recover. All waste is being handled inline to 5R principle.

S.No	Environmental Clearance conditions	Compliance Status
iv	The proponent shall obtain the requisite consents for discharge of effluents and emission under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981 from the Tamil Nadu Pollution control Board before commissioning of the project and a copy of each of these shall be sent to this Ministry.	Complied Tamil Nadu Pollution Control Board accorded Renewal of Consent to Operate orders vide their order nos: 2108136876855 & 2108236876855 under Water and Air Acts dated: 24.08.2021 valid till 31.03.2026
V	The proponent shall provide for a regular monitoring mechanism so as to ensure that the treated effluents conform to the prescribed standards. The records of analysis reports must be properly maintained and made available for inspection to the concerned State/Central officials during their visits.	Complied AECTPL has awarded Environmental Monitoring services to NABL accredited laboratory. Monitoring of Ambient Air Quality, Noise, Stack, STP, Drinking Water, Marine Surface Water, Sea Sediment is carried out on regular basis. The reports are being submitted to KPL and Tamil Nadu Pollution Control Board on monthly basis and also as part of Six monthly compliance report. Environment Monitoring report for the period July 2022 – December 2022 is attached as Annexure - I. Reports are made available for inspection to the
Vi	In order to carry out the environmental monitoring during the operational phase of the project, the project authorities should provide an environmental laboratory well equipped with standard equipment and facilities and qualified manpower to carry out the testing of various environmental parameters.	concerned State/Central officials during their visits. Complied Environmental Monitoring is being carried out through NABL accredited laboratory. Monitoring of Ambient Air Quality, Noise, Stack, STP, Drinking Water, Marine Surface Water, Sea Sediment is carried out on regular basis. The reports are being submitted to KPL and Tamil Nadu Pollution Control Board on monthly basis and also as part of Six monthly compliance reports. Environment Monitoring report for the period July 2022 – December 2022 is attached as Annexure - I.

S.No	Environmental Clearance conditions		Compliance Stat	us	
vii	The sand dunes and mangroves, if any, on the site should not be disturbed in any way.	Status	by KPL.		
viii	A copy of the clearance letter will be marked to the concerned Panchayat/Local NGO, if any from whom any suggestion/representation has been received while processing the proposal.	Status	by KPL.		
ix	The Tamil Nadu Pollution Control Board should display a copy of the clearance letter at the Regional Office, District Industries Centre and Collector's Office/Tehsildar's Office for 30 days.	Status by KPL.			
X	The funds earmarked for environment protection measures should be maintained in a separate account and there should be no diversion of these funds for any other purpose. A year wise expenditure on environmental safeguards should be reported to this	Environmental Expenditure carried out during 2022 to December 2022 is Rs. 19.03 La Breakup details are as follows; S No Description Amount			
	Ministry's Regional Office at	1	Environmental Monitoring	(Rs in Lakhs) 6.26	
	Bangalore and the State Pollution	2	Greenbelt	2.53	
	Control Board.	3	STP – O&M	3.77	
		4	Housekeeping	4.13	
		5	Integrated Waste Management System	2.34	
			Total	19.03	

S.No	Environmental Clearance conditions	Compliance Status
xi	Full support should be extended to the officers of this Ministry's Regional office at Bangalore and the officers of the Central and State Pollution Control Boards by the project proponents during their inspection for monitoring purposes, by furnishing full details and action plans including the action taken reports in respect of mitigative measures and other environmental protection activities.	Noted for compliance. TNPCB Officials have visited our Port on monthly basis. There was no visit of officials from RO-MoEF&CC and CPCB during the compliance period. All the necessary support is provided during their site visit.
xii	In case of deviation or alteration in the project including the implementing agency, a fresh reference should be made to this Ministry for modification in the clearance conditions or imposition of new ones for ensuring environmental protection.	Noted.
xiii	This Ministry reserve the right to revoke this clearance, if any of the conditions stipulated are not complied with to the satisfaction of this Ministry.	Noted.
xiv	This Ministry or any other component authority may stipulate any other additional conditions subsequently, if deemed necessary, for environmental protection, which shall be complied with.	Noted.

S.No	Environmental Clearance conditions	Compliance Status
XV	The project proponent should advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned informing that the project has been accorded environmental clearance and copies of clearance letters are available with the State Pollution Control Board and may also be seen at Website of the Ministry of Environment & Forests at <u>http://www.envfornic.in</u> . The advertisement should be made within 7 days from the date of issue of the clearance letter and a copy of the same should be forwarded to the regional Office of this Ministry at Bangalore.	Status by KPL.
xvi	The Project proponents should inform the Regional Office at Bangalore as well as the Ministry the date of financial closure and final approval of the project by the concerned authorities and the date of start of Land Development Work.	Status by KPL.

Half yearly Compliance report on conditions stipulated in CRZ & Environmental Clearance [Vide order no: 10-28/2005-IA-III dated: 24/12/2014]

A. SPECIFIC CONDITIONS:

S.No	Environmental Clearance conditions	Compliance Status
i	"Consent to Establish" for the present project, shall be obtained from State Pollution Control Board under Air (Prevention and Control of Pollution) Act, 1981 and Water (Prevention and Control of Pollution) Act 1974.	Complied. Tamil Nadu Pollution Control Board accorded Renewal of Consent to Operate orders vide their order nos: 2108136876855 & 2108236876855 under Water and Air Acts dated: 24.08.2021 valid till 31.03.2026.
ii	Quality of Cargo should be handled in accordance with the details provided in the Form-I.	Complied. AECTPL is handling only containerized cargo, as approved.
iii	All the recommendations and conditions stipulated by Tamil Nadu Coastal Zone Management Authority (TNCZMA) No. 30060/EC.3/2005-1 dated 06.12.2005 shall be complied with.	Status by KPL.
iv	All the conditions as prescribed in the earlier Clearance letter no. 10- 28/2005-IA-III dated 19.05.2006 and 10.09.2007 shall be complied with.	Status by KPL.
V	All the recommendation of the EIA/EMP & Risk Assessment and Disaster Management Report shall be complied with letter and spirit. All the mitigation measures submitted in the EIA report shall be prepared in the matrix format and the compliance for each mitigation plan shall be submitted to MoEF & CC along with half yearly compliance report to MoEF&CC- RO.	Status by KPL.

Name	Name of the Project: Ennore Port Expansion Proposals – Development of Terminals for Marine Liquids, Coal, Iron and Containers in Second Phase and associated capital dredging at Ennore Port Environment Clearance.				
Vi	The commitment made by the proponent to the issue raised during Public Hearing shall be implemented by the Proponent.	Status by KPL.			
vii	Corporate Environmental Responsibility: a. The Company shall have a well laid down Environmental Policy approved by the Board of Directors.				
	b. The Environment Policy shall prescribe for standard operating process/procedures to bring into focus any infringements/deviation/violation of the environmental or forest norms/conditions.	b. AECTPL having approved SOPs.			
	c. The hierarchical system or Administrative Order of the company to deal with environmental issues and for ensuring compliance with the environmental clearance conditions shall be furnished.	c. Status by KPL.			
	d. To have proper checks and balances, the company shall have a well laid down system of reporting of non-compliances / violations of environmental norms to the Board of Directors of the company and / or shareholders or stakeholders at large.	address corrective & preventive deviation and			

B. GENERAL CONDITIONS:

S.No	Environmental Clearance conditions	Compliance Status			
i	Appropriate measures must be taken while undertaking digging activities to avoid any likely degradation of water quality.	Complied Construction completed and project is under operation.			
li	Full support shall be extended to the officers of the Ministry/Regional Office at Chennai by the project proponent during inspection of the project for monitoring purposes by furnishing full details and action plan including action taken reports in respect of mitigation measures and other environmental protection activities.	Noted for compliance. TNPCB Officials have visited our Port on monthly basis. There was no visit of officials from RO-MoEF&CC and CPCB during the compliance period. All the necessary support is provided during their site visit.			
iii	A six-Monthly monitoring report shall be need to be submitted by the project proponents to the Regional Office of this Ministry at Chennai regarding the implementation of the stipulated conditions.	Status by KPL.			
iv	Ministry of Environment, Forests & Climate Change or any other competent authority may stipulate any additional conditions or modify the existing ones, if necessary in the in the interest of environment and the same shall be complied with.	Noted for compliance.			
V	The Ministry reserves the rights to revoke this clearance if any of the conditions stipulated are not complied with satisfaction of the Ministry.	Noted.			
vi	In the event of a change in project profile or change in the	Noted.			

	implementation agency, a fresh			
	reference shall be made to the			
	Ministry of Environment, Forests &			
	Climate Change.			
vii	The project proponents shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of start of land development	Noted		
viii	work. A copy of the clearance letter shall be marked to concerned Panchayat/ Local NGO, if any, from whom any suggestion/ representation has been made received while processing the proposal.	Status by KPL.		
ix	The project proponent shall set up separate environmental management cell for effective implementation of the stipulated environmental safeguards under the supervision of a Senior Executive.	A separate EMC with suitable qualified staff has been put in place by AECTPL for taking care of various day		
×	The funds earmarked for environment management plan shall be included in the budget and this shall not be diverted for any other purposes.	Complied Environmental Expenditure carried out during July		
		S.No	Description	Amount (Rs in Lakhs)
		1	Environmental Monitoring	6.26
		2	Greenbelt	2.53
		3	STP – O&M	3.77
		4	Housekeeping	4.13
		5	Integrated Waste Management System	2.34
			Total	19.03

5.	These sticulations would be seferred	Noted.
Э.	These stipulations would be enforced	Noceo.
	among others under the provisions of	
	Water (Prevention and Control of	
	Pollution) Act, 1974, the Air	
	(Prevention and Control of Pollution)	
	Act, 1981, the Environment	
	(Protection) Act, 1986, the Public	
	Liability (Insurance) Act, 1991 and EIA	
	Notification 1994, including the	
	amendments and rules made	
	thereafter.	
6.	All other statutory clearances such as	Noted.
0.	the approvals for storage of diesel	
	from Chief Controller of Explosives,	
	Fire Department, Civil Aviation	
	Department, Forest conservation Act,	
	1980 and Wildlife (Protection)	
	Act,1972 etc. shall be obtained, as	
	applicable by project proponents	
	from the respective competent	
	authorities.	
7.	The project proponent shall advertise	Status by KPL.
7.	at least in two local newspapers	Stotos by RFE.
	widely circulated in the region around	
	the project, one of which shall be in	
	the vernacular language of the	
	locality concerned informing that the	
	project has been accorded	
	Environmental and CRZ clearance and	
	copies of clearance letters are	
	available with the Tamil Nadu State	
	Pollution Control Board and may also	
	•	
	be seen at Website of the Ministry of	
	Environment, Forests and Climate	
	Change at <u>http://www.envfornic.in</u> .	
	The advertisement should be made	
	within Seven days from the date of	
	issue of the clearance letter and a	
	copy of the same should be forwarded	
	to the regional Office of this Ministry	
	at Chennai.	

Name of the Project: Ennore Port Expansion Proposals – Development of Terminals for Marine

	Liquids, Coal, Iron and Containers in Second Phase and associated capital dredging at Ennore Port Environment Clearance.		
8.	The clearance is subject to final order of the Hon'ble Supreme Court of India in the matter of Goa Foundation Vs. Union of India in Writ Petition (Civil) No. 460 of 20014 as may be applicable this project.	Noted.	
9.	Any appeal against this clearance shall lie with the National Green Tribunal, if preferred, with a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act 2010.		
10.	Status of compliance to the various stipulated environment conditions and environmental safeguards will be uploaded by the project proponent in its website.	The compliance to the various conditions stipulated for environmental safeguards are uploaded in our	
11.	A copy of the clearance letter shall be sent by the proponent to concerned Panchayat, Zilla Parisad /Municipal Corporation, Urban Local Body and the Local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the company by the proponent.		
12.	The proponent shall upload the status of compliance of the stipulated Clearance conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Reginal Office of MoEF, the respective Zonal Office of CPCB and the SPCB.		

Γ	13.	The project proportion shall also	Status by KPL.
		submit six monthly reports on the	
		status of compliance of the stipulated	
		Clearance conditions including	
		results of monitored data (both in	
		hard copies as well as by e-mail) to the	
		respective Regional Office of MoEF,	
		the respective Zonal Office of CPCB and the SPCB.	
	14.	The Environmental Statement for	Complied.
		each financial year ending 31 st March	oomprice.
		in Form-V as is mandated to be	Environment Statement (Form V) submitted FY 2021-
		submitted by the project proponent	
		to the concerned State Pollution	dated 22.09.2022 is enclosed as Annexure – II.
		Control Board as prescribed under the	
		Environment (Protection) Rules,	
		1986, as amended subsequently, shall	
		also be put on the website of the	
	company along with the status of		
		compliance of Clearance conditions and shall also be sent to the	
		respective Reginal Office of MoEF &	
		CC by email.	
L			

Enclosures:

Annexure Number	Details of Annexure
Annexure I:	Environmental Monitoring reports for the period July 2022 to December 2022
Annexure II:	Environmental Statement – Form V for the FY 2021-22

ANNEXURE – 1

(Environment Monitoring Report Jul'22 – Dec'22)

REPORT ON

COMPREHENSIVE ENVIRONMENTAL MONITORING FOR

ADANI ENNORE CONTAINER TERMINAL PRIVATE LIMITED (AECTPL) (WITHIN KAMARAJAR PORTLIMITED) VALLUR POST, PONNERI TALUK, CHENNAI -600120

JULY 2022 - DECEMBER 2022

PREPARED BY:

Green Chem Solutions Pvt. Ltd. No.883, 11th Street, Syndicate Bank Colony, Anna Nagar West Extension, Chennai - 600 101.

S.No	o Index	
١.	Introduction	3
١١.	Location of the project	3
III.	Scope of work	3
IV.	Methodology	8
۷.	Environmental studies	9
i.	Meteorological Data	10
ii.	Ambient Air Quality	19
iii.	Ambient Noise Level Intensity	25
iv.	DG Set Emission	28
۷.	STP Water Sample Analysis	30
vi.	Drinking water Sample Analysis	31
vii.	Marine sampling	32
	List of Figures	
Fig.No	Description	Page No
1	Location Map	3
2	Ambient Air Sampling Station Location Map	19
3	Ambient Air Sampling Station with respect to Wind	20
4	Noise Level Sampling Location Map	25
5	Water and Marine Sampling Location Map	32

Index for Table

I. INTRODUCTION

M/s. Adani Ennore Container Terminal Pvt Ltd (AECTPL) located inside Kamarajar Port, Ennore is operating container berth and handling containerized Import/Export cargoes.

AECTPL have engaged M/s. Green Chem Solutions (P) Ltd, an Accredited Consultant by NABL to carry out the Comprehensive Environmental monitoring studies in the Adani Ennore Port continuously as per the statutory requirement. This report covers the monitored environmental data for the month of Jul 2022 to Dec 22.

II. LOCATION OF THE PROJECT

The Project site is located at Port area, Ennore Port Area.

The location map is shown in Fig - 1

Fig - 1 - Location Map

III. SCOPE OF WORK

The scope of Comprehensive Environmental monitoring includes the following environmental components

- 1. Meteorological data
- 2. Ambient Air Quality
- 3. Ambient Noise Level
- 4. Marine Sampling
- 5. Treated STP Water
- 6. Potable water
- 7. DG Set emission

The parameters covered under the scope for each of the above attributes are given below:

S.No	Attribute	Scope	Frequency
1.	Meteorological Data	Collection of micrometeorological data on hourly basis by installing an auto weather monitoring station at plant site covering the following parameters : • Wind speed • Wind direction • Rainfall • Relative Humidity • Temperature	Daily
		Barometric pressureSolar Radiation	
2.	Ambient Air Quality	Sampling of ambient air at 03 stations for analyzing the following parameters: PM10 PM2.5 SO ₂ NO ₂ CO Lead Ozone Ammonia Benzene Benzo Pyrene Arsenic Nickel	Weekly Twice
3.	Ambient Noise	Collection of Noise levels on hourly basis at 3 locations • L _{eq} - Day (Max and Min) • L _{eq} - Night (Max and Min)	Monthly Once
4.	Marine Sampling	6,0	

SCOPE OF WORK

4a.	Surface and Bottom Water	Collection of Surface and Bottom Water analyzed for - 2 location • Temperature • pH @ 25°C	
4a.		analyzed for -2 location Temperature pH @ 25°C Total Suspended Solids BOD at 27 °C for 3 days Dissolved oxygen Salinity at 25 °C Oil & Grease Nitrate as No ₃ Nitrite as No ₂ Ammonical Nitrogen as N Ammonia as NH ₃ Kjeldahl Nitrogen as Nl Total phosphates as PO ₄ Total Dissolved Solids COD Total bacterial count, Coliforms Escherichia coli Salmonella Shigella Vibrio cholera Vibrio parahaemolyticus Enterococci Colour Odour Taste Turbidity Calcium as Ca Chloride as Cl Cyanide as CN Fluoride as F Magnesium as Mg Total Iron as Fe Residual Free Chlorine Phenolic Compounds as $C_6 H_5 OH$ Total Hardness as MBAS Monocrotophos	Monthly Once
		 Atrazine Ethion Chiorpyrifos Phorate Mehyle parathion 	
		 Mehyle parathion Malathion DDT (o,p and p,p-Isomers of DDT,DDE and DDD Gamma HCH (Lindane) 	
		Alppha HCHBeta HCH	

		 Delta HCH Endosulfan (Alpha,beta and sulphate) Butachlor Alachlor Alachlor Aldrin/Dieldrin Isoproturon 2,4-D Polychlorinated Biphenyls(PCB) Polynuclear aromatic hydrocarbons (PAH) Arsenic as As Mercury as Hg Cadmium as Cd Total Chromium as C Copper as Cu Lead as Pb Manganese as Mn Nickel as Ni Selenium as Se Barium as Ba Silver as Ag Molybdenum as Mo Octane Undecane Tridecane Tetradecane Heptadecane Heptadecane Octadecane Nonadecane Elcosan 	
4b.	Sea Sediment	Collection of sea sediment analyzed for - 2 location pH Organic Matter Moisture Content Conductivity Iron Sodium Copper Nickel Zinc Manganese Lead Boron Phosphate Chloride Sulphate Sulphide Pesticide Potassium	Monthly Once

		 Total Chromium Petroleum Hydrocarbon Aluminium 	
		Total NitrogenOrganic NitrogenPhosphorus	
4c.	Phytoplankton Monitoring	 Texture Total Count No. of species Chlorophyll-a Major Species 	Monthly Once
4d.	Zooplankton Monitoring	 Total Count No. of species Major 	Monthly Once
4e.	Microbiological Monitoring	 Total Bacteria count Total Coliform Faecal Coliform E.Coli Enterococcus Salmonella Sheigella Vibrio 	Monthly Once
4f.	Primary Productivity Monitoring	 Gross primary productivity Net Primary productivity 	Monthly Once
4g.	Phytobenthos Monitoring data	 Fungus Total Count No. of species Diversity Index Major species 	Monthly Once
4h.	Total Fauna Monitoring	 Name of phylum Class Number of Individuals encountered Total no. of species encountered Total fauna 	Monthly Once
5.	STP Treated Water	Collection of STP Treated water analyzed for - 1 locations pH TSS BOD Faecal Coliforms	Monthly Once
6.	Potable Water analysis	Collection of Drinking water analyzed for - 1 locations - As per IS 10500 2012 - 36 Parameters	Monthly Once
7	DG Set Emissions	Sampling of Emission at 03 stations for analyzing the following parameters: • PM • Carbon Monoxide • NO _x - NO ₂ • SO ₂	Monthly Once

IV. METHODOLOGY

Methodologies adopted for sampling and analysis for each of the above parameters are detailed below

1	Meteorological parameters										
	Auto weather sta										
2	Ambient Air Qua										
	Parameters	Method									
	Respirable Suspended Particulate Matter (PM10)	IS 5182 Part 23 : 2006									
	Particulate Matter PM2.5	GCS/Lab/SOP/087, CPCB Guideline									
	Sulphur dioxide as SO ₂	IS 5182 Part 2: 2001 (Reaff. 2006)									
	Oxides of Nitrogen as NO ₂	IS 5182 Part 6 : 2006									
	Lead as Pb	IS 5182 Part 22 : 2004									
		(Reaff.2009)									
	Arsenic as As	GCS/Lab/SOP/089, CPCB									
		Guidelines									
	Nickel as Ni	GCS/Lab/SOP/090, CPCB									
		Guidelines									
	Carbon monoxide as CO	IS 5182 Part 10: 1999 (Reaff. 2009									
]									
	Ozone as O ₃	IS 5182 Part 9 : 1974 [Reaff.2009]									
	Ammonia as NH ₃	GCS/Lab/SOP/086, CPCB Guideline									
	Benzene (a) pyrene	IS 5182 - Part 12									
	Benzene as C ₆ H ₆	IS 5182 Part 11 : 2006									
3	Ambient Noise Monitoring										
	L _{eq} Day & Night	Instrument Manual,									
		GCS/LAB/SOP/Noise/001									
4	Marine Sampling										
	Surface and Bottom Water	APHA Methods 23 rd Edition, 2017									
	Sea Sediment	Standard Methods for examination									
	Phytoplankton Monitoring	of Water and Waste water and IS									
	Zooplankton Monitoring	3025									
	Microbiological Monitoring	æ									
	Primary Productivity Monitoring	USEPA Test Methods									
	Phytobenthos Monitoring data	14									
	Total Fauna Monitoring	100									
5	STP Water Anal	ysis									
	pH , TSS, BOD , Faecal Coliforms	APHA Methods 23 rd Edition, 2017									
		Standard Methods for examination									
		of Water and Waste water and IS									
		3025									
6	Drinking Water An										
	As per IS 10500 : 2012 - 36 Parameters	APHA Methods 23 rd Edition, 2017									
		Standard Methods for examination									
		of Water and Waste water and IS									
		3025									
7	Emission Monito	ring									
	PM, Carbon Monoxide, $NO_x - NO_2$, SO_2	IS 11255 Methods of measurement									
		of emissions from Stationary source									

V. ENVIRONMENTAL STUDIES - JULY 2022 TO DEC 22

S.No	ATTRIBUTE	SCOPE
1.	Meteorological parameters	Collection of micrometeorological data at project site on daily basis with hourly frequency
2.	Ambient Air Quality	Collection of ambient air at 3 locations.
3.	STP water	Collection of STP Inlet & outlet water at one location
4.	Ambient Noise	Collection of Ambient noise levels for day and night at 3 locations
5.	Potable Water	Collection of Potable water at Canteen Building
6.	Marine Water and Marine Sediments	Collection of Marine water and Marine Sediments at One locations
7	DG Set Emissions	Collection of DG Set Emission at 4 locations.

i. METEOROLOGICAL DATA

Meteorological data was collected on hourly basis by installing an auto weather monitoring station at Plant site. The report depicted here under represents the data for July 2022 to Dec 2022. The Detailed report has been is enclosed as Annexure - 1

The following parameters were recorded

- Wind speed
- Wind direction
- Temperature
- Pressure
- Relative humidity
- Rainfall

Annexure – 1

July - 2022

Date		Ambien peratur		Atmos	pheric Pro (mbar)	essure	Predominant wind Direction	w	ind Spe (m/s)	ed	Relative Humidity (%)			Rainfall
	Min	Max	Avg	Min	Max	Avg	(Blowing From)	Min	Max	Avg	Min	Max	Avg	mm
01.07.22	26.1	35	29.8	999.5	1003.3	1001.6	WSW	0.9	5.8	2.9	66	94	83.8	0.2
02.07.22	25.6	33.3	29.1	998.4	1003.5	1000.9	WSW	1.3	7.2	3.1	72	93	84.6	8.8
03.07.22	28.5	32.8	30.3	999.2	1003	1001.0	WSW	1.8	5.8	3.4	72	91	81.3	0.0
04.07.22	27.6	33.3	30.5	998.7	1002.8	1001.2	WSW	1.3	6.7	3.3	68	88	76.2	0.8
05.07.22	25.6	32.5	29.1	998.8	1002.8	1001.0	SW	0.4	5.8	3.5	71	94	79.5	1.2
06.07.22	25.9	31.4	28.3	1001	1005.2	1002.8	SW	0.4	4.5	2.8	75	93	83.9	0.6
07.07.22	27	31.3	29.1	1002.6	1006.1	1004.4	SW	1.3	5.4	3.2	75	86	80.8	0.0
08.07.22	25.9	30.6	28.4	1001.2	1005.4	1003.7	W	1.3	5.8	2.9	76	89	80.6	0.2
09.07.22	24.4	31.8	27.7	998.9	1003.6	1001.6	SW	0	6.3	3.2	73	95	83.0	4.8
10.07.22	25.8	31.3	28.1	1000.3	1003.9	1001.9	sw	1.3	5.4	3.7	74	91	83.5	3.0
11.07.22	25.9	31.4	28.6	1001.7	1005.3	1003.6	SW	1.8	7.2	4.6	72	89	79.5	0.4
12.07.22	27.1	33.9	29.3	999.6	1005.5	1003.0	SW	1.3	6.7	3.9	66	88	77.9	3.4
13.07.22	25.9	33	29.2	998.2	1002.9	1001.1	SW	0.9	5.4	3.7	69	91	77.8	1.4
14.07.22	27.1	34.3	30.3	997.1	1001.5	999.9	SW	2.2	6.3	4.3	63	82	73.5	0.0
15.07.22	27.9	33.9	30.4	999.7	1003.3	1001.4	SW	2.7	5.8	4.0	65	88	73.1	0.0
16.07.22	25.2	33.6	29.6	1000.9	1005	1002.7	WSW	0.9	7.6	3.4	66	92	77.5	0.6
17.07.22	25.7	31.6	28.8	1001.9	1005.8	1004.3	SW	1.3	6.7	3.0	74	89	83.3	0.0
18.07.22	26.8	31.6	28.8	1003	1005.8	1004.3	SW	0.4	6.7	3.0	73	89	83.3	0.8
19.07.22	26.9	30.9	29.0	1002.1	10 <mark>06.1</mark>	1004.3	SW	0	4.9	2.8	78	91	86.2	0.0
20.07.22	26.8	31.8	29.0	1002.3	1006 <mark>.1</mark>	1004.6	WSW	0.4	4.9	3.2	76	90	85.3	0.0
21.07.22	26.7	32.4	29.3	1002	1006	1003.9	SW	1.3	4.9	3.1	72	91	84.9	0.0
22.07.22	24.2	30.5	27.5	1002.7	1006.3	1004.8	WSW	0.9	7.2	2.9	81	94	89.1	15.8
23.07.22	26.1	31.9	29.0	1001.5	1005.4	1003.8	SE	1.8	4.9	3.4	73	91	86.3	0.0
24.07.22	26.2	32	28.8	1002.4	1006.3	1004.4	SW	0.9	4.9	2.9	72	93	84.5	0.2
25.07.22	27	33.4	29.7	1003.2	1008.1	1005.2	NW	0	4.9	2.1	67	93	83.2	0.0
26.07.22	25.7	30.1	27.5	1004.2	1008.6	1006.4	NW	0.9	5.4	2.8	79	91	85.7	0.0
27.07.22	26	31.1	28.8	1004.1	1007.7	1006.1	NNE	0.4	4.9	2.0	76	93	85.0	0.0
28.07.22	26.9	30.9	29.3	1004.2	1008.2	1006.5	ENE	0.4	3.6	2.1	81	94	86.2	0.0
29.07.22	27	30.6	29.2	1003.3	1008.2	1006.1	ESE	0.4	4.9	2.9	82	93	87.2	0.0
30.07.22	27.3	31.7	29.4	1002.2	1006.9	1005.0	SSE	0.4	5.4	3.5	79	93	86.5	0.0
31.07.22	27.8	30.4	29.4	1000.1	1004.8	1002.9	ESE	1.3	4.9	3.9	82	91	86.4	0.0

						Au	ıg - 2022							
Date	-	Ambien peratur	-	Atmos	pheric Pro (mbar)	essure	Predominant wind Direction	W	ind Spe (m/s)	ed	Relative Humidity (%)		Rainfall mm	
	Min	Max	Avg	Min	Max	Avg	(Blowing From)	Min	Max	Avg	Min	Max	Avg	
01.08.22	27.3	31.7	29.9	999.3	1003.9	1002.2	ESE	0.4	5.4	3.3	77	89	84.7	0.0
02.08.22	26.2	32.3	28.9	998.6	1002.9	1001.0	NNE	0.4	4.9	2.0	79	92	86.8	0.0
03.08.22	26.3	28.8	27.7	999.4	1003.1	1001.4	SSE	0	2.7	1.4	85	93	89.1	1.4
04.08.22	25.3	29.4	27.8	999.5	1002.9	1001.5	SW	0	3.1	1.7	84	94	88.0	3.2
05.08.22	25.6	30.7	28.0	1000.1	1003.7	1001.9	WSW	0.9	6.3	3.1	74	95	84.5	0.0
06.08.22	26.5	31.6	28.8	999.4	1003.1	1001.5	WSW	1.8	5.4	4.2	72	90	79.0	0.0
07.08.22	26.6	31.7	29.2	998.5	1001.9	1000.3	SW	0.9	5.8	4.4	74	88	78.9	0.0
08.08.22	27.6	34.3	30.0	997.3	1001.5	999.9	SW	0.9	6.7	4.6	64	83	76.2	0.0
09.08.22	28.2	34	31.2	997.9	1002.2	1000.3	SW	3.6	7.2	5.0	62	77	69.2	0.0
10.08.22	27.3	35.1	30.8	998.3	1002.4	1000.6	SW	1.8	8	5.1	58	90	71.2	0.0
11.08.22	27.8	35.2	30.8	999.6	1004.3	1002.2	SW	1.8	6.7	4.4	60	91	72.7	0.0
12.08.22	28.4	34.6	31.0	1001.4	1005.3	1003.6	SW	2.2	5.4	3.6	63	88	74.4	0.0
13.08.22	28.5	33.8	30.5	1002	10 <mark>05</mark>	1003.6	WSW	0.9	4.5	2.8	63	91	77.4	0.0
14.08.22	28.1	33	29.9	1003	1006.6	1004.7	WSW	0.4	4.9	2.4	65	87	78.3	0.0
15.08.22	28.6	33.9	29.8	1004.4	1007.8	1005.9	SE	1.8	4.9	3.9	65	90	82.3	0.0
16.08.22	27.6	30.7	29.2	1003.9	1007.7	1006.2	SE	0.4	7.6	4.9	79	91	86.9	0.0
17.08.22	26.9	32.3	29.1	1003.3	1006.7	1004.6	SE	2.2	5.4	3.4	74	91	83.5	0.0
18.08.22	25.4	32.3	29.1	1002.4	1006.7	1004.6	SE	1.8	5.4	3.4	71	91	83.5	0.0
19.08.22	27.3	32.1	29.9	1002.7	1005.9	1004.4	SSE	0.9	4.9	3.0	74	93	83.3	0.0
20.08.22	28.6	33.7	30.6	1001.5	1006.4	1004.0	SW	1.8	5.4	2.9	67	90	80.3	0.0
21.08.22	26.6	33.3	29.9	1001.4	1 <mark>006</mark>	1003.7	SW	1.8	5.4	3.5	67	89	81.6	0.2
22.08.22	26.6	33.4	29.1	1001.1	1005.1	1003.2	SSE	1.8	5.4	3.5	67	93	84.6	6.2
23.08.22	26.2	32.9	28.8	1001.9	1006.7	1003.7	WSW	1.3	8	3.7	71	92	84.8	0.2
24.08.22	25.1	33.7	28.9	1003.1	1008	1005.6	WNW	0	5.4	3.2	67	95	84.6	3.0
25.08.22	25.8	34	29.3	1002.4	1005.9	1004.5	WSW	0.9	6.3	2.8	69	91	82.5	0.0
26.08.22	25.2	34	28.8	1001.7	1006	1004.0	ESE	0.4	4.5	2.1	68	94	85.3	0.0
27.08.22	24.3	32.8	27.7	1001.4	1006.2	1004.0	WSW	1.3	4.5	2.7	73	94	86.9	0.0
28.08.22	25	32.4	28.2	1001.6	1005.5	1003.7	WSW	0	2.7	1.6	76	92	85.2	0.0
29.08.22	26.3	31.3	28.3	1003.3	1007.1	1005.2	ESE	0.4	4.5	2.3	83	94	88.5	2.4
30.08.22	26.6	30.6	29.1	1004.4	1007.8	1006.1	SSE	0	4	1.9	81	94	86.1	0.8
31.08.22	25.8	30.6	28.4	1003.6	1007.5	1005.6	NNE	0	3.6	1.4	81	93	88.0	20.2

Sep - 2022

Adani Ennore Container Terminal Pvt Ltd

		F	Report Type: A	Average Repor	t		
		From: 01-09-	2022 00:00:00	D To: 30-09-2	022 23:59:5	9	
	-	Created By:	ADANI Creat	ed At: 01.10.20	022 09:10:1	5	
Date	AQMS- Wind_Speed (km/h)	AQMS- Wind_Directio n(Degree)	AQMS-RH (%)	AQMS Total Rain Fall (mm)	AQMS- Atm. Pressure (mBar)	AQMS-Atm. Temperature (Degree)	AQMS- Solar_Radiation (w/m2)
Avg	4.5	223	92.0	61.7	1002.3	31.8	95.0
Min	1.1	176	79.4	-	1000.0	28.9	14.8
Max	9.5	251	99.9	-	1005.4	33.2	302.9
01-09-2022	1.1	251	99.9	14.2	1003.4	28.9	99.2
02-09-2022	2.5	217	94.0	0.2	1003.8	30.9	298.8
03-09-2022	3.6	216	93.8	0.0	1003.4	31.8	260.7
04-09-2022	4.3	230	95.9	0.0	1002.9	32.3	258.9
05-09-2022	4.3	225	90.6	0.0	1002.2	32.8	272.9
06-09-2022	3.6	227	93.3	0.0	1001.6	33.2	302.9
07-09-2022	4.4	189	<u>98.6</u>	0.0	1002.0	30.6	171.3
08-09-2022	4.1	248	99.9	0.4	1001.8	29.6	76.4
09-09-2022	4.4	209	94.0	6.8	1000.8	30.9	180.9
10-09-2022	5.4	23 <mark>7</mark>	90.1	0.0	1000.4	31.7	131.3
11-09-2022	9.5	2 <mark>31</mark>	84.1	0.0	1000.0	32.7	188.4
12-09-2022	6.3	<mark>230</mark>	89.0	0.0	1000.4	32.5	256.2
13-09-2022	4.9	2 <mark>30</mark>	90.5	0.0	1002.3	32.6	18.8
14-09-2022	5.5	2 <mark>34</mark>	95.4	0.0	1004.5	32.4	18.5
15-09-2022	3.1	236	93.5	0.0	1005.4	31.4	17.5
16-09-2022	4.5	222	92.1	0.4	1003.0	32.0	17.9
17-09-2022	4.8	237	92.7	1.0	1002.4	32.8	14.8
18-09-2022	4.4	223	<u>90.6</u>	1.7	1002.8	32.8	17.1
19-09-2022	5.3	237	87.2	0.0	1002.6	32.5	18.2
20-09-2022	5.6	243	79.4	0.0	1002.0	32.3	18.3
21-09-2022	5.1	208	83.5	0.2	1002.1	32.4	19.5
22-09-2022	5.8	211	84.5	0.0	1002.5	33.2	19.7
23-09-2022	3.9	213	84.5	0.0	1003.3	33.1	19.6
24-09-2022	4.5	187	86.7	0.0	1002.8	32.6	19.7
25-09-2022	4.7	182	89.1	0.0	1002.0	32.6	19.7
26-09-2022	2.9	250	96.0	0.0	1003.0	31.7	20.0
27-09-2022	4.6	176	93.7	20.4	1002.0	31.8	19.7
28-09-2022	3.8	227	99.4	15.0	1001.1	30.6	19.0
29-09-2022	3.4	227	<i>99.9</i>	0.6	1001.1	30.2	27.0
30-09-2022	3.8	226	99.4	0.8	1001.1	30.3	26.3

Date		Ambien peratur		Atmos	pheric Pro (mbar)	essure	Predominant wind Direction	w	ind Spe (m/s)	ed	Relat	Relative Humidity (%)		Rainfall mm
	Min	Max	Avg	Min	Max	Avg	(Blowing From)	Min	Max	Avg	Min	Max	Avg	
01.10.22	23.3	30.3	27.4	1001.8	1007.9	1005.1	ESE	0	4.9	1.6	78	97	89.6	0.5
02.10.22	25.5	30	27.1	1004.1	1009.3	1006.6	NNE	0	1.8	0.7	77	97	90.0	0.0
03.10.22	24.8	30.5	28.2	1004.5	1009.1	1006.9	SSE	0	2.7	1.1	75	97	88.1	0.0
04.10.22	25.6	30.1	28.1	1005.3	1011.1	1008.0	SW	0	1.8	0.7	83	97	88.9	0.0
05.10.22	26.3	29.7	28.5	1006.4	1011	1008.8	WSW	0	5.4	2.7	83	89	86.3	16.5
06.10.22	23.3	28.4	26.5	1003.9	1007.9	1005.7	WSW	0	3.6	1.0	88	97	91.8	2.5
07.10.22	25.5	30.5	28.1	1004.5	1009.3	1006.8	SW	0	2.2	1.0	75	97	87.4	28.0
08.10.22	24.8	30.1	28.1	1005	1009.1	1007.0	SW	0	2.7	1.0	83	97	89.1	6.0
09.10.22	25.6	29.7	28.0	1005.8	1011.1	1008.3	SW	0	2.7	0.7	83	97	89.2	15.0
10.10.22	26.3	29.2	28.4	1005.7	1011	1008.6	SW	0	5.4	3.3	84	89	86.8	12.5
11.10.22	26.4	29.7	28.8	1005.6	101 <mark>0.8</mark>	1008.6	SW	0	4.9	2.8	83	96	86.6	1.5
12.10.22	26.4	30.8	29.2	1005.6	1010.1	1008.2	SW	0	4.5	2.1	82	96	86.2	1.5
13.10.22	26.2	29.9	28.5	1005	1009.6	1007.6	WSW	0	3.1	1.5	82	96	86.9	0.5
14.10.22	25.7	30.4	28.4	1004.1	1008.6	1006.5	WSW	0	2.2	1.1	80	95	86.1	8.0
15.10.22	26.1	30.1	28.8	1004.4	1010.5	1007.5	SE	0	3.1	1.5	83	96	87.5	0.0
16.10.22	26.7	30.5	29.4	1007.7	1012.1	1010.1	SE	0	3.6	1.8	83	93	86.2	19.0
17.10.22	26.6	31.2	29.6	1006.6	1011.8	1009.7	SE	0	2.7	1.3	79	95	84.3	1.5
18.10.22	26.2	31.3	29.8	1005.9	1010.7	1008.9	SE	0	2.7	1.2	78	90	83.3	0.0
19.10.22	26.2	30.9	29.5	1006.4	1011.4	1009.0	SSE	0	2.7	1.6	78	93	83.8	0.0
20.10.22	25.7	31.7	29.7	1007.9	1012 <mark>.3</mark>	1010.1	SW	0	2.7	1.3	79	94	84.1	12.0
21.10.22	26	31.2	28.8	1008.2	1012.8	1010.7	SW	0	4	1.8	77	95	85.5	3.5
22.10.22	25.9	32.7	29.2	1006.8	1010.1	1008.3	SSE	0	4	1.7	62	89	67.6	11.5
23.10.22	24.4	32.7	29.2	1005.4	1010.1	1008.3	WSW	0	4	1.7	47	89	67.6	0.0
24.10.22	23.7	32.6	29.2	1006.2	1011.2	1008.6	WNW	0	3.1	1.2	48	83	65.7	0.0
25.10.22	23.3	32.4	29.7	1007.8	1013.2	1010.6	WSW	0	1.8	0.9	37	90	62.3	0.0
26.10.22	24.3	31.2	27.5	1008.6	1012.5	1010.5	ESE	0	2.7	1.2	48	95	76.9	0.0
27.10.22	27.4	30.4	29.2	1007.3	1011.4	1009.7	WSW	0	3.1	1.7	78	88	82.1	13.5
28.10.22	27.9	30.7	29.2	1007.8	1011.1	1009.3	WSW	0	2.7	1.8	74	87	79.6	0.0
29.10.22	28.1	30.6	29.2	1008.2	1011.4	1009.6	ESE	0	3.1	2.0	75	82	77.9	0.5
30.10.22	24.6	28.7	26.3	1007.6	1011.9	1009.4	SSE	0	5.8	2.4	80	96	89.6	0.0
31.10.22	24.6	25.2	24.9	1008.9	1011	1010.3	NNE	0	4	1.5	96	98	97.2	54.0

Oct - 2022

						No	ov - 2022							
Date		Ambien peratur	-	Atmos	pheric Pro (mbar)	essure	Predominant wind Direction	w	ind Spe (m/s)	ed	Relat	tive Hu (%)	midity	Rainfall mm
	Min	Max	Avg	Min	Max	Avg	(Blowing From)	Min	Max	Avg	Min	Max	Avg	
01.11.22	23.6	24.2	23.8	1008.2	1012.7	1010.3	NW	0	4.5	1.5	98	99	98.3	31.0
02.11.22	23.7	26.7	25.4	1007.6	1012	1009.7	NW	0	4	1.5	90	99	95.3	2.6
03.11.22	24	28.4	26.5	1007.3	1011 .9	1009.5	NNW	0	5.8	2.6	87	97	91.2	1.0
04.11.22	23.8	29.8	27.1	1008.9	1013.3	1011.0	NNE	0	4.5	1.4	80	97	88.5	7.6
05.11.22	25.6	30.2	28.5	1010.5	1014.2	1012.3	NNE	0	2.7	1.3	79	96	85.7	0.0
06.11.22	28.1	30.1	29.1	1010.7	1014.7	1012.6	NNE	0	3.1	1.8	72	81	77.1	0.0
07.11.22	25.4	29.4	27.3	1009.7	1014.2	1012.0	N	0	4.5	1.9	82	94	87.6	11.4
08.11.22	24.9	29.3	27.3	1009.6	1013.6	1011.6	NNE	0	4.5	2.1	82	95	87.3	4.4
09.11.22	24.9	29.7	27.8	1009.4	1013.2	1011.1	N	0	4.9	2.2	80	96	86.1	0.0
10.11.22	24.3	30	27.3	1008.3	1012.6	1010.3	NNE	0	5.4	2.7	79	95	87.4	12.0
11.11.22	24.6	27.7	26.8	1007.5	1011.5	1009.2	NNE	0	5.4	2.9	90	96	92.4	3.2
12.11.22	25.2	28.5	27.0	1007.7	1012.1	1009.9	NE	0	4.9	1.4	89	96	92.1	29.8
13.11.22	24.1	25.6	24.9	1008.8	1013.3	1011.1	WNW	0	4.5	2.0	93	97	95.4	3.0
14.11.22	24.3	28.1	26.9	1009.6	1013.4	1011.6	NNE	0	4.9	2.2	84	96	89.4	0.2
15.11.22	25	29	27.4	1009.7	1014.5	1011.9	NNE	0	4	1.7	79	96	84.8	0.0
16.11.22	24.3	29.1	27.2	1008.3	1013	1010.6	N	0	3.6	1.7	75	96	82.1	0.0
17.11.22	22.8	28.1	27.0	1008.4	1012.2	1010.3	NW	0	5.8	2.9	74	88	79.1	0.0
18.11.22	24.1	28.1	27.0	1008.2	1012.2	1010.3	NW	0	5.8	2.9	72	88	79.1	0.0
19.11.22	23.3	28.8	27.2	1007.7	1012.6	1010.1	N	0	4.9	2.4	69	92	74.8	0.0
20.11.22	22.7	26.5	25.1	1006.4	1011.5	1008.8	NW	0	6.7	3.6	73	89	79.1	0.0
21.11.22	21.7	22.8	22.3	1006.4	10 <mark>10.2</mark>	1008.1	WNW	0	8.5	4.5	87	95	92.3	1.0
22.11.22	22.8	24.2	23.7	1005.1	1009.3	1007.2	WNW	0	9.4	4.2	87	96	92.9	3.8
23.11.22	24.2	27.6	26.4	1005.5	1010.7	1007.9	ESE	0	5.4	2.5	88	98	92.1	0.2
24.11.22	26.2	28.8	27.6	1007.8	1012	1010.0	ESE	0	3.1	0.8	85	97	90.1	0.0
25.11.22	24	29.5	27.4	1009.4	1012.9	1011.0	NNE	0	2.2	0.6	82	98	88.3	28.8
26.11.22	24.7	29.3	27.6	1007.7	1012	1009.8	NNE	0	2.2	1.0	82	97	89.4	0.0
27.11.22	25.8	29.2	27.9	1006.7	1010.4	1008.3	E	0	2.2	1.1	83	96	86.8	0.0
28.11.22	26.1	29.2	27.8	1007.1	1010.9	1009.0	NE	0	1.8	0.9	78	91	80.6	0.0
29.11.22	25	28.7	27.2	1008.2	1012	1010.2	NNE	0	3.1	1.6	70	90	74.9	0.0
30.11.22	22.9	28.8	26.7	1008.7	1012.8	1010.7	NW	0	4.5	2.5	79	95	86.1	3.4

Page **14** of **35**

						De	ec - 2022							
Date		Ambien peratur	-	Atmos	pheric Pro (mbar)	essure	Predominant wind Direction	w	ind Spe (m/s)	ed	Relative Humidity (%)		Rainfall mm	
	Min	Max	Avg	Min	Max	Avg	(Blowing From)	Min	Max	Avg	Min	Max	Avg	
01.12.22	27.1	29.6	28.3	1007.7	1012.7	1010.2	NNE	0	2.2	1.0	83	92	88.3	0.0
02.12.22	26.4	29.8	28.3	1008	1012.1	1009.9	NNE	0	2.2	1.1	84	92	86.8	0.0
03.12.22	26.8	29.3	28.1	1008.3	1012.5	1010.2	NNE	0	2.7	1.4	86	91	88.3	1.0
04.12.22	27.2	28.6	28.0	1008.7	1012.9	1010.9	NNE	0	3.6	1.9	83	90	86.1	0.0
05.12.22	27.3	29.6	28.4	1009.6	1013.2	1011.4	NNE	0	2.7	1.4	80	86	83.1	0.0
06.12.22	26.7	28.2	27.3	1008.4	1012.6	1010.5	NNE	0	3.1	2.0	79	83	81.1	0.0
07.12.22	24.5	27.6	26.5	1007.4	1010.7	1009.2	NW	0	5.4	2.9	78	93	82.9	0.0
08.12.22	22.5	25.5	23.9	1004.8	1010.3	1006.9	NW	0	9.4	5.0	75	95	87.9	7.0
09.12.22	20.9	27.3	24.0	998.3	1004.9	1002.3	NNE	3.6	8.5	5.3	83	97	92.9	32.5
10.12.22	24.3	25.5	24.9	997.1	1006.7	1002.8	ESE	2.7	14.8	7.8	88	93	91.0	1.5
11.12.22	23.5	28.1	25.3	1005.5	1010.1	1007.7	NW	0	4.9	1.5	81	97	92.8	1.0
12.12.22	24.3	27.2	26.0	1006.8	1010.8	1008.8	ESE	0.4	8.5	5.2	88	95	92.5	0.0
13.12.22	26.3	27.9	27.0	1008.8	1012.6	<u>1010.6</u>	ESE	0	4.9	3.2	87	92	89.5	0.0
14.12.22	24.6	28.4	26.5	1009.4	1012.8	1011.3	ESE	0	3.1	1.3	86	98	91.4	0.0
15.12.22	23.4	28.4	26.0	1008.4	1012.9	1010.9	N	0	1.3	0.8	77	97	85.3	0.0
16.12.22	23	28	25.7	1008.1	1012.5	1009.9	N	0	2.2	1.1	80	97	88.8	0.0
17.12.22	24.2	28.5	27.0	1008.7	<u>1012</u>	1010.0	N	0	4	2.5	81	88	81.3	0.0
18.12.22	26	28.5	27.0	1008.1	<u>1012</u>	1010.0	NNE	1.3	4	2.5	74	88	81.3	0.0
19.12.22	25.4	27.9	26.5	1007.5	1011.8	1009.4	N	1.8	3.6	2.6	77	86	80.8	0.0
20.12.22	23.8	27.9	26.1	1007.1	1011.5	1009.2	N	1.3	4	2.5	76	95	84.7	0.0
21.12.22	23.6	27.3	25.5	1007.6	10 <mark>11.3</mark>	1009.3	WNW	0.9	5.4	3.5	82	94	88.4	0.0
22.12.22	23.4	28.2	26.2	1007.3	1011.1	1009.0	N	2.2	4	2.9	79	94	84.0	0.0
23.12.22	23.3	27.6	25.8	1007.2	1010.6	1008.8	WNW	2.2	7.2	3.9	81	93	86.0	0.0
24.12.22	23.4	27.9	26.0	1007.5	1011.5	1009.3	NW	0.9	6.3	4.0	82	96	88.5	4.8
25.12.22	25.4	28.7	26.7	1007.8	1012.6	1010.0	NNE	0.4	4.5	1.9	88	95	93.0	1.4
26.12.22	25.3	28.6	27.0	1010	1014.4	1012.3	NNE	0	3.1	0.9	87	94	91.4	3.4
27.12.22	26	28.6	27.2	1011.5	1015.4	1013.5	NNE	0	2.2	0.9	86	94	89.9	0.0
28.12.22	23.8	28.7	26.7	1012.6	1016.3	1014.3	ENE	0	2.2	0.9	82	98	88.7	0.0
29.12.22	23.9	28.8	26.8	1013.6	1017.3	1015.4	E	0	2.2	1.2	83	97	88.9	0.0
30.12.22	23.8	29.3	26.6	1014.3	1018.5	1016.1	NNE	0	2.2	0.8	80	98	88.2	0.0
31.12.22	23	28.3	25.6	1013	1017.7	1015.3	w	0	3.1	1.2	79	98	88.9	0.0

Direction	0 <= ws< 1	1 <= ws< 2	2 <= ws< 3	3 <= ws< 4	4 <= ws< 5	ws>= 5	Avg. wind Speed (m/s)	Number of events	Events (%)
E	1	4	4	6	0	0	2.45	15	2.0
ENE	0	0	7	2	0	0	2.67	9	1.2
ESE	2	3	9	25	26	2	3.01	67	9.0
N	0	1	0	0	0	0	1.80	1	0.1
NE	1	1	4	0	0	0	1.68	6	0.8
NNE	1	2	7	0	0	0	1.90	10	1.3
NNW	1	0	0	0	0	0	0.90	1	0.1
NW	2	4	5	3	2	1	3.08	17	2.3
S	0	0	1	7	2	0	3.80	10	1.3
SE	1	2	5	21	22	1	3.31	52	7.0
SSE	4	2	10	24	9	8	3.25	57	7.7
SSW	1	2	3	11	10	7	4.12	34	4.6
SW	4	15	47	84	59	27	4.00	236	31.8
W	20	16	8	13	0	1	2.47	58	7.8
WNW	5	5	4	6	0	1	2.52	21	2.8
WSW	9	28	52	51	6	3	3.19	149	20.1
		All a Martin	Real Providence	1. 1	10 10			743	
Number of events	52	85	166	253	136	51	743		
Events (%)	7.0	11.4	22.3	34.1	18.3	6.9		-	

WIND PATTERN - July- 2022

WIND PATTERN - Aug- 2022

Direction	0 <= ws< 1	1 <= ws< 2	2 <= ws< 3	3 <= ws< 4	4 <= ws< 5	ws>= 5	Avg. wind Speed (m/s)	Number of events	Events (%)
E	3	5	11	11	0	0	2.08	30	4.0
ENE	1	4	7	0	0	0	1.90	12	1.6
ESE	2	4	10	24	9	3	3.13	52	7.0
N	0	0	0	0	0	0	0.00	0	0.0
NE	7	9	5	1	0	0	1.39	22	3.0
NNE	5	9	0	0	0	0	0.88	14	1.9
NNW	0	0	0	0	0	0	0.00	0	0.0
NW	2	1	1	5	5	3	3.58	17	2.3
S	2	2	5	12	5	4	3.50	30	4.0
SE	1	5	8	17	18	21	4.25	70	9.4
SSE	3	1	19	25	22	8	3.28	78	10.5
SSW	2	2	4	6	2	11	3.84	27	3.6
SW	11	13	27	65	35	38	4.02	189	25.5
W	20	8	7	2	1	0	1.88	38	5.1
WNW	11	5	1	5	2	0	2.47	24	3.2
WSW	14	36	46	30	11	2	3.09	139	18.7
								742	
Number of events	84	104	151	203	110	90	742		
Events (%)	11.3	14.0	20.4	27.4	14.8	12.1			

Direction	0 <= ws< 1	1 <= ws< 2	2 <= ws< 3	3 <= ws< 4	4 <= ws< 5	ws>= 5	Avg. wind Speed (m/s)	Number of events	Events (%)
Е	3	5	11	11	0	0	2.08	30	4.0
ENE	1	4	7	0	0	0	1.90	12	1.6
ESE	2	4	10	24	9	3	3.13	52	7.0
N	0	0	0	0	0	0	0.00	0	0.0
NE	7	9	5	1	0	0	1.39	22	3.0
NNE	5	9	0	0	0	0	0.88	14	1.9
NNW	0	0	0	0	0	0	0.00	0	0.0
NW	2	1	1	5	5	3	3.58	17	2.3
S	2	2	5	12	5	4	3.50	30	4.0
SE	1	5	8	17	18	21	4.25	70	9.4
SSE	3	1	19	25	22	8	3.28	78	10.5
SSW	2	2	4	6	2	11	3.84	27	3.6
SW	11	13	27	65	35	38	4.02	189	25.5
W	20	8	7	2	1	0	1.88	38	5.1
WNW	11	5	1	5	2	0	2.47	24	3.2
WSW	14	36	46	30	11	2	3.09	139	18.7
		Store - N	S.S.F.					742	
Number of events	84	104	151	203	110	90	742		
Events (%)	11.3	14.0	20.4	27.4	14.8	12.1			

WIND PATTERN - Sep- 2022

WIND PATTERN - Oct- 2022

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		
ENE 3 7 1 0 0 0 1.10 11 ESE 2 6 3 12 4 1 2.90 28 N 6 9 10 5 0 0 1.92 22 NE 3 13 5 1 0 0 1.92 22 NNE 23 63 72 7 0 0 1.78 165 NNW 2 4 2 0 0 0 1.68 8 NW 9 5 4 6 2 7 3.38 33 S 0 1 0 0 0 1.80 1 SE 2 1 2 21 10 1 3.38 37 SSE 0 0 0 2 2 0 4.03 4 SW 2 2 3 3	irection	f Events
ENC 1	E	6.3
N 6 9 10 5 0 0 2.22 30 NE 3 13 5 1 0 0 1.92 22 NNE 23 63 72 7 0 0 1.78 165 NNW 2 4 2 0 0 0 1.78 165 NNW 2 4 2 0 0 0 1.68 8 NW 9 5 4 6 2 7 3.38 33 S 0 1 0 0 0 1.80 1 SE 2 1 2 21 10 1 3.38 37 SSE 0 0 0 2 2 0 4.03 4 SSW 0 1 0 0 0 1.30 1 SW 2 2 3 3 0	ENE	1 2.4
NE 3 13 5 1 0 0 1.92 22 NNE 23 63 72 7 0 0 1.78 165 NNW 2 4 2 0 0 0 1.68 8 NW 9 5 4 6 2 7 3.38 33 S 0 1 0 0 0 1.80 1 SE 2 1 2 21 10 1 3.38 37 SSE 0 0 0 2 2 0 4.03 4 SSW 0 1 0 0 0 1.30 1 SW 2 2 3 3 0 0 1.92 10 W 22 12 1 0 0 1.18 35 WNW 9 14 8 9 1 1	ESE	3 6.1
NRE 23 63 72 7 0 0 1.78 165 NNW 2 4 2 0 0 0 1.68 8 NW 9 5 4 6 2 7 3.38 33 S 0 1 0 0 0 1.68 8 NW 9 5 4 6 2 7 3.38 33 S 0 1 0 0 0 1.80 1 SE 2 1 2 21 10 1 3.38 37 SSE 0 0 0 2 2 0 4.03 4 SSW 0 1 0 0 0 1.30 1 SW 2 2 3 3 0 0 1.80 1 W 22 12 1 0 0 1.83	N	6.5
NNW 2 4 2 0 0 0 1.68 8 NW 9 5 4 6 2 7 3.38 33 S 0 1 0 0 0 0 1.68 8 NW 9 5 4 6 2 7 3.38 33 S 0 1 0 0 0 0 11 3.38 33 SE 2 1 2 21 10 1 3.38 37 SSE 0 0 0 2 2 0 4.03 4 SSW 0 1 0 0 0 1.30 1 SW 2 2 3 3 0 0 1.92 10 W 22 12 1 0 0 2.57 42 WSW 4 0 1 1	NE	2 4.8
NW9546273.3833S0100001.801SE212211013.3837SSE0002204.034SSW010001.301SW2233001.9210W221210001.1835WNW91489112.5742WSW4011002.236Number of events87140127791910462	NNE	5 35.7
S0100001.801SE212211013.3837SSE0002204.034SSW010001.301SW2233001.92W221210001.18WNW91489112.5742WSW4011002.236VentsNumber of events87140127791910462	NNW	1.7
SE 2 1 2 21 10 1 3.38 37 SSE 0 0 0 2 2 0 4.03 4 SSW 0 1 0 0 2 2 0 4.03 4 SSW 0 1 0 0 0 0 1.30 1 SW 2 2 3 3 0 0 1.30 1 SW 2 2 3 3 0 0 1.18 35 WN 9 14 8 9 1 1 2.57 42 WSW 4 0 1 1 0 0 2.23 6 WSW 4 0 1 1 0 0 2.23 6 Wsw 87 140 127 79 19 10 462	NW	3 7.1
SE 0 0 0 2 2 0 4.03 4 SSW 0 1 0 0 0 0 1.30 1 SW 2 2 3 3 0 0 1.92 10 W 22 12 1 0 0 0 1.18 35 WNW 9 14 8 9 1 1 2.57 42 WSW 4 0 1 1 0 0 2.23 6 Number of events 87 140 127 79 19 10 462	S	0.2
SSW 0 1 0 0 0 0 1.30 1 SW 2 2 3 3 0 0 1.92 10 W 22 12 1 0 0 0 1.18 35 WNW 9 14 8 9 1 1 2.57 42 WSW 4 0 1 1 0 0 2.23 6 Homber of events 87 140 127 79 19 10 462	SE	7 8.0
SW 2 2 3 3 0 0 1.92 10 W 22 12 1 0 0 0 1.18 35 WNW 9 14 8 9 1 1 2.57 42 WSW 4 0 1 1 0 0 2.23 6 462 Number of events 87 140 127 79 19 10 462	SSE	0.9
W 22 12 1 0 0 0 1.18 35 WNW 9 14 8 9 1 1 2.57 42 WSW 4 0 1 1 0 0 2.23 6 WSW 4 0 1 1 0 0 2.23 6 WSW 4 0 1 79 19 10 462 Number of events 87 140 127 79 19 10 462	SSW	0.2
WNW 9 14 8 9 1 1 2.57 42 WSW 4 0 1 1 0 0 2.23 6 462 Number of events 87 140 127 79 19 10 462	SW	2.2
WSW 4 0 1 1 0 0 2.23 6 WSW 4 0 1 1 0 0 2.23 6 WSW 4 0 1 1 0 0 2.23 6 Wsw 4 0 1 1 0 0 2.23 6 Wsw 4 0 1 1 0 0 2.23 6 Wsw 4 0 127 79 19 10 462 Wsw 4 0 127 79 19 10 462	W	5 7.6
Number of events 87 140 127 79 19 10 462	WNW	2 9.1
Number of events 87 140 127 79 19 10 462	WSW	1.3
events 87 140 127 79 19 10 462		2
Events (%) 18.8 30.3 27.5 17.1 4.1 2.2	ents (%)	

Direction	0 <= ws< 1	1 <= ws< 2	2 <= ws< 3	3 <= ws< 4	4 <= ws< 5	ws>= 5	Avg. wind Speed (m/s)	Number of events	Events (%)
E	4	8	6	2	0	0	1.90	20	3.8
ENE	14	6	1	0	0	0	0.96	21	4.0
ESE	1	2	1	6	1	0	2.86	11	2.1
N	0	17	20	11	0	0	2.67	48	9.1
NE	3	12	8	0	0	0	1.33	23	4.3
NNE	19	43	57	19	6	4	2.90	148	27.9
NNW	4	8	6	11	0	0	2.23	29	5.5
NW	1	6	16	41	27	23	4.77	114	21.5
S	0	2	0	2	0	0	2.37	4	0.8
SE	2	0	0	3	0	0	2.37	5	0.9
SSE	0	1	1	1	1	0	2.90	4	0.8
SSW	0	0	0	1	0	1	4.25	2	0.4
SW	2	1	0	0	2	0	2.37	5	0.9
W	7	1	0	0	0	0	0.65	8	1.5
WNW	7	11	12	25	14	17	3.58	86	16.2
WSW	0	1	1	0	0	0	1.75	2	0.4
		Sur S	Ser Contraction	1.1	1			530	
Number of events	64	119	129	122	51	45	530		
Events (%)	12.1	22.5	24.3	23.0	9.6	8.5			

WIND PATTERN - Nov- 2022

WIND PATTERN - Dec- 2022

Direction	0 <= ws< 1	1 <= ws< 2	2 <= ws< 3	3 <= ws< 4	4 <= ws< 5	ws>= 5	Avg. wind Speed (m/s)	Number of events	Events (%)
E	7	14	1	2	0	6	4.91	30	4.4
ENE	12	7	3	1	3	1	2.50	27	3.9
ESE	4	6	2	6	9	16	5.55	43	6.2
N	16	38	40	25	1	0	2.26	120	17.4
NE	19	19	5	5	1	1	2.53	50	7.3
NNE	40	73	64	24	5	4	2.90	210	30.5
NNW	8	0	8	8	0	1	2.84	25	3.6
NW	10	4	3	22	9	18	4.36	66	9.6
S	2	2	0	0	0	0	1.10	4	0.6
SE	3	3	1	3	2	5	4.13	17	2.5
SSE	1	1	3	3	2	1	3.22	11	1.6
SSW	3	0	0	0	0	0	0.65	3	0.4
SW	2	0	0	0	0	0	0.40	2	0.3
W	16	2	2	1	4	6	3.13	31	4.5
WNW	19	1	3	7	7	11	4.11	48	7.0
WSW	2	0	0	0	0	0	0.00	2	0.3
								689	
Number of events	164	170	135	107	43	70	689		-
Events (%)	23.8	24.7	19.6	15.5	6.2	10.2			

ii. AMBIENT AIR QUALITY

Ambient air quality monitoring is required to determine the existing quality of air, evaluation of the effectiveness of control system and to identify areas in need of restoration and their prioritization. In order to generate background data, air quality monitoring is conducted to assess existing level of contamination and to assess possible effects of air contamination occurring in future.

Frequency of Monitoring

The frequency of monitoring that has been followed for sampling of ambient air quality is that one sample per weekly twice at three locations.

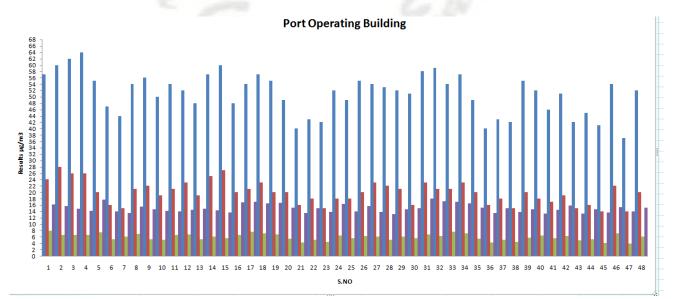
Station code	Location	Geographical location	Environmental setting
AAQ1	Port operating building	13º 16' 12" N 80º 20' 5" E	Industrial
AAQ2	RMU Building	13º 16' 25" N 80º 20' 16" E	Industrial
AAQ3	In Terminal Gate	13º 16' 25" N 80º 20' 0" E	Industrial

DETAILS OF AMBIENT AIR QUALITY MONITORING LOCATIONS

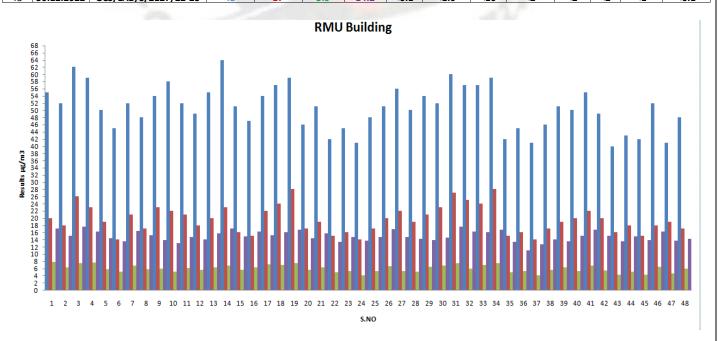
Fig - 2. AMBIENT AIR SAMPLING STATIONS LOCATION MAP

Fig. 3. AMBIENT AIR SAMPLINGS STATIONS WITH RESPECT TO WIND

TECHNIQUES USED FOR AMBIENT AIR QUALITY MONITORING

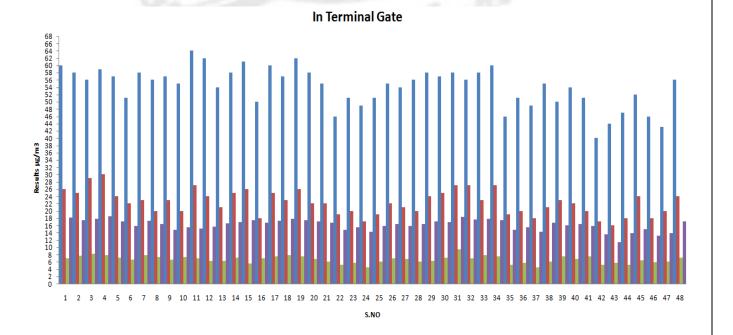

S.N o	Parameter	Technique	Unit	Minimum Detectable Limit
1	PM ₁₀	Respirable Dust Sampler (Gravimetric method)	µg/m³	1.0
2	PM _{2.5}	Fin <mark>e partic</mark> le Sampler (Gravimetric method)	µg/m³	5.0
3	Sulphur Dioxide	Modified West and Gaeke method	µg/m³	4.0
4	Nitrogen Oxide	Jacob & Hochheiser method	µg/m³	6.0
5	Lead	Atomic Absorption Spectrometry	µg/m³	0.5
6	Carbon Monoxide	Draggers Tube	mg/m ³	0.1
7	Ozone	UV Photometric	µg/m³	2.0
8	Ammonia	Indophenol blue method	µg/m³	2.0
9	Benzene	Gas Chromatography	µg/m³	1.0
10	Benzene (α) pyrene	Gas Chromatography	ng/m ³	0.1
11	Arsenic	Atomic Absorption Spectrometry	ng/m ³	1.0
12	Nickel	Atomic Absorption Spectrometry	ng/m ³	5.0

Results and Discussion


The results of the ambient air quality for the study period are presented and discussed. The minimum, maximum 98th percentile and average values have been computed from the observed raw data for all the AAQ monitoring stations. The summary of these results for all the locations is presented in the Table and the detailed analytical results are shown in Annexure - 2. These are compared with the standards prescribed by Central Pollution Control Board (CPCB) for "Industrial, Rural, Residential and other areas"

				PORT	OPERATII			D1)						
			Particular			Nitrogen		Carbon		Ammonia			Pontono	Benzo (a)
					•	0			-					• • •
			matter	matter	dioxide			monoxide		as	Arsenic		as	pyrene as
	Ра	rameters	PM10	PM2.5	as	as NO2	Pb	as CO	as O3	NH3	as As	as Ni	C6H6	BaP
					SO2									
	Unit		μg/m3	µg/m3	µg/m3	µg/m3	µg/m3	mg/m3	µg/m3	µg/m3	ng/m3	ng/m3	µg/m3	ng/m3
			P-8/	P-8/	P0/	P0/	ro,		ro/	P8/			P0/	
	National /	AAQM Standard	100	60	80	80	1	4	180	400	6	20	5	1
S.No.	Sampling	Report Number												
1	02.07.2022	GCS/LAB/S/1494/22-23	57	24	7.9	16.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
2	05.07.2022	GCS/LAB/S/1494/22-23	60	28	6.6	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
3	09.07.2022	GCS/LAB/S/1494/22-23	62	26	6.5	14.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
4	12.07.2022	GCS/LAB/S/1494/22-23	64	26	6.5	14.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
5	16.07.2022	GCS/LAB/S/1494/22-23	55	20	7.4	17.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
6	19.07.2022	GCS/LAB/S/1494/22-23	47	16	5.2	14	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
7	23.07.2022	GCS/LAB/S/1494/22-23	44	15	6	13.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
8	26.07.2022	GCS/LAB/S/1494/22-23	54	21	6.9	15.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
9	02.08.2022	GCS/LAB/S/1647/22-23	56	22	5.3	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
10	06.08.2022	GCS/LAB/S/1647/22-23	50	19	5.1	14.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
11	09.08.2022	GCS/LAB/S/1647/22-23	54	21	6.5	13.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
12	13.08.2022	GCS/LAB/S/1647/22-23	52	23	6.7	14.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
13	17.08.2022	GCS/LAB/S/1647/22-23	48	19	5.2	14.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
14	20.08.2022	GCS/LAB/S/1647/22-23	57	25	6	14.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
15	23.08.2022	GCS/LAB/S/1647/22-23	60	27	5.5	13.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
16	25.08.2022	GCS/LAB/S/1647/22-23	48	20	6.6	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
17	02.09.2022	GCS/LAB/S/1822/22-23	54	21	7.5	17	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
18	06.09.2022	GCS/LAB/S/1822/22-23	57	23	7.1	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
19	10.09.2022	GCS/LAB/S/1822/22-23	55	20	6.8	16.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
20	13.09.2022	GCS/LAB/S/1822/22-23	49	20	5.4	15.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
21	17.09.2022	GCS/LAB/S/1822/22-23	40	16	4.2	13.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
22	20.09.2022	GCS/LAB/S/1822/22-23	43	18	5	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
23	24.09.2022	GCS/LAB/S/1822/22-23	42	15	4.3	13.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
24	27.09.2022	GCS/LAB/S/1822/22-23	52	18	6.4	16.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
25	03.10.2022	GCS/LAB/S/1887/22-23	49	18	5.5	14	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
26	07.10.2022	GCS/LAB/S/1887/22-23	55	20	6.3	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
27	10.10.2022	GCS/LAB/S/1887/22-23	54	23	6	13.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
28	14.10.2022	GCS/LAB/S/1887/22-23	53	22	5	13.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
29	17.10.2022	GCS/LAB/S/1887/22-23	52	21	6.1	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
30	21.10.2022	GCS/LAB/S/1887/22-23	51	16	5.5	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
31	25.10.2022	GCS/LAB/S/1887/22-23	58	23	6.8	18	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
32	28.10.2022	GCS/LAB/S/1887/22-23	59	21	6.3	17.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
33	01.11.2022	GCS/LAB/S/1988/22-23	54	21	7.5	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
34	04.11.2022	GCS/LAB/S/1988/22-23	57	23	7.1	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
35	07.11.2022	GCS/LAB/S/1988/22-23	49	20	5.4	15.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
36	14.11.2022	GCS/LAB/S/1988/22-23	40	16	4.2	13.5	< 0.1	<1.0	<10	<2	<2	<2	<1	<0.1
37	18.11.2022	GCS/LAB/S/1988/22-23	43	18	5.0	14.9	< 0.1	<1.0	<10	<2	<2	<2	<1	<0.1
38	21.11.2022	GCS/LAB/S/1988/22-23	42	15	4.3	13.8	< 0.1	<1.0	<10	<2	<2	<2	<1	<0.1
39	25.11.2022	GCS/LAB/S/1988/22-23	55	20	5.8	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
40	28.11.2022	GCS/LAB/S/1988/22-23	52	18	6.4	13.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
41	01.12.2022	GCS/LAB/S/2127/22-23	46	17	5.5	14.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
42	05.12.2022	GCS/LAB/S/2127/22-23	51	19	6.2	15.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
43	12.12.2022	GCS/LAB/S/2127/22-23	42	15	4.9	13.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
44	16.12.2022	GCS/LAB/S/2127/22-23	45	16	5.3	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
45	19.12.2022	GCS/LAB/S/2127/22-23	41	14	4.0	13.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
46	23.12.2022	GCS/LAB/S/2127/22-23	54	22	7.1	15.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
47	26.12.2022	GCS/LAB/S/2127/22-23	37	14	3.9	14.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
48	30.12.2022	GCS/LAB/S/2127/22-23	52	20	6.0	15.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
-10	30.12.2022	333/ LAD/ 3/ 212/ / 22-23	34	20	0.0	10.1	-U.1	1.0	10	~4	~4	~4	~1	-V.1

Annexure - 2



	RMU BUILDING (AAQ2)													
			Particular	Particular		Nitrogen	AQZ)	Carbon		Ammonia			Ponzono	Benzo (a)
					-	-			•		• · · · ·			
			matter	matter	dioxide	dioxide		monoxide		as	Arsenic		as	pyrene as
	Pa	rameters	PM10	PM2.5	as	as NO2	Pb	as CO	as O3	NH3	as As	as Ni	C6H6	BaP
					SO2									
		Unit	μg/m3	μg/m3	µg/m3	µg/m3	µg/m3	mg/m3	µg/m3	μg/m3	ng/m3	ng/m3	µg/m3	ng/m3
		0	P6/110	P6/110	P6/110	P6/110	P6/110		P6/110	P6/110	1.6/ 1.10		P6/ 110	1.8/11.0
	National	AAQM Standard	100	60	80	80	1	4	180	400	6	20	5	1
S.No.	Sampling	Report Number												
1	02.07.2022	GCS/LAB/S/1494/22-23	55	20	7.8	17.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
2	05.07.2022	GCS/LAB/S/1494/22-23	52	18	6.2	15	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
3	09.07.2022	GCS/LAB/S/1494/22-23	62	26	7.4	17.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
4	12.07.2022	GCS/LAB/S/1494/22-23	59	23	7.6	16.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
5	16.07.2022	GCS/LAB/S/1494/22-23	50	19	5.8	14.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
6	19.07.2022	GCS/LAB/S/1494/22-23	45	14	5.1	13.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
7	23.07.2022	GCS/LAB/S/1494/22-23	52	21	6.7	16.4	< 0.1	<1.0	<10	<2	<2	<2	<1	<0.1
8	26.07.2022	GCS/LAB/S/1494/22-23	48	17	5.7	15.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
9	02.08.2022	GCS/LAB/S/1647/22-23	54	23	6	13.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
10	06.08.2022	GCS/LAB/S/1647/22-23	58	22	5	13.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
11	09.08.2022	GCS/LAB/S/1647/22-23	52	21	6.1	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
12	13.08.2022	GCS/LAB/S/1647/22-23	49	18	5.5	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
13	17.08.2022	GCS/LAB/S/1647/22-23	55	20	6.3	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
14	20.08.2022	GCS/LAB/S/1647/22-23	64	23	6.8	17	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
14	23.08.2022	GCS/LAB/S/1647/22-23	51	16	5.5	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
									<10	<2			<1	
16 17	25.08.2022 02.09.2022	GCS/LAB/S/1647/22-23	47 54	15 22	6.3 7.1	<u>16.2</u> 15.3	<0.1 <0.1	<1.0			<2	<2 <2		<0.1
		GCS/LAB/S/1822/22-23						<1.0	<10	<2	<2		<1	<0.1
18	06.09.2022	GCS/LAB/S/1822/22-23	57	24	6.9	16	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
19	10.09.2022	GCS/LAB/S/1822/22-23	59	28 17	7.5	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
20	13.09.2022	GCS/LAB/S/1822/22-23	46			14.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
21	17.09.2022	GCS/LAB/S/1822/22-23	51	19	6.2	15.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
22	20.09.2022	GCS/LAB/S/1822/22-23	42	15	4.9	13.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
23	24.09.2022	GCS/LAB/S/1822/22-23	45	16	5.3	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
24	27.09.2022	GCS/LAB/S/1822/22-23	41	14	4	13.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
25	03.10.2022	GCS/LAB/S/1887/22-23	48	17	5.2	14.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
26	07.10.2022	GCS/LAB/S/1887/22-23	51	20	6.6	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
27	10.10.2022	GCS/LAB/S/1887/22-23	56	22	5.3	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
28	14.10.2022	GCS/LAB/S/1887/22-23	50	19	5.1	14.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
29	17.10.2022	GCS/LAB/S/1887/22-23	54	21	6.5	13.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
30	21.10.2022	GCS/LAB/S/1887/22-23	52	23	6.7	14.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
31	25.10.2022	GCS/LAB/S/1887/22-23	60	27	7.5	17.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
32	28.10.2022	GCS/LAB/S/1887/22-23	57	25	6	16.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
33	01.11.2022	GCS/LAB/S/1988/22-23	57	24	6.9	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
34	04.11.2022	GCS/LAB/S/1988/22-23	59	28	7.5	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
35	07.11.2022	GCS/LAB/S/1988/22-23	42	15	4.9	13.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
36	14.11.2022	GCS/LAB/S/1988/22-23	45	16	5.3	11.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
37	18.11.2022	GCS/LAB/S/1988/22-23	41	14	4.0	12.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
38	21.11.2022	GCS/LAB/S/1988/22-23	46	17	5.5	14.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
39	25.11.2022	GCS/LAB/S/1988/22-23	51	19	6.2	13.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
40	28.11.2022	GCS/LAB/S/1988/22-23	50	20	5.3	15.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
41	01.12.2022	GCS/LAB/S/2127/22-23	55	22	6.8	16.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
42	05.12.2022	GCS/LAB/S/2127/22-23	49	20	5.4	15.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
43	12.12.2022	GCS/LAB/S/2127/22-23	40	16	4.2	13.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
44	16.12.2022	GCS/LAB/S/2127/22-23	43	18	5.0	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
45	19.12.2022	GCS/LAB/S/2127/22-23	42	15	4.3	13.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
46	23.12.2022	GCS/LAB/S/2127/22-23	52	18	6.4	16.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
47	26.12.2022	GCS/LAB/S/2127/22-23	41	19	4.5	13.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
48	30.12.2022	GCS/LAB/S/2127/22-23	48	17	5.9	14.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1

Page 22 of 35

	IN TERMINAL GATE (AAQ3)													
			Particular			Nitrogen	AAQ5)	Carbon		Ammonia			Benzene	Benzo (a)
			matter	matter	dioxide	-	Lood or		Ozone		Arconic	Nickol		• •
							Lead as			as	Arsenic		as	pyrene as
	Pa	rameters	PM10	PM2.5	as	as NO2	Pb	as CO	as O3	NH3	as As	as Ni	C6H6	BaP
					SO2									
		Unit	µg/m3	μg/m3	µg/m3	µg/m3	µg/m3	mg/m3	µg/m3	μg/m3	ng/m3	ng/m3	µg/m3	ng/m3
	National	A A ONA Standard	100	60	80	80	1	4	180	400	6	20	5	1
S.No.	Sampling	AAQM Standard Report Number	100	60	80	80	1	4	190	400	6	20	2	1
<u>3.100.</u> 1	02.07.2022	GCS/LAB/S/1494/22-23	60	26	7	18.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
2	05.07.2022	GCS/LAB/S/1494/22-23	58	25	7.7	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
3	09.07.2022	GCS/LAB/S/1494/22-23	56	29	8.1	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
4	12.07.2022	GCS/LAB/S/1494/22-23	59	30	7.9	18.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
5	16.07.2022	GCS/LAB/S/1494/22-23	57	24	7.2	10.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
6	19.07.2022	GCS/LAB/S/1494/22-23	51	22	6.5	15.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
7	23.07.2022	GCS/LAB/S/1494/22-23	58	23	7.8	17.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
8	26.07.2022	GCS/LAB/S/1494/22-23	56	20	7.3	16.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
9	02.08.2022	GCS/LAB/S/1647/22-23	57	23	6.6	14.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
10	06.08.2022	GCS/LAB/S/1647/22-23	55	20	7.3	15.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
10	09.08.2022	GCS/LAB/S/1647/22-23	64	27	6.9	15.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
12	13.08.2022	GCS/LAB/S/1647/22-23	62	24	6.3	15.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
13	17.08.2022	GCS/LAB/S/1647/22-23	54	24	6.2	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
14	20.08.2022	GCS/LAB/S/1647/22-23	58	25	7.2	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
15	23.08.2022	GCS/LAB/S/1647/22-23	61	26	5.5	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
16	25.08.2022	GCS/LAB/S/1647/22-23	50	18	7	16.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
17	02.09.2022	GCS/LAB/S/1822/22-23	60	25	7.4	17.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
18	06.09.2022	GCS/LAB/S/1822/22-23	57	23	7.9	17.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
19	10.09.2022	GCS/LAB/S/1822/22-23	62	26	7.5	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
20	13.09.2022	GCS/LAB/S/1822/22-23	58	22	6.8	17	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
21	17.09.2022	GCS/LAB/S/1822/22-23	55	22	6	16.7	< 0.1	<1.0	<10	<2	<2	<2	<1	< 0.1
22	20.09.2022	GCS/LAB/S/1822/22-23	46	19	5.1	14.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
23	24.09.2022	GCS/LAB/S/1822/22-23	51	20	5.7	15.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
24	27.09.2022	GCS/LAB/S/1822/22-23	49	17	4.5	14.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
25	03.10.2022	GCS/LAB/S/1887/22-23	51	19	6.1	15.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
26	07.10.2022	GCS/LAB/S/1887/22-23	55	22	7	16.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
27	10.10.2022	GCS/LAB/S/1887/22-23	54	21	6.7	15.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
28	14.10.2022	GCS/LAB/S/1887/22-23	56	20	6.1	16.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
29	17.10.2022	GCS/LAB/S/1887/22-23	58	24	6.3	17.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
30	21.10.2022	GCS/LAB/S/1887/22-23	57	25	7.2	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
31	25.10.2022	GCS/LAB/S/1887/22-23	58	27	9.5	18.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
32	28.10.2022	GCS/LAB/S/1887/22-23	56	27	7	17.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
33	01.11.2022	GCS/LAB/S/1988/22-23	58	23	7.9	17.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
34	04.11.2022	GCS/LAB/S/1988/22-23	60	27	7.5	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
35	07.11.2022	GCS/LAB/S/1988/22-23	46	19	5.1	14.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
36	14.11.2022	GCS/LAB/S/1988/22-23	51	20	5.7	15.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
37	18.11.2022	GCS/LAB/S/1988/22-23	49	18	4.5	14.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
38	21.11.2022	GCS/LAB/S/1988/22-23	55	21	6.0	16.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
39	25.11.2022	GCS/LAB/S/1988/22-23	50	23	7.4	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
40	28.11.2022	GCS/LAB/S/1988/22-23	54	22	6.7	16.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
41	01.12.2022	GCS/LAB/S/2127/22-23	51	20	7.5	15.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
42	05.12.2022	GCS/LAB/S/2127/22-23	40	17	5.1	13.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
43	12.12.2022	GCS/LAB/S/2127/22-23	44	16	5.7	11.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
44	16.12.2022	GCS/LAB/S/2127/22-23	47	18	5.2	13.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
45	19.12.2022	GCS/LAB/S/2127/22-23	52	24	6.4	15.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
46	23.12.2022	GCS/LAB/S/2127/22-23	46	18	5.9	13.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
47	26.12.2022	GCS/LAB/S/2127/22-23	43	20	6.1	13.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
48	30.12.2022	GCS/LAB/S/2127/22-23	56	24	7.1	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1

Page **23** of **35**

NATIONAL AMBIENT AIR QUALITY STANDARDS CENTRAL POLLUTION CONTROL BOARD NOTIFICATION

New Delhi, the 18th November, 2009

No.B-29016/20/90/PCI-L—In exercise of the powers conferred by Sub-section (2) (h) of section 16 of the Air (Prevention and Control of Pollution) Act, 1981 (Act No. 14 of 1981), and in super session of the Notification No(s). S.O. 384(E), dated 11th April, 1994 and S.O. 935(E), dated 14th October, 1998, the Central Pollution Control Board hereby notify the National Ambient Air Quality Standards with immediate effect, namely:-

NATIONAL AMBIENT AIR QUALITY STANDARDS

s.		Time		on in Ambient Air Ecologically	Methods of		
No.	Pollutant	Weighted average	Residential, Rural and Other Area	sensitive area (notified by Central Govt.)	Measurement		
(1)	(2)	(3)	(4)	(5)	(6)		
		Annual*	50	20	 Improved West and 		
1	Sulphur Dioxide (SO ₂), µg/m ³	24 hours**	80	80	 Geake Ultraviolet fluorescence 		
		Annual*	40	30	 Modified Jacob & 		
2	Nitrogen Dioxide (NO ₂), μg/m ³	24 hours**	80	80	Hochheiser (Na- Arsenite) • Chemiluminescence		
	Particulate Matter	Annual*	60	60	 Gravimetric 		
3	(size less than 10 µm) or PM ₁₀ µg/m ³	24 hours**	100	100	 TOEM Beta attenuation 		
	Particulate Matter	Annual*	40	40	 Gravimetric 		
4	(size less than 2.5 microns) or PM _{2.5} µg/m ³	24 hours**	60	60	 TOEM Beta attenuation 		
		8 hours **	100	100	 UV photometric 		
5	Ozone (O ₃) μg/m ³	1 hour **	180	180	 Chemiluminescence Chemical method 		
		Annual*	0.5	0.5	 ASS / ICP method 		
6	6 Lead (Pb) μg/m ³	Lead (Pb) μ g/m ³			1.0	1.0	after sampling on EPM 2000 or equivalent filter paper • ED – XRF using Teflon filter

	Carbon Monoxide	8 hours**	2	2	Non Dispersive Infra
7	(CO) mg/m ³	1 hour**	4	4	RED (NDIR) Spectroscopy
	Ammonia (NH3)	Annual*	100	100	 Chemiluminescence
8	μg/m ³	24 hours**	400	400	 Indophenol blue method
9	Benzene (C _e H ₆) µg/m ³	Annual*	5	5	 Gas chromatography based continuous analyser Adsorption and desorption followed by GC analysis
10	Benzo (a) Pyrene (BaP) – particulate phase only ng/m ³	Annual*	1	1	Solvent extraction followed by HPLC / GC analysis
11	Arsenic (As) ng/m ³	Annual*	6	6	AAS / ICP method after sampling on EPM 2000 or equivalent filter paper
12	Nickel (Ni) ng/m ³	Annual*	20	20	AAS / ICP method after sampling on EPM 2000 or equivalent filter paper

Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.

** 24 hourly or 8 hourly or 1 hourly monitored values, as applicable, shall be complied with 98% of the time in a year. 2% of the time, they may exceed the limits but not on two consecutive days of monitoring.

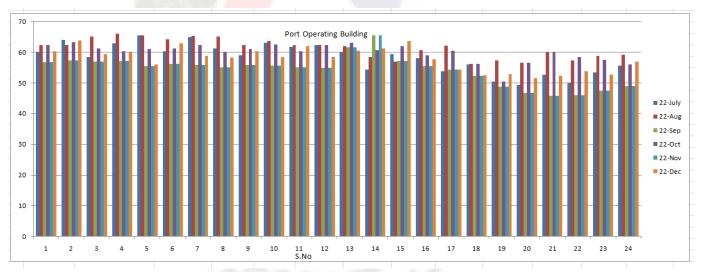
Note: Whenever and wherever monitoring results on two consecutive days of monitoring exceed the limits specified above for the respective category, it shall be considered adequate reason to institute regular or continuous monitoring and further investigation.

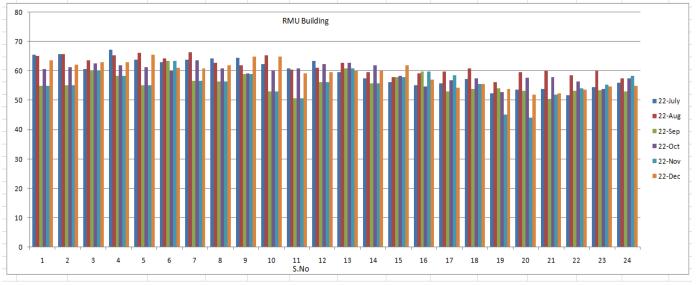
Page 24 of 35

iii. AMBIENT NOISE LEVEL INTENSITY

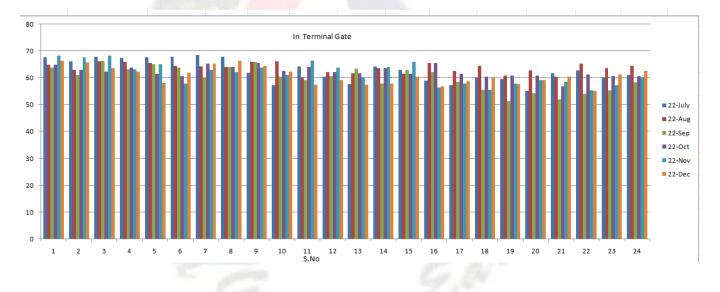
Collection of ambient noise levels at four locations. Spot noise levels where measured with a pre calibrated Noise Level Meter - SL- 4023 SD for day and night periods. The Detailed report has been is enclosed as Annexure - 3

STATION CODE	LOCATIONS	Geographical Location
N1	In Terminal Gate	13º 16' 25" N 80º 20' 0" E
N2	RMU Building	13 ⁰ 16' 25" N 80 ⁰ 20' 16" E
N3	Port operating building	13º 16' 12" N 80º 20' 5" E


DETAILS OF NOISE MONITORING LOCATIONS


Fig - 4. Noise Level Sampling Locations

					Anne	exure -							
	Location		PORT	OPERAT	ING BUILD	ING				RMU BUI	LDING		-
	Month & Year	Jul - 22	Aug - 22	Sep - 22	Oct - 22	Nov - 22	Dec - 22	Jul - 22	Aug - 22	Sep - 22	Oct - 22	Nov - 22	Dec - 22
	Parameter & Unit	Leq dB(A)											
S.No	Time of Sampling												
1	06.00 – 07.00 (Day)	60.1	62.3	56.9	62.4	56.9	60.3	65.5	65.1	54.9	60.6	54.9	63.6
2	07.00 -08.00	64.1	62.4	57.6	63.4	57.6	63.9	65.7	65.8	55.1	61.3	55.1	62.1
3	08.00 - 09.00	58.7	65.2	57.2	61.3	57.2	59.5	60.6	63.7	60.0	62.7	60.0	63.1
4	09.00 - 10.00	62.9	66.1	57.3	60.3	57.3	60.0	67.2	65.3	58.4	62.0	58.4	63.0
5	10.00 - 11.00	65.6	65.5	55.7	61.0	55.7	56.3	63.9	66.2	55.1	61.4	55.1	65.6
6	11.00 - 12.00	60.3	64.3	56.4	61.3	56.4	63.0	63.0	64.2	63.5	60.0	63.5	61.2
7	12.00 - 13.00	64.9	65.3	56.1	62.4	56.1	58.9	63.9	66.4	56.7	63.7	56.7	60.8
8	13.00 - 14.00	61.2	65.2	55.3	60.2	55.3	58.4	64.2	62.8	56.5	60.8	56.5	61.9
9	14.00 - 15.00	59.0	62.4	56.0	61.1	56.0	60.3	64.6	61.9	59.0	59.2	59.0	65.0
10	15.00 - 16.00	63.1	63.6	55.8	62.5	55.8	58.6	62.3	65.3	53.0	60.3	53.0	64.9
11	16.00 - 17.00	61.8	62.3	55.2	60.3	55.2	62.1	61.0	60.5	50.8	61.0	50.8	59.3
12	17.00 - 18.00	62.3	62.3	55.1	62.3	55.1	58.7	63.4	61.1	56.2	62.3	56.2	59.7
13	18.00 - 19.00	60.1	62.0	61.7	63.2	61.7	60.5	59.7	62.9	60.8	62.8	60.8	60.3
14	19.00 -20.00	54.6	58.6	65.5	60.8	65.5	61.3	57.5	59.6	55.9	61.9	55.9	60.1
15	20.00 - 21.00	59.5	57.1	57.3	62.1	57.3	63.7	56.3	58.0	58.0	58.3	58.0	62.0
16	21.00 - 22.00	58.3	60.7	55.7	59.0	55.7	57.9	55.1	59.3	59.8	54.7	59.8	57.0
17	22.00 – 23.00 (Night)	54.0	62.2	54.5	60.6	54.5	54.6	55.9	59.9	53.1	56.9	58.6	54.3
18	23.00 - 00.00	56.3	56.5	52.5	56.5	52.5	52.6	57.2	60.8	54.0	57.5	55.6	55.6
19	00.00 - 01.00	50.6	57.6	48.9	50.6	48.9	53.0	52.4	56.2	54.2	52.8	45.4	54.0
20	01.00 - 02.00	49.5	56.7	47.0	56.7	47.0	51.7	53.7	59.7	53.3	57.8	44.3	51.9
21	02.00 - 03.00	52.8	60.2	45.9	60.2	45.9	52.5	54.0	60.1	50.4	58.0	51.9	52.4
22	03.00 - 04.00	50.2	57.6	46.2	58.6	46.2	54.0	51.8	58.5	53.2	56.4	54.1	53.6
23	04.00 - 05.00	53.7	58.8	47.6	57.8	47.6	52.8	54.5	60.0	53.5	54.0	55.4	54.8
24	05.00 - 06.00	55.9	59.2	49.2	56.2	49.2	57.2	56.1	57.6	53.0	57.6	58.4	55.0



Page **26** of **35**

	Location			IN TERM	/INAL GATE		
	Month & Year			PORT OPER/	ATING BUILDING		
	Parameter & Unit	Jul - 22	Aug - 22	Sep - 22	Oct - 22	Nov - 22	Dec - 22
S.No.	Time of Sampling	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)
1	06.00 – 07.00 (Day)	67.7	64.9	63.8	64.9	68.3	66.4
2	07.00 - 08.00	66.3	63.0	61.2	63.0	67.7	65.8
3	08.00 - 09.00	67.8	66.3	66.4	62.3	68.3	63.7
4	09.00 - 10.00	67.4	65.9	63.2	63.9	63.2	62.4
5	10.00 - 11.00	67.6	65.6	65.2	61.6	65.2	58.1
6	11.00 - 12.00	68.0	64.6	63.8	60.6	58.0	62.0
7	12.00 - 13.00	68.5	64.3	60.2	65.3	63.0	65.4
8	13.00 - 14.00	67.8	64.0	64.0	64.0	62.2	66.5
9	14.00 - 15.00	61.9	66.0	66.0	65.6	63.8	64.5
10	15.00 - 16.00	57.4	66.2	60.5	62.7	61.2	62.3
11	16.00 - 17.00	64.3	60.2	59.2	64.0	66.4	57.5
12	17.00 - 18.00	60.4	62.2	60.7	62.2	63.8	59.2
13	18.00 - 19.00	57.7	61.8	63.4	61.8	60.2	57.5
14	19.00 - 20.00	64.2	63.6	58.0	63.6	64.0	58.0
15	20.00 - 21.00	63.0	61.5	63.0	61.5	66.0	60.5
16	21.00 - 22.00	58.9	65.6	62.2	65.6	56.5	56.8
17	22.00 – 23.00 (Night)	57.4	62.6	58.6	61.6	58.0	58.7
18	23.00 - 00.00	60.3	64.5	55.6	60.5	55.7	60.0
19	00.00 - 01.00	59.6	60.9	51.4	60.9	57.9	57.8
20	01.00 - 02.00	55.1	62.8	54.3	60.8	59.2	59.1
21	02.00 - 03.00	61.7	60.5	51.9	56.9	58.6	60.5
22	03.00 - 04.00	62.8	65.4	54.1	61.4	55.3	55.1
23	04.00 - 05.00	60.0	63.7	55.4	60.7	57.4	61.3
24	05.00 - 06.00	61.2	64.6	58.4	60.6	60.2	62.6

Ambient Air Quality Standards in respect of Noise

Area Code	Category of Area / Zone	Limits in dB(A) Leq*			
Code		Day Time	Night Time		
(A)	Industrial area	75	70		
(B)	Commercial area	65	55		
(C)	Residential area	55	45		
(D)	Silence Zone	50	40		

Note:- 1. 2.

Day time shall mean from 6.00 a.m. to 10.00 p.m. Night time shall mean from 10.00 p.m. to 6.00 a.m. Silence zone is an area comprising not less than 100 metres around hospitals, educational institutions, courts, religious places or any other area which is declared as such by the competent 3.

Mixed categories of areas may be declared as one of the four above mentioned categories by the competent authority. 4.

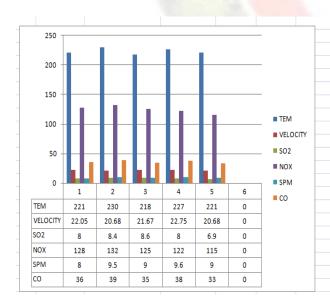
 * dB(A) Leq denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

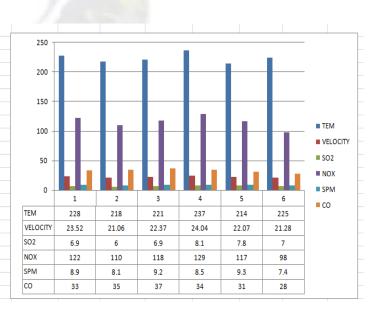
A "decibel" is a unit in which noise is measured.

"A", in dB(A) Leq, denotes the frequency weighting in the measurement of noise and corresponds to frequency response characteristics of the human ear.

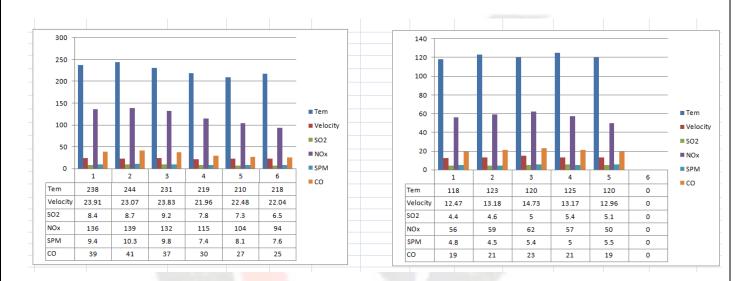
Leg: It is an energy mean of the noise level over a specified period.

iv. DG SET EMISSIONS


Sampling of Flue gas emission of 1500 KVA DG Set was done and its emissions were determined along with its noise intensity. The Detailed report has been is enclosed as Annexure - 4


STATION CODE	LOCATIONS	Geographical Location
SM - 1	DG - 1 1500 KVA	13º 16' 12" N
SM - 2	DG - 2 1500 KVA	80º 20' 5" E
SM - 3	DG 125 KVA	13°16'13.33" N 80°20'6.64" E

DETAILS OF EMISSION MONITORING LOCATIONS


Annexure - 4

		100	1-2-2-27		STACK N		NG	14					
	Location		1000	DG	1500KVA -	- 3		× 18		DG 1500)KVA -1		
	Month & Year	Jul - 22	Aug - 22	Sep - 22	Oct - 22	Nov - 22	Dec - 22	Jul - 22	Aug - 22	Sep - 22	Oct - 22	Nov - 22	Dec - 22
S.N	Parameters												
1	Stack Temperature, °C	221	230	218	227	221		228	218	221	237	214	225
2	Flue Gas Velocity, m/s	22.05	20.68	21.67	22.75	20.68		23.52	21.06	22.37	24.04	22.07	21.28
3	Sulphur Dioxide, mg/Nm3	8.0	8.4	8.6	8.0	6.9		6.9	6.0	6.9	8.1	7.8	7.0
	NOX (as NO2) in ppmv	128	132	125	122	115		122	110	118	129	117	98
5	Particular matter, mg/Nm3	8.0	9.5	9.0	9.6	9.0		8.9	8.1	9.2	8.5	9.3	7.4
6	Carbon Monoxide, mg/Nm3	36	39	35	38	33	-	33	35	37	34	31	28
7	Gas Discharge, Nm3/hr	6004	6050	5938	6121	5632		6316	5771	6093	6342	6096	5739

					STACK N	IONITORIN	G						
	Location			DG 1500	KVA - 2					DG 125	KVA		
	Month	Jul - 22	Aug - 22	Sep - 22	Oct - 22	Nov - 22	Dec - 22	Jul - 22	Aug - 22	Sep - 22	Oct - 22	Nov - 22	Dec - 22
S.N	Paramet												
1	Stack Temperature, °C	238	244	231	219	210	218	118	123	120	125	120	
2	Flue Gas Velocity, m/s	23.91	23.07	23.83	21.96	22.48	22.04	12.47	13.18	14.73	13.17	12.96	
3	Sulphur Dioxide, mg/Nm3	8.4	8.7	9.2	7.8	7.3	6.5	4.4	4.6	5.0	5.4	5.1	
4	NOX (as NO2) in ppmv	136	139	132	115	104	94	56	59	62	57	50	
5	Particular matter, mg/Nm3	9.4	10.3	9.8	7.4	8.1	7.6	4.8	4.5	5.4	5.0	5.5	
6	Carbon Monoxide, mg/Nm3	39	41	37	30	27	25	19	21	23	21	19	
7	Gas Discharge, Nm3/hr	6295	6004	6362	6005	6262	6052	603	630	709	626	623	

Paran	neter	Area	Total engine rating of	Generator	sets commis	sioning date
		Category	the plant (includes existing as well as new generator sets)	Before 1.7.2003	Between 1.7.2003 and 1.7.2005	On or after 1.7.2005
NO _X (as NO ₂) (At 15%		A	Up to 75 MW	1100	970	710
O2, dry basis, in ppmv		В	Up to 150 MW	0.000000000	-0-1.1.175	11.125.15
		A	More than 75 MW	1100	710	360
		В	More than 150 MW		0.000	1005255
	NMHC (as C) (at 15% O ₂), mg/Nm ³			150	100	
				75	75	
	Furnace Oils- LSHS & FO	Both A and B		150	1	00
	15% O ₂), z/Nm ³	Both A and B		150	1	50

¹ Inserted by Rule 2(b) of the Environment (Protection) Second Amendment Rules, 2008 notified by G.S.R.280(E), dated 11.4.2008.

² Serial No.96 and entries relating thereto inserted by Rule 2 of the Environment (Protection) Third Amendment Rules, 2002 notified vide Notification G.S.R.489(E), dated 9.7.2002.

v. STP WATER SAMPLE ANALYSIS

Water samples were collected at the following points.

• 25 KLD Treated Water Outlet

DETAILS OF STP WATER LOCATIONS

STATION CODE	LOCATIONS	Geographical Location
STP - 1	25 KLD	13º 16' 12" N 80º 20' 8" E

Analysis results of the water sample collected from the above location are enclosed as Annexure - 5.

Annexure - 5

						STP W	ATER						
	Location			STP	INLET	1.2				STP OUTLE	T (25 KLD)		
	Month & Year	Jul - 22	Aug - 22	Sep - 22	Oct - 22	Nov - 22	Dec - 22	Jul - 22	Aug - 22	Sep - 22	Oct - 22	Nov - 22	Dec - 22
S.No	Parameters												
1	pH @ 25°C	7.15	7.22	7.18	7.58	7.01	7.47	7.80	7.49	7.32	7.76	7.30	7.69
2	Total Suspended	52	74	82	96	78	94	17	12	14	42	24	22
3	BOD at 27°C for 3	68	82	84	92	106	98	11	11	12	12	15	15
4	Fecal Coliform	680	340	510	640	810	940	160	110	240	180	210	240
5	COD	184	235	218	318	392	278	43	48	42	84	56	44
6	Oil & Grease	6.1	4.8	3.6	4.5	4.1	4.0	BDL	BDL	BDL	BDL	BDL	BDL
7	Total Dissolved Solids	1086	1060	1138	1048	1296	1414	882	866	734	982	1114	1296
8	Chlorides (as Cl)	320	304	320	274	290	326	291	283	247	256	275	305
9	Sulphates (as SO4)	65	55	62	49	44	48	55	52	40	42	40	37

MINISTRY OF ENVIRONMENT, FOREST AND CLIMATE CHANGE

NOTIFICATION

New Delhi, the 13th October, 2017

G.S.R. 1265(E).—In exercise of the powers conferred by sections 6 and 25 of the Environment (Protection) Act, 1986 (29 of 1986), the Central Government hereby makes the following rules further to amend the Environment (Protection) Rules, 1986, namely:-

 Short title and commencement.—(1) These rules may be called the Environment (Protection) Amendment Rules, 2017.

(2) They shall come into force on the date of their publication in the Official Gazette.

 In the Environment (Protection) Rules, 1986, in Schedule – I, after serial number 104 and the entries relating thereto, the following serial number and entries shall be inserted, namely:—

SI.	Industry	Parameters	Standards	
No.				
1	2	3	4	
		Effluent discharge stand	lards (applicable to all mode of disposal)	
"105	Sewage		Location	Concentration not
I	Treatment			to exceed
I	Plants		(a)	(b)
I	(STPs)	pH	Anywhere in the country	6.5-9.0
I		Bio-Chemical Oxygen	Metro Cities*, all State Capitals except	20
I		Demand (BOD)	in the State of Arunachal Pradesh,	
I			Assam, Manipur, Meghalaya Mizoram,	
1			Nagaland, Tripura Sikkim, Himachal	
1			Pradesh, Uttarakhand, Jammu and	
			Kashmir, and Union territory of	

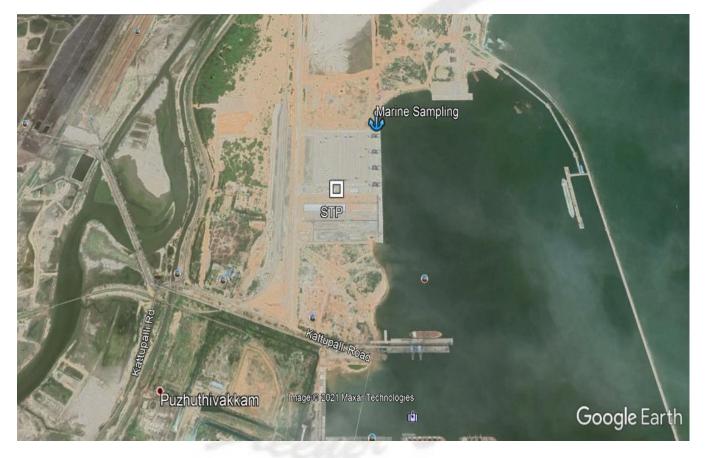
	Andaman and Nicobar Islands, Dadar and Nagar Haveli Daman and Diu and Lakshadweep	
	Areas/regions other than mentioned above	30
Total Suspended Solids (TSS)	Metro Cities*, all State Capitals except in the State of Arunachal Pradesh, Assam, Manipur, Meghalaya Mizoram, Nagaland, Tripura Sikkim, Himachal Pradesh, Uttarakhand, Jammu and Kashmir and Union territory of Andaman and Nicobar Islands, Dadar and Nagar Haveli Daman and Diu and Lakshadweep	<50
	Areas/regions other than mentioned above	<100
 Fecal Coliform (FC) (Most Probable Number per 100 milliliter, MPN/100ml	Anywhere in the country	<1000

vi. DRINKING WATER SAMPLE ANALYSIS

Drinking Water samples were collected at the Canteen or Office Building. Analysis results of the water sample collected from the above location are enclosed as Annexure - 6.

	DRINKING WATER								
	Month & Year	Unit	Jul - 22	Aug - 22	Sep - 22	Oct - 22	Nov - 22	Dec - 22	
S.No.	Parameters								
1	pH @ 25°C	-	6.70	6.81	6.63	6.68	6.76	6.89	
2	Total Hardness as CaCo3	mg/L	BDL(DL:1.0)	6.0	4.0	10	8.0	6.0	
3	Chloride as Cl	mg/L	15	12	10	14	6.0	4.6	
4	Total Dissolved Solids	mg/L	36	30	22	32	38	34	
5	Calcium as Ca	mg/L	BDL(DL:0.4)	1.7	0.8	2.4	0.8	1.2	
6	Sulphate as SO4	mg/L	BDL(DL:1.0)	BDL(DL:1.0)	1.1	1.3	BDL(DL:1.0)	BDL(DL:1.0)	
7	Total Alkalinity as CaCo3	mg/L	22	30	10	16	30	26	
8	Magnesium as Mg	mg/L	BDL(DL:0.24)	1.7	0.5	0.97	1.46	0.73	
9	Color	Hazen	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
10	Odour	-	Unobjectionable	Unobjectionable	Unobjectionable	Unobjectionable	Unobjectionable	Unobjectionable	
11	Taste	-	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	
12	Turbidity	NTU	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
13	Nitrate as No3	mg/L	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL 1.0)	BDL(DL 1.0)	BDL(DL 1.0)	
14	Iron as Fe	mg/L	BDL(DL 0.05)						
15	Total Residual Chlorine	mg/L	BDL(DL 0.1)						
16	Copper as Cu	mg/L	BDL(DL 0.05)						
17	Manganese as Mn	mg/L	BDL(DL 0.05)						
18	Fluoride as F	mg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	
19	Phenolic compounds as C6H5OH	mg/L	BDL(DL 0.001)						
20	Mercury as Hg	mg/L	BDL(DL 0.001)						
21	Cadmium as Cd	mg/L	BDL(DL 0.003)						
22	Selenium as Se	mg/L	BDL(DL 0.01)						
23	Arsenic as As	mg/L	BDL(DL 0.01)						
24	Lead as Pb	mg/L	BDL(DL 0.01)						
25	Zinc as Zn	mg/L	BDL(DL 0.05)						
26	Anionic Detergents as MBAS	mg/L	Nil	Nil	Nil	Nil	Nil	Nil	
27	Total Chromium as Cr	mg/L	BDL(DL 0.05)						
28	Phenolphthalein Alkalinity as CaCO3	mg/L	Nil	Nil	Nil	Nil	Nil	Nil	
29	Aluminium as Al	mg/L	BDL(DL 0.05)						
30	Boron as B	mg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	0.37	BDL(DL 0.1)	
31	Mineral Oil	mg/L	Nil	Nil	Nil	Nil	Nil	Nil	
32	Polynuclear Aromatic Hydrocarbons as	mg/L	Nil	Nil	Nil	Nil	Nil	Nil	
33	Pesticides	mg/L	Nil	Nil	Nil	Nil	Nil	Nil	
34	Cyanide as CN	mg/L	BDL (DL : 0.01)						
35	E. coli	MPN/100ml	Absence	Absence	Absence	Absence	Absence	Absence	
36	Total Coliform	MPN/100ml	Absence	Absence	Absence	Absence	Absence	Absence	

Annexure - 6


vii. Marine Sampling

Marine Water samples and sediment samples were collected at locations South side berth and North side berth. Analysis data of Marine and sediments as represented in Annexure - 7 & 8.

STATION CODE	LOCATIONS	Geographical Location
		13º 16' 25" N
MW - 1 / MS - 1	Bollard	80º 20' 16" E

DETAILS OF MARINE WATER AND SEDIMENT LOCATIONS

Fig - 5. Water and Marine Sampling Locations

					MA	RINE WA	TER							
S.NO	PARAMETER	UNITS	Jul	- 22	Aug	- 22	Sep	- 22	Oct	- 22	Nov	- 22	Dec	- 22
					I			BERTH A	REA					
F	Physicochemical Paramet	ters	Surface	Bottom										
1	Colour	Hazan	20	40	15	35	20	30	25	40	20	30	15	25
2	Odour	-					ι	Jnobjectio	onable					
3	pH @ 25°C	-	8.37	8.46	8.35	8.41	8.33	8.37	8.28	8.41	8.01	8.25	8.08	8.32
4	Temperature	°C	28	28	29	29	28	28	29	29	27	27	26	26
5	Turbidity	NTU	8.4	18.3	10.6	21.3	11.0	18.7	8.9	21	11	24	8.2	27
6	Total Suspended Solids	mg/L	12	26	14	28	13.2	24	11.6	28	14	32	11	38
7	BOD at 27 oC for 3	mg/L	4.8	4.9	4.5	4.7	4.7	4.9	4.5	4.7	4.1	4.6	4.4	4.9
8	COD	mg/L	126	140	114	132	124	138	120	129	112	120	117	139
9	Dissolved oxygen	mg/L	2.7	2.9	2.8	2.6	2.6	2.5	2.7	2.4	2.8	2.5	2.7	2.3
10	Salinity at 25 °C	ppt	40.5	41.3	41.5	41.9	42.6	43.4	41.9	42.6	39.4	40.8	33.8	34.2
11	Oil & Grease	mg/L	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL : 1.0)						
		2	,		Nutrie	ent Paran		,	,	,	,	,	,	,
12	Nitrate as No3	mg/L	6.12	8.47	7.23	9.24	8.17	7.96	8.56	9.12	7.12	8.56	5.96	7.27
13	Nitrite as No2	mg/L	2.78	3.12	2.86	3.57	2.43	4.20	2.04	2.87	2.42	3.01	2.58	2.81
14	Ammonical Nitrogen	mg/L	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL : 1.0)						
15	as N Total Nitrogen	mg/L	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL :	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL : 1.0)
16	Inorganic phosphates as PO4	mg/L	5.05	6.29	4.59	5.82	1.0) 3.10	4.44	2.45	3.39	2.84	3.05	2.74	3.93
17	Silica as SiO2	mg/L	8.42	7.63	7.40	8.53	6.91	9.82	7.50	8.73	8.96	10.2	7.14	10.4
18	Particulate Organic	µgC/L	14	18	11	15	12	14	15	17	13	18	14	17
19	Carbon Pertoleum Hydrocarbons	μg/L	BDL (DL : 0.01)	BDL (DL : 0.01)	BDL (DL : 0.01)	BDL (DL : 0.01)	BDL (DL : 0.01)	BDL (DL : 0.01)	BDL (DL : 0.01)	BDL (DL : 0.01)	BDL (DL : 0.01)	BDL (DL : 0.01)	BDL (DL : 0.01)	BDL (DL : 0.01)
	riyurocarbons					eavy Meta								,
20	Cadmium as Cd	mg/L	BDL (DL :	BDL (DL										
-		mg/L	0.003) BDL (DL :	:0.003) BDL (DL :										
21	Copper as Cu		0.05)	0.05)	0.05)	0.05)	0.05)	0.05)	0.05)	0.05)	0.05)	0.05)	0.05)	0.05)
22	Total Iron as Fe	mg/L	0.74	0.79	0.79	0.82	0.63	0.79	0.72	0.84	0.67	0.78	0.67	0.73
23	Zinc as Zn	mg/L	BDL (DL : 0.01)	BDL (DL : 0.01)										
24	Lead as Pb	mg/L	BDL (DL : 0.01)	BDL (DL : 0.01)										
25	Mercury as Hg	mg/L	BDL (DL : 0.001)	BDL (DL :0.001)										
26	Nickel as Ni	mg/L	BDL (DL :	BDL (DL :										
		mg/L	0.05) BDL (DL :	0.05) BDL (DL :										
27	Total Chromium as Cr		0.05)	0.05)	0.05)	0.05)	0.05)	0.05)	0.05)	0.05)	0.05)	0.05)	0.05)	0.05)
70	Escharichia Cali (ECLO)	cfu/ml	Abcorec	Abcorse		logical Pa	1	Abcome	Abcore	Abconec	Abcores	Abcomer	Abconer	Abcorec
28 29	Escherichia Coli (ECLO) Faecal Coliform (FCLO)	cfu/ml	Absence Absence	Absence Absence	Absence Absence			Absence Absence						
	Pseudomonas	cfu/ml												
30	aeruginosa (PALO) Streptococcus faecalis		Absence	Absence										
31	(SFLO)	cfu/ml	Absence	Absence	Absence			Absence						
32	Shigella (SHLO)	cfu/ml	Absence	Absence	Absence			Absence						
33	Salmonella (SLO)	cfu/ml	Absence	Absence	Absence			Absence						
34	Total Coliform (TC)	cfu/ml	Absence	Absence										
35	Total Viable Count (TVC)	cfu/ml	Absence	Absence	Absence			Absence						
36	Vibrio cholera (VC)	cfu/ml	Absence	Absence	Absence			Absence						
37	Vibrio	cfu/ml	Absence	Absence										

Annexure – 7

Page **33** of **35**

Month & Year		Jul	- 22	Aug	; - 22	Sep	- 22	Oct	- 22	Nov	- 22	Dec	- 22
							BERTH	AREA					
S.N Parameters	Unit	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom
38 Primary Productivity	mg C/m3 /hr	9.14	11.06	8.67	10.05	7.69	9.34	8.24	10.6	9.16	10.81	8.42	9.72
39 Chlorophyll a	mg /m3	5.88	7.14	4.31	6.28	3.91	6.73	3.17	5.84	4.25	6.97	4.96	6.07
40 Phaeopigment	mg /m3	2.75	3.69	2.59	3.01	2.78	3.46	2.06	3.19	2.47	3.69	2.18	3.20
41 Total Biomass	ml /100 m3	1.62	2.10	1.48	1.93	1.50	2.12	1.78	2.56	1.93	2.78	1.74	2.05
			I	PH	YTOPLAN	KTON	1				1		
42 Bacteriastrum hyalinum	nos/ml	8	13	14	17	8	12	13	15	11	14	15	18
43 Bacteriastrum varians	nos/ml	12	15	17	19	12	14	17	19	15	17	9	10
44 Chaetoceros didymus	nos/ml	14	10	10	8	14	10	10	8	7	9	6	7
45 Chaetoceros decipiens	nos/ml	5	8	8	5	16	9	14	11	10	13	14	19
46 Biddulphia mobiliensis	nos/ml	13	17	16	20	11	16	15	20	12	16	16	21
47 Ditylum brightwellii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
48 Gyrosigma sp	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
49 Cladophyxis sps	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
50 Coscinodiscus centralis	nos/ml	14	22	19	24	15	20	11	14	9	11	11	14
51 Coscinodiscus granii	nos/ml	17	20	11	15	17	12	12	17	13	19	10	15
52 Cylcotella sps	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
53 Hemidiscus hardmanianus	nos/ml	15	19	13	16	10	11	7	9	8	11	12	16
54 Laudaria annulata	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
55 Pyropacus horologicum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
56 Pleurosigma angulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
57 Leptocylindrus danicus	nos/ml	7	9	9	7	13	9	15	12	13	16	8	11
58 Guinardia flaccida	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
59 Rhizosolenia alata	nos/ml	12	16	20	22	22	24	18	20	19	22	17	20
60 Rhizosolena impricata	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
61 Rhizosolena semispina	nos/ml	19	24	22	26	18	21	16	19	14	16	18	21
62 Thalassionema nitzschioid	es nos/ml	17	15	14	11	9	14	13	17	15	20	20	24
63 Triceratium reticulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
64 Ceratium trichoceros	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
65 Ceratium furca	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
66 Ceratium macroceros	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
67 Ceracium longipes	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
	2			ZC	OPLANK	TONS	C /	1					
68 Acrocalanus gracilis	nos/ml	5	7	10	13	13	10	10	8	11	13	7	10
69 Acrocalanus sp	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
70 Paracalanus parvus	nos/ml	14	9	6	10	8	12	11	15	14	19	17	21
71 Eutintinus sps	nos/ml	12	17	18	11	15	17	17	12	15	10	8	14
72 Centropages furcatus	nos/ml	10	15	15	19	10	13	8	11	6	8	11	13
73 Corycaeus dana	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
74 Oithona brevicornis	nos/ml	16	19	11	14	14	9	6	14	12	17	10	12
75 Euterpina acutifrons	nos/ml	9	11	17	20	12	18	16	20	19	22	13	17
76 Metacalanus aurivilli	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
77 Copipod nauplii	nos/ml	15	21	8	5	7	9	13	16	10	15	16	19
78 Cirripede nauplii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
79 Bivalve veliger	nos/ml	8	13	12	19	10	15	7	10	9	12	14	20
80 Gastropod veliger	nos/ml	16	20	9	12	15	16	17	21	13	16	6	9

			SE	A SEDIMENT				
	Location				Sea Sediment			
	Month & Year	Unit	Jul - 22	Aug - 22	Sep - 22	Oct - 22	Nov - 22	Dec - 22
S.No.	Parameters				BERTH	AREA	r	
1	Total organic matter	%	0.80	0.68	0.73	0.77	0.71	0.65
2	% Sand	%	15	20	21	19	17	18
3	%silt	%	31	29	30	33	31	33
4	%Clay	%	54	51	49	48	52	49
5	Iron (as Fe)	mg/kg	23.9	25.3	28.1	27.6	25.1	23.7
6	Aluminium (as Al)	mg/kg	9012	8472	7982	8425	8984	8081
7	Chromium (as cr)	mg/kg	21	25	20	23	20	17
8	Copper (as cu)	mg/kg	55	47	53	57	51	44
9	Manganese (as Mn)	mg/kg	34	31	24	32	46	40
10	Nickel (as Ni)	mg/kg	27	20	15	14	18	22
11	Lead (as Pb)	mg/kg	31	37	33	26	27	21
12	Zinc (as Zn)	mg/kg	168	191	178	190	236	209
13	Mercury(as Hg)	mg/kg	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL(DL 0.1)
14	Total phosphorus as P	mg/kg	134	120	103	114	132	118
15	Octane	mg/kg	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL(DL 0.1)
16	Nonane	mg/kg	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL(DL 0.1)
17	Decane	mg/kg	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL(DL 0.1)
18	Undecane	mg/kg	0.77	0.63	0.68	0.72	0.65	0.59
19	Dodecane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
20	Tridecane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
21	Tetradecane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
22	Phntadecane	mg <mark>/kg</mark>	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
23	Hexadecane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
24	Heptadecane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
25	Octadecane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
26	Nonadecane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
27	Elcosane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
. Nem	atoda	8		and the second se	Contraction of the local division of the loc	-		
28	Oncholaimussp	nos/m ²	14	16	13	15	10	14
29	Tricomasp	nos/m ²	9	12	10	12	18	11
	minifera	1		100	and the second second			
30	Ammoniabeccarii	nos/m ²	18	14	17	11	14	16
31	Quinqulinasp	nos/m ²	15	19	15	14	17	19
32	Discorbinellasp.,	nos/m ²	11	7	9	18	11	15
33	Bolivinaspathulata	nos/m ²	17	10	16	10	13	20
34	Elphidiumsp	nos/m ²	21	18	14	19	22	8
35	Noniondepressula	nos/m ²	20	24	20	17	15	22
	lluscs-Bivalvia					1. 2. 2.		
36	Meretrixveligers	nos/m ²	22	15	22	24	20	24
37	Anadoraveligers	nos/m ²	18	21	18	9	16	18
	Total No. of individuals	nos/m ²	165	156	154	149	156	167
	Shanon Weaver Diversity Index	1000	2.27	2.25	2.27	2.26	2.28	2.26

Annexure - 8

ANNEXURE – 2

(Annual Environment Statement in Form-V)

Subramanian A

From:	Sathish Kumar R
Sent:	Thursday, September 22, 2022 4:39 PM
То:	eccompliance-tn@gov.in; DEE GMP TNPCB
Cc:	Ramde Karangiya; Subramanian A
Subject:	Submission of Environmental Statement (Form V) for the financial year ending 31st
	March, 2022 of Adani Ennore Container Terminal Private Limited, Chennai
Attachments:	AECTPL _Form V (2021-22).pdf

Dear Sir,

With reference to the captioned subject, we submit herewith the **Environmental Statement** of **M/s Adani Ennore Container Terminal Private Limited,** in **Form-V** prescribed under Rule 14 of the Environment (Protection) Rules 1986 for the financial year ending 31st March 2022.

Submitted for your kind information and records.

Thanks and Regards

R. Sathish Kumar Deputy General Manager - Environment | Adani Ports and SEZ Limited | Mob +91 91760 00959 | Direct: +91 44 2796 8177 | Extn. 69177 | sathish.r@adani.com | www.adaniports.com |

Growth Goodness

Our Values: Courage | Trust | Commitment

(f) () () () (AdaniOnline

AECTPL/TNPCB/2022-23/128

Date:22.09.2022

To,

The Member Secretary, Tamil Nadu Pollution Control Board, 76, Mount Salai, Guindy, Chennai - 600 032

Dear Sir,

Sub: Submission of Environmental Statement (Form V) for the financial year ending 31st March, 2022 of Adani Ennore Container Terminal Private Limited (AECTPL) - Reg.

Ref: 1. Consent to Operate Order No. 2108136876855 dated 24.08.2021 under Water Act

2. Consent to Operate Order No. 2108236876855 dated 24.08.2021 under Air Act

With reference to the captioned subject and cited references above, we submit herewith the Environmental Statement of **M/s Adani Ennore Container Terminal Private Limited**, in **Form-V** prescribed under Rule 14 of the Environment (Protection) Rules 1986 for the financial year ending 31st March 2022.

Submitted for your kind information and records.

Thanking you,

For, M/s. ADANI ENNORE CONTAINER TERMINAL PRIVATE LIMITED.

R. Sathish Kumar Head - Environment

Enclosure: as above

Copy To:

- 1) The Joint Chief Environmental Engineer, Tamilnadu Pollution Control Board, First Floor, 950/1, Poonamallee High Road, Arumbakkam, Chennai-600 106
- 2) The District Environmental Engineer, Tamil Nadu Pollution Control Board, Gummidipoondi 601201.

Adani Ennore Container Terminal Pvt Ltd Adani House C/o. Kamarajar Port Limited Ponneri Taluk, Tiruvallur District Tamil Nadu- 600 120. Tel +91 44 2824 3062

info@adani.com <u>www.adani.com</u>

CIN: U61200GJ2014PTC078795

<u>Form-V</u>

(See rule 14 of Environment (Protection) Rules, 1986)

Environmental Statement for the financial year ending 31st March 2022

<u> PART – A</u>

i)	Name and Address of the owner / occupier of the industry operation or process	:	Mr. G.J. Rao Chief Executive Officer Adani Ennore Container Terminal Private Limited C/O Kamarajar Port Limited Vallur Post, Ennore Thiruvallur District- 600 120 Tamil Nadu, India
ii)	Industry Category	:	Primary : Red Secondary : 1065 – Ports and Harbour, Jetties and Dredging Operations.
iii) iv)	Production Capacity Year of establishment	:	Cargo Handling Capacity : 11.68 MMTPA of Container cargo 2016
v)	Date of the last environmental statement submitted	:	Vide our Letter No. AECTPL/TNPCB/2021-22/79 dated 23.09.2021

<u>PART – B</u>

WATER AND RAW MATERIAL CONSUMPTION

(i) Water Consumption

S. No	Water Consumption (m³/Calendar Day)	2020-2021	2021-2022	
1.	Process	NIL	NIL	
2.	Cooling	NIL	NIL	
3.	Domestic	13.8	12.6	

(ii) Raw Material Consumption

S. No.	Name of Raw Material	Name of Products	Consumption of Raw Ma	laterial per Unit of output			
		а н	During the previous financial year (2020-21)	During the current financial year (2021-22)			
1	Not Applicable	Not Applicable	NIL	NIL			

The unit does not undergo any manufacturing process. Hence, there is no raw material consumption.

ner ennal

<u>PART – C</u>

POLLUTION DISCHARGE TO ENVIRONEMENT/ UNIT OF OUTPUT

(Parameters as specified in the consent issued)

Pollutants	Pollutants Poll Discharged disc		ntration of lutants charges s/volume)		centage of variation from rescribed standards with reason		
a) Water	STP Treated Wal	ter Charac	cteristics: -	k			
	Parameter	Э	Consent Limit	Actual	% Variation with prescribed standard		
	рН		5.5-9	7.44	-Nil-		
	Total Suspended Solids (mg/l)		30	18.62	-Nil-		
	BOD (3 days at 3 (mg/l)	20	12.59	-Nil-			
	Fecal Coliform (MPN/100ml)		1000	177.08	-Nil-		
b) Air	failure only. The l the monitored pa All the DG Sets an level. Efficiency against the TNPC	DG sets are provided as sta failure only. The Height of the monitored parameters All the DG Sets are retrofitt level. Efficiency of the ret against the TNPCB requirer All the monitored paramete			TNPCB Standards. Al ulate Matter emissior observed above 90%		
Particulate Matter (mg/Nm3)			÷				
Sulphur Dioxide (mg/Nm3)	DG stack emissior	n report is	enclosed as	Annexure	1		
Nitrogen Oxide (ppm)							

er

3 | Page

PART-D

HAZARDOUS WASTES

(As specified under Hazardous Waste Management and Handling Rules 1989)

Hazardous	Total	Total Quantity (Kg)							
Wastes	During the previous Financial Year (2020-21)	During the current Financial Year (2021-22)							
(a) From Process	-Nil-	 Used/Spent Oil (5.1) – 2500 Liters (2.268 Tons) Wastes or residue containing oil (5.2) - 800 Liters (0.72 Tons) 							
(b) From Pollution control facilities	NA	NA							

PART-E

SOLID WASTES

	TOTAL QUANTITY GENERATED								
	Solid Waste	During the previous Financial Year (2020-21)	During the current Financial Year (2021-22)						
a)	From process	NIL	NIL						
b)	From pollution control facilities- STP	63.42 kgs	99.3 kgs						
	1. Quantity recycled or reutilized within the	63.42 kgs	99.3 kgs						
c)	Unit 2. Sold	NIL	NIL						
	3. Disposed	NIL	NIL						

PART-F

Please specify the characterization (in terms of Composition and quantum) of Hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes:

- "Zero Waste to Landfill" Initiative No waste is being sent to landfill or incineration facility. AECTPL is having Integrated Waste Management System (IWMS) to proper segregate & recover the materials and are handled as per 5R (Reduce, Reuse, Recycle, Recover and Reprocess) principle.
- AECTPL has awarded with Zero Waste to Landfill Management System (ZWTL MS 2020) from TÜV Rheinland India Pvt. Ltd (Annexure 2).
- Hazardous wastes include Used oil, Filters contaminated with Oil and Empty barrels / containers contaminated with hazardous wastes. All the hazardous wastes are collected and stored properly in Integrated Waste Management Shed & are being disposed to TNPCB authorized /registered recyclers in line with Hazardous and other Wastes (Management and Transboundary Movement) Rules, 2016 (As amended).
- The used batteries and E –wastes are also stored in Integrated Waste Management Shed and disposed off through approved vendor in line to E-Waste Management Rules 2016 (as amended).
- Hazardous waste Annual returns in Form 4 was submitted in line with the Hazardous and Other Wastes (Management & Trans boundary Movement) Rules, 2016.
- E-waste returns in Form 3 was submitted in line with the E-waste Management Rules, 2016.
- 100% utilization of STP sludge for greenbelt maintenance as manure.
- AECTPL certified as "Single Use Plastic (SUP) Free" site from CII –ITC Centre of Excellence for Sustainable Development.

PART-G

Impact of the pollution abatement measures taken on conservation of natural resources and on the cost of production

- Adani Ennore Container Terminal Private Limited is having electrified cranes only and hence the diesel consumption by the cranes is eliminated completely.
- All the DG Sets are retrofitted to reduce the Particulate Matter emission level. Efficiency of the retrofitting equipment is observed above 90% against the TNPCB requirement of >70%.
- All the domestic wastewaters being generated at port is treated at existing sewage treatment plant and the treated water is being reused within port premises for gardening/horticulture purpose.
- Sewage Treatment Plant (STP) is in continuous operation and the treated effluent water quality is meeting the TNPCB norms. The total cost spent on STP operation during the year 2021-22 is Rs. 4.56 Lakhs.
- Regular Environmental monitoring is being carried out through NABL accredited laboratory. All the monitored environmental parameters are well within the prescribed norms & the details of monitored data is being submitted regularly to TNPCB, CPCB, MoEF&CC and other concerned authorities.
- Unit is continuously developing and maintaining Greenbelt within the port premises.
- Implemented Integrated Waste Management System (IWMS) for managing all types of wastes in line with 5R (Reduce, Reuse, Recycle, Recover and Reprocess) principle.

PART-H

Additional measures/investment proposal for Environmental protection including abatement of pollution, prevention of pollution.

	Regular Expenditure (Cost in INR lakhs/year)										
S. No.	Description	Cost									
1	Environmental monitoring & Environment Studies	7.86									
2	Green belt & Horticulture development	4.87									
3	Annual maintenance contractor of STP operation	4.56									
4	Operation & Maintenance of Integrated Waste Management System	2.89									
5	Housekeeping	37.20									

PART-I

ANY OTHER PARTICULARS IN RESPECT TO ENVIRONMENT

- Handling of all types of wastes in line with 5R (Reduce, Reuse, Recycle, Recover and Reprocess) Principle.
- Paperless Operation is in place (Except for Statutory requirements) using application tools and Software – Terminal Info Gateway (TIG).
- Energy Conservation Committee to measure the amount of energy consumed and take actions to reduce the energy consumed through port operations
- Water Warriors committee to identify and reduce the water consumption. The committee would propose innovative water solutions.
- Integrated Management System (ISO 9001:2015, 14001:2015, 45001:2018 and 50001:2018) certified Port.
- Obtained "5S" Certification at MIDPL
- AECTPL is bestowed with the top honors and the details of accolades received during the year 2021-22 are mentioned here under (photos attached at Annexure-3);
 - "21st Annual Greentech Environment & Sustainability" Award 2021' organized by Greentech Foundation, New Delhi for outstanding achievements in "Environment Protection" category

7 | Page

- "Platinum Award" under Apex India Green Leaf Award 2021 for Energy Efficiency category
- Community Development:

Kattupalli Port has been propagating the community development through a broad based Corporate Social Responsibility (CSR) program in the project area through Adani Foundation since 2018 to ensure inclusive growth and catering to the developmental needs of the community at the grassroots level. The *project area encompasses 11 panchayats covering about 46 villages within 10 Km radius of the Kattupalli Port*. The key interventions introduced in the project area are as under:

- Education
- Community Health
- community Infrastructure facility
- Sustainable Livelihood development
- Tree Plantation & Bio-Diversity development program
- Special Focus Groups
- COVID / Cyclone relief measures

Date: 22.09.2022

aine

(Signature of a person carrying out an industry operation or process)

Name G.J. Rao Designation: Chief Executive Officer

Address : Adani Ennore Container Terminal Pvt Ltd C/O Kamarajar Port Limited Vallur post, Ennore Thiruvallur District- 600 120.

Chenna

ANNEXURE - 1

			AE	CTPL- ST	ACK MON	ITORING	(April'20)	21 to Mar	ch'2022)		-		
(All	Location	DG - 1 1500KVA											
	Month & Year		May-21	Jun-21	Jul-21	Aug-21	Sep-21	Oct-21	Nov-21	Dec-21	Jan-22	Feb-22	Mar-22
S.No.	Parameters	20.04.21	21.05.21	19.06.21	21.07.21	19.08.21	16.09.21	22.10.21	16.11.21	27.12.21	24.01.22	17.02.22	24.03.22
1	Stack Temperature, °C	230.0	237.0	-	237.0	223.0	213.0	218.0	226.0	234.0	229.0	-	230.0
2	Flue Gas Velocity, m/s	22.6	21.3	-	20.2	21.4	22.1	21.5	22.0	21.0			22.6
3	Gas Discharge, Nm3/hr	6053.0	5606.0	-	5316.0	5794.0	6107.0	5877.0	5926.0	5581.0			5606.0
4	Sulphur Dioxide, mg/Nm3	8.9	8.2	-	7.9	8.1	8.9	7.3	7.9	8.2	7.6		8.2
5	NOX (as NO2) in ppmv	126.0	129.0	• .	152.0	140.0	152.0	128.0	135.0	140.0	134.0		131.0
6	Particular matter, mg/Nm3	34.8	32.8	. .	32.0	34.1	37.3	11.0	10.0	9.4	11.0		9,2
7	Carbon Monoxide, mg/Nm3	81.0	84.0	-	87.0	83.0	80.0	65.0	69.0	75.0		-	40.0
	Location						D	G-2 1500K	VA				
Month & Year		Apr-21	May-21	Jun-21	Jul-21	Aug-21	Sep-21	Oct-21	Nov-21	Dec-21	Jan-22	Feb-22	Mar-22
S.No.	Parameters	20.04.21	21.05.21	19.06.21	21.07.21	19.08.21	16.09.21	22.10.21	16.11.21	27.12.21	24.01.22		24.03.22
1	Stack Temperature, °C	221.0	228.0	220.0	242.0	235.0	228.0	235.0	-	218.0	223.0	-	235.0
2	Flue Gas Velocity, m/s	21.0	21.4	19.5	21.6	23.0	21.0	21.6	-	22.5	21.5	-	23.1
3	Gas Discharge, Nm3/hr	5714.0	5755.0	5327.0	5632.0	6094.0	5634.0	5728.0	-	6154.0	5830.0	-	5755.0
4	Sulphur Dioxide, mg/Nm3	8.0	7.8	8.3	8.9	8.1	7.5	6.7	-	7.8	7.2	-	7.8
5	NOX (as NO2) in ppmv	115.0	122.0	118.0	164.0	155.0	139.0	120.0	-	129.0	131.0		127.0
6	Particular matter, mg/Nm3	33.1	35.4	32.1	34.7	32.0	34.4	8.2	-	9.5	10.0		8.8
7	Carbon Monoxide, mg/Nm3	75.0	80.0	74.0	85.0	88.0	85.0	61.0	_	68.0	42.0		36.0

ſ

Location Month & Year		DG-3 1500KVA											
		Apr-21	May-21	Jun-21	Jul-21	Aug-21	Sep-21	Oct-21	Nov-21	Dec-21	Jan-22	Feb-22	Mar-22
S.No.	Parameters	20.04.21	21.05.21	19.06.21	21.07.21	19.08.21		22.10.21	16.11.21	27.12.21	24.01.22		
1	Stack Temperature, °C	225.0	214.0	-	-	218.0	224.0	Des States Perk				220.0	
2	Flue Gas Velocity, m/s	22.0	21.0	-	-	22.5	21.4	22.1	20.7	22.4		220.0	214.0
3	Gas Discharge, Nm3/hr	5951.0	5796.0	-	-	6151.0	5785.0	6057.0		6068.0		6050.0	
4	Sulphur Dioxide, mg/Nm3	8.4	7.1	-	-	7.4	7.9	6.5		7.5		8.1	5796.0
5	NOX (as NO2) in ppmv	120.0	110.0	-	-	130.0		124.0	120.0	136.0	-		7.1
6	Particular matter, mg/Nm3	32.3	30.6	-	- *	30.6	100010	4.1	6.8	11.0	-	127.0	120.0
7	Carbon Monoxide, mg/Nm3	79.0	73.0	_	-	79.0	83.0	64.0		64.0		9.6	10.4
	Location									04.0	-	35.0	33.0
		DG-4 125KVA											
	Month & Year		May-21	Jun-21	Jul-21	Aug-21	Sep-21	Oct-21	Nov-21	Dec-21	Jan-22	Feb-22	Mar-22
S.No.	Parameters	20.04.21	21.05.21	19.06.21	21.07.21	19.08.21	16.09.21	22.10.21	16.11.21	27.12.21	24.01.22		
1	Stack Temperature, °C	127.0	122.0	125.0	-	121.0	125.0	130.0	126.0	121.0		126.0	122.0
2	Flue Gas Velocity, m/s	12.1	11.4	12.2	-	11.8	12.5	12,9	12.1	11.7	-	120.0	122.0
3	Gas Discharge, Nm3/hr	568.0	547.0	580.0	-	568.0	592.0	606.0	606.0	563.0	-	571.0	
4	Sulphur Dioxide, mg/Nm3	4.6	4.4	4.7	-	5.0	5.4	4.2	4.0	4.5	_		571.0
5	NOX (as NO2) in ppmv	87.0	80.0	86.0	-	81.0	87.0	73.0	68.0	61.0		4.9	5.3
6	Particular matter, mg/Nm3	13.9	14.5	13.0	-	14.3	16.0	9.4	8.5	5.3	-	67.0	60.0
7	Carbon Monoxide, mg/Nm3	30.0	33.0	36.0		29.0	33.0	26.0	29.0	25.0	-	4.6 23.0	5.3 21.0

Annexure - 2

Certificate

Standard:

Zero Waste to Landfill Management System (ZWTL MS 2020)

Certificate Holder:

Adani Ennore Container Terminal Private Limited Ennore Terminal, C/O Kamarajar Port Ltd, Tiruvallur - 600120,Tamil Nadu,India

Scope:

Providing Port facilities for Handling and Storage of Containerized Cargo

Proof has been furnished by means of an audit that the Requirements of ZWTL MS 2020 are met, with the achievement of waste diversion rate of above 99%

Validity:

This certificate is valid from 01-06-2021 until 31-05-2024 Subject to satisfactory annual surveillance audits.

Certificate No. TUV/ZWLMS/2021/Adani Ports/0503

TÜV Rheinland India Pvt. Ltd. Office 610, 6rd Floor, iThum Tower, A–40, Sector-62, Noida- 201301, India

New Delhi, 01-06-2021

Annexure - 3

Accolades

Greentech Foundation Winner Awards -2021

APEX India Green Leaf Platinum Award - 2021