

AECTPL/KPL/HYC/ENV/2021/72

Date: 10.08.2021

To.

The General Manager (Marine Services)

Kamarajar Port Limited, 23, Rajaji Salai, Chennai – 600 001

Dear Sir,

Sub: Development of container terminal at Kamarajar Port Limited on DBFOT basis, KPL awarded to Adani Ennore Container Terminal Private Limited (AECTPL)- Submission of Half yearly Compliance (January 2021 to June 2021) of Environmental Clearance issued to Kamarajar Port Limited in various stages of development with regards to Container Terminal – Reg.

Ref: 1. Vide order no: 10-28/2005-IA-III dated 19th May, 2006

2. Vide order no: 10-28/2005-IA-III dated: 10/09/2007 and validity extension date: 31.03/2017

3. Vide order no: 10-28/2005-IA-III dated: 24/12/2014

With reference to the above captioned subject, Adani Ennore Container Terminal Private Limited is submitting the Half yearly compliance report (for the period January 2021 to June 2021) of applicable conditions to the Environmental & CRZ Clearance obtained by the M/s. Kamarajar Port Limited in various stages of development as referred above.

Kindly acknowledge us the receipt of the same.

For M/s. Adani Ennore Container Terminal Private Limited,

R. Sathish Kumar

Head - Environment

Encl.: As above.

Adani Ennore Container Terminal Pvt Ltd Adani House C/o. Kamarajar Port Limited Ponneri Taluk, Tiruvallur District Tamil Nadu- 600 120. Tel +91 79 2656 56 5555 Fax +91 79 2555 5500 info@adani.com www.adani.com CIN: U61200GJ2014PTC078795

AECTPL/KPL/HYC/ENV/2021/72

Date: 10.08.2021

To,

The General Manager (Marine Services)

Kamarajar Port Limited, 23, Rajaji Salai, Chennai – 600 001

Dear Sir.

Sub: Development of container terminal at Kamarajar Port Limited on DBFOT basis, KPL awarded to Adani Ennore Container Terminal Private Limited (AECTPL)- Submission of Half yearly Compliance (January 2021 to June 2021) of Environmental Clearance issued to Kamarajar Port Limited in various stages of development with regards to Container Terminal – Reg.

Ref: 1. Vide order no: 10-28/2005-IA-III dated 19th May, 2006

2. Vide order no: 10-28/2005-IA-III dated: 10/09/2007 and validity extension

date: 31.03/2017

3. Vide order no: 10-28/2005-IA-III dated: 24/12/2014

With reference to the above captioned subject, Adani Ennore Container Terminal Private Limited is submitting the Half yearly compliance report (for the period January 2021 to June 2021) of applicable conditions to the Environmental & CRZ Clearance obtained by the M/s. Kamarajar Port Limited in various stages of development as referred above.

Kindly acknowledge us the receipt of the same.

For M/s. Adani Ennore Container Terminal Private Limited,

R. Sathish Kumar

Head - Environment

Encl.: As above.

Adani Ennore Container Terminal Pvt Ltd Adani House C/o. Kamarajar Port Limited Ponneri Taluk, Tiruvallur District Tamil Nadu- 600 120.

Tel +91 79 2656 56 5555 Fax +91 79 2555 5500 info@adani.com www.adani.com CIN: U61200GJ2014PTC078795

From: January 2021 To : June 2021

На	Half yearly Compliance report on conditions stipulated in Environmental & CRZ Clearance (Period: January 2021 to June 2021)				
S. No.	Conditions	Compliance Status			
SPECIFIC CONDITIONS					
L.	All the conditions stipulated in the NOC from TNPCB vide their letter No. T12/TNPCB/Misc./F.3322/TVLR/05, dated 07.12.2005 should be strictly implemented.	Status by KPL. Detailed compliance submitted as annexure by KPL dated 18.07.2013.			
II.	Groins and other suitable structures should be constructed to prevent the closing of the month of Ennore Creek.	Status by KPL.			
III.	The DPR and the technical details to be awarded to the BOT operator should provide to MoEF for post project monitoring within 6 months from the date of receipt of this letter.	Complied. Container Terminal DPR submitted vide letter number EPL/MS/49/2008 dt. 13/03/2008.			
IV.	The marine terminal should be set up outside CRZ area.	Status by KPL.			
V.	Recommendations of Risk Analysis report should be strictly implemented and a comprehensive quantitative Risk Analysis should be carried out before operationalizing the project.	Complied Operational Risk Assessment carried out and the recommendations are being implemented. Operational Risk Assessment report submitted vide Letter No. AECTPL/KPL/EC-compliance/Env/02 dt. 13.07.2018.			
VI.	Approval form Chief Controller of Chief Explosives should be obtained for hazardous chemicals storage, transfer and related activities.	Not Applicable. AECTPL is not storing any Hazardous chemicals. Hence not applicable.			
VII.	The reclamation of the port area should be carried out with the dredged materials. Dredged material should not be dumped into the sea. No reclamation should be carried outside the port limits.	Status by KPL.			
VIII.	The coastal protection works should be carried out after detailed hydrodynamic modelling studies and it should be ensured that no erosion or accretion takes place in the shore protection works.	Status by KPL.			
IX.	Reclamation of 500 acres should be carried out only for the port development. The height of the reclaimed area will be maintained above the maximum flood level.	Status by KPL.			

From: January 2021 To : June 2021

На	Half yearly Compliance report on conditions stipulated in Environmental & CRZ Clearance (Period: January 2021 to June 2021)				
S. No.	Conditions	Compliance Status			
X.	The wave tranquillity study and the ship manuring studies carried out should be taken into account while operating the port.	Status by KPL.			
XI.	The project proponent should ensure that doing construction and operation of the port there will been impact on the livelihood of the fisherman. The fishermen should be provided free access to carry out the fishing activity.	Status by KPL.			
XII.	All necessary precaution while undertaking construction and operation of the port should be taken keeping in view the bathymetric changes caused due to tsunami.	Status by KPL.			
XIII.	All development in the port should be accordance with the Coastal Regulation Zone Notification, 1991 and approved Coastal Zone Management Plan of Tamil Nadu.	Status by KPL.			
XIV.	The project proponent should undertake a comprehensive hydrodynamic modelling study with regard to river diversion and submit the report to the Ministry within 6 months from the date of receipt of this letter. Further the unit should comply with all the findings/recommendations of the study.	Status by KPL.			
XV.	Construction labour camps should be located outside of CRZ area and should be provided with adequate cooking and sanitation facilities.	Complied. Construction of container terminal is completed and the terminal is under operation			
XVI.	The project affected people, of any should be properly compensated and rehabilitated.	Status by KPL.			

From: January 2021 To: June 2021

GENERAL CONDITIONS:					
		Chahua hu KDI			
i.	Development of the proposed channel should be undertaken meticulously conforming to the existing Central/Local rules and regulations including CRZ Notification, 1991 and its amendments. All the construction designs/drawings relating to the proposed development activities must have approvals of the concerned State Govt. Depts./Agencies.	Status by KPL.			
ii.	A well-equipped laboratory with suitable instruments to monitor the quality of air and water shall be set up as to ensure that the quality of	Complied. AECTPL has awarded Environmental Monitoring services to NABL accredited laboratory Marine Surface.			
:::	ambient air and water conforms to the prescribed standards. The laboratory will also equipped with qualified manpower including a marine biologist so that the marine water quality is regularly monitored in order to ensure that the marine life is not adversely affected as a result of implementation of the said project. The quality of ambient air and water shall be monitored periodically in all the seasons and the results should be properly maintained for inspection of concerned pollution control agencies. The periodic monitoring reports at least once in 6 months must be send to this Ministry (RO at Bangalore) and Pollution Control Committee.	accredited laboratory. Marine, Surface Water, Sea Sediment, Ambient Air, Noise monitoring and analysis is carried out on regular basis. The reports are being submitted to KPL and Tamil Nadu Pollution Control Board on monthly basis and also as part of Six monthly compliance report. Monitoring Reports are properly maintained and made available for inspection to Pollution Control Agencies, as and when required. Environment Monitoring report for the period January 2021 – June 2021 is attached as Annexure - I.			
iii.	Adequate provisions for infrastructure facilities such as water supply, fuel for cooking, sanitation etc. must be provided for the labourers during the construction period in order to avoid damage to the environment. Colonies for the labourers should not be located in CRZ area. It should also be ensured that the construction	Complied. Construction completed and terminal is in operation.			

From: January 2021 To : June 2021

	I al				
	workers do not cut trees including				
•	mangroves for fuel wood purpose.	0	- d		
iv.	To prevent discharge of sewage and	Compli			٥.
	other liquid wastes into the water		L has installed a		
	bodies, adequate system for		pacity Sewage		
	collection and treatment of the		ntire treated s	-	
	waste must be provided. No Sewage	being i	used for horticu	Iture purpose.	
	and other liquid wastes without				
	treatment should be allowed to				
	enter into the water bodies.	_			
V.	Appropriate facility should be	Status	by KPL.		
	created for the collection of solid				
	and liquid wastes generated by the				
	barges/vessels and their safe				
	treatment and disposal should be				
	ensured to avoid possible				
	contamination of the water bodies.	a			
vi.	Necessary navigational aids such as	Status	by KPL.		
	channel markers should be provided				
	to prevent accidents. Internationally				
	recognized safety standards shall be				
	applied in case of barge/vessel				
	movements.	6	11/51		
vii.	The project authorities should take	Status by KPL.			
	appropriate community	11	AFOTOL by	:!	L
	development and welfare measures		er, AECTPL ha activities like		
	for villagers in the vicinity of the				
	project site, including drinking water facilities. A separate fund should be		Eye Camp, enco		
	allocated for the purpose.		, etc., in the vic	•	
	allocated for the purpose.		xpenses incurre		_
			mpliance perio Breakup details		
		LOKIIS.	Dieakup details	ale as lullow	٥,
		S.No	Description	Amount (Rs	1
			2000	in Lakhs)	
		1	Education	31.20	
		2	Health	27.70	
		3	Sustainable	32.18	
			Livelihood		
		4	Development Community	56.30	+
			Infrastructure	70.50	
			Development		
			Total	147.38	
viii.	The quarrying material required for	Compli	ed		
	the construction purpose should be				
	obtained only from the approved	Constr		•	nd
	quarries/borrow areas. Adequate	termin	al is in operatio	n phase.	
	safeguards measures shall be taken				

From: January 2021 To: June 2021

people
also
rough
alified
ECTPL
to-day
liance
nment
Senior
ho is
cutive
s well
nment
od out
ed out anuary
Lakhs.
VS;
VS;
in
. in
. in hs)
. in
. in hs)
. in hs))0
. in hs) 00
in hs) 00 22
in hs) 00 22
. in hs) 00 22
in hs) 00 22 26 41
in hs) 00 22 26 41
in hs) 00 22 26 41 ur Port visit of
in hs) 22 26 41 If Port visit of CPCB All the
in hs) 00 22 26 41 ar Port visit of CPCB
in hs) 22 26 41 If Port visit of CPCB All the

From: January 2021 To : June 2021

	other environmental protection activities.	
xiv.	In case there is an intension of deviation or alternation in the project including the implementing agency, a fresh reference should be made to this Ministry for modification in the clearance conditions or imposition of new ones for ensuring environmental protection. The project proponents should be responsible for implementing the suggested safeguard measures.	Noted for compliance
XV.	The Ministry reserves right to revoke this clearance, if any of the conditions stipulated are not compiled with to the satisfaction of this Ministry.	
xvi.	This Ministry or any other competent authority may stipulate additional conditions subsequently, if deemed necessary for environmental protection, which shall be complied with.	Noted for Compliance
xvii.	The project proponent should advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned available with the SPCB and may also be seen at Website of the Ministry of Environment & Forests at http://www.envforenic.in . The advertisement should be made within 7 days from the date of issue of the clearance letter and a copy of the same should be forwarded to the Regional Office of the Ministry at Bangalore.	Status by KPL.
xviii.	The project proponents should inform the RO as well as the Ministry the date of financial closure and final approval of the project by the concerned authorities and the date of start of Land Development Work.	Status by KPL.

From: January 2021 To: June 2021

Status of Conditions Stipulated in Environmental and CRZ Clearance File no: 10-28/2005-IA-III dated 19th May, 2006

Vide order no: 10-28/2005-IA-III dated: 10/09/2007 and validity extension date: 31.03/2017

A. SPECIFIC CONDITIONS:

S.No	Environmental Clearance conditions	Compliance Status
i	It should be ensured that no mangroves are destroyed during reclamation.	Status by KPL.
ii	The proposed extension to the project should not cause any shoreline change abutting Ennore Port.	Status by KPL.
iii	Adequate provision for beach nourishment and sand bypass should be provided.	Status by KPL.
iv	The dredged material obtained should be utilized for filling up of back up area.	Status by KPL.
V	All conditions stipulated in the environmental clearance letter of even number dated 19.05.2006 should be strictly complied with.	All stipulated conditions applicable to AECTPL in the environmental clearance letter of even number dated 19.05.2006 are being complied and compliance reports are regularly submitted to KPL. Last compliance report for the period June 2020 to December 2020 was submitted to KPL vide letter No. AECTPL/KPL/HYC/ENV/2020/38 dated 29.01.2021.
Vİ	The additional dredged material of 4 million cu. Mts. obtained from the project should not be disposed of into the sea.	Status by KPL.
vii	The reclaimed area should be used as containers stack yard only.	Status by KPL.
viii	Adequate drainage facilities should be provided in the reclaimed are along with collection and treatment system for treating the run off from the container stack yards.	
ix	Necessary approvals/clearances should be obtained from the Tamil Nadu Coastal Zone Management Authority and Tamil Nadu Pollution	Complied TNCZMA recommendation was obtained by KPL Tamil Nadu Pollution Control Board accorded Renewal of Consent to

From: January 2021 To: June 2021

Status of Conditions Stipulated in Environmental and CRZ Clearance File no: 10-28/2005-IA-III dated 19th May, 2006

Co	ontrol Board	before	implementing	Operate orders to handle 11.68 MMTPA
th	ne project.			containers vide order no:
				1808111676581 & 1808211676581
				under Air and Water Acts dated:
				23/08/2018 valid for 3 years.
				TNPCB extended the validity period of
				Consent to Operate (CTO) of
				units/facility, who have the valid CTO
				upto March 2021, for a further period
				upto 30th November 2021 vide their
				Order No. TNPCB / P&D / F.19205 / 2019
				dated 13.05.2021.

B. GENERAL CONDITIONS:

S.No	Environmental Clearance conditions	Compliance Status
i	Construction of the proposed structures should be undertaken meticulously confirming to the existing Central/ local rules and regulations including Coastal Regulation Zone Notification 1991 & its amendments. All the construction design drawings relating to the proposed construction activities must have approvals of the concerned State Government Departments / Agencies.	Status by KPL.
ii	Adequate provisions for infrastructure facilities such as water supply, fuel, sanitation etc. should be ensured for construction workers during the construction phase of the project so as to avoid felling of trees/ Mangroves and pollution of water and the surroundings.	Complied. Construction of container terminal is completed, and project is in operation phase
iii	The project authorities mush make necessary arrangements for disposal of solid wastes and for the treatment of effluents by providing a proper wastewater treatment plant outside the CRZ area. The quality of treated effluents, solid wastes and noise level etc. must conform to the standards laid down by the competent authorities including the Central/State Pollution Control	Complied AECTPL has installed and operating 25 KLD sewage treatment plant to collect and treat the sewage generated from the terminal. The entire treated sewage water is being used for horticulture purpose. AECTPL has implemented Integrated Waste Management System (IWMS) - Waste Segregation Yard.

From: January 2021 To : June 2021

	Board and the Union Ministry of Environment and Forests under the Environment (Protection) Act, 1986, whichever are more stringent.	All the Solid waste generated is being handled in line to Solid Waste Management Rules, 2016 as amended. AECTPL vision is based on adoption of 5R principle of waste management i.e Reduce, Reuse, Reprocess, Recycle & Recover. All waste is being handled inline to 5R principle.
iv	The proponent shall obtain the requisite consents for discharge of effluents and emission under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981 from the Tamil Nadu Pollution control Board before commissioning of the project and a copy of each of these shall be sent to this Ministry.	Tamil Nadu Pollution Control Board accorded Renewal of Consent to Operate orders to handle 11.68 MMTPA containers vide order no: 1808111676581 & 1808211676581 under Air and Water Acts dated: 23/08/2018 valid for 3 years. TNPCB extended the validity period of Consent to Operate (CTO) of units/facility, who have the valid CTO upto March 2021, for a further period upto 30th November 2021 vide their Order No. TNPCB / P&D / F.19205 / 2019 dated 13.05.2021.
V	The proponent shall provide for a regular monitoring mechanism so as to ensure that the treated effluents conform to the prescribed standards. The records of analysis reports must be properly maintained and made available for inspection to the concerned State/Central officials during their visits.	AECTPL has awarded Environmental Monitoring services to NABL accredited laboratory. Monitoring of Ambient Air Quality, Noise, Stack, STP, Drinking Water, Marine Surface Water, Sea Sediment is carried out on regular basis. The reports are being submitted to KPL and Tamil Nadu Pollution Control Board on monthly basis and also as part of Six monthly compliance report. Environment Monitoring report for the period January 2021 – June 2021 is attached as Annexure - I . Reports are made available for inspection to the concerned State/Central officials during their visits.
vi	In order to carry out the environmental monitoring during the operational phase of the project, the	State/Central officials during their visits. Complied

From: January 2021 To : June 2021

		7
	project authorities should provide an	
	environmental laboratory well	1
	equipped with standard equipment	
	and facilities and qualified	
	manpower to carry out the testing of	Water, Marine Surface Water, Sea
	various environmental parameters.	Sediment is carried out on regular basis
		The reports are being submitted to KP
		and Tamil Nadu Pollution Control Board
		on monthly basis and also as part of Si
		monthly compliance reports
		Environment Monitoring report for the
		period January 2021 – June 2021 i
		attached as Annexure - I.
vii	The sand dunes and mangroves, if	
	any, on the site should not be	
	disturbed in any way.	
viii	A copy of the clearance letter will be	
	marked to the concerned	
	Panchayat/Local NGO, if any from	
	whom any	
	suggestion/representation has been	
	received while processing the	
•	proposal.	Chahara har 1/01
ix	The Tamil Nadu Pollution Control	1
	Board should display a copy of the	
	clearance letter at the Regional	
	Office, District Industries Centre and	
	Collector's Office/Tehsildar's Office for 30 days.	
<u></u>	The funds earmarked for	Complied
×	environment protection measures	•
	should be maintained in a separate	
	account and there should be no	· · · · · · · · · · · · · · · · · · ·
	diversion of these funds for any other	to June 2021) is Rs. 25.89 Lakhs. The
	purpose. A year wise expenditure on	
	environmental safeguards should be	·
	reported to this Ministry's Regional	
	Office at Bangalore and the State	
	Pollution Control Board.	Lakhs)
	2 23.3 2 232. 2 2 32.	1 Environmental 2.00
		Monitoring
		2 Greenbelt 2.22
		3 STP – 08 M 2.26
	Full aug a set about dither aug and die	4 Housekeeping 19.41
xi	Full support should be extended to	•
	the officers of this Ministry's	
	Regional office at Bangalore and the	
	officers of the Central and State	1
	Pollution Control Boards by the	officials from RO-MoEF&CC and CPC

From: January 2021 To : June 2021

	project proponents during their inspection for monitoring purposes, by furnishing full details and action plans including the action taken reports in respect of mitigative measures and other environmental protection activities.	during the compliance period. All the necessary support is provided during their site visit.
xii	In case of deviation or alteration in the project including the implementing agency, a fresh reference should be made to this Ministry for modification in the clearance conditions or imposition of new ones for ensuring environmental protection.	Noted.
xiii	This Ministry reserve the right to revoke this clearance, if any of the conditions stipulated are not complied with to the satisfaction of this Ministry.	Noted.
xiv	This Ministry or any other component authority may stipulate any other additional conditions subsequently, if deemed necessary, for environmental protection, which shall be complied with.	Noted.
XV	The project proponent should advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned informing that the project has been accorded environmental clearance and copies of clearance letters are available with the State Pollution Control Board and may also be seen at Website of the Ministry of Environment & Forests at http://www.envfornic.in . The advertisement should be made within 7 days from the date of issue of the clearance letter and a copy of the same should be forwarded to the regional Office of this Ministry at Bangalore.	Status by KPL.

From: January 2021 To: June 2021

Status of Conditions Stipulated in Environmental and CRZ Clearance File no: 10-28/2005-IA-III dated 19th May, 2006

xvi	The Project proponents should Status by KPL.	
	inform the Regional Office at	
	Bangalore as well as the Ministry the	
	date of financial closure and final	
	approval of the project by the	
	concerned authorities and the date	
	of start of Land Development Work.	

Vide order no: 10-28/2005-IA-III dated: 24/12/2014

A. SPECIFIC CONDITIONS:

S.No	Environmental Clearance conditions	Compliance Status
i	"Consent to Establish" for the present project, shall be obtained from State Pollution Control Board under Air (Prevention and Control of Pollution) Act, 1981 and Water (Prevention and Control of Pollution) Act 1974.	Complied. Kamarajar Port Limited have obtained "Consent to Establish" from Tamil Nadu Pollution Control Board (TNPCB) for handling container cargo of 16.8 MMTPA vide their Consent Order No. 170126235691 (Air Act) and 170116235691 (Water Act) dated 21.04.2017 valid till 31.03.2024. Tamil Nadu Pollution Control Board accorded Renewal of Consent to Operate orders to handle 11.68 MMTPA containers vide order no: 1808111676581 & 1808211676581 under Air and Water Act dated: 23/08/2018 valid till 31st March 2021.
		Consent to Operate (CTO) who have the valid CTO upto March 2021, for a further period upto 30th November 2021 vide their Order No. TNPCB / P&D / F.19205 / 2019 dated 13.05.2021.
ii	Quality of Cargo should be handled in accordance with the details provided in the Form-I.	Complied. AECTPL is handling only containerized cargo, as approved.
iii	All the recommendations and conditions stipulated by Tamil Nadu Coastal Zone Management Authority (TNCZMA) No. 30060/EC.3/2005-1 dated 06.12.2005 shall be complied with.	Status by KPL.

From: January 2021 To : June 2021

iv	All the conditions as prescribed in the earlier Clearance letter no. 10-	Status by KPL.
	28/2005-IA-III dated 19.05.2006 and	
	10.09.2007 shall be complied with.	
V	All the recommendation of the	Status by KPL.
	EIA/EMP & Risk Assessment and	•
	Disaster Management Report shall be	
	complied with letter and spirit. All the	
	mitigation measures submitted in the	
	EIA report shall be prepared in the matrix format and the compliance for	
	each mitigation plan shall be	
	submitted to MoEF & CC along with	
	half yearly compliance report to	
	MoEF&CC- RO.	
vi	The commitment made by the	Status by KPL.
	proponent to the issue raised during	
	Public Hearing shall be implemented by the Proponent.	
vii	Corporate Environmental	
	Responsibility:	
	a. The Company shall have a well laid	
	down Environmental Policy	AECTPL having approved QHSE policy.
	approved by the Board of Directors.	
	b. The Environment Policy shall	
	prescribe for standard operating	AECTPL having approved SOPs.
	process/procedures to bring into	
	focus any	
	infringements/deviation/violation	
	of the environmental or forest norms/conditions.	
	c. The hierarchical system or	
	Administrative Order of the	Status by KPL.
	company to deal with	•
	environmental issues and for	
	ensuring compliance with the	
	environmental clearance conditions shall be furnished.	
	d. To have proper checks and	Standard procedures are available to
	balances, the company shall have	address corrective & preventive
	a well laid down system of	deviation and violations.
	reporting of non-compliances /	
	violations of environmental norms	
	to the Board of Directors of the	
	company and / or shareholders or stakeholders at large.	
	stakenioloeis at large.	

From: January 2021 To: June 2021

Status of Conditions Stipulated in Environmental and CRZ Clearance File no: 10-28/2005-IA-III dated 19th May, 2006

B. GENERAL CONDITIONS:

S.No	Environmental Clearance conditions	Compliance Status
i	Appropriate measures must be taken	Complied
	while undertaking digging activities to	
	avoid any likely degradation of water	Construction completed and project is
	quality.	under operation.
ii	Full support shall be extended to the	Noted for compliance.
	officers of the Ministry/Regional Office	
	at Chennai by the project proponent	TNPCB Officials have visited our Port
	during inspection of the project for	on monthly basis. There was no visit of
	monitoring purposes by furnishing full	officials from RO-MoEF&CC and CPCB
	details and action plan including action	during the compliance period. All the
	taken reports in respect of mitigation	necessary support is provided during
	measures and other environmental	their site visit.
	protection activities.	Chahua hu I/DI
iii	A six-Monthly monitoring report shall be	Status by KPL.
	need to be submitted by the project	
	proponents to the Regional Office of this Ministry at Chennai regarding the	
	implementation of the stipulated	
	conditions.	
iv	Ministry of Environment, Forests &	Noted for compliance.
IV	Climate Change or any other competent	Noted for compliance.
	authority may stipulate any additional	
	conditions or modify the existing ones, if	
	necessary in the in the interest of	
	environment and the same shall be	
	complied with.	
V	The Ministry reserves the rights to	Noted.
	revoke this clearance if any of the	
	conditions stipulated are not complied	
	with satisfaction of the Ministry.	
vi	In the event of a change in project	Noted.
	profile or change in the implementation	
	agency, a fresh reference shall be made	
	to the Ministry of Environment, Forests	
	& Climate Change.	
\ .i:	The ession of essential the History Mark	Nobod
vii	The project proponents shall inform the	Noted.
	Regional Office as well as the Ministry, the date of financial closure and final	
	approval of the project by the concerned	
	authorities and the date of start of land	
	development work.	
viii	A copy of the clearance letter shall be	Status by KPL.
V 111	marked to concerned Panchayat/ Local	
	NGO, if any, from whom any suggestion/	
	1400, it diff, from writing dry duggedully	

From: January 2021 To : June 2021

		Т		
	representation has been made received			
	while processing the proposal.			
ix	The project proponent shall set up separate environmental management cell for effective implementation of the stipulated environmental safeguards under the supervision of a Senior Executive.	staff ha for taki Environ and al Departr Manage directly EMC is	ate EMC with suitants of seen put in place of various mental monitoring lied activities. The aded of the Chief Execution of the content of th	se by AECTPL s day to day g, compliance Environment by Senior at, reporting tive Officer.
			ement Cell, HO.	
X	The funds earmarked for environment management plan shall be included in the budget and this shall not be diverted for any other purposes.	during 2021 to	mental Expenditur compliance peri June 2021) is Rs. akup details are a	od (January 25.89 Lakhs.
		THE BIE	andp decans are a	5 10110 005,
		SI.No	Description	Amount (Rs. in Lakhs)
		1	Environmental Monitoring	2.00
		2	Greenbelt	2.22
		3	STP - 08 M	2.26
5.	T	Voted.	Housekeeping	19.41
3.	These stipulations would be enforced among others under the provisions of Water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986, the Public Liability (Insurance) Act, 1991 and EIA Notification 1994, including the amendments and rules made thereafter.	rvocco.		
6.	All other statutory clearances such as the approvals for storage of diesel from Chief Controller of Explosives, Fire Department, Civil Aviation Department, Forest conservation Act, 1980 and Wildlife (Protection) Act,1972 etc. shall be obtained, as applicable by project proponents from the respective competent authorities.	Noted.		
7.	The project proponent shall advertise at least in two local newspapers widely circulated in the region around the	Status I	by KPL.	

From: January 2021 To : June 2021

	project, one of which shall be in the	
	vernacular language of the locality	
	concerned informing that the project	
	has been accorded Environmental and	
	CRZ clearance and copies of clearance	
	letters are available with the Tamil Nadu	
	State Pollution Control Board and may	
	also be seen at Website of the Ministry	
	of Environment, Forests and Climate	
	Change at http://www.envfornic.in . The	
	advertisement should be made within	
	Seven days from the date of issue of the	
	clearance letter and a copy of the same	
	should be forwarded to the regional	
	Office of this Ministry at Chennai.	
8.	The clearance is subject to final order of	Noted.
	the Hon'ble Supreme Court of India in	
	the matter of Goa Foundation Vs. Union	
	of India in Writ Petition (Civil) No. 460 of	
	20014 as may be applicable this project.	
9.	Any appeal against this clearance shall	Noted.
	lie with the National Green Tribunal, if	
	preferred, with a period of 30 days as	
	prescribed under Section 16 of the	
	National Green Tribunal Act 2010.	
10.	Status of compliance to the various	Complied.
	stipulated environment conditions and	The compliance to the various
	environmental safeguards will be	conditions stipulated for
	uploaded by the project proponent in its	environmental safeguards are
	website.	uploaded in our Company website and
		KPL website.
		https://www.adaniports.com/Downloa
		<u>ds</u>
		and
		http://ennoreport.gov.in/content/inne
		rpage/environment.php
11.	A copy of the clearance letter shall be	Status by KPL.
	sent by the proponent to concerned	
	Panchayat, Zilla Parisad /Municipal	
	Corporation, Urban Local Body and the	
	Local NGO, if any, from whom	
	suggestions/representations, if any,	
	were received while processing the	
	proposal. The clearance letter shall also	
	be put on the website of the company by	
	the proponent.	

From: January 2021 To : June 2021

Status of Conditions Stipulated in Environmental and CRZ Clearance File no: 10-28/2005-IA-III dated 19th May, 2006

40		
12.	The proponent shall upload the status of	Status by KPL.
	compliance of the stipulated Clearance	
	conditions, including results of	The compliance to the various
	monitored data on their website and	conditions stipulated for
	shall update the same periodically. It	environmental safeguards are
	shall simultaneously be sent to the	uploaded in our Company website and
	Reginal Office of MoEF, the respective	KPL website.
	Zonal Office of CPCB and the SPCB.	
13.	The project proportion shall also submit	Status by KPL.
13.	six monthly reports on the status of	Octobb by Ki E.
	compliance of the stipulated Clearance	
	conditions including results of	
	, , , , , , , , , , , , , , , , , , , ,	
	monitored data (both in hard copies as	
	well as by e-mail) to the respective	
	Regional Office of MoEF, the respective	
	Zonal Office of CPCB and the SPCB.	
14.	The Environmental Statement for each	Complied.
	financial year ending 31st March in Form-	
	V as is mandated to be submitted by the	Environment Statement (Form V)
	project proponent to the concerned	submitted FY 2019-20 vide our Letter
	State Pollution Control Board as	No. AECTPL/TNPCB/2019-20/28 dated
	prescribed under the Environment	21.09.2020 is enclosed as Annexure -
	(Protection) Rules, 1986, as amended	11.
	subsequently, shall also be put on the	
	website of the company along with the	
	status of compliance of Clearance	
	conditions and shall also be sent to the	
	respective Reginal Office of MoEF & CC	
	by email.	
	Uy eman.	

Enclosures:

Annexure Number	Details of Annexure
Annexure I:	Environmental Monitoring reports for the period January 2021 to June 2021
Annexure II:	Environmental Statement – Form V for the FY 2019-20

REPORT ON

COMPREHENSIVE ENVIRONMENTAL MONITORING FOR

ADANI ENNORE CONTAINER TERMINAL PRIVATE LIMITED (AECTPL) (WITHIN KAMARAJAR PORTLIMITED) VALLUR POST, PONNERI TALUK, CHENNAI -600120

JANUARY 2021 - JUNE 2021

PREPARED BY:

Green Chem Solutions Pvt. Ltd.

No.883, 11th Street, Syndicate Bank Colony, Anna Nagar West Extension, Chennai - 600 101.

Index for Table

S.No	Index	Page No
l.	Introduction	3
II.	Location of the project	3
III.	Scope of work	3
IV.	Methodology	8
V.	Environmental studies	9
i.	Meteorological Data	10
ii.	Ambient Air Quality	19
iii.	Ambient Noise Level Intensity	25
iv.	DG Set Emission	28
٧.	STP Water Sample Analysis	30
vi.	Drinking water Sample Analysis	31
vii.	Marine sampling	32
	List of Figures	
Fig.No	Description	Page No
1	Location Map	3
2	Ambient Air Sampling Station Location Map	19
3	Noise Level Sampling Location Map	25
4	Water and Marine Sampling Location Map	32

I. INTRODUCTION

M/s. Adani Ennore Container Terminal Pvt Ltd (AECTPL) located inside Kamarajar Port, Ennore is operating container berth and handling containerized Import/Export cargoes.

AECTPL have engaged M/s. Green Chem Solutions (P) Ltd, an Accredited Consultant by NABL to carry out the Comprehensive Environmental monitoring studies in the Adani Ennore Port continuously as per the statutory requirement. This report covers the monitored environmental data for the month of January 2021 to June 2021.

II. LOCATION OF THE PROJECT

The Project site is located at Port area, Ennore Port Area.

The location map is shown in Fig - 1

CREDITE GEORGE

Google Earth

Fig - 1 - Location Map

III. SCOPE OF WORK

The scope of Comprehensive Environmental monitoring includes the following environmental components

- 1. Meteorological data
- 2. Ambient Air Quality
- 3. Ambient Noise Level
- 4. Marine Sampling
- 5. Treated STP Water
- 6. Potable water
- 7. DG Set emission

The parameters covered under the scope for each of the above attributes are given below:

SCOPE OF WORK

S.No	Attribute	Scope	Frequency
1.	Meteorological Data	Collection of micrometeorological data on hourly basis by installing an auto weather monitoring station at plant site covering the following parameters: • Wind speed	Daily
		 Wind direction Rainfall Relative Humidity Temperature Barometric pressure Solar Radiation 	
2.	Ambient Air Quality	Sampling of ambient air at 03 stations for analyzing the following parameters: PM10 PM2.5 SO2 NO2 CO Lead Ozone Ammonia Benzene Benzo Pyrene Arsenic Nickel	Weekly Twice
3.	Ambient Noise	Collection of Noise levels on hourly basis at 3 locations • Leq - Day (Max and Min) • Leq - Night (Max and Min)	Monthly Once
4.	Marine Sampling	4.10	

4a. Surface and Bottom Collection of Surface and Bottom Water analyzed for - 2 location	
1,466.	
• Temperature	
pH @ 25°C Tatal Sugnanded Salida	
Total Suspended Solids	
BOD at 27 °C for 3 days	
Dissolved oxygen	
Salinity at 25 °C	
Oil & Grease	
Nitrate as No₃	Monthly Once
Nitrite as No₂	
Ammonical Nitrogen as N	
• Ammonia as NH ₃	
Kjeldahl Nitrogen as NI Total phosphates as PO	
Total phosphates as PO ₄ Total Nitrogen	
Total Nitrogen, Total Discolved Solids	
Total Dissolved Solids COD	
• COD • Total bacterial count	
 Total bacterial count, Coliforms 	
Escherichia coli	
Salmonella	
• Shigella	
Vibrio cholera	
Vibrio parahaemolyticus	
Enterococci	
• Colour	
Odour	
Taste	
Turbidity	
Calcium as Ca	
Chloride as Cl	
Cyanide as CN	
Fluoride as F	
Magnesium as Mg	
Total Iron as Fe	
Residual Free Chlorine	
Phenolic Compounds as	
C ₆ H ₅ OH	
• Total Hardness as CaCO ₃	
• Total Alkalinity as CaCO ₃	
 Sulphide as H₂S Sulphate as SO₄ 	
Suiphate as 504 Anionic surfactants as MBAS	
Monocrotophos	
Monocrotophos Atrazine	
• Ethion	
Chiorpyrifos	
• Phorate	
Mehyle parathion	
Malathion	
DDT (o,p and p,p-Isomers of	
DDT,DDE and DDD	
Gamma HCH (Lindane)	
Alppha HCH	
Beta HCH	

		 Delta HCH Endosulfan (Alpha, beta and sulphate) Butachlor Alachlor Aldrin/Dieldrin Isoproturon 2,4-D Polychlorinated Biphenyls(PCB) Polynuclear aromatic hydrocarbons (PAH) Arsenic as As Mercury as Hg Cadmium as Cd Total Chromium as C Copper as Cu Lead as Pb Manganese as Mn Nickel as Ni Selenium as Se Barium as Ba Silver as Ag Molybdenum as Mo Octane Nonane Decane Undecane Tridecane Tetradecane Pentadecane Hexadecane Hexadecane Heptadecane Octadecane Nonadecane Elcosan 	
4b.	Sea Sediment	Collection of sea sediment analyzed for - 2 location	Monthly Once
		 Sodium Copper Nickel Zinc Manganese Lead Boron Phosphate Chloride Sulphate Sulphide Pesticide Potassium 	

		 Total Chromium Petroleum Hydrocarbon Aluminium Total Nitrogen Organic Nitrogen Phosphorus Texture 	
4c.	Phytoplankton Monitoring	Total CountNo. of speciesChlorophyll-aMajor Species	Monthly Once
4d.	Zooplankton Monitoring	Total CountNo. of speciesMajor	Monthly Once
4e.	Microbiological Monitoring	 Total Bacteria count Total Coliform Faecal Coliform E.Coli Enterococcus Salmonella Sheigella Vibrio 	Monthly Once
4f.	Primary Productivity Monitoring	 Gross primary productivity Net Primary productivity	Monthly Once
4g.	Phytobenthos Monitoring data	 Fungus Total Count No. of species Diversity Index Major species 	Monthly Once
4h.	Total Fauna Monitoring	 Name of phylum Class Number of Individuals encountered Total no. of species encountered Total fauna 	Monthly Once
5.	STP Treated Water	Collection of STP Treated water analyzed for - 1 locations • pH • TSS • BOD • Faecal Coliforms	Monthly Once
6.	Potable Water analysis	Collection of Drinking water analyzed for - 1 locations - As per IS 10500 2012 - 36 Parameters	Monthly Once
7	DG Set Emissions	Sampling of Emission at 03 stations for analyzing the following parameters: • PM • Carbon Monoxide • NO _x - NO ₂ • SO ₂	Monthly Once

IV. METHODOLOGY

Methodologies adopted for sampling and analysis for each of the above parameters are detailed below

1	Meteorological parameters									
	Auto weather sta									
2	Ambient Air Qua									
	Parameters	Method								
	Respirable Suspended Particulate Matter (PM10)									
	Particulate Matter PM2.5	GCS/Lab/SOP/087, CPCB Guidelines								
	Sulphur dioxide as SO ₂	IS 5182 Part 2 : 2001 (Reaff. 2006)								
	Oxides of Nitrogen as NO ₂	IS 5182 Part 6: 2006								
	Lead as Pb	IS 5182 Part 22 : 2004								
		(Reaff.2009)								
	Arsenic as As	GCS/Lab/SOP/089, CPCB								
		Guidelines								
	Nickel as Ni	GCS/Lab/SOP/090, CPCB								
		Guidelines								
	Carbon monoxide as CO	IS 5182 Part 10: 1999 (Reaff. 2009								
]								
	Ozone as O ₃	IS 5182 Part 9: 1974 [Reaff.2009]								
	Ammonia as NH ₃	GCS/Lab/SOP/086, CPCB Guidelines								
	Benzene (a) pyrene	IS 5182 - Part 12								
	Benzene as C ₆ H ₆	IS 5182 Part 11: 2006								
3	Ambient Noise Mon	itoring								
	L _{eq} Day & Night	Instrument Manual,								
		GCS/LAB/SOP/Noise/001								
4	Marine Sampli									
	Surface and Bottom Water	APHA Methods 23 rd Edition, 2017								
	Sea Sediment	Standard Methods for examination								
	Phytoplankton Monitoring	of Water and Waste water and IS								
	Zooplankton Monitoring	3025								
	Microbiological Monitoring	&								
	Primary Productivity Monitoring	USEPA Test Methods								
	Phytobenthos Monitoring data	. 01								
	Total Fauna Monitoring	1								
5	STP Water Anal									
	pH , TSS, BOD , Faecal Coliforms	APHA Methods 23 rd Edition, 2017								
		Standard Methods for examination								
		of Water and Waste water and IS								
		3025								
6	Drinking Water An	-								
	As per IS 10500 : 2012 - 36 Parameters	APHA Methods 23 rd Edition, 2017								
		Standard Methods for examination								
		of Water and Waste water and IS								
		3025								
7	Emission Monito									
	PM, Carbon Monoxide, NO _x - NO ₂ , SO ₂	IS 11255 Methods of measurement								
		of emissions from Stationary source								

V. ENVIRONMENTAL STUDIES - January 2021 to June 2021

S.No	ATTRIBUTE	SCOPE
1.	Meteorological parameters	Collection of micrometeorological data at project site on daily basis with hourly frequency
2.	Ambient Air Quality	Collection of ambient air at 3 locations.
3.	STP water	Collection of STP Inlet & outlet water at one location
4.	Ambient Noise	Collection of Ambient noise levels for day and night at 3 locations
5.	Potable Water	Canteen Building
6.	Marine Water and Marine Sediments	Collection of Marine water and Marine Sediments at One locations
7	DG Set Emissions	Collection of DG Set Emission at 4 locations.

i. METEOROLOGICAL DATA

Meteorological data was collected on hourly basis by installing an auto weather monitoring station at Plant site. The report depicted here under represents the data for January 2021 to June 2021. The Detailed report has been is enclosed as Annexure - 1

The following parameters were recorded

- Wind speed
- Wind direction
- Temperature
- Pressure
- Relative humidity
- Rainfall

Annexure - 1

Jan - 2021

			tructure Dort Type:Averag				
		From: 01-01-20		31-01-2021 23	-50-50		
	Cre	eated By: glensA		At: 2021-02-05			
	Wind Speed		Atm Temperature		Total Rainfall	Atm Pressure	Solar Radiation
Date-(DD-MM-YYYY)	(km/h)	(Degree)	(Degree C)	Humidity (%)	(mm)	(mBar)	(w/m2)
01-01-2021	7.74	69.12	29	82	0	1009.45	3.54
02-01-2021	8.33	67.91	28.35	95.38	0	1009.28	1.15
03-01-2021	7.82	75.53	28.76	96.81	0	1007.89	2.39
04-01-2021	8.41	63.93	28.88	94.95	0.09	1008.19	3.18
05-01-2021	5.28	101.12	27.51	99.9	31.94	1008.73	0.65
06-01-2021	3.1	94.08	28.54	99.83	5.48	1007.67	3.23
07-01-2021	3.99	143.29	27.88	99.84	35.33	1006.77	3.06
08-01-2021	2.94	169.89	27.57	99.81	1.06	1006.38	1.92
09-01-2021	4.81	77.39	28.88	98.81	0	1006.91	3.78
10-01-2021	8.01	57.8	28.96	99.74	0	1007.4	3.09
11-01-2021	9.85	67.26	29.12	99.13	0	1008.15	4.41
12-01-2021	11.45	59.99	28.92	98.53	0	1008.34	3.82
13-01-2021	7.85	54.08	29.24	94.63	0	1008.36	4.32
14-01-2021	7.37	64.47	29.24	96.12	0	1007.89	3.9
15-01-2021	5.24	71.08	29.34	84.46	0	1007.64	4.31
16-01-2021	4.49	70.72	28.99	82.39	0	1007.03	4.72
17-01-2021	4.4	118.67	28.47	78.16	0	1008.28	4.94
18-01-2021	5.35	75.31	29.32	75.27	0	1008.87	4.7
19-01-2021	7.68	68.05	29.01	82.43	0	1008.47	4.51
20-01-2021	5.88	106.66	28.48	94.73	0	1008.98	2.87
21-01-2021	3.76	115.84	29.08	98.79	0	1008.36	4.66
22-01-2021	3.29	157.08	29.18	94.77	0	1008.38	4.26
23-01-2021	3.84	87.1	29.41	86.27	0	1008.69	4.86
24-01-2021	4.28	147.86	28.32	89.9	0	1009.39	4.71
25-01-2021	3.98	117.11	28.81	84.94	0	1009.96	4.81
26-01-2021	4.01	137.29	28.76	80.08	0	1009.4	5.01
27-01-2021	3.39	134.19	28.28	84.54	0	1009.61	4.35
28-01-2021	6.12	83.9	29.7	82.43	0	1009.69	4
29-01-2021	6.44	85.47	29.89	81.38	0	1010.04	4.43
30-01-2021	5.25	80.61	29.62	85.61	0	1009.53	4.66
31-01-2021	5.5	78.85	29.48	85.93	0	1010.06	4.78

Feb - 2021

rep - zuz I														
Date		Ambien peratur		Atmos	pheric Pro (mbar)	essure	Predominant wind Direction	w	ind Spe (m/s)	ed	Relat	tive Hui (%)	midity	Rainfall mm
	Min	Max	Avg	Min	Max	Avg	(Blowing From)	Min	Max	Avg	Min	Max	Avg	111111
01.02.21	25.9	28.6	27.2	1012.8	1017.2	1014.7	NNE	0	1.8	0.8	72	81	77.1	0.0
02.02.21	26.3	29.4	27.5	1012.9	1016.9	1014.8	N	0	2.2	0.6	73	82	78.1	0.6
03.02.21	25.9	28.2	26.9	1012.7	1016.7	1014.4	N	0	1.8	0.8	68	78	72.5	0.0
04.02.21	23.5	28.6	26.7	1012.5	1016.8	1014.3	NE	0	0.9	0.4	61	85	69.3	0.0
05.02.21	21.5	28.4	26.0	1011.2	1015.7	1013.4	N	0	2.7	0.6	62	87	70.1	0.0
06.02.21	21.2	28.3	25.9	1010.5	1014.2	1012.3	N	0	0.9	0.4	67	90	73.9	0.0
07.02.21	21	28.3	25.1	1011	1014.8	1012.7	N	0	2.2	0.6	72	92	80.5	0.0
08.02.21	24.8	28.6	26.7	1011.8	1015.6	1013.6	N	0	1.3	0.5	68	79	73.8	0.0
09.02.21	25.8	29.4	27.0	1011	1015.5	1012.9	N	0	0.9	0.4	59	84	68.5	0.0
10.02.21	24.7	28.3	26.4	1009.8	1014.4	1012.0	N	0	0.4	0.2	62	76	69.5	0.0
11.02.21	21.1	27.3	25.5	1009.5	1013.7	1011.6	E	0	0.9	0.2	64	89	71.1	0.0
12.02.21	21.4	28.7	25.9	1010.6	1014.1	1012.2	N	0	0.9	0.3	61	83	69.6	0.0
13.02.21	21.4	27.8	25.3	1011.8	1015	1013.2	N	0	1.3	0.4	71	86	77.7	0.0
14.02.21	21.1	28	25.6	1011.2	1014.9	1013.1	N	0	0.9	0.3	64	91	77.3	0.0
15.02.21	21.6	28.1	25.3	1009.5	1013.9	1012.0	N	0	0.9	0.3	71	91	79.8	0.0
16.02.21	20.8	27.6	25.5	1009.3	1013.7	1011.4	N	0	1.3	0.4	74	92	79.2	0.0
17.02.21	22.1	29	27.2	1009.1	1015	1012.4	E	0	1.8	1.0	69	80	73.1	0.0
18.02.21	26.1	29	27.2	1010.8	1015	1012.4	N	0.4	1.8	1.0	70	80	73.1	0.0
19.02.21	23.9	28.6	26.4	1010.6	1014.9	1012.6	N	0	2.7	1.0	79	90	83.8	0.4
20.02.21	22.9	27.8	25.5	1010.8	1014.6	1012.7	N	0	3.6	1.7	78	93	84.5	0.0
21.02.21	24.9	27.6	26.3	1011.3	1015.3	1013.2	N	0.4	2.2	1.3	78	88	83.6	0.0
22.02.21	24.4	28.7	27.1	1011.6	1015.6	1013.2	N	0	0.9	0.4	77	93	83.2	0.0
23.02.21	23	28.9	26.6	1009.6	1014.8	1011.9	N	0	0.9	0.3	76	94	83.3	0.0
24.02.21	22.6	28.7	26.2	1009.1	1013.1	1011.1	N	0	1.3	0.3	70	95	81.8	0.0
25.02.21	22	28.1	26.0	1008.7	1013.7	1010.8	N	0	2.7	0.7	75	93	81.9	0.0
26.02.21	22.4	27.8	25.8	1006.5	1012.1	1009.2	ESE	0	2.7	1.3	80	94	85.8	0.0
27.02.21	22.2	27.9	25.7	1006.1	1010.7	1008.3	SE	0	3.6	1.9	81	97	88.2	0.0
28.02.21	22.6	27.1	25.5	1007	1011.9	1009.3	N	0	3.1	1.5	83	97	89.1	0.0
							•							·

Mar - 2021

	Ambient Temperature (°C)			Atmospheric Pressure (mbar)			Predominant wind Direction	Wind Speed (m/s)			Relat	nidity	Rainfall	
<u> </u>	Min	Max	Avg	Min	Max	Avg	(Blowing From)	Min	Max	Avg	Min	Max	Avg	mm
01.03.21	22	28.2	26.0	1009.8	1014.1	1012.0	N	0	3.6	2.1	81	97	87.2	0.0
02.03.21 2	23.2	28.2	26.2	1010.4	1014.5	1012.4	N	0.4	3.1	1.8	79	95	85.8	0.0
03.03.21 2	22.2	27.7	25.9	1009.9	1013.3	1011.5	ESE	0	2.7	1.0	73	93	83.5	0.0
04.03.21 2	22.3	28.1	26.0	1010.6	1013.8	1012.0	N	0	2.7	0.9	72	93	80.4	0.0
05.03.21 2	22.2	28.8	26.3	1010.7	1015	1012.7	N	0	2.7	0.8	74	92	81.5	0.0
06.03.21 2	23.2	28	26.2	1009.8	1014.8	1012.1	N	0	3.1	1.6	79	92	85.3	0.0
07.03.21 2	23.8	28.4	26.7	1008.8	1013.6	1011.3	N	0	3.6	1.9	79	94	86.6	0.0
08.03.21	24	29.2	27.3	1009.9	1014.5	1011.9	N	0	3.1	1.4	77	95	83.6	0.0
09.03.21 2	25.2	29.6	28.0	1010.7	1014.6	1012.5	E	0	2.7	0.9	78	92	82.9	0.0
10.03.21 2	27.1	29.9	28.2	1009.5	1014.6	1012.2	N	0.4	3.1	1.6	79	87	83.9	0.0
11.03.21 2	25.1	28.6	27.5	1009.2	1014.8	1012.1	N	0	3.6	2.4	79	91	82.6	0.0
12.03.21 2	23.4	28.8	26.8	1011.5	1016.1	1013.4	ESE	0	3.1	1.5	74	95	82.1	0.0
13.03.21 2	22.7	29.5	27.0	1010.9	1015.5	1012.8	ENE	0	1.3	0.7	75	93	81.4	0.0
14.03.21 2	23.4	29.4	27.2	1008.8	1013.4	1011.1	N	0	2.2	1.2	68	93	82.0	0.0
15.03.21 2	23.8	29.7	27.3	1008.3	1012.5	1010.2	N	0	1.8	0.5	76	94	84.9	0.0
16.03.21	24	29.1	27.1	1008.5	1012.3	1010.2	N	0	2.2	0.7	79	95	85.6	0.0
17.03.21 2	23.4	29.3	27.5	1007.7	1011.7	1009.7	ESE	0	1.3	0.3	79	93	80.4	0.0
18.03.21 2	24.3	29.3	27.5	1008	1011.7	1009.7	ESE	0	1.3	0.3	72	93	80.4	0.0
19.03.21 2	24.4	28.9	27.5	1007.3	1012	1009.4	N	0	3.1	0.9	74	87	79.3	0.0
20.03.21 2	23.4	28.9	26.7	1006.2	1010.4	1008.3	ESE	0	2.7	8.0	78	93	85.2	0.0
21.03.21 2	23.6	29.9	27.5	1006	1009.8	1007.8	ESE	0	0.9	0.3	75	95	84.0	0.0
22.03.21 2	25.2	29.6	27.9	1007.1	1011.9	1009.3	ESE	0	3.1	1.2	77	92	82.8	0.0
23.03.21 2	24.7	30.3	28.3	1008.4	1012.4	1010.3	ESE	0	1.8	0.4	75	92	81.2	0.0
24.03.21 2	24.4	30.5	28.1	1007.7	1012.9	1010.2	ENE	0	0.4	0.1	77	93	84.5	0.0
25.03.21 2	24.7	29.4	27.8	1007	1011.3	1009.1	ESE	0	1.8	0.4	80	95	87.3	0.0
26.03.21 2	25.1	29.8	28.1	1006.1	1011.1	1008.4	E	0	3.1	0.6	80	95	86.4	0.0
27.03.21 2	25.4	29.3	28.0	1005.9	1010.4	1008.0	ESE	0	3.1	1.1	79	94	86.2	0.0
28.03.21 2	25.3	29.9	28.1	1004.7	1009.5	1007.5	SE	0	3.6	1.9	82	93	87.0	0.0
29.03.21	27	29.9	28.7	1004.6	1009.3	1007.1	SSE	0.4	3.6	2.6	84	93	88.1	0.0
30.03.21 2	27.8	34.1	29.4	1001.7	1007.9	1005.2	SE	0.4	3.6	2.6	67	94	84.7	0.0
31.03.21 2	27.8	30.2	29.0	1000.3	1005.7	1003.2	SSE	0.9	4.5	3.1	81	94	88.6	0.0

Apr - 2021

Mari	Marine Infrastructure Developer Pvt Ltd													
		Report Typ	e:Average Re	eport										
		04-2021 00:00		4-2021 23:5										
Ci	reated By: g	lensAdmin	Created At: 20	021-05-04 10	0:05:05									
	Wind	Wind	Atm	Relative	Total	Atm	Solar							
	Speed	Direction	Temperature	Humidity	Rainfall	Pressure	Radiaton							
Date-(DD-MM-YYYY)	(km/h)	(Degree)	(Degree C)	(%)	(mm)	(mBar)	(w/m2)							
Avg	3.98	212.85	32.35	91.71	0.22	1005.29	249.39							
Min	2.98	159.54	30.11	84.77	0	1000.23	146.97							
Max	5.9	244.05	33.59	96.49	6.62	1008.16	284.67							
01-04-2021	5.1	228.11	32.79	92.35	0	1000.23	227.78							
02-04-2021	5.77	215.08	33.59	86.09	0	1000.41	223.52							
03-04-2021	5.9	224.42	32.64	91.62	0	1001.76	229.42							
04-04-2021	3.92	202.17	32.39	96.49	0	1003.62	194.55							
05-04-2021	4.69	164.52	32.16	95.03	0	1005.07	246.27							
06-04-2021	3.29	187.64	31.8	89.88	0	1006.42	236.77							
07-04-2021	3.47	240.33	31.71	89.21	0	1006.86	228.68							
08-04-2021	4.61	239.21	31.21	89.3	0	1005.28	236.78							
09-04-2021	4.12	228.94	31.38	84.77	0	1005.12	236.12							
10-04-2021	4.06	198.76	31.56	88.27	0	1006.65	274.66							
11-04-2021	4.39	159.54	31.72	91.83	0	1007.96	271.9							
12-04-2021	3.66	193.23	32.61	88.01	0	1008.16	269.83							
13-04-2021	3.7	201.6	32.36	89.92	0	1007.58	248.45							
14-04-2021	3.05	212.55	31.65	93.31	0	1006.81	146.97							
15-04-2021	4.07	176.32	30.11	91.52	6.62	1006.44	198.32							
16-04-2021	4.1	220.39	31.25	93.13	0	1005.71	283.72							
17-04-2021	4.25	211.81	32.36	92	0	1006.22	274.01							
18-04-2021	3.94	237.91	32.61	93.13	0	1007.01	275.44							
19-04-2021	3.76	234.45	32.96	93.96	0	1004.73	277.04							
20-04-2021	4.04	233.37	32.98	92.68	0	1003.92	265.46							
21-04-2021	3.81	238.4	32.88	93.33	0	1005.51	269.56							
22-04-2021	4.21	235.02	32.78	93.05	0	1005.85	268.13							
23-04-2021	3.26	217.8	32.75	93.24	0	1005.55	228.72							
24-04-2021	2.98	212.94	32.61	95.51	0	1005.32	231.64							
25-04-2021	3.23	233.12	32.81	93.08	0	1005.16	269.76							
26-04-2021	3.53	244.05	32.77	89.37	0	1004.71	284.67							
27-04-2021	3.22	219.08	32.85	92.39	0	1005.27	281.77							
28-04-2021	3.51	218.4	32.88	94.39	0	1005.59	259.79							
29-04-2021	3.82	190.46	33.01	92.47	0	1004.96	264.46							
30-04-2021	3.94	165.76	33.18	91.94	0	1004.73	277.46							

May - 2021

Date		Ambien peratur		Atmos	pheric Pro (mbar)	essure	Predominant wind Direction	W	ind Spe (m/s)	ed	Rela	Rainfall mm		
	Min	Max	Avg	Min	Max	Avg	(Blowing From)	Min	Max	Avg	Min	Max	Avg	111111
01.05.21	28.1	32.2	30.2	1004.7	1009.9	1007.7	SE	0	5.4	3.6	71	91	85.0	0.0
02.05.21	28.8	31.4	30.2	1003.7	1009.4	1006.5	SE	0.4	4.9	3.4	82	90	85.7	0.0
03.05.21	28.2	31	30.1	1004.8	1008.4	1006.5	SE	0.4	7.2	4.2	83	90	85.7	0.0
04.05.21	27.8	31.2	29.9	1005.7	1009.9	1007.6	SE	0	8.5	4.8	79	91	84.0	0.0
05.05.21	29.4	30.9	30.1	1004.8	1010.4	1007.6	SE	0.4	3.6	2.3	81	86	83.0	0.0
06.05.21	29.4	31.2	30.3	1006.2	1011	1008.5	ESE	0.9	3.6	2.5	80	86	83.8	0.0
07.05.21	28.6	31	30.1	1007	1010.2	1008.7	ESE	0	4	2.2	81	88	83.8	0.0
08.05.21	28.2	31.6	30.1	1005.5	1008.8	1007.2	ESE	0	3.6	1.6	80	89	83.5	0.0
09.05.21	28.8	31.6	30.3	1004.4	1008.3	1006.4	N	0	3.6	2.0	78	88	83.5	0.0
10.05.21	28.3	31.6	30.2	1003.9	1007.9	1006.0	SE	0.4	3.6	2.6	79	90	84.5	0.0
11.05.21	25.7	31.7	30.1	1002.3	1007	1005.2	N	0.9	4	2.7	81	91	86.4	0.6
12.05.21	29.4	31.1	30.2	1001.3	1005.8	1003.8	SSE	1.8	4	3.0	85	92	88.2	0.0
13.05.21	29.3	31.1	30.2	1001.2	1005.6	1003.8	SE	0.9	4	2.7	85	92	88.7	0.0
14.05.21	29.4	30.7	30.1	1001.3	1004.4	1002.9	SE	2.7	4	3.5	77	91	85.9	0.0
15.05.21	29.3	30.8	29.9	1000.8	1005.5	1003.1	SE	2.2	4.5	3.5	78	92	84.9	0.0
16.05.21	28.9	30.8	29.5	1002.6	1007.5	1004.8	SSE	2.7	4.5	3.3	79	93	89.3	0.0
17.05.21	28.9	30.6	29.5	1003.4	1006.9	1005.3	N	1.8	4	3.2	81	94	91.0	0.0
18.05.21	28.6	30.6	29.5	1003.4	1006.9	1005.3	SSE	2.2	4	3.2	87	94	91.0	0.0
19.05.21	28.2	31.7	29.6	1002.3	1006.9	1004.7	Z	0	4	2.2	74	94	87.2	0.0
20.05.21	26.9	32.9	28.6	1003	1007.2	1005.3	N	0	3.6	2.0	71	90	84.1	0.0
21.05.21	25.9	34.2	27.9	1003.2	1006.2	1005.0	N	0.4	3.6	2.2	65	91	85.4	0.4
22.05.21	28.3	31.9	29.7	1002.2	1006	1004.0	N	0.4	2.7	1.5	72	91	82.0	0.0
23.05.21	28.4	33.8	30.2	1002.3	1006.1	1003.9	N	0.4	3.1	2.0	67	92	84.0	0.0
24.05.21	29.3	34.1	31.6	1000	1004.4	1002.1	N	0	3.1	1.5	67	90	75.5	0.0
25.05.21	27.9	36.2	31.3	999.3	1003.1	1001.2	N	0.9	4.9	3.0	58	91	72.1	0.0
26.05.21	29.9	36.7	32.1	998	1003.1	1000.5	N	0.4	3.1	2.4	56	88	72.4	0.0
27.05.21	28.7	37.2	31.8	1000	1005.1	1002.6	N	0	3.6	1.3	53	93	74.0	0.0
28.05.21	29.1	34.2	30.8	1001.8	1006.1	1004.2	N	0	4	2.4	62	90	79.3	0.0
29.05.21	29.4	34.4	30.9	1002.6	1006.2	1004.5	N	0.4	3.6	1.8	64	91	80.9	0.0
30.05.21	27.9	34.9	31.0	1002.2	1005.3	1003.8	N	0.9	3.6	2.2	63	86	77.4	0.0
31.05.21	29.3	35.9	30.5	1000.7	1008.5	1004.1	N	0.9	8	4.8	62	92	86.4	0.0

Jun - 2021

Date		Ambien peratur		Atmos	pheric Pro (mbar)	essure	Predominant wind Direction	W	ind Spe (m/s)	ed	Relat	tive Hui	nidity	Rainfall
	Min	Max	Avg	Min	Max	Avg	(Blowing From)	Min	Max	Avg	Min	Max	Avg	mm
01.06.21	29.4	34.6	30.9	1001.6	1005.3	1003.6	N	0	3.1	1.8	66	90	81.9	0.0
02.06.21	29.4	31.1	30.3	1002.2	1006.1	1004.4	N	0.9	3.1	2.4	77	94	87.0	0.0
03.06.21	29.1	32.9	30.2	1004	1008	1005.8	N	2.2	3.6	2.9	69	94	87.1	0.0
04.05.21	28.2	31	29.7	1004.1	1009.1	1007.0	N	0	4	2.1	83	93	88.2	0.0
05.06.21	28.7	30.2	29.5	1003.9	1008.3	1006.5	N	0	4	2.5	82	90	86.8	0.0
06.06.21	26.8	31.3	29.2	1003.7	1008.4	1006.2	N	0	3.6	1.9	74	87	83.7	0.0
07.06.21	29.2	34.3	30.4	1003.1	1007.6	1005.7	N	0.9	3.6	2.4	69	89	83.2	0.2
08.06.21	26.7	33.3	29.5	1002.6	1007	1005.1	N	0.4	4	2.4	73	93	87.4	6.4
09.06.21	27.7	35.9	30.6	1001.4	1005.1	1003.6	N	0.4	3.6	2.4	59	92	79.0	1.0
10.06.21	29.1	34.9	30.7	1000.2	1004.2	1002.5	N	0.4	3.6	2.2	57	93	77.4	0.0
11.06.21	29.4	33.6	31.4	1001	1004.5	1002.6	N	0.9	3.1	2.4	61	87	69.6	0.0
12.06.21	27.1	35.7	30.7	1001	1004	1002.6	N	1.8	4	2.7	58	89	72.9	1.6
13.06.21	28.1	35.2	31.0	999.9	1004.2	1002.2	N	2.2	6.7	3.6	57	85	70.1	0.6
14.06.21	29.4	34.1	31.0	999.7	1004.1	1002.1	N	0.9	4.9	3.2	62	76	69.5	0.0
15.06.21	27.4	36.7	30.8	999.5	1003.5	1001.7	N	1.8	4.9	3.8	54	92	73.6	0.0
16.06.21	28.8	35.8	31.2	1000.2	1005.2	1003.0	N	0.4	4.5	2.7	56	92	71.9	0.0
17.06.21	28.8	34.3	30.4	1001.6	1007.5	1005.3	N	0.9	4	2.3	55	89	75.2	0.0
18.06.21	28.9	34.3	30.4	1003.5	1007.5	1005.3	N	0	4	2.3	60	89	75.2	0.0
19.06.21	28.6	35.1	30.3	1004.4	1009	1006.7	N	1.8	3.1	2.5	56	91	75.5	0.0
20.06.21	28.8	35.8	30.7	1004.5	1008.9	1006.8	N	0.4	3.1	2.0	56	89	75.2	0.0
21.06.21	28.8	34.3	30.5	1003.4	1007.6	1005.6	N	0.4	3.1	2.1	59	88	78.3	0.0
22.06.21	26.9	33	29.2	1002.6	1007.1	1005.1	N	0.9	3.6	2.5	65	90	82.8	0.0
23.06.21	28.8	32.8	29.6	1003.2	1006.8	1005.0	N	0.4	3.1	2.1	69	91	84.7	1.6
24.06.21	24	33.8	28.7	1003.4	1007.3	1005.6	N	0.9	3.1	2.0	65	94	84.0	5.0
25.06.21	27.5	33.4	29.9	1001.3	1006	1004.1	N	0	3.1	1.4	62	92	81.0	0.0
26.06.21	27.9	32.4	30.1	1002	1005.1	1003.6	N	0	3.1	1.6	66	91	78.0	0.0
27.06.21	27.3	31.8	29.0	1003.5	1006.9	1005.1	N	0.4	3.1	1.8	70	89	81.0	0.0
28.06.21	24.6	31.5	27.7	1004.1	1008	1005.8	N	0.4	3.6	2.1	74	95	88.3	4.2
29.06.21	26.9	30.3	29.0	1003.5	1006.9	1005.4	N	0.4	3.6	2.6	80	94	87.5	0.0
30.06.21	27.9	30.1	29.2	1002.2	1006.3	1004.5	N	2.2	3.6	2.9	82	94	88.8	0.0

WIND PATTERN - Jan- 2021

Direction	0 <= ws < 1	1 <= ws < 2	2 <= ws < 3	3 <= ws < 4	4 <= ws < 5	ws >= 5	Avg. wind Speed (m/s)	Number of events	Events (%)
N	68	84	12	0	0	0	1.32	164	22.1
NNE	200	129	27	0	0	0	1.10	356	47.9
NE	89	26	4	0	0	0	1.10	119	16.0
ENE	17	3	1	0	0	0	0.96	21	2.8
E	11	4	2	0	0	0	1.10	17	2.3
ESE	0	1	1	0	0	0	1.75	2	0.3
SE	0	0	0	0	0	0	0.00	0	0.0
SSE	1	0	0	0	0	0	0.90	1	0.1
S	0	0	0	0	0	0	0.00	0	0.0
SSW	0	0	0	0	0	0	0.00	0	0.0
SW	0	0	0	0	0	0	0.00	0	0.0
WSW	0	0	0	0	0	0	0.00	0	0.0
W	7	0	0	0	0	0	0.00	7	0.9
WNW	32	2	0	1	0	0	1.25	35	4.7
NW	6	3	4	3	0	0	1.95	16	2.2
NNW	2	3	0	0	0	0	0.90	5	0.7
		ARREST B	BUF		4 18			743	
Number of events	433	255	51	4	0	0	743		-
Events (%)	58.3	34.3	6.9	0.5	0.0	0.0		<u>-</u> '	

WIND PATTERN - Feb- 2021

Direction	0 <= ws < 1	1 <= ws < 2	2 <= ws < 3	3 <= ws < 4	4 <= ws < 5	ws >= 5	Avg. wind Speed (m/s)	Number of events	Events (%)
N	233	63	14	7	0	0	1.78	317	47.2
NNE	53	5	0	0	0	0	0.88	58	8.6
NE	72	0	1	0	0	0	0.88	73	10.9
ENE	40	3	0	0	0	0	0.65	43	6.4
E	48	3	1	0	0	0	1.06	52	7.7
ESE	8	7	7	0	0	0	1.33	22	3.3
SE	5	5	8	8	0	0	1.95	26	3.9
SSE	1	2	0	0	0	0	1.03	3	0.4
S	1	0	0	0	0	0	0.00	1	0.1
SSW	0	0	0	0	0	0	0.00	0	0.0
SW	10	4	0	0	0	0	0.65	14	2.1
WSW	5	0	0	0	0	0	0.00	5	0.7
W	18	0	0	0	0	0	0.00	18	2.7
WNW	30	1	0	0	0	0	0.78	31	4.6
NW	5	1	1	0	0	0	1.33	7	1.0
NNW	1	0	0	0	0	0	0.00	1	0.1
								671	
Number of events	530	94	32	15	0	0	671		
Events (%)	79	14	4.8	2.2	0.0	0.0			

WIND PATTERN - Mar- 2021

Direction	0 <= ws < 1	1 <= ws < 2	2 <= ws < 3	3 <= ws < 4	4 <= ws < 5	ws >= 5	Avg. wind Speed (m/s)	Number of events	Events (%)
N	65	49	49	40	0	0	1.78	203	27.4
NNE	1	0	0	0	0	0	0.00	1	0.1
NE	4	0	0	0	0	0	0.20	4	0.5
ENE	29	2	0	0	0	0	0.65	31	4.2
E	72	15	0	0	0	0	0.88	87	11.7
ESE	62	28	41	10	0	0	1.78	141	19.0
SE	27	15	12	24	5	0	2.23	83	11.2
SSE	15	7	8	10	2	0	2.23	42	5.7
S	2	4	2	3	0	0	2.10	11	1.5
SSW	1	2	1	2	0	0	1.78	6	0.8
SW	18	7	2	2	0	0	1.46	29	3.9
WSW	20	0	0	0	0	0	0.20	20	2.7
W	31	1	0	0	0	0	0.65	32	4.3
WNW	44	0	0	0	0	0	0.00	44	5.9
NW	7	0	0	0	0	0	0.00	7	0.9
NNW	0	0	0	0	0	0	0.00	0	0.0
		A COLUMN						741	
Number of events	398	130	115	91	7	0	741		-
Events (%)	53.7	17.5	15.5	12.3	0.8	0.0			

WIND PATTERN - Apr- 2021

Direction	0 <= ws < 1	1 <= ws < 2	2 <= ws < 3	3 <= ws < 4	4 <= ws < 5	ws >= 5	Avg. wind Speed (m/s)	Number of events	Events (%)
N	65	49	49	40	0	0	1.78	203	27.4
NNE	1	0	0	0	0	0	0.00	1	0.1
NE	4	0	0	0	0	0	0.20	4	0.5
ENE	29	2	0	0	0	0	0.65	31	4.2
E	72	15	0	0	0	0	0.88	87	11.7
ESE	62	28	41	10	0	0	1.78	141	19.0
SE	27	15	12	24	5	0	2.23	83	11.2
SSE	15	7	8	10	2	0	2.23	42	5.7
S	2	4	2	3	0	0	2.10	11	1.5
SSW	1	2	1	2	0	0	1.78	6	0.8
SW	18	7	2	2	0	0	1.46	29	3.9
WSW	20	0	0	0	0	0	0.20	20	2.7
W	31	1	0	0	0	0	0.65	32	4.3
WNW	44	0	0	0	0	0	0.00	44	5.9
NW	7	0	0	0	0	0	0.00	7	0.9
NNW	0	0	0	0	0	0	0.00	0	0.0
								741	
Number of events	398	130	115	91	7	0	741		
Events (%)	53.7	17.5	15.5	12.3	0.8	0.0			
							I		

WIND PATTERN - May- 2021

Direction	0 <= ws < 1	1 <= ws < 2	2 <= ws < 3	3 <= ws < 4	4 <= ws < 5	ws >= 5	Avg. wind Speed (m/s)	Number of events	Events (%)
N	83	68	95	87	5	1	2.85	339	45.6
NNE	0	0	0	0	0	0	0.00	0	0.0
NE	0	0	0	0	0	0	0.00	0	0.0
ENE	0	0	0	0	0	0	0.00	0	0.0
E	0	0	0	0	0	0	0.00	0	0.0
ESE	3	3	10	32	0	0	2.22	48	6.5
SE	8	8	20	110	17	36	4.27	199	26.8
SSE	12	16	55	38	3	4	3.16	128	17.2
S	6	2	7	1	0	0	1.59	16	2.2
SSW	0	0	0	0	1	1	5.15	2	0.3
SW	4	0	0	0	1	0	1.45	5	0.7
WSW	0	0	0	0	0	0	0.00	0	0.0
W	2	0	0	0	0	0	0.00	2	0.3
WNW	4	0	0	0	0	0	0.00	4	0.5
NW	0	0	0	0	0	0	0.00	0	0.0
NNW	0	0	0	0	0	0	0.00	0	0.0
		A COLUMN						743	
Number of events	122	97	187	268	27	42	743		
Events (%)	16.4	13.1	25.2	36.1	3.6	5.7			

WIND PATTERN - Jun- 2021

Direction	0 <= ws < 1	1 <= ws < 2	2 <= ws < 3	3 <= ws < 4	4 <= ws < 5	ws >= 5	Avg. wind Speed (m/s)	Number of events	Events (%)
N	104	119	228	213	35	2	3.03	701	97.5
NNE	0	0	0	0	0	0	0.00	0	0.0
NE	0	0	1	2	0	0	2.90	3	0.4
ENE	0	0	0	0	0	0	0.00	0	0.0
E	0	0	0	0	0	0	0.00	0	0.0
ESE	0	0	0	0	0	0	0.00	0	0.0
SE	0	0	1	3	0	0	2.90	4	0.6
SSE	0	0	4	1	1	0	3.27	6	0.8
S	0	1	2	1	0	0	2.45	4	0.6
SSW	0	0	0	0	0	0	0.00	0	0.0
SW	0	0	0	1	0	0	3.10	1	0.1
WSW	0	0	0	0	0	0	0.00	0	0.0
W	0	0	0	0	0	0	0.00	0	0.0
WNW	0	0	0	0	0	0	0.00	0	0.0
NW	0	0	0	0	0	0	0.00	0	0.0
NNW	0	0	0	0	0	0	0.00	0	0.0
								719	
Number of events	104	120	236	221	36	2	719		
Events (%)	14.5	16.7	32.8	30.7	5.0	0.3			

ii. AMBIENT AIR QUALITY

Ambient air quality monitoring is required to determine the existing quality of air, evaluation of the effectiveness of control system and to identify areas in need of restoration and their prioritization. In order to generate background data, air quality monitoring is conducted to assess existing level of contamination and to assess possible effects of air contamination occurring in future.

Frequency of Monitoring

The frequency of monitoring that has been followed for sampling of ambient air quality is that one sample per weekly twice at three locations.

DETAILS OF AMBIENT AIR QUALITY MONITORING LOCATIONS

Station code	Location	Geographical location	Environmental setting
AAQ1	Port operating building	13 ⁰ 16' 12" N 80 ⁰ 20' 5" E	Industrial
AAQ2	RMU Building	13 ⁰ 16' 25" N 80 ⁰ 20' 16" E	Industrial
AAQ3	In Terminal Gate	13º 16' 25" N 80º 20' 0" E	Industrial

AAQ - 1

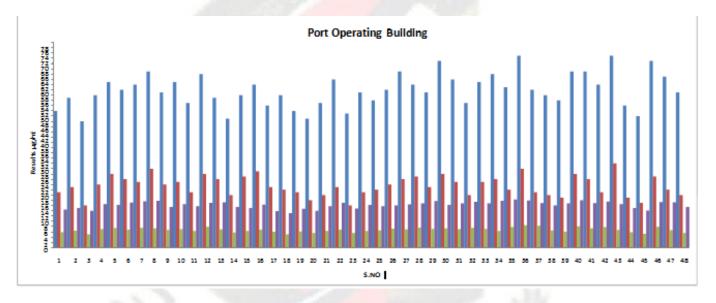
AAQ

Fig - 2. AMBIENT AIR SAMPLING LOCATION MAP

METHODOLOGY USED FOR AMBIENT AIR QUALITY MONITORING

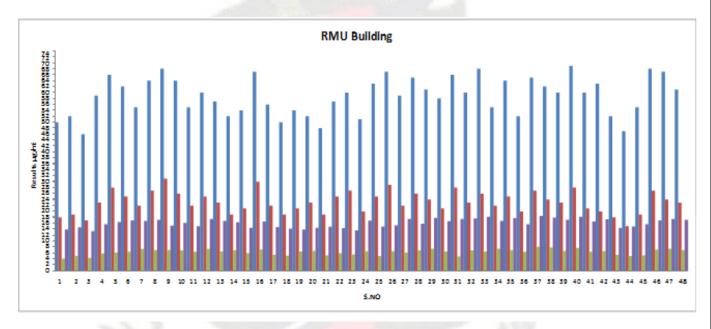
S.N o	Parameter	METHODOLOGY	Unit	Minimum Detectable Limit
1	PM ₁₀	Respirable Dust Sampler (Gravimetric method)	μg/m³	1.0
2	PM _{2.5}	Fine particle Sampler (Gravimetric method)	μg/m³	5.0
3	Sulphur Dioxide	Modified West and Gaeke method	μg/m³	4.0
4	Nitrogen Oxide	Jacob & Hochheiser method	μg/m³	6.0
5	Lead	Atomic Absorption Spectrometry	μg/m³	0.5
6	Carbon Monoxide	Draggers Tube	mg/m³	0.1
7	Ozone	UV Photometric	μg/m³	2.0
8	Ammonia	Indophenol blue method	μg/m³	2.0
9	Benzene	Gas Chromatography	μg/m³	1.0
10	Benzene (α) pyrene	Gas Chromatography	ng/m³	0.1
11	Arsenic	Atomic Absorption Spectrometry	ng/m³	1.0
12	Nickel	Atomic Absorption Spectrometry	ng/m³	5.0

Results and Discussion

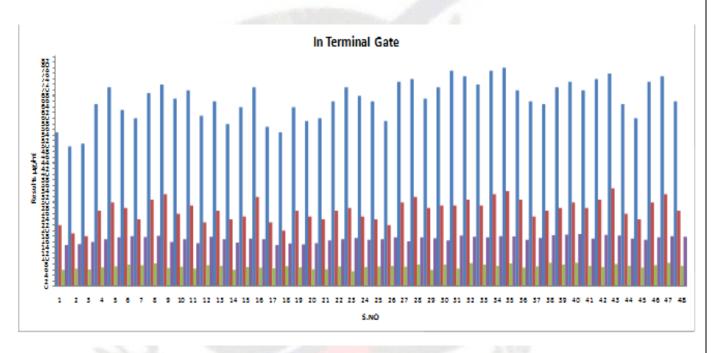

The results of the ambient air quality for the study period are presented and discussed. The minimum, maximum 98th percentile and average values have been computed from the observed raw data for all the AAQ monitoring stations. The summary of these results for all the locations is presented in the Table and the detailed analytical results are shown in Annexure - 2. These are compared with the standards prescribed by Central Pollution Control Board (CPCB) for "Industrial, Rural, Residential and other areas"

Annexure - 2

				PORT	OPERATI	NG BUILD	ING (AA	Q1)						
			Particular	Particular	Sulphur	Nitrogen		Carbon		Ammonia			Benzene	Benzo (a)
			matter	matter	dioxide	dioxide	Lead as	monoxide	Ozone	as	Arsenic	Nickel	as	pyrene as
	Pa	rameters	PM10	PM2.5	as	as NO2	Pb	as CO	as O3	NH3	as As	as Ni	C6H6	BaP
					SO2									
		Unit	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	mg/m3	μg/m3	μg/m3	ng/m3	ng/m3	μg/m3	ng/m3
	National A	AAQM Standard	100	60	80	80	1	4	180	400	6	20	5	1
S.No.	Sampling	Report Number												
1	04.01.2021	GCS/LAB/S/3176/20-21	52	21	5.8	14.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
2	06.01.2021	GCS/LAB/S/3176/20-21	57	23	6.4	15.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
3	08.01.2021	GCS/LAB/S/3176/20-21	48	16	5.1	14.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
4	11.01.2021	GCS/LAB/S/3176/20-21	58	24	7.0	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
5	18.01.2021	GCS/LAB/S/3176/20-21	63	28	7.4	16.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
6	22.01.2021	GCS/LAB/S/3176/20-21	60	26	6.8	17.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
7	27.01.2021	GCS/LAB/S/3176/20-21	62	25	7.5	17.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
8	29.01.2021	GCS/LAB/S/3176/20-21	67	30	7.3	17.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
9	01.02.2021	GCS/LAB/S/3219/20-21	59	24	6.7	15.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
10	05.02.2021	GCS/LAB/S/3219/20-21	63	25	7.0	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
11	08.02.2021	GCS/LAB/S/3219/20-21	55	21	6.3	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
12	12.02.2021	GCS/LAB/S/3219/20-21	66	28	7.9	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
13	15.02.2021	GCS/LAB/S/3219/20-21	57	26	6.9	17.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
14	19.02.2021	GCS/LAB/S/3219/20-21	49	20	5.7	15.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
15	22.02.2021	GCS/LAB/S/3219/20-21	58	27	6.3	15.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
16	26.02.2021	GCS/LAB/S/3219/20-21	62	29	6.8	16.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
17	01.03.2021	GCS/LAB/S/3313/20-21	54	23	6.0	13.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
18	05.03.2021	GCS/LAB/S/3313/20-21	58	22	5.0	13.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1


Page **20** of **37**

19	08.03.2021	GCS/LAB/S/3313/20-21	52	21	6.1	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
20	12.03.2021	GCS/LAB/S/3313/20-21	49	18	5.5	14.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
21	15.03.2021	GCS/LAB/S/3313/20-21	55	20	6.3	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
22	19.03.2021	GCS/LAB/S/3313/20-21	64	23	6.8	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
23	22.03.2021	GCS/LAB/S/3313/20-21	51	16	5.5	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
24	26.03.2021	GCS/LAB/S/3313/20-21	59	21	6.3	16.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
25	02.04.2021	GCS/LAB/S/3377/21-22	56	22	6.5	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
26	07.04.2021	GCS/LAB/S/3377/21-22	60	24	7.2	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
27	09.04.2021	GCS/LAB/S/3377/21-22	67	26	6.9	16.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
28	12.04.2021	GCS/LAB/S/3377/21-22	62	27	7.6	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
29	16.04.2021	GCS/LAB/S/3377/21-22	59	23	7.1	17.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
30	19.04.2021	GCS/LAB/S/3377/21-22	71	28	7.3	16.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
31	23.04.2021	GCS/LAB/S/3377/21-22	64	25	7.0	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
32	26.04.2021	GCS/LAB/S/3377/21-22	55	20	7.5	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
33	03.05.2021	GCS/LAB/S/3423/21-22	63	25	7.1	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
34	07.05.2021	GCS/LAB/S/3423/21-22	66	26	6.3	17.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
35	12.05.2021	GCS/LAB/S/3423/21-22	61	22	7.8	18.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
36	14.05.2021	GCS/LAB/S/3423/21-22	73	30	8.5	17.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
37	17.05.2021	GCS/LAB/S/3423/21-22	60	21	8.3	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
38	21.05.2021	GCS/LAB/S/3423/21-22	58	20	6.5	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
39	25.05.2021	GCS/LAB/S/3423/21-22	56	19	6.0	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
40	27.05.2021	GCS/LAB/S/3423/21-22	67	28	8.1	18.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
41	01.06.2021	GCS/LAB/S/3503/21-22	67	26	7.3	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
42	04.06.2021	GCS/LAB/S/3503/21-22	62	21	7.8	17.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
43	07.06.2021	GCS/LAB/S/3503/21-22	73	32	6.7	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
44	11.06.2021	GCS/LAB/S/3503/21-22	54	19	5.8	15.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
45	14.06.2021	GCS/LAB/S/3503/21-22	50	17	5.2	14.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
46	18.06.2021	GCS/LAB/S/3503/21-22	71	27	7.9	17.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
47	21.06.2021	GCS/LAB/S/3503/21-22	65	22	6.6	17.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
48	25.06.2021	GCS/LAB/S/3503/21-22	59	20	5.5	15.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1


					DMII DII	ILDING (A	۸۵۵۱							
	Pai	rameters	Particular matter PM10	Particular matter PM2.5		Nitrogen		Carbon monoxide as CO	Ozone as O3	Ammonia as NH3	Arsenic as As	Nickel as Ni	Benzene as C6H6	Benzo (a) pyrene as BaP
		Unit	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	mg/m3	μg/m3	μg/m3	ng/m3	ng/m3	μg/m3	ng/m3
	National A	AAQM Standard	100	60	80	80	1	4	180	400	6	20	5	1
S.No.	Sampling	Report Number												
1	04.01.2021	GCS/LAB/S/3176/20-21	50	18	4.1	13.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
2	06.01.2021	GCS/LAB/S/3176/20-21	52	19	5.0	14.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
3	08.01.2021	GCS/LAB/S/3176/20-21	46	17	4.4	13.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
4	11.01.2021	GCS/LAB/S/3176/20-21	59	23	5.8	15.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
5	18.01.2021	GCS/LAB/S/3176/20-21	66	28	6.1	16.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
6	22.01.2021	GCS/LAB/S/3176/20-21	62	25	6.4	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
7	27.01.2021	GCS/LAB/S/3176/20-21	55	22	7.3	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
8	29.01.2021	GCS/LAB/S/3176/20-21	64	27	7.0	17.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
9	01.02.2021	GCS/LAB/S/3219/20-21	68	31	7.0	15.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
10	05.02.2021	GCS/LAB/S/3219/20-21	64	26	6.8	16.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
11	08.02.2021	GCS/LAB/S/3219/20-21	55	22	6.4	15.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
12	12.02.2021	GCS/LAB/S/3219/20-21	60	25	7.3	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
13	15.02.2021	GCS/LAB/S/3219/20-21	57	23	6.5	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
14	19.02.2021	GCS/LAB/S/3219/20-21	52	19	6.9	16.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
15	22.02.2021	GCS/LAB/S/3219/20-21	54	21	6.0	14.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
16	26.02.2021	GCS/LAB/S/3219/20-21	67	30	7.2	16.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
17	01.03.2021	GCS/LAB/S/3313/20-21	56	22	5.3	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
18	05.03.2021	GCS/LAB/S/3313/20-21	50	19	5.1	14.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
19	08.03.2021	GCS/LAB/S/3313/20-21	54	21	6.5	13.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
20	12.03.2021	GCS/LAB/S/3313/20-21	52	23	6.7	14.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1

21	15.03.2021	GCS/LAB/S/3313/20-21	48	19	5.2	14.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
22	19.03.2021	GCS/LAB/S/3313/20-21	57	25	6.0	14.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
23	22.03.2021	GCS/LAB/S/3313/20-21	60	27	5.5	13.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
24	26.03.2021	GCS/LAB/S/3313/20-21	51	20	6.6	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
25	02.04.2021	GCS/LAB/S/3377/21-22	63	25	5.0	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
26	07.04.2021	GCS/LAB/S/3377/21-22	67	29	6.6	15.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
27	09.04.2021	GCS/LAB/S/3377/21-22	59	22	6.1	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
28	12.04.2021	GCS/LAB/S/3377/21-22	65	26	6.9	15.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
29	16.04.2021	GCS/LAB/S/3377/21-22	61	24	7.4	17.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
30	19.04.2021	GCS/LAB/S/3377/21-22	58	21	6.5	16.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
31	23.04.2021	GCS/LAB/S/3377/21-22	66	28	4.8	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
32	26.04.2021	GCS/LAB/S/3377/21-22	60	23	6.9	17.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
33	03.05.2021	GCS/LAB/S/3423/21-22	68	26	6.5	18.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
34	07.05.2021	GCS/LAB/S/3423/21-22	55	22	7.4	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
35	12.05.2021	GCS/LAB/S/3423/21-22	64	25	7.0	17.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
36	14.05.2021	GCS/LAB/S/3423/21-22	52	20	6.4	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
37	17.05.2021	GCS/LAB/S/3423/21-22	65	27	8.1	18.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
38	21.05.2021	GCS/LAB/S/3423/21-22	62	24	7.8	17.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
39	25.05.2021	GCS/LAB/S/3423/21-22	60	23	6.7	17.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
40	27.05.2021	GCS/LAB/S/3423/21-22	69	28	7.7	18.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
41	01.06.2021	GCS/LAB/S/3503/21-22	60	21	6.4	16.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
42	04.06.2021	GCS/LAB/S/3503/21-22	63	20	6.6	17.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
43	07.06.2021	GCS/LAB/S/3503/21-22	52	18	5.3	14.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
44	11.06.2021	GCS/LAB/S/3503/21-22	47	15	5.0	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
45	14.06.2021	GCS/LAB/S/3503/21-22	55	19	5.2	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
46	18.06.2021	GCS/LAB/S/3503/21-22	68	27	7.1	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
47	21.06.2021	GCS/LAB/S/3503/21-22	67	24	7.4	17.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
48	25.06.2021	GCS/LAB/S/3503/21-22	61	23	7.0	17.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1

		Sec.		li li	N TERMIN	IAL GATE	(AAQ3)							
	Pa	rameters	Particular matter PM10	Particular matter PM2.5		Nitrogen		Carbon monoxide as CO	Ozone as O3	Ammonia as NH3	Arsenic as As	Nickel as Ni	Benzene as C6H6	Benzo (a) pyrene as BaP
		Unit	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	mg/m3	μg/m3	μg/m3	ng/m3	ng/m3	μg/m3	ng/m3
	National A	AAQM Standard	100	60	80	80	1	4	180	400	6	20	5	1
S.No.	Sampling	Report Number												
1	04.01.2021	GCS/LAB/S/3176/20-21	55	22	6.0	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
2	06.01.2021	GCS/LAB/S/3176/20-21	50	19	6.5	15.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
3	08.01.2021	GCS/LAB/S/3176/20-21	51	18	6.1	15.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
4	11.01.2021	GCS/LAB/S/3176/20-21	65	27	6.9	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
5	18.01.2021	GCS/LAB/S/3176/20-21	71	30	7.2	17.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
6	22.01.2021	GCS/LAB/S/3176/20-21	63	28	7.9	18.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
7	27.01.2021	GCS/LAB/S/3176/20-21	60	24	7.6	17.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
8	29.01.2021	GCS/LAB/S/3176/20-21	69	31	8.3	18.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
9	01.02.2021	GCS/LAB/S/3219/20-21	72	33	6.7	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
10	05.02.2021	GCS/LAB/S/3219/20-21	67	26	7.1	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
11	08.02.2021	GCS/LAB/S/3219/20-21	70	29	6.5	15.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
12	12.02.2021	GCS/LAB/S/3219/20-21	61	23	7.6	17.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
13	15.02.2021	GCS/LAB/S/3219/20-21	66	27	7.4	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
14	19.02.2021	GCS/LAB/S/3219/20-21	58	24	6.0	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
15	22.02.2021	GCS/LAB/S/3219/20-21	64	25	7.0	17.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
16	26.02.2021	GCS/LAB/S/3219/20-21	71	32	6.8	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
17	01.03.2021	GCS/LAB/S/3313/20-21	57	23	6.6	14.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
18	05.03.2021	GCS/LAB/S/3313/20-21	55	20	7.3	15.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
19	08.03.2021	GCS/LAB/S/3313/20-21	64	27	6.9	15.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
20	12.03.2021	GCS/LAB/S/3313/20-21	59	25	6.3	15.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
21	15.03.2021	GCS/LAB/S/3313/20-21	60	24	6.2	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
22	19.03.2021	GCS/LAB/S/3313/20-21	66	27	7.2	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1

23	22.03.2021 GCS/LAB/S/3313/20-21	71	28	5.5	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
24	26.03.2021 GCS/LAB/S/3313/20-21	68	25	7.0	16.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
25	02.04.2021 GCS/LAB/S/3377/21-22	66	24	7.2	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
26	07.04.2021 GCS/LAB/S/3377/21-22	59	22	7.5	17.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
27	09.04.2021 GCS/LAB/S/3377/21-22	73	30	7.1	16.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
28	12.04.2021 GCS/LAB/S/3377/21-22	74	32	7.9	17.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
29	16.04.2021 GCS/LAB/S/3377/21-22	67	28	6.0	17.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
30	19.04.2021 GCS/LAB/S/3377/21-22	71	29	7.8	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
31	23.04.2021 GCS/LAB/S/3377/21-22	77	29	6.5	18.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
32	26.04.2021 GCS/LAB/S/3377/21-22	75	31	8.4	17.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
33	03.05.2021 GCS/LAB/S/3423/21-22	72	29	7.9	17.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
34	07.05.2021 GCS/LAB/S/3423/21-22	77	33	7.4	18.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
35	12.05.2021 GCS/LAB/S/3423/21-22	78	34	8.3	17.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
36	14.05.2021 GCS/LAB/S/3423/21-22	70	31	6.8	16.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
37	17.05.2021 GCS/LAB/S/3423/21-22	66	25	7.2	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
38	21.05.2021 GCS/LAB/S/3423/21-22	65	27	8.5	18.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
39	25.05.2021 GCS/LAB/S/3423/21-22	71	28	7.9	18.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
40	27.05.2021 GCS/LAB/S/3423/21-22	73	30	8.6	18.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
41	01.06.2021 GCS/LAB/S/3503/21-22	70	28	7.5	17.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
42	04.06.2021 GCS/LAB/S/3503/21-22	74	31	7.0	18.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
43	07.06.2021 GCS/LAB/S/3503/21-22	76	35	8.1	18.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
44	11.06.2021 GCS/LAB/S/3503/21-22	65	26	7.4	17.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
45	14.06.2021 GCS/LAB/S/3503/21-22	60	24	6.8	16.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
46	18.06.2021 GCS/LAB/S/3503/21-22	73	30	7.7	17.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
47	21.06.2021 GCS/LAB/S/3503/21-22	75	33	8.5	18.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
48	25.06.2021 GCS/LAB/S/3503/21-22	66	27	7.5	17.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1

NATIONAL AMBIENT AIR QUALITY STANDARDS CENTRAL POLLUTION CONTROL BOARD NOTIFICATION

New Delhi, the 18th November, 2009

No.B-29016/20/90/PCI-L—In exercise of the powers conferred by Sub-section (2) (h) of section 16 of the Air (Prevention and Control of Pollution) Act, 1981 (Act No. 14 of 1981), and in super session of the Notification No(s). S.O. 384(E), dated 11th April, 1994 and S.O. 935(E), dated 14th October, 1998, the Central Pollution Control Board hereby notify the National Ambient Air Quality Standards with immediate effect, namely:-

NATIONAL AMBIENT AIR QUALITY STANDARDS

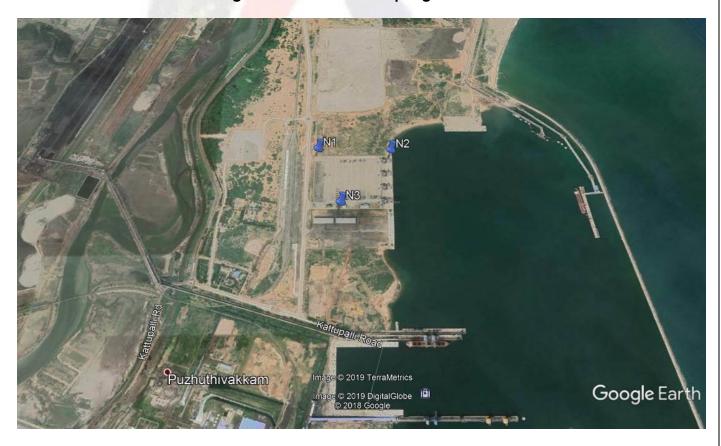
S. No.	Pollutant	Time Weighted average	Industrial, Residential,	on in Ambient Air Ecologically sensitive area (notified by	Methods of Measurement
		,	Rural and Other Area	Central Govt.)	
(1)	(2)	(3)	(4)	(5)	(6)
١,	Sulphur Dioxide	Annual*	50	20	 Improved West and Geake
1	(SO ₂), μg/m ³	24 hours**	80	80	Ultraviolet fluorescence
		Annual*	40	30	 Modified Jacob &
2	Nitrogen Dioxide (NO ₂), μg/m ³	24 hours**	80	80	Hochheiser (Na- Arsenite) • Chemiluminescence
	Particulate Matter	Annual*	60	60	Gravimetric
3	(size less than 10	24 hours**	100	100	TOEM Beta attenuation
	Particulate Matter	Annual*	40	40	Gravimetric
4	(size less than 2.5 microns) or PM _{2.5} μg/m ³	24 hours**	60	60	TOEM Beta attenuation
		8 hours **	100	100	 UV photometric
5	Ozone (O ₃) µg/m ³	1 hour **	180	180	Chemiluminescence Chemical method
		Annual*	0.5	0.5	 ASS / ICP method
6	Lead (Pb) μg/m³	24 hours**	1.0	1.0	after sampling on EPM 2000 or equivalent filter paper • ED – XRF using Teflon filter

	3.6		2.0		3.7
l _	Carbon Monoxide	8 hours**	2	2	Non Dispersive Infra
7	(CO) mg/m ³	l hour**	4	4	RED (NDIR) Spectroscopy
	Ammonia (NH ₃)	Annual*	100	100	 Chemiluminescence
8	μg/m³	24 hours**	400	400	 Indophenol blue method
9	Benzene (C _c H ₆) μg/m ³	Annual*	5	5	Gas chromatography based continuous analyser Adsorption and desorption followed by GC analysis
10	Benzo (a) Pyrene (BaP) – particulate phase only ng/m ³	Annual*	1	1	Solvent extraction followed by HPLC / GC analysis
11	Arsenic (As) ng/m³	Annual*	6	6	AAS / ICP method after sampling on EPM 2000 or equivalent filter paper
12	Nickel (Ni) ng/m³	Annual*	20	20	AAS / ICP method after sampling on EPM 2000 or equivalent filter paper

^{*} Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.

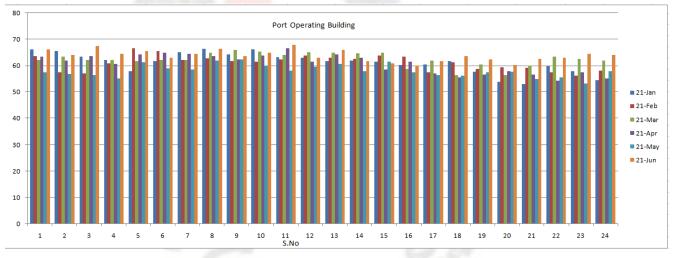
Note: Whenever and wherever monitoring results on two consecutive days of monitoring exceed the limits specified above for the respective category, it shall be considered adequate reason to institute regular or continuous monitoring and further investigation.

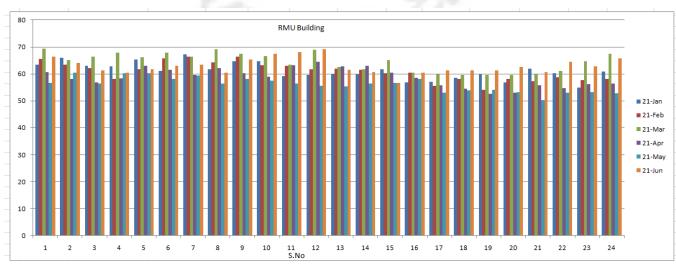
^{** 24} hourly or 8 hourly or 1 hourly monitored values, as applicable, shall be complied with 98% of the time in a year. 2% of the time, they may exceed the limits but not on two consecutive days of monitoring.

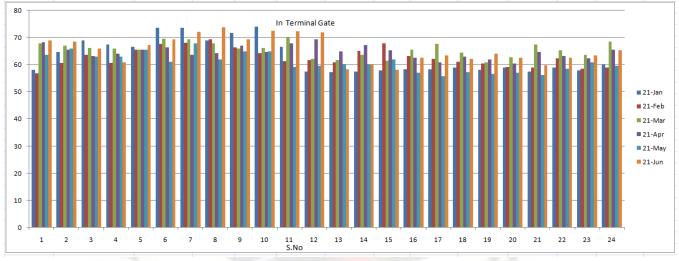

iii. AMBIENT NOISE LEVEL INTENSITY

Collection of ambient noise levels at four locations. Spot noise levels where measured with a pre calibrated Noise Level Meter - SL- 4023 SD for day and night periods. The Detailed report has been is enclosed as Annexure - 3

DETAILS OF NOISE MONITORING LOCATIONS


STATION CODE	LOCATIONS	Geographical Location
N1	In Terminal Gate	13 ⁰ 16' 25" N 80 ⁰ 20' 0" E
N2	RMU Building	13 ⁰ 16' 25" N 80 ⁰ 20' 16" E
N3	Port operating building	13 ⁰ 16' 12" N 80 ⁰ 20' 5" E


Fig - 3. Noise Level Sampling Locations


Annexure - 3

	Location		PORT	OPERATI	NG BUILD	ING				RMU BUI	LDING		
	Month & Year	Jan - 21	Feb - 21	Mar - 21	Apr - 21	May - 21	Jun - 21	Jan - 21	Feb - 21	Mar - 21	Apr - 21	May - 21	Jun - 21
	Parameter & Unit	Leq											
S.No	Time of Sampling		4RIV)						- 4RIVI				
1	06.00 - 07.00 (Day)	66.4	63.9	62.4	63.7	57.7	66.4	63.6	65.8	69.6	60.9	56.8	66.5
2	07.00 -08.00	65.8	57.7	63.6	62.1	57.1	64.3	66.1	63.7	65.3	58.4	60.7	64.3
3	08.00 - 09.00	63.7	57.3	62.3	63.8	56.7	67.4	63.1	62.4	66.7	57.1	56.7	61.4
4	09.00 - 10.00	62.4	61.1	62.3	60.9	55.4	64.6	63	58.2	68	58.6	60.4	60.6
5	10.00 - 11.00	58.1	66.9	62	64.4	61.5	65.8	65.6	62	66.4	63.2	60.4	61.9
6	11.00 - 12.00	62	65.7	62.3	65.2	59.2	63.1	61.2	65.9	68	61.7	58.3	63.2
7	12.00 - 13.00	65.4	62.4	62.4	64.7	58.8	64.7	67.4	66.5	66.5	59.8	59.5	63.7
8	13.00 - 14.00	66.5	63	65.2	63.9	62.1	66.6	61.9	64.5	69.4	62.3	56.6	60.6
9	14.00 - 15.00	64.5	62	66.1	62.6	62.5	63.9	65	66.5	67.7	60.5	58.2	65.5
10	15.00 - 16.00	66.3	61.8	65.5	64.1	60.3	65.1	64.9	63.4	66.8	59.2	57.7	67.6
11	16.00 - 17.00	63.3	62.5	64.3	66.8	58.4	67.9	59.3	63.1	63.7	63.4	56.6	68.2
12	17.00 - 18.00	63.1	64	65.3	61.7	59.8	63.2	59.7	61.9	69.1	64.7	55.8	69.3
13	18.00 - 19.00	61.9	63.1	65.2	64.5	60.8	66.1	60.3	62.2	62.8	62.9	55.5	61.8
14	19.00 -20.00	62.2	62.8	64.8	63.2	58.1	62	60.1	61.7	61.9	63.1	56.7	60.9
15	20.00 - 21.00	61.7	64	65.1	58.7	61.6	61.1	62	60.5	65.3	60.6	56.9	56.9
16	21.00 - 22.00	60.5	63.6	59	61.8	57.6	60.3	57	60.6	60.7	58.7	58.2	60.7
17	22.00 – 23.00 (Night)	60.6	57.7	62.2	57.2	56.7	62	57.3	55.7	59.9	55.9	53.1	61.4
18	23.00 - 00.00	62	61.5	56.5	55.7	56.3	63.8	58.7	58.2	59.8	54.6	54	61.5
19	00.00 - 01.00	57.9	59	60.6	56.8	57.6	62.6	60	54.3	59.8	52.8	54.2	61.4
20	01.00 - 02.00	53.9	59.5	56.7	58.1	57.8	60.4	57	58.4	59.8	53.1	53.3	62.7
21	02.00 - 03.00	53.1	59.4	60.2	56.9	55.2	62.7	62.1	57.4	60.1	56	50.4	60.8
22	03.00 - 04.00	60.1	57.6	63.6	54.3	55.7	63.1	60.5	58.9	61.2	54.8	53.2	64.6
23	04.00 - 05.00	58.1	56.4	62.8	57.6	53.3	64.7	55.1	57.8	65	56.3	53.5	63
24	05.00 - 06.00	54.7	58.2	62.2	55.3	58	64.2	61.1	58.3	67.6	56.5	53	65.9

	Location		ı	N TERMIN	AL GATE		
	Month & Year		PORT	OPERATI	NG BUILDIN	NG	
	Parameter & Unit	Jan - 21	Feb - 21	Mar - 21	Apr - 21	May - 21	Jun - 21
S.No	Time of Sampling	Leq	Leq	Leq	Leq	Leq	Leq
1	06.00 – 07.00 (Day)	58.1	56.9	67.9	68.4	63.6	69
2	07.00 - 08.00	64.7	60.7	67	65.6	66.1	68.5
3	08.00 - 09.00	68.9	63.7	66.3	63.3	63.1	66.1
4	09.00 - 10.00	67.5	60.6	65.9	64.1	63	61
5	10.00 - 11.00	66.6	65.5	65.6	65.6	65.6	67.2
6	11.00 - 12.00	73.7	67.6	69.6	66.4	61.2	69.4
7	12.00 - 13.00	73.6	68.2	69.3	63.7	67.8	72.1
8	13.00 - 14.00	69	69.3	68	64.2	61.9	73.8
9	14.00 - 15.00	71.7	66.5	66	67	65	69.4
10	15.00 - 16.00	74	64.3	66.2	64.8	64.9	72.6
11	16.00 - 17.00	66.7	61.4	70.2	68	59.3	72.4
12	17.00 - 18.00	57.5	61.8	62.2	69.3	59.7	72
13	18.00 - 19.00	57.2	60.9	61.8	64.9	60.3	58.4
14	19.00 -20.00	57.5	65.1	63.6	67.2	60.1	60.2
15	20.00 - 21.00	58	67.9	61.5	65.3	62	58.1
16	21.00 - 22.00	58.4	63.2	65.6	62.5	57	62.6
17	22.00 - 23.00 (Night)	58.3	62.2	67.6	60.8	55.8	63.4
18	23.00 - 00.00	58.9	61.1	64.5	63.1	57.3	62.2
19	00.00 - 01.00	58.2	60.4	60.9	61.9	56.6	64
20	01.00 - 02.00	59	59.3	62.8	60.4	57	62.7
21	02.00 - 03.00	57.5	58.9	67.5	64.7	56.2	59.8
22	03.00 - 04.00	58.9	62.3	65.4	63.2	58.5	62.6
23	04.00 - 05.00	58	58.5	63.7	62.4	60.9	63.4
24	05.00 - 06.00	60	58.9	68.6	65.6	59.7	65.3

Ambient Air Quality Standards in respect of Noise

Area Code	Category of Area / Zone	Limits in dB(A) Leq*				
Code		Day Time	Night Time			
(A)	Industrial area	75	70			
(B)	Commercial area	65	55			
(C)	Residential area	55	45			
(D)	Silence Zone	50	40			

- Note:- 1. Day time shall mean from 6.00 a.m. to 10.00 p.m.
 - Night time shall mean from 10.00 a.m. to 6.00 a.m.
 Silence zone is an area comprising not less than 100 metres around hospitals, educational institutions, courts, religious places or any other area which is declared as such by the competent 2.
 - authority
 Mixed categories of areas may be declared as one of the four above mentioned categories by the competent authority.
 - * dB(A) Leq denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

A "decibel" is a unit in which noise is measured.

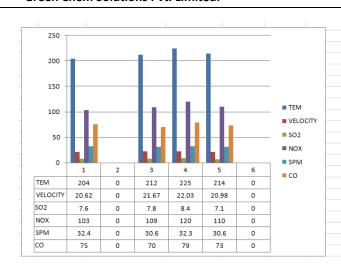
"A", in dB(A) Leq, denotes the frequency weighting in the measurement of noise and corresponds to frequency response characteristics of the human ${\sf P}$

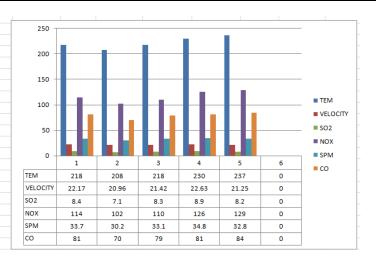
Leg: It is an energy mean of the noise level over a specified period.

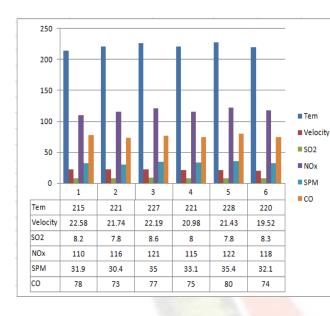
iv. DG SET EMISSIONS

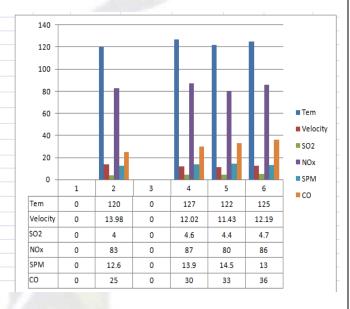
Sampling of Flue gas emission of 1500 KVA DG Set was done and its emissions were determined along with its noise intensity. The Detailed report has been is enclosed as Annexure - 4

DETAILS OF EMISSION MONITORING LOCATIONS


STATION CODE	LOCATIONS	Geographical Location
SM - 1	DG - 1 1500 KVA	13º 16' 12" N
SM - 2	DG - 2 1500 KVA	80 ⁰ 20' 5" E
SM - 3	DG 125 KVA	13°16'13.33" N 80°20'6.64" E


Annexure - 4


			1 0 7	100	STACK M	ONITORIN	G	100000					
	Location		Name (6	DG 12	5KVA			4 18		DG 1500	KVA -1		
	Month & Year	Jan - 21	Feb - 21	Mar -	Apr - 21	May - 21	Jun - 21	Jan - 21	Feb - 21	Mar - 21	Apr - 21	May - 21	Jun - 21
S.N								-300					
1	Stack Temperature, °C		120		127	122	125	218	208	218	230	237	
2	Flue Gas Velocity, m/s	-	13.98		12.02	11.43	12.19	22.17	20.96	21.42	22.63	21.25	
3	Sulphur Dioxide, mg/Nm3	-	4	-	4.6	4.4	4.7	8.4	7.1	8.3	8.9	8.2	
4	NOX (as NO2) in ppmv	4	83		87	80	86	114	102	110	126	129	
5	Particular matter, mg/Nm3	-	12.6		13.9	14.5	13	33.7	30.2	33.1	34.8	32.8	
	Carbon Monoxide, mg/Nm3		25	-	30	33	36	81	70	79	81	84	
7	Gas Discharge, Nm3/hr	-	671		568	547	580	6049	5837	5869	6053	5606	


					STACK I	MONITORI	NG						
	Location			DG 1500	KVA - 2					DG 1500K	VA - 3		
	Month	Jan - 21	Feb -	Mar - 21	Apr - 21	May - 21	Jun - 21	Jan - 21	Feb - 21	Mar - 21	Apr - 21	May - 21	Jun - 21
S.N	Parameter												
1	Stack Temperature, °C	215	221	227	221	228	220	204		2	225	214	
2	Flue Gas Velocity, m/s	22.58	21.74	22.19	20.98	21.43	19.52	20.62		21.67	22.03	20.98	
3	Sulphur Dioxide, mg/Nm3	8.2	7.8	8.6	8	7.8	8.3	7.6		7.8	8.4	7.1	
4	NOX (as NO2) in ppmv	110	116	121	115	122	118	103		109	120	110	
5	Particular matter,	31.9	30.4	35	33.1	35.4	32.1	32. 4		30.6	32.3	30.6	
6	Carbon Monoxide, mg/Nm3	78	73	77	75	80	74	75		70	79	73	
7	Gas Discharge, Nm3/hr	6197	5895	5917	5714	5755	5327	579		6011	5951	5796	

Note: --- DG not in operation.

Parameter NO _x (as NO ₂) (At 15%		Area	Total engine rating of	Generator	sets commis	sioning date	
		Category	the plant (includes existing as well as new generator sets)	Before 1.7.2003	Between 1.7.2003 and 1.7.2005	On or after 1.7.2005	
		A	Up to 75 MW	1100	970	710	
O2, dry ba	sis, in ppmv	В	Up to 150 MW	5-61.7547.567.5	1040,10,000	1110000	
2,,,,		A	More than 75 MW	1100	710	360	
		В	More than 150 MW	1.00.0000000000000000000000000000000000	0.844	1000000	
NMHC (a O ₂), mg/N	s C) (at 15% m ³	Both A and B		150	100		
PM (at Diesel 15% O ₂), mg/Nm ³ HSD & LDO Furnace Oils- LSHS & FO CO (at 15% O ₂), mg/Nm ³		Both A and B		75		75	
		Both A and B		150	100		
		Both A and B		150	150		

Inserted by Rule 2(b) of the Environment (Protection) Second Amendment Rules, 2008 notified by G.S.R.280(E), dated

v. STP WATER SAMPLE ANALYSIS

Water samples were collected at the following points.

• 25 KLD Treated Water Outlet

DETAILS OF STP WATER LOCATIONS

STATION CODE	LOCATIONS	Geographical Location
		13 ⁰ 16' 12" N
STP - 1	25 KLD	80º 20' 8" E

Analysis results of the water sample collected from the above location are enclosed as Annexure - 5.

Annexure - 5

					9	TP OUTLE	WATER		100				
	Location			STP C			STP I	NLET		-			
	Month & Year	Jan - 21	Feb - 21	Mar - 21	Apr - 21	May - 21	Jun - 21	Jan - 21	Feb - 21	Mar - 21	Apr - 21	May - 21	Jun - 21
S.No	Parameters												
1	pH @ 25°C	7.63	7.35	7.42	7.36	7.43	7.55	6.89	6.79	7.21	6.97	7.18	7.28
2	Total Suspended	11	22	20	13	10	14	160	160	142	85	74	56
3	BOD at 27°C for 3	8.5	18.0	15.0	11.0	8.4	13.0	159	108	89	71	60	74
4	Fecal Coliform	120	146	123	108	108	142	724	564	510	482	416	510
5	COD				44	32	75				346	30	312
6	Oil & Grease				BDL	BDL	BDL				11	8.2	9.0
,	Total Dissolved Solids				1010	1154	1218				1184	1270	1380
8	Chlorides (as CI)				248	260	357				286	302	372
9	Sulphates (as SO ₄)				14	17	25				10	11	100

Serial No.96 and entries relating thereto inserted by Rule 2 of the Environment (Protection) Third Amendment Rules, 2002 notified vide Notification G.S.R.489(E), dated 9.7.2002.

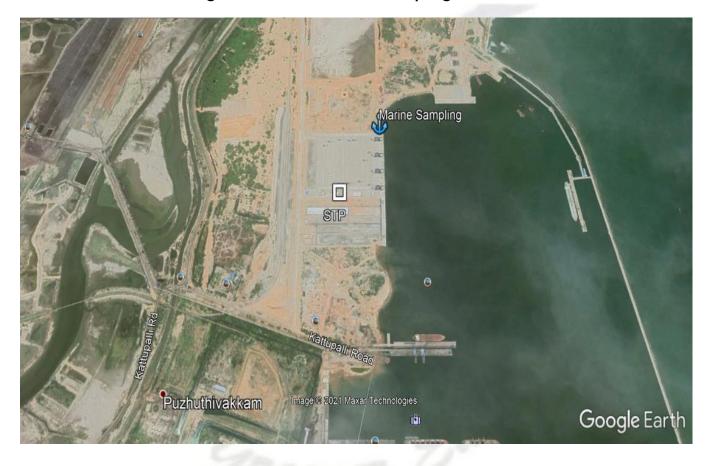
vi. DRINKING WATER SAMPLE ANALYSIS

Drinking Water samples were collected at the Canteen or Office Building. Analysis results of the water sample collected from the above location are enclosed as Annexure - 6.

Annexure - 6

				DRINI	KING WATER				
	Month & Year	Unit	IS: 10500- 1991 R.2012 PERMIS SIBLE	Jan - 21	Feb - 21	Mar - 21	Apr - 21	May - 21	Jun - 21
S.No.	Para								
1	pH @ 25°C	-	6.5 - 8.5	7.32	6.77	6.57	6.67	6.76	6.77
2	Total Hardness as CaCo3	mg/L	600	24	22	28	14.0	37	40
3	Chloride as Cl	mg/L	1000	23	25	23	21	76	28
4	Total Dissolved Solids	mg/L	2000	60	70	64	59	184	112
5	Calcium as Ca	mg/L	200	3.2	5.6	4.8	4.8	10	6.4
6	Sulphate as SO4	mg/L	400	4.73	2.33	2.69	2.42	11.0	3.2
7	Total Alkalinity as	mg/L	600	25	40	20	18	35	25
8	Magnesium as Mg	mg/L	1.0	3.84	1.92	3.84	1.92	2.88	5.76
9	Color	Hazen	15	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
10	Odour	- 48	Unobject	Unobjectionable	Unobjectionable	Unobjectionable	Unobjectionable	Unobjectionabl	Unobjectio
11	Taste	- 4	Agreeabl	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
12	Turbidity	NTU	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
13	Nitrate as No3	mg/L	45	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)
14	Iron as Fe	mg/L	0.3	BDL(DL 0.05) BDL(DL					
15	Total Residual Chlorine	mg/L	1	BDL(DL 0.1) BDL(DL 0.1)					
16	Copper as Cu	mg/L	1.5	BDL(DL 0.05) BDL(DL					
17	Manganese as Mn	mg/L	0.3	BDL(DL 0.05) BDL(DL					
18	Fluoride as F	mg/L	1.5	BDL(DL 0.1) BDL(DL 0.1)					
19	Phenolic compounds as	mg/L	0.002	BDL(DL 0.001) BDL(DL					
20	Mercury as Hg	mg/L	0.001	BDL(DL 0.001) BDL(DL					
21	Cadmium as Cd	mg/L	0.003	BDL(DL 0.003) BDL(DL					
22	Selenium as Se	mg/L	0.01	BDL(DL 0.01) BDL(DL					
23	Arsenic as As	mg/L	0.05	BDL(DL 0.01) BDL(DL					
24	Lead as Pb	mg/L	0.01	BDL(DL 0.01) BDL(DL					
25	Zinc as Zn	mg/L	15	BDL(DL 0.05) BDL(DL					
26	Anionic Detergents as	mg/L	1.0	Nil	Nil	Nil	Nil	Nil	Nil
27	Total Chromium as Cr	mg/L	0.05	BDL(DL 0.05) BDL(DL					
28	Phenolphthalein Alkalinity as CaCO3	mg/L		Nil	Nil	Nil	Nil	Nil	Nil
29	Aluminium as Al	mg/L	0.2	BDL(DL 0.05) BDL(DL					
30	Boron as B	mg/L	1.0	BDL(DL 0.1) BDL(DL 0.1)					
31	Mineral Oil	mg/L	0.5	Nil	Nil	Nil	Nil	Nil	Nil
32	Polynuclear Aromatic Hydrocarbons as	mg/L	0.0001	Nil	Nil	Nil	Nil	Nil	Nil
33	Pesticides	mg/L		Nil	Nil	Nil	Nil	Nil	Nil
34	Cyanide as CN	mg/L	0.05	BDL (DL: 0.01) BDL (DL:					
35	E. coli	MPN/100ml	Absence	Absence	Absence	Absence	Absence	Absence	Absence
36	Total Coliform	MPN/100ml	Absence	Absence	Absence	Absence	Absence	Absence	Absence
								IC. 40E00 400	

Remarks: The analysis report reveals that the water sample is meeting the criteria for Drinking water standard IS: 10500-1991 R.2012


vii. Marine Sampling

Marine Water samples and sediment samples were collected at locations South side berth and North side berth. Analysis data of Marine and sediments as represented in Annexure - 7 & 8.

DETAILS OF MARINE WATER AND SEDIMENT LOCATIONS

STATION CODE	LOCATIONS	Geographical Location
		13 ⁰ 16' 25" N
MW - 1 / MS - 1	Bollard	80º 20' 16" E

Fig - 4. Water and Marine Sampling Locations

Annexure - 7

		MARINE WATER			
	Location		Surface '	Water	
	Month & Year	Unit	Jan - 21	Feb - 21	Mar - 21
S.No.	Parameters		Bollard 21	Bollard 02	Bollard 02
1	pH @ 25°C	-	8.16	8.24	8.36
2	Temperature	OC.	29	29	29
3	Total Suspended Solids	mg/L	14	10	14
4	BOD at 27 ^O C for 3 days	mg/L	9.2	4	4.2
5	Dissolved oxygen	mg/L	4.3	4.1	2.9
6	Salinity at 25 ^O C	ppt	32.8	30	31.8
7	Oil & Grease	mg/L	BDL(DL 1.0)	BDL(DL 1.0)	BDL(DL 1.0)
8	Nitrate as No ₃	mg/L	4.21	4.86	4.12
9	Nitrite as No ₂	mg/L	1.53	1.85	1.73
10	Ammonical Nitrogen as N	mg/L	BDL(DL 1.0)	BDL(DL 1.0)	BDL(DL 1.0)
11	Ammonia as NH3	mg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
12	Kjeldahl Nitrogen as N	mg/L	BDL(DL 1.0)	BDL(DL 1.0)	BDL(DL 1.0)
13	Total phosphates as PO4	mg/L	4.2	4.93	5.64
14	Total Nitrogen	mg/L	BDL(DL 1.0)		
15	Total Dissolved Solids	mg/L	34216	36290	37148
16	COD	mg/L	127	168	152
17	Total bacterial count	cfu/ml	101	143	120
18	Coliforms	Per 100 ml	Absence	Absence	Absence
19	Escherichia coli	Per 100 ml	Absence	Absence	Absence
20	Salmonella	Per 100 ml	Absence	Absence	Absence
21	Shigella	Per 100 ml	Absence	Absence	Absence
22	Vibrio cholerae	Per 100 ml	Absence	Absence	Absence
23	Vibrio parahaemolyticus	Per 100 ml	Absence	Absence	Absence
24	Enterococci	Per 100 ml	Absence	Absence	Absence
25	Octane	μg/L	144	169	175
26	Nonane	μg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
27	Decane	μg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
28	Undecane	μg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
29	Tridecane	μg/L	8.9	8.3	7.7
30	Tetradecane	μg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
31	Pentadecane	μg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
32	Hexadecane	μg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
33	Octadecane	μg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
34	Nonadecane	μg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
35	Elcosane	μg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)

			Surface \	Water				
	Month & Year		Jan - 21	Feb - 21	Mar - 21	Apr-21	May-21	Jun-21
S.No.	Parameters	Unit	Bollard 21	Bollard 02	Bollard 02	Bollard 21	Bollard 01	Bollard 03
36	Primary Productivity	mg C/m ³ /hr	8.14	8.67	9.41	9.86	9.14	8.26
37	Chlorophylla	mg/m ³	6.26	6.02	7.05	7.69	6.37	6.14
38	Phaeophytin	mg/m ³	0.62	0.68	0.73			
38	Phaeopigment	mg/m ³	-	<u></u>		2.43	2.15	2.73
39	Oxidisable Paticular Organic	mg /L	4.78	5.86	5.02			
35	Total Biomass	ml /100 m3				1.21	1.14	1.48
			PHYTOPLAI	NKTON				
40	Bacteriastrum hyalinum	nos/ml	10	17	14	11	13	8
41	Bacteriastrum varians	nos/ml	13	8	10	14	11	15
42	Chaetoceros didymus	nos/ml	11	14	16	10	7	10
43	Chaetoceros decipiens	nos/ml	15	12	18	12	15	11
44	Biddulphia mobiliensis	nos/ml	9	11	15	9	12	14
45	Ditylum brightwellii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
46	Gyrosigma sp	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
47	Cladophyxis sps	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
48	Coscinodiscus centralis	nos/ml	9	13	8	12	14	16
49	Coscinodiscus granii	nos/ml	20	15	7	8	10	13
50	Cylcotella sps	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
51	Hemidiscus hardmanianus	nos/ml	17	10	13	12	8	12
52	Laudaria annulata	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
53	Pyropacus horologicum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
54	Pleurosigma angulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
55	Leptocylindrus danicus	nos/ml	22	20	21	24	18	22

56	Guinardia flaccida	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
57	Rhizosolenia alata	nos/ml	24	22	17	13	16	13
58	Rhizosolena impricata	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
59	Rhizosolena semispina	nos/ml	7	9	12	16	18	20
60	Thalassionema nitzschioides	nos/ml	14	7	16	20	23	22
61	Triceratium reticulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
62	Ceratium trichoceros	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
63	Ceratium furca	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
64	Ceratium macroceros	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
65	Ceracium longipes	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
		l .	ZOOPLANI	KTONS			-1	
66	Acrocalanus gracilis	nos/ml	13	15	10	12	14	12
67	Acrocalanus sp	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
68	Paracalanus parvus	nos/ml	16	18	13	8	11	8
69	Eutintinus sps	nos/ml	10	7	15	19	16	10
70	Centropages furcatus	nos/ml	15	17	6	11	8	11
71	Corycaeus dana	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
72	Oithona brevicornis	nos/ml	18	13	16	19	13	7
73	Euterpina acutifrons	nos/ml	12	18	9	13	10	14
74	Metacalanus aurivilli	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
75	Copipod nauplii	nos/ml	17	8	14	10	18	20
76	Cirripede nauplii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
77	Bivalve veliger	nos/ml	9	6	17	14	17	19
78	Gastropod veliger	nos/ml	7	14	20	23	20	13

.ocatio	n	图 作 使	Bottom Water					
/lonth	& Year	Unit	Jan - 21	Feb - 21	Mar - 21			
.No.	Parameters	2 7 7	Bollard 21	Bollard 02	Bollard 02			
1	pH @ 25°C	- U	8.27	8.31	8.39			
2	Temperature	οС	29	29	29			
3	Total Suspended Solids	mg/L	18	13	17			
4	BOD at 27 oC for 3 days	mg/L	11	11	4.2			
5	Dissolved oxygen	mg/L	4.5	4	3			
6	Salinity at 25 oC	-	32.2	29.6	30.8			
7	Oil & Grease	mg/L	BDL(DL 1.0)	BDL(DL 1.0)	BDL(DL 1.0)			
8	Nitrate as No3	mg/L	4.97	4.18	4.96			
9	Nitrite as No2	mg/L	1.86	1.74	2.05			
10	Ammonical Nitrogen as N	mg/L	BDL(DL 1.0)	BDL(DL 1.0)	BDL(DL 1.0)			
11	Ammonia as NH3	mg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)			
12	Kjeldahl Nitrogen as N	mg/L	BDL(DL 1.0)	BDL(DL 1.0)	BDL(DL 1.0)			
13	Total phosphates as PO4	mg/L	5.02	5.8	5.12			
14	Total Nitrogen	mg/L	BDL(DL 1.0)	BDL(DL 1.0)	BDL(DL 1.0)			
15	Total Dissolved Solids	mg/L	33896	35860	36864			
16	COD	mg/L	132	144	156			
17	Total bacterial count	cfu/ml	90	98	102			
18	Coliforms	Per 100 ml	Absence	Absence	Absence			
19	Escherichia coli	Per 100 ml	Absence	Absence	Absence			
20	Salmonella	Per 100 ml	Absence	Absence	Absence			
21	Shigella	Per 100 ml	Absence	Absence	Absence			
22	Vibrio cholerae	Per 100 ml	Absence	Absence	Absence			
23	Vibrio parahaemolyticus	Per 100 ml	Absence	Absence	Absence			
24	Enterococci	Per 100 ml	Absence	Absence	Absence			
25	Colour	Hazan	20	25	20			
26	Odour	-	Unobjectionable	Unobjectionable	Unobjectionable			
27	Taste	-	Disagreeable	Disagreeable	Disagreeable			
28	Turbidity	NTU	8.4	6.9	7.4			
29	Calcium as Ca	mg/L	486	600	642			
30	Chloride as Cl	mg/L	17824	16389	17049			
31	Cyanide as CN	mg/L	BDL(DL 0.01)					
32	Fluoride as F	mg/L	0.93	0.81	0.87			
33	Magnesium as Mg	mg/L	1660	1320	1388			
34	Total Iron as Fe	mg/L	1.85	1.53	1.24			
35	Residual Free Chlorine	mg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)			
36	Phenolic Compounds as C6H5OH	mg/L	BDL(DL 1.0)	BDL(DL 1.0)	BDL(DL 1.0)			
37	Total Hardness as CaCO3	mg/L	8132	7000	7388			
38	Total Alkalinity as CaCO3	mg/L	103	115	104			
39	Sulphide as H2S	mg/L	BDL(DL 0.5)	BDL(DL 0.5)	BDL(DL 0.5)			
40	Sulphate as SO4	mg/L	1998	2423	2596			
41	Anionic surfactants as MBAS	mg/L	BDL(DL 1.0)	BDL(DL 1.0)	BDL(DL 1.0)			
42	Monocrotophos	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)			
43	Atrazine	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)			

44 Ethion μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 45 Chiorpyrifos μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 47 Mehyle parathion μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 48 Malathion μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 49 DDT (o,p and p,p-Isomers of DDT,DDE μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 51 Alppha HCH μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 52 Beta HCH μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 54 Endosulfan (Alpha,beta and sulphate) μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 55 Butachior μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 56 Alachior μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 57 Aldrin/Dieldrin μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
Mehyle parathion	44	Ethion	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
47 Mehyle parathion μg/L BDL(DL 0.01)	45	Chiorpyrifos	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
Malathion μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01)	46	Phorate	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
DDT (o, p and p,p-Isomers of DDT,DDE μg/L BDL(DL 0.01) BD	47	Mehyle parathion	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
Samma HCH (Lindane)	48	Malathion	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
Alpha HCH	49	DDT (o,p and p,p-Isomers of DDT,DDE	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
Seta HCH	50	Gamma HCH (Lindane)	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
Delta HCH	51	Alppha HCH	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
54 Endosulfan (Alpha,beta and sulphate) μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 55 Butachlor μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 56 Alachlor μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 57 Aldrin/Dieldrin μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 58 Isoproturon μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 59 2,4-D μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 60 Polychlorinated Biphenyls (PCB) μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 61 Polynuclear aromatic hydrocarbons μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 62 Arsenic as As mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 63 Mercury as Hg mg/L BDL(DL 0.001) BDL(DL 0.01) BDL(DL 0.01) 64 Cadmium as Cd mg/L BDL(DL 0.001) BDL(DL 0.001) BDL(DL 0.001)	52	Beta HCH	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
Butachlor	53	Delta HCH	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
56 Alachlor μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 57 Aldrin/Dieldrin μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 58 Isoproturon μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 59 2,4-D μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 60 Polychlorinated Biphenyls (PCB) μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 61 Polynuclear aromatic hydrocarbons μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 62 Arsenic as As mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 63 Mercury as Hg mg/L BDL(DL 0.001) BDL(DL 0.01) BDL(DL 0.01) 64 Cadmium as Cd mg/L BDL(DL 0.003) BDL(DL 0.001) BDL(DL 0.003) 65 Total Chromium as Cr mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 66 Copper as Cu mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) <t< td=""><td>54</td><td>Endosulfan (Alpha,beta and sulphate)</td><td>μg/L</td><td>BDL(DL 0.01)</td><td>BDL(DL 0.01)</td><td>BDL(DL 0.01)</td></t<>	54	Endosulfan (Alpha,beta and sulphate)	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
ST Aldrin/Dieldrin μg/L BDL(DL 0.01) BDL(DL 0.001) BDL(DL 0.001) BDL(DL 0.001) BDL(DL 0.001) BDL(DL 0.001) BDL(DL 0.001) BDL(DL 0.003) BDL(DL 0.05) BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.05) BD	55	Butachlor	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
58 Isoproturon μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 59 2,4-D μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 60 Polychlorinated Biphenyls (PCB) μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 61 Polynuclear aromatic hydrocarbons μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 62 Arsenic as As mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 63 Mercury as Hg mg/L BDL(DL 0.001) BDL(DL 0.001) BDL(DL 0.001) 64 Cadmium as Cd mg/L BDL(DL 0.003) BDL(DL 0.003) BDL(DL 0.003) 65 Total Chromium as Cr mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 66 Copper as Cu mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 67 Lead as Pb mg/L BDL(DL 0.05) BDL(DL 0.01) BDL(DL 0.01) 68 Manganese as Mn mg/L BDL(DL 0.05) BDL(DL 0.01) BDL(DL 0.01)	56	Alachlor	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
59 2,4-D	57	Aldrin/Dieldrin	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
Folychlorinated Biphenyls (PCB) μg/L BDL(DL 0.01) BDL(DL 0.001) BDL(DL 0.003) BDL(D	58	Isoproturon	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
61 Polynuclear aromatic hydrocarbons μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 62 Arsenic as As mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 63 Mercury as Hg mg/L BDL(DL 0.003) BDL(DL 0.003) BDL(DL 0.003) 64 Cadmium as Cd mg/L BDL(DL 0.003) BDL(DL 0.003) BDL(DL 0.003) 65 Total Chromium as Cr mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 66 Copper as Cu mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 67 Lead as Pb mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 68 Manganese as Mn mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 69 Nickel as Ni mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 69 Nickel as Ni mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 70 Selenium as Se mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01)	59	2,4-D	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
62 Arsenic as As mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 63 Mercury as Hg mg/L BDL(DL 0.001) BDL(DL 0.003) BDL(DL 0.005) BDL(DL 0.005) BDL(DL 0.005) BDL(DL 0.005) BDL(DL 0.01) BDL(DL 0.005) BDL(DL 0.01) BDL(DL 0.005) BDL(DL 0	60	Polychlorinated Biphenyls (PCB)	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
63 Mercury as Hg mg/L BDL(DL 0.001) BDL(DL 0.001) BDL(DL 0.003) 64 Cadmium as Cd mg/L BDL(DL 0.003) BDL(DL 0.003) BDL(DL 0.003) 65 Total Chromium as Cr mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 66 Copper as Cu mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 67 Lead as Pb mg/L BDL(DL 0.05) BDL(DL 0.01) BDL(DL 0.01) 68 Manganese as Mn mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 69 Nickel as Ni mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 69 Nickel as Ni mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 70 Selenium as Se mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 71 Barium as Ba mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 72 Silver as Ag mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 73	61	Polynuclear aromatic hydrocarbons	μg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
64 Cadmium as Cd mg/L BDL(DL 0.003) BDL(DL 0.003) BDL(DL 0.003) 65 Total Chromium as Cr mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 66 Copper as Cu mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 67 Lead as Pb mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 68 Manganese as Mn mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 69 Nickel as Ni mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 69 Nickel as Ni mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 69 Nickel as Ni mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 69 Nickel as Ni mg/L BDL(DL 0.05) BDL(DL 0.01) BDL(DL 0.05) 69 Nickel as Ni mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 70 Selenium as Se mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 72	62	Arsenic as As	mg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
65 Total Chromium as Cr mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 66 Copper as Cu mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 67 Lead as Pb mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 68 Manganese as Mn mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 69 Nickel as Ni mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 70 Selenium as Se mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 71 Barium as Ba mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 72 Silver as Ag mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 73 Molybdenum as Mo mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 74 Octane µg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 75 Nonane µg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 76 Decane µg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 77 Undecane µg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 78 Tridecane µg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 80 Pentadecane µg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 81 Hexadecane µg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 82 Heptadecane µg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 83 Octadecane µg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 84 Nonadecane µg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1)	63	Mercury as Hg	mg/L	BDL(DL 0.001)	BDL(DL 0.001)	BDL(DL 0.001)
66 Copper as Cu mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 67 Lead as Pb mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 68 Manganese as Mn mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 69 Nickel as Ni mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 70 Selenium as Se mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 71 Barium as Ba mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 72 Silver as Ag mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 73 Molybdenum as Mo mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 74 Octane μg/L 159 167 175 75 Nonane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 76 Decane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 76 Tridecane μg/L BDL(DL	64	Cadmium as Cd	mg/L	BDL(DL 0.003)	BDL(DL 0.003)	BDL(DL 0.003)
67 Lead as Pb mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 68 Manganese as Mn mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 69 Nickel as Ni mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 70 Selenium as Se mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 71 Barium as Ba mg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.01) 72 Silver as Ag mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 73 Molybdenum as Mo mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 74 Octane μg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 75 Nonane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 76 Decane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 76 Decane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 75 8 BDL(DL 0.1)	65	Total Chromium as Cr	mg/L	BDL(DL 0.05)	BDL(DL 0.05)	BDL(DL 0.05)
68 Manganese as Mn mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 69 Nickel as Ni mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 70 Selenium as Se mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 71 Barium as Ba mg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 72 Silver as Ag mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 73 Molybdenum as Mo mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 74 Octane μg/L 159 167 175 75 Nonane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 76 Decane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 77 Undecane μg/L 8.4 7.5 8 78 Tridecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 79 Tetradecane μg/L BDL(DL 0.1) BDL(DL 0.1) <td>66</td> <td>Copper as Cu</td> <td>mg/L</td> <td>BDL(DL 0.05)</td> <td>BDL(DL 0.05)</td> <td>BDL(DL 0.05)</td>	66	Copper as Cu	mg/L	BDL(DL 0.05)	BDL(DL 0.05)	BDL(DL 0.05)
69 Nickel as Ni mg/L BDL(DL 0.05) BDL(DL 0.05) BDL(DL 0.05) 70 Selenium as Se mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 71 Barium as Ba mg/L BDL(DL 0.1) BDL(DL 0.01) BDL(DL 0.01) 72 Silver as Ag mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 73 Molybdenum as Mo mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 74 Octane μg/L 159 167 175 75 Nonane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 76 Decane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 76 Decane μg/L 8.4 7.5 8 78 Tridecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 79 Tetradecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 80 Pentadecane μg/L BDL(DL 0.1) BDL(DL 0.1)	67	Lead as Pb	mg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
70 Selenium as Se mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 71 Barium as Ba mg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 72 Silver as Ag mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 73 Molybdenum as Mo mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 74 Octane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 75 Nonane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 76 Decane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 77 Undecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 78 Tridecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 79 Tetradecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 80 Pentadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 81 Hexadecane μg/L BDL(DL	68	Manganese as Mn	mg/L	BDL(DL 0.05)	BDL(DL 0.05)	BDL(DL 0.05)
71 Barium as Ba mg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 72 Silver as Ag mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 73 Molybdenum as Mo mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 74 Octane μg/L 159 167 175 75 Nonane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 76 Decane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 77 Undecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 78 Tridecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 79 Tetradecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 80 Pentadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 81 Hexadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 82 Heptadecane μg/L BDL(DL 0.1) BDL(DL	69	Nickel as Ni	mg/L	BDL(DL 0.05)	BDL(DL 0.05)	BDL(DL 0.05)
72 Silver as Ag mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 73 Molybdenum as Mo mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 74 Octane μg/L 159 167 175 75 Nonane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 76 Decane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 77 Undecane μg/L 8.4 7.5 8 78 Tridecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 79 Tetradecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 80 Pentadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 81 Hexadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 82 Heptadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 84 Nonadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL	70	Selenium as Se	mg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
73 Molybdenum as Mo mg/L BDL(DL 0.01) BDL(DL 0.01) BDL(DL 0.01) 74 Octane μg/L 159 167 175 75 Nonane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 76 Decane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 77 Undecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 78 Tridecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 79 Tetradecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 80 Pentadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 81 Hexadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 82 Heptadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 84 Nonadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1)	71	Barium as Ba	mg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
74 Octane μg/L 159 167 175 75 Nonane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 76 Decane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 77 Undecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 78 Tridecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 79 Tetradecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 80 Pentadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 81 Hexadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 82 Heptadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 83 Octadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 84 Nonadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1)	72	Silver as Ag	mg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
75 Nonane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 76 Decane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 77 Undecane μg/L 8.4 7.5 8 78 Tridecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 79 Tetradecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 80 Pentadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 81 Hexadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 82 Heptadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 83 Octadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 84 Nonadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1)	73	Molybdenum as Mo	mg/L	BDL(DL 0.01)	BDL(DL 0.01)	BDL(DL 0.01)
76 Decane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 77 Undecane μg/L 8.4 7.5 8 78 Tridecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 79 Tetradecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 80 Pentadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 81 Hexadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 82 Heptadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 83 Octadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 84 Nonadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1)	74	Octane	μg/L	159	167	175
77 Undecane μg/L 8.4 7.5 8 78 Tridecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 79 Tetradecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 80 Pentadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 81 Hexadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 82 Heptadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 83 Octadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 84 Nonadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1)	75	Nonane	μg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
78 Tridecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 79 Tetradecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 80 Pentadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 81 Hexadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 82 Heptadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 83 Octadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 84 Nonadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1)	76	Decane	μg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
78 Tridecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 79 Tetradecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 80 Pentadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 81 Hexadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 82 Heptadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 83 Octadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 84 Nonadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1)	77	Undecane	μg/L	8.4	7.5	8
80 Pentadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 81 Hexadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 82 Heptadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 83 Octadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 84 Nonadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1)	78	Tridecane		BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
81 Hexadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 82 Heptadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 83 Octadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 84 Nonadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1)	79	Tetradecane	μg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
82 Heptadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 83 Octadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 84 Nonadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1)	80	Pentadecane	μg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
82 Heptadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 83 Octadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 84 Nonadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1)	81	Hexadecane	μg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
83 Octadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1) 84 Nonadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1)	82	Heptadecane		BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
84 Nonadecane μg/L BDL(DL 0.1) BDL(DL 0.1) BDL(DL 0.1)	83	Octadecane		BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
	84	Nonadecane		BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
	85	Elcosane	μg/L	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)

			Bottom W	ater				
	Month & Year		Jan - 21	Feb - 21	Mar - 21	Apr-21	May-21	Jun-21
S.No.	Parameters	Unit	Bollard 21	Bollard 02	Bollard 02	Bollard 21	Bollard 01	Bollard 03
86	Primary Productivity	mg C/m3 /hr	9.9	9.14	9.98	10.42	10.05	10.81
87	Chlorophyll a	mg/m3	7.84	7.38	8.46	8.1	6.89	6.03
88	Phaeophytin	mg/m3	0.76	0.71	0.79			
00	Phaeopigment	mg/m3			F 10 -2	2.79	2.6	3.12
89	Oxidisable Paticular Organic	mg /L	6.01	6.95	6.33			
03	Total Biomass	ml /100 m3		1997		1.87	1.57	1.75
			PHYTOPLANI	KTON		1		
90	Bacteriastrum hyalinum	nos/ml	14	20	17	15	16	11
91	Bacteriastrum varians	nos/ml	18	15	12	18	14	18
92	Chaetoceros didymus	nos/ml	13	16	19	13	10	13
93	Chaetoceros decipiens	nos/ml	17	19	22	17	19	15
94	Biddulphia mobiliensis	nos/ml	12	14	18	11	8	12
95	Ditylum brightwellii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
96	Gyrosigma sp	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
97	Cladophyxis sps	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
98	Coscinodiscus centralis	nos/ml	12	18	11	14	17	19
99	Coscinodiscus granii	nos/ml	24	21	9	10	12	17
100	Cylcotella sps	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
101	Hemidiscus hardmanianus	nos/ml	15	8	15	15	11	14
102	Laudaria annulata	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
103	Pyropacus horologicum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
104	Pleurosigma angulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
105	Leptocylindrus danicus	nos/ml	26	24	23	25	22	24
106	Guinardia flaccida	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
107	Rhizosolenia alata	nos/ml	27	25	20	17	20	18

108	Rhizosolena impricata	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
109	Rhizosolena semispina	nos/ml	9	11	16	19	21	24
110	Thalassionema nitzschioides	nos/ml	16	9	18	22	25	26
111	Triceratium reticulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
112	Ceratium trichoceros	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
113	Ceratium furca	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
114	Ceratium macroceros	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
115	Ceracium longipes	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
			ZOOPLANKT	ONS	1		•	Į.
116	Acrocalanus gracilis	nos/ml	17	19	14	17	18	15
117	Acrocalanus sp	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
118	Paracalanus parvus	nos/ml	19	21	17	10	14	11
119	Eutintinus sps	nos/ml	13	10	11	14	13	17
120	Centropages furcatus	nos/ml	16	12	8	15	11	14
121	Corycaeus dana	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
122	Oithona brevicornis	nos/ml	20	16	20	22	17	12
123	Euterpina acutifrons	nos/ml	14	20	12	16	12	15
124	Metacalanus aurivilli	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
125	Copipod nauplii	nos/ml	21	11	16	12	16	23
126	Cirripede nauplii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
127	Bivalve veliger	nos/ml	11	8	19	18	21	25
128	Gastropod veliger	nos/ml	9	17	22	25	26	20

Marine Water – Surface water and Bottom Water Test Results (Apr - 21 to Jun – 21)

S.NO	PARAMETER UNITS Bollard – 13	Bollard	l – 01	Bollare	d – 03			
3.NU	PARAIVIETER	UNITS	Apr-	-21	May-	-21	Jun -	- 21
	Physicochemical Parameters		Surface water	Bottom water	Surface water	Bottom water	Surface water	Bottom water
1	Colour	Hazan	20	30	25	35	20	35
2	Odour		Unobjectionable	Unobjectionable	Unobjectionable	Unobjectionable	Unobjectionable	Unobjectionable
3	pH @ 25°C	- N-	8.41	8.45	8.22	8.37	7.78	7.91
4	Temperature	οС	29	29	29	29	29	29
5	Turbidity	NTU	11.4	18.6	9.8	17.3	11	19
6	Total Suspended Solids	mg/L	25	27	18	24	15	26
7	BOD at 27 °C for 3 days	mg/L	7.1	5.6	4.6	4.4	4.1	4
8	COD	mg/L	160	168	134	152	126	142
9	Dissolved oxygen	mg/L	2.7	2.8	2.5	2.7	2.7	2.6
10	Salinity at 25 °C	ppt	30.3	27.1	31.4	30.1	32	31.2
11	Oil & Grease	mg/L	BDL (DL : 1.0)	BDL (DL: 1.0)	BDL (DL: 1.0)	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL: 1.0)
Nutrie	nt Parameters			7.40				
12	Nitrate as No₃	mg/L	3.08	4.15	3.47	4.91	3.93	5.17
13	Nitrite as No ₂	mg/L	1.49	1.78	1.69	2.13	1.98	2.74
14	Ammonical Nitrogen as N	mg/L	BDL (DL: 1.0)	BDL (DL: 1.0)	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL : 1.0)	BDL (DL: 1.0)
15	Total Nitrogen	mg/L	BDL (DL: 1.0)	BDL (DL: 1.0)	BDL (DL: 1.0)	BDL (DL: 1.0)	BDL (DL : 1.0)	BDL (DL: 1.0)
16	Inorganic phosphates as PO4	mg/L	5.01	4.07	4.23	5.67	5.07	6.21
17	Silica as SiO ₂	mg/L	3.05	5.12	3.81	6.45	4.21	6.98
18	Particulate Organic Carbon	μgC/L	14	17	16	20	18	23
19	Pertoleum Hydrocarbons	μg/L	BDL (DL: 0.01)	BDL (DL: 0.01)	BDL (DL: 0.01)	BDL (DL: 0.01)	BDL (DL: 0.01)	BDL (DL : 0.01)
Heavy	Metals				Late LOT			
20	Cadmium as Cd	mg/L	BDL (DL: 0.003)	BDL (DL :0.003)	BDL (DL: 0.003)	BDL (DL :0.003)	BDL (DL: 0.003)	BDL (DL :0.003)
21	Copper as Cu	mg/L	BDL (DL: 0.05)	BDL (DL: 0.05)	BDL (DL: 0.05)	BDL (DL: 0.05)	BDL (DL: 0.05)	BDL (DL : 0.05)
22	Total Iron as Fe	mg/L	0.53	0.82	0.53	0.82	0.57	0.7
23	Zinc as Zn	mg/L	BDL (DL: 0.01)	BDL (DL: 0.01)	BDL (DL: 0.01)	BDL (DL: 0.01)	BDL (DL: 0.01)	BDL (DL : 0.01)
24	Lead as Pb	mg/L	BDL (DL: 0.01)	BDL (DL: 0.01)	BDL (DL: 0.01)	BDL (DL: 0.01)	BDL (DL: 0.01)	BDL (DL : 0.01)
25	Mercury as Hg	mg/L	BDL (DL : 0.001)	BDL (DL :0.001)	BDL (DL: 0.001)	BDL (DL :0.001)	BDL (DL: 0.001)	BDL (DL :0.001)
26	Nickel as Ni	mg/L	BDL (DL : 0.05)	BDL (DL: 0.05)	BDL (DL : 0.05)	BDL (DL: 0.05)	BDL (DL : 0.05)	BDL (DL : 0.05)
27	Total Chromium as Cr	mg/L	BDL (DL : 0.05)	BDL (DL: 0.05)	BDL (DL : 0.05)	BDL (DL: 0.05)	BDL (DL : 0.05)	BDL (DL : 0.05)
Bacter	iological Parameters							
1	Escherichia Coli (ECLO)	cfu/ml	Absence	Absence	Absence	Absence	Absence	Absence
2	Faecal Coliform (FCLO)	cfu/ml	Absence	Absence	Absence	Absence	Absence	Absence
3	Pseudomonas aeruginosa (PALO)	cfu/ml	Absence	Absence	Absence	Absence	Absence	Absence
4	Streptococcus faecalis (SFLO)	cfu/ml	Absence	Absence	Absence	Absence	Absence	Absence
5	Shigella (SHLO)	cfu/ml	Absence	Absence	Absence	Absence	Absence	Absence
6	Salmonella (SLO)	cfu/ml	Absence	Absence	Absence	Absence	Absence	Absence
7	Total Coliform (TC)	cfu/ml	Absence	Absence	Absence	Absence	Absence	Absence
8	Total Viable Count (TVC)	cfu/ml	Absence	Absence	Absence	Absence	Absence	Absence
9	Vibrio cholera (VC)	cfu/ml	Absence	Absence	Absence	Absence	Absence	Absence
10	Vibrio parahaemolyticus (VP)	cfu/ml	Absence	Absence	Absence	Absence	Absence	Absence

Annexure - 8

			SE	A SEDIMENT				
	Location				Sea Sediment			
	Month & Year	Unit	Jan - 21	Feb - 21	Mar - 21	Apr - 21	May - 21	Jun - 21
S.No	. Parameters		Bollard 21	Bollard 02	Bollard 02	Bollard 13	Bollard 01	Bollard 03
1	Total organic matter	%	0.54	0.58	0.64	0.57	0.71	0.74
2	% Sand	%	23	25	22	21	24	25
3	%silt	%	31	28	30	33	31	28
4	%Clay	%	46	47	48	46	45	47
5	Iron (as Fe)	mg/kg	29.3	27.2	20.9	22.8	24.1	26.9
6	Aluminium (as Al)	mg/kg	9127	10004	10186	9864	9437	9811
7	Chromium (as cr)	mg/kg	52	41	27	21	24	20
8	Copper (as cu)	mg/kg	74	65	81	69	75	78
9	Manganese (as Mn)	mg/kg	91	78	65	52	44	51
10	Nickel (as Ni)	mg/kg	26.8	23.2	20.4	17.8	18.2	20.4
11	Lead (as Pb)	mg/kg	34.2	30.6	31.2	26.3	24.7	21.7
12	Zinc (as Zn)	mg/kg	220	203	186	175	186	175
13	Mercury(as Hg)	mg/kg	0.43	0.41	0.37	0.32	0.34	0.31
14	Total phosphorus as P	mg/kg	156	139	150	135	146	152
15	Octane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
16	Nonane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
17	Decane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
18	Undecane	mg/kg	0.87	0.74	0.68	0.7	0.73	0.79
19	Dodecane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
20	Tridecane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
21	Tetradecane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
22	Phntadecane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
23	Hexadecane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
24	Heptadecane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
25	Octadecane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
26	Nonadecane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
27	Elcosane	mg/kg	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)	BDL(DL 0.1)
l. Nen	natoda						1	
28	Oncholaimussp	nos/m ²	15	12	15	18	13	15
29	Tricomasp	nos/m²	13	8	12	9	11	8
I. For	aminifera						•	
30	Ammoniabeccarii	nos/m ²	10	16	10	16	19	12
31	Quinqulinasp	nos/m ²	21	18	14	11	15	17
32	Discorbinellasp.,	nos/m ²	24	15	17	20	23	20
33	Bolivinaspathulata	nos/m ²	22	20	13	17	10	16
34	Elphidiumsp	nos/m ²	18	14	19	13	18	22
35	Noniondepressula	nos/m ²	16	22	20	24	20	21
III. Mo	olluscs-Bivalvia				AT 4.75			•
36	Meretrixveligers	nos/m ²	27	23	11	19	17	13
37	Anadoraveligers	nos/m ²	25	13	22	25	21	10
	Total No. of individuals	nos/m ²	187	161	153	172	167	154
	Shanon Weaver Diversity Index		2.27	2.26	2.27	2.26	2.27	2.26

AECTPL/TNPCB/2020-21/28

To.

The Member Secretary, Tamil Nadu Pollution Control Board. 76, Mount Salai, Guindy. Chennai - 600 032

Dear Sir.

Sub: Submission of Environmental Statement (Form V) for the financial year ending 31st March, 2020 of Adani Ennore Container Terminal Private Limited, Chennai

MS

Ref: 1. Consent Order No. 1808111676581 under Water Act dated 23.08.2018

2. Consent Order No. 1808211676581 under Air Act dated 23.08.2018

With reference to the captioned subject and cited references above, we submit herewith the Environmental Statement of M/s Adani Ennore Container Terminal Private Limited, in Form-V prescribed under Rule 14 of the Environment (Protection) Rules 1986 for the financial year ending 31st March 2020.

Submitted for your kind information and records.

Thanking you,

for Adani Ennore Container Terminal Private Limited (AECTPL)

Jai Khurana Chief Executive Officer

Enclosures: As above

Copy To:

भारतीय डाक

Date: 21/09/2020

E12140966961N [VR:698421460 SP MINIUR SD (661203)

Counter No:1,22/09/2020,19:44 India Post

PiN:6000052, Guindy Industrial Estate S.O.

(Dial 18062666060) (Wear Masks, Stay Sate)

TO: THE MEMBER SE, TN POLLUTION BOA

From: SATHISH KUMAR, ADANI HOUSE

Ant:41.30 (Cash) Tax:6.30 (Track on www.indiapost.gov.in)

Wt: 60gas

1) The Joint Chief Environmental Engineer, Tamilnadu Pollution Control Board, First Floor, 950/1, Poonamallee High Road, Arumbakkam, Chennai-600 106

2) The District Environmental Engineer, Tamil Nadu Pollution Control Board, Gummidipoondi - 601201.

Adani Ennore Container Terminal Pvt Ltd Adani House C/o, Kamarajar Port Limited. Ponneri Taluk, Tiruvallur District, Tamil Nadu - 600 120.

Tel +91 44 2824 3062

info@adani.com www.adani.com

CIN: U61200GJ2014PTC078795

Sathish Kumar R

Sathish Kumar R From:

Sent: 21 September 2020 12:34 To: 'eccompliance-tn@gov.in'

Cc: Jai Khurana; Milind Sangtiani; 'sravan@kplmail.in'; Vijayasankar K; Prasanth A **Subject:** Submission of Environmental Statement (Form V) for the financial year ending 31st

March, 2020 of Adani Ennore Container Terminal Private Limited, Chennai- Reg

Attachments: AECTPL - FORM V - FY19-20.pdf

Importance: High

Dear Sir / Madam,

With reference to the captioned subject and cited references above, we submit herewith the Environmental Statement of M/s Adani Ennore Container Terminal Private Limited, Chennai in Form-V prescribed under Rule 14 of the Environment (Protection) Rules 1986 for the financial year ending 31st March 2020.

Submitted for your kind information and records.

Thanks and Regards

Sathish Kumar R

Head - Environment

Marine Infrastructure Developer Private Limited | Adani Ennore Container Terminal Private Limited | Adani Vizag Coal Terminal Private Limited | Adani Mormugao Port Terminal Private Limited |

Mob +91 91760 00959 | Direct: +91 44 2796 8177 | Extn. 69177 |

Our Values: Courage | Trust | Commitment

Form-V

(See rule 14 of Environment (Protection) Rules, 1986)

Environmental Statement for the financial year ending 31st March 2020

Part-A

i)	Name and Address of the	:	Mr. Jai Khurana
	owner / occupier of the		Chief Executive Officer
	industry operation or		Adani Ennore Container Terminal Private Limited
	process		C/O Kamarajar Port Limited
			Vallur Post, Ennore
			Thiruvallur District- 600 120
			Tamil Nadu, India
ii)	Industry Category	:	Primary : Red
			Secondary: 1065 – Ports and Harbour, Jetties and
			Dredging Operations.
iii)	Production Capacity	:	Cargo Handling Capacity :
			11.68 MMTPA of Container cargo
iv)	Year of establishment	:	2016
v)	Date of the last	:	Vide our Letter No. AECTPL/ENV2019-20/08 dated
	environmental statement		20.09.2019
	submitted		

Part -B

WATER AND RAW MATERIAL CONSUMPTION

(i) Water Consumption

S.No	Water Consumption (m³/Calendar Day)	2018-2019	2019-2020
1	Domestic	7.33	10.93

(ii) Raw Material Consumption

S.No.	Name of Raw Material	Name of Products	Consumption of Raw Material per Unit of output			
			During the previous financial year (2018-19)	During the current financial year (2019-20)		
1	Not Applicable	Not Applicable	NIL	NIL		

The unit does not undergo any manufacturing process. The water consumed is mainly for firefighting, greenbelt development and maintenance, etc.,

Part-C

POLLUTION DISCHARGE TO ENVIRONEMENT/ UNIT OF OUTPUT (Parameters as specified in the consent issued)

Pollutants	Quality of Pollutants Discharged (Mass/day)	Concentration Pollutants disc (mass/volu	harges me)	Percentage variation fro prescribed stan with reason	m dards
a) Water	STP Treated W	later Characteris	Consen	Actual	% Variation with prescribed standard
	pH Total Suspend (mg/l)	ded Solids	5.5-9 30	7.20 19.08	-Nil- -Nil-
b) Air	DG sets are profailure. The H		cks as p	er CPCB/ TNPCB	-Nil- used during power Standards. All the
Particulate Matter (mg/Nm3) Sulphur Dioxide (ppm) Nitrogen Oxide (ppm)	DG stack emis:	sion report is end	closed as	Annexure 1	

Part-D

HAZARDOUS WASTES

(As specified under Hazardous Waste Management and Handling Rules 1989)

	Total Quan	tity (Kg)
Hazardous Wastes	During the previous financial Year (2018-19)	During the current financial Year (2019-20)
(a) From Process	NIL	 Used Oil (5.1) - 10 Tons Oil from Contaminated filter element (3.3) - 0.5 Tons Empty Oil barrel (33.1) - 0.5 Tons
(b) From Pollution control facilities	NA	NA

Part-E

SOLID WASTES

	Т	otal Quantity Generated	
	Solid Waste	During the previous financial Year (2018-19)	During the current financial Year (2019-20)
a)	From process	NIL	NIL
b)	From pollution control facilities- STP	20 kgs	57.28 kgs
c)	Quantity recycled or reutilized within the Unit	20 kgs	57.28 kgs
	2. Sold	NIL	NIL
	3. Disposed	NIL	NIL

Part-F

Please specify the characterization (in terms of Composition and quantum) of Hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes:

Hazardous wastes include Used oil, Filters contaminated with Oil and Empty barrels
/ containers contaminated with hazardous wastes. All the hazardous wastes are
collected and stored properly in Integrated Waste Management Shed & are being
disposed to TNPCB authorized /registered recyclers in line to Hazardous Waste
Management Rules, 2016 (As amended).

- The used batteries and E -waste are also stored in Integrated Waste Management
 Shed and disposed off through approved vendor.
- Hazardous waste Annual returns in Form 4 was submitted in line with the Hazardous and Other Wastes (Management & Trans boundary Movement) Rules, 2016.
- E-waste returns in Form 3 was submitted in line with the E-waste Management Rules 2016
- 100% utilization of STP sludge for greenbelt maintenance as manure.
- All the non-hazardous wastes like paper, wood, metal scraps generated from the terminal are also collected, stored in the Integrated Waste Management Shed and will be handled as per 5R principle.

Part-G

Impact of the pollution abatement measures taken on conservation of natural resources and on the cost of production

- Adani Ennore Container Terminal Private Limited is having electrified cranes only and hence the diesel consumption by the cranes is totally eliminated.
- All the domestic waste water generated at port is treated at existing sewage treatment plant and the treated water is being reused within port premises for gardening/horticulture purpose.
- Sewage Treatment Plant (STP) is in continuous operation and the treated effluent
 water quality is meeting the TNPCB norms. STP treated water is used for Gardening
 purpose, thereby reducing freshwater consumption. The total cost spent on STP
 operation during the year 2019-20 is Rs. 3.60 Lakhs.
- Regular Environmental monitoring is carried out through NABL accredited laboratory. All the monitored environmental parameters are well within the specified limit & the details of monitored data is regularly submitted to TNPCB, CPCB, MoEF&CC and other concerned authorities.
- Unit is continuously developing and maintaining green belt within port premises.
- Implemented Integrated Waste Management System (IWMS) for managing all types
 of wastes in line with 5R principle.

R.8.

Part-H

ADDITIONAL MEASURES/INVESTMENT PROPOSAL FOR ENVIRONMENTAL PROTECTION INCLUDING ABATEMENT OF POLLUTION, PREVENTION OF POLLUTION.

	Description	
	Regular Expenditure (cost in INR lakhs/ye	ear)
1	Environmental monitoring of MOEF recognized third party	7.8
2	Green belt & Horticulture development	22.14
3	Annual maintenance contractor of STP operation	4.20
4	Operation & Maintenance of Integrated Waste	2.40
2	Management System	

Part-I

ANY OTHER PARTICULARS IN RESPECT TO ENVIRONMENT

- Working towards achieving "Zero Waste Inventory" as per our Group Environment Policy and all wastes are being handled in line with 5R Principle.
- Energy Conservation Committee to measure the amount of energy consumed and take actions to reduce the energy consumed through port operations
- Carried out mass Tree Plantation of 1000 saplings through "Woodlot Planting Technique".
- Water Warriors committee to identify and reduce the water consumption. The committee would propose innovative water solutions
- Integrated Management System (ISO 9001:2015, 14001:2015 and 45001:2018) certified
- Single use and throwaway plastics completely banned inside the port premises.

Date:21.09.2020

(Signature of a person carrying out an

industry operation or process

Name : Jai Khurana

Designation: Chief Executive Officer

Address: Adani Ennore Container

Terminal Pvt Ltd

C/O Kamarajar Port Limited

Vallur post, Ennore

Thiruvallur District- 600 120.

ψŲ

		¥	AECTPL-ST/	ACK MONITORING	OKING	ו טא וווקה)	y to Mar	(April'2019 to March'2020)					
	Location						DG 1500KVA	OKVA					
		-	=	_	_	_	-	ı	_	_	=	=	Ξ
	Month & Year	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19	Oct-19	Nov-19	Dec-19	Jan-20	Feb-20	Mar-20
S.No.	Parameters												
-	Stack Temperature, °C	222	210	217	226	215	232	243	246	240	229	235	239
2	Flue Gas Velocity, m/s	16.5	17.45	18.01	19.23	20.14	21.56	23	21.19	20.03	22.43	21.19	21.86
3	Sulphur Dioxide, mg/Nm3	7.5	7	7.9	8.3	7.7	7.2	ω	6.8	7.6	7.1	7.8	8.3
4	NOX (as NO2) in ppmv	125	119	125	131	124	140	157	152	143	128	137	140
₂	Particular matter, mg/Nm3	31.6	28.9	31.2	33.4	31.3	32.8	30	33.6	29.8	27.5	29.1	33.6
9	Carbon Monoxide, mg/Nm3	64	69	74	80	74	79	71	75	64	69	77	79
7	Gas Discharge, Nm3/hr	4476	4839	4923	5162	5528	5695	5846	5470	5230	5985	5587	5719
		Ā	AECTPL- ST/	ACK MONITORING	TORING	(April'2019 to March'2020)	9 to Mar	ch'2020)			×		
	Location						DG 1500KVA	OKVA					
		=	=	=	=	=	=	II	Ш	-	II	-	=
	Month & Year	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19	Oct-19	Nov-19	Dec-19	Jan-20	Feb-20	Mar-20
S.No.	Parameters												
1	Stack Temperature, °C	214	201	212	220	229	237	529	239	232	237	245	230
2	Flue Gas Velocity, m/s	17.21	15.98	17.42	18.67	19.58	20.41	22	22.74	21.75	20.56	21.81	20.54
8	Sulphur Dioxide, mg/Nm3	6.9	6.2	7.5	ω	9.1	ω	2	8.1	2.6	2.7	8.5	7.4
4	NOX (as №02) in ppmv	120	107	119	128	136	144	150	141	143	139	142	133
2	Particular matter, mg/Nm3	34.2	30.5	29	31.9	30.5	33.1	15	32.4	29.8	29.7	31.4	32.8
9	Carbon Monoxide, mg/Nm3	55	63	7.1	78	72	82	<u> </u>	89	64	74	70	74
7	Gas Discharge, Nm3/hr	4734	4516	4811	5073	5225	5361	2825	5949	5230	5400	5640	5470

