

AECTPL/KPL/HYC/ENV/2020/03

Date: 25/01/2020

To, **The General Manager (Marine Services)**Kamarajar Port Limited,

23 Rajaji Salai, Chennai – 600 001

Dear Sir,

Sub: Development of container terminal at Kamarajar Port Limited on DBFOT basis, KPL awarded to Adani Ennore Container Terminal Private Limited-Submission of Half yearly Compliance (July 2019 – December 2019) of Environmental Clearance issued to Kamarajar Port Limited in various stages of development with regards to Container Terminal – Reg.

Ref: 1. Vide order no: 10-28/2005-IA-III dated 19th May, 2006

2. Vide order no: 10-28/2005-IA-III dated: 10/09/2007 and validity extension date: 31.03/2017

3. Vide order no: 10-28/2005-IA-III dated: 24/12/2014

With reference to the above captioned subject and cited references, Adani Ennore Container Terminal Private Limited is submitting the Half yearly compliance report (for the period July 2019 – December 2019) of applicable conditions to the Environmental & CRZ Clearance obtained by the M/s. Kamarajar Port Limited in various stages of development as referred above.

Kindly acknowledge us the receipt of the same.

For Adani Ennore Container Terminal Private Limited,

R. Sathish Ki

Head - Environing

Encl.: As above.

Adani Ennore Container Terminal Pvt Ltd Adani House C/o. Kamarajar Port Limited Ponneri Taluk, Tiruvallur District Tamil Nadu- 600 120. Tel +91 79 2656 56 5555 Fax +91 79 2555 5500 info@adani.com

www.adani.com CIN: U61200GJ2014PTC078795

5 रिए । इर

Chennai

Port Liv

AECTPL/KPL/HYC/ENV/2020/03

To, **The General Manager (Marine Services)** Kamarajar Port Limited, 23 Rajaji Salai, Chennai – 600 001

Dear Sir.

Sub: Development of container terminal at Kamarajar Port Limited on DBFOT basis, KPL awarded to Adani Ennore Container Terminal Private Limited-Submission of Half yearly Compliance (July 2019 – December 2019) of Environmental Clearance issued to Kamarajar Port Limited in various stages of development with regards to Container Terminal – Reg.

Date: 25/01/2020

Ref: 1. Vide order no: 10-28/2005-IA-III dated 19th May, 2006

2. Vide order no: 10-28/2005-IA-III dated: 10/09/2007 and validity

extension date: 31.03/2017

3. Vide order no: 10-28/2005-IA-III dated: 24/12/2014

With reference to the above captioned subject and cited references, Adani Ennore Container Terminal Private Limited is submitting the Half yearly compliance report (for the period July 2019 – December 2019) of applicable conditions to the Environmental & CRZ Clearance obtained by the M/s. Kamarajar Port Limited in various stages of development as referred above.

Kindly acknowledge us the receipt of the same.

For Adani Ennore Container Terminal Private Limited,

R. Sathish Kumar

Head - Environment

Encl.: As above.

From: July 2019
To: December 2019

H	Half yearly Compliance report on conditions stipulated in Environmental & CRZ Clearance (Period: July 2019 to December 2019)		
S. No.	Conditions	Compliance Status	
SPECIF	IC CONDITIONS		
I.	All the conditions stipulated in the NOC from TNPCB vide their letter No. T12/TNPCB/Misc./F.3322/TVLR/05, dated 07.12.2005 should be strictly implemented.	Status by KPL. Detailed compliance submitted as annexure by KPL dated 18.07.2013.	
II.	Groins and other suitable structures should be constructed to prevent the closing of the month of Ennore Creek.	Status by KPL.	
III.	The DPR and the technical details to be awarded to the BOT operator should provide to MoEF for post project monitoring within 6 months from the date of receipt of this letter.	Complied. Container Terminal DPR submitted vide letter number EPL/MS/49/2008 dt. 13/03/2008.	
IV.	The marine terminal should be set up outside CRZ area.	Status by KPL.	
V.	Recommendations of Risk Analysis report should be strictly implemented and a comprehensive quantitative Risk Analysis should be carried out before operationalizing the project.	Complied Operational Risk Assessment carried out and the recommendations are being implemented. Operational Risk Assessment report submitted vide Letter No.AECTPL/KPL/EC-compliance/Env/O2 dt. 13.07.2018.	
VI.	Approval form Chief Controller of Chief Explosives should be obtained for hazardous chemicals storage, transfer and related activities.	Not Applicable. AECTPL is not storing any Hazardous chemicals. Hence not applicable.	
VII.	The reclamation of the port area should be carried out with the dredged materials. Dredged material should not be dumped into the sea. No reclamation should be carried outside the port limits.	Status by KPL.	
VIII.	The coastal protection works should be carried out after detailed hydrodynamic modelling studies and it should be ensured that no erosion or accretion takes place in the shore protection works.	Status by KPL.	
IX.	Reclamation of 500 acres should be carried out only for the port development. The height of the reclaimed area will be maintained above the maximum flood level.	Status by KPL.	

From: July 2019
To: December 2019

Н	Half yearly Compliance report on conditions stipulated in Environmental & CRZ Clearance (Period: July 2019 to December 2019)		
S. No.	Conditions	Compliance Status	
X.	The wave tranquillity study and the ship manuring studies carried out should be taken into account while operating the port.	Status by KPL.	
XI.	The project proponent should ensure that doing construction and operation of the port there will been impact on the livelihood of the fisherman. The fishermen should be provided free access to carry out the fishing activity.	Status by KPL.	
XII.	All necessary precaution while undertaking construction and operation of the port should be taken keeping in view the bathymetric changes caused due to tsunami.	Status by KPL.	
XIII.	All development in the port should be accordance with the Coastal Regulation Zone Notification, 1991 and approved Coastal Zone Management Plan of Tamil Nadu.	Status by KPL.	
XIV.	The project proponent should undertake a comprehensive hydrodynamic modelling study with regard to river diversion and submit the report to the Ministry within 6 months from the date of receipt of this letter. Further the unit should comply with all the findings/recommendations of the study.	Status by KPL.	
XV.	Construction labour camps should be located outside of CRZ area and should be provided with adequate cooking and sanitation facilities.	Complied. Construction of container terminal is completed and the terminal is under operation	
XVI.	The project affected people, of any should be properly compensated and rehabilitated.	Status by KPL.	

From: July 2019
To: December 2019

GENERAL	CONDITIONS:	
i.	Development of the proposed channel should be undertaken meticulously conforming to the existing Central/Local rules and regulations including CRZ Notification, 1991 and its amendments. All the construction designs/drawings relating to the proposed development activities must have approvals of the concerned State Govt. Depts./Agencies.	Status by KPL.
ii.	A well-equipped laboratory with suitable instruments to monitor the quality of air and water shall be set up as to ensure that the quality of ambient air and water conforms to the prescribed standards. The laboratory will also equipped with qualified manpower including a marine biologist so that the marine water quality is regularly monitored in order to ensure that the marine life is not adversely affected as a result of implementation of the said project. The quality of ambient air and water shall be monitored periodically in all the seasons and the results should be properly maintained for inspection of concerned pollution control agencies. The periodic monitoring reports at least once in 6 months must be send to this Ministry (RO at Bangalore) and Pollution Control Committee.	AECTPL has awarded Environmental Monitoring services to NABL accredited laboratory. Monitoring of Ambient Air Quality, Noise, Stack, STP, Drinking Water, Marine Surface Water, Sea Sediment is carried out on regular basis. All the monitoring results conforms to the prescribed standard. The reports are being submitted to KPL and Tamil Nadu Pollution Control Board on monthly basis and also as part of Six monthly compliance report. Environment Monitoring report for the period July 2019 – December 2019 is attached as Annexure - I. Records of analysis reports are properly maintained and made available for inspection to the concerned State/Central officials during their inspection/visits.
iii.	Adequate provisions for infrastructure facilities such as water supply, fuel for cooking, sanitation etc. must be provided for the labourers during the construction period in order to avoid damage to the environment. Colonies for the labourers should not be located in CRZ area. It should also be ensured that the construction workers do not cut trees including mangroves for fuel wood purpose.	Complied. Construction completed and the terminal is in operation
iv.	To prevent discharge of sewage and other liquid wastes into the water bodies, adequate system for collection	Complied. AECTPL has installed and operating

From: July 2019
To: December 2019

	and treatment of the waste must be provided. No Sewage and other liquid wastes without treatment should be allowed to enter into the water bodies.	25 KLD capacity Sewage Treatment Plant and the entire treated water is being used for horticulture purpose.
V.	Appropriate facility should be created for the collection of solid and liquid wastes generated by the barges/vessels and their safe treatment and disposal should be ensured to avoid possible contamination of the water bodies.	Status by KPL.
vi.	Necessary navigational aids such as channel markers should be provided to prevent accidents. Internationally recognized safety standards shall be applied in case of barge/vessel movements.	Status by KPL.
vii.	The project authorities should take appropriate community development and welfare measures for villagers in the vicinity of the project site, including drinking water facilities. A separate fund should be allocated for the purpose.	However, AECTPL has implemented CSR activities like General Health Camp, Eye Camp, encouraging sports & events, etc., in the vicinity of the Port area. Expenses incurred for CSR during the compliance period is Rs.13.51 Lakhs
viii.	The quarrying material required for the construction purpose should be obtained only from the approved quarries/borrow areas. Adequate safeguards measures shall be taken to ensure that the overburden and rocks at the quarry site do not find their way in water bodies.	Complied Construction is completed and terminal is in operation phase
ix.	For employing unskilled, semi-skilled and skilled workers for the project, preference should be given to local people.	Complied. AECTPL has considered local people during construction phase & also during Operation Phase through Contracts.
X.	The recommendations made in the EMP and DMP, as contained in the EIA and RA reports of the projects shall be effectively implemented.	Status by KPL.
xi.	A separate EMC with suitable qualified staff to carry out various environment should be set up under the charge of a Senior Executive who	Complied. A separate EMC with suitable qualified staff has been put in place by AECTPL for taking care of various

From: July 2019
To: December 2019

	will report directly to Chief Executive of the Company.	day-to-day Environmental monitoring compliance and allied activities. Environment Department is headed by Senior Manager – Environment, who is reporting directly to Chief Executive Officer of the company. He is well supported by Environment Management Team at H.O.
xii.	The funds earmarked for environment protection measures should be maintained in a separate account and there should be no diversion of these funds for any other purpose. A yearwise expenditure on environmental safeguards should be reported to this Ministry.	Environmental Expenditure during compliance period (July19 to Dec'19) is Rs. 16.03 Lakhs. Breakup details are as follows; • Environmental Monitoring- Rs. 3.43 Lakhs • Greenbelt Development - Rs.2.3 Lakhs • House Keeping - Rs. 8.5 Lakhs • O&M of STP - Rs. 1.8 Lakhs
xiii.	Full support should be extended to the officers of the Ministry's Regional office at Bangalore and the officer of the Central and SPCB by the project proponent during this inspection for monitoring purposes, by furnishing full details and action plans including the action plans including the action taken reports in respect if mitigative measures and other environmental protection activities.	Noted for compliance. TNPCB Officials have visited our Port on monthly basis. There was no visit of officials from RO-MoEF&CC and CPCB during the compliance period. All the necessary support is provided during their site visit. The same shall be ensured in future as well.
xiv.	In case there is an intension of deviation or alternation in the project including the implementing agency, a fresh reference should be made to this Ministry for modification in the clearance conditions or imposition of new ones for ensuring environmental protection. The project proponents should be responsible for implementing the suggested safeguard measures.	Noted for compliance
XV.	The Ministry reserves right to revoke this clearance, if any of the conditions stipulated are not compiled with to the satisfaction of this Ministry.	Noted.
xvi.	This Ministry or any other competent authority may stipulate additional conditions subsequently, if deemed	Noted for Compliance

From: July 2019
To: December 2019

	necessary for environmental	
	protection, which shall be complied	
	with.	
xvii.	The project proponent should	Status by KPL.
	advertise at least in two local	
	newspapers widely circulated in the	
	region around the project, one of	
	which shall be in the vernacular	
	language of the locality concerned	
	available with the SPCB and may also	
	be seen at Website of the Ministry of	
	Environment & Forests at	
	http:www.envforenic.in. The	
	advertisement should be made within	
	7 days from the date of issue of the	
	clearance letter and a copy of the	
	same should be forwarded to the	
	Regional Office of the Ministry at	
	Bangalore.	
xviii.	The project proponents should inform	Status by KPL.
	the RO as well as the Ministry the	-
	date of financial closure and final	
	approval of the project by the	
	concerned authorities and the date of	
	start of Land Development Work.	

From: July 2019
To: December 2019

Status of Conditions Stipulated in Environmental and CRZ Clearance File no: 10-28/2005-IA-III dated 19th May, 2006

Vide order no: 10-28/2005-IA-III dated: 10/09/2007 and validity extension date: 31.03/2017

A. SPECIFIC CONDITIONS:

S.No	Environmental Clearance conditions	Compliance Status
İ	It should be ensured that no mangroves are destroyed during reclamation.	Status by KPL.
ii	The proposed extension to the project should not cause any shoreline change abutting Ennore Port.	Status by KPL.
iii	Adequate provision for beach nourishment and sand bypass should be provided.	Status by KPL.
iv	The dredged material obtained should be utilized for filling up of back up area.	Status by KPL.
V	All conditions stipulated in the environmental clearance letter of even number dated 19.05.2006 should be strictly complied with.	All stipulated conditions applicable to AECTPL in the environmental clearance letter of even number dated 19.05.2006 are being complied and compliance reports are regularly submitted to KPL. Last compliance report for the period Jan 2019 to June 2019 was submitted to KPL vide letter No. AECTPL/KPL/HYC dated 23.07.2019.
vi	The additional dredged material of 4 million cu. Mts. obtained from the project should not be disposed of into the sea.	Status by KPL.
vii	The reclaimed area should be used as containers stack yard only.	Status by KPL.
viii	Adequate drainage facilities should be provided in the reclaimed are along with collection and treatment system for treating the run off from the container stack yards.	·
ix	Necessary approvals/clearances should be obtained from the Tamil Nadu Coastal Zone Management Authority and Tamil Nadu Pollution Control Board before implementing the project.	Complied TNCZMA recommendation was obtained by KPL Tamil Nadu Pollution Control Board accorded Renewal of Consent to Operate orders to handle 11.68 MMTPA containers vide order no:

From: July 2019
To: December 2019

Status of Conditions Stipulated in Environmental and CRZ Clearance File no: 10-28/2005-IA-III dated 19th May, 2006

1808111676581 & 1808211676581
under Air and Water Acts dated:
23/08/2018 valid for 3 years (i.e) valid
till 31st March 2021.

B. GENERAL CONDITIONS:

S.No	Environmental Clearance conditions	Compliance Status
İ	Construction of the proposed structures should be undertaken meticulously confirming to the existing Central/ local rules and regulations including Coastal Regulation Zone Notification 1991 & its amendments. All the construction design drawings relating to the proposed construction activities must have approvals of the concerned State Government Departments / Agencies.	Status by KPL.
ii	Adequate provisions for infrastructure facilities such as water supply, fuel, sanitation etc. should be ensured for construction workers during the construction phase of the project so as to avoid felling of trees/ Mangroves and pollution of water and the surroundings.	Complied. Construction of container terminal is completed and project is in operation phase
iii	The project authorities mush make necessary arrangements for disposal of solid wastes and for the treatment of effluents by providing a proper wastewater treatment plant outside the CRZ area. The quality of treated effluents, solid wastes and noise level etc. must conform to the standards laid down by the competent authorities including the Central/State Pollution Control Board and the Union Ministry of Environment and Forests under the Environment (Protection) Act, 1986, whichever are more stringent.	AECTPL has installed and operating 25 KLD sewage treatment plant to collect and treat the sewage generated from the terminal. The entire treated water is being used for horticulture purpose. All the Solid waste generated is properly collected, source segregation of all types of Solid Waste is practised and are disposed as per the provision of Solid Waste Management Rules 2016, as amended. AECTPL has implemented Integrated Waste Management System (IWMS) - Waste Segregation Yard.
iv	The proponent shall obtain the requisite consents for discharge of effluents and emission under the Water (Prevention and Control of Pollution)	Complied Tamil Nadu Pollution Control Board accorded Renewal of Consent to

From: July 2019
To: December 2019

	Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981 from the Tamil Nadu Pollution control Board before commissioning of the project and a copy of each of these shall be sent to this Ministry.	Operate orders to handle 11.68 MMTPA containers vide order no: 1808111676581 & 1808211676581 under Air and Water Acts dated: 23/08/2018 valid for 3 years. Copy of the Consent Orders attached as Annexure – III.
V	The proponent shall provide for a regular monitoring mechanism so as to ensure that the treated effluents conform to the prescribed standards. The records of analysis reports must be properly maintained and made available for inspection to the concerned State/Central officials during their visits.	AECTPL has awarded Environmental Monitoring services to NABL accredited laboratory. Monitoring of Ambient Air Quality, Noise, Stack, STP, Drinking Water, Marine Surface Water, Sea Sediment is carried out on regular basis. The reports are being submitted to KPL and Tamil Nadu Pollution Control Board on monthly basis and also as part of Six monthly compliance report. Environment Monitoring report for the period July 2019 – December 2019 is attached as Annexure - I.
		Records of analysis reports are properly maintained and made available for inspection to the concerned State/Central officials during their visits.
Vİ	In order to carry out the environmental monitoring during the operational phase of the project, the project authorities should provide an environmental laboratory well equipped with standard equipment and facilities and qualified manpower to carry out the testing of various environmental parameters.	Environmental Monitoring is being carried out through NABL accredited laboratory. Monitoring of Ambient Air Quality, Noise, Stack, STP, Drinking Water, Marine Surface Water, Sea Sediment is carried out on regular basis. The reports are being submitted to KPL and Tamil Nadu Pollution Control Board on monthly basis and also as part of Six monthly compliance reports. Environment Monitoring report for the period July 2019 – December 2019 is attached as Annexure - I.

From: July 2019
To: December 2019

vii	The sand dunes and mangroves, if any, on the site should not be disturbed in any way.	Status by KPL.
viii	A copy of the clearance letter will be marked to the concerned Panchayat/Local NGO, if any from whom any suggestion/representation has been received while processing the proposal.	Status by KPL.
ix	The Tamil Nadu Pollution Control Board should display a copy of the clearance letter at the Regional Office, District Industries Centre and Collector's Office/Tehsildar's Office for 30 days.	Status by KPL.
X	The funds earmarked for environment protection measures should be maintained in a separate account and there should be no diversion of these funds for any other purpose. A year wise expenditure on environmental safeguards should be reported to this Ministry's Regional Office at Bangalore and the State Pollution Control Board.	Environmental Expenditure during compliance period (July19 to Dec'19) is Rs. 16.03 Lakhs. Breakup details are as follows; Environmental Monitoring— Rs. 3.43 Lakhs Greenbelt Development— Rs.2.3 Lakhs House Keeping— Rs. 8.5 Lakhs O&M of STP— Rs. 1.8 Lakhs
xi	Full support should be extended to the officers of this Ministry's Regional office at Bangalore and the officers of the Central and State Pollution Control Boards by the project proponents during their inspection for monitoring purposes, by furnishing full details and action plans including the action taken reports in respect of mitigative measures and other environmental protection activities.	Noted for compliance. TNPCB Officials have visited our Port on monthly basis. There was no visit of officials from RO-MoEF&CC and CPCB during the compliance period. All the necessary support is provided during their site visit. The same shall be ensured in future as well.
xii	In case of deviation or alteration in the project including the implementing agency, a fresh reference should be made to this Ministry for modification in the clearance conditions or imposition of new ones for ensuring environmental protection.	Noted.
xiii	This Ministry reserve the right to revoke this clearance, if any of the conditions stipulated are not complied with to the satisfaction of this Ministry.	Noted.

From: July 2019
To: December 2019

Status of Conditions Stipulated in Environmental and CRZ Clearance File no: 10-28/2005-IA-III dated 19th May, 2006

	T1 : AA: : .	
xiv	This Ministry or any other component	Noted.
	authority may stipulate any other	
	additional conditions subsequently, if	
	deemed necessary, for environmental	
	protection, which shall be complied	
	with.	
XV	The project proponent should advertise	Status by KPL.
	at least in two local newspapers widely	
	circulated in the region around the	
	project, one of which shall be in the	
	vernacular language of the locality	
	concerned informing that the project	
	has been accorded environmental	
	clearance and copies of clearance	
	letters are available with the State	
	Pollution Control Board and may also	
	be seen at Website of the Ministry of	
	Environment & Forests at	
	http://www.envfornic.in. The	
	advertisement should be made within 7	
	days from the date of issue of the	
	clearance letter and a copy of the same	
	should be forwarded to the regional	
	Office of this Ministry at Bangalore.	
xvi	The Project proponents should inform	Status by KPL.
	the Regional Office at Bangalore as	•
	well as the Ministry the date of	
	financial closure and final approval of	
	the project by the concerned	
	authorities and the date of start of	
	Land Development Work.	

Vide order no: 10-28/2005-IA-III dated: 24/12/2014

A. SPECIFIC CONDITIONS:

S.No	Environmental Clearance conditions	Compliance Status
i	"Consent to Establish" for the	Complied.
	present project, shall be obtained	
	from State Pollution Control Board	Tamil Nadu Pollution Control Board
	under Air (Prevention and Control of	accorded Renewal of Consent to
	Pollution) Act, 1981 and Water	Operate orders to handle 11.68
	(Prevention and Control of Pollution)	MMTPA containers vide order no:
	Act 1974.	1808111676581 & 1808211676581
		under Air and Water Act dated:
		23/08/2018 valid for 3 years (i.e) valid
		till 31 st March 2021.

From: July 2019
To: December 2019

ii		
"	Quality of Cargo should be handled	•
	in accordance with the details	AECTPL is handling only containerized
	provided in the Form-I.	cargo, as approved.
iii	All the recommendations and	Status by KPL.
	conditions stipulated by Tamil Nadu	•
	Coastal Zone Management Authority	
	(TNCZMA) No. 30060/EC.3/2005-1	
	dated 06.12.2005 shall be complied	
	with.	
iv	All the conditions as prescribed in	Status by KPL.
' '	the earlier Clearance letter no. 10-	October by IN E.
	28/2005-IA-III dated 19.05.2006 and	
	10.09.2007 shall be complied with.	
V	All the recommendation of the	Status by KPL.
V	EIA/EMP & Risk Assessment and	Status by RPL.
	Disaster Management Report shall	
	be complied with letter and spirit. All	
	the mitigation measures submitted	
	in the EIA report shall be prepared in	
	the matrix format and the	
	compliance for each mitigation plan	
	shall be submitted to MoEF & CC	
	along with half yearly compliance	
	report to MoEF&CC- RO.	
vi	The commitment made by the	Status by KPL.
	proponent to the issue raised during	
	Public Hearing shall be implemented	
	by the Proponent.	
vii	Corporate Environmental	
	Responsibility:	
	a. The Company shall have a well	
	laid down Environmental	AECTPL having approved QHSE policy.
	laid down Environmental Policy approved by the Board	AECTPL having approved QHSE policy.
		AECTPL having approved QHSE policy.
	Policy approved by the Board	AECTPL having approved QHSE policy.
	Policy approved by the Board of Directors.	AECTPL having approved QHSE policy. AECTPL having approved SOPs.
	Policy approved by the Board of Directors. b. The Environment Policy shall	
	Policy approved by the Board of Directors. b. The Environment Policy shall prescribe for standard	
	Policy approved by the Board of Directors. b. The Environment Policy shall prescribe for standard operating process/procedures	
	Policy approved by the Board of Directors. b. The Environment Policy shall prescribe for standard operating process/procedures to bring into focus any	
	Policy approved by the Board of Directors. b. The Environment Policy shall prescribe for standard operating process/procedures to bring into focus any infringements/deviation/violat	
	Policy approved by the Board of Directors. b. The Environment Policy shall prescribe for standard operating process/procedures to bring into focus any infringements/deviation/violat ion of the environmental or forest norms/conditions.	
	Policy approved by the Board of Directors. b. The Environment Policy shall prescribe for standard operating process/procedures to bring into focus any infringements/deviation/violat ion of the environmental or forest norms/conditions. c. The hierarchical system or	AECTPL having approved SOPs.
	Policy approved by the Board of Directors. b. The Environment Policy shall prescribe for standard operating process/procedures to bring into focus any infringements/deviation/violat ion of the environmental or forest norms/conditions. c. The hierarchical system or Administrative Order of the	
	Policy approved by the Board of Directors. b. The Environment Policy shall prescribe for standard operating process/procedures to bring into focus any infringements/deviation/violat ion of the environmental or forest norms/conditions. c. The hierarchical system or Administrative Order of the company to deal with	AECTPL having approved SOPs.
	Policy approved by the Board of Directors. b. The Environment Policy shall prescribe for standard operating process/procedures to bring into focus any infringements/deviation/violat ion of the environmental or forest norms/conditions. c. The hierarchical system or Administrative Order of the company to deal with environmental issues and for	AECTPL having approved SOPs.
	Policy approved by the Board of Directors. b. The Environment Policy shall prescribe for standard operating process/procedures to bring into focus any infringements/deviation/violat ion of the environmental or forest norms/conditions. c. The hierarchical system or Administrative Order of the company to deal with environmental issues and for ensuring compliance with the	AECTPL having approved SOPs.
	Policy approved by the Board of Directors. b. The Environment Policy shall prescribe for standard operating process/procedures to bring into focus any infringements/deviation/violat ion of the environmental or forest norms/conditions. c. The hierarchical system or Administrative Order of the company to deal with environmental issues and for	AECTPL having approved SOPs.

From: July 2019
To: December 2019

Status of Conditions Stipulated in Environmental and CRZ Clearance File no: 10-28/2005-IA-III dated 19th May, 2006

have a well laid down system	Standard procedures are made available to address corrective & preventive deviation and violations.
company and / or shareholders at large.	

B. GENERAL CONDITIONS:

S.No	Environmental Clearance conditions	Compliance Status
i	Appropriate measures must be taken	Complied
	while undertaking digging activities	
	to avoid any likely degradation of	Construction completed and project is
	water quality.	under operation.
ii	Full support shall be extended to the	Noted for compliance.
	officers of the Ministry/Regional	
	Office at Chennai by the project	TNPCB Officials have visited our Port
	proponent during inspection of the	on monthly basis. There was no visit
	project for monitoring purposes by	of officials from RO-MoEF&CC and
	furnishing full details and action plan	CPCB during the compliance period.
	including action taken reports in	All the necessary support is provided
	respect of mitigation measures and	during their site visit. The same shall
	other environmental protection activities.	be ensured in future as well.
iii	A six-Monthly monitoring report shall	Status by KPL.
'''	be need to be submitted by the	Status by RPL.
	project proponents to the Regional	
	Office of this Ministry at Chennai	
	regarding the implementation of the	
	stipulated conditions.	
iv	Ministry of Environment, Forests &	Noted for compliance.
	Climate Change or any other	•
	competent authority may stipulate	
	any additional conditions or modify	
	the existing ones, if necessary in the	
	in the interest of environment and	
	the same shall be complied with.	
٧	The Ministry reserves the rights to	Noted.
	revoke this clearance if any of the	
	conditions stipulated are not	
	complied with satisfaction of the	
	Ministry.	
vi	In the event of a change in project	Noted.
	profile or change in the	

From: July 2019
To: December 2019

	implementation agency, a fresh reference shall be made to the Ministry of Environment, Forests & Climate Change.	
vii	The project proponents shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of start of land development work.	Noted.
viii	A copy of the clearance letter shall be marked to concerned Panchayat/ Local NGO, if any, from whom any suggestion/ representation has been made received while processing the proposal.	Status by KPL.
ix	The project proponent shall set up separate environmental management cell for effective implementation of the stipulated environmental safeguards under the supervision of a Senior Executive.	Complied. A separate EMC with suitable qualified staff has been put in place by AECTPL for taking care of various day to day Environmental monitoring, compliance and allied activities. Environment Department is headed by Senior Manager – Environment, reporting directly to Chief Executive Officer. EMC is well supported by Environment Management Cell, HO.
x	The funds earmarked for environment management plan shall be included in the budget and this shall not be diverted for any other purposes.	Complied Environmental Expenditure during compliance period (July19 to Dec'19) is Rs. 16.03 Lakhs. Breakup details are as follows; • Environmental Monitoring- Rs. 3.43 Lakhs • Greenbelt Development - Rs.2.3 Lakhs • House Keeping - Rs. 8.5 Lakhs • O&M of STP - Rs. 1.8 Lakhs
5.	These stipulations would be enforced among others under the provisions of Water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986, the Public Liability (Insurance) Act, 1991 and	Noted.

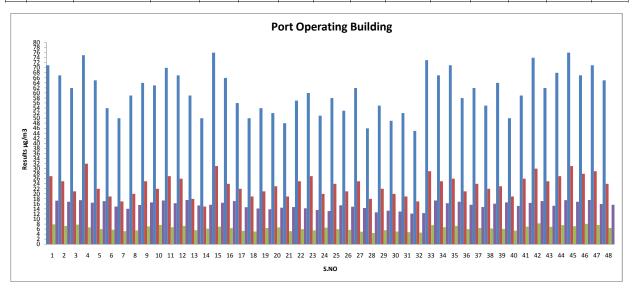
From: July 2019
To: December 2019

	T	
	EIA Notification 1994, including the	
	amendments and rules made	
	thereafter.	
6.	All other statutory clearances such	Noted.
	as the approvals for storage of diesel	
	from Chief Controller of Explosives, Fire Department, Civil Aviation	
	Fire Department, Civil Aviation Department, Forest conservation Act,	
	1980 and Wildlife (Protection)	
	Act,1972 etc. shall be obtained, as	
	applicable by project proponents	
	from the respective competent	
	authorities.	
7.	The project proponent shall advertise	Status by KPL.
	at least in two local newspapers	
	widely circulated in the region	
	around the project, one of which	
	shall be in the vernacular language	
	of the locality concerned informing	
	that the project has been accorded	
	Environmental and CRZ clearance	
	and copies of clearance letters are	
	available with the Tamil Nadu State Pollution Control Board and may also	
	be seen at Website of the Ministry of	
	Environment, Forests and Climate	
	Change at http://www.envfornic.in .	
	The advertisement should be made	
	within Seven days from the date of	
	issue of the clearance letter and a	
	copy of the same should be	
	forwarded to the regional Office of	
	this Ministry at Chennai.	
8.	The clearance is subject to final	Noted.
	order of the Hon'ble Supreme Court	
	of India in the matter of Goa	
	Foundation Vs. Union of India in Writ	
	Petition (Civil) No. 460 of 20014 as	
9.	may be applicable this project. Any appeal against this clearance	Noted.
J.	shall lie with the National Green	14000
	Tribunal, if preferred, with a period of	
	30 days as prescribed under Section	
	16 of the National Green Tribunal Act	
	2010.	
10.	Status of compliance to the various	Complied.
	stipulated environment conditions	The compliance to the various
	and environmental safeguards will be	conditions stipulated for

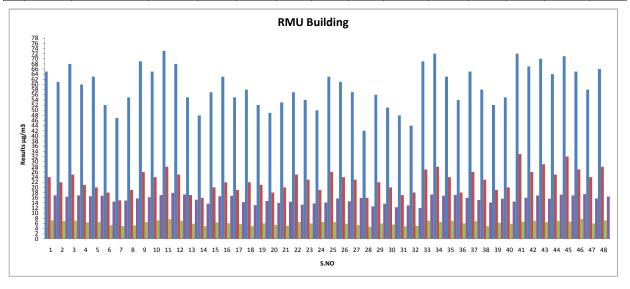
From: July 2019
To: December 2019

	uploaded by the project proponent in its website.	environmental safeguards are uploaded in our Company website and
11.	A copy of the clearance letter shall be sent by the proponent to concerned Panchayat, Zilla Parisad /Municipal Corporation, Urban Local Body and the Local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the company by the proponent.	KPL website. Status by KPL.
12.	The proponent shall upload the status of compliance of the stipulated Clearance conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Reginal Office of MoEF, the respective Zonal Office of CPCB and the SPCB.	_
13.	The project proportion shall also submit six monthly reports on the status of compliance of the stipulated Clearance conditions including results of monitored data (both in hard copies as well as by email) to the respective Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB.	Status by KPL.
14.	The Environmental Statement for each financial year ending 31st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of Clearance conditions and shall also be sent to the respective Reginal Office of MoEF & CC by email.	Complied. Environment Statement (Form V) submitted FY 2018-19 vide our Letter No. AECTPL/ENV/2019-20/08 dated 20.09.2019 is enclosed as Annexure – II.

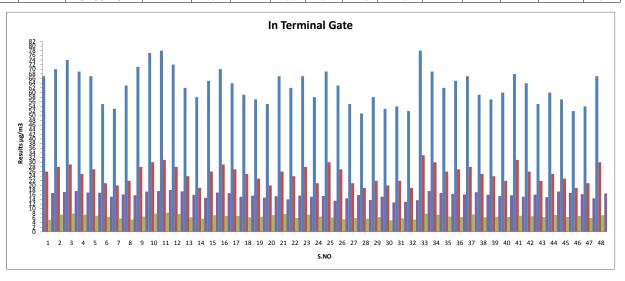
From: July 2019
To: December 2019


Status of Conditions Stipulated in Environmental and CRZ Clearance File no: 10-28/2005-IA-III dated 19th May, 2006

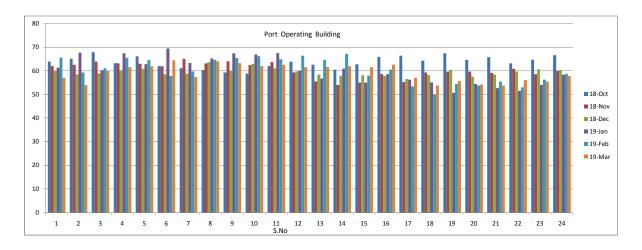
Enclosures:

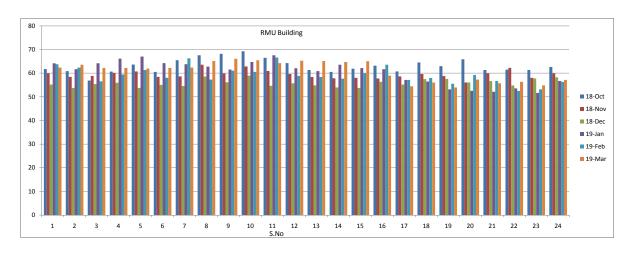

Annexure Number	Details of Annexure
Annexure I:	Environmental Monitoring reports for the period July'19 to Dec'19
Annexure II:	Environmental Statement – Form V for the FY 2018-19
Annexure III:	TNPCB Consent to Operate Orders Under Air & Water Acts dated 23.08.2018

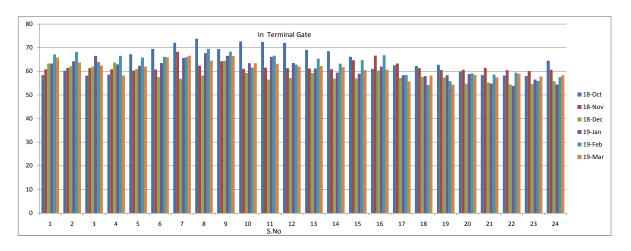
ADANI ENNORE CONTAINER TERMINAL PRIVATE LIMITED (AECTPL) Jul - 19 to Dec - 19


					PORT	OPERATING	G BUILDING	(AAQ1)						
		nmeters	Particular matter PM ₁₀	Particular matter PM _{2.5}	Sulphur dioxide as SO ₂	Nitrogen dioxide as NO ₂	Lead as Pb	Carbon monoxide as CO	Ozone as O ₃	Ammonia as NH ₃	Arsenic as As	Nickel as Ni	Benzene as C ₆ H ₆	Benzo (a) pyrene as BaP
		Unit	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m ³	μg/m³	μg/m³	ng/m³	ng/m³	μg/m³	ng/m³
		AQM Standard	100	60	80	80	1	4	180	400	6	20	5	1
S.No.	Sampling Date		74	27		47.0	.0.4	.4.0	-10				-4	.0.1
1	01.07.2019	GCS/LAB/S/1834/19-20	71	27	7.9	17.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
2	05.07.2019	GCS/LAB/S/1834/19-20	67	25	7.3	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
3	08.07.2019	GCS/LAB/S/1834/19-20	62	21	7.8	17.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
4	12.07.2019	GCS/LAB/S/1834/19-20	75	32	6.7	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
5	15.07.2019	GCS/LAB/S/1834/19-20	65	22	6.0	17.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
6	19.07.2019	GCS/LAB/S/1834/19-20	54	19	5.8	15.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
7	22.07.2019	GCS/LAB/S/1834/19-20	50	17	5.2	14.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
8	26.07.2019	GCS/LAB/S/1834/19-20	59	20	5.5	15.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
9	02.08.2019	GCS/LAB/S/1825/19-20	64	25	7.1	16.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
10	05.08.2019	GCS/LAB/S/1825/19-20	63	22	7.7	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
11	09.08.2019	GCS/LAB/S/1825/19-20	70	27	6.8	16.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
12	12.08.2019	GCS/LAB/S/1825/19-20	67	26	7.3	17.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
13	16.08.2019	GCS/LAB/S/1825/19-20	59	18	5.6	15.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
14	19.08.2019	GCS/LAB/S/1825/19-20	50	15	6.2	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
15	23.08.2019	GCS/LAB/S/1825/19-20	76	31	7.0	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
16	26.08.2019	GCS/LAB/S/1825/19-20	66	24	6.4	17.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
17	03.09.2019	GCS/LAB/S//19-20	56	22	5.3	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
18	06.09.2019	GCS/LAB/S//19-20	50	19	5.1	14.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
19	09.09.2019	GCS/LAB/S//19-20	54	21	6.5	13.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
20	13.09.2019	GCS/LAB/S//19-20	52	23	6.7	14.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
21	16.09.2019	GCS/LAB/S//19-20	48	19	5.2	14.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
22	20.09.2019	GCS/LAB/S//19-20	57	25	6.0	14.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
23	23.09.2019	GCS/LAB/S//19-20	60	27	5.5	13.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
24	27.09.2019	GCS/LAB/S//19-20	51	20	6.6	13.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
25	03.10.2019	GCS/LAB/S/2066/19-20	58	24	6.0	15.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
26	08.10.2019	GCS/LAB/S/2066/19-20	53	21	5.7	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
27	11.10.2019	GCS/LAB/S/2066/19-20	62	25	5.0	14.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
28	14.10.2019	GCS/LAB/S/2066/19-20	46	18	4.5	12.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
29	18.10.2019	GCS/LAB/S/2066/19-20	55	22	5.6	13.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
30	21.10.2019	GCS/LAB/S/2066/19-20	49	20	5.1	13.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
31	25.10.2019	GCS/LAB/S/2066/19-20	52	19	4.8	12.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
32	28.10.2019	GCS/LAB/S/2066/19-20	45	17	4.6	12.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
33	01.11.2019	GCS/LAB/S/2137/19-20	73	29	7.6	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
34	04.11.2019	GCS/LAB/S/2137/19-20	67	25	6.8	16.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
35	08.11.2019	GCS/LAB/S/2137/19-20	71	26	7.3	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
36	11.11.2019	GCS/LAB/S/2137/19-20	58	21	6.0	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
37	15.11.2019	GCS/LAB/S/2137/19-20	62	24	6.5	14.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
38	18.11.2019	GCS/LAB/S/2137/19-20	55	22	6.3	16.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
39	22.11.2019	GCS/LAB/S/2137/19-20	64	23	6.1	16.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
40	25.11.2019	GCS/LAB/S/2137/19-20	50	19	5.4	15.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
41	02.12.2019	GCS/LAB/S/2232/19-20	59	26	7.0	16.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
42	06.12.2019	GCS/LAB/S/2232/19-20	74	30	8.3	17.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
43	09.12.2019	GCS/LAB/S/2232/19-20	62	25	6.9	15.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
44	13.12.2019	GCS/LAB/S/2232/19-20	68	27	7.6	17.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
45	16.12.2019	GCS/LAB/S/2232/19-20	76	31	7.2	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
46	20.12.2019	GCS/LAB/S/2232/19-20	67	28	8.1	17.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
47	23.12.2019	GCS/LAB/S/2232/19-20	71	29	7.7	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
48			65	24						<2	<2	<2	<1	
48	27.12.2019	GCS/LAB/S/2232/19-20	65	24	6.5	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1

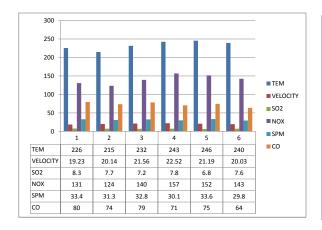
						RMU BUIL	DING (AAQ2	2)						
		meters	Particular matter PM ₁₀	Particular matter PM _{2.5}	Sulphur dioxide as SO ₂	Nitrogen dioxide as NO ₂	Lead as Pb	Carbon monoxide as CO	Ozone as O ₃	Ammonia as NH ₃	Arsenic as As	Nickel as Ni	Benzene as C ₆ H ₆	Benzo (a) pyrene as BaP
		Unit	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³	μg/m³	μg/m³	ng/m³	ng/m³	μg/m³	ng/m³
		AQM Standard	100	60	80	80	1	4	180	400	6	20	5	1
S.No.	Sampling Date	Report Number	C.F.	24	7.0	46.0	.0.4	.4.0	-10				-4	.0.4
1	01.07.2019	GCS/LAB/S/1834/19-20	65	24	7.3	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
2	05.07.2019	GCS/LAB/S/1834/19-20	61	22	6.9	16.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
3	08.07.2019	GCS/LAB/S/1834/19-20	68	25	7.1	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
4	12.07.2019	GCS/LAB/S/1834/19-20	60	21	6.4	16.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
5	15.07.2019	GCS/LAB/S/1834/19-20	63	20	6.6	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
6	19.07.2019	GCS/LAB/S/1834/19-20	52	18	5.3	14.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
7	22.07.2019	GCS/LAB/S/1834/19-20	47	15	5.0	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
8	26.07.2019	GCS/LAB/S/1834/19-20	55	19	5.2	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
9	02.08.2019	GCS/LAB/S/1825/19-20	69	26	6.5	16.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
10	05.08.2019	GCS/LAB/S/1825/19-20	65	24	7.2	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
11	09.08.2019	GCS/LAB/S/1825/19-20	73	28	7.7	17.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
12	12.08.2019	GCS/LAB/S/1825/19-20	68	25	7.0	17.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
13	16.08.2019	GCS/LAB/S/1825/19-20	55	17	5.9	15.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
14	19.08.2019	GCS/LAB/S/1825/19-20	48	16	5.0	13.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
15	23.08.2019	GCS/LAB/S/1825/19-20	57	20	6.4	16.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
16	26.08.2019	GCS/LAB/S/1825/19-20	63	22	6.1	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
17	03.09.2019	GCS/LAB/S//19-20	55	19	5.7	14.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
18	06.09.2019	GCS/LAB/S//19-20	58	22	5.0	13.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
19	09.09.2019	GCS/LAB/S//19-20	52	21	6.1	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
20	13.09.2019	GCS/LAB/S//19-20	49	18	5.5	14.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
21	16.09.2019	GCS/LAB/S//19-20	53	20	5.1	14.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
22	20.09.2019	GCS/LAB/S//19-20	57	25	6.5	13.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
23	23.09.2019	GCS/LAB/S//19-20	54	23	6.0	13.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
24	27.09.2019	GCS/LAB/S//19-20	50	19	6.6	14.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
25	03.10.2019	GCS/LAB/S/2066/19-20	63	26	6.5	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
26	08.10.2019	GCS/LAB/S/2066/19-20	61	24	5.9	14.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
27	11.10.2019	GCS/LAB/S/2066/19-20	57	23	5.4	15.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
28	14.10.2019	GCS/LAB/S/2066/19-20	42	16	4.7	12.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
29	18.10.2019	GCS/LAB/S/2066/19-20	56	22	6.0	13.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
30	21.10.2019	GCS/LAB/S/2066/19-20	51	20	5.6	12.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
31	25.10.2019	GCS/LAB/S/2066/19-20	48	17	4.9	13.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
32	28.10.2019	GCS/LAB/S/2066/19-20	44	18	5.1	12.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
33	01.11.2019	GCS/LAB/S/2137/19-20	69	27	7.0	17.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
34	04.11.2019	GCS/LAB/S/2137/19-20	72	28	6.6	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
35	08.11.2019	GCS/LAB/S/2137/19-20	63	24	7.0	17.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
36	11.11.2019	GCS/LAB/S/2137/19-20	54	18	6.1	15.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
37	15.11.2019	GCS/LAB/S/2137/19-20	65	26	6.9	15.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
38	18.11.2019	GCS/LAB/S/2137/19-20	58	23	5.0	14.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
39	22.11.2019	GCS/LAB/S/2137/19-20	52	19	6.3	15.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
40	25.11.2019	GCS/LAB/S/2137/19-20	55	20	5.9	14.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
41	02.12.2019	GCS/LAB/S/2232/19-20	72	33	6.7	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
42	06.12.2019	GCS/LAB/S/2232/19-20	67	26	7.1	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
43	09.12.2019	GCS/LAB/S/2232/19-20	70	29	6.5	15.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
44	13.12.2019	GCS/LAB/S/2232/19-20	64	25	7.0	17.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
45	16.12.2019	GCS/LAB/S/2232/19-20	71	32	6.8	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
46	20.12.2019	GCS/LAB/S/2232/19-20	65	27	7.8	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
47	23.12.2019	GCS/LAB/S/2232/19-20	58	24	6.0	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
48	27.12.2019	GCS/LAB/S/2232/19-20	66	28	7.2	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1

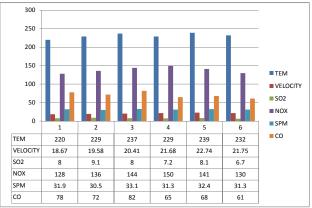



Part Part						ı	N TERMINA	L GATE (AA	Q3)						
National ALOM Standard No				matter PM ₁₀	matter PM _{2.5}	dioxide as SO ₂	dioxide as		monoxide as CO	J	NH ₃	As		C ₆ H ₆	pyrene as BaP
SNO_SMPRINGE Report Number															
1				100	60	80	80	1	4	180	400	6	20	5	1
2			•	67	20		10.0	40.1	-11.0	-10				-11	-0.1
3 8807.2093 GCS/LAMS/SIASM/S20 74 729 8.0 17.7 00.1 c1.0 c1.0 c2 c2 c2 c1 c0.1 4 1207.2093 GCS/LAMS/SIASM/S20 67 27 7.0 16.9 00.1 c1.0 c1.0 c2 c2 c2 c1 c0.1 5 1507.2093 GCS/LAMS/SIASM/S20 65 7.7 7.0 16.9 c0.1 c1.0 c1.0 c2 c2 c2 c1 c0.1 7 2207.2093 GCS/LAMS/SIASM/S20 53 20 5.9 16.2 c0.1 c1.0 c1.0 c2 c2 c2 c1 c0.1 8 2507.2093 GCS/LAMS/SIASM/S20 53 20 5.9 16.2 c0.1 c1.0 c1.0 c2 c2 c2 c1 c0.1 9 2008.2093 GCS/LAMS/SIASM/S20 71 28 6.7 17.4 c0.1 c1.0 c1.0 c2 c2 c2 c1 c0.1 10 505.8093 GCS/LAMS/SIASM/S20 77 30 7.9 17.6 c0.1 c1.0 c1.0 c2 c2 c2 c1 c0.1 11 2008.2093 GCS/LAMS/SIASM/S20 78 31 8.3 18.1 c0.1 c1.0 c1.0 c2 c2 c2 c1 c0.1 12 1208.2093 GCS/LAMS/SIASM/S20 78 31 8.3 18.1 c0.1 c1.0 c1.0 c2 c2 c2 c1 c0.1 13 1508.2093 GCS/LAMS/SIASM/S20 78 31 8.3 18.1 c0.1 c1.0 c1.0 c2 c2 c2 c1 c0.1 14 1509.2093 GCS/LAMS/SIASM/S20 62 c3.0															
A 12072019 GCK/MAK/SHASM/S20 69 25 7.4 17.0 60.1 41.0 410 42 42 42 41 40.1															
5 15.07.2019 GCS/LAB/S/HBM/3202 67 27 7.0 16.9 0.0															
6 1907.2019 GCS/ABA/SHBA/19-20 55 21 6.6 15.2 0.1 cl.0 cl.0 c2 c2 c2 c1 c0.1 8 2507.2019 GCS/ABA/SHBA/19-20 63 22 5.4 15.8 c0.1 cl.0 cl.0 cl.0 c2 c2 c2 c1 c0.1 9 0.03.2019 GCS/ABA/SHBA/19-20 63 22 5.4 15.8 c0.1 cl.0 cl.0 c2 c2 c2 c1 c0.1 10 0.03.2019 GCS/ABA/SHBA/19-20 77 30 7.9 17.6 c0.1 cl.0 cl.0 c2 c2 c2 c1 c0.1 11 0.03.2019 GCS/ABA/SHBS/19-20 78 30 7.9 17.6 c0.1 cl.0 cl.0 c2 c2 c2 c1 c0.1 12 0.03.2019 GCS/ABA/SHBS/19-20 78 31 8.3 18.1 c0.1 cl.0 cl.0 c2 c2 c2 c1 c0.1 13 18.8.3019 GCS/ABA/SHBS/19-20 78 31 8.3 18.1 c0.1 cl.0 cl.0 c2 c2 c2 c1 c0.1 14 19.8.3019 GCS/ABA/SHBS/19-20 58 19 5.8 14.7 cl.0 cl.0 cl.0 c2 c2 c2 c1 c0.1 15 23.8.3019 GCS/ABA/SHBS/19-20 58 19 5.8 14.7 cl.0 cl.0 cl.0 c2 c2 c2 c1 c0.1 16 26.8.3021 GCS/ABA/SHBS/19-20 c6.2 c2 c2 c1 c0.1 17 30.8.3019 GCS/ABS/SHB/19-20 c6.2 c2 c2 c2 c2 c1 c0.1 18 30.8.3019 GCS/ABS/SHB/19-20 c6.2 c2 c2 c2 c2 c2 c2 c2															
7 2207.2019 GCS/ABA/SHBS/H39.0 53 20 5.9 16.2 0.1 4.10 4.10 4.2 4.2 4.1 4.0.1 8 2607.2019 GCS/ABA/SHBS/H39.0 63 22 5.4 15.8 0.1 4.10 4.10 4.2 4.2 4.1 4.0.1 9 20.08.2019 GCS/ABA/SHBS/H39.0 71 28 6.7 17.4 4.0.1 4.10 4.10 4.2 4.2 4.2 4.1 4.0.1 10 05.08.2019 GCS/ABA/SHBS/H39.0 77 30 7.9 17.6 6.01 4.10 4.10 4.2 4.2 4.2 4.1 4.0.1 11 09.83.013 GCS/ABA/SHBS/H39.0 78 31 8.3 18.1 4.0.1 4.10 4.10 4.10 4.2 4.2 4.2 4.1 4.0.1 12 120.83.019 GCS/ABA/SHBS/H39.0 72 28 7.8 17.5 4.0.1 4.10 4.10 4.2 4.2 4.2 4.1 4.0.1 13 15.08.2019 GCS/ABS/SHBS/H39.0 62 24 6.3 16.0 4.0 4.10 4.0 4.2 4.2 4.2 4.1 4.0.1 14 190.83.019 GCS/ABS/SHB/H39.0 58 19 5.8 14.7 4.0.1 4.10 4.10 4.2 4.2 4.2 4.1 4.0.1 15 230.83.019 GCS/ABS/SHB/H39.0 55 26 7.2 17.0 4.0.1 4.10 4.10 4.2 4.2 4.2 4.1 4.0.1 15 230.83.019 GCS/ABS/SHB/H39.0 70 29 6.9 16.7 4.0.1 4.10 4.10 4.2 4.2 4.2 4.1 4.0.1 16 260.83.019 GCS/ABS/SHB/H39.0 70 29 6.9 16.7 4.0.1 4.10 4.10 4.10 4.2 4.2 4.1 4.0.1 17 303.93.019 GCS/ABS/SHB/H39.0 70 29 6.9 16.7 4.0.1 4.10 4.10 4.2 4.2 4.2 4.1 4.0.1 18 606.93.019 GCS/ABS/SHB/H39.0 59 25 6.3 15.6 6.0.1 4.0 4.0 4.0 4.2 4.2 4.1 4.0 4.0 19 909.03.019 GCS/ABS/SHB/SHD 59 57 23 6.6 14.8 6.0 4.1 4.0 4.0 4.0 4.2 4.2 4.1 4.0															
8									_						
9 0.08.2019 OSCIMAN/SIRS/19-20 71 28 6.7 17.6 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1								_							_
10 08.08.2019 GSCALANS/SIRES/19-20 77 30 7.9 17.6 CO.1 C.1.0 C.2 C.2 C.2 C.2 C.1 CO.1 11 09.08.2019 GSCALANS/SIRES/19-20 72 28 7.8 17.5 CO.1 C.1.0 C.1.0 C.2 C.2 C.2 C.2 C.1 C.1.1 12 12.08.2019 GSCALANS/SIRES/19-20 C.2 C.2 C.2 C.2 C.1 C.1.1 13 1608.2019 GSCALANS/SIRES/19-20 G.2 C.2 C.2 C.2 C.1 C.1.1 14 19.08.2019 GSCALANS/SIRES/19-20 G.2 C.2 C.2 C.2 C.1 C.1.1 15 23.08.2019 GSCALANS/SIRES/19-20 G.5 C.5 C.7.2 T.7.0 C.1.1 C.1.0 C.1.0 C.2 C.2 C.2 C.1 C.1.1 15 23.08.2019 GSCALANS/SIRES/19-20 G.5 C.5 C.7.2 T.7.0 C.1.1 C.1.0 C.1.0 C.2 C.2 C.2 C.1 C.1.1 16 26.08.2019 GSCALANS/SIRES/19-20 G.5 C.5 C.7.2 T.7.0 C.1.1 C.1.0 C.1.0 C.2 C.2 C.2 C.1 C.1.1 17 03.09.2019 GSCALANS/SIRES/19-20 G.5 C.5 C															
11 10 10 10 12 12 12 12															
12 12.08.2019 GSYLARS/S1825/19-20 62 24 6.3 15.0 C.0.1 C.1.0 C.1.0 C.2 C.2 C.2 C.1 C.0.1															
13 16.08.2019 655/ABS/1825/19-20 62 24 6.3 16.0 0.1 1.10 1.0 1															
140 19.08.2019 GSXIABIS/11825/19-20 58 19 5.8 14.7 CO.1 CI.0 CI.0 C2 C2 C2 C1 CO.1															
15 1.5															
16 26.08.2019 CCS/LAB/S/1325/19-20 64 27 6.9 16.7 C0.1 C1.0 C1.0 C2 C2 C2 C1 C0.1 17 03.09.2019 CCS/LAB/S/19-20 59 25 6.3 15.6 C0.1 C1.0 C1.0 C2 C2 C2 C1 C0.1 18 06.09.2019 CCS/LAB/S/19-20 57 C3 6.6 14.8 C0.1 C1.0 C1.0 C2 C2 C2 C1 C0.1 19 09.09.2019 CCS/LAB/S/19-20 55 C2 7.3 15.4 C0.1 C1.0 C1.0 C2 C2 C2 C1 C0.1 10 10 10 C2 C2 C2 C1 C0.1 11 15 10 10 C2 C2 C2 C1 C0.1 12 15 15 10 C2 C3 C3 C3 C3 C3 C3 C3															
17 03.09.2019 05.09.2019															
18															
19 9.99.2019 6CS/LAB/S/19-20 55 23 6.6 14.8 CO.1 <1.0 <10 <2 <2 <2 <1 CO.1															
20															
21 16.09.2019 GCS/LAB/S//19-20 67 26 7.8 14.0 <0.1 <1.0 <1.0 <2 <2 <2 <2 <1 <0.1															
22 20.99.2019 GCS/LAB/S/119-20 GC2 C2 C2 C3 C4 C4 C4 C4 C5 C5 C5 C5								_							
23 23.09.2019 GCS/LAB/S/19-20 G67 28 7.5 15.1 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1 24 27.09.2019 GCS/LAB/S/19-20 58 21 6.7 15.5 <0.1 <1.0 <10 <2 <2 <2 <2 <1 <0.1 25 03.10.2019 GCS/LAB/S/2066/19-20 69 30 6.2 13.5 <0.1 <1.0 <10 <2 <2 <2 <2 <1 <0.1 26 08.10.2019 GCS/LAB/S/2066/19-20 63 27 5.5 14.5 <0.1 <1.0 <10 <2 <2 <2 <2 <1 <0.1 27 11.10.2019 GCS/LAB/S/2066/19-20 55 21 6.0 15.9 <0.1 <1.0 <10 <2 <2 <2 <2 <1 <0.1 27 11.10.2019 GCS/LAB/S/2066/19-20 55 21 6.0 15.9 <0.1 <1.0 <10 <2 <2 <2 <2 <1 <0.1 28 14.10.2019 GCS/LAB/S/2066/19-20 55 21 6.0 15.9 <0.1 <1.0 <10 <2 <2 <2 <2 <1 <0.1 29 18.10.2019 GCS/LAB/S/2066/19-20 58 22 6.4 15.2 <0.1 <1.0 <10 <2 <2 <2 <2 <1 <0.1 30 21.10.2019 GCS/LAB/S/2066/19-20 53 20 5.1 12.7 <0.1 <1.0 <10 <2 <2 <2 <2 <1 <0.1 31 25.10.2019 GCS/LAB/S/2066/19-20 54 22 5.9 13.0 <0.1 <1.0 <10 <2 <2 <2 <2 <1 <0.1 32 28.10.2019 GCS/LAB/S/2066/19-20 52 19 5.4 13.7 <0.1 <1.0 <10 <2 <2 <2 <2 <1 <0.1 33 01.11.2019 GCS/LAB/S/203/19-20 58 33 7.9 17.6 <0.1 <1.0 <10 <2 <2 <2 <2 <1 <0.1 34 04.11.2019 GCS/LAB/S/2137/19-20 65 33 7.9 17.6 <0.1 <1.0 <10 <2 <2 <2 <2 <1 <0.1 35 08.11.2019 GCS/LAB/S/2137/19-20 65 33 7.9 17.6 <0.1 <1.0 <10 <2 <2 <2 <2 <1 <0.1 36 11.11.2019 GCS/LAB/S/2137/19-20 65 38 7.6 16.4 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1 37 15.11.2019 GCS/LAB/S/2137/19-20 65 38 7.6 17.1 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1 38 18.11.2019 GCS/LAB/S/2137/19-20 65 28 7.6 17.1 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1 39 22.11.2019 GCS/LAB/S/2137/19-20 65 28 7.6 6.7 6.4 6.6 15.5 <0.1 <0.1 <0.1 <2															
24 27.09.2019 GCS/LAB/S/19-20 58 21 6.7 15.5 < 0.1 < 1.0 < 10 < 2 < 2 < 2 < 1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1															
25															
26															
27															
28 14.10.2019 GCS/LAB/S/2066/19-20 51 19 5.7 13.8 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1 <0.1 <0.1 <2 <1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <															
29															
30 21.10.2019 GCS/LAB/S/2066/19-20 53 20 5.1 12.7 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1															
31 25.10.2019 GCS/LAB/S/2066/19-20 54 22 5.9 13.0 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1 <0.1 <32															
32															
33 01.11.2019 6CS/LAB/S/2137/19-20 78 33 7.9 17.6 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <															
34 04.11.2019 GCS/LAB/S/2137/19-20 69 30 7.4 16.8 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1 <0.1 <35 08.11.2019 GCS/LAB/S/2137/19-20 62 26 6.7 16.4 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1 <0.1 <36 11.11.2019 GCS/LAB/S/2137/19-20 65 27 6.4 16.2 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1 <0.1 <0.1 <37 0.1 <10 <2 <2 <1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <															
35 08.11.2019 GCS/LAB/S/2137/19-20 662 26 6.7 16.4 <0.1 <1.0 <10 <2 <2 <2 <2 <1 <0.1															
36 11.11.2019 GCS/LAB/S/2137/19-20 65 27 6.4 16.2 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1 <0.1 <37															
37 15.11.2019 GCS/LAB/S/2137/19-20 677 28 7.6 17.1 <0.1 <1.0 <10 <2 <2 <2 <2 <1 <0.1															
38 18.11.2019 GCS/LAB/S/2137/19-20 59 25 6.3 16.0 <0.1															
39 22.11.2019 GCS/LAB/S/2137/19-20 57 24 6.6 15.5 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1															
40 25.11.2019 GCS/LAB/S/2137/19-20 60 22 6.5 15.8 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1 <0.1 <10 <2 <2 <2 <1 <0.1 <0.1 <10 <2 <2 <1 <0.1 <0.1 <10 <2 <2 <1 <0.1 <0.1 <10 <2 <2 <1 <0.1 <0.1 <0.1 <10 <10 <2 <2 <1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <															
41 02.12.2019 GCS/LAB/S/2232/19-20 68 31 7.0 15.2 <0.1															_
42 06.12.2019 GCS/LAB/S/2232/19-20 64 26 6.8 16.1 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1 <0.1 <43 09.12.2019 GCS/LAB/S/2232/19-20 55 22 6.4 15.0 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1 <0.1 <4.1 <0.1 <4.1 <1.0 <10 <2 <2 <2 <1 <0.1 <0.1 <4.1 <0.1 <4.1 <4.1 <4.1 <4.1 <4.1 <4.1 <4.1 <4															
43 09.12.2019 GCS/LAB/S/2232/19-20 55 22 6.4 15.0 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <															
44 13.12.2019 GCS/IAB/S/2232/19-20 60 25 7.3 17.4 <0.1															
45 16.12.2019 GCS/LAB/S/2232/19-20 57 23 6.5 16.8 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <															
46 20.12.2019 GCS/LAB/S/2232/19-20 52 19 6.9 16.3 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	-							_							
47 23.12.2019 GCS/LAB/S/2232/19-20 54 21 6.0 14.5 <0.1 <1.0 <10 <2 <2 <2 <1 <0.1															
		23.12.2019													

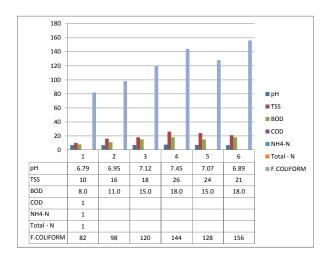

AMBIENT NOISE LEVEL MONITORING

	Location		PORT	OPERATING	BUILDING				RMU BUILDING					
	Month & Year	Jul - 19	Aug - 19	Sep - 19	Oct - 19	Nov - 19	Dec - 19	Jul - 19	Aug - 19	Sep - 19	Oct - 19	Nov - 19	Dec - 19	
	Parameter & Unit	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	eq dB(A)		Leq dB(A)		
S.No.	Time of Sampling													
1	06.00 – 07.00 (Day)	63.9	62	60	61.3	65.6	57	61.8	60	55.2	64.2	63.8	62.4	
2	07.00 -08.00	65.1	62.5	58.5	67.7	59.3	53.9	60.9	58.5	53.8	61.7	62.4	63.6	
3	08.00 - 09.00	67.9	63.9	58.9	60.2	61	59.9	56.9	58.9	55.4	64.2	56.6	62.3	
4	09.00 - 10.00	63.2	63.1	60.2	67.4	65.5	61.5	60.7	60.2	56	66.2	59.5	62.3	
5	10.00 – 11.00	66.1	62.9	60.8	62.8	64.5	61.9	63.7	60.8	53.8	67.1	61.4	62	
6	11.00 – 12.00	62	61.9	58.5	69.4	57.8	64.4	60.6	58.5	55.1	64.3	58.1	62.3	
7	12.00 – 13.00	61.1	65	58.7	63.3	59.7	57.3	65.5	58.7	54.6	63.8	66.3	62.4	
8	13.00 – 14.00	60.3	63.1	63.6	65.2	64.6	64	67.6	63.6	58.6	62.8	57.3	65.2	
9	14.00 – 15.00	59.3	64	59.9	67.4	65.4	63.2	68.2	59.9	56.2	61.6	61.1	66.1	
10	15.00 – 16.00	58.8	62.4	62.9	66.9	66.2	62	69.3	62.9	59	64.8	60.6	65.5	
11	16.00 – 17.00	62	63.7	61	67.5	64.9	62.5	66.5	61	54.7	67.6	66.7	64.3	
12	17.00 – 18.00	63.8	59.3	59.7	60.1	66.4	61.5	64.3	59.7	55.8	62.1	58.9	65.3	
13	18.00 – 19.00	62.6	55.5	58.4	56.7	64.6	61.6	61.4	58.4	54.9	60.9	58.4	65.2	
14	19.00 -20.00	60.4	54	57.9	60.9	67.1	61.9	60.6	57.9	54	63.6	57.7	64.8	
15	20.00 – 21.00	62.7	55	58.1	55	57.9	61.5	61.9	58.1	53.8	62.2	60	65.1	
16	21.00 – 22.00	65.9	58.6	57.8	58.5	60.5	62.6	63.2	57.8	56.4	61.7	63.6	59	
17	22.00 - 23.00 (Night)	66.4	55.2	56.5	56.2	53.4	57	60.8	58.7	55.2	57.2	57.2	54.5	
18	23.00 - 00.00	64.3	59.3	58.1	55.1	49.9	53.8	64.6	59.7	57.5	56.5	58	56.1	
19	00.00 - 01.00	67.4	59.6	60.4	50.7	54.4	55.6	63	58.8	57.6	53.2	55.6	54	
20	01.00 - 02.00	64.6	59.6	57.5	54.4	53.8	54.2	65.9	56.1	56.1	52.6	59.3	57.3	
21	02.00 - 03.00	65.8	59.1	58.4	52.6	55.4	53.7	61.4	60	56.7	52.2	56.7	55.8	
22	03.00 - 04.00	63.1	60.8	59.7	51.5	53	56.1	61.5	62.3	54.8	53.6	52.5	56.4	
23	04.00 - 05.00	64.7	58.5	60.6	54	56.2	55.4	61.4	58.1	57.8	51.7	53.2	54.9	
24	05.00 - 06.00	66.6	59.9	60.3	58.3	58.7	57.8	62.7	60	58.3	56.7	56.4	57.2	





	Location		ı	N TERMINAI	GATE		
	Month & Year	Jul - 19	Aug - 19	Sep - 19	Oct - 19	Nov - 19	Dec - 19
	Parameter & Unit	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)
S.No.	Time of Sampling						
1	06.00 - 07.00 (Day)	58.4	60.8	63.3	63.3	67.1	65.8
2	07.00 -08.00	60.2	61.4	62.1	64.2	68.2	63.7
3	08.00 - 09.00	58.1	61.3	62.0	66.5	63.9	62.4
4	09.00 - 10.00	58.6	60.8	63.7	62.9	66.5	58.2
5	10.00 - 11.00	67.2	60.3	60.9	62.3	65.8	62.0
6	11.00 – 12.00	69.4	60.7	57.5	63.5	66.1	65.9
7	12.00 – 13.00	72.1	68.2	56.8	65.6	66.0	66.5
8	13.00 – 14.00	73.8	62.4	58.2	67.7	69.5	64.5
9	14.00 - 15.00	69.4	64.2	64.4	66.5	68.3	66.5
10	15.00 - 16.00	72.6	61.0	59.3	63.4	61.6	63.4
11	16.00 - 17.00	72.4	61.5	56.5	66.1	66.6	63.1
12	17.00 – 18.00	72.0	61.3	57.1	63.5	62.8	61.9
13	18.00 - 19.00	69.0	61.2	59.3	61.2	65.3	62.2
14	19.00 –20.00	68.5	60.8	56.9	59.4	63.2	61.7
15	20.00 - 21.00	66.1	64.7	57.0	58.9	64.7	60.5
16	21.00 – 22.00	61.0	66.6	60.3	62.0	66.8	60.6
17	22.00 – 23.00 (Night)	62.5	63.3	57.2	58.3	58.4	55.7
18	23.00 - 00.00	62.2	61.3	57.6	57.9	54.2	58.2
19	00.00 - 01.00	62.7	60.5	57.4	58.3	55.8	54.3
20	01.00 - 02.00	59.8	60.6	54.7	58.8	59.1	58.4
21	02.00 - 03.00	58.4	61.4	55.3	54.8	58.6	57.4
22	03.00 - 04.00	58.2	60.4	54.4	53.8	59.4	58.9
23	04.00 - 05.00	58.0	60.1	54.5	56.5	55.9	57.8
24	05.00 - 06.00	64.5	60.6	55.8	54.4	57.5	58.3



	STACK MONITORING												
	Location DG 1500KVA - 1 DG 1500KVA - 2										DG 1500KVA -3	DG -2	
	Month & Year	Jul - 19	Aug - 19	Sep - 19	Oct - 19	Nov - 19	Dec - 19	Jul - 19	Aug - 19	Sep - 19	Oct - 19	Nov - 19	Dec - 19
S.No.	Parameters												
1	Stack Temperature, °C	226	215	232	243	246	240	220	229	237	229	239	232
2	Flue Gas Velocity, m/s	19.23	20.14	21.56	22.52	21.19	20.03	18.67	19.58	20.41	21.68	22.74	21.75
3	Sulphur Dioxide, mg/Nm3	8.3	7.7	7.2	7.8	6.8	7.6	8	9.1	8	7.2	8.1	6.7
4	NOX (as NO2) in ppmv	131	124	140	157	152	143	128	136	144	150	141	130
5	Particular matter, mg/Nm3	33.4	31.3	32.8	30.1	33.6	29.8	31.9	30.5	33.1	31.3	32.4	31.3
6	Carbon Monoxide, mg/Nm3	80	74	79	71	75	64	78	72	82	65	68	61
7	Gas Discharge, Nm3/hr	5162	5528	5692	5846	5470	5230	5073	5225	5361	5785	5949	5769

	STP OUTLET WATER									
Location STP OUTLET										
	Month & Year	Jul - 19 Aug - 19 Sep - 19 Oct - 19 Nov - 19 D								
S.No.	Parameters									
1	pH @ 25°C	6.79	6.95	7.12	7.45	7.07	6.89			
2	Total Suspended Solids	10	16	18	26	24	21			
3	BOD at 27°C for 3 days	8.0	11.0	15.0	18.0	15.0	18.0			
4	Fecal Coliform	82	98	120	144	128	156			

	DRINKING WATER										
	Month & Year	Unit	Jul - 19	Aug - 19	Sep - 19	Oct - 19	Nov - 19	Dec - 19			
S.No.	Parameters										
1	pH @ 25°C	-	6.95	7.03	7.15	7.52	6.95	6.91			
2	Total Hardness as CaCo3	mg/L	32.0	32.0 27 34 51.0 28 2							
3	Chloride as Cl	mg/L	29	21	28	40	19	14			
4	Total Dissolved Solids	mg/L	71	50	65	108	55	39			
5	Calcium as Ca	mg/L	5.25	4.2	5.4	10.5	8.2	5.7			
6	Sulphate as SO4	mg/L		1	BDL(DL:1.0)					
7	Nitrate as No3	mg/L			BDL(I	DL:1.0)					
8	Total Alkalinity as CaCo ₃	mg/L	46	38	44	63	40	27			
9	Magnesium as Mg	mg/L	4.6	3.96	4.92	5.94	1.8	1.4			
10	Color	Hazen			<	1.0					
11	Odour	-			Unobje	ctionable					
12	Taste	-			Agre	eable					
13	Turbidity	NTU			<	0.5					
14	Iron as Fe	mg/L			BDL(C	L 0.05)					
15	Total Residual Chlorine	mg/L			BDL(I	DL 0.1)					
16	Copper as Cu	mg/L			BDL(C	L 0.05)					
17	Manganese as Mn	mg/L			BDL(C	L 0.05)					
18	Fluoride as F	mg/L			BDL(I	DL 0.1)					
19	Phenolic compounds as C ₆ H ₅ OH	mg/L			BDL(D	L 0.001)					
20	Mercury as Hg	mg/L			BDL(D	L 0.001)					
21	Cadmium as Cd	mg/L			BDL(D	L 0.003)					
22	Selenium as Se	mg/L			BDL(D	L 0.01)					
23	Arsenic as As	mg/L			BDL(D	L 0.01)					
24	Lead as Pb	mg/L			BDL(D	L 0.01)					
25	Zinc as Zn	mg/L			BDL(D	L 0.05)					
26	Anionic Detergents as MBAS	mg/L				Nil					
27	Total Chromium as Cr	mg/L			BDL(D	L 0.05)					
28	Phenolphthalein Alkalinity as CaCo ₃	mg/L				Nil					
29	Aluminium as Al	mg/L				L 0.05)					
30	Boron as B	mg/L			BDL(I	DL 0.1)					
31	Mineral Oil	mg/L			- 1	Vil					
32	Polynuclear Aromatic Hydrocarbons as	mg/L			- 1	Vil					
33	Pesticides	mg/L				Vil					
34	Cyanide as CN	mg/L			BDL (D	L : 0.01)					
35	E. coli	MPN/100ml			Abs	ence					
36	Total Coliform	MPN/100ml			Abs	ence					

		MA	RINE WA	TER				
	Location				ace Wate			
	Month & Year	Unit	Jul - 19	Aug - 19	Sep - 19	Oct - 19	Nov - 19	Dec - 19
S.No.	Parameters pH @ 25°C	_	Bollard 1 7.48	7.65	Bollard 13 7.42	7.76	Bollard 26 7.82	8ollard 17 7.75
2	Temperature	-C	29	29	29	29	29	29
3	Total Suspended Solids	mg/L	16	19	23	27	21	27
4	BOD at 27 °C for 3 days	mg/L	22	25	20	24	27	34
5	Dissolved oxygen	mg/L	2.3	2.1	2.5	2.6	2.4	2.1
6	Salinity at 25 °C	ppt	46	42.3	39.4	40.6	39.1	38.5
7	Oil & Grease Nitrate as No ₃	mg/L mg/L	10.53	0.00		DL 1.0)		F 07
8	Nitrite as No ₂	mg/L	5.12	8.96 6.02	7.18 5.64	5.96 4.12	6.84 5.08	5.97 4.21
10	Ammonical Nitrogen as N	mg/L	J.12	0.02		DL 1.0)	5.06	4.21
11	Ammonia as NH3	mg/L				L 0.01)		
12	Kjeldahl Nitrogen as N	mg/L			BDL(I	DL 1.0)		
13	Total phosphates as PO4	mg/L	6.34	5.75	5.01	6.83	7.43	7.86
14	Total Nitrogen	mg/L	44356	40043		DL 1.0)		****
	Total Dissolved Solids	mg/L	41356 107	40012 118	38980 105	40123 123	43471 139	41942 146
16	COD Total bacterial count	mg/L cfu/ml	62	75	70	87	96	81
18	Coliforms	Per 100 ml				ence	50	01
19	Escherichia coli	Per 100 ml				ence		
20	Salmonella	Per 100 ml				ence		
21	Shigella	Per 100 ml				ence		
22	Vibrio cholerae	Per 100 ml				ence		
23	Vibrio parahaemolyticus	Per 100 ml				ence ence		
25	Enterococci Octane	μg/L	160	173	177	193	180	158
26	Nonane	μg/L μg/L	100	1,3		DL 0.1)	100	133
27	Decane	μg/L				DL 0.1)		
28	Undecane	μg/L				DL 0.1)		
	Tridecane	μg/L	7.5	7.9	7.2	8.7	9.2	7.9
30	Tetradecane	μg/L				DL 0.1) DL 0.1)		
31 32	Pentadecane Hexadecane	μg/L μg/L				DL 0.1) DL 0.1)		
33	Octadecane	μg/L μg/L				DL 0.1)		
34	Nonadecane	μg/L				DL 0.1)		
35	Elcosane	μg/L			BDL(I	DL 0.1)		
36	Primary Productivity	mg C/m ³ /hr	8.57	8.71	9.55	7.89	7.05	7.86
37	Chlorophylla	mg/m³	6.4	6.7	7.42	5.25	6.14	5.43
38	Phaeophytin	mg/m³	1.02	1.28	1.96	2.03	2.98	1.56
39	Oxidisable Paticular Organic	mg /L	10.15	9.14	8.05	8.96	9.57	8.37
	T		TOPLANK					
	Bacteriastrum hyalinum	nos/ml	18 11	15 13	17	15 8	12	15
41	Bacteriastrum varians	nos/ml nos/ml	16	19	10 15	10	16 14	10 12
43	Chaetoceros didymus Chaetoceros decipiens	nos/ml	10	8	12	19	15	17
44	Biddulphia mobiliensis	nos/ml	12	10	14	9	11	14
45	Ditylum brightwellii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
46	Gyrosigma sp	nos/ml	13	14	11	13	10	13
47	Cladophyxis sps	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
48	Coscinodiscus centralis	nos/ml	14	16 9	8	14 16	8	11
49 50	Coscinodiscus granii Cylcotella sps	nos/ml nos/ml	10 Nil	Nil	13 Nil	Nil	17 Nil	10 Nil
51	Hemidiscus hardmanianus	nos/ml	18	17	19	21	13	19
52	Laudaria annulata	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
	Pyropacus horologicum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
54	Pleurosigma angulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
55	Leptocylindrus danicus	nos/ml	15	11	16	23	20	22
56	Guinardia flaccida	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
57 58	Rhizosolenia alata Rhizosolena impricata	nos/ml nos/ml	20 Nil	22 Nil	24 Nil	15 Nil	19 Nil	24 Nil
59	Rhizosolena impricata	nos/ml	25	23	11	13	16	12
60	Thalassionema nitzschioides	nos/ml	27	20	25	20	22	25
61	Triceratium reticulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
62	Ceratium trichoceros	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
63	Ceratium furca	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
64	Ceratium macroceros	nos/ml	Nil Nil	Nil Nil	Nil Nil	Nil Nil	Nil	Nil
65	Ceracium longipes	nos/ml	OPLANKTO		IVII	INII	Nil	Nil
66	Acrocalanus gracilis	nos/ml	16	18	15	12	10	12
67	Acrocalanus gracilis	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
68	Paracalanus parvus	nos/ml	14	16	19	10	16	18
69	Eutintinus sps	nos/ml	17	13	10	17	19	22
70	Centropages furcatus	nos/ml	9	8	7	9	12	15
71	Corycaeus dana	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
72 73	Oithona brevicornis Euterpina acutifrons	nos/ml	13 15	11 17	20 14	23 16	25	20
74	Metacalanus aurivilli	nos/ml nos/ml	Nil	Nil	Nil	Nil	21 Nil	17 Nil
75	Copipod nauplii	nos/ml	20	23	18	21	14	16
76	Cirripede nauplii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
77	Bivalve veliger	nos/ml	8	6	9	11	13	14
78	Gastropod veliger	nos/ml	12	19	23	26	22	19

	Location	** **		A		n Water	N	
C N -	Month & Year	Unit	Jul - 19	Aug - 19	Sep - 19	Oct - 19	Nov - 19	Dec - 19
S.No.	Parameters pH @ 25°C		7.58	7.71	7.86	7.62	7.73	7.56
2	Temperature	- °C	29	29	29	29	29	29
3	Total Suspended Solids	mg/L	36	40	37	35	38	32
4	BOD at 27 °C for 3 days	mg/L	21	18	22	26	24	29
5	Dissolved oxygen	mg/L	1.8	2.4	2.7	2.2	2	1.8
6	Salinity at 25 °C		35	38.7	37.1	39.2	40.8	39.5
7	Oil & Grease	mg/L		30.7		DL 1.0)	40.0	33.3
8	Nitrate as No ₃	mg/L	7.72	8.42	7.08	6.42	7.50	7.86
9	Nitrite as No ₂	mg/L	5.79	5.16	5.94	5.15	7.53 5.96	5.18
10	Ammonical Nitrogen as N	mg/L	3.73	3.10		DL 1.0)	3.30	5.10
11	Ammonia as NH3	mg/L				DL 0.01)		
12	Kjeldahl Nitrogen as N	mg/L				DL 1.0)		
13	Total phosphates as PO4	mg/L	6.73	6.05	6.77	6.06	7.14	7.51
14	Total Nitrogen	mg/L	0.73	0.03		DL 1.0)	7.17	7.31
15	Total Dissolved Solids	mg/L	40976	42043	40018	41246	44854	43001
16	COD	mg/L	138	121	109	148	161	175
17	Total bacterial count	cfu/ml	94	90	78	94	83	96
18	Coliforms	Per 100 ml		30		ence	03	- 70
19	Escherichia coli	Per 100 ml				ence		
20	Salmonella	Per 100 ml				ence		
21	Shigella	Per 100 ml				ence		
22	Vibrio cholerae	Per 100 ml				ence		
23	Vibrio parahaemolyticus	Per 100 ml				ence		
24	Enterococci	Per 100 ml				ence		
25	Colour	Hazan	25	20	25	20	15	20
26	Odour	-				ctionable		
27	Taste	-				eeable		
28	Turbidity	NTU	39	45	48	41	36	44
29	Calcium as Ca	mg/L	487	503	441	469	491	460
30	Chloride as Cl	mg/L	20579	21422	20564	21085	22567	21864
31	Cyanide as CN	mg/L				L 0.01)		
32	Fluoride as F	mg/L	0.38	0.33	0.4	0.48	0.55	0.64
33	Magnesium as Mg	mg/L	1215	1281	1156	1276	1305	1246
34	Total Iron as Fe	mg/L	0.69	0.6	0.49	0.63	0.71	0.79
35	Residual Free Chlorine	mg/L		0.0		DL 0.1)		0.75
36	Phenolic Compounds as C6H5OH	mg/L				DL 1.0)		
37	Total Hardness as CaCO3	mg/L	6281	6595	5919	6470	6665	6342
38	Total Alkalinity as CaCO3	mg/L	595	514	591	664	718	647
39	Sulphide as H2S	mg/L				DL 0.5)	1	
40	Sulphate as SO4	mg/L	2254	2302	2158	2207	2814	2217
41	Anionic surfactants as MBAS	mg/L				DL 1.0)		
42	Monocrotophos	μg/L				DL 0.01)		
43	Atrazine	μg/L				L 0.01)		
44	Ethion	μg/L				DL 0.01)		
45	Chiorpyrifos	μg/L				DL 0.01)		
46	Phorate	μg/L				DL 0.01)		
47	Mehyle parathion	μg/L				DL 0.01)		
48	Malathion	μg/L				DL 0.01)		
49	DDT (o,p and p,p-Isomers of DDT,DDE	μg/L				L 0.01)		
50	Gamma HCH (Lindane)	μg/L			BDL(D	DL 0.01)		
51	Alppha HCH	μg/L			BDL(D	DL 0.01)		
52	Beta HCH	μg/L				DL 0.01)		
53	Delta HCH	μg/L				DL 0.01)		
54	Endosulfan (Alpha,beta and sulphate)	μg/L				DL 0.01)		
55	Butachlor	μg/L			BDL(D	DL 0.01)		
56	Alachlor	μg/L			BDL(D	DL 0.01)		
57	Aldrin/Dieldrin	μg/L				DL 0.01)		
58	Isoproturon	μg/L				DL 0.01)		
59	2,4-D	μg/L				DL 0.01)		
60	Polychlorinated Biphenyls (PCB)	μg/L				DL 0.01)		
61	Polynuclear aromatic hydrocarbons	μg/L				DL 0.01)		
62	Arsenic as As	mg/L				DL 0.01)		
63	Mercury as Hg	mg/L				L 0.001)		
64	Cadmium as Cd	mg/L			•	L 0.003)		
65	Total Chromium as Cr	mg/L				DL 0.05)		
66	Copper as Cu	mg/L				DL 0.05)		
		mg/L				DL 0.01)		
67	Lead as Pb					DL 0.05)		
67 68	Manganese as Mn	mg/L						
		mg/L mg/L			BDL(D)L 0.05)		
68	Manganese as Mn					DL 0.05) DL 0.01)		
68 69	Manganese as Mn Nickel as Ni	mg/L			BDL(D			
68 69 70	Manganese as Mn Nickel as Ni Selenium as Se	mg/L mg/L			BDL(I	L 0.01)		
68 69 70 71	Manganese as Mn Nickel as Ni Selenium as Se Barium as Ba	mg/L mg/L mg/L mg/L			BDL(D BDL(D	DL 0.01) DL 0.1)		
68 69 70 71 72	Manganese as Mn Nickel as Ni Selenium as Se Barium as Ba Silver as Ag	mg/L mg/L mg/L mg/L mg/L	178	173	BDL(D BDL(D	DL 0.01) DL 0.1) DL 0.01) DL 0.01)	182	194
68 69 70 71 72 73	Manganese as Mn Nickel as Ni Selenium as Se Barium as Ba Silver as Ag Molybdenum as Mo	mg/L mg/L mg/L mg/L mg/L µg/L	178	173	BDL(D BDL(D BDL(D BDL(D	DL 0.01) DL 0.1) DL 0.01) DL 0.01) DL 0.01)	182	194
68 69 70 71 72 73 74 75	Manganese as Mn Nickel as Ni Selenium as Se Barium as Ba Silver as Ag Molybdenum as Mo Octane Nonane	mg/L mg/L mg/L mg/L mg/L mg/L μg/L μg/L	178	173	BDL(D BDL(D BDL(D BDL(D 184 BDL(I	DL 0.01) DL 0.1) DL 0.01) DL 0.01) DL 0.01) DL 0.01) DL 0.01)	182	194
68 69 70 71 72 73 74	Manganese as Mn Nickel as Ni Selenium as Se Barium as Ba Silver as Ag Molybdenum as Mo Octane Nonane Decane	mg/L mg/L mg/L mg/L mg/L mg/L μg/L μg/L μg/L			BDL(I BDL(I BDL(I BDL(I 184 BDL(I BDL(I	DL 0.01) DL 0.1) DL 0.01) DL 0.01) DL 0.01) DL 0.01) DL 0.1) DL 0.1)		
68 69 70 71 72 73 74 75 76	Manganese as Mn Nickel as Ni Selenium as Se Barium as Ba Silver as Ag Molybdenum as Mo Octane Nonane Decane Undecane	mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L µg/L	178	173	BDL(D BDL(I BDL(D BDL(D 184 BDL(I BDL(I	DL 0.01) DL 0.01) DL 0.01) DL 0.01) DL 0.01) DL 0.01) DL 0.1) BL 0.1) DL 0.1) B.4	9.4	194
68 69 70 71 72 73 74 75 76	Manganese as Mn Nickel as Ni Selenium as Se Barium as Ba Silver as Ag Molybdenum as Mo Octane Nonane Decane Undecane Tridecane	mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L µg/L µg/L µg/L			BDL(D BDL(D BDL(D 184 BDL(I BDL(I 7.36 BDL(I	DL 0.01) DL 0.01) DL 0.01) DL 0.01) DL 0.01) DL 0.01) DL 0.01) DL 0.1) B.4 DL 0.1)		
68 69 70 71 72 73 74 75 76 77	Manganese as Mn Nickel as Ni Selenium as Se Barium as Ba Silver as Ag Molybdenum as Mo Octane Nonane Decane Undecane	mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L µg/L			BDL(D BDL(D BDL(D 184 BDL(I 7.36 BDL(I BDL(I	DL 0.01) DL 0.01) DL 0.01) DL 0.01) DL 0.01) DL 0.01) DL 0.1) BL 0.1) DL 0.1) B.4		

	Location			Bott	om Wate	er		
	Month & Year	Unit	Jul - 19	Aug - 19	Sep - 13	Oct - 19	Nov - 19	Dec - 19
S.No.	Parameters		Bollard 1	Bollard 26	Bollard 13	Bollard 19	Bollard 26	Bollard 6
82	Heptadecane	μg/L			BDL(I	DL 0.1)		
83	Octadecane	μg/L			BDL(I	DL 0.1)		
84	Nonadecane	μg/L			BDL(I	DL 0.1)		
85	Elcosane	μg/L			BDL(I	DL 0.1)		
86	Primary Productivity	mg C/m³ /hr	10.53	11.09	10.88	9.14	8.36	8.01
87	Chlorophyll a	mg/m³	7.9	8.5	9	7.49	5.91	5.26
	Phaeophytin	mg/m³	1.71	1.93	2.42	2.86	3.43	2.75
	Oxidisable Paticular Organic	mg/L	10.8	11.46	10.07	11.25	10.27	9.43
			TOPLANKT	ON				
90	Bacteriastrum hyalinum	nos/ml	25	21	26	19	16	12
	Bacteriastrum varians	nos/ml	17	15	17	12	14	18
	Chaetoceros didymus	nos/ml	19	23	18	14	11	15
	Chaetoceros decipiens	nos/ml	14	11	9	16	13	14
	Biddulphia mobiliensis	nos/ml	13	17	15	11	9	11
	Ditylum brightwellii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
	Gyrosigma sp	nos/ml	16	10	16	20	17	21
	Cladophyxis sps	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
	Coscinodiscus centralis	nos/ml	11	14	10	17	10	9
	Coscinodiscus granii	nos/ml	15	18	22	13	18	13
	Cylcotella sps	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
	Hemidiscus hardmanianus	nos/ml	21	20	13	25	15	18
	Laudaria annulata	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
	Pyropacus horologicum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
	Pleurosigma angulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
	Leptocylindrus danicus	nos/ml	20	15	20	26	23	20
	Guinardia flaccida	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
	Rhizosolenia alata	nos/ml	12	17	22	18	25	26
	Rhizosolena impricata	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
	Rhizosolena semispina	nos/ml	13	10	14	11	14	17
	Thalassionema nitzschioides	nos/ml	21	24	27	22	28	29
	Triceratium reticulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
	Ceratium trichoceros	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
	Ceratium furca	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
	Ceratium macroceros	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
	Ceracium longipes	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
		ZOC	OPLANKTO	NS			•	
116	Acrocalanus gracilis	nos/ml	20	23	20	16	14	19
	Acrocalanus sp	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
	Paracalanus parvus	nos/ml	13	19	26	19	11	15
	Eutintinus sps	nos/ml	15	10	14	10	13	17
	Centropages furcatus	nos/ml	7	9	12	8	10	18
121	Corycaeus dana	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
122	Oithona brevicornis	nos/ml	18	15	18	21	17	11
123	Euterpina acutifrons	nos/ml	19	16	10	15	19	23
	Metacalanus aurivilli	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
	Copipod nauplii	nos/ml	23	20	15	24	20	24
	Cirripede nauplii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil
	Bivalve veliger	nos/ml	17	11	13	18	22	16
	Gastropod veliger	nos/ml	14	21	27	29	25	21

		SE	A SEDIME	NT						
	Location			Sea	Sedimer	nt				
	Month & Year	Unit	Jul - 19	Aug - 19	Sep - 19	Oct - 19	Nov - 19	Dec - 19		
S.No.	Parameters		Bollard 4	Bollard 26	Bollard 13		Bollard 26	Bollard 17		
1	Total organic matter	%	0.78	0.85	0.7	0.61	0.69	0.75		
2	% Sand	%	35	31	25	22	25	22		
3	%silt	%	15	17	20	21	24	21		
4	%Clay	%	50	52	55	57	51	57		
5	Iron (as Fe)	mg/kg	27.8	23.1	26.8	24.5	28.3	32.1		
6	Aluminium (as Al)	mg/kg	11487	10982	10012	9249	8743	9864		
7	Chromium (as cr)	mg/kg	55	63	55	62	55	51		
8	Copper (as cu)	mg/kg	74	85	72	78	71	65		
9	Manganese (as Mn)	mg/kg	297	256	230	206	220	236		
10	Nickel (as Ni)	mg/kg	12.8	13.1	10.9	12.3	14.5	12.8		
11	Lead (as Pb)	mg/kg	41	44	40	48	41	47		
12	Zinc (as Zn)	mg/kg	257	230	251	233	279	256		
13	Mercury(as Hg)	mg/kg	0.56	0.47	0.52	0.67	0.55	0.5		
14	Total phosphorus as P	mg/kg	148	142	129	135	148	153		
15	Octane	mg/kg				DL 0.1)				
16	Nonane	mg/kg				DL 0.1)				
17	Decane	mg/kg			BDL(I	DL 0.1)				
18	Undecane	mg/kg	1.18	1.29	1.47	1.86	2.04	2.79		
19	Dodecane	mg/kg				DL 0.1)				
20	Tridecane	mg/kg				DL 0.1)				
21	Tetradecane	mg/kg				DL 0.1)				
22	Phntadecane	mg/kg				DL 0.1)				
23	Hexadecane	mg/kg			BDL(I	DL 0.1)				
24	Heptadecane	mg/kg			BDL(I	DL 0.1)				
25	Octadecane	mg/kg			BDL(I	DL 0.1)				
26	Nonadecane	mg/kg				DL 0.1)				
27	Elcosane	mg/kg			BDL(I	DL 0.1)				
			I. Nematoda							
28	Oncholaimussp	nos/m²	15	17	19	15	11	14		
29	Tricomasp	nos/m²	10	13	10	17	19	12		
			. Foraminife	ra						
	Ammoniabeccarii	nos/m²	19	22	16	11	14	11		
31	Quinqulinasp	nos/m²	17	19	24	18	22	19		
32	Discorbinellasp.,	nos/m²	21	25	20	23	20	25		
33	Bolivinaspathulata	nos/m²	18	14	18	14	18	22		
34	Elphidiumsp	nos/m²	10	12	10	16	10	15 10		
35	Noniondepressula	nos/m²								
III. Molluscs-Bivalvia										
36 Meretrixveligers nos			26	23	20	24	17	18		
37	Anadoraveligers	nos/m²	27	25	29	21	26	21		
	Total No. of individuals	nos/m²	187	189	179	169	164	167		
	Shanon Weaver Diversity Index		2.25	2.27	2.25	2.27	2.24	2.26		

AECTPL/ENV/ 2019-20/08

Date: 20/09/2019

To,

The District Environmental Engineer,

Tamil Nadu Pollution Control Board, EPIB Building, A.O Block, Gummidipoondi Industrial Complex, Gummidipoondi – 601201.

Dear Sir,

Sub: Submission of Environmental statement (Form V) for the Financial Year 2018-19

With reference to the captioned subject, we are herewith submitting the "Environmental Statement in Form V for the financial year 2018-19".

Submitted for your kind information and records.

Thanking you

for Adani Ennore Container Terminal Private Limited (AECTPL)

Chennai

R. Sathish Kumar

Head - Environment

Enclosures: As above

2 0 SEP 2019

Adani Ennore Container Terminal Pvt Ltd Adani House C/o, Kamarajar Port Limited, Ponneri Taluk, Tiruvallur District, Tamil Nadu – 600 120. Tel +91 44 2824 3062

info@adani.com www.adani.com

CIN: U61200GJ2014PTC078795

Registered Office: Ramcon Fortuna Towers, 4th floor No 1/2, Kodambakkam High RoadNungambakkam, Chennai 600034

Form-V

Environmental Statement for the financial year ending 31st March 2019

Part-A

i)	Name and Address	:	Mr. Jai Khurana
			Chief Executive Officer
			Adani Ennore Container Terminal Private Limited
			C/O Kamarajar Port Limited
			Vallur Post, Ennore
			Thiruvallur District- 600 120
			Tamil Nadu, India
ii)	Industry Category	:	Container Terminal
iii)	Production Capacity	:	Cargo Handling Capacity: 11.68 MMTPA of Container
			cargos.
iv)	Year of establishment	:	2016
v)	Date of the last	:	Vide our Letter No. AECTPL/KPT/GMP/CB/ENV/ES
	environmental		2017-18 dated 10.09.2018
	statement submitted		

Part -B

WATER AND RAW MATERIAL CONSUMPTION

(i) Water Consumption

S.No	Water Consumption (m³/Calendar Day)	2017-2018	2018-2019
1	Domestic	10.64	7.33

(ii) Raw Material Consumption

	Name of the Raw Material/Chemicals/Other Consumptions.	Consumption during the financial year 2017 – 18.	Consumption during the financial year 2018 - 19.
1	Not Applicable	NIL	NIL

The unit does not undergo any manufacturing process. The water consumed is mainly for Firefighting, Greenbelt development and maintenance, etc.,

PART- C

POLLUTION DISCHARGES TO ENVIRONMENT/UNIT OF OUTPUT

(Parameter as specified in the consent issued)

Pollutants a) Water	Quality of Pollutants Discharged (Mass/day) STP Treated Water Charact	Pollut discha (mass/vo	Concentration of Pollutants discharges (mass/volume) eristics:-		ntage of variation from escribed standards		
	Parameter	Parameter Consent Actual Limit		ual	% Variation with prescribed standard		
	pH Total Suspended Solids (mg/l)	5.5-9 30	7. ⁻ 12		-Nil-		
	BOD (3 days at 27°C) (mg/l)	20	4		-Nil-		
	Water sewage discharged (KLD)	25	2		-Nil-		
b) Air	· ·	DG stacks	as per CF		were used during power PCB Standards. All the		
Particulate Matter (mg/Nm3)							
Sulphur Dioxide (ppm)	DG stack emission repo	report is enclosed as Annexure 1					
Nitrogen Oxide (ppm)							

PART- D

HAZARDOUS WASTES

(As specified under Hazardous Waste Management and Handling Rules 1989)

	Total Quantity (Kg)				
Hazardous Wastes	During the previous financial year (2017-18)	During the current financial year (2018-19)			
(a)From Process	NIL	NIL			
(b)From pollution Control facilities	NA	NA			

Note: Terminal commenced its operation from Oct'18. There is no generation of hazardous waste during the year 2018-19.

PART- E

SOLID WASTES

Total Quantity Generated (MT/Annum)					
Solid Waste	During the Previous Financial Year (2017-18)	During the Current Financial Year (2018-19)			
(a) From Pollution Control	NIL	20 Kg			
Equipment - STP					
(b) From Process	Nil	Nil			
(C) 1. Quantity recycled or	Nil	Nil			
reutilized within the unit.	Nil	Nil			
2. Sold	Nil	Nil			
3. Disposed					

PART- F

Please specify the characterizations (in terms of composition of quantum) of Hazardous as well solid waste and indicate disposal practice adopted for both these categories of wastes.

- Hazardous waste Annual returns in Form 4 was submitted in line with the Hazardous and Other Wastes (Management & Trans boundary Movement) Rules, 2016.
- E-waste returns in Form 3 was submitted in line with the E-waste Management Rules 2016

PART- G

IMPACT OF THE POLLUTION ABATEMENT MEASURES TAKEN ON CONSERVATION OF NATURAL RESOURCES AND ON THE COST OF PRODUCTION.

- Adani Ennore Container Terminal Private Limited is having electrified cranes only and hence the diesel consumption by the cranes is totally eliminated.
- Sewage Treatment Plant (STP) is in continuous operation and the treated effluent water quality is meeting the TNPCB norms. STP treated water is used for Gardening purpose, thereby reducing freshwater consumption. The total cost spent on STP operation during the year 2018-19 is Rs. 7 Lakhs.
- Unit is undertaking Regular Environmental Monitoring of port through NABL accredited laboratory. All the required environmental parameters are well within specified limit & the details of monitored data is regularly submitting to TNPCB, CPCB, MoEF&CC and other concerned authorities.

PART- H

ADDITIONAL MEASURES/INVESTMENT PROPOSAL FOR ENVIRONMENTAL PROTECTION INCLUDING ABATEMENT OF POLLUTION, PREVENTION OF POLLUTION.

	Description						
	Regular Expenditure (cost in INR lakhs/year)						
1	Environmental monitoring of MOEF recognized	7					
	third party						
2	Green belt & Horticulture development	1					
3	Annual maintenance contractor of STP operation	3.6					

PART- I

ANY OTHER PARTICULARS FOR IMPROVING THE QUALITY OF ENVIRONMENT.

- Energy Conservation Committee to measure the amount of energy consumed and to actions to reduce the energy consumed through port operations
- Water Warriors committee to identify and reduce the water consumption. The committee would propose innovative water solutions
- ISO 14001 : 2015 and Integrated Management System certified Port.
- Working towards achieving "Zero Waste Inventory" as per our Group Environment Policy and all wastes are being handled in line with 5R Principle.
- Single use and throwaway plastics completely banned inside the port premises.

Date: 20.09.2019

(Signature of a person carrying out an

industry operation or process)

Name : Jai Khurana

Designation: Chief Executive Officer
Address : Adani Ennore Container

Terminal Pvt Ltd

C/O Kamarajar Port Limited

Vallur post, Ennore

Thiruvallur District - 600 120

Tamil Nadu, India.

			AECIPL.	SIACK	MOMITO	KING	(April 2	010 10	March'201	2)			41474.15	
	Location	DG 1	1500KVA		DG 1500KVA - 1							DG - 3	DG - 1	
Month & Year		Apr-18	May- 18	Jun- 18	Jul - 18	Aug 18		ep - 18	Oct - 18	Nov - 18	Dec - 18	Jan - 19	Feb - 19	Mar - 19
S.No.	Parameters													
1	Stack Temperature, °C	227	236	225	221	227	7 :	235	224	236	229	220	236	235
2	Flue Gas Velocity, m/s	16.47	16.01	16.93	16.14	17.4	12 1	8.73	17.06	18.14	17.27	18.42	18.86	17.86
3	Sulphur Dioxide, mg/Nm3	8.1	7.3	8.1	7.5	8.5	5	8	7.2	8.7	8.1	7.2	8.2	7
4	NOX (as NO2) in ppmv	132	139	130	127	134	4	137	130	139	134	128	125	121
5	Particular matter, mg/Nm3	28.6	25.8	26.9	28.2	29.	1 2	26.1	29.4	32.8	33.6	30.6	28.2	28.9
6	Carbon Monoxide, mg/Nm3	36	34	40	43	39		40	46	51	57	55	56	53
7	Gas Discharge, Nm3/hr	4412	4213	4548	4376	466	57 4	939	4598	4775	4608	5005	4960	4709
			AECTPL-	STACK	MONITO	ORING ((April'2	018 to	March'201	9)				
	Location	D	G 1500K\	/A -2			DG 15	OOKVA	- 2	DG - 3		D	G - 2	
	Month & Year	Apr-18	May-18	Jun-	10	ul - 18	Aug - 18	Sep 18		8 Nov -	Dec -	Jan - 19	Feb - 19	Mar -
S.No.	Parameters			Here										
1	Stack Temperature, °C	225	233	22	8 2	223	231	239	231	225	233	227	229	220
2	Flue Gas Velocity, m/s	16.86	15.87	16.	5 16	5.76	17.29	17.9	5 17.19	16.52	17.86	18.15	19.02	18.16
3	Sulphur Dioxide, mg/Nm3	7.9	7	7.8	3	7.2	8.1	7.8	8.2	7.4	7.9	7.5	7.9	7.4
4	NOX (as NO2) in ppmv	135	131	13	5 1	30	138	143	3 134	131	137	131	136	129
Particular matter, mg/Nm3		25.3	27.5	28.	40.5	6.9	28.3	30.		28.6		29.8	31.4	33

Carbon Monoxide,

Gas Discharge, Nm3/hr

mg/Nm3

Name: M/s. ADANI ENNORE CONTAINER TERMINAL PVT LTD., Address: C/o. Kamarajar Port Limited, Vallur Post, Ponneri Taluk,

Chennai-

Tiruvallur District - 600 120.

TAMILNADU POLLUTION CONTROL BOARD

CONSENT ORDER NO. 1808211676581

DATED: 23/08/2018.

PROCEEDINGS NO.T1/TNPCB/F.0529GMP/RL/GMP/A/2018 DATED: 23/08/2018

SUB: Tamil Nadu Pollution Control Board - RENEWAL OF CONSENT -M/s. ADANI ENNORE CONTAINER TERMINAL PRIVATE LIMITED, S.F.No. Within Kamarajar Port Limited (KPL) formerly known as Ennore Port Limited, KATTUPALLI village, Ponneri Taluk and Tiruvallur District - Renewal of Consent for the operation of the plant and discharge of emissions under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) -Issued- Reg.

REF: 1. PROCEEDINGS NO.T5/TNPCB/F.1305AMB/RL/AMB/W&A/2017 DATED: 28/06/2017

2. IR.No: F.0529GMP/RL/AE/GMP/2018 dated 26/07/2018

RENEWAL OF CONSENT is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) (hereinafter referred to as "The Act") and the rules and orders made there under to

The Chief Executive Officer

M/s.ADANI ENNORE CONTAINER TERMINAL PRIVATE LIMITED,

S.F.No. Within Kamarajar Port Limited (KPL) formerly known as Ennore Port Limited,

KATTUPALLI village,

Ponneri

Taluk,

Tiruvallur District.

Authorizing the occupier to operate the industrial plant in the Air Pollution Control Area as notified by the Government and to make discharge of emission from the stacks/chimneys.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2021

R. KANNAN KANNAN Date: 2018.08.23 14:52:16

For Member Secretary,
Tamil Nadu Pollution Control Board,
Chennai

POLLUTION PREVENTION PAYS

SPECIAL CONDITIONS

1. This renewal of consent is valid for operating the facility for the manufacture of products (Col. 2) at the rate (Col. 3) mentioned below. Any change in the products and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

SI. No.	Description Description	Quantity	Unit
301-00	Product Details	TAMILNADU POLLETION C	ONTROLEGARS TAMILIADUP
1.	Port facility to handle Containers (400 m Quay Length)	11.68	Million Metric Tons/ Annum
aunifi	By-Product Details	டிப் நமிழ்நாடு மாச கட்டுப்	பாடு வார்டம் தமிற்றாடு ச
1.	Nilvagang one supplied and an grading one supplied and	0 அதிழ்நாடு மாக் கட்டும்	ung Oras salama s
i pumili	Intermediate Product Details	UND ENGINEERING FOREST STEPS	LITTE STREET STATES OF
1.	TAMILARED POLEOTION CONTINUE SURVEY TAMILARED POLLOTION CONTINUE SURVEY TO THE STATE OF THE STAT	O SLOTO DO LOTA SLOTO	O A A A A A A A A A A A A A A A A A A A

2. This renewal of consent is valid for operating the facility with the below mentioned emission/noise sources along with the control measures and/or stack. Any change in the emission source/control measures/change in stack height has to be brought to the notice of the Board and fresh consent/Amendment has to be obtained.

I	Point source emission with stack:						
Stack No.	Point Emission Source	Air pollution Control measures	Stack height from Ground Level in m	Gaseous Dischargo in Nm3/hr			
CONTRACTO CALLED ON TO A CONTRACTO C	1500 KVA	Acoustic enclosures with stack	30	PORTUGE PURILE OF TAMBLE O			
2	1500 KVA	Acoustic enclosures with stack	30 100 000	ROLDOARD TAMILHADU POLLUT B FUNDUL SULLIS BOLLUT ROLDOARD TAMILHADU POLLUT B FUNDUL SULLIS BOLLUT B FUNDUL SULLIS B			
3 0000	1500 KVA	Acoustic enclosures with stack	30	இவரியம் தமிழ்தாடு மாச HOLUBARD TAMILIANDU PDLLU நெவ்ளியம் தமிழ்தாடு காச PDL SOARO TAMILIANU POLLU			
4	125 KVA	Acoustic enclosures with stack	2 UTION CUI	THE BOARD TAMPLADURE OF THE POLICE OF TAMPLADURE OF TAMPLADURE OF TAMPLADURE OF THE POLICE OF THE POLICE OF THE POLICE OF THE POLICE OF THE POLICE OF THE POLICE OF THE POLICE OF THE POLICE OF THE POLICE OF THE POLICE OF T			
II	Fugitive/Noise emission :	MAD DN BU/	MILNADU POLLUTION CON	NTROLBOARD TAMILYADU POLLU TO SOOGAND SOOGANDA INSE			
SI. No.	Fugitive or Noise Emission sources	Type of emission	Control measures	F ROLBURY GLACON GRADER TO THE CONTROL OF THE CONTROL TAXABLE OF T			
AOL (1) ARB	DG Sets	Noise	Acoustic Enclosures	CHOLBOARD TAMILARD POLLU TAMILARD BOLDON G. ATA CALLON BOLD BOLD BOLD BOLD BOLD BOLD BOLD BOLD			

TAMILNADU POLI N CONTROL BOARD

Additional Conditions:

- 1. The unit shall ensure that no process emission shall be let out from the premises of the unit.
- 2. The unit shall adhere to the AAQ/Ambient Noise Level standards prescribed by the Board.

 3. The unit shall conduct AAQ/ANL/SM emission survey periodically through Board lab and furnish the ROA to the Board in six months.
- 4. The unit shall adopt suitable scientific technology to control the odour nuisance from the unit's activity.
- 5. The unit shall provide adequate green belt inside and along the periphery of the unit.
- 6. The unit shall furnish exact green belt area ear marked/developed as per norms in the unit premises
- and furnish photographs along with latitude and longitude co-ordinates.

 7. The unit shall liable to pay the consent fee and shall remit the difference in amount in case of any revision of consent fee by the Government.

Pigitally signed by R.

R. KANNAN

KANNAN

Date: 2018.08.23 14:52:46

Hor Morel-

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

The Chief Executive Officer,

M/s.ADANI ENNORE CONTAINER TERMINAL PRIVATE LIMITED,

Kamarajar Port Limited, Vallur Post, Chennai,

Pin: 600120

Copy to:

- 1. The Executive Officer, MINJUR-Town Panchayat, Ponneri Taluk, Tiruvallur District
- 2. The District Environmental Engineer, Tamil Nadu Pollution Control Board, GUMMIDIPOONDI.
- 3. The JCEE-Monitoring, Tamil Nadu Pollution Control Board, Chennai.
- 4. File

POLLUTION PREVENTION PAYS

AMILIAROU POLLUTION CONTROL BOARD

SACEDITO COM SCIOCLOS CARRELE

AMILIAROU POLLUTION CONTROL BOARD

SACEDITO COM SCIOCLOS CARRELE

RIMENADU POLLUTION CONTROL BOARD

SACEDITO COM SCIOCLOS CARRELE

AMILIAROU POLLUTION CONTROL BOARD

AMILIAROU POLLUTION CONTROL BOARD

SACEDITO COM SCIOCLOS CARRELE

AMILIAROU POLLUTION CONTROL BOARD

SACEDITO COM SCIOCLOS CARRELE

AMILIAROU POLLUTION CONTROL BOARD

SACEDITO COM SCIOCLOS CARRELE

AMILIAROU POLLUTION CONTROL BOARD

SACEDITO COM SCIOCLOS CARRELE

SAMILIAROU POLLUTION CONTROL BOARD

SACEDITO COM SCIOCLOS CARRELE

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIAROU POLLUTION CONTROL BOARD

SAMILIA

SUBSTRATE OF A SUGGESTRATE SOARD SUBSTRATE POLLUTION CONTROL BOARD AND SUBSTRATE SUBST

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIADU POLLUTION CONTROL BOARI

AMILIA

TAMILHOU POLLUTION CONTROL BUSINESS CONTROL BUSINESS CONTROL BOARD SOLING CONTROL BOARD

TAMILIAND POLLUCION CONTROL SOURCE
BOOK BOTH OF THE CONTROL SOURCE
FAMILIADO POLLUTION CONTROL SOURCE
FAMILIADO POLLUTION CONTROL SOURCE
FAMILIADO POLLUTION CONTROL SOURCE
FAMILIADO POLLUTION CONTROL SOURCE
FAMILIADO POLLUTION CONTROL SOURCE
FAMILIADO POLLUTION CONTROL SOURCE
FAMILIADO POLLUTION CONTROL SOURCE
FAMILIADO POLLUTION CONTROL SOURCE
FAMILIADO POLLUTION CONTROL SOURCE

TAMILNADU POLLUTION CONTROL BOARD

BOARD TAMILHADU POLLUTION CONTROL BOARD

TAMENABUP PURCUITOR PURCHER BUARD

TAMENABUP PURCUITOR PURCHER BUARD

TAMENABUP PURCUITOR CONTROL ST

TAMENABUP PURCUITOR CONTROL ST

TAMENABUP PURCUITOR CONTROL ST

TAMENABUP PURCUITOR CONTROL ST

TAMENABUP PURCUITOR CONTROL ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUITOR ST

TAMENABUP PURCUI

TAMILIAND POLLUTION CONTROL BOARD SURFACE DATE SULPTION CONTROL BOARD SURFACE DATE SURFACE DATE SURFACE DATE SURFACE DATE SURFACE DATE SURFACE DATE SURFACE DATE SURFACE DATE SURFACE DATE SURFACE DATE SURFACE DATE SURFACE DATE SURFACE DATE SURFACE DATE SURFACE DATE SURFACE DATE SURFACE DATE SURFACE DATE SURFACE DATE DATE SURFACE DATE DATE SURFACE DATE DATE SURFACE DATE DATE SURFAC

authipme in a alectione and united to a second and a second TAMIL NA DI POLLUTION CONTROL BOARD TAMIL NA DI POLLUTION CONTROL BOARD POLICITA DI POLLUTION CONTROL BOARD TAMIL NA DI POLLUTION CONTROL BOARD

TAMILIADO POLLUTION CONTROL BOAR SUBSEMBLA DE SUBSEMBLA DE SUBSEMBLA SUBSEMB

ATTEMEDU POLLUTION CONTROL BOARD

SATULNA DU POLLUTION CONTROL BOARD

SATULNA DU POLLUTION CONTROL BOARD

LA SIL NADU POLLUTION CONTROL BOARD

DOTTBOL BOARD

DOTTBOL BOARD

DOTTBOL BOARD

DOTTBOL BOARD

LA SIL NADU POLLUTION CONTROL BOARD

LA SIL NADU POLLUTION CONTROL BOARD

LA SIL NADU POLLUTION CONTROL BOARD

TOTION CONTROL BOARD

LA SIL NADU POLLUTION CONTROL BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

LA SIL NATION BOARD

POLICITION CONTROL SCAND

LONG SCICLUMS SCANDARD

LONG SCICLUMS CONTROL SCAND

LONG SCANDARD

LONG SCICLUMS CONTROL SCAND

LONG SCANDARD

LONG SCICLUMS CONTROL SCAND

LONG SCANDARD

LONG SCICLUMS CONTROL SCAND

LONG SCANDARD

LONG

TAMEDIAGO POLLUTION CONTROL BOARD SUBSECTION OF A SECRETARIA CONTROL BOARD SUBSECTION OF A SECRETARIA

தமிழ்நாடு மாக கட்டுப்பாடு! வாரியல் TAMILIADU POLLUTION CONTROL BOARD தமிழ்நாடு யாக கட்டுப்பாடு வாரியல் TAMILIADU POLLUTION CONTROL BOARD

POLLUTION PREVENTION PAYS

தமிழ்நாடு மாக எட்டும்பாடு உளிய TAMILHADU POLLUTION CONTROL BOAI தமிழ்நாடு மாக கட்டும்பாடு உளிய

அடு களியர் ஆல்ற்ற மாக கட்டுப்பாடு வளிடிக் TAMILHABU POLLUTION CONTROL BOARD அடு களியம் தமிற்று வாக கட்டுப்பாடு வளியம்

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO A

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO A

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO A

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

SALÁBRIO UMA SALÁBRIO

TAMILIARDO POLLUTION CONTROLI

TAMILIARDO POLLUTION CONTROLI

TAMILIARDO POLLUTION CONTROLI

TAMILIARDO POLLUTION CONTROLI

TAMILIARDO POLLUTION CONTROLI

TAMILIARDO POLLUTION CONTROLI

TAMILIARDO POLLUTION CONTROLI

TAMILIARDO POLLUTION CONTROLI

TAMILIARDO POLLUTION CONTROLI

TAMILIARDO POLLUTION CONTROLI

TAMILIARDO POLLUTION CONTROLI

TAMILIARDO POLLUTION CONTROLI

TAMILIARDO POLLUTION CONTROLI

TAMILIARDO POLLUTION CONTROLI

TAMILIARDO POLLUTION CONTROLI

TAMILIARDO POLLUTION CONTROLI

TAMILIARDO POLLUTION CONTROLI

TAMILIARDO POLLUTION CONTR

BORGESTOR LOTE SE DELINE STATE OF TAMELINGO POLLUTION CONTROL STATE OF TAMELINGO LOTE TAMILWADU POLLUTION COMTROL S SUNDOPENI SONT SONTONIO POL TAMILWADU POLLUTION CONTROL SUDUPENI CONTROL CONTROL CONTROL TAMILWADU POLLUTIONI CHITRUL C

estanti ura el gilino de raminago politición control no salvero ura el nivero ar-

TANKHADO POLLUTION CONTROL BOOM STORE POLICE OF ACTION O

O DES ACCIONES ANTICA ANTICAMA TAMILIADO POLLUTION CON

CONSENT ORDER NO. 1808111676581

DATED: 23/08/2018.

PROCEEDINGS NO.T1/TNPCB/F.0529GMP/RL/GMP/W/2018 DAT

DATED: 23/08/2018

SUB: Tamil Nadu Pollution Control Board - RENEWAL OF CONSENT - M/s. ADANI ENNORE CONTAINER TERMINAL PRIVATE LIMITED, S.F.No. Within Kamarajar Port Limited (KPL) formerly known as Ennore Port Limited, KATTUPALLI village, Ponneri Taluk and Tiruvallur District - Renewal of Consent for the operation of the plant and discharge of sewage and/or trade effluent under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act 6 of 1974) – Issued-Reg.

REF: 1. PROCEEDINGS NO.T5/TNPCB/F.1305AMB/RL/AMB/W&A/2017 DATED: 28/06/2017

2. IR.No: F.0529GMP/RL/AE/GMP/2018 dated 26/07/2018

RENEWAL OF CONSENT is hereby granted under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act, 6 of 1974) (hereinafter referred to as "The Act") and the rules and orders made there under to

The Chief Executive Officer
M/s.ADANI ENNORE CONTAINER TERMINAL PRIVATE LIMITED,

S.F.No. Within Kamarajar Port Limited (KPL) formerly known as Ennore Port Limited, KATTUPALLI Village,

Ponneri

Taluk,

Tiruvallur District.

Authorising the occupier to make discharge of sewage and /or trade effluent.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2021

P. KANNAN Date: 2018.08.23 14:53:14 +05'30'

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

SPECIAL CONDITIONS

1. This renewal of consent is valid for operating the facility for the manufacture of products/byproducts (Col. 2) at the rate (Col 3) mentioned below. Any change in the product/byproduct and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

Sl. No.	Description Description	Quantity	Unit
ROLEO	Product Details	IND TRANSLANDU POLLUTION C	ONTROLEGARD TAMILMADU POL
1.	Port facility to handle Containers (400 m Quay Length)	11.68	Million Metric Tons/ Annum
amil ani an	By-Product Details	ung seng designing rate et Di	பாடு வால்யம் அவ்ஓநாடு மா
1.	Nile alignmin man and thing comment substants one of Other confi	O SULUBIO LOVE EL OL	பாடு (0 ியம் தமிழ்தாற் மா
Senti	Intermediate Product Details	பட தமிழ்நாடு மாக கட்டுப்	பாடு வாரியம் தமிறகாடு யா
1.	NIEGORO RUS STORTHOLD STATES SUPERIOR DES STORTHOLD STATES	்0 தமிழ்தாடு Leas கட்டுப்	ung Officia guidene un

2. This renewal of consent is valid for operating the facility with the below mentioned outlets for the discharge of sewage/trade effluent. Any change in the outlets and the quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

Outlet No.	Description of Outlet	Maximum daily discharge in KLD	Point of disposal
Effluent Ty	pe : Sewage	मार्थित है कि विकास किया है है कि किया है कि कार्य किया	BLANCE STREET SERVICES
ROLEDARY TAM	Sewage Disposal	25.0	On land for gardening
Effluent Ty	pe : Trade Effluent	្ត្រី រូប នេះ ក្រុម្បី ព្រះ បាន ការបស់ នៅមេត្តិ ក្រុម មាន Mainten samu and mainten	ை கட்டுப்பாடு வாரியல் அடித்தாடு மாச ச புரால் நடிக்கா நடிக்கு நடிக்கு நடிக்கு
ROLEGATO TAME	Nill Control Control State Tawks	0.0 CONTROL STAND TAMELAUUFUL	No trade effluents generated.

TAMILNADU POLLUTION CONTROL BOARD

Additional Conditions:

1. The unit shall operate and maintain the sewage treatment to treat the sewage generated from the unit to achieve the standards prescribed by the Board.

2. The unit shall analyse the treated sewage collected at the outlet of STP every month and furnish the ROA of the same to the Board to assess the performance of the STP provided to treat the sewage effluent

3. The unit shall ensure that no trade effluent shall be generated from its activity.

4. The unit shall comply with the conditions imposed in the environmental clearance accorded to the unit from the MoEF, GOI vide Lr.No. 10-28/2005-1A-111 dated 10.09.2007 and Lr.No.10-28/2005-1A-III- dated 24.12.2014.

5. The unit shall ensure that the dredged material shall not be dumped in the areas attracting CRZ Notification and the material shall be used for further beneficial use.

6. The unit shall have containment Boom facility with skimmer to contain and recover the spillages of hazardous Liquid in the sea if any.

7. The unit shall maintain the water quality of Marine Sea at regular intervals by engaging competent agencies.

8. The unit shall furnish carry out impact assessment study once in a year with respect to marine and land environment and the report shall be furnished to Board.

9. The unit shall maintain adequate dust suppression system and take all measures to ensure that the cargo is handled by taking necessary precautions to avoid spread of fugitive dust while transporting cargo through lorries and containers.

10. The unit shall ensure that the vehicles operated inside the premises shall not sound the horn needlessly or continuously or more than necessary to ensure safety and in silence zones.

11. The unit shall ensure that the vehicles shall not fit or use any multi toned horn giving a harsh, shrill, loud or alarming noise.

12. The unit shall ensure that no vehicles shall be permitted to have a musical horn. All vehicles, buses, trucks, and cars shall not be fitted with power, pressure or musical horns. Such vehicles with any such horns shall be got removed by the enforcement officer. The pressure horn or the musical/multi – toned horn of the vehicles shall be confiscated by the enforcement officer at the time of challan.

13. The unit shall provide water sprinklers to the internal roads so as to avoid dust emissions due to the vehicular movements inside the premises.

14. The unit shall provide adequate green belt inside and along the periphery of the unit.

15. The unit shall furnish exact green belt area ear marked/developed as per norms in the unit premises and furnish photographs along with latitude and longitude co-ordinates.

16. The unit shall not use 'use and throwaway plastics' such as plastic sheets used for food wrapping, spreading on dining table etc., plastic plates, plastic coated tea cups, plastic tumbler, water pouches and packets, plastic straw, plastic carry bag and plastic flags irrespective of thickness, within the industry premises. Instead it shall encourage use of eco friendly alternative such as banana leaf, areca

nut palm plate, stainless steel, glass, porcelain plates/cups, cloth bag, Jute bag etc., 17. The unit shall liable to pay the consent fee and shall remit the difference in amount in case of any revision of consent fee by the Government.

டும் தமிழ்நாடு மாக கட்டு

R. KANNAN Digitally signed by R. KANNAN Date: 2018.08.23 14:53:34

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

To

The Chief Executive Officer,

M/s.ADANI ENNORE CONTAINER TERMINAL PRIVATE LIMITED,

Kamarajar Port Limited, Vallur Post, Chennai,

Pin: 600120

Copy to:

1. The Executive Officer, MINJUR-Town Panchayat, Ponneri

Taluk, Tiruvallur District.

- 2. The District Environmental Engineer, Tamil Nadu Pollution Control Board, GUMMIDIPOONDI.
- 3. The JCEE-Monitoring, Tamil Nadu Pollution Control Board, Chennai.

POLLUTION PREVENTION PAYS

4. File

TAMILNADU POLLUTION CONTROL BOARD

4