

AECTPL/KPL/EC-Compliance/ENV/- 03

Date: 11/01/2019

To,
The General Manager (Marine Services)
Kamarajar Port Limited,
Vallur Post, Ponneri Taluk,
Ennore, Chennai-120.

Dear Sir,

Sub: Development of container terminal at Kamarajar Port Limited on DBFOT basis, KPL awarded to Adani Ennore Container Terminal Private Limited-Submission of Half yearly Compliance (July 2018- December 2018) of Environmental Clearance issued to KPL in various stages of development with regards to Container Terminal – Reg.

Ref: 1. Vide order no: 10-28/2005-IA-III dated 19th May, 2006

2. Vide order no: 10-28/2005-IA-III dated: 10/09/2007 and validity

extension date: 31.03/2017

3. Vide order no: 10-28/2005-IA-III dated: 24/12/2014

With reference to above captioned subject and cited references, Adani Ennore Container Terminal Private Limited is submitting the Half yearly compliance report for the period July 2018- December 2018 of applicable conditions to the Environmental & CRZ Clearance obtained by the M/s. Kamarajar Port Limited in various stages of development as referred above.

Kindly acknowledge us the receipt of the same.

For Adani Ennore Container Terminal Private Limited,

bich Kumas

R. Sathish Kumar Senior Manager – Environment

Encl.: As above.

Adani Ennore Container Terminal Pvt Ltd Adani House Nr Mithakhali Circle, Navrangpura

Ahmedabad 380 009 Gujarat, India Tel +91 79 2656 56 5555 Fax +91 79 2555 5500 info@adani.com www.adani.com CIN: U61200GJ2014PTC078795

காமராஜா் துறைமுக நிறுவனம்

कामराजर पोर्ट लिमिटेड

Kamarajar Port Limited

(A Mini Ratna Government of India Undertaking)

No. KPL/MS/Env/MoEF&CC/2019

Date:19.03.2018

To

Director (S)

Ministry of Environment, Forest and Climate Change, Regional Office (SEZ), Ist and IInd Floor, Handloom Export Promotion Council, 34, Cathedral Garden Road, Nungambakkam, Chennai – 34.

[Kind attn: Dr. C Kaliaperumal, M.E., Ph.D]

Sub: Kamarajar Port Limited, Chennai- Submission of Compliance report for the period of July to December-2019 on the conditions issued by Ministry of Environment & Forests-Reg.

Sir,

Please find enclosed the compliance report for the period of July to December-2019 on the Ministry's conditions mentioned in the Environment clearance letters issued for the following projects.

- 1. Construction of new Satellite Port at Ennore, near Madras. Ministry's letter Ref: J-16011/9/87-IA, III dated 28.9.1992.
- 2. Development of Terminals for marine liquids, coal, iron and containers in second phase and associated capital dredging at Ennore port. Ministry's letter F. No. 10-28/2005-1A-III dated 19th May, 2006.
- 3. Development of Terminals for marine liquids, coal, iron and containers in second phase and associated capital dredging at Ennore port. Ministry's letter F. No. 10-28/2005-1A-III dated 10th September, 2007.
- 4. CRZ and Environmental clearance for the construction of General Cargo Berth at Ennore port cargo terminal project. MoEF Letter F.No.11-21/2009-IA-III dated 23.7.2009.

Registered Office & Trade Facilitation Centre :

2nd Floor, (North Wing) & 3nd Floor, Jawahar Building,

17, Rajaji Salai, Chennai - 600 001. Ph: 044-25251666-70 Fax: 044-25251665 CIN: U45203TN1999GOI043322 पंजीकृत कार्यालय & व्यवसाय सुविधा केन्द्र : दूसरी मंजिल, (उत्तर विंग) & तीसरी मंजिल, जवाहर बिल्डिंग.

17, राजाजी सलाई, चेन्नई-600 001. फोन: 044-25251666-70 फैक्स: 044-25251665 पोर्ट कार्यालय: वल्लूर पोस्ट, चेन्नई - 600 120 फोन: 044-27950030-40 फैक्स: 044-27950002

Port Office: Vallur Post, Chennai - 600 120

Ph: 044-27950030-40 Fax: 044-27950002

website: www.kamarajarport.in e-mail: info@kplmail.in

Kamarajar Port - India's Port of the Millennium

- 5. Expansion and modernization of existing handling of multicargo container terminal at Kamarajar Port by M/s. Kamarajar Port Limited Environmental and CRZ clearance (Development of Multicargo berth (230m) and container terminal (730m)). MoEF's letter F.No. 10-28/2005–IA-III dated 24.12.2014.
- 6. Development of additional coal berths (CB3 and CB4) at Kamarajar Port, Tamil Nadu by M/s. KPL Environmental and CRZ clearance MoEF's Letter F.No. 11-51/2012–IA-III dated 12.03.2015.
- 7. Modification of existing iron ore terminal on 'as is where is' basis to handle common user coal at Kamarajar Port- MoEF's Letter F.No.10-28/2005–IA-III dated 9th May 2018.
- 8. Development of facilities envisaged in the Port Master Plan(Phase-III) by M/s.Kamarajar Port Limited-MoEF's Letter F.No.11-51/2012-1A-111 dated 30.10.2018.

The six monthly environmental quality reports and the soft copy of the compliance report in CD are also enclosed.

Thanking you,

Yours sincerely,

General Manager (Marine Services)

Encl: soft copy of the Compliance report for the above individual projects in CD.

Vide order no: 10-28/2005-IA-III dated 19th May, 2006

Specific Conditions:

SI. No.	Environmental Clearance conditions	Compliance Status as on 31.12.2018
i.	All the conditions stipulated in the NOC from TNPCB vide their letter No. T12/TNPCB/Misc./F.3322/TVLR/05, dated 07.12.2005 should be strictly implemented.	Status by KPL. Detailed compliance submitted as annexure by KPL dated 18.07.2013.
ii.	Groins and other suitable structures should be constructed to prevent the closing of the month of Ennore Creek.	Status by KPL.
iii.	The DPR and the technical details to be awarded to the BOT operator should provide to MoEF for post project monitoring within 6 months from the date of receipt of this letter.	Complied. Container Terminal DPR submitted vide letter number EPL/MS/49/2008 dt. 13/03/2008.
iv.	The marine terminal should be set up outside CRZ area.	Status by KPL.
V.	Recommendations of Risk Analysis report should be strictly implemented and a comprehensive quantitative Risk Analysis should be carried out before operationalizing the project.	Complied Operational Risk Assessment carried out and the recommendations are being implemented. Operational Risk Assessment submitted vide Letter Number AECTPL/KPL/EC- compliance/Env/O2 dt. 13.07.2018
vi.	Approval form Chief Controller of Chief Explosives should be obtained for hazardous chemicals storage, transfer and related activities.	Not Applicable. AECTPL is not storing any Hazardous chemicals. Hence not applicable.
vii.	The reclamation of the port area should be carried out with the dredged materials. Dredged material should not be dumped into the sea. No reclamation should be carried outside the port limits.	Status by KPL.
viii.	The coastal protection works should be carried out after detailed hydrodynamic modelling studies and it should be ensured that no erosion or accretion takes place in the shore protection works.	Status by KPL.
ix.	Reclamation of 500 acres should be carried out only for the port development. The height of the reclaimed area will be maintained above the maximum flood level.	Status by KPL.
x.	The wave tranquillity study and the ship manuring studies carried out should be taken into account while operating the port.	Status by KPL.
xi.	The project proponent should ensure that doing construction and operation of the port there will been impact on the livelihood of the fisherman. The fishermen should be provided free access to carry out the fishing activity.	Status by KPL.
xii.	All necessary precaution while undertaking construction and operation of the port should be taken keeping in view the	Status by KPL.

	bathymetric changes caused due to tsunami.	
xiii.	All development in the port should be	Status by KPL.
AIII.	accordance with the Coastal Regulation	Status by RF L.
	Zone Notification, 1991 and approved	
	Coastal Zone Management Plan of Tamil	
	Nadu.	
xiv.	The project proponent should undertake a	Status by KPL.
	comprehensive hydrodynamic modelling	
	study with regard to river diversion and	
	submit the report to the Ministry within 6	
	months from the date of receipt of this	
	letter. Further the unit should comply with	
	all the findings/recommendations of the	
	study.	
XV.	Construction labour camps should be	Complied.
	located outside of CRZ area and should be	Construction of container
	provided with adequate cooking and	terminal is completed.
xvi.	sanitation facilities. The project affected people, of any should	Status by KPL.
AVI.	be properly compensated and rehabilitated.	Stocos by INI E.
GENERAL COND		
i.	Development of the proposed channel	Status by KPL.
	should be undertaken meticulously	,
	conforming to the existing Central/Local	
	rules and regulations including CRZ	
	Notification, 1991 and its amendments. All	
	the construction designs/drawings relating	
	to the proposed development activities	
	must have approvals of the concerned	
ii.	State Govt. Depts./Agencies. A well-equipped laboratory with suitable	Complied.
""	instruments to monitor the quality of air	AECTPL has awarded
	and water shall be set up as to ensure that	Environmental Monitoring
	the quality of ambient air and water	services to NABL accredited
	conforms to the prescribed standards. The	laboratory. The reports are
	laboratory will also equipped with qualified	being submitted to KPL and
	manpower including a marine biologist so	Tamil Nadu Pollution Control
	that the marine water quality is regularly	Board on monthly basis.
	monitored in order to ensure that the	Environment Monitoring report
	marine life is not adversely affected as a	for the period July 2018 -
	result of implementation of the said	December 2018 is attached as
	project. The quality of ambient air and	Annexure - I.
	water shall be monitored periodically in all	
	the seasons and the results should be properly maintained for inspection of	
	concerned pollution control agencies. The	
	periodic monitoring reports at least once in	
	6 months must be send to this Ministry (RO	
	at Bangalore) and Pollution Control	
	Committee.	
iii.	Adequate provisions for infrastructure	Complied.
	facilities such as water supply, fuel for	Construction completed.
	cooking, sanitation etc. must be provided	
	for the labourers during the construction	
	period in order to avoid damage to the	
	environment. Colonies for the labourers	
	should not be located in CRZ area. It should	
ì	I also has a second of the other second of	
	also be ensured that the construction	
	also be ensured that the construction workers do not cut trees including mangroves for fuel wood purpose.	

iv.	To prevent discharge of sewage and other liquid wastes into the water bodies, adequate system for collection and treatment of the waste must be provided. No Sewage and other liquid wastes without treatment should be allowed to enter into the water bodies.	Complied. AECTPL has installed 25 KLD capacity Sewage Treatment Plant and treated water is being used for horticulture purpose
V.	Appropriate facility should be created for the collection of solid and liquid wastes generated by the barges/vessels and their safe treatment and disposal should be ensured to avoid possible contamination of the water bodies.	Status by KPL.
vi.	Necessary navigational aids such as channel markers should be provided to prevent accidents. Internationally recognized safety standards shall be applied in case of barge/vessel movements.	Status by KPL.
vii.	The project authorities should take appropriate community development and welfare measures for villagers in the vicinity of the project site, including drinking water facilities. A separate fund should be allocated for the purpose.	Status by KPL. However AECTPL has initiated few CSR initiatives in the vicinity of the project.
viii.	The quarrying material required for the construction purpose should be obtained only from the approved quarries/borrow areas. Adequate safeguards measures shall be taken to ensure that the overburden and rocks at the quarry site do not find their way in water bodies.	Complied AECTPL has completed construction.
ix.	For employing unskilled, semi-skilled and skilled workers for the project, preference should be given to local people.	Complied. AECTPL has considered local people during construction phase & also during Operation Phase through Contracts
x.	The recommendations made in the EMP and DMP, as contained in the EIA and RA reports of the projects shall be effectively implemented.	Status by KPL.
xi.	A separate EMC with suitable qualified staff to carry out various environment should be set up under the charge of a Senior Executive who will report directly to Chief Executive of the Company.	Complied. Environment Department headed by Senior Manager – Environment, who is reporting directly to Chief Executive Officer of the company is in place. He is well supported by Environment Management Team at H.O.
xii.	The funds earmarked for environment protection measures should be maintained in a separate account and there should be no diversion of these funds for any other purpose. A year-wise expenditure on environmental safeguards should be reported to this Ministry.	Complied Environmental Expenditure carried out from April 2018 to December 2018 is Rs.12.5 Lakhs Breakup details are as follows; a) Environmental Monitoring – Rs 5.1 Lakhs b) Greenbelt Development – Rs. 1.0 Lakhs, c) House Keeping – Rs.1.0 Lakhs

5) 601	N of STP – Rs. 5.4 Lakhs
xiii. Full support should be extended to the Noted f	for complianceTNPCB
officers of the Ministry's Regional office at Officials	have visited our Port
	hly basis. There was no
, , , , , , ,	officials from RO- C, and CPCB during the
	nce period. All the
	y support will be
	in case of any visit.
mitigative measures and other	
environmental protection activities. In case there is an intension of deviation or Noted for	r compliance
alternation in the project including the	r compliance
implementing agency, a fresh reference	
should be made to this Ministry for	
modification in the clearance conditions or	
imposition of new ones for ensuring	
environmental protection. The project proponents should be responsible for	
implementing the suggested safeguard	
measures.	
xiv. The Ministry reserves right to revoke this Noted.	
clearance, if any of the conditions	
stipulated are not compiled with to the satisfaction of this Ministry.	
	r Compliance
authority may stipulate additional	·
conditions subsequently, if deemed	
necessary for environmental protection, which shall be complied with.	
xvi. The project proponent should advertise at Status by	v KPL.
least in two local newspapers widely	, <u>-</u> .
circulated in the region around the project,	
one of which shall be in the vernacular	
language of the locality concerned available with the SPCB and may also be	
seen at Website of the Ministry of	
Environment & Forests at	
http:www.envforenic.in. The advertisement	
should be made within 7 days from the date	
of issue of the clearance letter and a copy of the sam	
e should be forwarded to the Regional	
Office of the Ministry at Bangalore.	
xvii. The project proponents should inform the Status by	y KPL.
RO as well as the Ministry the date of	
financial closure and final approval of the project by the concerned authorities and	
the date of start of Land Development	
Work.	

Vide order no: 10-28/2005-IA-III dated: 10/09/2007 and validity extension date: 31.03/2017

A. Specific Conditions:

S.No	Environmental Clearance conditions	Compliance Status as on 31.12.2018
i	It should be ensured that no mangroves are destroyed during reclamation.	Status by KPL.
ii	The proposed extension to the project should not cause any shoreline change abutting Ennore Port.	Status by KPL.
iii	Adequate provision for beach nourishment and sand bypass should be provided.	Status by KPL.
iv	The dredged material obtained should be utilized for filling up of back up area.	Status by KPL.
V	All conditions stipulated in the environmental clearance letter of even number dated 19.05.2006 should be strictly complied with.	Complied All stipulated conditions applicable to AECTPL in the environmental clearance letter of even number dated 19.05.2006 are being complied and compliance reports are regularly submitted to KPL
vi	The additional dredged material of 4 million cu. Mts. obtained from the project should not be disposed of into the sea.	Status by KPL.
vii	The reclaimed area should be used as containers stack yard only.	Status by KPL.
viii	Adequate drainage facilities should be provided in the reclaimed are along with collection and treatment system for treating the run off from the container stack yards.	Status by KPL.
ix	Necessary approvals/clearances should be obtained from the Tamil Nadu Coastal Zone Management Authority and Tamil Nadu Pollution Control Board before implementing the project.	Complied TNCZMA recommendation was obtained by KPL Tamil Nadu Pollution Control Board accorded Renewal of Consent to Operate orders to handle 11.68 MMTPA containers vide order no: 1808111676581 & 1808211676581 under Air and Water Act dated: 23/08/2018 valid for 3 years.

B. General Conditions:

S.No	Environmental Clearance conditions	Compliance Status as on 31.12.2018
i	Construction of the proposed structures should be undertaken meticulously confirming to the existing Central/ local rules and regulations including Coastal Regulation Zone Notification 1991 & its amendments. All the construction design drawings relating to the proposed construction activities must have approvals of the concerned State Government Departments / Agencies.	Status by KPL.
ii	Adequate provisions for infrastructure facilities such as water supply, fuel, sanitation etc. should be ensured for	

Environmental & CRZ Clearance Half Yearly compliance Report: July2018 – December 2018

	_	-
	construction workers during the construction phase of the project so as to avoid felling of trees/ Mangroves and pollution of water and the surroundings.	
iii	The project authorities mush make necessary arrangements for disposal of solid wastes and for the treatment of effluents by providing a proper wastewater treatment plant outside the CRZ area. The quality of treated effluents, solid wastes and noise level etc. must conform to the standards laid down by the competent authorities including the Central/State Pollution Control Board and the Union Ministry of Environment and Forests under the Environment (Protection) Act, 1986, whichever are more stringent.	Complied AECTPL has installed and operating 25 KLD sewage treatment plant to collect and treat the sewage generated from the terminal. The treated water is being used for horticulture purpose. AECTPL has implemented Integrated Waste Management System (IWMS) - Waste Segregation Yard.
iv	The proponent shall obtain the requisite consents for discharge of effluents and emission under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981 from the Tamil Nadu Pollution control Board before commissioning of the project and a copy of each of these shall be sent to this Ministry.	Complied Tamil Nadu Pollution Control Board accorded Renewal of Consent to Operate orders to handle 11.68 MMTPA containers vide order no: 1808111676581 & 1808211676581 under Air and Water Act dated: 23/08/2018 valid for 3 years.
V	The proponent shall provide for a regular monitoring mechanism so as to ensure that the treated effluents conform to the prescribed standards. The records of analysis reports must be properly maintained and made available for inspection to the concerned State/Central officials during their visits.	Complied AECTPL has awarded Environmental Monitoring services to NABL accredited laboratory. The reports are being submitted to KPL and Tamil Nadu Pollution Control Board on monthly basis. Environment Monitoring report for the period July 2018 – December 2018 is attached as Annexure - I . Reports are made available for inspection to the concerned State/Central officials during their visits.
Vİ	In order to carry out the environmental monitoring during the operational phase of the project, the project authorities should provide an environmental laboratory well equipped with standard equipment and facilities and qualified manpower to carry out the testing of various environmental parameters.	Complied Environmental Monitoring is being carried out through NABL accredited laboratory for carrying out regular Environment monitoring
vii	The sand dunes and mangroves, if any, on the site should not be disturbed in any way.	Status by KPL.
viii	A copy of the clearance letter will be marked to the concerned Panchayat/Local NGO, if any from whom any suggestion/representation has been received while processing the proposal.	Status by KPL.
ix	The Tamil Nadu Pollution Control Board should display a copy of the clearance letter at the Regional Office, District Industries Centre and Collector's Office/Tehsildar's Office for 30 days.	Status by KPL.
Х	The funds earmarked for environment	Complied
	protection measures should be maintained in a separate account and there should be	Environmental Expenditure carried out from April 2018 to December 2018 is

	no diversion of these funds for any other purpose. A year wise expenditure on environmental safeguards should be reported to this Ministry's Regional Office at Bangalore and the State Pollution Control Board.	Rs.12.5 Lakhs Breakup details are as follows; a) Environmental Monitoring – Rs- 5.1 Lakhs b) Greenbelt Development – Rs. 1.0 Lakhs c) House Keeping – Rs. 1.0 Lakhs d) O&M of STP – Rs. 5.4 Lakhs
xi	Full support should be extended to the officers of this Ministry's Regional office at Bangalore and the officers of the Central and State Pollution Control Boards by the project proponents during their inspection for monitoring purposes, by furnishing full details and action plans including the action taken reports in respect of mitigative measures and other environmental protection activities.	Noted for compliance TNPCB Officials have visited our Port on monthly basis. There was no visit of officials from RO-MoEF&CC and CPCB during the compliance period. All the necessary support will be provided in case of any visit.
xii	In case of deviation or alteration in the project including the implementing agency, a fresh reference should be made to this Ministry for modification in the clearance conditions or imposition of new ones for ensuring environmental protection.	Noted.
xiii	This Ministry reserve the right to revoke this clearance, if any of the conditions stipulated are not complied with to the satisfaction of this Ministry.	Noted.
xiv	This Ministry or any other component authority may stipulate any other additional conditions subsequently, if deemed necessary, for environmental protection, which shall be complied with.	Noted.
xv	The project proponent should advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned informing that the project has been accorded environmental clearance and copies of clearance letters are available with the State Pollution Control Board and may also be seen at Website of the Ministry of Environment & Forests at http://www.envfornic.in . The advertisement should be made within 7 days from the date of issue of the clearance letter and a copy of the same should be forwarded to the regional Office of this Ministry at Bangalore.	Status by KPL.
xvi	The Project proponents should inform the Regional Office at Bangalore as well as the Ministry the date of financial closure and final approval of the project by the concerned authorities and the date of start of Land Development Work.	Status by KPL.

Vide order no: 10-28/2005-IA-III dated: 24/12/2014

A. Specific Conditions:

S.No	Environmental Clearance conditions	Compliance Status as on 31/12/2018
i	"Consent to Establish" for the present project, shall be obtained from State Pollution Control Board under Air (Prevention and Control of Pollution) Act, 1981 and Water (Prevention and Control of Pollution) Act 1974.	Complied Tamil Nadu Pollution Control Board accorded Renewal of Consent to Operate orders to handle 11.68 MMTPA containers vide order no: 1808111676581 & 1808211676581 under Air and Water Act dated: 23/08/2018 valid for 3 years.
ii	Quality of Cargo should be handled in accordance with the details provided in the Form-I.	Complied AECTPL is handling only containerized cargo, as approved
iii	All the recommendations and conditions stipulated by Tamil Nadu Coastal Zone Management Authority (TNCZMA) No. 30060/EC.3/2005-1 dated 06.12.2005 shall be complied with.	Status by KPL.
iv	All the conditions as prescribed in the earlier Clearance letter no. 10-28/2005-IA-III dated 19.05.2006 and 10.09.2007 shall be complied with.	Status by KPL.
V	All the recommendation of the EIA/EMP & Risk Assessment and Disaster Management Report shall be complied with letter and spirit. All the mitigation measures submitted in the EIA report shall be prepared in the matrix format and the compliance for each mitigation plan shall be submitted to MoEF & CC along with half yearly compliance report to MoEF&CC-RO.	Status by KPL.
vi	The commitment made by the proponent to the issue raised during Public Hearing shall be implemented by the Proponent.	Status by KPL.
vii	Corporate Environmental Responsibility: a. The Company shall have a well laid down Environmental Policy approved by the Board of	AECTPL having approved QHSE policy.
	Directors. b. The Environment Policy shall prescribe for standard operating process/procedures to bring into focus any infringements/deviation/violation of the environmental or forest	AECTPL having approved SOPs.
	norms/conditions. c. The hierarchical system or Administrative Order of the company to deal with environmental issues and for ensuring compliance with the environmental clearance conditions shall be furnished.	Status by KPL. Standard procedures are made available to address corrective & preventive
	d. To have proper checks and	deviation and violations.

balances, the company shall have	
a well laid down system of	
reporting of non-compliances /	
violations of environmental	
norms to the Board of Directors	
of the company and / or	
shareholders or stakeholders at	
large.	

B. GENERAL CONDITIONS:

S.No	Environmental Clearance conditions	Compliance Status as on 31/12/2018
i	Appropriate measures must be taken while undertaking digging activities to avoid any likely degradation of water quality.	Complied Construction completed
ii	Full support shall be extended to the officers of the Ministry/Regional Office at Chennai by the project proponent during inspection of the project for monitoring purposes by furnishing full details and action plan including action taken reports in respect of mitigation measures and other environmental protection activities.	Noted for complianceTNPCB Officials have visited our Port on monthly basis. There was no visit of officials from RO-MoEF&CC and CPCB during the compliance period. All the necessary support will be provided in case of any visit.
iii	A six-Monthly monitoring report shall be need to be submitted by the project proponents to the Regional Office of this Ministry at Chennai regarding the implementation of the stipulated conditions.	Status by KPL.
iv	Ministry of Environment, Forests & Climate Change or any other competent authority may stipulate any additional conditions or modify the existing ones, if necessary in the in the interest of environment and the same shall be complied with.	Noted for compliance.
V	The Ministry reserves the rights to revoke this clearance if any of the conditions stipulated are not complied with satisfaction of the Ministry.	Noted.
Vİ	In the event of a change in project profile or change in the implementation agency, a fresh reference shall be made to the Ministry of Environment, Forests & Climate Change.	Noted.
Vii	The project proponents shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of start of land development work.	
viii	A copy of the clearance letter shall be marked to concerned Panchayat/ Local NGO, if any, from whom any suggestion/ representation has been made received while processing the proposal.	Status by KPL.

x	The project proponent shall set up separate environmental management cell for effective implementation of the stipulated environmental safeguards under the supervision of a Senior Executive. The funds earmarked for environment management plan shall be included in the budget and this shall not be diverted	Complied. Environment Department headed by Senior Manager – Environment, reporting directly to Chief Executive Officer is in place. He is well supported by Environment Management Cell, HO. Complied Environmental Expenditure carried out from April 2018 to December 2018 is
	for any other purposes.	Rs.12.5 Lakhs Breakup details are as follows; a) Environmental Monitoring – Rs. 5.1 Lakhs b) Greenbelt Development – Rs.1.0 Lakhs, c) House Keeping – Rs.1.0 Lakhs d) O&M of STP – Rs. 5.4 Lakhs
5.	These stipulations would be enforced among others under the provisions of Water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986, the Public Liability (Insurance) Act, 1991 and EIA Notification 1994, including the amendments and rules made thereafter.	Noted.
6.	All other statutory clearances such as the approvals for storage of diesel from Chief Controller of Explosives, Fire Department, Civil Aviation Department, Forest conservation Act, 1980 and Wildlife (Protection) Act,1972 etc. shall be obtained, as applicable by project proponents from the respective competent authorities.	Noted.
7.	The project proponent shall advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned informing that the project has been accorded Environmental and CRZ clearance and copies of clearance letters are available with the Tamil Nadu State Pollution Control Board and may also be seen at Website of the Ministry of Environment, Forests and Climate Change at http://www.envfornic.in . The advertisement should be made within Seven days from the date of issue of the clearance letter and a copy of the same should be forwarded to the regional Office of this Ministry at Chennai.	Status by KPL.
8.	The clearance is subject to final order of the Hon'ble Supreme Court of India in the matter of Goa Foundation Vs. Union of India in Writ Petition (Civil) No. 460 of 20014 as may be applicable this project.	Noted.

9.	Any appeal against this clearance shall lie with the National Green Tribunal, if preferred, with a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act 2010.	Noted.
10.	Status of compliance to the various stipulated environment conditions and environmental safeguards will be uploaded by the project proponent in its website.	Complied. The compliance to the various conditions stipulated for environmental safeguards are uploaded in our Company website and KPL website.
11.	A copy of the clearance letter shall be sent by the proponent to concerned Panchayat, Zilla Parisad/Municipal Corporation, Urban Local Body and the Local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the company by the proponent.	Status by KPL.
12.	The proponent shall upload the status of compliance of the stipulated Clearance conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Reginal Office of MoEF, the respective Zonal Office of CPCB and the SPCB.	Status by KPL. The compliance to the various conditions stipulated for environmental safeguards are uploaded in our Company website and KPL website.
13.	The project proportion shall also submit six monthly reports on the status of compliance of the stipulated Clearance conditions including results of monitored data (both in hard copies as well as by email) to the respective Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB.	Status by KPL.
14.	The Environmental Statement for each financial year ending 31 st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of Clearance conditions and shall also be sent to the respective Reginal Office of MoEF & CC by email.	Complied. Environment Statement (Form -V) submitted FY 2017-18 vide our Letter No. AECTPL/KPT/GMP/CB/ENV/ES 2017-18 dated 10.09.2018. The same is enclosed as Annexure-II.

ADANI ENNORE CONTAINER TERMINAL PRIVATE LIMITED (AECTPL)

							Dec - 18							
							BUILDING (
	Para	ameters	Particular matter PM ₁₀	Particular matter PM _{2.5}	Sulphur dioxide as SO ₂	Nitrogen dioxide as NO ₂	Lead as Pb	Carbon monoxide as CO	Ozone as O ₃	Ammonia as NH ₃	Arsenic as As	Nickel as Ni	Benzene as C ₆ H ₆	Benzo (a) pyrene as BaP
		Unit	μg/m³	μg/m ³	μg/m³	μg/m³	μg/m³	mg/m ³	μg/m³	μg/m³	ng/m³	ng/m³	μg/m³	ng/m³
	National A	AQM Standard	100	60	80	80	1	4	180	400	6	20	5	1
S.No.	Sampling Date	•						-			-		-	
1	02.07.2018	GCS/LAB/S/2355/18-19	65	23	7.8	16.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
2	06.07.2018	GCS/LAB/S/2355/18-19	76	31	7.1	14.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
3	11.07.2018	GCS/LAB/S/2355/18-19	68	25	6.7	15.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
4	13.07.2018	GCS/LAB/S/2355/18-19	63	22	7.4	15.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
5	16.07.2018	GCS/LAB/S/2355/18-19	60	21	6.3	14.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
6	20.07.2018	GCS/LAB/S/2355/18-19	77	33	7.5	16.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
7	23.07.2018	GCS/LAB/S/2355/18-19	69	28	6.2	15.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
8	27.07.2018	GCS/LAB/S/2355/18-19	74	29	7.0	15.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
9	03.08.2018	GCS/LAB/S/2442/18-19	58	20	6.9	15.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
10	06.08.2018	GCS/LAB/S/2442/18-19	70	28	6.5	15.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
11	10.08.2018	GCS/LAB/S/2442/18-19	60	21	5.8	14.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
12	13.08.2018	GCS/LAB/S/2442/18-19	74	31	7.9	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
13	17.08.2018	GCS/LAB/S/2442/18-19	68	24	7.2	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
14	20.08.2018	GCS/LAB/S/2442/18-19	65	22	6.7	15.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
15	24.08.2018	GCS/LAB/S/2442/18-19	71	29	7.0	16.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
16	27.08.2018	GCS/LAB/S/2442/18-19	59	18	6.1	14.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
17	03.09.2018	GCS/LAB/S/1074/18-19	63	24	7.6	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
18	07.09.2018	GCS/LAB/S/1074/18-19	75	30	7.1	15.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
19	10.09.2018	GCS/LAB/S/1074/18-19	68	27	6.4	15.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
20	14.09.2018	GCS/LAB/S/1074/18-19	52	19	5.3	13.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
21	17.09.2018	GCS/LAB/S/1074/18-19	57	23	6.6	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
22	21.09.2018	GCS/LAB/S/1074/18-19	72	29	6.0	15.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
23	24.09.2018	GCS/LAB/S/1074/18-19	64	22	5.8	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
24	28.09.2018	GCS/LAB/S/1074/18-19	55	20	5.4	13.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
25	06.10.2018	GCS/LAB/S/1165/18-19	51	19	5.3	13.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
26	08.10.2018	GCS/LAB/S/1165/18-19	64	25	6.7	15.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
27	12.10.2018	GCS/LAB/S/1165/18-19	72	29	7.3	16.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
28	15.10.2018	GCS/LAB/S/1165/18-19	78	31	7.0	15.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
29	19.10.2018	GCS/LAB/S/1105/18-19	66	27	6.1	15.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
30	22.10.2018	GCS/LAB/S/1165/18-19	60	23	6.8	16.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
31	26.10.2018	GCS/LAB/S/1165/18-19	67	26	6.4	15.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
32	29.10.2018	GCS/LAB/S/1165/18-19	63	24	5.9	14.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
33	02.11.2018	GCS/LAB/S/1163/18-19	56	22	6.5	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
34	07.11.2018	GCS/LAB/S/1217/18-19 GCS/LAB/S/1217/18-19	60	24	7.2	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
35	07.11.2018		67	26	6.0	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
36	12.11.2018	GCS/LAB/S/1217/18-19 GCS/LAB/S/1217/18-19	62	25	7.6	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
36	16.11.2018	GCS/LAB/S/1217/18-19 GCS/LAB/S/1217/18-19	59	23	6.8	16.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
_														
38	19.11.2018	GCS/LAB/S/1217/18-19	71	28	7.3	17.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
39	23.11.2018 26.11.2018	GCS/LAB/S/1217/18-19	50	19	5.1	11.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
40		GCS/LAB/S/1217/18-19	66	27	6.4	15.8	<0.1	<1.0	<10	<2	<2	<2 <2	<1	<0.1
41	03.12.2018	GCS/LAB/S//18-19	47	18	5.5	14.0	<0.1	<1.0	<10	<2	<2		<1	<0.1
42	07.12.2018	GCS/LAB/S//18-19	54	21	6.6	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
43	10.12.2018	GCS/LAB/S//18-19	63	24	7.2	16.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
44	14.12.2018	GCS/LAB/S//18-19	68	29	7.0	17.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
45	17.12.2018	GCS/LAB/S//18-19	52	19	7.4	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
46	21.12.2018	GCS/LAB/S//18-19	60	22	6.8	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
47	24.12.2018	GCS/LAB/S//18-19	56 61	23	6.0	16.2	<0.1	<1.0	<10 <10	<2	<2	<2	<1	<0.1

					1	RMU BUILD	ING (AAQ2)							
			Particular	Particular	Sulphur	Nitrogen		Carbon		Ammonia	Arsenic as		Benzene as	Benzo (a)
	Para	meters	matter PM ₁₀	matter	dioxide as	dioxide as	Lead as Pb	monoxide	Ozone as O ₃	as NH₂	Arsenic as As	Nickel as Ni	C ₆ H ₆	pyrene as
			matter rivi ₁₀	PM _{2.5}	SO ₂	NO ₂		as CO		u3 14113			C6116	BaP
		Unit	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m ³	μg/m³	μg/m³	ng/m³	ng/m³	μg/m³	ng/m³
		AQM Standard	100	60	80	80	1	4	180	400	6	20	5	1
S.No.	Sampling Date	Report Number												
1	02.07.2018	GCS/LAB/S/2355/18-19	76	30	6.8	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
2	06.07.2018	GCS/LAB/S/2355/18-19	71	27	7.3	15.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
3	11.07.2018	GCS/LAB/S/2355/18-19	74	29	6.5	15.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
4	13.07.2018	GCS/LAB/S/2355/18-19	68	26	7.0	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
5	16.07.2018	GCS/LAB/S/2355/18-19	64	23	6.0	14.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
6	20.07.2018	GCS/LAB/S/2355/18-19	70	25	7.9	16.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
7	23.07.2018	GCS/LAB/S/2355/18-19	77	31	7.5	16.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
8	27.07.2018	GCS/LAB/S/2355/18-19	69	28	6.4	15.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
9	03.08.2018	GCS/LAB/S/2442/18-19	64	23	5.5	14.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
10	06.08.2018	GCS/LAB/S/2442/18-19	68	26	6.9	16.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
11	10.08.2018	GCS/LAB/S/2442/18-19	63	22	5.7	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
12	13.08.2018	GCS/LAB/S/2442/18-19	77	31	7.8	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
13	17.08.2018	GCS/LAB/S/2442/18-19	69	27	6.6	15.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
14	20.08.2018	GCS/LAB/S/2442/18-19	74	28	7.1	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
15	24.08.2018	GCS/LAB/S/2442/18-19	65	24	6.8	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
16	27.08.2018	GCS/LAB/S/2442/18-19	61	20	5.2	13.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
17	03.09.2018	GCS/LAB/S/1074/18-19	71	27	6.8	15.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
18	07.09.2018	GCS/LAB/S/1074/18-19	65	24	6.1	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
19	10.09.2018	GCS/LAB/S/1074/18-19	75	30	7.2	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
20	14.09.2018	GCS/LAB/S/1074/18-19	48	16	5.0	13.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
21	17.09.2018	GCS/LAB/S/1074/18-19	61	22	5.8	14.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
22	21.09.2018	GCS/LAB/S/1074/18-19	57	20	6.5	16.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
23	24.09.2018	GCS/LAB/S/1074/18-19	70	28	6.3	15.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
24	28.09.2018	GCS/LAB/S/1074/18-19	66	23	6.1	15.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
25	06.10.2018	GCS/LAB/S/1165/18-19	55	21	5.5	13.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
26	08.10.2018	GCS/LAB/S/1165/18-19	61	23	5.9	14.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
27	12.10.2018	GCS/LAB/S/1165/18-19	78	32	6.7	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
28	15.10.2018	GCS/LAB/S/1165/18-19	85	34	6.3	16.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
29	19.10.2018	GCS/LAB/S/1165/18-19	70	29	6.1	15.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
30	22.10.2018	GCS/LAB/S/1165/18-19	66	25	5.8	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
31	26.10.2018	GCS/LAB/S/1165/18-19	75	30	7.2	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
32	29.10.2018	GCS/LAB/S/1165/18-19	71	28	7.5	16.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
33	02.11.2018	GCS/LAB/S/1217/18-19	63	25	5.0	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
34	07.11.2018	GCS/LAB/S/1217/18-19	67	28	6.6	15.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
35	09.11.2018	GCS/LAB/S/1217/18-19	59	22	6.1	17.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
36	12.11.2018	GCS/LAB/S/1217/18-19	65	27	6.9	15.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
37	16.11.2018	GCS/LAB/S/1217/18-19	61	23	7.4	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
38	19.11.2018	GCS/LAB/S/1217/18-19	58	21	6.5	16.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
39	23.11.2018	GCS/LAB/S/1217/18-19	46	15	4.8	16.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
40	26.11.2018	GCS/LAB/S/1217/18-19	74	30	6.9	15.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
41	03.12.2018	GCS/LAB/S//18-19	53	20	4.5	13.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
42	07.12.2018	GCS/LAB/S//18-19	62	25	6.0	14.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
43	10.12.2018	GCS/LAB/S//18-19	66	27	6.9	16.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
44	14.12.2018	GCS/LAB/S//18-19	59	23	6.2	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
45	17.12.2018	GCS/LAB/S//18-19	70	29	6.7	16.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
46	21.12.2018	GCS/LAB/S//18-19	50	18	5.9	15.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
47	24.12.2018	GCS/LAB/S//18-19	57	21	5.5	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
48	26.12.2018	GCS/LAB/S//18-19	61	26	6.1	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1

					IN	TERMINAL	GATE (AAQ	3)						
			Particular	Particular	Sulphur	Nitrogen	, .	Carbon		Ammonia	Arsenic as		Benzene as	Benzo (a)
	Para	meters	matter PM ₁₀	matter	dioxide as	dioxide as	Lead as Pb	monoxide	Ozone as O ₃	as NH ₃	Arsenic as	Nickel as Ni	C ₆ H ₆	pyrene as
			matter r w ₁₀	PM _{2.5}	SO ₂	NO ₂		as CO		_				BaP
		Unit	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m ³	μg/m³	μg/m³	ng/m³	ng/m³	μg/m³	ng/m³
	National A	AQM Standard	100	60	80	80	1	4	180	400	6	20	5	1
S.No.	Sampling Date	Report Number												
1	02.07.2018	GCS/LAB/S/2355/18-19	60	21	6.1	14.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
2	06.07.2018	GCS/LAB/S/2355/18-19	68	25	7.0	15.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
3	11.07.2018	GCS/LAB/S/2355/18-19	63	22	5.9	15.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
4	13.07.2018	GCS/LAB/S/2355/18-19	57	20	5.2	14.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
5	16.07.2018	GCS/LAB/S/2355/18-19	66	23	7.2	14.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
6	20.07.2018	GCS/LAB/S/2355/18-19	59	18	6.3	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
7	23.07.2018	GCS/LAB/S/2355/18-19	55	19	5.8	15.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
8	27.07.2018	GCS/LAB/S/2355/18-19	61	22	6.7	14.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
9	03.08.2018	GCS/LAB/S/2442/18-19	55	17	4.9	12.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
10	06.08.2018	GCS/LAB/S/2442/18-19	64	23	6.6	14.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
11	10.08.2018	GCS/LAB/S/2442/18-19	58	19	5.3	13.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
12	13.08.2018	GCS/LAB/S/2442/18-19	69	28	7.0	15.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
13	17.08.2018	GCS/LAB/S/2442/18-19	61	20	6.4	14.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
14	20.08.2018	GCS/LAB/S/2442/18-19	67	26	7.2	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
15	24.08.2018	GCS/LAB/S/2442/18-19	63	24	6.1	16.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
16	27.08.2018	GCS/LAB/S/2442/18-19	52	16	5.1	12.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
17	03.09.2018	GCS/LAB/S/1074/18-19	59	20	5.5	14.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
18	07.09.2018	GCS/LAB/S/1074/18-19	68	27	7.0	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
19	10.09.2018	GCS/LAB/S/1074/18-19	63	24	6.2	15.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
20	14.09.2018	GCS/LAB/S/1074/18-19	50	18	4.7	12.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
21	17.09.2018	GCS/LAB/S/1074/18-19	56	21	5.9	14.4	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
22	21.09.2018	GCS/LAB/S/1074/18-19	61	23	6.3	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
23	24.09.2018	GCS/LAB/S/1074/18-19	66	25	7.3	15.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
24	28.09.2018	GCS/LAB/S/1074/18-19	57	22	6.0	14.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
25	06.10.2018	GCS/LAB/S/1165/18-19	48	17	4.4	12.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
26	08.10.2018	GCS/LAB/S/1165/18-19	57	20	6.3	14.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
27	12.10.2018	GCS/LAB/S/1165/18-19	68	27	7.0	16.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
28	15.10.2018	GCS/LAB/S/1165/18-19	70	29	5.5	15.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
29	19.10.2018	GCS/LAB/S/1165/18-19	62	23	6.1	16.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
30	22.10.2018	GCS/LAB/S/1165/18-19	55	21	6.9	16.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
31	26.10.2018	GCS/LAB/S/1165/18-19	59	22	6.5	16.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
32	29.10.2018	GCS/LAB/S/1165/18-19	64	26	7.3	15.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
33	02.11.2018	GCS/LAB/S/1217/18-19	54	21	5.5	14.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
34	07.11.2018	GCS/LAB/S/1217/18-19	63	26	7.0	15.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
35	09.11.2018	GCS/LAB/S/1217/18-19	64	25	7.7	17.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
36	12.11.2018	GCS/LAB/S/1217/18-19	75	32	6.4	16.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
37	16.11.2018	GCS/LAB/S/1217/18-19	65	27	6.9	16.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
38	19.11.2018	GCS/LAB/S/1217/18-19	62	23	6.1	17.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
39	23.11.2018	GCS/LAB/S/1217/18-19	49	18	5.0	10.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
40	26.11.2018	GCS/LAB/S/1217/18-19	60	22	6.3	15.8	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
41	03.12.2018	GCS/LAB/S//18-19	49	18	5.1	13.6	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
42	07.12.2018	GCS/LAB/S//18-19	58	23	6.5	14.1	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
43	10.12.2018	GCS/LAB/S//18-19	60	24	6.9	16.2	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
44	14.12.2018	GCS/LAB/S//18-19	66	28	7.2	17.5	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
45	17.12.2018	GCS/LAB/S//18-19	54	20	7.5	16.9	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
46	21.12.2018	GCS/LAB/S//18-19	69	27	6.8	17.0	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
47	24.12.2018	GCS/LAB/S//18-19	57	22	6.4	15.3	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1
48	26.12.2018	GCS/LAB/S//18-19	52	20	7.1	16.7	<0.1	<1.0	<10	<2	<2	<2	<1	<0.1

AMBIENT NOISE LEVEL MONITORING

	Location		POR	T OPERATIN	G BUILDING	ì				RMU BU	ILDING		
	Month & Year	Jul - 18	Aug - 18	Sep - 18	Oct - 18	Nov - 18	Dec - 18	Jul - 18	Aug - 18	Sep - 18	Oct - 18	Nov - 18	Dec - 18
	Parameter & Unit	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)
S.No.	Time of Sampling												
1	06.00 – 07.00 (Day)	56.9	64.5	53.2	64.7	72.5	56.9	60.6	61.0	59.6	70.5	57.0	67.0
2	07.00 -08.00	60.7	68.0	52.7	68.3	74.4	54.8	64.6	61.7	59.9	70.6	61.4	67.7
3	08.00 - 09.00	63.7	70.2	59.9	72.1	74.6	52.3	65.5	62.0	60.1	68.3	59.9	65.7
4	09.00 - 10.00	60.6	68.5	73.0	73.0	74.6	69.2	64.3	61.3	59.5	62.7	70.1	66.2
5	10.00 – 11.00	65.5	69.7	73.9	72.8	70.3	69.9	62.2	60.9	66.4	68.8	73.7	70.6
6	11.00 – 12.00	67.6	70.4	58.9	73.1	66.6	58.5	66.0	68.7	69.6	64.5	66.6	72.2
7	12.00 – 13.00	68.2	64.0	65.6	71.9	66.4	71.9	65.9	64.4	72.2	66.7	57.3	71.4
8	13.00 – 14.00	69.3	72.1	61.0	73.5	65.0	74.7	60.0	69.0	69.1	73.4	65.2	71.5
9	14.00 - 15.00	66.5	68.4	59.7	71.2	67.5	71.9	59.5	69.7	71.4	73.6	72.2	71.1
10	15.00 - 16.00	64.3	69.9	60.2	66.1	66.9	71.5	64.2	71.5	71.9	73.2	73.6	71.5
11	16.00 – 17.00	61.4	68.9	62.0	65.4	60.9	71.9	65.5	68.9	72.8	72.6	62.5	67.3
12	17.00 – 18.00	61.8	60.4	62.9	68.5	61.7	74.7	67.8	64.2	71.9	72.9	73.8	65.7
13	18.00 - 19.00	60.9	65.6	59.8	69.2	61.5	72.6	66.9	61.7	65.8	74.2	74.0	68.3
14	19.00 –20.00	65.1	64.7	60.0	69.7	61.9	70.3	67.2	61.6	61.1	69.7	73.1	67.1
15	20.00 - 21.00	67.9	66.3	58.0	67.0	56.8	69.2	65.7	63.1	61.2	62.8	74.7	68.0
16	21.00 - 22.00	63.2	66.9	57.0	59.0	49.1	73.3	65.1	61.4	64.5	63.4	73.4	68.0
17	22.00 – 23.00 (Night)	62.2	66.7	58.9	57.3	63.6	69.8	66.3	67.0	60.5	64.1	69.3	65.2
18	23.00 - 00.00	61.1	66.9	62.0	55.2	62.8	69.1	64.1	68.9	61.4	64.2	69.5	65.0
19	00.00 - 01.00	60.4	68.3	63.4	56.2	60.3	69.3	64.2	66.5	61.6	64.4	68.5	63.9
20	01.00 - 02.00	59.3	67.4	62.5	59.4	65.6	54	61.9	65.1	60.9	64.1	60.4	62.9
21	02.00 - 03.00	58.9	66.9	60.3	58.0	62.8	54.6	56.0	68.5	59.9	65.2	60.4	65.2
22	03.00 - 04.00	62.3	67.8	54.9	58.7	66.5	51.2	61.3	68.6	59.8	65.7	60.5	64.1
23	04.00 - 05.00	58.5	67.4	52.0	58.3	68.1	52.4	51.8	63.1	59.9	59.9	60.5	59.0
24	05.00 - 06.00	58.9	65.1	53.3	61.7	68.4	52.6	58.0	61.1	59.8	59.1	60.6	60.1

	Location			IN TERMINA	L GATE		
	Month & Year	Jul - 18	Aug - 18	Sep - 18	Oct - 18	Nov - 18	Dec - 18
	Parameter & Unit	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)	Leq dB(A)
S.No.	Time of Sampling						
1	06.00 - 07.00 (Day)	63.9	67.8	53.9	61.8	63.4	65.1
2	07.00 -08.00	57.7	67.7	54.1	62.0	66.5	73.1
3	08.00 - 09.00	57.3	67.3	55.7	64.8	73.0	72.4
4	09.00 - 10.00	61.1	69.6	58.8	64.7	71.8	69.2
5	10.00 – 11.00	66.9	68.9	52.7	70.7	70.2	73.9
6	11.00 – 12.00	65.7	69.2	50.6	69.7	71.2	72.6
7	12.00 – 13.00	62.4	64.9	56.5	59.1	71.1	73.8
8	13.00 – 14.00	63.0	63.3	59.2	68.8	72.6	73.5
9	14.00 – 15.00	62.0	74.2	56.4	70.0	74.0	73.1
10	15.00 – 16.00	61.8	73.4	66.8	73.0	70.9	68.2
11	16.00 – 17.00	62.5	66.2	72.9	72.5	71.0	70.9
12	17.00 – 18.00	64.0	69.1	73.7	72.1	72.2	70.9
13	18.00 – 19.00	63.1	72.7	71.4	71.2	71.2	74.2
14	19.00 –20.00	62.8	65.5	64.8	73.8	70.4	68.7
15	20.00 – 21.00	64.0	63.9	65.2	73.7	73.3	74.4
16	21.00 – 22.00	63.6	61.9	56.9	65.3	73.5	70.5
17	22.00 – 23.00 (Night)	61.0	61.6	53.0	55.3	66.8	66
18	23.00 - 00.00	57.7	61.5	52.0	58.9	60.2	69.4
19	00.00 - 01.00	53.3	61.2	51.2	61.1	61.8	69.3
20	01.00 - 02.00	56.9	61.2	55.4	62.5	61.6	68.4
21	02.00 - 03.00	55.5	62.5	56.7	55.6	63.6	66.4
22	03.00 - 04.00	59.4	66.9	53.3	58.2	65.6	62.5
23	04.00 - 05.00	57.6	61.8	53.5	60.4	66.0	63.5
24	05.00 - 06.00	64.8	64.3	53.9	53.7	63.2	61.3

				S1	гаск мо	NITORING	G						
	Location			DG 1500K	VA - 1				DG 1500	KVA - 2		DG - 3	DG - 2
	Month & Year	Jul - 18	Aug - 18	Sep - 18	Oct - 18	Nov - 18	Dec - 18	Jul - 18	Aug - 18	Sep - 18	Oct - 18	Nov - 18	Dec - 18
S.No.	Parameters												
1	Stack Temperature, °C	221	227	235	224	236	229	223	231	239	231	225	233
2	Flue Gas Velocity, m/s	16.14	17.42	18.73	17.06	18.14	17.27	16.76	17.29	17.95	17.19	16.52	17.86
3	Sulphur Dioxide, mg/Nm3	7.5	8.5	8	7.2	8.7	8.1	7.2	8.1	7.8	8.2	7.4	7.9
4	NOX (as NO2) in ppmv	127	134	137	130	139	134	130	138	143	134	131	137
5	Particular matter, mg/Nm3	28.2	29.1	26.1	29.4	32.8	33.6	26.9	28.3	30.2	27.1	28.6	32.5
6	Carbon Monoxide, mg/Nm3	43	39	40	46	51	57	41	45	38	43	44	53
7	Gas Discharge, Nm3/hr	4376	4667	4939	4598	4775	4608	4527	4596	4697	4569	4443	4728

		STP OUTLE	T WATER				
	Location			STP OU	TLET		
	Month & Year	Jul - 18	Aug - 18	Sep - 18	Oct - 18	Nov - 18	Dec-18
S.No.	Parameters						
1	pH @ 25°C	7.79	7.64	-	7.01	6.93	7.06
2	Total Suspended Solids	15	12	-	14	11	14
3	BOD at 27°C for 3 days	5.0	7.0	-	10.0	8.0	7.0
4	COD	31	43	-	56	47	42
5	Ammonical Nitrogen as NH4-N	3.56	3.61	-	3.17	2.64	3.19
6	Total Kjeldahl Nitrogen as N - Total	6.08	6.15	-	5.98	4.52	5.07
7	Fecal Coliform	82	78	-	83	71	61

		DRIN	KING W	ATER						
	Month & Year	Unit	Jul - 18	Aug - 18	Sep - 18	Oct - 18	Nov - 18	Dec-18		
S.No.	Parameters									
1	pH @ 25°C	-	-	-	-	6.56	7.51	7.32		
2	Total Hardness as CaCo3	mg/L	-	-	-	11.0	19	25.0		
3	Chloride as Cl	mg/L	-	-	-	14	34	24		
4	Total Dissolved Solids	mg/L	-	-	-	35	70	69		
5	Calcium as Ca	mg/L	-	-	-	3.23	4.8	8		
6	Sulphate as SO4	mg/L	-	-	-	BDL (DL:1.0)	5	7.6		
7	Nitrate as No3	mg/L	-	-	-		BDL(DL:1.	0)		
8	Total Alkalinity as CaCo₃	mg/L	-	-	-	17	28	37		
9	Magnesium as Mg	mg/L	-	-	-	0.72	1.68	1.2		
10	Color	Hazen	-	-	-		<1.0			
11	Odour	-	-	-	-	U	nobjection	able		
12	Taste	-	-	-	-		Agreeable	9		
13	Turbidity	NTU	-	-	-		<0.5			
14	Iron as Fe	mg/L	-	-	-		BDL(DL 0.0	5)		
15	Total Residual Chlorine	mg/L	-	-	-		BDL(DL 0.:	L)		
16	Copper as Cu	mg/L	-	-	-	BDL(DL 0.05)				
17	Manganese as Mn	mg/L	-	-	-	BDL(DL 0.05)				
18	Fluoride as F	mg/L	-	-	-		BDL(DL 0.:	L)		
19	Phenolic compounds as C ₆ H ₅ OH	mg/L	-	-	-		BDL(DL 0.0	01)		
20	Mercury as Hg	mg/L	-	-	-		BDL(DL 0.0	01)		
21	Cadmium as Cd	mg/L	-	-	-		BDL(DL 0.0	03)		
22	Selenium as Se	mg/L	-	-	-		BDL(DL 0.0	1)		
23	Arsenic as As	mg/L	-	-	-		BDL(DL 0.0	1)		
24	Lead as Pb	mg/L	-	-	-		BDL(DL 0.0	1)		
25	Zinc as Zn	mg/L	-	-	-		BDL(DL 0.0	5)		
26	Anionic Detergents as MBAS	mg/L	-	-	-		Nil			
27	Total Chromium as Cr	mg/L	-	-	-		BDL(DL 0.0	5)		
28	Phenolphthalein Alkalinity as CaCo ₃	mg/L	-	-	-		Nil			
29	Aluminium as Al	mg/L	-	-	-		BDL(DL 0.0	5)		
30	Boron as B	mg/L	-	-	-	BDL(DL 0.1)				
31	Mineral Oil	mg/L	-	-	-	Nil				
32	Polynuclear Aromatic Hydrocarbons as	mg/L	-	-	-	Nil				
33	Pesticides	mg/L	-	-	-	Nil				
34	Cyanide as CN	mg/L	-	-	-	BDL (DL: 0.01)				
35	E. coli	MPN/100ml	-	-	-	Absence				
36	Total Coliform	MPN/100ml	-	-	-		Absence			
	 	+								

					MA	RINE WA	TER							
	Location						Su	rface Wate	r					
	Month & Year	Unit	Jul-18	Aug - 18	Sep - 18	Oct - 18	Nov - 18	Dec - 18	Jul-18	Aug - 18	Sep - 18	Oct - 18	Nov - 18	Dec - 18
S.No.	Parameters		CB-1	Bollard 1	Bollard 1	Bollard 4	Bollard 1	Bollard 5	CB-1	Bollard 26	Bollard 27	Bollard 24	Bollard 27	Bollard 25
1	pH @ 25°C	-	7.54	7.63	7.48	7.6	7.38	7.44	-	7.41	7.35	7.63	7.50	7.73
2	Temperature	°C	29	29	29	29	29 14	29	-	29	29	29	29	29
3	Total Suspended Solids BOD at 27 °C for 3 days	mg/L	16 12	12 10	16 12	11 8	10	18 12	-	15 8	18 10	15 12	17 13	20 11
5	Dissolved oxygen	mg/L mg/L	4.4	4.1	4.4	3.8	3.1	3.3		4.6	4.2	4.6	3.8	3.5
6	Salinity at 25 °C		39.3	34	33.1	27.3	30.9	32.7	-	32.3	33.9	36.8	32.7	38.2
7	Oil & Grease	mg/L	33.3		DL 1.0)		7.5	BDL(DL 1.0)	-		DL(DL 1.0		5.9	BDL(DL 1.0)
8	Nitrate as No ₃	mg/L	4.88	4.78	5.26	4.96	5.62	6.03	_	4.3	4.87	5.03	5.84	6.17
9	Nitrite as No ₂	mg/L	3.45	3.76	3.49	2.92	3.17	3.97	-	3.21	3.6	4.11	3.86	4.04
10	Ammonical Nitrogen as N	mg/L			BDL(DL 1.0)			-			BDL(DL 1.0	0)	
11	Ammonia as NH3	mg/L			BDL(I	DL 0.01)			-		В	DL(DL 0.0	1)	
12	Kjeldahl Nitrogen as N	mg/L				DL 1.0)			-			BDL(DL 1.0		
13	Total phosphates as PO4	mg/L	3.17	3.09	3.25	3.07	3.74	4.16	-	3.28	3.21	4.15	4.02	3.83
14	Total Nitrogen	mg/L				DL 1.0)			-			BDL(DL 1.0		
15	Total Dissolved Solids	mg/L	39023	38197	37268	35194	36208	36988	-	37075	37796	39548	37430	36395
16	COD	mg/L	45 69	34	39 70	47 64	69 68	77 55	-	37 70	73	54 71	72 65	84
17 18	Total bacterial count Coliforms	cfu/ml Per 100 ml	69	61		ence	08	55	-	70	/3	Absence	05	61
19	Escherichia coli	Per 100 ml				ence						Absence		
20	Salmonella	Per 100 ml				ence						Absence		
21	Shigella	Per 100 ml				ence			-			Absence		
22	Vibrio cholerae	Per 100 ml				ence			-			Absence		
23	Vibrio parahaemolyticus	Per 100 ml				ence			-			Absence		
24	Enterococci	Per 100 ml			Abs	ence			-			Absence		
25	Octane	μg/L	161	150	158	150	141	149	-	154	160	157	146	155
26	Nonane	μg/L		_		DL 0.1)			-			BDL(DL 0.:		_
27	Decane	μg/L				DL 0.1)			-			BDL(DL 0.:		
28	Undecane	μg/L				DL 0.1)			-			BDL(DL 0.:		
29	Tridecane	μg/L	7.6	7.2	7.4	6.7	7.3	8.4	-	7	7.5	7.2	7.7	8.2
30	Tetradecane	μg/L				DL 0.1)			-			BDL(DL 0.:		
31	Pentadecane	μg/L				DL 0.1) DL 0.1)			-			BDL(DL 0.: BDL(DL 0.:		
32	Hexadecane	μg/L μg/L				DL 0.1) DL 0.1)						BDL(DL 0 BDL(DL 0		
34	Octadecane Nonadecane	μg/L μg/L				DL 0.1)						BDL(DL 0		
35	Elcosane	μg/L μg/L				DL 0.1)						BDL(DL 0		
36	Primary Productivity	mg C/m³ /hr	8.23	8.31	8.96	7.12	7.98	8.56		8.04	8.78	9.21	9.84	9.12
37	Chlorophylla	mg/m ³	6.18	6.24	6.83	5.37	6.02	7.04	-	6.1	7.05	6.69	7.27	6.79
38	Phaeophytin		0.91	0.87	0.71	0.59	0.65	0.52	_	0.75	0.84	0.73	0.85	0.68
39		mg/m³	7.06	7.12	6.42	5.84	6.46	7.89		6.97	6.36	9.17	8.38	7.14
33	Oxidisable Paticular Organic	mg /L	7.00	7.12		TOPLANK		7.03		0.57	0.50	3.17	0.30	7.14
40	Bacteriastrum hyalinum	nos/ml	16	14	16	14	18	15	_	17	14	12	15	12
41	Bacteriastrum varians	nos/ml	7	10	12	8	11	10	-	8	16	14	9	14
42	Chaetoceros didymus	nos/ml	13	15	11	10	13	14	-	14	10	16	12	10
43	Chaetoceros decipiens	nos/ml	Nil	Nil	4	6	8	11	-	Nil	3	11	14	9
44	Biddulphia mobiliensis	nos/ml	5	7	10	5	7	9	-	9	8	9	11	13
45	Ditylum brightwellii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
46	Gyrosigma sp	nos/ml	10	12	10	8	6	5	-	15	11	15	13	7
47	Cladophyxis sps	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
48	Coscinodiscus centralis	nos/ml	14	16	18	12	10	12	-	10 13	14 15	17 19	16 8	13 11
49	Coscinodiscus granii	nos/ml	8 Nil	11 Nil	13 Nil	15 Nil	9 Nil	8 Nil	-	Nil	Nil	Nil	Nil	Nil
50 E1	Cylcotella sps	nos/ml nos/ml	12	NII 17	19	17	19	16	-	11	17	10	17	15
51 52	Hemidiscus hardmanianus Laudaria annulata	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil		Nil	Nil	Nil	Nil	Nil
		nos/ml	Nil	Nil	Nil	Nil	Nil	Nil		Nil	Nil	Nil	Nil	Nil
54	Pleurosigma angulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
55	Leptocylindrus danicus	nos/ml	11	9	8	13	15	13	-	14	11	8	10	16
56	Guinardia flaccida	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
57	Rhizosolenia alata	nos/ml	9	13	15	20	22	18	-	10	17	13	19	22
58	Rhizosolena impricata	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
59	Rhizosolena semispina	nos/ml	15	18	16	11	16	19	-	16	18	15	18	20
60	Thalassionema nitzschioides	nos/ml	12	14	8	14	12	17	-	11	9	7	9	19
61		nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
62		nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil Nil	Nil	Nil	Nil	Nil
63		nos/ml nos/ml	Nil Nil	Nil Nil	Nil Nil	Nil Nil	Nil Nil	Nil Nil	-	Nil	Nil Nil	Nil Nil	Nil Nil	Nil Nil
	Ceratium macroceros Ceracium longipes	nos/mi nos/mi	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
33	ceracium iongipes	1103/1111	1411	1411		OPLANKTO		1411		.411	1411	1411	1411	1411
66	Acrocalanus gracilis	nos/ml	13	15	17	13	10	12		10	14	18	15	10
67	Acrocalanus gracilis	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil		Nil	Nil	Nil	Nil	Nil
68		nos/ml	14	19	15	17	13	11	-	17	11	12	16	13
_		nos/ml	12	14	10	8	9	14	-	9	15	11	12	15
70	Centropages furcatus	nos/ml	9	11	14	12	14	16	-	13	18	14	17	18
71	Corycaeus dana	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
72		nos/ml	11	13	16	19	17	15	-	15	17	15	12	14
73	Euterpina acutifrons	nos/ml	10	7	9	5	8	10	-	11	13	16	11	8
74	Metacalanus aurivilli	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
75	Copipod nauplii	nos/ml	16	18	13	11	12	16	-	14	10	8	10	17
76		nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
77	Bivalve veliger	nos/ml nos/ml	15 8	12 10	18 12	16 14	15 18	17 20	-	18 12	12 14	7 10	9 13	11 18
/0	Gastropod veliger	1103/1111	٥	10	12	14	10	20	-	14	14	10	13	10

Total Hardness as CaCO3 mg/L 181 186 206 197 205 243 287 1975 1941	7.61 29 18 14 2.8 33.6 BDL(DL 1. 6.19 4.65 BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 1. 38275 69 Absence Absence Absence Absence 20 oobjection Disagreeal 17 587 18611 BDL(DL 0.0 0.45	7.7 29 22 15 2.9 37.3 .0) 6.56 4.84 .0) 011 .0) 4.05 .0) 38942 109 66	Dec - 18 Bollard 25 7.78 29 25 17 2.3 36.6 7.02 5.26 4.21 38127 89 75
1 pt 25°C - 7.65 - 7.	7.61 29 18 14 2.8 33.6 BDL(DL 1. 6.19 4.65 BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 1. 38275 69 Absence Absence Absence Absence Absence 20 nobjection Disagreeal 17 587 18611 BDL(DL 0.0 0.45	7.7 29 22 15 15 2.9 37.3 .0) 6.56 4.84 .0) 001 .0) 4.05 .0) 38942 109 66	7.78 29 25 17 2.3 36.6 7.02 5.26 4.21 38127
2 Temperature "C 29 29 29 29 29 29 29 2	29 18 14 2.8 33.6 BDL(DL 1. 6.19 4.65 BDL(DL 1. BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 0. 0.45	29 22 15 2.9 37.3 .0) 6.56 4.84 .0) 01) 01) .0) 38942 109 66	29 25 17 2.3 36.6 7.02 5.26 4.21
3 Total Suspended Solides mg/L 18 15 17 13 19 23 - 13 16 - 9 12 5 12 5 12 13 15 - 9 12 13 16 - 9 12 5 12 12 12 12 12 12	18 14 2.8 33.6 BDL(DL 1. 6.19 4.65 BDL(DL 0. BDL(DL 1. 3.66 BDL(DL 0. 3.66 BDL(DL 0. 4.65 BDL(DL 0. 3.66 BDL(DL 0. 3.66 BDL(DL 0. 3.66 BDL(DL 0. 3.66 BDL(DL 0. 3.66 BDL(DL 0. 3.66 BDL(DL 0. 3.66 BDL(DL 0. 3.66 BDL(DL 0. 3.66 BDL(DL 0. 3.66 BDL(DL 0. 0.45	22 15 2.9 37.3 .0) 6.56 4.84 .0) 00 01) .0) 4.05 .0) 38942 109 66	25 17 2.3 36.6 7.02 5.26 4.21 38127 89
4 Bo Do at 27 °C for 3 days mg/L 31 11 13 9 13 16 - 9 12	14 2.8 33.6 BDL(DL 1. 6.19 4.65 BDL(DL 1. BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 1. 3.67 69 Absence Absence Absence Absence Absence I 20 nobjection Disagreeal 17 587 18611 BDL(DL 0. 0.45	15 2.9 37.3 .0) 6.56 4.84 .0) 01] .0) 4.05 .0) 38942 109 66	17 2.3 36.6 7.02 5.26 4.21 38127 89
So Sosloved oxygen	2.8 33.6 BDL(DL 1.6.19 4.65 BDL(DL 1.3 BDL(DL 1.3 BDL(DL 1.3 BDL(DL 1.3 BDL(DL 1.4 BDL(DL 1.6 BDL(DL 1.6 BDL(DL 1.6 BDL(DL 1.6 BDL(DL 1.6 BDL(DL 1.6 BDL(DL 1.6 BDL(DL 1.6 BDL(DL 1.6 BDL(DL 0.6 BDL 0.6 BDL(DL 0.6 BDL 0.	2.9 37.3 .0) 6.56 4.84 .0) 01) .0) 4.05 .0) 38942 109 66	2.3 36.6 7.02 5.26 4.21 38127 89
6 Siminity at 25 °C - 35.6 36 34.7 31.4 34.6 37.9 - 35 35.1	33.6 BDL(DL 1. 6.19 4.65 BDL(DL 1. BDL(DL 1. 3.66 BDL(DL 1. 3.8275 69 Absence Absence Absence Absence Comparison Absence Absen	37.3 .0) 6.56 4.84 .0) 01) 1 4.05 .0) 38942 109 66	36.6 7.02 5.26 4.21 38127 89
1	BDL(DL 1. 6.19 4.65 BDL(DL 0. BDL(DL 0. BDL(DL 1. 3.66 BDL(DL 1. 3.8275 87 69 Absence Absence Absence 20 cobjection Disagreeal 17 587 18611 BBL(DL 0. 0.45	.0) 6.56 4.84 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	7.02 5.26 4.21 38127 89
8	6.19 4.65 BDL(DL 1.0 BDL(DL 1.0 BDL(DL 1.0 BDL(DL 1.0 BDL(DL 1.0 BDL(DL 1.0 BDL(DL 1.0 BDL(DL 1.0 BDL(DL 1.0 BDL(DL 1.0 BDL(DL 1.0 BDL(DL 1.0 BDL(DL 1.0 BDL(DL 1.0 BDL(DL 1.0 BDL(DL 1.0 BDL(DL 0.0 BDL(DL 0.0 BDL(DL 0.0	6.56 4.84 .00 .01 .00 .00 .00 .00 .00 .00 .00 .00	5.26 4.21 38127 89
9 Nitrite as No;	4.65 BDL(DL 1. BDL(DL 1. 3.66 BDL(DL 1. 3.66 BDL(DL 1. 38275 87 69 Absence Absence Absence Absence 20 objection Disagreeal 17 587 18611 BDL(DL 0.0 0.45	4.84 .0) 001) .00 4.05 .00 38942 109 66	5.26 4.21 38127 89
10	BDL(DL 0.0 BDL(DL 1.1 BDL(DL 1.1 BDL(DL 1.1 BDL(DL 1.1 BDL(DL 1.1 BDL(DL 1.1 BBDL(DL 1.1 BBDL(DL 1.1 BBDL(DL 1.1 BBDL(DL 0.1 BBDL(DL 0.1 BBDL(DL 0.1 BBDL(DL 0.1 BDL(DL 0.1 BDL(01) .0) 4.05 .0) 38942 109 66	38127 89
12 Sigledah Nitrogen as N mg/L SDL(D L .0)	BDL(DL 1. 3.66 BDL(DL 1. 3.8275 87 69 Absence Absence Absence Absence Absence Absence I 20 robjection Disagreeal 17 587 18611 BDL(DL 0.0 0.45	.0)	38127 89
13 Total phosphates as POA	3.66 BDL(DL 1. 38275 87 69 Absence Absence Absence Absence Completion Absence Absence 120 Cobjection Disagreeal 17 587 18611 BDL(DL 0.45	4.05 .0) 38942 109 66	38127 89
14 Intercogen	BDL(DL 1. 38275 87 69 Absence Absence Absence Absence 20 nobjection Disagreeal 17 587 18611 BDL(DL 0.45	.0) 38942 109 66	38127 89
15 Total Dissolved Solids	38275 87 69 Absence Absence Absence Absence Absence I 20 nobjection Disagreeal 17 587 18611 BBL(DL 0.0.45	38942 109 66	89
15 COD	87 69 Absence Absence Absence Absence Absence Absence I 20 Oobjection Disagreeal 17 587 18611 BDL(DL 0.0	109 66	89
17 Total bacterial count	69 Absence Absence Absence Absence Absence Absence Onobjection Disagreeal 17 587 18611 BDL(DL 0.0.45	66	
18 Coliforms	Absence Absence Absence Absence Absence Absence Composition Absence Ab		75
19 Scherichia coli	Absence Absence Absence Absence Absence Absence Disagreeal Absence Abs		
Absence - Absence -	Absence Absence Absence Absence Absence Disagreeal 17 587 18611 BDL(DL 0.4		
22 Vibrio cholerae Per 100 ml Absence -	Absence Absence Absence Absence Disagreeal Absence Abs		
22 Vibrio cholerae Per 100 ml Absence -	Absence Absence 20 nobjection Disagreeal 17 587 18611 BDL(DL 0.0	e e	
22 Ilbrio parahaemolyticus	Absence Absence 20 nobjection Disagreeal 17 587 18611 BDL(DL 0.0	e e	
Enterococci	Absence 20 nobjection Disagreeal 17 587 18611 BDL(DL 0.0		
Dodour Composition Comp	20 nobjection Disagreeal 17 587 18611 BDL(DL 0.4		
Taste	Disagreeal 17 587 18611 BDL(DL 0.0 0.45		12
28 Turbidity	17 587 18611 BDL(DL 0.0	nable	
29 Calcium as Ca	587 18611 BDL(DL 0.0 0.45		
30 Chloride as Cl mg/L 19712 19860 19205 17371 19129 21000 - 19327 19416	18611 BDL(DL 0.0 0.45	19	24
31 Cyanide as CN mg/L 0.41 0.45 0.42 0.34 0.38 0.31 - 0.36 0.39	BDL(DL 0.0 0.45	554	518
32 Fluoride as F mg/L 0.41 0.45 0.42 0.34 0.38 0.31 - 0.36 0.39 33 Magnesium as Mg mg/L 1368 1379 1298 1247 1197 1216 - 1344 1305 34 Total Iron as Fe mg/L 0.26 0.3 0.35 0.21 0.31 0.38 - 0.25 0.31 35 Residual Free Chlorine mg/L BDL(DL 0.1) - 36 Phenolic Compounds as C6H5OH mg/L BDL(DL 1.0) - 37 Total Hardness as CaCO3 mg/L 7185 7238 6825 6558 6410 6424 - 7029 6832 38 Total Alkalinity as CaCO3 mg/L 181 186 206 197 205 243 - 175 194 39 Sulphide as H2S mg/L BDL(DL 0.5) - 40 Sulphate as SO4 mg/L 2837 2859 2794 2685 2514 2587 - 2791 3018 41 Anionic surfactants as MBAS mg/L BDL(DL 0.01) - 42 Monocrotophos μg/L BDL(DL 0.01) - 43 Atrazine μg/L BDL(DL 0.01) - 44 Ethion μg/L BDL(DL 0.01) - 45 Chiorpyrifos μg/L BDL(DL 0.01) - 46 Phorate μg/L BDL(DL 0.01) - 47 Mehyle parathion μg/L BDL(DL 0.01) - 48 Malathion μg/L BDL(DL 0.01) - 49 DDT (o.p and p.p-Isomers of DDT,DDE μg/L BDL(DL 0.01) - 49 DDT (o.p and p.p-Isomers of DDT,DDE μg/L BDL(DL 0.01) - 40 Set and HCH (Lindane) μg/L BDL(DL 0.01) - 41 BDL(DL 0.01) - 42 Bet and HCH (Lindane) μg/L BDL(DL 0.01) - 43 Bot and HCH (Lindane) μg/L BDL(DL 0.01) - 44 Ethion BDL(DL 0.01) - 45 Bet and HCH μg/L BDL(DL 0.01) - 46 Bot and HCH (Lindane) μg/L BDL(DL 0.01) - 47 Bot and Alkalinity - 48 Bot and Bot and Sulphate μg/L BDL(DL 0.01) - 49 DDT (o.p and p.p-Isomers of DDT,DDE μg/L BDL(DL 0.01) - 50 Bot and HCH (Lindane) μg/L BDL(DL 0.01) - 51 Alpha HCH μg/L BDL(DL 0.01) - 52 Beta HCH μg/L BDL(DL 0.01) - 53 Delta HCH μg/L BDL(DL 0.01) - 54 Endosuffan (Alpha, beta and sulphate) μg/L BDL(DL 0.01) - 55 Aldrin/Deiddrin μg/L BDL(0.45	20638	20240
33 Magnesium as Mg mg/L 1368 1379 1298 1247 1197 1216 - 1344 1305 1305 1301 1308 1305 1308 -			
Total Iron as Fe mg/L 0.26 0.3 0.35 0.21 0.31 0.38 - 0.25 0.31		0.42	0.37
Sesidual Free Chlorine	1263	1231	1099
Section Sec	0.29	0.33	0.42
Total Hardness as CaCO3	BDL(DL 0.		
Total Alkalinity as CaCO3 mg/L 181 186 206 197 205 243 - 175 194	BDL(DL 1.		5074
Sulphide as H2S mg/L BDL(DL 0.5) -	6731	6514	5874
Sulphate as SO4 mg/L 2837 2859 2794 2685 2514 2587 - 2791 3018	186	210	231
Anionic surfactants as MBAS mg/L BDL(DL 1.0) -	BDL(DL 0.		2420
Monocrotophos μg/L BDL(DL 0.01) -	2987 BDL(DL 1.	2689	2420
43 Atrazine μg/L BDL(DL 0.01) - 44 Ethion μg/L BDL(DL 0.01) - 45 Chiorpyrifos μg/L BDL(DL 0.01) - 46 Phorate μg/L BDL(DL 0.01) - 47 Mehyle parathion μg/L BDL(DL 0.01) - 48 Malathion μg/L BDL(DL 0.01) - 49 DDT (ορ and p,ρ-Isomers of DDT,DDE μg/L BDL(DL 0.01) - 50 Gamma HCH (Lindane) μg/L BDL(DL 0.01) - 51 Alppha HCH μg/L BDL(DL 0.01) - 52 Beta HCH μg/L BDL(DL 0.01) - 53 Delta HCH μg/L BDL(DL 0.01) - 54 Endosulfan (Alpha,beta and sulphate) μg/L BDL(DL 0.01) - 55 Butachlor μg/L BDL(DL 0.01) - 56 Alachlor μg/L BDL(DL 0.01) - 57 Aldrin/Dieldrin μg/L BDL(DL 0.01) - 58 Isoproturon μg/L BDL(DL 0.01) -	BDL(DL 1.		
44 Ethion μg/L BDL(DL 0.01) - 45 Chiorpyrifos μg/L BDL(DL 0.01) - 46 Phorate μg/L BDL(DL 0.01) - 47 Mehyle parathion μg/L BDL(DL 0.01) - 48 Malathion μg/L BDL(DL 0.01) - 49 DDT (o,p and p,p-Isomers of DDT,DDE μg/L BDL(DL 0.01) - 50 Gamma HCH (Lindane) μg/L BDL(DL 0.01) - 51 Alppha HCH μg/L BDL(DL 0.01) - 52 Beta HCH μg/L BDL(DL 0.01) - 53 Delta HCH μg/L BDL(DL 0.01) - 54 Endosulfan (Alpha,beta and sulphate) μg/L BDL(DL 0.01) - 55 Butachlor μg/L BDL(DL 0.01) - 56 Alachlor μg/L BDL(DL 0.01) - 57 Aldrin/Dieldrin μg/L BDL(DL 0.01) - 58 Isoproturon μg/L BDL(DL 0.01) -	BDL(DL 0.0		
45 Chiorpyrifos μg/L BDL(DL 0.01) - 46 Phorate μg/L BDL(DL 0.01) - 47 Mehyle parathion μg/L BDL(DL 0.01) - 48 Malathion μg/L BDL(DL 0.01) - 49 DDT (o,p and p,p-Isomers of DDT,DDE μg/L BDL(DL 0.01) - 50 Gamma HCH (Lindane) μg/L BDL(DL 0.01) - 51 Alppha HCH μg/L BDL(DL 0.01) - 52 Beta HCH μg/L BDL(DL 0.01) - 53 Delta HCH μg/L BDL(DL 0.01) - 54 Endosulfan (Alpha,beta and sulphate) μg/L BDL(DL 0.01) - 55 Butachlor μg/L BDL(DL 0.01) - 56 Alachlor μg/L BDL(DL 0.01) - 57 Aldrin/Dieldrin μg/L BDL(DL 0.01) - 58 Isoproturon μg/L BDL(DL 0.01) - 58 Isoproturon μg/L BDL(DL 0.01) - 59 Isoproturon μg/L BDL(DL 0.01) - 50 Isoproturon μg/L BDL(DL 0.01) - 51 Isoproturon μg/L BDL(DL 0.01) - 52 Isoproturon μg/L BDL(DL 0.01) - 53 Isoproturon μg/L BDL(DL 0.01) - 54 Isoproturon μg/L BDL(DL 0.01) - 55 Isoproturon μg/L BDL(DL 0.01) - 56 Isoproturon μg/L BDL(DL 0.01) - 57 Isoproturon μg/L BDL(DL 0.01) - 58 Isoproturon μg/L BDL(DL 0.01) - 59 Isoproturon μg/L BDL(DL 0.01) - 50 Isoproturon μg/L BDL(DL 0.01) - 51 Isoproturon μg/L BDL(DL 0.01) - 52 Isoproturon μg/L BDL(DL 0.01) - 53 Isoproturon μg/L BDL(DL 0.01) - 54 Isoproturon μg/L BDL(DL 0.01) - 55 Isoproturon	BDL(DL 0.0		
Head	BDL(DL 0.0		
Mehyle parathion	BDL(DL 0.0		
Malathion	BDL(DL 0.0		
49 DDT (o,p and p,p-Isomers of DDT,DDE μg/L BDL(DL 0.01) -	BDL(DL 0.0	01)	
So Gamma HCH (Lindane) μg/L BDL(DL 0.01) -	BDL(DL 0.0	01)	
SI Alppha HCH μg/L BDL(DL 0.01) -	BDL(DL 0.0	01)	
Seta HCH μg/L BDL(DL 0.01) -	BDL(DL 0.0	01)	
Endosulfan (Alpha,beta and sulphate) μg/L BDL(DL 0.01) -	BDL(DL 0.0		
S5 Butachlor μg/L BDL(DL 0.01) -	BDL(DL 0.0		
56 Alachlor μg/L BDL(DL 0.01) -	BDL(DL 0.0		
57 Aldrin/Dieldrin μg/L BDL(DL 0.01) -	BDL(DL 0.0		
58 Isoproturon μg/L BDL(DL 0.01) -	BDL(DL 0.0		
	BDL(DL 0.0		
	BDL(DL 0.0		
59 (2,4-D μg/L BDL(DL 0.01) -	BDL(DL 0.0		
60 Polychlorinated Biphenyls (PCB) μg/L BDL(DL 0.01) -	BDL(DL 0.0 BDL(DL 0.0		
T- 1, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL(DL 0.0		
	BDL(DL 0.0		
	BDL(DL 0.0		
64 Cauminia S Cu	BDL(DL 0.0		
66 Copper as Cu mg/L BDL(Dt. 0.05) -	BDL(DL 0.0		
67 Lead as Pb mg/L BDL(Dt. 0.01) -	BDL(DL 0.0		
68 Manganese as Mn mg/L BDL(DL 0.05) -	BDL(DL 0.0		
69 Nickel as Ni mg/L BDL(Dt. 0.05) -	BDL(DL 0.0		
70 Selenium as Se mg/L BDL(DL 0.01) -	BDL(DL 0.0		
71 Barium as Ba mg/L BDL(DL 0.1) -	BDL(DL 0.		
72 Silver as Ag mg/L BDL(DL 0.01) -	BDL(DL 0.0		
73 Molybdenum as Mo mg/L BDL(DL 0.01) -	BDL(DL 0.0	01)	
74 Octane µg/L 179 174 183 169 178 170 - 167 179		181	187
75 Nonane µg/L BDL(DL 0.1) -	184		
76 Decane μg/L BDL(DL 0.1) -	BDL(DL 0.		
77 Undecane µg/L 7.5 7.8 8.4 8 8.8 8.3 - 7.1 8.7	BDL(DL 0. BDL(DL 0.	8.6	8.9
78 Tridecane µg/L BDL(DL 0.1) -	BDL(DL 0. BDL(DL 0. 8.2	.1)	
79 Tetradecane μg/L BDL(DL 0.1) -	BDL(DL 0. BDL(DL 0. 8.2 BDL(DL 0.	- 1	
80 Pentadecane μg/L BDL(DL 0.1) -	BDL(DL 0. BDL(DL 0. 8.2 BDL(DL 0. BDL(DL 0.		
81 Hexadecane μg/L BDL(DL 0.1) -	BDL(DL 0. BDL(DL 0. 8.2 BDL(DL 0.	.1)	

	Location						Во	ttom Wate	er					
	Month & Year	Unit	Jul-18	Aug - 18	Sep - 18	Oct - 18	Nov - 18	Dec - 18	Jul-18	Aug - 18	Sep - 18	Oct - 18	Nov - 18	Dec - 18
S.No.	Parameters		CB-1	Bollard 1	Bollard 1	Bollard 4	Bollard 1	Bollard 5	CB-1	Bollard 26	Bollard 27	Bollard 24	Bollard 27	Bollard 25
82	Heptadecane	μg/L				DL 0.1)			-			BDL(DL 0.1		
83	Octadecane	μg/L				DL 0.1)			-			BDL(DL 0.1		
84	Nonadecane	μg/L				DL 0.1)			-			BDL(DL 0.1		
85	Elcosane	μg/L				DL 0.1)			-			BDL(DL 0.1		
86	Primary Productivity	mg C/m ³ /hr	9.57	9.43	9.72	8.78	8.12	9.05	-	9.26	9.54	9.04	9.91	9.49
87	Chlorophyll a	mg /m ³	7.73	7.69	8.27	7.64	7.25	7.98	-	7.5	8.36	6.95	8.08	7.33
88	Phaeophytin	mg/m³	0.85	0.96	0.89	0.91	0.84	0.74	-	0.8	0.95	0.79	0.96	0.81
89	Oxidisable Paticular Organic	mg /L	8.28	8.34	7.78	7.15	7.93	8.16	-	8.21	7.69	8.23	8.75	8.27
						TOPLANK								
90	Bacteriastrum hyalinum	nos/ml	18	15	18	10	14	16	-	13	17	16	12	10
91	Bacteriastrum varians	nos/ml	9	6	9	12	10	12	-	11	14	18	20	16
92	Chaetoceros didymus	nos/ml	10	13	15	14	16	18	-	8	12	13	17	14
93	Chaetoceros decipiens	nos/ml	4	8	11	8	11	15	-	10	7	11	15	12
94	Biddulphia mobiliensis	nos/ml	10	11	13	9	13	10	-	14	10	17	10	15
95	Ditylum brightwellii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
96	Gyrosigma sp	nos/ml	Nil	Nil	5	13	12	8	-	Nil	3 Nil	4	7	11
97	Cladophyxis sps	nos/ml	Nil	Nil	Nil 12	Nil	Nil	Nil	-	Nil	NII 9	Nil	Nil	Nil
98	Coscinodiscus centralis	nos/ml	12 7	9	7	11 9	15 7	16 9	-	11 9	11	14 12	16 14	9 13
99	Coscinodiscus granii	nos/ml	-	_	_	-	-	_	-	_				
100	Cylcotella sps	nos/ml	Nil 13	Nil 10	Nil 12	Nil 16	Nil 15	Nil 11		Nil 15	Nil 13	Nil 10	Nil 13	Nil 17
101	Hemidiscus hardmanianus	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
102	Laudaria annulata	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil		Nil	Nil	Nil	Nil	Nil
	Pyropacus horologicum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
	Pleurosigma angulatum	nos/ml							-					
105	Leptocylindrus danicus	nos/ml	8 Nil	16 Nil	14 Nil	15 Nil	18 Nil	17 Nil	-	12 Nil	15 Nil	17 Nil	11 Nil	8 Nil
106	Guinardia flaccida	nos/ml												
107	Rhizosolenia alata	nos/ml	13 Nil	14 Nil	10 Nil	18 Nil	9 Nil	14 Nil	-	9	12	9	8	15
108	Rhizosolena impricata	nos/ml								Nil	Nil	Nil	Nil	Nil
109	Rhizosolena semispina	nos/ml	17	15	13	10	15	13	-	19	17	13	9	19
110 111	Thalassionema nitzschioides	nos/ml nos/ml	15 Nil	19 Nil	21 Nil	19 Nil	17 Nil	21 Nil	-	17 Nil	20 Nil	22 Nil	18 Nil	22 Nil
112	Triceratium reticulatum	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
	Ceratium trichoceros Ceratium furca	nos/mi	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
		nos/mi nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
	Ceratium macroceros Ceracium longipes	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
113	ceracium iongipes	1103/1111	IVII	IVII		OPLANKT		IVII	_	IVII	IVII	IVII	IVII	IVII
116	Acrocalanus gracilis	nos/ml	16	12	10	12	13	15	_	18	12	16	18	14
117	Acrocalanus gracilis	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
	Paracalanus parvus	nos/ml	10	15	9	16	18	14		16	13	11	15	16
_	Eutintinus sps	nos/ml	15	11	16	14	10	12	-	13	18	15	13	10
	Centropages furcatus	nos/ml	12	17	12	10	12	17	-	14	17	13	10	15
121	Corycaeus dana	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
	Oithona brevicornis	nos/ml	14	18	20	18	15	19	-	12	15	9	11	13
	Euterpina acutifrons	nos/ml	11	13	17	20	14	11	-	10	16	12	16	9
124	Metacalanus aurivilli	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
125	Copipod nauplii	nos/ml	13	10	8	5	8	13	-	17	7	10	11	18
126	Cirripede nauplii	nos/ml	Nil	Nil	Nil	Nil	Nil	Nil	-	Nil	Nil	Nil	Nil	Nil
_	Bivalve veliger	nos/ml	17	19	15	11	16	20	-	15	10	9	12	17
	Gastropod veliger	nos/ml	9	7	11	13	17	16	-	11	8	5	14	19
123	Gastropou venger	1103/1111		•		13		10						1,

					SE	A SEDIME	NT							
	Location Sea Sediment				t									
	Month & Year	Unit	Jul-18	Aug - 18	Sep - 18	Oct - 18	Nov - 18	Dec - 18	Jul-18	Aug - 18	Sep - 18	Oct - 18	Nov - 18	Dec - 18
S.No.	Parameters			Bollard 1	Bollard 1	Bollard 4	Bollard 1	Bollard 5		Bollard 26	Bollard 27	Bollard 24		Bollard 25
1	Total organic matter	%	0.47	0.41	0.48	0.43	0.75	0.54	-	0.45	0.51	0.55	0.82	0.51
2	% Sand	%	43	34	30	32	34	29	-	37	33	36	31	27
3	%silt	%	15	10	17	20	17	18	-	12	20	23	20	21
4	%Clay	%	42	56	53	48	50	53	-	51	47	41	49	52
5	Iron (as Fe)	mg/kg	15.9	16.3	15.5	17.1	15.8	17.4	-	15	15.9	16.7	16	18.6
6	Aluminium (as Al)	mg/kg	13127	13425	12964	13443	14012	13126	-	12863	12998	13380	13884	13404
7	Chromium (as cr)	mg/kg	55	49	45	51	63	79	-	42	46	49	55	67
8	Copper (as cu)	mg/kg	63	67	74	68	74	58	-	64	78	62	69	61
9	Manganese (as Mn)	mg/kg	486	472	423	395	343	370	-	467	440	434	386	363
10	Nickel (as Ni)	mg/kg	14.8	15.4	14.6	12.6	13.7	12.2	-	14	15.1	14.9	13.1	14.5
11	Lead (as Pb)	mg/kg	51	56	61	55	68	63	-	53	59	67	74	66
12	Zinc (as Zn)	mg/kg	274	280	215	230	255	241	-	269	247	258	237	228
13	Mercury(as Hg)	mg/kg	0.61	0.55	0.71	0.54	0.61	0.67	-	0.67	0.85	0.72	0.75	0.6
14	Total phosphorus as P	mg/kg	172	163	178	161	186	149	-	170	163	170	183	153
15	Octane	mg/kg				DL 0.1)			-	BDL(DL 0.1)				
16	Nonane	mg/kg				DL 0.1)			-			BDL(DL 0.:		
17	Decane	mg/kg			BDL(DL 0.1)			-			BDL(DL 0.:		
18	Undecane	mg/kg	0.43	0.5	0.63	0.49	0.52	0.58	-	0.41	0.57	0.65	0.59	0.67
19	Dodecane	mg/kg		BDL(DL 0.1)			-	BDL(DL 0.1)						
20	Tridecane	mg/kg	BDL(DL 0.1)			-	BDL(DL 0.1)							
21	Tetradecane	mg/kg				DL 0.1)			-	BDL(DL 0.1)				
22	Phntadecane	mg/kg				DL 0.1)			-	BDL(DL 0.1)				
23	Hexadecane	mg/kg				DL 0.1)			-	BDL(DL 0.1)				
24	Heptadecane	mg/kg				DL 0.1)			-	BDL(DL 0.1)				
25	Octadecane	mg/kg				DL 0.1)			-	BDL(DL 0.1)				
26	Nonadecane	mg/kg				DL 0.1)			-	BDL(DL 0.1)				
27	Elcosane	mg/kg	BDL(DL 0.1)				-			BDL(DL 0.:	1)			
						I. Nematoda								
28	Oncholaimussp	nos/m²	18	13	18	14	18	15	-	16	17	20	16	20
29	Tricomasp	nos/m²	14	11	14	9	12	10	-	13	11	13	15	18
						Foraminife								
30	Ammoniabeccarii	nos/m²	7	10	13	16	18	14	-	8	15	19	13	16
31	Quinqulinasp	nos/m²	12	15	11	8	11	16	-	11	9	6	14	12
32	Discorbinellasp.,	nos/m²	10	12	15	13	10	12	-	9	12	17	12	15
33	Bolivinaspathulata	nos/m²	11	14	10	15	9	11	-	12	16	18	10	13
34	Elphidiumsp	nos/m²	9	7	12	10	14	18	-	10	13	11	17	20
35	Noniondepressula	nos/m²	12	16	14	19	17	9	-	14	8	12	9	11
	III. Molluscs-Bivalvia													
36	Meretrixveligers	nos/m²	26	24	20	17	13	17	-	22	25	21	18	14
37	Anadoraveligers	nos/m²	19	17	21	23	27	21	-	15	18	16	21	23
	Total No. of individuals	nos/m²	138	139	148	144	147	143	-	130	144	153	145	162
<u></u>	Shanon Weaver Diversity Index		2.22	2.25	2.27	2.25	2.26	2.27	-	2.26	2.25	2.26	2.27	2.28

Form-V

Environmental Statement for the financial year ending 31st March 2018

Part-A

i) Name and Address : Ennarasu Karunesan

CEO - Southern Ports

Adani Ennore Container Terminal Private Limited

Ennore Container Terminal Private Limited

C/O Kamarajar Port Limited

Vallur post, Ennore Thiruvallur – 600120

Tamil Nadu, India

ii) Industry Category : Container Terminal

iii) Production Capacity : Handling Capacity : 11.68 MMTPA

Containers 11.68 MMTPA

iv) Year of establishment : 2016

v) Date of the last : First Environmental Statement in the name of Adani

environmental statement

submitted

Part -B

WATER AND RAW MATERIAL CONSUMPTION

(i) Water Consumption

S.No	Water Consumption	2016-2017	2017-2018
	(m³/Calendar Day)		
1	Domestic	-	10.64

The project activity does not involve any product to be generated except for the operation of the port in material handling. Hence there is no water consumption per product generated. However the water is consumed for the purposes as mentioned above.

(ii) Raw Material Consumption

S.No	Name of the Raw	Consumption during the	Consumption during the financial
	Material/Chemicals/Other	financial year 2016 – 17.	year 2017 – 18.
	Consumptions.		
1	Not Applicable	NIL	NIL

The project activity does not involve any product to be generated except for the operation of the port in material handling. Hence there is no water consumption per product generated.

However the water is consumed for the purposes as mentioned above.

Part-C

Pollution Generated (As per consent order)

WATER

Parameter	Consent Limit	Actual	% Variation with prescribed standard
рН	5.5-9	7.31	-Nil-
Total Suspended Solids (mg/l)	30	6	-Nil-
BOD (3 days at 27°C) (mg/l)	20	4	-Nil-
Water sewage discharged (KLD)	25	15	-Nil-

<u>AIR</u>

Point source emission with stack:

Parameter	Quantity of pollutants discharged (mass/day)	Concentrations of pollutants in discharges (mass/volume)	% Variation with prescribed standard
PM ₁₀	Since there is no product produced, so no measurement made on mass per day basis for the products.	45	-Nil-
PM _{2.5}		9	-Nil-
SO ₂		5	-Nil-
NO ₂		9	-Nil-

Part-D

HAZARDOUS WASTES

S.No.	Hazardous	Wastes.	Quantity (2016-2017)	Quantity (2017-2018)
1.	Process	5.1 Used Oil.	Nil	Nil
2.		5.2 Waste / residues containing oil.	Nil	Nil
3.		3.3 Sludge and filters contaminated with oil.	Nil	Nil
5.		21.1 Waste & Residues [Paint wastes].	Nil	Nil
6.		33.3 Discarded containers/barrels/liners contaminated with hazardous wastes/chemicals.	Nil	Nil

Part-E

SOLID WASTES

Solid Waste		Quantity (2016-2017)	Quantity (2017-2018)
a)	From process	Processes from this Proje generate any Solid Waste	•
b)	From pollution control facilities	Nil	Nil

Part-F

Characteristics & disposal practices for hazardous and solid wastes

• Used oil & Waste Containing Oil

At Adani Ennore Container Terminal Private Limited (AECTPL), used oil to be handled is mainly generated from diesel generators. Used oils are collected and stored in barrels and are being mechanically processed to recover oil. AECTPL has tied up with M/s Lakshmi & Co for reprocessing the oil.

Part-G

Impact on pollution control measures on conservation of natural resources and consequently on the cost of production

- Adani Ennore Container Terminal Private Limited is the first container terminal to have all
 electrified cranes hence the diesel consumption by the cranes are totally eradicated
- Sewage Treatment Plants (STPs) were in continuous and treated water quality is meeting the norms. The total cost spent on STP operations was INR: 6,00,000
- Environmental monitoring is carried out through NABL accredited laboratory.

Since the unit has not yet reached the optimal capacity of handling the impact of the abatement measures are not measured on the cost of production

Part-H

Additional investment proposal for environment protection including abatement of pollution

	Description					
	Major Investments Proposal (total project cost in INR lakhs)					
1	Integrated waste management shed	15				
	Regular Expenditure (cost in INR lakhs/year)					
1	Environmental monitoring of MOEF recognized third party	9				
2	Green belt & Horticulture development	3				
3	Annual maintenance contractor of STP operation	6				

Part-I

ANY OTHER PARTICULARS IN RESPECT TO ENVIRONMENT

- Formation of Energy Conservation Committee to measure the amount of energy consumed and to actions to reduce the energy consumed through container operations
- Study by Prof.Dr.N.Kumar, Ph.D., F.H.S.I., Former Dean (Hort), Tamil Nadu Agricultural University, Coimbatore horticulture consultant for afforestration and adoption of "Woodlot Planting Technique"
- Formation of Water Warriors committee to identify and reduce the water consumption.

 The committee would propose innovative water solutions
- Integrated Management System certification under ISO 14001 : 2015. Stage -1 audit completed.
- Waste management in line to 5R principle.