

(A Wholly Owned Subsidiary of APSEZL)

20th May 2016

DPCL/ENV-06/01/2016

Τo

The Additional Principal Chief Conservator of Forests (C),

Ministry of Environment, Forest and Climate Change,

Eastern Regional Office (EZ),

A/3, Chandrasekharpur,

Bhubaneswar- 751023

E-mail: roez.bsr-mef@nic.in

Dear Sir,

Sub : Half yearly Compliance report of Environment and CRZ Clearance for expansion of Dhamra Port at Dhamra, Bhadrak District of Odisha by M/s Dhamra Port Company Limited for the period of October 2015 – March 2016

Ref: 1) Environmental Clearance for Expansion of Dhamra Port Project vide letter dated 4th January 2000 bearing No. PD/26017/8/98-PDZ (CRZ).

- 2) CRZ recommendation letter for phase-II expansion vide letter dated 20th December, 2012 bearing no. OCZMA-1/2012-13/No.17
- 3) Environmental and CRZ Clearance for expansion at Dhamra Port dated 1st January 2014 bearing F.No.11-104/2009-IA.III
- 4) Amendment in Environmental and CRZ clearance vide letter dated 25th March 2015 bearing F.No.11-104/2009.IA.III

With reference to the above mentioned letters for the said subject matter, please find enclosed herewith the compliance to the conditions stipulated in the letters for the period of October 2015 to March 2016 in both hard & soft copy for your kind reference.

Thank you,

Yours Sincerely,

(Subrat Tripathy)

Chief Executive Officer

Encl: As above

Copy to:

- 1) The Director (Monitoring –IA-III Division), Ministry of Environment, Forest & Climate Change, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi 110003
- 2) Zonal Office, Central Pollution Control Board, Southern Conclave, Block 502, 5th & 6th Floors, 1582 Rajdanga Main Road, Kolkata 700 107 (W. B.)
- 3) The Member Secretary, State Pollution Control Board, Odisha, Parivesh Bhawan, A/118, Unit 8, Nilakantha Nagar, Nayapalli, Bhubneswar-751012
- 4) The Regional Officer, State Pollution Control Board, Odisha, 160, Sahadev Khunta, Balasore – 756001
- 5) Member Secretary OCZMA & Director, Env-cum-Spl. Secretary to Govt., Forest & Env Dept., Govt. of Odisha, Plot No 108, Surya Nagar, Unit VII, Bhubaneswar-751003.

—— The Dhamra Port Company Limited =

SITE OFFICE

At : Dosinga, Po : Dhamra

Dist : Bhadrak PIN : 756 171, Odisha Tel : +91 678 6212068 CIN: U45205OR1998PLC005448 Website: www.dhamraport.com

REGISTERED OFFICE

HIG-20, BDA Colony, Jayadev Vihar Bhubaneswar : 751 013, Odisha

Tel: +91 674 2304500 Fax: +91 674 2303828

E-Mail: reach.dhamraport@adani.com

From: Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

<u>Phase – I:</u> Half yearly Compliance report of the conditions stipulated in Environmental Clearance for Expansion of Dhamra Port Project vide letter dated 4th January 2000 bearing No. PD/26017/8/98-PDZ

(CRZ)		
Sr. No.	Conditions	Compliance Status
i	All Construction design/drawings relating to construction activities must have the approval of the concerned Government Departments/ Agencies of the State Government of Odisha.	Complied. The Project is under Operation phase.
	Ground water should not be tapped for construction activities as the drawl of ground water for industrial use from the CRZ area is a prohibited activity.	Groundwater was not drawn during construction activities.
ii	Adequate provision for all infrastructural facilities such as water supply, fuel, sanitation etc. must be extended for laborers during the construction period in order to avoid damage to the environment.	Complied. The Project is under Operation phase
iii	Dredging operations if any should be undertaken in consultation with the Central Water and Power Research Station, Pune or National Institute of Oceanography, Goa or any other authorized agency to ensure that dredging operations do not cause adverse impact on water quality and marine productivity in the vicinity. Dredging operation as far as possible should be kept to the minimum for avoiding any adverse impact on marine life.	Complied. The capital dredging has been completed in 2010- 11. Marine water quality and productivity is being monitored by MoEF accredited laboratory. The Marine Water quality report for the period Oct 2015 – Mar 2016 is enclosed as Annexure I
lv	Disposal sites for excavated material should be	Complied.

dumping and changes in the land use pattern do present the project i no interfere with the natural drainage.

so designed that the revised land use after Dredging activity has been completed and at

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

	ment dated 25 th March, 2015	
Sr. No.	Conditions	Compliance Status
		South to East. Fishing is carried out in deep sea.
		Therefore there shall be not be any disturbance to
		the fishing activity.
XX	It shall be ensured that there is no displacement	Complied.
	of people, houses or fishing activity as a result of	The land covered under this project is dry mud,
	the project	which falls in intertidal zone. No displacement of
		people or fishing activities for the project is
		envisaged.
xxi	No construction work other than those	Complied.
	permitted in Coastal Regulation Zone	Only permitted activities as per CRZ notification
	Notification shall be carried out in Coastal	are carried out.
	Regulation Zone area.	
xxii	The project proponent shall set up separate	Complied.
	environmental management cell for effective	DPCL has a well-structured Environmental
	implementation of the stipulated environmental	Management Cell, staffed with qualified man
	safeguards under the supervision of a senior	power at site supported by team at Head Office in
	executive	Ahmedabad.
xxiii	The funds earmarked for environment	Complied.
	management plan shall be included in the	A sum of INR 3.34Crores has been spent for FY
	budget and this shall not be diverted for any	2015-16. Details of the same are annexed in
	other purposes.	Annexure-VIII
7. Gene	eral Conditions	T
ı	Appropriate measures must be taken while	· ·
	undertaking digging activities to avoid any likely	
	degradation of water quality.	
ii	Full support shall be extended to the officers of	Complied.
	this Ministry/Regional Office at Bhubaneswar by	Full support is being extended to the Eastern
	the project proponent during inspection of the	Regional Office of Ministry of Environment &
	project for monitoring purposes by furnishing full	Forests & Climate Change, Bhubaneswar during
	details and action plan including action taken	their visit. Details required are being submitted to the Authorities.
	reports in respect of mitigation measures and	the Authorities.
iii	other environmental protection activities.	Complied
111	A six-monthly monitoring report shall need to be	1
	submitted by the project proponents to the	Six monthly compliance report is regularly

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

amend Sr.	lment dated 25 th March, 2015 	
Sr. No.	Conditions	Compliance Status
	Regional Office of this Ministry at Bhubaneswar regarding the implementation of the stipulated conditions.	submitted to Regional Office of MoEF & CC, Bhubaneshwar. Last compliance report for April – September, 2015 period was submitted vide our letter dated 20.11.2015
iv	Ministry of Environment & Forests or any other competent authority may stipulate any additional conditions or modify the existing ones, if necessary in the interest of environment and the same shall be complied with.	Point Noted
V	The Ministry reserves the right to revoke this clearance if any of the conditions stipulated are not complied with the satisfaction of the Ministry.	Point Noted
Vİ	In the event of a change in project profile or change in the implementation agency, a fresh reference shall be made to the Ministry of Environment and Forests.	Complied. An application for revised master plan of Dhamra port is already submitted to MoEF &CC with a fresh reference and Terms of Reference for the same have been issued. Baseline Monitoring in line to the TOR is under progress.
vii	The project proponents shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of start of land development work.	Date of last financial closure was on 30th September, 2014.
viii	A copy of the clearance letter shall be marked to concern Panchayat/local NGO, if any, from whom any suggestion/ representation has been made received while processing the proposal.	Complied. The copy is attached as Annexure-XI
ix	Odisha State Pollution Control Board shall display a copy of the clearance letter at the Regional Office, District Industries Center and Collector's Office/Tehsildar's office for 30 days.	-
8	These stipulations would be enforced among others under the provisions of Water (Prevention	Point Noted

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

	ment dated 25 th March, 2015	
Sr. No.	Conditions	Compliance Status
	and Control of Pollution) Act 1974, the Air	
	(Prevention and Control of Pollution) Act 1981,	
	the Environment (Protection) Act, 1986, the	
	Public Liability (Insurance) Act 1991 and EIA	
	Notification 1994, including the amendments	
	and rules made thereafter.	
9	All other statutory clearances such as the	Complied.
	approvals for storage of diesel from Chief	License on storage of explosives from PESO and
	Controller of Explosives, Fire Department, Civil	NOC from Fire Dept. is attached as Annexure-XII
	Aviation Department, Forest Conservation Act,	
	1980 and Wildlife (Protection) Act, 1972 etc. shall	
	be obtained, as applicable by project proponents	
	from the respective competent authorities.	
10	The project proponent shall advertise in at least	Complied.
	two local Newspapers widely circulated in the	Advertisement copies are attached as Annexure -
	region, one of which shall be in the vernacular	XIII
	language informing that the project has been	
	accorded Environmental and CRZ Clearance and	
	copies of clearance letters are available with the	
	Odisha State Pollution Control Board and may	
	also be seen on the website of the Ministry of	
	Environment and Forests at	
	http://www.envfor.nic.in. The advertisement	
	should be made within 10 days from the date of	
	receipt of the Clearance letter and a copy of the	
	same should be forwarded to the Regional Office	
	of this Ministry at Bhubaneswar.	
11	This clearance is subject to final order of the	Point Noted
	Hon'ble Supreme Court of India in the matter of	
	Goa Foundation Vs. Union of India in Writ	
	Petition (Civil) No. 460 of 2004 as may be	
	applicable to this project.	
12	Any appeal against this clearance shall lie with	Point Noted
	the National Green Tribunal, if preferred, within	

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

amend	ment dated 25 th March, 2015	
Sr. No.	Conditions	Compliance Status
	a period of 30 days as prescribed under Section	
	16 of the National Green Tribunal Act, 2010.	
13	Status of compliance to the various stipulated	Complied.
	environmental conditions and environmental	Compliance report for each period is uploaded on
	safeguards will be uploaded by the project	the company's website and the same is being
	proponent in its website	updated twice in a year.
14	A copy of the clearance letter shall be sent by the	Complied.
	proponent to concerned Panchayat, Zilla	The copy is attached as Annexure-XI
	Parishad/Municipal Corporation, Urban Local	
	Body and the Local NGO, if any, from whom	
	suggestions/representations, if any, were	
	received while processing the proposal. The	
	clearance letter shall also be put on the website	
	of the company by the proponent.	
15	The proponent shall upload the status of	Complied.
	compliance of the stipulated clearance	Compliance report for each period is uploaded on
	conditions, including results of monitored data	the company's website and the same is being
	on their website and shall update the same	updated twice in a year. Results of environmental
	periodically. It shall simultaneously be sent to	monitoring are attached as Annexures to the
	the Regional Office of MoEF, the representative	compliance report. Hard copy as well as soft copy
	Zonal Office of CPCB and the SPCB.	of the same are submitted to all concerned
		authorities.
16	The project proponent shall also submit six	Complied.
	monthly reports on the status of compliance of	Compliance report for each period is uploaded on
	the stipulated clearance conditions including	the company's website and the same is being
	results of monitored data (both in hard copies as	updated twice in a year. Results of environmental
	well as by e-mail) to the respective Regional	monitoring are attached as Annexures to the
	Office of MoEF, the respective Zonal Office of	compliance report. Hard copy as well as soft copy
	CPCB and the SPCB.	of the same are submitted to all concerned authorities.
17	The environmental statement for each financial	Complied.
	year ending 31st March in Form-V as is mandated	Environmental statement for FY 2014-15 was
	to be submitted by the project proponent to the	submitted to OPCB with a copy to the Regional
	concerned State Pollution Control Board as	Office of MoEF & CC vide our letter no DPCL/ENV-
	I .	1

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

amend	ment dated 25 th March, 2015	
Sr. No.	Conditions	Compliance Status
NO.	prescribed under the Environment (Protection)	12/01/15 dated 15th Sep 2015. Copy of the same is
	Rules, 1986, as amended subsequently, shall also	attached as Annexure – XIV
	be put on the website of the company along with	detached ds / difference // //
	the status of compliance of clearance conditions	All Submitted Environment Statements as well as
	and shall also be sent to the respective Regional	Half Yearly Compliance Reports are available on
	Office of MoEF by email.	our company website and can be viewed publicly
Condit	ions stipulated in the amendment dated 25th Mar	
Conditi	The port shall ensure that the ships under	Complied.
	operation follow the MARPOL Convention with	MARPOL Convention is being followed
i	regard to discharge or spillage of any toxic,	With the convention is being followed
'	hazardous or polluting material like ballast	
	water, oily water or sludge, sewage, garbage etc.	
	water, only water or slouge, sewage, garbage etc.	Complied.
	Dust screens shall be provided with height of two	Water sprinkling is being done on regular basis to
	meter above the stack height. Water sprinkling	ensure dust suppression in Phase-I ore storage
ii	shall be carried out for settling dust. Three layers	area and vehicular paths/roads.
	of green belt of tall growing tress shall be	Thick greenbelt is being developed all along the
	provided on all sides of the stack area.	
	•	periphery of the port back up area.
	Transportation of iron ore shall be by covered	Complied.
iii	conduit/closed trucks/rails only. Closed conveyor	Transportation of Coal/Iron ore is done in covered
	belt shall be used for unloading the product.	conveyor belt system
		Complied.
iv		Water sprinkling is being done on regular basis to
	Water sprinklers will be provided in the area of	ensure dust suppression in Phase-I ore storage
	ore storage and vehicular path/roads.	area and vehicular paths/roads.
		Complied.
V	All the recommendations of EMP and Disaster	Compliance of EMP can be referred as Annexure
	Management Plan (DMP) shall be complied with	X

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

LIST OF ANNEXURES

S. No	Annexure Number	<u>Details</u>								
1	Annexure-I	Marine Water Quality								
2	Annexure – II	Types and quantity of Fire Extinguishers								
3	Annexure-III	Details of Mock Drills								
4	Annexure-IV	Green Belt Details								
5	Annexure-V	STP Monitoring Report								
6	Annexure-VI	Noise Monitoring Report								
7	Annexure-VII	Ambient Air Monitoring Report								
8	Annexure-VIII	Cost Break up of Environment Budget V/s								
0	Expenditure									
9	Annexure- IX	INCOIS Board								
10	Annexure-X	EMP & Action Plan Compliance								
11	Annexure-XI	Environmental Clearance copy to								
11	Alliexule-Al	Zillaparisad								
12	Annexure-XII	License and NOC from Fire Dept.								
		Advertisement in Local Newspapers								
13	Annexure – XIII	intimating grant of Environmental & CRZ								
		Clearance								
14	Annexure – XIV	Environment Statement for FY 2015-16								

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

ANNEXURE I – MARINE WATER QUALITY

A. SURFACE WATER ANYALYSIS

SURFACE WATER ANYALYSIS REPORT-MARCH 16

					KE16-	KE16-					
				KE16-	1876.00	1876.00	KE16-	KE16-	KE16-	KE16-	KE16-
				1876.001	2	3	1876.004	1876.005	1876.006	1876.007	1876.008
						Loc:			Loc: Buoy	Loc: Buoy	Loc: Buoy
					Loc:	Jetty	Loc: Turning	Loc: Buoy	No.11	No.14	No.15
				Loc: Jetty	Midd	North	Circle East	No.10 Midd	Midd	Midd	Midd
SI				South End	Jetty	End	Side	Channel	Channel	Channel	Channel
no					30.03.20	30.03.20			30.03.201	30.03.201	30.03.201
	Parameters	Method	Unit	30.03.2016	16	16	30.03.2016	30.03.2016	6	6	6
		APHA 4500									
1	pН	В		7.12	7.15	7.12	7.2	7.18	7.25	7.15	7.22
		APHA 2550									
2	Temperature	В	οС	29.3	29.5	29.3	29.6	29.2	29.1	29.2	29.1
	Total										
	Suspended	APHA 2540	mg/								
3	Solids	D	L	13	6.0	7	5	14	18	10	12.0
		IS									
		3025(P	mg/								
4	BOD	art 44):	L	2.5	2.5	2.5	2.7	2.5	2.5	2.5	2.7

From : Oct,15 To : Mar,16

		1993									
	Dissolved	APHA 4500	mg/								
5	Oxygen	В	L	1.2	1.4	1.2	1	1.3	1.5	1.1	<0.5
		APHA 2520	mg/								
6	Salinity	В	L	32	32.1	32	31.7	32	31.7	1.6	31.7
	Oil &	APHA 5520			BDL(BDL (BDL (BDL (BDL(
7	Grease	В		BDL (DL:2)	DL:2)	DL:2)	BDL (DL:2)	BDL (DL:2)	DL:2)	DL:2)	DL:2)
	Nitrite as	APHA 4500	mg/								
8	NO ₂	В	L	1.25	0.81	0.29	1.03	0.78	0.99	0.15	0.37
	Ammoniac	APHA 4500	mg/								
9	Nitrogen	С	L	1.4	1.1	1.3	1.3	1.5	1.6	1.5	1.4
	Kjeldahl	APHA 4500	mg/								
11	Nitrogen	В	L	1.6	1.5	1.6	1.6	1.7	1.8	1.6	1.6
	Total	APHA 4500	mg/								
12	Phosphates	D	L	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
	Total	APHA 4500	mg/								
13	Nitrogen	В	L	2.2	2	2.2	2.3	2.3	2.6	2.1	2.4
	Total										
	Dissolved	APHA 2540	mg/								
14	Solids	С	L	34370.0	29.5	34370.0	34092.0	34371.0	34091.0	34511.0	34092.0
		APHA 5220	mg/								
15	COD	В	L	224.2	261.5	186.8	261.5	298.9	224.2	298.9	336.2
16	Total	IS:	cfu/	210	440	260	2500	830	5700	3400	120

From : Oct,15 To : Mar,16

	bacterial	1622:1981(ml								
	count	Reaff:2003)									
			per								
		IS:1622-	100								
17	Coliforms	1981	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
			per								
	Eschericia	IS:1622-	100								
18	coli	1981	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
			per								
		IS15187:200	250								
19	Salmonella	2	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
		IS 5887	per								
		(Part -	250								
20	Shigella	7):1999	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
		IS 5887	per								
	Vibrio	(Part -	250								
21	cholerae	5):1976	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
	Vibrio	IS 5887	per								
	parahaemoly	(Part -	250								
22	ticus	5):1976	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
		ISO 7899	per								
		(Part	250								
23	Enterococci	2):2000	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
24	Total	USEPA	mg/	BDL(BDL (BDL (BDL (DL:10)	BDL(BDL (BDL (BDL(

From: Oct,15 To: Mar,16

	Petroleum	8015	L	DL:10)	DL:10)	DL:10)		DL:10)	DL:10)	DL:10)	DL:10)
	Hydrocarbons										
	Nitrate as	APHA 4500	mg/								
25	No ₃	В	L	2.18	2.27	2.53	3.08	2.8	3.34	2.4	3.56
		SO-IN-									
	Abundance of	MUL-TE-	No./								
26	phytoplankton	112	L	100000	60000	60000	60000	86600	66600	66600	80000
		SO-IN-		Diatom					Diatom,Bl		Diatom,Di
	Groups of	MUL-TE-		dinoflagella	Diatom,		Diatom,	Diatom, alg	ue Green		noflagellat
27	phytoplankton	112		tes	algae	Diatom	greenalgae	ae	algae	20000	es
		SO-IN-									
	Abundance of	MUL-TE-	No./							Diatom.Al	
28	zooplankton	113	L	0	0	6600	0	20000	20000	gae	0
		SO-IN-									
	Groups of	MUL-TE-				Adult		Adult		Adult	
29	zooplankton	113		Nil	Nil	copepod	Nil	copepod	Copepod	copepod	Nil

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

SURFACE WATER ANYALYSIS REPORT-FEBRUARY 16

				KE16-	KE16-	KE16-	KE16-				
				001071.00	001071.0	001071.0	001071.0	KE16-	KE16-	KE16-	KE16-
				1	02	03	04	001071.005	001071.006	001071.007	001071.008
							Loc:	Loc: Buoy			
				Loc:Jetty	Loc:	Loc: Jetty	Turning	No.10	Loc: Buoy	Loc: Buoy	Loc: Buoy
				South	Midd	North	Circle	Midd	No.11 Midd	No.14 Midd	No.15 Midd
SI				End	Jetty	End	East Side	Channel	Channel	Channel	Channel
no.	Parameters	Method	Unit	25.2.2016	25.2.2016	25.2.2016	25.2.2016	25.2.2016	25.2.2016	25.2.2016	25.2.2016
		APHA									
1	рН	4500 B		7.12	7.10	7.15	7.12	7.18	7.15	7.14	7.15
		APHA									
2	Temperature	2550 B	οС	29	29.3	29.2	29	29.5	29.1	29.4	29
	Total										
	Suspended	APHA	mg/								
3	Solids	2540 D	L	97.7	50.7	91	94.4	105.9	93.7	89.2	99.4
		IS									
		3025(Part									
		44):	mg/								
4	BOD	1993	L	4.4	4.2	3.8	4	4.0	4.2	3.6	4.9
	Dissolved	APHA	mg/								
5	Oxygen	4500 B	L	1.2	1.1	1.1	1.3	1.2	1.4	1.1	1.4
		APHA	mg/								
6	Salinity	2520 B	L	30.2	30.2	30.2	30.2	30.2	30.2	30.3	30.3

From: Oct,15 To: Mar,16

		APHA									
7	Oil & Grease	5520 B		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
	Nitrite as	APHA	mg/								
8	NO ₂	4500 B	L	0.2	0.15	0.18	0.19	0.07	0.05	0.08	0.06
	Ammonical	APHA	mg/								
9	Nitrogen	4500 C	L	1.7	1.1	1.1	1.2	1.6	1.2	1.7	1.7
	Kjeldahl	APHA	mg/								
11	Nitrogen	4500 B	L	2.3	1.7	1.7	1.8	2.2	1.8	2.1	2.3
	Total	APHA	mg/								
12	Phosphates	4500 D	L	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
	Total	APHA	mg/								
13	Nitrogen	4500 B	L	3.7	2.8	2.9	3	3.6	3.3	3.7	3.3
	Total										
	Dissolved	APHA	mg/								
14	Solids	2540 C	L	3.2618.0	32550.0	32620.0	32552.0	32616.0	32621.0	32690.0	32621.0
		APHA	mg/								
15	COD	5220 B	L	354-9	354-9	317.6	336.2	3336.2	354-9	336.2	373.6
		IS:									
	Total	1622:1981									
	bacterial	(Reaff:200	cfu/								
16	count	3)	ml	4300	490	370	640	140	550	620	1400
			per								
		IS:1622-	100								
17	Coliforms	1981	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

From : Oct,15 To : Mar,16

			per								
	Faalaawiaia	IC -C	'								
	Eschericia	IS:1622-	100								
18	coli	1981	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
			per								
		IS15187:20	250								
19	Salmonella	02	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
		IS 5887	per								
		(Part -	250								
20	Shigella	7):1999	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
		IS 5887	per								
	Vibrio	(Part -	250								
21	cholerae	5):1976	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
	Vibrio	IS 5887	per								
	parahaemoly	(Part -	250								
22	ticus	5):1976	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
		ISO 7899	per								
		(Part	250								
23	Enterococci	2):2000	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
	Total										
	Petroleum										
	Hydrocarbon	USEPA	mg/	BDL (BDL (BDL (BDL (BDL(BDL (BDL(
24	S	8015	L	DL:10)	DL:10)	DL:10)	DL:10)	DL:10)	BDL (DL:10)	DL:10)	DL:10)
	Nitrate as	APHA	mg/								
25	No ₃	4500 B	L	6	4.73	5.08	5.18	5.94	6.39	5.82	4.52

From : Oct,15 To : Mar,16

	Abundance										
	of	SO-IN-									
	phytoplankto	MUL-TE-	No./								
26	n	112	L	73200	66600	106600	106600	66600	80000	80000	86600
							Diatom,				
	Groups of	SO-IN-				Diatom,	algae,	Diatom			
	phytoplankto	MUL-TE-			Diatom,	dinoflagel	Dinoflagel	dinoflagella			
27	n	112		Diatom	algae	late, algae	lates	tes, Algae	Diatom	Diatom	Diatom,
	Abundance	SO-IN-									
	of	MUL-TE-	No./								
28	zooplankton	113	L	0	6600	20000	0	0	0	13200	20000
		SO-IN-								Copepod,	
	Groups of	MUL-TE-								Nauplii of	
29	zooplankton	113		nil	Copepod	copepod	Nil	Nil	Nil	Copepod	Copepod

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

SURFACE WATER ANYALYSIS REPORT-JANUARY 16

				KE16- 000555.00 1	KE16- 000555.00 2	KE16- 000555.00 3	KE16- 000555.00 4	KE16- 000555.00 5	KE16- 000555.006	KE16- 000555.007	KE16- 000555.008
SI no.	Parameters	Method	Unit	Loc: Jetty South End	Loc: Midd Jetty	Loc: Jetty North End	Loc: Turning Circle East Side	Loc: Buoy No 10 Mid Channel	Loc: Buoy No 11 Mid Channel	Loc: Buoy No 14 Mid Channel	Loc: Buoy No 15 Mid Channel
				28-01- 2016	28-01- 2016	28-01- 2016	28-01- 2016	28-01- 2016	28-01-2016	28-01-2016	28-01-2016
1	рН	APHA 4500 B		7.12	7.10	7.15	7.14	7.12	7.11	7.10	7.13
2	Temperature	APHA 2550 B	оС	21.3	20.5	20.7	21.6	20.3	21.4	21.5	20.2
3	Total Suspended Solids	APHA 2540 D	mg/L	196.3	193.0	92.4	128.6	123.6	131.2	213.6	91.0
4	BOD	IS 3025(Pa rt 44):199 3	mg/L	3.6	3.8	3.5	2.6	3.0	3.4	2.7	3.0
5	Dissolved Oxygen	APHA 4500 B	mg/L	1.6	1.3	1.2	1.1	1.3	1.2	1.4	1.5

From: Oct,15 To: Mar,16

6	Calinity	APHA		22.7	22.7	22.2	23.2	22.0	22.0	22.1	23.1
0	Salinity	2520 B	mg/L	22.7	22.7	23.2	23.2	22.8	22.8	23.1	23.1
7	Oil & Grease	APHA		<2	<2	<2	<2	<2	<2	<2	<2
7	Oli & diease	5520 B		\2	\ 2	\2	\2	\2	\Z	\2	\Z
8	Nitrite	APHA	mg/L	1.67	1.63	0.53	1.31	0.22	0.11	0.14	0.37
	Millite	4500 B	mg/L	1.07	1.05	0.55	1.51	0.22	0.11	0.14	0.37
9	Ammoniac	APHA	mg/L	1.7	0.8	0.8	1.1	0.8	1.1	1.4	1.1
9	Nitrogen	4500 C	1119/2	1.7	0.0	0.6	1.1	0.6	1.1	1.4	1.1
10	Ammonia	APHA	mg/L	2.063	0.968	0.968	1.335	0.968	1.335	1.69	1.335
10	7 (TITTOTIIC	4500 C	1119/1	2.003	0.500	0.500	1.555	0.500	1.555	1.05	1.555
11	Kjeldahl	APHA	mg/L	2.2	1.4	1.4	1.7	1.4	1.7	2	2
	Nitrogen	4500 B	1119/2	2.2	±.· T	1.7	1.7	1.7	1.7	-	
12	Total	APHA	mg/L	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
12	Phosphates	4500 D	1119/2	10.23	10.23	10.23	10.25	10.23		10.25	10.23
13	Total	APHA	mg/L	2.7	2.5	2.1	2.5	2.5	2.0	2.5	2.5
-5	Nitrogen	4500 B	1119/2	2.7	2.3	2.1	2.3	2.3	2.0	2.3	2.5
	Total	APHA									
14	Dissolved	2540 C	mg/L	28842.0	28908.0	28905.0	28910.0	28907.0	28904.0	28980.0	28977.0
	Solids										
15	COD	APHA	mg/L	313.2	365.4	330.6	208.8	278.4	330.6	243.6	278.4
		5220 B									
	Total	IS:									
16	bacterial	1622:19	cfu/ml	19000	15000	24000	38000	8000	12000	6500	5800
	count	81(

From: Oct,15 To: Mar,16

		Reaff:2									
		003)									
17	Coliforms	IS:1622-	per	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
/	Comornis	1981	100ml	7.000110	71000110	71000110	71.000110	71000110	71.550110	71000110	71000110
18	Escherichia	IS:1622-	per	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
10	coli	1981	100ml	Abscrit	Abscrit	Abscrit	Abscrit	Abscrit	Absent	Abscrit	Abscrit
10	Salmonella	IS15187:	per	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
19	Sairionella	2002	250ml	Absent	Absent	Ausent	Absent	Absent	Absent	Absent	Absent
		IS 5887	nor								
20	Shigella	(Part -	per	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
		7):1999	250ml								
	Vibrio	IS 5887	201								
21	cholerae	(Part -	per	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
	CHOIEFae	5):1976	250ml								
	Vibrio	IS 5887	nor								
22	parahaemoly	(Part -	per	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
	ticus	5):1976	250ml								
		ISO									
	F.1	7899	per	A la a a a 1	A l I	A l	A l	A la 1	A la	A la a a a l	A la a a a l
23	Enterococci	(Part	250ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
		2):2000									
	Total	LICEDA		DDI	BDL	BDL	BDL	BDL	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)
24	Petrolium	USEPA	mg/L	BDL (DL 40)	(DL:10)	(DL:10)	(DL:10)	(DL:10)			
	Hydrocarbon	8015		(DL:10)							

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

	S										
25	Nitrate	APHA 4500 B	mg/L	2.18	-	1.96	2.26	1.87	2.16	2.53	1.86

SURFACE WATER ANYALYSIS REPORT-DECEMBER 15

				KE15-	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-
				5435.001	5435.002	5435.003	5435.004	5435.005	5435.006	5435.007	5435.008
							Loc:	Loc: Buoy	Loc: Buoy	Loc: Buoy	Loc: Buoy
							Turning	No.10	No.11	No.14	No.15
				Loc: Jetty	Loc : Midd	Loc: Jetty	Circle East	Midd	Midd	Midd	Midd
SI				South End	Jetty	North End	Side	Channel	Channel	Channel	Channel
no	Parameters	Method	Unit	18.12.2015	18.12.2015	18.12.2015	18.12.2015	18.12.2015	18.12.2015	18.12.2015	18.12.2015
		APHA 4500									
1	рН	В		7.12	7.15	7.23	7.18	7.15	7.16	7.21	7.15
		APHA 2550									
2	Temperature	В	°C	25	25.2	24	25	25	23	24	23
	Total Suspended	APHA 2540									
3	Solids	D	mg/L	139.6	117.5	115.1	45.3	79.3	48	41.7	45.4
		IS 3025(Part									
4	BOD	44):1993	mg/L	2.9	3.2	2.9	3.3	3	2.4	3.4	3.5
	Dissolved	APHA 4500									
5	Oxygen	В	mg/L	1.2	1.1	1.5	1.3	1.2	1.1	1.1	1.2
		APHA 2520									
6	Salinity	В	mg/L	24.9	24.8	24.8	25.1	25.1	25	25	25.1

From : Oct,15 To : Mar,16

		APHA 5520									
7	Oil & Grease	В		BDL (DL:2)							
		APHA 4500									
8	Nitrite as NO2	В	mg/L	0.09	0.05	0.24	0.05	0.05	0.04	0.04	0.04
	Ammonical	APHA 4500									
9	Nitrogen	C	mg/L	3	4.4	3	3	3	3	4.4	3
	Kjeldahl	APHA 4500									
11	Nitrogen	В	mg/L	10.3	10.3	8.9	8.9	10.3	8.9	8.9	8.9
	Total	APHA 4500									
12	Phosphates	D	mg/L	<0.25	<0.25	0.54	<0.25	<0.25	<0.25	<0.25	<0.25
		APHA 4500									
13	Total Nitrogen	В	mg/L	10.8	11.1	9.6	9.5	11	9.4	9.5	9.4
	Total Dissolved	APHA 2540									
14	Solids	С	mg/L	27440	27304	37443	27584	26955	27512	27583	27515
		APHA 5220									
15	COD	В	mg/L	263.4	281	263.4	298.5	263.4	228.3	281	298.5
		IS:									
	Total bacterial	1622:1981(R									
16	count	eaff:2003)	cfu/ml	740	470	500	690	6400	3800	250	400
			per								
17	Coliforms	IS:1622-1981	100ml	Absent							
			per								
18	Escherichia coli	IS:1622-1981	100ml	Absent							
			per								
19	Salmonella	IS15187:2002	250ml	Absent							
20	Shigella	IS 5887 (Part	per	Absent							

From : Oct,15 To : Mar,16

		- 7):1999	250ml								
		IS 5887 (Part	per								
21	Vibrio cholerae	- 5):1976	250ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
	Vibrio										
	parahaemolyticu	IS 5887 (Part	per								
22	S	- 5):1976	250ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
		ISO 7899	per								
23	Enterococci	(Part 2):2000	250ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
	Total Petroleum			BDL (BDL (BDL (BDL (BDL(BDL(BDL(BDL(
24	Hydrocarbons	USEPA 8015	mg/L	DL:10)	DL:10)	DL:10)	DL:10)	DL:10)	DL:10)	DL:10)	DL:10)
		APHA 4500									
25	Nitrate as No ₃	В	mg/L	2.14	3.43	2.64	2.51	2.82	2.17	2.71	2.2
	Abundance of	SO-IN-MUL-									
26	phytoplankton	TE-112	No./L	7.34×10 ⁴	1.0X10 ⁵	1.2X10 ⁵	6 x10 ⁴	6x10 ⁴	1.8 x 10 ⁵	8 x 10 ⁴	5.34 X 10 ⁴
									Diatom,		
									dinoflagell		
									ates, green		
				Diatom,		Diatom,	Diatom,	Diatom,	and blue	Diatom,	Diatom,
	Groups of	SO-IN-MUL-		dinoflagella	Diatom,	blue green	dinoflagell	dinoflagell	green	green	dinoflagell
27	phytoplankton	TE-112		tes	Flagellates	algae	ates	ates	algae	algae	ates
	Abundance of	SO-IN-MUL-									
28	zooplankton	TE-113	No./L	6.6x10 ³	3.34×10 ⁴	4X10 ⁴	1 X 10 ⁴	Nil	6.6 x 10 ⁴	4 X 10 ⁴	Nil
					Adult	Nauplii			Copepod		
					copepod	copepod	Decapods		and	Nauplius	
	Groups of	SO-IN-MUL-		Adult	and	and	and		decapods	and mysid	
29	zooplankton	TE-113		copepod	decapods	decaposds	copepod	Nil	crustacean	of Copepod	Nil

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

F						1
					c	1
					3	1
L						1

SURFACE WATER ANYALYSIS REPORT-NOVEMBER 15

				KE15-	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-
				5055.001	5055.002	5055.003	5055.004	5055.005	5055.006	5055.007	5055.008
							Loc:	Loc: Buoy	Loc: Buoy	Loc: Buoy	
							Turning	No.10	No.11	No.14	Loc: Buoy
				Loc: Jetty	Loc : Midd	Loc: Jetty	Circle East	Midd	Midd	Midd	No.15 Midd
SI				South End	Jetty	North End	Side	Channel	Channel	Channel	Channel
no.	Parameters	Method	Unit	27.11.2015	27.11.2015	27.11.2015	27.11.2015	27.11.2015	27.11.2015	27.11.2015	27.11.2015
1	рН	APHA 4500 B		7.56	7.75	7.62	7.52	7.55	7.72	7.62	7.65
2	Temperature	APHA 2550 B	οС	26	26	25	26	25	24	25	25
	Total Suspended										
3	Solids	APHA 2540 D	mg/L	97.6	100.2	97.9	107.3	43.8	52.8	102.1	107.9
		IS 3025(Part									
4	BOD	44):1993	mg/L	3.8	3.5	3.9	4.1	3.5	4	3.9	3.5
	Dissolved										
5	Oxygen	APHA 4500 B	mg/L	2.1	1.1	1.3	1.2	1.6	1.9	2.4	2.3
6	Salinity	APHA 2520 B	mg/L	23.1	23.4	22.7	22.6	22.9	23.4	23.3	23.2
7	Oil & Grease	APHA 5520 B		BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)
8	Nitrite as NO2	APHA 4500 B	mg/L	0.18	0.29	0.02	<0.01	<0.01	0.04	0.03	0.01
	Ammonical										
9	Nitrogen	APHA 4500 C	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
11	Kjeldahl Nitrogen	APHA 4500 B	mg/L	<1	<1	<1	<1	<1	<1	<1	<1

From : Oct,15 To : Mar,16

12	Total Phosphates	APHA 4500 D	mg/L	0.3	<0.25	0.31	0.53	0.32	0.64	0.28	0.49
13	Total Nitrogen	APHA 4500 B	mg/L	<1.00	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	Total Dissolved										
14	Solids	APHA 2540 C	mg/L	25550	25900	25130	25200	25340	25970	25760	25758
15	COD	APHA 5220 B	mg/L	363.4	346.9	363.4	380	363.4	380	380	363.4
		IS:									
	Total baterial	1622:1981(Re									
16	count	aff:2003)	cfu/ml	160	120	650	95	290	700	180	270
			per								
17	Coliforms	IS:1622-1981	100ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
			per								
18	Eschericia coli	IS:1622-1981	100ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
			per								
19	Salmonella	IS15187:2002	250ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
		IS 5887 (Part -	per								
20	Shigella	7):1999	250ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
		IS 5887 (Part -	per								
21	Vibrio cholerae	5):1976	250ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
	Vibrio	IS 5887 (Part -	per								
22	parahaemolyticus	5):1976	250ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
		ISO 7899	per								
23	Enterococci	(Part 2):2000	250ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
	Total Petrolium			BDL (BDL (BDL(BDL (BDL (BDL (BDL (BDL (
24	Hydrocarbons	USEPA 8015	mg/L	DL:10)	DL:10)	DL:10)	DL:10)	DL:10)	DL:10)	DL:10)	DL:10)
25	Nitrate as No3	APHA 4500 B	mg/L	3.35	3.26	3.07	4.02	2.6	1.79	2.88	3.1
26	Abundance of	SO-IN-MUL-	No./L	4.66x104	6.66x104	8x104	1 X105	6x104	6 x 104	8 x 104	6.66 x 104

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

	phytoplankton	TE-112									
				Diatom			Diatom	Diatom			Diatom
	Groups of	SO-IN-MUL-		dinoflagella	Alqae		dinoflagell	dinoflagell	Alqae	Alqae	dinoflagella
27	phytoplankton	TE-112		tes	Diatom	Diatom	ates	ates	Diatom	Diatom	tes
	Abundance of	SO-IN-MUL-									
28	zooplankton	TE-113	No./L	1.34X104	3.34X104	2.66x104	4 X 104	6.6x103	6.6 x 103	2 X 104	1.34X104
								Adult and			
	Groups of	SO-IN-MUL-						mysid of	Copepod		
29	zooplankton	TE-113		Nil	Copepod	Copepod	Copepod	copepod	nauplii	Copepod	Copepod

SURFACE WATER ANYALYSIS REPORT-OCTOBER 15

SI no.	Parameters	Method (Unit Solution	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-
				4584.001	4584.002	4584.003	4584.004	4584.005	4584.006	4584.007	4584.008
				Loc: Jetty South End	Loc: Midd Jetty	Loc: Jetty North End	Loc: Turning Circle East Side	Loc: Buoy No 10 Mid Channel	Loc: Buoy No 11 Mid Channel	Loc: Buoy No 14 Mid Channel	Loc: Buoy No 15 Mid Channel
				28-10-	28-10-	28-10-	28-10-	28-10-	28-10-2015	28-10-2015	28-10-2015
				2015	2015	2015	2015	2015			
1	рН	APHA 4500 B		7.34	7.46	7.59	7.35	7.47	7.49	7.25	7.34
2	Temperature	APHA 2550 B	οС	29.8	31.5	30.8	32.7	32.9	32.8	33.7	32.8

From : Oct,15 To : Mar,16

3	Total Suspended Solids	APHA 2540 D	mg/L	149.5	202	77.8	97.6	158	174.4	176.8	169.9
4	BOD	IS 3025(Pa rt 44):199 3	mg/L	3.5	3.6	3.4	4.6	4.3	4.5	4.9	5
5	Dissolved Oxygen	APHA 4500 B	mg/L	3.3	3.1	3.6	2.1	2.4	3.5	2.8	3.1
6	Salinity	APHA 2520 B	mg/L	22.7	22.8	22.8	22.8	22.8	22.9	22.8	23
7	Oil & Grease	APHA 5520 B		<2	<2	<2	<2	<2	<2	<2	<2
8	Nitrite	APHA 4500 B	mg/L	<0.01	0.06	0.03	0.03	0.05	0.02	0.02	0.03
9	Ammoniacal Nitrogen	APHA 4500 C	mg/L	0.8	0.8	0.6	0.6	1.1	0.6	0.8	1.1
10	Ammonia	APHA 4500 C	mg/L	0.97	0.97	0.73	0.73	1.34	0.73	0.97	1.34
11	Kjeldahl Nitrogen	APHA 4500 B	mg/L	1.4	1.4	BDL	BDL	1.4	BDL	1.1	1.4
12	Total Phosphates	APHA 4500 D	mg/L	0.28	<0.25	<0.25	<0.25	<0.25	0.26	<0.25	<0.25

From: Oct,15 To: Mar,16

13	Total Nitrogen	APHA 4500 B	mg/L	2.1	2	1.3	1.3	1.8	1.3	1.6	1.9
14	Total Dissolved Solids	APHA 2540 C	mg/L	25200	25270	25273	25268	25340	25337	252.71	25411
15	COD	APHA 5220 B	mg/L	327.1	365.6	346.3	423.3	404	404	457	476
16	Total bacterial count	IS: 1622:19 81(Reaff:2 003)	cfu/ml	3300	3800	2700	5600	150	8700	7400	25000
17	Coliforms	IS:1622- 1981	per 100ml	Absent							
18	Eschericia coli	IS:1622- 1981	per 100ml	Absent							
19	Salmonella	IS15187: 2002	per 250ml	Absent							
20	Shigella	IS 5887 (Part - 7):1999	per 250ml	Absent							
21	Vibrio cholerae	IS 5887 (Part - 5):1976	per 250ml	Absent							

From: Oct,15 To: Mar,16

22	Vibrio parahaemoly ticus	IS 5887 (Part - 5):1976	per 250ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
23	Enterococci	ISO 7 ⁸ 99 (Part 2):2000	per 250ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
24	Total Petrolium Hydrocarbon s	USEPA 8015	mg/L	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)
25	Nitrate	APHA 4500 B	mg/L	3.09	2.73	2.33	2.03	1.61	2.03	2.16	2.32
26	Abundance of phytoplankton	SO-IN- MUL- TE-112	No./L	9.34×10 ⁴	7.34×10 ⁴	8x10 ⁴	2.66 x10 ⁴	6x10 ⁴	1.2X10 ⁵	1.47 × 10 ⁵	4.66×10 ⁴
27	Groups of phytoplankton	SO-IN- MUL- TE-112		Diatom	Diatom	Diatom	Diatom	Diatom	Diatom	Diatom	Diatom
28	Abundance of zooplankton	SO-IN- MUL- TE-113	No./L	Nil	3.34X10 ⁴	2X10 ⁴	Nil	6.6x10 ³	2 X 10 ⁴	3.34×10 ⁴	1.34X10 ⁴
29	Groups of zooplankton	SO-IN- MUL- TE-113		Nil	Copepod	Mysid of Copepod	Nil	Nauplii of copepod	Copepod nauplii	Copepod Nauplii	Copepod

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

B. BOTTOM WATER ANYALYSIS

BOTTOM WATER ANYALYSIS REPORT-MARCH 16

				KE16-	KE16-	KE16-	KE16-	KE16-	KE16-	KE16-	KE16-
				001865.0	001865.	001865.0	001865.0	001865.0	001865.0	001865.00	001865.0
				01	002	03	04	05	о6	7	о8
							Loc:	Loc: Buoy	Loc: Buoy	Loc: Buoy	Loc: Buoy
				Loc: Jetty	Loc:	Loc: Jetty	Turning	No.10	No.11	No.14	No.15
				South	Midd	North	Circle	Midd	Midd	Midd	Midd
SI				End	Jetty	End	East Site	Channel	Channel	Channel	Channel
no				30.03.201	30.03.20	30.03.201	30.03.201	30.03.201	30.03.201	30.03.201	30.03.201
	Parameters	Method	Unit	6	16	6	6	6	6	6	6
		APHA									
1	рН	4500 B		7.45	7.52	7.55	7.65	7.45	7.35	7.40	7.52
		APHA									
2	Temperature	2550 B	οС	27.5	27.2	27.4	27.3	27.1	27.2	27.3	27.4
	Total										
	Suspended	APHA	mg/								
3	Solids	2540 D	L	9	5	8	15	22	20	19	20.0
		IS									
		3025(Par									
		t	mg/								
4	BOD	44):1993	L	2.5	2.2	2.5	2.3	2.7	2.5	2.5	2.4

From : Oct,15 To : Mar,16

	Dissolved	APHA	mg/								
5	Oxygen	4500 B	L	2.1	2.2	2.1	2.3	2.1	2.2	2.3	2.1
		APHA	mg/								
6	Salinity	2520 B	L	32.2	32.4	32.2	32.1	32.1	32.1	32.1	32
		APHA		BDL (BDL(BDL (BDL (BDL(BDL (BDL (BDL(
7	Oil & Grease	5520 B		DL:2)							
		APHA	mg/								
8	Nitrite	4500 B	L	0.84	0.55	0.44	0.45	0.61	0.36	0.11	0.35
	Ammonical	APHA	mg/								
9	Nitrogen	4500 C	L	1.3	1.3	1.1	1.1	1.3	1.3	1.4	1.3
	Total	APHA	mg/								
10	Phosphates	4500 D	L	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
		APHA	mg/								
11	Total Nitrogen	4500 B	L	1.9	1.9	1.8	1.8	1.9	2.1	2.3	2.1
	Total										
	Dissolved	APHA	mg/								
12	Solids	2540 C	L	34510.0	34652.0	34650.0	34511.0	34509.0	34512.0	34440.0	34438.0
		APHA	mg/								
13	COD	5220 B	L	261.5	298.9	261.5	224.0	336.2	298.9	262	186.8
		IS:									
		1622:198									
		1(
	Total baterial	Reaff:20	cfu/								
14	count	03)	ml	240	400	1800	280	200	140	480	3700

From: Oct,15 To: Mar,16

			per								
		IS:1622-	100								
15	Coliforms	1981	ml	Absent							
			per								
		IS:1622-	100								
16	Eschericia coli	1981	ml	Absent							
			per								
		IS15187:	250								
17	Salmonella	2002	ml	Absent							
		IS 5887	per								
		(Part -	250								
18	Shigella	7):1999	ml	Absent							
		IS 5887	per								
		(Part -	250								
19	Vibrio cholerae	5):1976	ml	Absent							
	Vibrio	IS 5887	per								
	parahaemolyti	(Part -	250								
20	cus	5):1976	ml	Absent							
		ISO 7899	per								
		(Part	250								
21	Enterococci	2):2000	ml	Absent							
	Total										
	Petrolium	USEPA	mg/	BDL							
22	Hydrocarbons	8015	L	(DL:10)							

From : Oct,15 To : Mar,16

		APHA	mg/								
23	Nitrate	4500 B	L	2.20	2.4	2.19	2.05	2.43	2.59	2.92	2.91
		SO-IN-									
	Abundance of	MUL-TE-	No./								
24	phytoplankton	112	L	26600	6600	20000	40000	33400	20000	40000	46600
		SO-IN-					Diatom				
	Groups of	MUL-TE-					dinoflagel	Diatom,Al			
25	phytoplankton	112		Diatom	Diatom	Diatom	lates	gae	Diatom	Diatom	Diatom
		SO-IN-									
	Abundance of	MUL-TE-	No./								
26	zooplankton	113	L	0	0	0	О	0	0	13400	6600
		SO-IN-									
	Groups of	MUL-TE-									
27	zooplankton	113		Nil	Nil	Nil	Nil	Nil	Nil	Copepod	Copepod

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

BOTTOM WATER ANYALYSIS REPORT-FEBRUARY 16

				KE16-	KE16-	KE16-	KE16-	KE16-	KE16-	KE16-	KE16-
				001051.00	001051.00	001051.00	001051.00	001051.00	001051.00	001051.0	001051.00
				1	2	3	4	5	6	07	8
										Loc:	
							Loc:	Loc: Buoy	Loc :Buoy	Buoy	Loc: Buoy
				Loc: Jetty		Loc: Jetty	Turning	No.10	No.11	No.14	No.15
				South	Loc: Midd	North	Circle	Midd	Midd	Midd	Midd
SI				End	Jetty	End	East Site	Channel	Channel	Channel	Channel
no				25.02.201	25.02.201	25.02.201	25.02.201	25.02.201		25.02.201	25.02.201
-	Parameters	Method	Unit	6	6	6	6	6	25.02.2016	6	6
		APHA									
1	рН	4500 B		7.65	7.52	7.45	7.55	7.75	7.62	7.65	7.52
		APHA									
2	Temperature	2550 B	οС	28.7	28.2	28.5	28.2	28.4	28.2	28.4	28.3
	Total										
	Suspended	APHA	mg/								
3	Solids	2540 D	L	243.9	228.6	236.6	226.4	222.2	219.8	206.2	255.4
		IS 3025									
		(Part	mg/								
4	BOD	44):1993	L	2.6	3.2	3	3.3	3.2	3.8	3	4.2
	Dissolved	APHA	mg/								
5	Oxygen	4500 B	L	2.1	1.4	2.3	2.2	2.1	1.7	1.2	2.1

From: Oct,15 To: Mar,16

		APHA	mg/								
6	Salinity	2520 B	L	30.3	30.2	30.3	30.3	30.2	30.3	30.3	30.2
		APHA									
7	Oil & Grease	5520 B		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
		APHA	mg/								
8	Nitrite	4500 B	L	0.04	0.03	0.08	0.07	0.07	0.07	0.05	2.9
	Ammonical	APHA	mg/								
9	Nitrogen	4500 C	L	1.7	1.2	0.9	1.3	1.0	1.4	1.6	32619
	Total	APHA	mg/								
10	Phosphates	4500 D	L	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
	Total	APHA	mg/								
11	Nitrogen	4500 B	L	3.2	2.3	2.2	2.7	2.4	2.7	2.8	2.9
	Total										
	Dissolved	APHA	mg/								
12	Solids	2540 C	L	32687.0	32619.0	32685.0	3268.0	32689.0	32686.0	32760.0	32619.0
		APHA	mg/								
13	COD	5220 B	L	283.2	321	292.6	321.0	321	339.8	302.1	339.8
		IS:									
		1622:198									
		1(
	Total baterial	Reaff:20	cfu/								
14	count	03)	ml	1400	880	220	260	590	350	360	54
		IS:1622-	per								
15	Coliforms	1981	100	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

From: Oct,15 To: Mar,16

			ml								
			per								
		IS:1622-	100								
16	Eschericia coli	1981	ml	Absent							
			per								
		IS15187:	250								
17	Salmonella	2002	ml	Absent							
		IS 5887	per								
		(Part -	250								
18	Shigella	7):1999	ml	Absent							
		IS 5887	per								
	Vibrio	(Part -	250								
19	cholerae	5):1976	ml	Absent							
	Vibrio	IS 5887	per								
	parahaemolyt	(Part -	250								
20	icus	5):1976	ml	Absent							
		ISO 7899	per								
		(Part	250								
21	Enterococci	2):2000	ml	Absent							
	Total										
	Petroleum										
	Hydrocarbon	USEPA	mg/	BDL							
22	S	8015	L	(DL:10)							
23	Nitrate	APHA	mg/	2.65	2.55	2.56	3.07	3.16	2.90	2.69	3.09

From: Oct,15 To: Mar,16

		4500 B	L								
	Abundance of	SO-IN-									
	phytoplankto	MUL-TE-	No./								
24	n	112	L	60000	26600	53400	60000	66600	33400	40000	46600
								Diatom,			
	Groups of	SO-IN-		Diatom				green and			
	phytoplankto	MUL-TE-		dinoflagell		Diatom	Diatom,	blue green	Diatom,		Diatom,
25	n	112		ates	Diatom	,algae	Algae	algae	Algae	Diatom	Algae
		SO-IN-									
	Abundance of	MUL-TE-	No./								
26	zooplankton	113	L	0	6600	20000	20000	40000	0	0	20000
		SO-IN-									
	Groups of	MUL-TE-									
27	zooplankton	113		nil	copepod	Copepod	Copepod	copepod	Nil	Nil	Copepod

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

BOTTOM WATER ANYALYSIS REPORT-JANUARY 16

	1			KE16-	KE16-	KE16-	KE16-	KE16-	KE16-	KE16-	KE16-
				000554.001	000554.002	000554.003	000554.004	000554.005	000554.006	000554.007	000554.008
SI no.	Parameters	Metho d	Unit	Loc: Jetty South End	Loc: Midd Jetty	Loc: Jetty North End	Loc: Turning Circle East Side	Loc: Buoy No 10 Mid Channel	Loc: Buoy No 11 Mid Channel	Loc: Buoy No 14 Mid Channel	Loc: Buoy No 15 Mid Channel
				28.01.2016	28.01.2016	28.01.2016	28.01.2016	28.01.2016	28.01.2016	28.01.2016	28.01.2016
1	рН	APHA 4500 B		7.65	7.72	7.55	7.62	7.58	7.68	7.70	7.65
2	Temperature	APHA 2550 B	οС	19.2	18.6	19.5	19.7	18.3	19.3	18.2	19.6
3	Total Suspended Solids	APHA 2540 D	mg/ L	192.1	167.1	164.8	294.3	198.8	160.3	151.4	200.0
4	BOD	IS 3025(P art 44):199 3	mg/ L	3.0	3.4	2.8	2.3	2.8	3.2	2.3	2.8
5	Dissolved Oxygen	APHA 4500 B	mg/ L	1.2	1.1	1.3	1.1	1.4	1.6	1.2	1.4
6	Salinity	APHA	mg/	26.4	26.5	26.6	26.5	26.6	26.5	26.5	26.6

From: Oct,15 To: Mar,16

		2520 B	L								
7	Oil & Grease	APHA		BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)
	On & Grease	5520 B		BBE (BE.2)	DDL (DL.2)	DDE (DE.2)	BBE (BE.2)	BBE (BE.2)	DDL (DL.2)	DDL (DL.2)	BBL (BL.2)
8	Nitrite	APHA	mg/	0.09	0.15	0.04	0.18	0.25	0.03	0.11	0.06
	THEFTEE	4500 B	L	0.09	0.15	0.01	0.10	0.23	0.03	0.11	0.00
9	Ammoniacal	APHA	mg/	1.8	1.1	1.0	1.3	1.0	1.3	1.5	1.3
9	Nitrogen	4500 C	L	1.0	1.1	1.0	1.3	1.0	1.3	1.5	1.5
10	Total	APHA	mg/	0.39	<0.25	<0.25	<0.25	0.32	<0.25	<0.25	0.39
	Phosphates	4500 D	L	0.59	10.25	10.25	10.23	0.32	10.23	(0.23	0.55
11	Total	APHA	mg/	3.3	2.3	2.3	3.0	2.4	2.6	3.4	3.0
	Nitrogen	4500 B	L	3.3	2.5	2.5	J.0	2.4	2.0	3.4	3.0
	Total	APHA	mg/								
12	Dissolved	2540 C	L	28908.0	28910.0	29050.0	28906.0	29048.0	28981.0	28976.0	29047.0
	Solids										
13	COD	APHA	mg/	295.8	313.2	295.8	174.0	243.6	313.2	226.2	261.0
		5220 B	L	33	3 3	33	7 -	13	3 3		
		IS:									
	Total	1622:1	cfu/								
14	bacterial	981(ml	37000	25000	32000	18000	43000	16000	17000	26000
	count	Reaff:2									
		003)									
	.	IS:1622	per								
15	Coliforms	-1981	100	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
			ml								

From: Oct,15 To: Mar,16

16	Eschericia coli	IS:1622 -1981	per 100 ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
17	Salmonella	IS15187 :2002	per 250 ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
18	Shigella	IS 5887 (Part - 7):1999	per 250 ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
19	Vibrio cholerae	IS 5887 (Part - 5):1976	per 250 ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
20	Vibrio parahaemoly ticus	IS 5887 (Part - 5):1976	per 250 ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
21	Enterococci	ISO 7899 (Part 2):2000	per 250 ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
22	Total Petroleum Hydrocarbon s	USEPA 8015	mg/ L	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)
23	Nitrate	APHA	mg/	3.30	2.86	3.16	4.41	3.10	3.00	5.39	3.79

From: Oct,15 To: Mar,16

		I -									
		4500 B	L								
24	Abundance of phytoplankto n	SO-IN- MUL- TE-112	No./ L	6.00X10 ⁴	1.00X10 ⁵	1.27X10 ⁵	6.66X10 ⁴	6.00X10 ⁴	3.34X10 ⁴	4.66X10 ⁴	8.00X10 ⁴
25	Groups of phytoplankto	SO-IN- MUL- TE-112		Diatom, Dinoflagella tes	Dinoflagella tes, algae	Dinoflagella tes, algae	Diatom, Dinoflagella tes	Dinoflagella tes, blue green algae	Diatom, Dinoflagella tes	Diatom, Dinoflagellat es	Diatom
26	Abundance of zooplankton	SO-IN- MUL- TE-113	No./ L	6.6x10 ³	2.66x10 ⁴	2.66x10 ⁴	2.00X10 ⁴	1.34×10 ⁴	Nil	Nil	Nil
27	Groups of zooplankton	SO-IN- MUL- TE-113		Copepod nauplii, mysid	Copepod nauplii, mysid	Copepod nauplii, mysid of copepod	Nauplius and mysid and decapods crustaceans	Nauplii and mysid of copepod	Nil	Nil	Nil

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

BOTTOM WATER ANYALYSIS REPORT-DECEMBER 15

				KE15-	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-
				5436.001	5436.002	5436.003	5436.004	5436.005	5436.006	5436.007	5436.008
							Loc:				
							Turning	Loc: Buoy	Loc: Buoy	Loc: Buoy	Loc: Buoy
				Loc: Jetty	Loc: Midd	Loc: Jetty	Circle East	No.10 Midd	No.11 Midd	No.14 Midd	No.15 Midd
SI		Metho		South End	Jetty	North End	Site	Channel	Channel	Channel	Channel
no.	Parameters	d	Unit	18.12.2015	18.12.2015	18.12.2015	18.12.2015	18.12.2015	18.12.2015	18.12.2015	18.12.2015
		APHA									
1	pН	4500 B		7.35	7.33	7.45	7.32	7.3	7.5	7.4	7.32
		APHA									
2	Temperature	2550 B	$^{\circ}$ C	22	21	23	21	23	22	21	22
	Total										
	Suspended	APHA	mg/								
3	Solids	2540 D	L	41.1	40.5	59.5	58.9	45.2	55.2	42.1	46
		IS									
		3025(Par									
		t	mg/								
4	BOD	44):1993	L	2.4	2.9	2.4	2.9	2.2	2.2	2.9	2.8
	Dissolved	APHA	mg/								
5	Oxygen	4500 B	L	1.2	1.5	1.3	1.2	1.1	1.4	1.3	1.4
		APHA	mg/								
6	Salinity	2520 B	L	23.5	23.5	24.9	24.8	23.6	23.5	23.4	23.4

From : Oct,15 To : Mar,16

		APHA									
7	Oil & Grease	5520 B		BDL (DL:2)							
		APHA	mg/								
8	Nitrite	4500 B	L	0.04	0.07	0.08	0.11	0.16	0.18	0.15	0.1
	Ammonical	APHA	mg/								
9	Nitrogen	4500 C	L	4.4	4.4	3	3	3	3	3	3
	Total	APHA	mg/								
10	Phosphates	4500 D	L	<0.25	<0.25	0.59	<0.25	<0.25	<0.25	<0.25	<0.25
	Total	APHA	mg/								
11	Nitrogen	4500 B	L	11	11	10.8	9.5	9.4	9.5	9.6	9.7
	Total										
	Dissolved	APHA	mg/								
12	Solids	2540 C	L	26044	25970	27511	27443	26255	25971	26042	25973
		APHA	mg/								
13	COD	5220 B	L	228.3	263.4	228.3	245.8	193.2	210.7	245.8	245.8
		IS:									
		1622:19									
		81(
	Total baterial	Reaff:2	cfu/								
14	count	003)	ml	1400	530	68o	120	630	190	220	550
			per								
		IS:1622	100								
15	Coliforms	-1981	ml	Absent							
16	Eschericia	IS:1622	per	Absent							

From : Oct,15 To : Mar,16

	coli	-1981	100								
			ml								
			per								
		IS15187	250								
17	Salmonella	:2002	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
		IS 5887	per								
		(Part -	250								
18	Shigella	7):1999	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
		IS 5887	per								
	Vibrio	(Part -	250								
19	cholerae	5):1976	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
	Vibrio	IS 5887	per								
	parahaemoly	(Part -	250				_		_	_	_
20	ticus	5):1976	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
		ISO									
		7899	per								
		(Part	250								
21	Enterococci	2):2000	ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
	Total										
	Petrolium										
	Hydrocarbon	USEPA	mg/		BDL						
22	S	8015	L	BDL (DL:10)	(DL:10)	BDL (DL:10)					
		APHA	mg/						•		
23	Nitrate	4500 B	L	2.93	3.15	2.29	2.65	2.22	2.38	2.71	3.21

From: Oct,15 To: Mar,16

	Abundance										
	of	SO-IN-									
	phytoplankto	MUL-	No./								
24	n	TE-112	L	2.66 x104	1.34 X104	2.00 X 104	2.66 x104	3.34X104	5.34X104	Nil	3.34X104
	Groups of	SO-IN-					Diatom	Diatom			
	phytoplankto	MUL-					dinoflagella	dinoflagella	Alqae		
25	n	TE-112		Diatom	Diatom	Diatom	tes	tes	Diatom	Nil	Diatom
	Abundance	SO-IN-									
	of	MUL-	No./								
26	zooplankton	TE-113	L	Nil	Nil	6.6 x 103	Nil	6.6 x 103	2X104	Nil	Nil
		SO-IN-									
	Groups of	MUL-									
27	zooplankton	TE-113		Nil	Nil	Nil	Nil	Nil	Copepod	Nil	Nil

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

BOTTOM WATER ANALYSIS REPORT-NOVEMBER 15

				KE15-	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-
				5054.001	5054.002	5054.003	5054.004	5054.005	5054.006	5054.007	5054.008
							Loc:				Loc: Buoy
							Turning	Loc: Buoy	Loc: Buoy	Loc: Buoy	No.15
				Loc: Jetty	Loc: Midd	Loc: Jetty	Circle East	No.10 Midd	No.11 Midd	No.14 Midd	Midd
SI				South End	Jetty	North End	Site	Channel	Channel	Channel	Channel
no.	Parameters	Method	Unit	27.11.2015	27.11.2015	27.11.2015	27.11.2015	27.11.2015	27.11.2015	27.11.2015	27.11.2015
1	рН	APHA 4500 B		7.24	7.15	7.25	7.35	7.32	7.21	7.23	7.35
2	Temperature	APHA 2550 B	°C	23	23	22	23	22	23	24	22
	Total										
	Suspended										
3	Solids	APHA 2540 D	mg/L	23.2	32.1	27.2	34.7	29.2	22.1	28.8	22.9
		IS 3025(Part									
4	BOD	44):1993	mg/L	3.4	2.8	2.9	3.5	2.8	3.1	3.6	3.4
	Dissolved										
5	Oxygen	APHA 4500 B	mg/L	1.3	1.6	2.1	2.2	2.3	2.1	1.6	1.3
6	Salinity	APHA 2520 B	mg/L	23.8	23.8	23.6	23.6	23.6	23.5	23.7	23.6
7	Oil & Grease	APHA 5520 B		BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)
8	Nitrite	APHA 4500 B	mg/L	0.29	0.41	0.54	0.21	0.01	0.57	<0.01	0.08
	Ammonical										
9	Nitrogen	APHA 4500 C	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
10	Total	APHA 4500 D	mg/L	0.31	0.48	<0.25	0.33	<0.25	0.34	0.35	0.26

From : Oct,15 To : Mar,16

	Phosphates										
11	Total Nitrogen	APHA 4500 B	mg/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
	Total Dissolved										
12	Solids	APHA 2540 C	mg/L	26392	26251	26112	26115	26114	26040	26110	26118
13	COD	APHA 5220 B	mg/L	313.9	297.4	297.4	330.4	297.4	297.4	330.4	330.4
	Total bacterial	IS: 1622:1981(
14	count	Reaff:2003)	cfu/ml	360	510	310	530	350	2200	910	5800
			per								
15	Coliforms	IS:1622-1981	100ml	Absent	Absent						
			per								
16	Eschericia coli	IS:1622-1981	100ml	Absent	Absent						
			per								
17	Salmonella	IS15187:2002	250ml	Absent	Absent						
		IS 5887 (Part -	per								
18	Shigella	7):1999	250ml	Absent	Absent						
		IS 5887 (Part -	per								
19	Vibrio cholera	5):1976	250ml	Absent	Absent						
	Vibrio										
	parahaemolytic	IS 5887 (Part -	per								
20	US	5):1976	250ml	Absent	Absent						
		ISO 7899	per								
21	Enterococci	(Part 2):2000	250ml	Absent	Absent						
22	Total Petroleum	USEPA 8015	mg/L	BDL (DL:10)	BDL						

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

	Hydrocarbons										(DL:10)
23	Nitrate	APHA 4500 B	mg/L	2.08	2.52	2.3	2.75	2.28	2.46	2.24	2.98
	Abundance of	SO-IN-MUL-									
24	phytoplankton	TE-112	No./L	2.66 x10 ⁴	1.34 X10 ⁴	2.00 X 10 ⁴	2.66 x10 ⁴	3.34X10 ⁴	5.34X10 ⁴	Nil	3.34X10 ⁴
							Diatom	Diatom			
	Groups of	SO-IN-MUL-					dinoflagella	dinoflagellate	Algae		
25	phytoplankton	TE-112		Diatom	Diatom	Diatom	tes	S	Diatom	Nil	Diatom
	Abundance of	SO-IN-MUL-									
26	zooplankton	TE-113	No./L	Nil	Nil	6.6 x 103	Nil	6.6 x 103	2X104	Nil	Nil
	Groups of	SO-IN-MUL-									
27	zooplankton	TE-113		Nil	Nil	Nil	Nil	Nil	Copepod	Nil	Nil

BOTTOM WATER ANYALYSIS REPORT-OCTOBER15

				KE15-	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-
				4583.001	4583.002	4583.003	4583.004	4583.005	4583.006	4583.007	4583.008
							Loc:	Loc: Buoy	Loc: Buoy	Loc: Buoy	
							Turning	No.10	No.11	No.14	Loc: Buoy
				Loc: Jetty	Loc : Midd	Loc: Jetty	Circle East	Midd	Midd	Midd	No.15 Midd
SI				South End	Jetty	North End	Side	Channel	Channel	Channel	Channel
no.	Parameters	Method	Unit	28.10.2015	28.10.2015	28.10.2015	28.10.2015	28.10.2015	28.10.2015	28.10.2015	28.10.2015
1	рН	APHA 4500 B		7.4	7.32	7.68	7.45	7.5	7.68	7.45	7.48
2	Temperature	APHA 2550 B	°C	27.3	30.1	28.2	30.2	30.2	29.7	30.5	31.2
	Total Suspended										
3	Solids	APHA 2540 D	mg/L	49.4	48.9	18.3	15.4	18.7	49.2	17.9	12.5

From : Oct,15 To : Mar,16

		IS 3025(Part									
4	BOD	44):1993	mg/L	2.8	3.4	3	4.4	4.1	3.9	4.6	4.3
	Dissolved										
5	Oxygen	APHA 4500 B	mg/L	3.2	3	3.3	2.5	2.4	3.1	2.8	3
6	Salinity	APHA 2520 B	mg/L	23	23	22.9	23	22.9	22.9	22.9	22.9
7	Oil & Grease	APHA 5520 B		BDL (DL:2)							
8	Nitrite as NO2	APHA 4500 B	mg/L	0.01	0.01	0.01	0.01	0.03	0.03	0.07	0.02
	Ammonical										
9	Nitrogen	APHA 4500 C	mg/L	0.6	0.8	0.8	0.6	0.8	0.6	0.8	0.11
10	Total Phosphates	APHA 4500 D	mg/L	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
11	Kjeldahl Nitrogen	APHA 4500 B	mg/L	<1	<1	<1	<1	<1	<1	<1	<1
12	Total Nitrogen	APHA 4500 B	mg/L	1.7	2	2	1.7	2	1.6	2	2.2
	Total Dissolved										
13	Solids	APHA 2540 C	mg/L	25550	25481	25484	25411	25480	25409	25476	25410
14	COD	APHA 5220 B	mg/L	269.4	307.8	269.4	404	384.8	384.8	423.3	423.3
		IS:									
	Total bacterial	1622:1981(Re									
15	count	aff:2003)	cfu/ml	570	410	890	740	1700	2700	4900	330
			per								
16	Coliforms	IS:1622-1981	100ml	Absent							
			per								
17	Eschericia coli	IS:1622-1981	100ml	Absent							
			per								
18	Salmonella	IS15187:2002	250ml	Absent							
		IS 5887 (Part -	per								
19	Shigella	7):1999	250ml	Absent							

From : Oct,15 To : Mar,16

		IS 5887 (Part -	per								
20	Vibrio cholerae	5):1976	250ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
	Vibrio	IS 5887 (Part -	per								
21	parahaemolyticus	5):1976	250ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
		ISO 7899	per								
22	Enterococci	(Part 2):2000	250ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
	Total Petrolium			BDL (BDL (BDL (BDL (BDL (BDL (BDL (BDL (
23	Hydrocarbons	USEPA 8015	mg/L	DL:10)	DL:10)	DL:10)	DL:10)	DL:10)	DL:10)	DL:10)	DL:10)
24	Nitrate as No3	APHA 4500 B	mg/L	2.47	2.54	2.56	2.55	2.84	2.07	2.74	2.12
	Abundance of	SO-IN-MUL-									
25	phytoplankton	TE-112	No./L	4X10 ⁴	4.66x10 ⁴	2.66x10 ⁴	3.34 X10 ⁴	3.34×10 ⁴	3.34X10 ⁴	2.67 x 10 ⁴	3.34 × 10 ⁴
	Groups of	SO-IN-MUL-			dinoflagell						
26	phytoplankton	TE-112		Diatom	ates	Diatom	Diatom	Diatom	Diatom	Diatom	Diatom
	Abundance of	SO-IN-MUL-									
27	zooplankton	TE-113	No./L	1.32X10 ⁴	2.66x10 ⁴	Nil	Nil	Nil	2 X 10 ⁴	Nil	6.6x10 ³
	Groups of	SO-IN-MUL-									
28	zooplankton	TE-113		Copepod	Copepod	Nil	Nil	Nil	Copepod	Nil	Copepod

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

C. <u>SEDIMENT ANYALYSIS</u>

SEDIMENT ANYALYSIS REPORT-MARCH 16

					KE16-	KE16-	KE16-	KE16-	KE16-	KE16-	KE16-
				KE16-	001910.00	001910.00	001910.0	001910.00	001910.00	001910.0	001910.0
				001910.001	2	3	04	5	6	07	о8
										Loc:-	Loc:-
							Loc:-	Loc:- Buoy	Loc:- Buoy	Buoy	Buoy
							Turning	No.10	No.11,	No.14	No.15
				Loc: Jetty	Loc: Midd	Loc: Jetty	Circle	Midd	Midd	Outer	Outer
				South end	Jetty	North end	East Side	Channel	Channel	Channel	Channel
SI				30.03.201		30.03.201	30.03.201			30.03.201	30.03.201
no.	Parameters	Method	Unit	6	30.03.2016	6	6	30.03.2016	30.03.2016	6	6
	Total Organic	Walkely and									
1	matter	Black, 1934	%	0.78	0.77	0.72	1.07	0.77	1	0.99	0.94
		Hydrometer									
2	% Sand	Method	%	54.7	52.7	51.8	46.8	52.8	37.2	46.6	46.3
		Hydrometer									
3	% Silt	Method	%	10.0	14.0	12.0	22.9	15.9	32.0	25.8	22.0
		Hydrometer									
4	% Clay	Method	%	35.3	33-3	36.3	30.2	31.2	30.8	27.6	31.8
	Total										
	Phosphorus as										
5	Р	APHA 4500 D	mg/L	489	497	516	551	544	595	529	550
		USEPA									
6	Iron (as Fe)	3052/3051A	mg/kg	23122.78	24312.25	28548.39	36202.55	27055.2	32653.69	28816.62	29184.89

From: Oct,15 To: Mar,16

	Aluminium (as	USEPA 3050									
7	Al)	B/3051A/3052	mg/kg	16116.12	17170.17	18665.01	28554.93	18569.23	36280.95	19907.53	21296.06
	Chromium (aa	USEPA 3050									
8	Cr)	B/3051A/3052	mg/kg	77.76	84.78	91.98	131.28	91.7	105.23	91.44	90.74
		USEPA 3050									
9	Copper (as Cu)	B/3051A/3052	mg/kg	22.64	45.95	28.86	36.95	33.28	26.4	22.92	26.65
	Manganese (as	USEPA 3050									
10	Mn)	B/3051A/3052	mg/kg	346.51	378.47	387.49	515.98	417.33	537.52	571.91	534.11
		USEPA 3050									
11	Nickel (as Ni)	B/3051A/3052	mg/kg	31.68	34.24	36.17	54.46	37-39	45.52	38.37	38.81
		USEPA 3050									
12	Lead (as Pb)	B/3051A/3052	mg/kg	12.71	13.08	14.24	19.52	14.84	16.16	14.39	14.04
		USEPA 3050									
13	Zinc (as Zn)	B/3051A/3052	mg/kg	38.61	40	63.42	58.82	50.68	51.77	47.65	47.36
	Mercury (as	USEPA 3050									
14	Hg)	B/3051A/3052	mg/kg	<0.50	0.89	2.24	<0.50	2.4	<0.50	2.88	1.52
	Total										
	Petrolium										
15	Hydrocarbons	USEPA 8015	mg/kg	<150	<150	<150	<150	<150	<150	<150	<150
	Abundance of										
	Macro Benthic	SO-IN-MUL-	per								
16	Organism	TE-111	gm	Nil							
	Abundance of										
	Micro Benthic	SO-IN-MUL-									
17	Organism	TE-111	cfu/gm	10000	70000	5000	60000	10000	130000	12000	110000

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

SEDIMENT ANYALYSIS REPORT-FEBRUARY 16

				KE16-	KE16-		KE16-	KE16-	KE16-	KE16-	KE16-
				001099.	001099.00	KE16-	001099.00	001099.00	001099.00	001099.00	001099.00
				001	2	001099.003	4	5	6	7	8
				Loc:-			Loc:-	Loc:- Buoy	Loc:- Buoy	Loc:-Buoy	Loc:- Boy
				Jetty			Turning	No.10	No.11,	No.14	No.15
				South	Loc:- Midd	Loc:- Jetty	Circle East	Midd	Midd	Outer	Outer
SI.				end	Jetty	North end	Side	Channel	Channel	Channel	Channel
no.	Parameters	Method	Unit	25.02.2016	25.02.2016	25.02.2016	25.02.2016	25.02.2016	25.02.2016	25.02.2016	25.02.2016
		Walkely									
	Total Organic	and Black,									
1	matter	1934	%	1.01	0.77	0.99	1.52	1.37	1.35	1.28	1.35
		Hydromete									
2	% Sand	r Method	%	46.6	46.7	52.6	46.9	48.7	46.1	42.9	43.5
		Hydromete									
3	% Silt	r Method	%	24.0	23.9	21.0	24.8	20.9	25.8	22.9	24.6
		Hydromete									
4	% Clay	r Method	%	29.4	29.4	26.4	28.2	30.3	28.1	34.2	31.8
	Total										
	Phosphorus	APHA 4500									
5	as P	D	mg/L	301	310	317	324	329	336	224	322
		USEPA									
6	Iron (as Fe)	3052/3051A	mg/kg	24144.34	23031.24	22041.47	25852.75	25200.61	22644.20	16232.77	22821.14
	Aluminium	USEPA									
7	(as Al)	3050	mg/kg	15781.18	15053.85	14654.05	17506.92	16928.04	14970.98	10991.6	15402.18

From: Oct,15 To: Mar,16

		B/3051A/30									
		52									
		USEPA									
		3050									
	Chromium	B/3051A/30									
8	(aa Cr)	52	mg/kg	84.87	72.69	80.65	83.54	113.88	71.17	56.24	63.93
		USEPA									
		3050									
	Copper (as	B/3051A/30									
9	Cu)	52	mg/kg	29.72	26.63	88.79	29.26	40.78	34.41	410.41	15.38
		USEPA									
		3050									
	Manganese	B/3051A/30									
10	(as Mn)	52	mg/kg	519.71	499.9	485.06	561.63	544.66	497.49	352.25	491.9
		USEPA									
		3050									
		B/3051A/30							_	_	
11	Nickel (as Ni)	52	mg/kg	26.67	26.26	25.75	28.65	39.57	24.78	18.13	25.19
		USEPA									
		3050									
		B/3051A/30							_	_	
12	Lead (as Pb)	52	mg/kg	11.35	10.66	27.86	12.25	11.33	10.64	85.1	11.01
		USEPA									
		3050									
		B/3051A/30									
13	Zinc (as Zn)	52	mg/kg	42.03	39-44	42.24	46.26	42.44	39.57	47.7	40.36

From: Oct,15 To: Mar,16

		USEPA									
		3050									
	Mercury (as	B/3051A/30									
14	Hg)	52	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	Total										
	Petrolium										
	Hydrocarbon	USEPA									
15	S	8015	mg/kg	<150	<150	<150	<150	<150	<150	<150	<150
	Abundance										
	of Macro	SO-IN-									
	Benthic	MUL-TE-	per								
16	Organism	111	gm	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
	Abundance										
	of Micro	SO-IN-									
	Benthic	MUL-TE-									
17	Organism	111	cfu/gm	7X104	18x103	11X104	5X104	14X104	6x104	44X103	15X104

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

SEDIMENT ANYALYSIS REPORT-JANUARY 16

SI.		Mathad		KE16- 000557.00 1	KE16- 000557.00 2	KE16- 000557.00	KE16- 000557.004	KE16- 000557.00 5	KE16- 000557.00 6	KE16- 000557.007	KE16- 000557.00 8
no.	Parameters	Method	Unit	Loc: Jetty South end	Loc: Midd Jetty	Loc: Jetty North End	Loc: Turning Circle East Side	Loc: Buoy No 10 Mid Channel	Loc: Buoy No 11 Mid Channel	Loc: Buoy No 14 Mid Channel	Loc: Buoy No 15 Mid Channel
				28.01.2016	28.01.2016	28.01.2016	28.01.2016	28.01.2016	28.01.2016	28.01.2016	28.01.2016
1	Total Organic Matter	Walkely and black, 1934	%	0.78	0.79	0.94	o.86	0.79	0.92	1.17	1.07
2	% Sand	Hydrometer Method	%	41.7	56.7	42.7	40.7	52.8	52.8	52.8	53.8
3	% Silt	Hydrometer Method	%	8.0	7.0	9.0	15.0	7.0	10.0	11.0	8.0
4	% Clay	Hydrometer Method	%	50.3	36.3	48.3	44.3	40.2	37.2	36.2	38.2
5	Total Phosphorus as P	APHA 4500D	mg/L	BDL (DL:1)	BDL (DL: 1)	BDL (DL: 1)	BDL (DL: 1)	BDL (DL:1)	1.87	BDL (DL:1)	3.56
6	Iron (as Fe)	USEPA3052/ 3051A	mg/kg	16019.56	15707.85	25940.58	23085.5	25075.09	22649.00	22961.10	25478.80
7	Aluminium (as Al)	USEPA3050 B/3051A/305 2	mg/kg	7961.60	7727.81	14576.05	11759.15	13233.53	11616.65	12344.63	13840.26

From: Oct,15 To: Mar,16

8	Chromium (as Cr)	USEPA3050 B/3051A/305	mg/kg	60.50	59.80	98.98	88.89	93.98	86.92	90.92	98.67
9	Copper (as	USEPA3050 B/3051A/305	mg/kg	8.74	8.59	18.10	14.92	17.27	15.45	17.75	17.17
10	Manganese (as Mn)	USEPA3050 B/3051A/305 2	mg/kg	227.10	215.57	405.98	319.24	424.48	378.22	355-37	397-99
11	Nickel (as Ni)	USEPA3050 B/3051A/305 2	mg/kg	19.06	18.46	34.68	29.32	32.03	28.59	30.57	32.32
12	Lead (as Pb)	USEPA3050 B/3051A/305	mg/kg	8.12	8.02	11.77	10.52	11.87	10.77	11.19	11.81
13	Zinc (as Zn)	USEPA3050 B/3051A/305	mg/kg	24.62	23.13	42.57	34.74	38.30	35.06	36.59	38.21
14	Mercury (as Hg)	USEPA3050 B/3051A/305	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
15	Total Petrolium Hydrocarbon s	USEPA 8015	mg/kg	<150	<150	<150	<150	<150	<150	<150	<150
16	Abundance	SO-IN-MUL-	Per	Nil							

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

	of Macro	TE-111	gm								
	Benthic										
	Organism										
	Abundance										
17	of Micro	SO-IN-MUL-	Cfu/g	12X10 ⁴	4X10 ⁵	16X10 ⁵	12X10 ⁴	8X10 ⁴	21X10 ⁴	8X10 ⁴	16X10 ⁴
17	Benthic	TE-111	m	12/10	4/10	10×10	12/10	0 > 10	21/10	0V10	10×10
	Organism										

SEDIMENT ANYALYSIS REPORT-DECEMBER 15

				KE15-	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-
				5437.001	5437.002	5437.003	5437.004	5437.005	5437.006	5437.007	5437.008
							Location:-	Location:-	Location:-	Location:-	Location:-
				Location:-		Location:-	Turning	Boy No.10	Boy No.11,	Boy No.14	Boy No.15
				Jetty	Location:-	Jetty North	Circle East	Midd	Midd	Outer	Outer
				Southend	Midd Jetty	end	Side	Channel	Channel	Channel	Channel
				Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of
SI				sampling	sampling	sampling	sampling	sampling	sampling	sampling	sampling
no.	Parameters	Method	Unit	18.12.2015	18.12.2015	18.12.2015	18.12.2015	18.12.2015	18.12.2015	18.12.2015	18.12.2015
	Total Organic	Walkely and									
1	matter	Black, 1934	%	0.33	0.36	0.39	0.23	0.38	0.2	0.27	0.19
		Hydrometer									
2	% Sand	Method	%	50.2	56.2	54.2	58.2	53.2	53.2	56.2	57.2
		Hydrometer									
3	% Silt	Method	%	12	10	12	9	14	14	9	7

From: Oct,15 To: Mar,16

		Hydrometer									
4	% Clay	Method	%	37.8	33.8	33.8	32.8	32.8	32.8	34.8	35.8
	Total										
	Phosphorus										
5	as P	APHA 4500 D	mg/L	1.92	3.72	5.71	4.61	5.4	2.01	1.08	6.82
		USEPA									
6	Iron (as Fe)	3052/3051A	mg/kg	15249.06	16371.66	16713.31	14322.12	14714.74	15923.67	14153.23	15712.74
	Aluminium	USEPA 3050									
7	(as Al)	B/3051A/3052	mg/kg	9700.57	10796.75	11104.47	8874.35	9269.34	9949.96	8900.28	1004.56
	Chromium	USEPA 3050									
8	(aa Cr)	B/3051A/3052	mg/kg	75.89	78.46	76.14	67.65	69.75	78.88	68. ₇₇	75.96
	Copper (as	USEPA 3050									
9	Cu)	B/3051A/3052	mg/kg	16.79	15.49	25.32	13.36	16.44	50.37	16.08	81.52
	Manganese	USEPA 3050									
10	(as Mn)	B/3051A/3052	mg/kg	363.89	367.09	413.29	351.93	342.58	383.71	333.29	356.04
		USEPA 3050									
11	Nickel (as Ni)	B/3051A/3052	mg/kg	25.89	27.55	27.4	23.05	24.68	25.88	23.03	25.8
		USEPA 3050									
12	Lead (as Pb)	B/3051A/3052	mg/kg	16.57	16.48	18.8	15.51	16.33	24.5	15.68	31.94
		USEPA 3050									
13	Zinc (as Zn)	B/3051A/3052	mg/kg	42.98	43.92	45.92	37.84	39.76	44.77	37.35	45.17
	Mercury (as	USEPA 3050									
14	Hg)	B/3051A/3052	mg/kg	<0.50	0.73	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	Total										
	Petroleum										
15	Hydrocarbons	USEPA 8015	mg/kg	<150	<150	<150	<150	<150	<150	<150	<150

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

	Abundance of										
	Macro										
	Benthic	SO-IN-MUL-	per								
16	Organism	TE-111	gm	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
	Abundance of										
	Micro Benthic	SO-IN-MUL-									
17	Organism	TE-111	cfu/gm	22 X10 ³	6 x 10 ⁴	58x10 ³	6x10 ⁴	9x10 ⁴	13 X 10 ⁴	11 X 10 ⁴	17 X 10 ⁴

SEDIMENT ANALYSIS REPORT-NOVEMBER 15

		·		KE15-	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-
		1		5053.001	5053.002	5053.003	5053.004	5053.005	5053.006	5053.007	5053.008
		1					Location:-	Location:-	Location:-	Location:-	Location:-
		1		Location:-		Location:-	Turning	Boy No.10	Boy No.11,	Boy No.14	Boy No.15
		1		Jetty	Location:-	Jetty North	Circle East	Midd	Midd	Outer	Outer
		1		South end	Midd Jetty	end	Side	Channel	Channel	Channel	Channel
		1		Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of
SI		1		sampling	sampling	sampling	sampling	sampling	sampling	sampling	sampling
no.	Parameters	Method	Unit	27.11.2015	27.11.2015	27.11.2015	27.11.2015	27.11.2015	27.11.2015	27.11.2015	27.11.2015
	Total Organic	Walkely and									
1	matter	Black, 1934	%	1.04	0.87	0.95	1.06	1.14	0.86	0.76	0.43
		Hydrometer									
2	% Sand	Method	%	33.8	27.6	32	29.6	31.6	28	32.7	31
		Hydrometer									
3	% Silt	Method	%	6	20	19.9	18	24	19.8	16.9	20.8

From : Oct,15 To : Mar,16

		Hydrometer									
4	% Clay	Method	%	60.2	52.4	50.2	52.5	44.5	52.1	50.3	48.2
	Total										
	Phosphorus as										
5	P	APHA 4500 D	mg/L	17.13	29.2	65.26	67.23	36.86	42.41	62.78	11.25
		USEPA									
6	Iron (as Fe)	3052/3051A	mg/kg	35359.83	33770.78	34553.33	37150.48	33514.87	34197.48	32160.78	36075.24
	Aluminium (as	USEPA 3050									
7	Al)	B/3051A/3052	mg/kg	25915.24	238783.54	24182.75	26750.08	23919.38	25825.06	23389.69	26825
	Chromium (aa	USEPA 3050									
8	Cr)	B/3051A/3052	mg/kg	123.65	121.95	122.96	135.39	123.56	137.34	125.82	135.87
		USEPA 3050									
9	Copper (as Cu)	B/3051A/3052	mg/kg	34.26	88.06	32.09	34.52	65.07	51.86	34.99	39.01
	Manganese (as	USEPA 3050									
10	Mn)	B/3051A/3052	mg/kg	674.92	699.04	644.64	721.62	690.62	627.79	609.54	678.83
		USEPA 3050									
11	Nickel (as Ni)	B/3051A/3052	mg/kg	53.48	50.4	54.89	57.53	50.48	53.95	48.5	55.14
		USEPA 3050									
12	Lead (as Pb)	B/3051A/3052	mg/kg	22.42	32.56	21.56	22.59	27.93	24.87	21.57	22.45
		USEPA 3050									
13	Zinc (as Zn)	B/3051A/3052	mg/kg	78.99	74.02	69.27	73.6	70.48	69.57	63.25	72
	Mercury (as	USEPA 3050									
14	Hg)	B/3051A/3052	mg/kg	1.11	1.66	1.26	1.47	1.28	1.23	0.97	0.91
	Total										
	Petrolium										
15	Hydrocarbons	USEPA 8015	mg/kg	<150	<150	<150	<150	<150	<150	<150	<150

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

	Abundance of										
	Macro Benthic	SO-IN-MUL-									
16	Organism	TE-111	per gm	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
	Abundance of										
	Micro Benthic	SO-IN-MUL-									
17	Organism	TE-111	Cfu/gm	5 X10 ⁴	8 x 10 ⁴	7X10 ⁴	4X10 ⁵	14X10 ³	5 X 10 ⁴	12 X 10 ⁵	12 X 10 ⁴

SEDIMENT ANYALYSIS REPORT-OCTOBER 15

				KE15-	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-	KE15-
				4582.001	4582.002	4582.003	4582.004	4582.005	4582.006	4582.007	4582.008
										Location:-	
							Location:-	Location:-	Location:-	Buoy	Location:-
				Location:-		Location:-	Turning	Buoy No.10	Buoy No.11,	No.14	Buoy No.15
				Jetty	Location:-	Jetty North	Circle East	Midd	Midd	Outer	Outer
				South end	Midd Jetty	end	Side	Channel	Channel	Channel	Channel
				Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of
SI				sampling	sampling	sampling	sampling	sampling	sampling	sampling	sampling
no.	Parameters	Method	Unit	28.10.2015	28.10.2015	28.10.2015	28.10.2015	28.10.2015	28.10.2015	28.10.2015	28.10.2015
	Total Organic	Walkely and									
1	matter	Black, 1934	%	0.81	1.26	1.09	0.54	10.03	1.1	1.17	0.82
		Hydrometer									
2	% Sand	Method	%	40.9	44.7	47.1	66.8	46.9	48.8	33.8	42
		Hydrometer									
3	% Silt	Method	%	28.9	24	23.8	9	21.9	27.8	32.6	26

From: Oct,15 To: Mar,16

		Hydrometer									
4	% Clay	Method	%	30.2	31.3	29.1	24.2	31.2	23.5	33.6	32
	Total										
	Phosphorus										
5	as P	APHA 4500 D	mg/L	39.81	40.14	28.06	27.08	113.56	128.91	10.03	24.72
		USEPA									
6	Iron (as Fe)	3052/3051A	mg/kg	27877.47	26075.17	29616.69	15792.25	27065.62	27075	26555.2	24433.18
	Aluminium	USEPA 3050									
7	(as Al)	B/3051A/3052	mg/kg	14108.99	13213.62	15194.17	6836.97	13745.88	13737.57	13385.23	11632.29
	Chromium	USEPA 3050									
8	(aa Cr)	B/3051A/3052	mg/kg	79.93	81.85	93.97	54.81	79.84	80.68	76.08	77.45
	Copper (as	USEPA 3050									
9	Cu)	B/3051A/3052	mg/kg	21.1	20.72	22.78	9.94	18.36	19.38	19.34	18.32
	Manganese	USEPA 3050									
10	(as Mn)	B/3051A/3052	mg/kg	625.69	459.62	523.07	440.15	586.52	590.38	604.92	429.7
		USEPA 3050									
11	Nickel (as Ni)	B/3051A/3052	mg/kg	31.12	31.39	37.01	17.89	31.02	31.1	30.92	35.56
		USEPA 3050									
12	Lead (as Pb)	B/3051A/3052	mg/kg	12.67	12.41	14.15	8.07	12.44	12.01	12.58	12.1
		USEPA 3050									
13	Zinc (as Zn)	B/3051A/3052	mg/kg	48.54	42.22	49.75	24.32	46.83	47.93	47.69	39.75
	Mercury (as	USEPA 3050									
14	Hg)	B/3051A/3052	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	Total										
	Petroleum										
15	Hydrocarbons	USEPA 8015	mg/kg	<150	<150	<150	<150	<150	<150	<150	<150

From: Oct,15 To: Mar,16

	Abundance of										
	Macro										
	Benthic	SO-IN-MUL-	per								
16	Organism	TE-111	gm	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
	Abundance of										
	Micro Benthic	SO-IN-MUL-									
17	Organism	TE-111	cfu/gm	11 X10 ⁴	15 X 10 ⁴	18x10 ³	12X10 ⁴	21X10 ³	5x 10 ⁴	9 x 10⁴	6 x 10 ⁴

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

ANNEXURE II – TYPES AND QUANTITY OF FIRE EXTINGUISHERS

		nra Port Company Limited
T	F	ire Extinguisher Details
Sl No	Location	Type of Extinguishers & Quantity
1	SWITCH YARD	DCP-5KG-5nos
2	MCC -1	(CO ₂ -4.5KG)-4nos (CO ₂ -3KG)-2nos
3	MCC -2	(CO2-4.5KG)-2nos
4	MCC -2(A)	(CO2-4.5KG)-2nos
5	MCC -3	(CO2-4.5KG)-2nos (CO2-3KG)-1no
6	MCC -4	(CO2-4.5KG)-02
7	TP - 1(A)	CO2-4.5KG-1no
8	TP - 1(B)	CO2-4.5KG-1nos
9	TP - 2	CO2-4.5KG-1no
10	TP - 2(A)	CO2-4.5KG-1no
11	TP - 3	CO2 -4.5KG-1no
12	TP - 3(A)	CO2 -4.5KG-1no DCP-5KG-1nos
13	NEW TP-3	CO2 -4.5KG-1no
14	TP - 4	CO2 -4.5KG-1no
15	TP - 4 (A)	CO2 -4.5KG-1no
16	TP - 5	CO2 -4.5KG-1no
17	TP - 6	CO2 -4.5KG-1no
18	TP-7	CO2 -4.5KG-1nos
19	TP-8	CO2 -4.5KG-1no
20	TP-9	CO2 -4.5KG-1no
21	TP-10	CO2 -4.5KG-1no
22	TP-11	CO2 -4.5KG-1nos
23	TP - 12	CO2 -4.5KG-1no
24	TP - 13	CO2 -4.5KG-1no
25	JETTY	CO2 -4.5KG-2nos DCP-5KG-5nos
26	SL	CO2 -4.5KG-3nos DCP-5KG-1no
27	SUL-1	CO2 -4.5KG-5nos
28	SUL-2	CO2 -4.5KG-7nos
29	DRIVE HOUSE	CO2 -4.5KG-1no DCP-5KG-1no
30	SILO - 1	CO2 -4.5KG-3nos
31	SILO - 2	CO2 -4.5KG-1nos
32	FIRE PUMP HOUSE	CO2 -4.5KG-2nos
33	WTC -1	CO2 -4.5KG-1no DCP-5KG-1nos CO2 -3KG-2no
34	WTC -2	CO2 -4.5KG-1no DCP-5KG-2nos CO2 -3KG-1no
35	SR -1	CO2 -4.5KG-1nos DCP-5KG-1nos
36	R - 1	CO2 -4.5KG-1no
37	SR -2	CO2 -4.5KG-1nos & CO2 -3KG-1no, DCP-5KG-

From: Oct,15 To: Mar,16

		1no
38	SR -3	CO2 -4.5KG-1no
39	SR -4	CO2 -4.5KG-02n0
40	F.L Smdith Office	CO2-4.5KG-2No
41	PSS	CO ₂ -4.5KG-3nos
42	BMH WORK SHOP	DCP-5KG-1nos
43	Equipment	DCP-5KG-09nos Foam(09ltrs)=01nos
44	LOCO SHED	DCP-5KG-1nos
45	TRANSFORMER HOUSE	CO2 -4.5KG-2nos DCP-5KG-2no
46	IMWB Office	CO2 -4.5KG-1no
47	DIESEL FILLING STATION	DCP-5KG-1no
48	WTP	CO ₂ -4.5KG-3nos
49	DPCL OFFICE	CO2 -4.5KG-2nos & CO2-9KG-1no DCP-5KG-3nos,
50	CUSTOMS OFFICE	CO2-4.5KG-1No DCP-5KG(BC)-1No
51	BAITARANI OFFICE	CO2-4.5KG-1No, DCP -5KG-3Nos
52	DPCL STORE	CO2 -4.5KG-1no
53	NEW CANTEEN	CO2 -3KG-01n0 DCP-5KG-1n0
54	DHAMRA HOUSE	DCP-5KG-4nos CO2 -4.5KG-01no
55	KANIKA GUEST HOUSE	CO2 -4.5KG-01no DCP-5KG-2nos
56	DAV SCHOOL	CO2 -4.5KG-02nos DCP-5KG-1no
57	TOWNSHIP	CO2 -4.5KG-11nos
58	COMMUNITY HALL	CO2 -4.5KG-2nos DCP-5KG-1no
59	DHAMRA GUEST HOUSE	DCP-5KG-5nos
60	RAILWAY OFFICE	CO2 -4.5KG-02no DCP-5KG-3nos
61	BHATATIRA STATION	CO2(4.5kg)-2Nos DCP-5KG(BC)-1no
62	BHATATIRA LC-5	DCP-5KG-1no
63	GURUDASPUR STATION	CO2-4.5KG-1No DCP-5KG-1No
64	GURUDAS PUR TSS	CO2 -4.5KG-2nos DCP-10KG-2nos
65	INTAKE	CO2 -4.5KG-3nos DCP-5KG-2nos
66	Ranital	CO2 -4.5KG-2nos
67	GURUDAS PUR LC-19	DCP-5KG-1no
68	PMC OFFICE	CO2 -4.5KG-1nos
69	PMC OFFICE-2 H.R	CO2 -4.5KG-1nos
70	KOCHILA PMC OFFICE	CO2 -4.5KG-1nos DCP-5KG-2nos
71	PREFEB	CO2 -4.5KG-4nos DCP-5KG-5nos
72	Security ContainerNear Main Gate	CO2 -4.5KG-1nos
73	Stock Balance with Fire Store	Foam 50ltr-1no,DCP-50,CO2-30

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

Annexure III – DETAILS OF MOCK DRILLS

SL.NO	Description of mock drills and	Numbers of training &	Numbers of
	training	mock drill conducted	participants
1	Emergency Rescue mock drill	01	18
2	Safety Induction Training	150	1922
3	Portable fire Extinguishers	20	566
	training		
4	Contractor Owner safety training	01	8
5	Defensive driving training	13	247
6	Tool box training	11996	92164
7	On the Job Safety Awareness	56	1202

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

ANNEXURE IV – GREEN BELT DETAILS

Fig 1: Nursery with 1 Lakh Sapling Stock

Fig 2: Railway Corridor Edge Plantation

From: Oct,15 To: Mar,16

Fig 3: Railway Corridor Edge Plantation

Fig 4: Greenbelt around the Port

From : Oct,15 To : Mar,16

Fig 6: Greenbelt around the Port

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

ANNEXURE V – STP MONITORING REPORT

11th March 2016

				Results			
SI. No	Parameters	Unit	Testing Method	Inlet	Design parameter for raw sewage	Outlet	Prescribed limit
1	Appearance			Turbid	-	Clear	-
2	Colour		APHA 2120 B,C	Blackish	-	Colorless	-
3	Odour		APHA 2150 B	Foul	-	Odorless	-
4	pH		APHA 4500H B	7.12	6-8.5	7.75	5.5-9
5	Total Suspended Solids	mg/l	APHA 2540 D	66.7	1000	20	100
6	BOD for 3 days at 27°C	mg/l	IS 3025 (Part 44)	91	300-350	26	30
7	Residual free chlorine	mg/l	IS 3025 (Part 26)	<0.10	-	<0.10	-

12th February 2016

				Results			
Sl. No	Parameters	Unit	Testing Method	Inlet	Design parameter for raw sewage	Outlet	Prescribed limit
1	Appearance			Turbid	-	Clear	-
2	Colour		APHA	Blackish	-	Colorles	-
			2120 B,C			S	
3	Odour		APHA	Foul	-	Odorles	-
			2150 B			S	
4	рН		APHA	6.95	6-8.5	7.72	5.5-9
			4500H B				
5	Total Suspended	mg/l	APHA	44.8	1000	6	100
	Solids		2540 D				
6	BOD for 3 days at	mg/l	IS 3025	110.82	300-350	3.4	30
	27°C		(Part 44)				
7	Residual free	mg/l	IS 3025	<0.10	-	<0.10	-
	chlorine		(Part 26)				

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

15th January 2016

				Results					
Sl. No	Parameters	Unit	Testing Method	Inlet	Design parameter for raw sewage	Outlet	Prescribed limit		
1	Appearance			Turbid	-	Clear	-		
2	Colour		APHA 2120 B,C	Blackish	-	Colorless	-		
3	Odour		APHA 2150 B	Foul	-	Odorless	-		
4	pH		APHA 4500H B	6.98	6-8.5	7.15	5.5-9		
5	Total Suspended Solids	mg/l	APHA 2540 D	33.4	1000	<2.0	100		
6	BOD for 3 days at 27°C	mg/l	IS 3025 (Part 44)	100.8	300-350	4.7	30		
7	Residual free chlorine	mg/l	IS 3025 (Part 26)	<0.10	-	<0.10	-		

11th December, 2015

	2013			Results			
Sl. No	Parameters	Unit	Testing Method	Inlet	Design parameter for raw sewage	Outlet	Prescribed limit
1	Appearance			Turbid	-	Clear	-
2	Colour		APHA 2120 B,C	Blackish	-	Colorless	-
3	Odour		APHA 2150 B	Foul	-	Odorless	-
4	pН		APHA 4500H B	6.98	6-8.5	7.55	5.5-9
5	Total Suspended Solids	mg/l	APHA 2540 D	120.8	1000	10.5	100
6	BOD for 3 days at 27°C	mg/l	APHA 5210 B	105.2	300-350	27.9	30
7	Residual free chlorine	mg/l	APHA 5220 B	BDL (DL:0.1)	-	BDL (DL:0.1)	-

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

13th November, 2015

	<u> </u>			Results					
SI. No	Parameters	Unit	Testing Method	Inlet	Design parameter for raw sewage	Outlet	Prescribed limit		
1	Appearance			Turbid	-	Clear	-		
2	Colour		APHA 2120 B,C	Blackish	-	Colorless	-		
3	Odour		APHA 2150 B	Foul	-	Odorless	-		
4	pН		APHA 4500H B	6.98	6-8.5	7.32	5.5-9		
5	Total Suspended Solids	mg/l	APHA 2540 D	26.8	1000	11	100		
6	BOD for 3 days at 27°C	mg/l	APHA 5210 B	40.2	300-350	3.2	30		
7	Residual free chlorine	mg/l	APHA 5220 B	BDL (DL:0.1)	-	BDL (DL:0.1)	-		

16th October, 2015

					Re:	sults	
Sl. No	Parameters	Unit	Testing Method	Inlet	Design parameter for raw sewage	Outlet	Prescribed limit
1	Appearance			Turbid	-	Clear	-
2	Colour		APHA 2120 B,C	Blackish	-	Colorless	-
3	Odour		APHA 2150 B	Foul	-	Odorless	-
4	pН		APHA 4500H B	7.9	6-8.5	7.54	5.5-9
5	Total Suspended Solids	mg/l	APHA 2540 D	48	1000	19.1	100
6	BOD for 3 days at 27°C	mg/l	APHA 5210 B	123.7	300-350	5.2	30
7	Residual free chlorine	mg/l	APHA 5220 B	BDL (DL:0.1)	-	BDL (DL:0.1)	-

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

ANNEXURE VI – NOISE MONITORING REPORT

SI.	Location	23-24 March 2016		26-27 February 2016		20-21 January, 2016		Noise Standards	
No.		Max.	Min.	Max.	Min.	Max.	Min.	Day Time	Night Time
1	Near MCC 1	74	68	75	68	75	68	75	70
2	Near Settling Pond	75	68	75	68	75	68	75	70
3	Near WTP	72	63	72	60	72	60	75	70
4	Near Community Hall	63	53	59	49	59	49	75	70
5	Near Dhamra Guest House	56	49	58	48	58	48	65	55

Note: All values in dB (A)

SI. No.	Location	23-24 December 2015		25-26 November 2015		-	October 2015	Noise Standards	
140.		Max.	Min.	Max.	Min.	Max.	Min.	Day Time	Night Time
1	Near MCC 1	74	63	74	70	74	60	75	70
2	Near Settling Pond	74	63	75	70	75	62	75	70
3	Near WTP	71	60	70	68	70	61	75	70
4	Near Community Hall	66	54	63	56	66	52	75	70
5	Near Dhamra Guest House	55	48	53	47	57	48	65	55

Note: All values in dB (A)

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

ANNEXURE VII – AMBIENT AIR MONITORING REPORT

AMBIENT AIR QUALITY MONITORING REPORT-MARCH 16

Air Quality	MCC 1	MCC 3	WTP	Community	Old	NAAQS
•			****	Hall	Guest	Standards
<u>Parameters</u>				i i a ii	House	Standards
Sulphur Dioxide	BDL	BDL	BDL	BDL (DL:5)	BDL	80
· -	(DL:5)	(DL:5)	(DL:5)	DDE (DE.5)	(DL:5)	80
(SO ₂) in μg/m ³	_	_		DDI (DI)		
Nitrogen Dioxide	BDL	BDL	BDL	BDL (DL:7)	BDL	80
(NO ₂) in μg/m ³	(DL:7)	(DL:7)	(DL:7)		(DL:7)	
PM10 in μg/m³	37-4	39.5	23.6	26.1	24.5	100
PM2.5 in μg/m³	19.7	15.5	10.3	18.2	11	6o
Ozone (O ₃) in μg/m ³	BDL	BDL	BDL	BDL (DL:10)	BDL	100
	(DL:10)	(DL:10)	(DL:10)		(DL:10)	
Benzene (C ₆ H ₆) in	BDL	BDL	BDL	BDL (DL:2)	BDL	5
μg/m ³	(DL:2)	(DL:2)	(DL:2)		(DL:2)	
Lead (Pb) in µg/m ³	0.01	BDL	BDL	BDL	0.02	1
		(DL:0.01)	(DL:0.01)	(DL:0.01)		
Carbon Monoxide	BDL	BDL	BDL	BDL (DL:2)	BDL	02
(CO) in mg/m ³	(DL:2)	(DL:2)	(DL:2)		(DL:2)	
Benzo (alpha) Pyrene	BDL	BDL	BDL	BDL (DL:0.2)	BDL	1
in ng/m ³	(DL:	(DL:0.2)	(DL:0.2)		(DL: 0.2)	
	0.2)	·	,		·	
Ammonia (NH ₃) in	BDL	BDL	BDL	BDL (DL:20)	BDL	400
μg/m ³	(DL:20)	(DL:20)	(DL:20)		(DL:20)	•
Arsenic (As) in ng/m ³	BDL	BDL	BDL	3.1	BDL	6
\ , , J,	(DL:2)	(DL:2)	(DL:2)	_	(DL:2)	
Nickel as Ni in ng/m ³	BDL	BDL	BDL	BDL (DL:2)	BDL	20
,	(DL:2)	(DL:2)	(DL:2)		(DL:2)	

AMBIENT AIR QUALITY MONITORING REPORT-FEBRUARY 16

AMBIENT AIR COALITY MONTORING RELIGION TEBROART 10							
Air Quality	MCC 1	MCC 3	WTP	Community	Old	NAAQS	
Parameters				Hall	Guest	Standards	
1 didifficació					House		
Sulphur Dioxide	BDL	BDL	BDL	BDL (DL:5)	BDL	80	
(SO ₂) in μg/m ³	(DL:5)	(DL:5)	(DL:5)		(DL:5)		
Nitrogen Dioxide	BDL	BDL	BDL	BDL (DL:7)	BDL	80	
(NO ₂) in μg/m ³	(DL:7)	(DL:7)	(DL:7)		(DL:7)		
PM10 in μg/m³	67.7	39.2	38.9	31	26.1	100	
PM2.5 in μg/m³	16.5	22.4	15.2	14.1	12.9	6o	
Ozone (O ₃) in μg/m ³	BDL	BDL	BDL	BDL (DL:10)	BDL	100	
	(DL:10)	(DL:10)	(DL:10)		(DL:10)		
Benzene (C ₆ H ₆) in	BDL	BDL	BDL	BDL (DL:2)	BDL	5	
μg/m³	(DL:2)	(DL:2)	(DL:2)		(DL:2)		
Lead (Pb) in μg/m ³	BDL	BDL	BDL	BDL	BDL	1	

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

	(DL:0.01)	(DL:0.01)	(DL:0.01)	(DL:0.01)	(DL:0.01)	
Carbon Monoxide	BDL	BDL	BDL	BDL (DL:2)	BDL	02
(CO) in mg/m ³	(DL:2)	(DL:2)	(DL:2)		(DL:2)	
Benzo (alpha)	BDL (DL:	BDL	BDL	BDL (DL:0.2)	BDL (DL:	1
Pyrene in ng/m ³	0.2)	(DL:0.2)	(DL:0.2)		0.2)	
Ammonia (NH ₃) in	BDL	BDL	BDL	BDL (DL:20)	BDL	400
μg/m³	(DL:20)	(DL:20)	(DL:20)		(DL:20)	
Arsenic (As) in	BDL	BDL	BDL	3.1	BDL	6
ng/m³	(DL:2)	(DL:2)	(DL:2)		(DL:2)	
Nickel as Ni in	BDL	BDL	BDL	BDL (DL:2)	BDL	20
ng/m³	(DL:2)	(DL:2)	(DL:2)		(DL:2)	

AMBIENT AIR QUALITY MONITORING REPORT-JANUARY 16

Air Quality	MCC 1	MCC 3	WTP	Community	Old	NAAQS
<u>Parameters</u>				Hall	Guest House	Standards
Sulphur Dioxide (SO ₂) in µg/m ³	BDL (DL:5)	BDL (DL:5)	BDL (DL:5)	BDL (DL:5)	BDL (DL:5)	80
Nitrogen Dioxide (NO2) in μg/m³	BDL (DL:7)	BDL (DL:7)	BDL (DL:7)	BDL (DL:7)	BDL (DL:7)	80
PM10 in μg/m³	61.4	45.3	38.2	35.5	27.6	100
PM2.5 in μg/m³	23.3	16.0	17.7	19.0	17.7	6o
Ozone (O ₃) in μg/m ³	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)	100
Benzene (C ₆ H ₆) in µg/m ³	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	5
Lead (Pb) in μg/m ³	0.011	0.021	0.014	0.032	0.015	1
Carbon Monoxide (CO) in mg/m³	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	02
Benzo (alpha) Pyrene in ng/m ³	BDL (DL: 2)	BDL (DL:0.2)	BDL (DL:0.2)	BDL (DL:0.2)	BDL (DL:0.2)	1
Ammonia (NH ₃) in μg/m ³	BDL (DL:20)	BDL (DL:20)	BDL (DL:20)	BDL (DL:20)	BDL (DL:20)	400
Arsenic (As) in ng/m ³	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	3.1	BDL (DL:2)	6
Nickel as Ni in ng/m ³	2.9	3.3	6.1	9.9	2.1	20

AMBIENT AIR QUALITY MONITORING REPORT-DECEMBER 15

AMBIENT AIR GOALITT MOTORITORITORITORITORITORITORITORITORITOR								
Air Quality	MCC 1	MCC 3	WTP	Community	Old	NAAQS		
Parameters				Hall	Guest	Standards		
<u>i arameters</u>					House			
Sulphur Dioxide	BDL	BDL	BDL	BDL (DL:5)	BDL	80		
(SO ₂) in μg/m ³	(DL:5)	(DL:5)	(DL:5)		(DL:5)			
Nitrogen Dioxide	BDL	BDL	BDL	BDL (DL:7)	BDL	80		
	(DL:7)	(DL:7)	(DL:7)		(DL:7)			

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

(NO ₂) in μg/m ³						
PM10 in μg/m ³	82.4	59.3	63.4	65.3	44.7	100
PM2.5 in μg/m³	34.2	31	39	32	29.8	60
Ozone (O ₃) in μg/m ³	BDL	BDL	BDL	BDL (DL:10)	BDL	100
	(DL:10)	(DL:10)	(DL:10)		(DL:10)	
Benzene (C ₆ H ₆) in	BDL	BDL	BDL	BDL (DL:2)	BDL	5
μg/m³	(DL:2)	(DL:2)	(DL:2)		(DL:2)	
Lead (Pb) in μg/m ³	BDL	BDL	BDL	BDL	BDL	1
	(DL:0.01)	(DL:0.01)	(DL:0.01)	(DL:0.01)	(DL:0.01)	
Carbon Monoxide	BDL	BDL	BDL	BDL (DL:2)	BDL	02
(CO) in mg/m ³	(DL:2)	(DL:2)	(DL:2)		(DL:2)	
Benzo (alpha)	BDL	BDL	BDL	BDL (DL:0.2)	BDL	1
Pyrene in ng/m ³	(DL:0.2)	(DL:0.2)	(DL:0.2)		(DL:0.2)	
Ammonia (NH ₃) in	BDL	BDL	BDL	BDL (DL:20)	BDL	400
μg/m ³	(DL:20)	(DL:20)	(DL:20)		(DL:20)	
Arsenic (As) in	BDL	BDL	BDL	BDL (DL:2)	BDL	6
ng/m³	(DL:2)	(DL:2)	(DL:2)		(DL:2)	_
Nickel as Ni in	BDL	BDL	BDL	BDL (DL:2)	BDL	20
ng/m³	(DL:2)	(DL:2)	(DL:2)		(DL:2)	

AMBIENT AIR QUALITY MONITORING REPORT-NOVEMBER 15

Air Quality Parameters	MCC 1	MCC 3	WTP	Community Hall	Old Guest House	NAAQS Standards
Sulphur Dioxide (SO ₂) in µg/m ³	BDL (DL:5)	5.5	7.7	5.6	7.1	80
Nitrogen Dioxide (NO2) in μg/m³	16	8.2	10	9.3	7.9	80
PM10 in μg/m³	41.7	50	44.5	36.9	31.8	100
PM2.5 in μg/m³	27.4	22.6	26.3	24.2	22.8	6o
Ozone (O ₃) in μg/m ³	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)	BDL (DL:10)	100
Benzene (C ₆ H ₆) in μg/m ³	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	5
Lead (Pb) in μg/m³	BDL (DL:0.01)	BDL (DL:0.01)	BDL (DL:0.01)	BDL (DL:0.01)	BDL (DL:0.01)	1
Carbon Monoxide (CO) in mg/m³	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	02
Benzo (alpha) Pyrene in ng/m³	BDL (DL:2)	BDL (DL:0.2)	BDL (DL:0.2)	BDL (DL:0.2)	BDL (DL:0.2)	1
Ammonia (NH ₃) in μg/m ³	BDL (DL:20)	BDL (DL:20)	BDL (DL:20)	BDL (DL:20)	BDL (DL:20)	400
Arsenic (As) in ng/m ³	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	BDL (DL:2)	6

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

Nickel as Ni in	BDL	BDL	BDL	BDL (DL:2)	BDL	20
ng/m³	(DL:2)	(DL:2)	(DL:2)		(DL:2)	

AMBIENT AIR QUALITY MONITORING REPORT-OCTOBER 15

Air Quality	MCC 1	MCC 3	WTP	Community	Old	NAAQS
Parameters				Hall	Guest	Standards
					House	
Sulphur Dioxide	BDL	BDL	BDL	BDL (DL:5)	BDL	80
(SO ₂) in μg/m ³	(DL:5)	(DL:5)	(DL:5)		(DL:5)	
Nitrogen Dioxide	BDL	BDL	BDL	BDL (DL:7)	BDL	80
(NO ₂) in μg/m ³	(DL:7)	(DL:7)	(DL:7)		(DL:7)	
PM10 in μg/m³	41	45.3	38.2	35.5	27.6	100
PM2.5 in μg/m³	26.1	16.0	17.7	19.0	17.7	6o
Ozone (O ₃) in µg/m ³	BDL	BDL	BDL	BDL (DL:10)	BDL	100
5 . 2	(DL:10)	(DL:10)	(DL:10)		(DL:10)	
Benzene (C ₆ H ₆) in	BDL	BDL	BDL	BDL (DL:2)	BDL	5
μg/m³	(DL:2)	(DL:2)	(DL:2)		(DL:2)	
Lead (Pb) in μg/m ³	BDL	0.021	0.014	0.032	0.015	1
	(DL:0.01)					
Carbon Monoxide	BDL	BDL	BDL	BDL (DL:2)	BDL	02
(CO) in mg/m ³	(DL:2)	(DL:2)	(DL:2)		(DL:2)	
Benzo (alpha) Pyrene	BDL	BDL	BDL	BDL (DL:0.2)	BDL	1
in ng/m ³	(DL:0.2)	(DL:0.2)	(DL:0.2)		(DL:0.2)	
Ammonia (NH ₃) in	BDL	BDL	BDL	BDL (DL:20)	BDL	400
μg/m³	(DL:20)	(DL:20)	(DL:20)		(DL:20)	-
Arsenic (As) in ng/m ³	BDL	BDL	BDL	3.1	BDL	6
	(DL:2)	(DL:2)	(DL:2)		(DL:2)	
Nickel as Ni in ng/m ³	BDL	3.3	6.1	9.9	2.1	20
	(DL:2)					

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

ANNEXURE-VIII COST BREAK UP OF ENVIRONMENT BUDGET V/S EXPENDITURE

S.		Allocation	Expenditure
No	Item Description	In Crores	In Crores
		201	.5- 1 6
1	Monitoring of Environment Parameters by third party	0.2078	0.16355
2	WTP	0.7019	0.7019
3	STP	0.138	0.138
4	Solid Waste Management	0.3	0.1805738
5	Water Drainage Management	0.1898	0.1848
6	Providing Trawler to Forest Dept. for Patrolling	0.35	0.10622
7	Plantation	0.3288	0.3188
8	Contingent expenses for Phase II	0.08	0.08
9	Water Sprinkling on Road	0.422	0.422
10	Safety, Fire Tenders & Fire Fighting System	0.89	0.62
11	Kitchen Waste Converter	0.05	0.039
12	Dark Sky Lighting	0.344	0.344
13	Online Electronics Board	0	0.0415
	Total	4.00	3.34

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

ANNEXURE-IX Picture of INCOIS Electronic Display Board installed at Dhamra Fishing Harbour

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

ANNEXURE-X EMP and Action Plan

S. No.	Activity	Relevant Environmenta I components likely to be impacted	Likely Impa absence Mitigation Measures	of	Mitigation Measures	Compliance
				Co	onstruction Phase	
1.	Developmen / Expansion of Port	Existing land use	Impact on mangrove areas	•	southern boundary of the port in phase I development needs to be conserved. The port boundary will be at a minimum distance of 50 m from the mangrove area on the northern side. Awareness will be created amongst port workers about the importance of	A buffer of 50 m is being maintained between the project boundary and mangrove vegetation.
		Impact on turtle nesting	Glare of Port may disturbance hatchlings	cause to	line with "International Dark Sky Association (IDA)" to avoid illuminating the sky or focusing light towards sea.	

From: Oct,15 To: Mar,16

2.	Capital dredging and reclamation	Marine water quality	Change in marine water		DPCL regularly monitors the turbidity levels as a part of marine Environmental monitoring by NABL accredited organization to ensure that the turbidity levels are well within the baseline level
3	Material transport and construction activities		Dust suspension during site preparation and construction	construction yard for storage of construction materials, equipment tools, earthmoving equipment, etc Provide enclosures on all sides of construction site	Regular water sprinkling on roads are done by water tankers .

From: Oct,15 To: Mar,16

	Noise from following	Procurement of machinery /	We have a strict maintenance regimen for
	activities	construction equipment will be done in	all plant machinery and equipment which is
		I •	reviewed by the management everyday.
	Vehicles transporting	conforming to source noise levels less	
	construction material	than 85 dB (A)	PPE's like Earplug, muffs are being used in
	Diesel run engines of		noise prone areas.
	construction machinery	Well-maintained construction	
	and dredgers	equipment, which meets the regulatory	Noise level monitoring is being carried out
		standards for source noise levels, will be	by a MoEF & CC accredited agency.
	Pile driving activities	used	
	during construction of		
	cargo berths	Noise attenuation will be practiced for	
		noisy equipment by employing suitable	
		techniques such as acoustic controls,	
		insulation and vibration dampers	
		•	
		Personnel exposed to noise levels	
		beyond threshold limits will be	
		provided with protective gear like	
		earplugs, muffs, etc.	
		Ambient noise levels will be monitored	
Disturbance to	Impact to natural flow of	Adequate storm water drainage	Project activities are being carried out at
Natural Drainage	runoff due to blockage	, · · · · · · · · · · · · · · · · · · ·	DPCL in such a way that, creek and drainage
	and change of drainage	l '	pattern of the area are not being disturbed,
	-	1	However DPCL is in the process of preparing
			detailed storm water drainage pattern to
			address dredging pattern of the area around
			the project and implementation will be done
			accordingly

From: Oct,15 To: Mar,16

		Vegetation and	Loss of vegetation	There will be no loss of vegetation as the	Worker Camps have been provided with
		_	infrastructure	, ,	
		Existing Traffic	Traffic addition		Government of Odisha has already started widening this road to a two lane road with paved shoulder which shall cater the increased traffic
4	Reclamat ion	Groundwater and surface water	saline mud and is separated from the adjoining land mass through the salt dyke.	exists which will prevent inundation of salt water to the adjoining land. Return seawater will be channeled back to sea.	Reclamation activity is being done within reclamation bunds and it is physically separated from the adjoining land mass.
5	Solid Waste Management		of solid waste on	Construction waste will be used within port site for filling of low lying areas.	Construction waste generated was used in low lying areas as a standard practice

From: Oct,15 To: Mar,16

_				
			Composted bio-degradable waste will be used as manure in greenbelt. Other recyclable wastes will be sold.	
			General refuse generated on-site will be collected in waste skips and separated from construction waste.	Waste Segregation is being done at Poir of Generation and Color Coded bins ar in use in the Port Residential Area
			Burning of refuse at construction sites will be prohibited.	Burning of wastes is prohibited within th premises
6	Handling of hazardous wastes	Human safety and property loss	Adequate safety measures as per OSHA standards will be adopted.	We have a strict safety regimen with the motto "Safety First"
			Construction site will be secured by fencing with controlled/limited entry points.	Safety Observations are mandatory from every department of the port and immediate measures are undertaken to
			Hazardous materials such as lubricants, paints, compressed gases, and varnishes etc.,	rectify the shortcoming.
			prescribed/approved (MSIHC) safety norms.	OHSAS Guidelines and MSIHC Guidelines are followed for Hazardous wastes
			Medical facilities including first-aid will be available for attending to injured workers.	
7	Fishing	Fishermen and fishing villages	Signboards will be placed at the construction sites in order to make fishermen aware of the ongoing activities	l
				Team on Port Activities

From: Oct,15 To: Mar,16

		0	Necessary marker buoys will be installed. Regular Interactions with the fishing communities perational Phase	
Cargo handling and Inland Cargo movement and storage areas	,	loading/unloading equipment, DG sets, vehicular dust emissions, fugitive emissions from storage areas, spillage of cargo		commence only after completion of the construction phase
		handling and vehicular	Personal Protection Equipment (PPE)	Operational Phase (Phase –II) yet to commence

From: Oct,15 To: Mar,16

		Traffic Addition	from/to port	A dedicated rail corridor of 62.5 km has been developed and cargo are being transported through rail. A dedicated four lane road and doubling of rail link along the rail corridor has been proposed in the Phase II	commence
2.	discharges in	Marine water quality and ecology	water quality/ ecology due to discharge of ship wastes, sewage, ballast water, bilge water, solid waste etc.	Ships should comply with the MARPOL convention. As a mitigation measure for accidental spillages, Oil spill contingency plan will be implemented. Carrier will be required to exchange ballast water in a deep sea location prior to arrival in the harbor Provision of waste reception facility for bilge oily water and waste oil will be provided	commence All visiting ships are MARPOL Compliant
3.	Cargo and	Marine water quality and ecology	quality	Oil spill control equipment such as booms / barriers will be provided for containment and	commence Oil Spill Containment equipment in readiness.

From: Oct,15 To: Mar,16

S. N o.	Activity	Relevant Environmenta I components likely to be impacted	Likely Impacts in absence of Mitigation Measures	Mitigation Measures	Compliance
				Response time for shutting down the fueling, containment and recovery will be quicker.	
4.	Maintenance dredging	quality Marine Ecology	Due to decrease in DO levels which effect marine ecology and disturbance to benthic communities.	It will be ensured that the dumping of the maintenance dredge spoil would be uniform. Turtle deflectors on dredge head will be provided Environmental Monitoring Programme comprising of monitoring of marine water quality, marine sediment quality and marine ecology will be initiated one week prior to commencement of dredging and will be continued during the dredging period.	commence
5.	Water Supply	Water resources	water resources	Government of Odisha has accorded permission for water intake of 5 MLD from Matai River which can cater requirement for port expansion. Water Treatment Plant (WTP) of 5 MLD and water distribution system developed for Phase I. Distribution system shall be extended to cater to the requirement of expansion project.	commence

From: Oct,15 To: Mar,16

S . N o .	Activity	Relevant Environmenta I components likely to be impacted	Likely Impacts in absence of Mitigation Measures	Mitigation Measures	Compliance
	Wastewater Discharge	Water Quality	discharge of runoff from stock piles and	Collection of runoff from stock piles in settling ponds. Sewage treatment plant will be provided. Treated wastewater from STP will be used for irrigating the greenbelt	Operational Phase (Phase –II) yet to commence
′		Groundwater and Soil quality	· ·	Other recyclable wastes will be sold.	Garbage Yard Space allocated for Phase II Operational Phase. Solid Waste Management would be done by Segregation at Generation Points
	9	Existing infrastructure	Addition	A dedicated rail corridor of 62.5 km has been developed and cargo are being transported through rail A dedicated four lane road and doubling of rail link along the rail corridor has been proposed in the Phase II	be augmented to cater the increased traffic

From: Oct,15 To: Mar,16

S . N o .	Activity	Relevant Environmenta I components likely to be impacted	Likely Impacts in absence of Mitigation Measures	Mitigation Measures	Action Plan
ŀ	9		property	Operation areas will be secured by fencing with controlled/limited entry points. Hazardous wastes (used oil & used battery) will be sent to OPCB approved recyclers. Medical facilities including first aid will be	being handled currently and it is being recycled through authorized recyclers. Proper Care is taken when handling of this waste and a well-marked storage shed is used for storage of used oil. Hazardous Waste Storage and

From: Oct,15 To: Mar,16

10.	Fishing	Fishermen	Impact on fishing due	Creation of awarenes	s among the fisher	Fishermen Community are a part of the
	activity	livelihood	to vessel movement	folk about orientation o	1.1	port community and we have regular and positive interactions with them.
						Oriental of Navigational Channel is well marked with marker buoys and known to the fishing community

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

ANNEXURE-XI ENVIRONMENT CLEARANCE COPY TO ZILLAPARISAD

The Dhamra Port Company Limited

Second Floor, Fortune Towers, Chandrasekharpur, Bhubaneswar - 751023. Tel : 0674 - 2303829, Fax : 0674-2303828, E-mail : dpcl@dhamraport.com

Website: www.dhamraport.com, CIN-U45205OR1998PLC005448

23.01.2014

To

The Chairman, Zilla Parishada, Bhadrak / Sarpanch, Dosinga Panchayat / NGO (Local)

Sub: Environmental Clearance for Phase- II Expansion of Dhamra Port

Dear Sir,

The Dhamra Port has been granted Environmental Clearance by the Government of India on 1st Jan 2014 for its second phase expansion. The copy of the EC is enclosed here with for your kind reference.

Yours Sincerely,

Himansu S. Sahoo

AGM - CC & CSR

Dhamra Port Company Limited

C Jagannault Swain) Poesident, Zilla Parishad,

tomango Chekharahan

Mob - 9777453847

Page **101** of **115**

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

ANNEXURE-XII LICENSE AND NOC FROM FIRE DEPT

LICENSE OF STORAGE OF EXPLOSIVES

भारत सरकार

Government of India बाणिज्य और उद्योग संशलय Ministry of Commerce & Industry पेट्रॉलिंब्स तथा विश्वेदक सुरक्षा करका (मैसी) Petroleum & Explosives Safety Organisation (PESO)

> E-mail: dyccebhub@explosives.gov.in Phone/Fax No: 0674-2433370,2433390 Fax 2430556

संख्या /No.: P/EC/OR/14/1587 (P237780)

सेवा में /To.

The Dhamra Port Company Limited, 2nd, Floor, Fortune Towers, Chandrasekharpur, Shubaneswar, District: KHURDA, State: Odisha Pilk: 751023 दिनांक /Dated : 09/04/2015

€ 9 APR 2015

চিম্ম (Sub : Plot No, Plot No.696(P), Khata No.183, Mouza - Doshinga, Tahasii - Chandabali, District: BHADRAK, State: Odisha, PiN: 999999 ই চিম্মে বিশ্বমান প্রবিদ্যান কা A.B Consumer Pump কা সনুবাদির রাভ্যা PJEC/OR/141587 (P237780) - নর্বাদ্যা কা হার্ত্রম ই । Existing Petroleum Class A.B Consumer Pump at Plot No, Plot No.696(P), Khata No.183, Mouza - Doshinga, Tahasii - Chandabali, District: BHADRAK, State: Odisha, PiN: 999/99 - Licence No. PIECIOR/141587 (P237780) - Reg Renewal of Licence.

महोदय /Sir (\$).

कृपया आपके उपर्युक्त विषय से संबंधित पत्र संख्या DPCL/commercial/poso/346 दिलांक 04/12/2014 का संदर्भ ग्रहण करें ।

Please refer to your letter No. DPCL/commercial/peso/346 dated 04/12/2014 on the subject.

अनुप्रस्ति सं P/EC/OR/14/1587 (P237780) दिशांक 04/10/2010 दिशांक 31/12/2016 तक सबीनीकृत कर सीटाई जा रही हैं । Disence No. P/EC/OR/14/1587 (P237780) dated 04/10/2010 is returned herewith <mark>duly renewed upto 31/12/2016.</mark>

क्षम्या पेट्रीतियम नियम 2002 के अधीन बनाए गए तियम 148 में दी गई प्रक्रिया का कडाई से पालन करें । अनुनर्पत के नवीकरण हेतु समस्त दस्तायेंजी को दिनांक <mark>31/12/2016 या</mark> उससे पहले इस कार्यानय में पस्तुत करें ।

Please follow the procedure strictly as laid down in rule 148 of the Petroleum Rules, 2002 and submit complete documents for the Renewal of the licence so as to reach this office on or before 31/12/2016.

कृषया पावली है । Flease acknowledge the receipt.

अवदीय (Yours faithfully,

(মুদাবিদ্য গ্ৰ (Subasis Ray) বিষয়াতক নিৰ্মান Controller of Explosives ভূম বা মুকা বিষয়াতক নিৰ্মান For Dy. Chief Controller of Explosives স্থানীয়াত স্থানীয়াত Bhubaneswar

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

NO OBJECTION CERTIFICATE FROM OFS, ODISHA GOVT. TO DPCL ON FIRE SAFETY

OFFICE OF THE FIRE PREVENTION OFFICER: ODISHA, BHUBANESWAR

THE PLANT COME NAME OF THE PLANT COME OF THE PLA

No 293 /FPW,BBSR

Dt. 05-04.2013

To

The Manager Environment Health Safety, The Dhamra Port Company Ltd.

Ref:- Your letter No. DPCL/EHS/SO-287 dtd.08.12.2010.

Sub:- Grant of NOC from fire safety point of view to Dhamra Port.

Dear Sir,

With reference to the letter on the subject cited above this is to intimate that on your request the fire protection system of Dhamra Port was inspected on 09.03.2013 by a joint team comprising of Deputy Fire Officer, Fire Prevention Wing, Bhubaneswar and Deputy Fire Officer, Bhubaneswar Circle. The observations are as under.

Observations

The team inspected the following establishments/areas of Dhamra Port which are important from fire safety point of view.

- 1. Motor Control Center-1,2,3,4(Single storied).
 - 2. Fire water Pump house- Single floor.
 - 3. Water treatment Plant-G+1 floor.
 - 4. Administrative Office-Single floor.
 - 5. Rail loading system for coal.
 - 6. Rail loading system for Lime stone.
 - 7. Switch yard.
 - 8. Coal stack pile area.
 - 9. Jetty area.
 - 10. Transfer points.

艺

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

The following fire protection measures have been provided in the above mentioned areas as indicated against each.

SI No.	Name of area	No. of external hydrant	No. of internal hydrant.	No. of Monitors	Smoke detectors	Manual call point with hooters
01	Motor Control Center-1	1 no.			32 nos	02 nos
02	Motor Control Center-2	2nos			18 nos	02 nos
03	Motor Control Center-3	2nos			09 nos	01 no.
04	Motor Control Center-4	2nos			06 nos	01 no.
05	Fire water Pump house	01 no.	****			
06	Water treatment Plant		W 00 04 00 to			
07	Administrative Office	04 nos	06 nos			
80	Rail loading system for Coal		06 nos	01 no.		
09	Rail loading system for Lime stone		05 nos	01 no.		
10	Switch yard.	01 no.	W 34 44		7-7-	M-4-M
11	Coal stack pile area	59 nos	** ** ** **	13 nos		
12	Jetty area.	16 nos				
13	Transfer points		03nos. in each			****

The entire Port area have been provided with hydrant system. Near each external/ internal hydrant point 01 hose box containing 02 delivery hoses of 15 mtrs length each and 01 branch pipe has been provided. Besides the entire Coal stack pile area has been provided with water sprinkling system. The control room has been set up and a panel board connecting all the Smoke detectors has been installed there. One fire pump house has been setup where one electric pump and one diesel pump of 4555 ltrs/min capacity each and one Jockey pump of 450 ltrs/min capacity have been installed to supply water to the hydrant and sprinkling system. Two nos. Fire water reservoir of 6,00,000 ltrs capacity each have been provided to supply

HS_

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

water to the fire fighting system. Besides 34 nos Co_2 (4.5 kg), 22 nos Co_2 (3.2 kg), 08 nos DCP (5 kg) and 10 nos DCP(10 kg) fire extinguishers have been installed at required places.

All the above mentioned fire protection measures were test checked and found working properly.

The stacking of coal in the pile area should be done as per IS: 3595/2002

Yours sincerely,

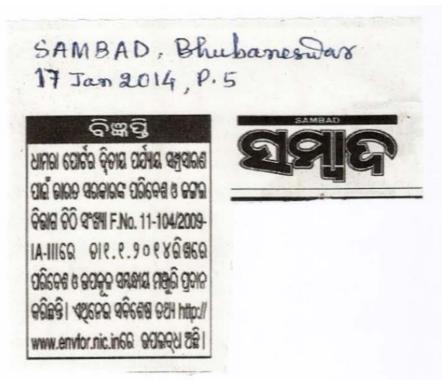
Fire Prevention Officer Odisha, Bhubaneswar

Memo No.____/FPW,BBSR

Date

.03.2013

Copy submitted to the I/C Chief Fire Officer, Odisha, Cuttack/D.G & I.G of Police, Fire Service, Odisha, Cuttack for favour of information.


Fire Prevention Officer Odisha, Bhubaneswar

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

<u>ANNEXURE-XIII</u> Advertisement in Local Newspapers intimating grant of Environmental & CRZ Clearance

From : Oct,15 To : Mar,16

Status of the conditions stipulated in Environment Clearance

ANNEXURE-XIV ENVIRONMENT STATEMENT FOR FY 2015-16

DPCL/ENV-12/01/15

12th September, 2015

To, Member Secretary Orissa State Pollution Control Board A/118, Nilakantha Nagar, Unit –VIII, Bhubaneswar - 751012

Dear Sir,

Kind Attn: Shri Rajiv Kumar (IFS)

Sub: Environmental Statement for the financial year ending 31st March, 2015 for M/s Dhamra Port

Company Ltd.

Ref: Consent Order No. 8540/INC-I-CON-6348 dated 25th May 2015

With reference to the above mentioned subject and reference, Please find enclosed Environmental Statement in Form V prescribed under Rule 14 of the Environment (Protection) Rules 1986, for M/s Dhamra Port Company Ltd, Village-Dosinga, Tahasil-Chandbali, Dist-Bhadrak for the financial year ending 31st March 2015.

Thank you,

Yours faithfully, For Dhamra Port Company Ltd.

Subrat Tripathy (Chief Executive Officer)

Encl: As above.

Copy to:

Dr. TEJINDER SINGH, IFS

Additional Principal Chief Conservator of Forests (C), Ministry of Environment, Forest and Climate Change, Regional Office (EZ), A/3, Chandersekharpur, Bhubaneswar – 751023

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

Environment Statement for 2014-15 for M/s Dhamra Port Company Ltd.

FORM V

(See Rule 14)

Environmental Statement for the Financial Year ending 31st March 2015

PART - A

(i) Name and address of the Owner/ Occupier of the Industry Operation or

Process

: Subrat Tripathy Chief Executive Officer

> M/s The Dhamra Port Company Limited (DPCL) Village-Dosinga, Tehsil-Chandbali, Dist-Bhadrak

(ii) Industry Category : Red-B
Primary (STC Code) NA
Secondary (STC Code) NA

(iii) Production Capacity : 25 MTPA

(iv) Year of Establishment : 2000

(v) Date of last Environment Statement : 21st October, 2014 submitted

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

Environment Statement for 2014-15 for M/s Dhamra Port Company Ltd.

PART-B

Water and Raw Material Consumption

(i) Water Consumption

Water Consumption Cu. Mtr./Day	
Process	Nil
Cooling	Nil
Domestic	972.7 m³/day

Name of Products	Process Water Consumption	n per unit of Product Output
	During the previous financial year (2013-14)	During the current financial year (2014-15)
Handling of Iron Ore, Coal, Limestone*	o.o224m3/Ton	o.o229 m³/Ton

(ii) Raw Material Consumption

Name of Raw Material	Name of Products	Consumption of Raw Material per Unit of output	
		During the previous financial year (2013-14)	During the current financial year (2014-15)
NIL*	Not Applicable	Nil	Nil

^{*} Unit does not undertake any manufacturing process; hence there is no consumption of raw material

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

Environment Statement for 2014-15 for M/s Dhamra Port Company Ltd.

PART - C

<u>Pollutants discharged to Environment/Unit of Output</u> (Parameters as specified in consent issued)

Pollutants	Quantity of pollutants discharged (Mass/day)	Concentrations of pollutants in discharges (mass/volume)	Percentage of variation from prescribed standards with reasons
(a) Water	Nil*		
(b) Air	Monitoring data attached as Annexure-1		

*Unit does not manufacture anything, as it is a service industry (Port) engaged in handling and storage of cargo. No effluents are generated from the port. Treated water from the STP is used for horticulture purposes.

PART-D

<u>Hazardous Wastes</u> (As specified under Hazardous Wastes Management and Handling Rules 1989)

Hazardous Wastes	Total Quantity (Kg)		
	During the previous financial year (2013-14)	During the current financial year (2014-15)	
(a) From Process	*28.296KL	*10.159KL	
(b) From Pollution Control facilities	Nil	Nil	

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

Environment Statement for 2014-15 for M/s Dhamra Port Company Ltd.

PART-E

Solid Waste

Solid Waste	Total Quantity Generated (MT/Annum)		
	During the previous financial year (2013-14)	During the current financial year (2014-15)	
(a) From Process (Ash)	Nil	Nil	
(b) From Pollution Control facilities	Nil	Nil	
(C-1)Quantity recycled or reutilized within the unit	Nil	Nil	
(C-2) Sold	Nil	Nil	
(C-3) Disposed	Nil	Nil	

PART - F

Please specify the characterization (in terms of Composition and quantum) of Hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes:

- Generated used oil is disposed off through OPCB / CPCB authorized waste recycler, M/s Good Luck Petroleum
 Pvt. Ltd.
- Composted bio-degradable waste is used as a manure in Green Belt
- E- Waste is supplied to OPCB authorized E-Waste Collection Centre for recycling.

From: Oct,15 To: Mar,16

Status of the conditions stipulated in Environment Clearance

Environment Statement for 2014-15 for M/s Dhamra Port Company Ltd.

PART-G

Impact of the pollution abatement measures taken on conservation of natural resources and on the cost of production

Unit has installed Sewage Treatment Plant for treatment of the Sewage water being generated at site. The treated water is being reused within port premises. Full cut off lighting has effectively negated the sky ward light pollution in the vicinity of the port.

During the financial year 2014-15, the total of Rs. 3.22 Crores was incurred on environmental protection measures.

PART-H

Additional measures /investment/ proposal for environmental protection including abatement of pollution, prevention of pollution.

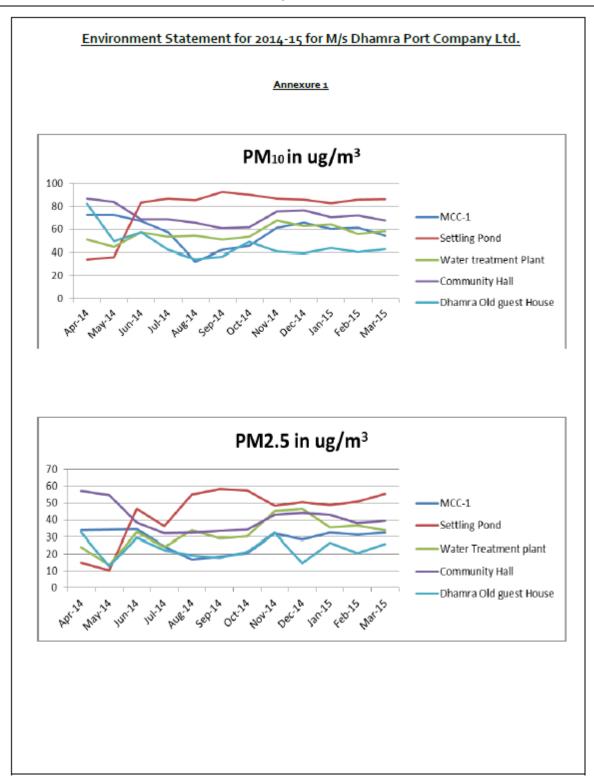
- Green belt has been developed at the port site and along the 62 km Rail/Road corridor of DPCL. Strip
 plantation on both the edges of railway corridor has been taken up and 1, 60,000 plants have been planted
 along the north & south edges of the corridor. Plantation of suitable species has been taken up in and around
 the port bulb and admin/Residential area with effect from 2010 & is continuing. So far 1, 90,500 plants suitable
 for the site have been planted at Port site apart from the rail road corridor plantation mentioned above.
- Scattered mangroves near southern boundary of port in phase I development were excluded by fencing & steps taken for conserving them. Mangrove plantation programme is taken up at suitable places in consultation with the forest department.

PART-I

Any other particulars for improving the quality of environment:

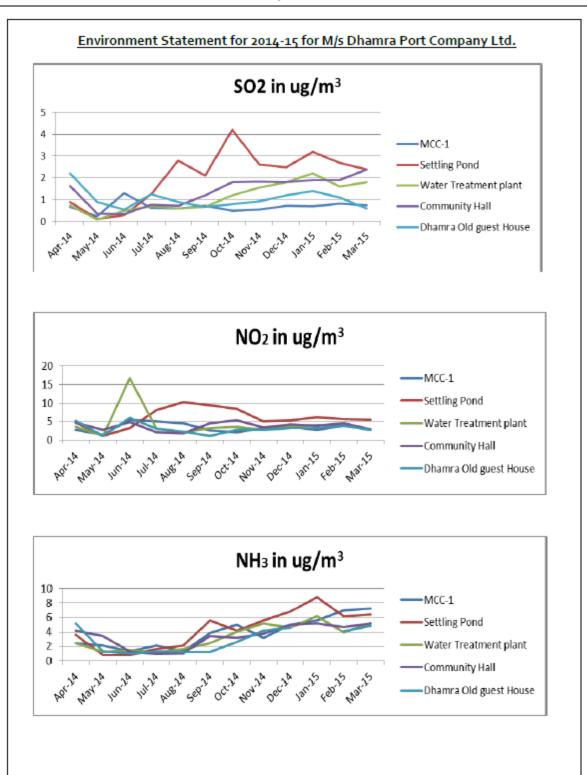
- Specialized illumination system in line with "International Dark Sky Association (IDA)" has been installed to
 avoid illuminating the sky or focusing light towards sea. Sodium vapour lamps are being used instead of
 mercury lamp. All area lighting, roadway lighting and lighting mounted on masts or other elevated structures
 are of full cutoff luminaries.
- Deflectors are installed on drag-head of dredgers to keep turtles out of path of dredger. Screens are also
 installed in inflow/overflow pipes of dredgers to monitor turtle entrainment. There are observers on Dredgers
 to ensure implementation of IUCN Dredging Protocol.

Date : 12-09-2015


(Signature of a person carrying out an industry,

operation or process) Name : Subrat Tripathy Designation : CEO

Address: M/s The Dhamra Port Company Limited Village-Dosinga, Tahasil- Chandbali, Dist- Bhadrak



From: Oct,15 To: Mar,16

From: Oct,15 To: Mar,16

