

## Fw: Half yearly Compliance report of Environment and CRZ Clearance for Phase I & II of Adani Petronet (Dahej) Port Private Limited, Dahej (Oct'19 to Mar'20)

Devendra Banthia < Devendra.Banthia@adani.com>

Thu 5/21/2020 2:40 PM

To: Dilip Kumar Moolchandani <Dilip.Moolchandani@adani.com>

1 attachments (6 MB)

EC & CRZ Clearance Compliance\_Phase\_I\_II\_APDPPL\_Dahej\_OCT'19 to March'20.pdf;

W. GLGIN Wrateral OFFICE मराविएजा, वस् एवं जलवाम् महावर्षस् महावास् Ministry of Environment, Forests & Climate Change, entilisity of Environment-Foresits & Chinate Unergen Bratil acaderal (affrem 613) (Regional Office(Western Zone) भोपाल (म.म.)।BHOPAL-462016

From: Om Prakash Yadav <OmPrakash.Yadav@adani.com> Sent: Thursday, May 21, 2020 1:05 PM

To: Devendra Banthia < Devendra.Banthia@adani.com>

**Cc:** Kaushal Singh <Kaushal.Singh@adani.com>; Harsh Yadav <Harsh.Yadav@adani.com>; Shalin Shah <Shalinm.Shah@adani.com>

Subject: FW: Half yearly Compliance report of Environment and CRZ Clearance for Phase I & II of Adani Petronet (Dahej) Port Private Limited, Dahej (Oct'19 to Mar'20)

#### Dear Sir,

As discussed, please find the enclosed half yearly Environment & CRZ Clearance Compliance Reports (Phase I & II) for the period: October, 2019 to March, 2020 of APDPPL, Dahej.

You are Request to please submit to APCCF, Western Regional Office, MOEF&CC, Bhopal; respectively as earliest as possible.

#### Thanks with regards

**Om Prakash Yadav** 

Executive – HSE | Adani Petronet (Dahej) Port Pvt Ltd Mob +91 6357160022| Off Ext. - 51085 | <u>omprakash.yadav@adani.com</u> | <u>www.adaniports.com</u> At & PO Lakhigam, Taluka Vagra, Via Dahej, Bharuch 392 130, Gujarat, India.

From: Om Prakash Yadav Sent: Wednesday, May 20, 2020 10:18 AM

To: rowz.bpl-mef@nic.in

**Cc:** bharuchgpcb@yahoo.com; brnaidu.cpcb@nic.in; chairman-gpcb@gujarat.gov.in; gpcb-bha@gujarat.gov.in; mefcc.ia3@gmail.com; monitoring-ec@nic.in; compliance.seiaa.gujarat@gmail.com; Shalin Shah

<Shalinm.Shah@adani.com>; Harsh Yadav <Harsh.Yadav@adani.com>; Manoj Katar <Manoj.Katar@adani.com>; Kaushal Singh <Kaushal.Singh@adani.com>

Subject: Half yearly Compliance report of Environment and CRZ Clearance for Phase I & II of Adani Petronet (Dahej) Port Private Limited, Dahej (Oct'19 to Mar'20)

#### **Om Prakash Yadav**

| From:        | Om Prakash Yadav                                                                          |
|--------------|-------------------------------------------------------------------------------------------|
| Sent:        | Wednesday, May 20, 2020 10:37 AM                                                          |
| То:          | rowz.bpl-mef@nic.in                                                                       |
| Cc:          | bharuchgpcb@yahoo.com; brnaidu.cpcb@nic.in; chairman-gpcb@gujarat.gov.in;                 |
|              | gpcb-bha@gujarat.gov.in;            mefcc.ia3@gmail.com;            monitoring-ec@nic.in; |
|              | compliance.seiaa.gujarat@gmail.com; westzonecpcb@yahoo.com; Shalin Shah; Harsh            |
|              | Yadav; Kaushal Singh; Manoj Katar                                                         |
| Subject:     | Half yearly Compliance report of Environment and CRZ Clearance for Phase III of           |
|              | Adani Petronet (Dahej) Port Private Limited, Dahej (Oct'19 to Mar'20)                     |
| Attachments: | EC & CRZ Compliance Report_Phase_III_APDPPL_Dahej_Oct'19 to March'20.pdf                  |



#### Logistics

Letter No.: APPPL-EHS/MOEF RO/EC Comp (III)

Date: 15.05.2020

#### То

The Additional Principal Chief Conservator of Forests (C), Western Regional Office, Ministry of Environment, Forest & Climate Change E-5, Arera colony, Link Road-3, Ravishankar Nagar, Bhopal-462016 (M.P.) Email: <u>rowz.bpl-mef@nlc.in</u>

#### Dear Sir,

- Sub.:- Six Monthly Compliance Report of Environment and CRZ Clearance for the period from October 2019 to March 2020.
- Ref.:- 1) Environmental and CRZ Clearances granted to M/s. Adani Petronet (Dahej) Port Pvt Ltd for Phase-II vide letter dated 14/10/2016 bearing F. No.: 11-37/2007-IA-III.
  - CRZ Clearance / Recommendation issued by Department of Environment & Forest, GoG for Phase-II vide letter dated 14/03/2016 bearing No.: ENV-10-2015-171-E.

Please find enclosed herewith point wise compliance report of conditions stipulated in the above referred letters.

Thanking you,

Yours Faithfully, For **M/s Adani Petronet (Dahej) Port Pvt. Ltd.** 

Atcarefe

#### (Authorized Signatory)

#### Copy to:

- The Director (Monitoring-IA Division), Ministry of Environment, Forest & Climate Change, Indira Paryavara Bhawan, Jor Bagh Road, New Delhi-110 003.
- The Director, Forest and Environment Department, Block-14, 8th Floor, Sachivalaya, Gandhinagar, Gujarat 382 010.
- The Zonal Officer, Central Pollution Control Board, Zonal OfficeVadodra, Parivesh Bhawan, Opposite VM Ward office No. 10, Subhanpura, Vadodra-390 023.
- The Chairman, Gujarat Pollution Control Board, Parvayaran Bhawan, Sector-10A, Gandhinagar-38201 (Gujarat).
- 5. The Regional Officer, Gujarat Pollution Control Board, Bharuch (Gujarat).

Thanks with regards

**Om Prakash Yadav** 

Executive – HSE | Adani Petronet (Dahej) Port Pvt Ltd Mob +91 6357160022| Off Ext. - 51085 | <u>omprakash.yadav@adani.com</u> | <u>www.adaniports.com</u> At & PO Lakhigam, Taluka Vagra, Via Dahej, Bharuch 392 130, Gujarat, India.

# adani Ports and

Logistics

#### Letter No.: APPPL-EHS/MOEF RO/EC Comp (III)

Date: 15.05.2020

#### То

The Additional Principal Chief Conservator of Forests (C), Western Regional Office, Ministry of Environment, Forest & Climate Change E-5, Arera colony, Link Road-3, Ravishankar Nagar, Bhopal-462016 (M.P.) Email: <u>rowz.bpl-mef@nic.in</u>

#### Dear Sir,

Sub.:- Six Monthly Compliance Report of Environment and CRZ Clearance for the period from October 2019 to March 2020.

- **Ref.:-** 1) Environmental and CRZ Clearances granted to M/s. Adani Petronet (Dahej) Port Pvt Ltd for **Phase-III** vide letter dated 14/10/2016 bearing F. No.: 11-37/2007-IA-III.
  - 2) CRZ Clearance / Recommendation issued by Department of Environment & Forest, GoG for **Phase-III** vide letter dated 14/03/2016 bearing No.: ENV-10-2015-171-E.

Please find enclosed herewith point wise compliance report of conditions stipulated in the above referred letters.

Thanking you,

Yours Faithfully, For **M/s Adani Petronet (Dahej) Port Pvt. Ltd.** 

please

#### (Authorized Signatory)

#### Copy to:

- 1. The Director (Monitoring-IA Division), Ministry of Environment, Forest & Climate Change, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi-110 003.
- 2. The Director, Forest and Environment Department, Block-14, 8<sup>th</sup> Floor, Sachivalaya, Gandhinagar, Gujarat-382 010.
- 3. The Zonal Officer, Central Pollution Control Board, Zonal OfficeVadodra, Parivesh Bhawan, Opposite VMC Ward office No. 10, Subhanpura, Vadodra-390 023.
- 4. The Chairman, Gujarat Pollution Control Board, Parvayaran Bhawan, Sector-10A, Gandhinagar-382010 (Gujarat).
- 5. The Regional Officer, Gujarat Pollution Control Board, Bharuch (Gujarat).

Adani Petronet (Dahej) Port Pvt Ltd At & PO Lakhigam Taluka Vagra, Via Dahej Bharuch 392 130 Gujarat, India CIN: U63012GJ2003PTC041919 Tel +91 2641 285002 +91 2641 285019 info@adani.com www.adaniports.com

Registered Office: Adani House, Nr Mithakhali Circle, Navrangpura, Ahmedabad 380 009, Gujarat, India



|         | Six monthly Compliance report for Environme<br>rgo Port Terminal Phase – III                                                                                                                                                                                               | ent and CRZ Clearance for the development of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sr. no. | Conditions                                                                                                                                                                                                                                                                 | Status/Action taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (i)     | 'Consent for Establish' shall be obtained<br>from State Pollution Control Board under<br>the Air (Prevention and Control of<br>Pollution) Act, 1981 and the Water<br>(Prevention and Control of Pollution)<br>Act, 1974.                                                   | <b>Complied.</b><br>Consent for establish was obtained from<br>Gujarat Pollution Control Board vide no 71696<br>dated 08.09.2015, valid up to 07.07.2020.<br>Copy of Consent to Establish was submitted<br>along with half-yearly compliance report vide<br>letter no. APPPL-EHS/MOEF RO/EC Comp (III),<br>dated 28.11.2017.                                                                                                                                                                                                                                                                                                                                                                                    |
| (ii)    | Construction activity shall be carried out<br>strictly according to the provisions of<br>CRZ Notification, 2011. No construction<br>work other than those permitted in<br>Coastal Regulation Zone Notification<br>shall be carried out in Coastal Regulation<br>Zone area. | <ul> <li>Complied.</li> <li>All the construction activities are being carried out as per the provisions of CRZ notification 2011 and EIA notification 2006.</li> <li>No construction work other than those permitted in Coastal Regulation Zone Notification has been carried out in Coastal Regulation Zone area.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                   |
| (iii)   | The Project proponent shall ensure that<br>there shall be no damage to the existing<br>mangroves patches near site and also<br>ensure the free flow of water to avoid<br>damage to the mangroves.                                                                          | <b>Being Complied</b><br>There is no damage to Mangrove due to<br>project activity. Free flow to the mangroves<br>near the project area is maintained.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (i∨)    | The Project proponent shall ensure that<br>no creeks or rivers are blocked due to any<br>activities at the project site and free flow<br>of water is maintained.                                                                                                           | <b>Complied.</b><br>No creeks are blocked due to project activity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (v)     | Shoreline should not be disturbed due to<br>dumping. Periodical study on shore line<br>changes shall be conducted and<br>mitigation carried out, if necessary. The<br>details shall be submitted along with the<br>six monthly monitoring reports.                         | <ul> <li>Complying with.</li> <li>Reclamation of the area is being done as per the approval received.</li> <li>There is no dumping of any material outside the project area towards the shore.</li> <li>National Institute of Ocean Technology, Chennai has carried out study on shoreline changes in the vicinity of Dahej Port.</li> <li>The results of shoreline change analysis using high resolution satellite images since 2011 deposition along the northern sector, erosion along southern sector and almost stable along the southeastern sector. The seasonal and yearly shoreline changes indicates the dynamic nature of the coastline.</li> <li>Report of shoreline change analysis was</li> </ul> |



| Sr. no. | Conditions                                                                                                                                                                                                                                                                            | Status/Action taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                                                                                                                                                                                       | submitted along with half yearly<br>compliance report vide letter no. APPPL-<br>EHS/MOEF RO/EC Comp (III) dated<br>23.11.2019.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (vi)    | The commitments made during the Public<br>Hearing and recorded in the Minutes shall<br>be complied with letter and spirit. A hard<br>copy of the action taken shall be submitted<br>to the Ministry.                                                                                  | <b>Complied.</b><br>All the commitments made during the public<br>hearing have been complied with. An action<br>taken report is enclosed as <b>Annexure 1</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (vii)   | All the conditions stipulated in the earlier<br>Clearance including the recommendations<br>of Environment Management Plan,<br>Disaster management Plan shall be strictly<br>complied with.                                                                                            | <ul> <li>Being Complied</li> <li>All conditions stipulated in the EC and CRZ clearances are being complied with. A separate six monthly compliance report is being submitted to MoEF&amp;CC and other authorities.</li> <li>All the recommendations and suggestions given by NIO, M/s Cholamandalam in the EIA are being complied.</li> <li>Copy of the status of EMP recommendations is enclosed as Annexure 4.</li> <li>APDPPL has a well-defined DMP and regular mock drills are being conducted. DMP is also reviewed at regular interval. Last Mock drill was conducted on 27.02.2020. Last revision in the DMP was done on 01.12.2019.</li> </ul> |
| (viii)  | The material for reclamation shall be<br>sourced only through Government<br>approved quarry. The quarried material<br>shall be free from all kinds of<br>contamination and high organic carbon<br>contents. The same should be tested prior<br>to reclamation.                        | <b>Being Complied</b><br>All the material for reclamation is procured<br>through approved agency. It has been ensured<br>that Material used for reclamation is free from<br>high organic carbon contents.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (ix)    | The coal shall be stored only in designated<br>stock yard with dust control measures viz.<br>wind screen of height at least 2 m above<br>the coal stock, made of fabric/HDPE, water<br>sprinkler arrangement, green belt of at<br>least three layers of suitable trees and<br>scrubs. | <b>Being Complied</b><br>Coal being stored at designated stock yard<br>with dust control measures viz. wind screen<br>made of steel of height at least 2 m above<br>the coal stock, water sprinkler arrangement,<br>green belt of suitable trees and scrubs.                                                                                                                                                                                                                                                                                                                                                                                            |
| (x)     | The coal from the ships shall be<br>conveyed through closed conveyor to<br>the coal stock yard. The conveyor shall be                                                                                                                                                                 | Noted for Compliance.<br>Mechanization of South Berth is yet to be<br>implemented. After project completion coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



|         | art A: Six monthly Compliance report for Environment and CRZ Clearance for the development o<br>Iulti Cargo Port Terminal Phase – III                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sr. no. | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Status/Action taken                                                                                                                                                                                                                                                                                                                                                                           |
|         | seamless without joints/transfer points.                                                                                                                                                                                                                                                                                                                                                                                                                                                  | will be transported through closed conveyor to<br>the coal stock yard. The alignment of the<br>conveyer will be based on the engineering<br>requirement to meet the objectives.                                                                                                                                                                                                               |
| (xi)    | The dust from the roads shall be<br>periodically cleaned and dust suppression<br>by water spray be carried out.                                                                                                                                                                                                                                                                                                                                                                           | <b>Being Complied</b><br>Regular cleaning of roads is being carried out<br>with the help of two high vacuum road<br>sweeping machine. Regular water sprinkling is<br>carried out by two mobile water tankers.                                                                                                                                                                                 |
| (xii)   | The mangrove plantation of 50 ha shall be<br>under taken in consultation with Gujarat<br>Ecology Commission / State Forest<br>Department.                                                                                                                                                                                                                                                                                                                                                 | <b>Complied.</b><br>The mangrove plantation of 50 ha has been completed at Village Devjagan, Jambusar taluka in consultation with M/s. Saline Area Vitalization Enterprise Limited (SAVE). Report of 50 ha Mangrove Plantation was submitted along with half yearly compliance report vide letter no. APPPL-EHS/MOEF RO/EC Comp (III) dated 29/05/2019.                                       |
| (xiii)  | Cargo shall be unloaded directly into<br>hopper from the ship and transported to<br>the stack yards through closed conveyor<br>system only. Inbuilt dust suppression<br>systems shall be provided at hoppers and<br>all the transfer points / storage yards.<br>Cargo shall not be unloaded directly onto<br>the berth. Water meters shall be provided<br>at different locations to record the<br>consumption of water used for dust<br>suppression and daily log shall be<br>maintained. | <ul> <li>Being Complied</li> <li>At mechanized berth of APDPPL, cargo is handled through conveyor system. Material handling system is equipped with Dry Fog Dust Suppression System. Coal storage yard is equipped with dust suppression system.</li> <li>After mechanization of south berth, desired pollution control measures shall made as a part of material handling system.</li> </ul> |
| (xiv)   | Disposal sites for excavated material<br>should be so designed that the revised land<br>use after dumping and changes in the land<br>use pattern do not interfere with the<br>natural drainage                                                                                                                                                                                                                                                                                            | <b>Being Complied</b><br>All the construction activities are as per the<br>approval received under CRZ notification 2011<br>and EIA notification 2006. During Project<br>(Phase III) implementation, it will be ensured<br>that there shall not be any interference with<br>the natural drainage of the area.                                                                                 |
| (xv)    | The ground water shall not be tapped<br>within the CRZ areas by the PP to meet<br>with the water requirement in any case.                                                                                                                                                                                                                                                                                                                                                                 | <b>Complied.</b><br>Ground water is not tapped in CRZ area for the<br>project. Water requirement is being met<br>through GIDC water supply.                                                                                                                                                                                                                                                   |
| (xvi)   | Necessary arrangements for the treatment<br>of the effluents and solid wastes must be<br>made and it must be ensured that they                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Complied.</li> <li>Domestic effluent is being treated in STPs.<br/>The treated water confirming to the norms</li> </ul>                                                                                                                                                                                                                                                              |



|         | Six monthly Compliance report for Environme<br>argo Port Terminal Phase – III                                                                                                                                                                                                                                                                                                                     | ent and CRZ Clearance for the development of                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sr. no. | Conditions                                                                                                                                                                                                                                                                                                                                                                                        | Status/Action taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | conform to the standards laid down by the<br>competent authorities including the<br>Central or State Pollution Control Board<br>and under the Environment (Protection)<br>Act, 1986.                                                                                                                                                                                                              | <ul> <li>is being used for horticulture purpose.</li> <li>The monitoring results of the treated wastewater from STP for the period from October, 2019 to March, 2020 are enclosed as <b>Annexure –3F</b>.</li> <li>APDPPL regularly submits report to State Pollution Control Board.</li> </ul>                                                                                                                                                                                     |
| (xvii)  | All the operational areas will be connected<br>with the network of liquid waste collection<br>corridor comprising of storm water, oily<br>waste and sewage collection pipelines.                                                                                                                                                                                                                  | <b>Complied.</b><br>There is no liquid effluent generation during construction and operation of project. Separate storm water drain network have been provided. Domestic effluent is being transported from generation point to STP in close type Gully Men vehicle. Dedicated Hazardous waste storage area has provided for collection and storage of Hazardous waste.                                                                                                             |
| (xviii) | Marine ecology shall be monitored<br>regularly also in terms of sea weeds, sea<br>grasses, mudflats, sand dunes, fisheries,<br>echinoderms, shrimps, turtles, corals,<br>coastal vegetation , mangroves and<br>other marine biodiversity components as<br>part of the management plan.                                                                                                            | <b>Complied.</b><br>Marine ecology is being monitored through NABL accredited & MoEF&CC recognized laboratory M/s Pollucon Laboratories, Surat. Reports show that there are no significant changes in the marine ecology indicators. Reports for the period of October, 2019 to March, 2020 are enclosed as <b>Annexure 3C and 3D</b> .                                                                                                                                             |
| (xix)   | The marine ecology management plan<br>being drawn up with regards to the<br>environmental impacts of natural<br>disasters, oil spills and other wastes,<br>dredging and dumping on marine<br>ecology (all micro, macro and mega<br>biotic components) shall be scrupulously<br>implemented. It shall be ensured that the<br>marine ecology in the area of influence is<br>not adversely affected. | <ul> <li>Being Complied</li> <li>No waste or dredged material is dumped<br/>so as to disturb the marine ecology</li> <li>Marine ecology is being monitored through<br/>NABL accredited &amp; MoEF&amp;CC recognized<br/>laboratory M/s Pollucon Laboratories,<br/>Surat. Reports show that there are no<br/>significant changes in the marine ecology<br/>indicators. Reports for the period of<br/>October, 2019 to March, 2020 are enclosed<br/>as Annexure 3C and 3D.</li> </ul> |
| (xx)    | Marine ecology shall be monitored<br>regularly also in terms of all micro, macro<br>and mega floral and faunal components<br>of marine biodiversity.                                                                                                                                                                                                                                              | <b>Complied.</b><br>Marine ecology is being monitored through M/s Pollucon Laboratories, a NABL accredited and MoEF&CC recognised laboratory. Reports show that there are no significant changes in the marine ecology indicators. Reports for the period of October 2019 to March, 2020 are enclosed as <b>Annexure 3C and 3D</b> .                                                                                                                                                |



| Sr. no.<br>(xxi) | rgo Port Terminal Phase – III<br>Conditions<br>Measures should be taken to contain,<br>control and recover the accidental spills                                                                                                                                                                                                                                    | Status/Action taken<br>Complied.                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (xxi)            |                                                                                                                                                                                                                                                                                                                                                                     | Complied                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | of fuel and cargo handle.                                                                                                                                                                                                                                                                                                                                           | <ul> <li>APDPPL is having well established Oil Spill<br/>Contingency Plan.</li> <li>There is no Oil spill reported during the<br/>period of October, 2019 to March, 2020</li> <li>Periodic Mock drills are conducted. Latest<br/>mock drill was conducted on 27.02.2020.</li> </ul>                                                                                                                                |
| (xxii)           | All the mitigation measures submitted in<br>the EIA report shall be prepared in a<br>matrix format and the compliance for<br>each mitigation plan shall be submitted<br>to the RO, MoEF&CC along with half<br>yearly compliance report.                                                                                                                             | <b>Being Complied</b><br>All the recommendations and suggestions<br>given by NIO, M/s Cholamandalam in the EIA<br>are being complied. Copy of the status of EMP<br>recommendations is enclosed as <b>Annexure 4</b> .                                                                                                                                                                                              |
| (xxiii)          | Ships/barges/vessels shall not be allowed<br>to release any oily bilge waste or ballast<br>water in the sea. Any effluents from the<br>Jetty which have leachable<br>characteristics shall be segregated and<br>recycled/ disposed as per SPCB<br>guidelines. Ships/vessels calling at the<br>jetty shall not dump waste/bilge water<br>during the berthing period. | <b>Being Complied</b><br>There is no discharge of oily bilge waste or<br>ballast water in the sea within port limit.<br>APDPPL is not accepting any kind of<br>Hazardous Waste from ships/vessels.                                                                                                                                                                                                                 |
| (xxiv)           | Location of DG sets and other emission<br>generating equipment shall be decided<br>keeping in view the predominant wind<br>direction so that emissions do not effect<br>nearby residential areas. Installation and<br>operation of DG sets shall comply with<br>the guidelines of CPCB.                                                                             | <ul> <li>Complied.</li> <li>DG sets are installed as per the approval.<br/>Periodic Monitoring of DG set Stack<br/>emission &amp; noise is being carried out M/s<br/>Pollucon Laboratories, a NABL accredited<br/>and MoEF&amp;CC recognised laboratory.</li> <li>Test reports of emission from DG sets are<br/>enclosed as Annexure 3H.</li> </ul>                                                                |
| (xxv)<br>(xxvi)  | All the mechanized handling systems<br>and other associated equipment's such<br>as hoppers, belt conveyors, stacker cum<br>reclaimers shall have integrated dust<br>suppression systems. Dust suppression<br>systems shall be provided at all transfer<br>point.                                                                                                    | <ul> <li>Being Complied</li> <li>At APDPPL, on mechanize berth cargo is handled through conveyor system. Material handling system is equipped with Dry Fog Dust Suppression System. Coal storage yard is equipped with dust suppression system.</li> <li>After mechanization of south berth, desired pollution control measures shall be made as a part of material handling system.</li> <li>Complied.</li> </ul> |



| Sr. no.        | rgo Port Terminal Phase – III<br>Conditions                                | Status/Action taken                                                                              |
|----------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                | the CRZ Notification, 2011 shall be                                        | APDPPL is handling dry cargo mainly coal and                                                     |
|                | stored in the CRZ area.                                                    | other bulk cargos at designated storage areas                                                    |
|                |                                                                            | as per approval & CRZ notification 2011.                                                         |
| (xxvii)        | The quality of treated effluents, solid                                    | Complied.                                                                                        |
|                | wastes, emissions and noise levels and                                     | The quality of treated effluents, solid                                                          |
|                | the like, from the project area must                                       | wastes, emissions and noise levels is being                                                      |
|                | conform to the standards laid down by                                      | monitored through M/s Pollucor                                                                   |
|                | the competent authorities including the                                    | Laboratories, a NABL accredited and MoEF                                                         |
|                | Central or State Pollution Control Board                                   | recognised laboratory.                                                                           |
|                | and under the Environment (Protection)                                     | Monitoring Reports for the period of                                                             |
|                | Act, 1986.                                                                 | October, 2019 to March, 2020 is enclosed as                                                      |
|                |                                                                            | Annexure 3.                                                                                      |
| (xxviii)       | All the mitigation measures suggested in                                   | Being Complied                                                                                   |
|                | the EIA report and the marine                                              | All the recommendations and suggestions                                                          |
|                | environment study of CWPRS, Pune shall                                     | given by NIO, M/s Cholamandalam in the                                                           |
|                | be implemented. The compliance for<br>each of these measures shall be      | EIA are being complied.                                                                          |
|                | submitted to concerned SPCB and R.O.                                       | <ul> <li>Copy of the status of EMF<br/>recommendations is enclosed as Annexure</li> </ul>        |
|                | of this Ministry along with six monthly                                    | 4.                                                                                               |
|                | compliance reports.                                                        | 4.                                                                                               |
| (xxix)         | It shall be ensured by the Project                                         | Complied.                                                                                        |
| . ,            | Proponent that the activities does not                                     | There is no commercial fishing in the area. Free                                                 |
|                | cause disturbance to the fishing activity,                                 | access to the "Pagadiya" fishermen is                                                            |
|                | movements of fishing boats and                                             | available. There is no impact on fishermer                                                       |
|                | destruction to mangroves during the                                        | livelihood due to project activity.                                                              |
| <i>·</i> · · · | construction and operation phase.                                          |                                                                                                  |
| (xxx)          | The Project Proponent shall take up and                                    | Complied.                                                                                        |
|                | earmark adequate fund for socio-                                           | The CSR activities are executed at group leve                                                    |
|                | economic development and welfare                                           | by Adani Foundation. Adani Foundation is                                                         |
|                | measures as proposed under the CSR<br>Programme. This shall be taken up on | taking care of Social-economic establishmen<br>activities and details of the same for the period |
|                | priority.                                                                  | of October, 2019 to March, 2020 is attached as                                                   |
|                | phoney.                                                                    | Annexure – 2.                                                                                    |
| (xxxi)         | The project proponent shall set up                                         | Complied.                                                                                        |
| ()             | separate environmental management cell                                     | APDPPL has a well structured Environmen                                                          |
|                | for effective implementation of the                                        | Management Cell, staffed with qualified                                                          |
|                | stipulated environmental safeguards under                                  | manpower for implementation of the                                                               |
|                | the supervision of a Senior Executive.                                     | Environment Management Plan. Detail of the                                                       |
|                |                                                                            | Environment cell is enclosed as <b>Annexure – 7</b> .                                            |
| (xxxii)        | The funds earmarked for environment                                        | Complied.                                                                                        |
|                | management plan shall be included in the                                   | Separate budget is allocated for Environmenta                                                    |
|                | budget and this shall not be diverted for                                  | Management. Key components o                                                                     |
|                | any other purposes.                                                        | environment budget are environmenta                                                              |
|                |                                                                            | Monitoring, STP's (Operations and                                                                |



| Sr. no.  | rgo Port Terminal Phase – III<br>Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Status/Action taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maintenance), Closed Conveyor System<br>Maintenance etc. The allocation of budget for<br>the FY 2019-20 was approx. Rs. 407.26lacs.<br>Details of the environmental budget and<br>expenditure during compliance period from<br>October 2019 to March 2020is enclosed as<br><b>Annexure – 6.</b>                                                                                                                                                                                                                                                                                           |
| (xxxiii) | The proponent shall abide by all the commitments and recommendations made in the EIA/EMP report so also during their presentation to the EAC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Being Complied</b><br>All the recommendations and suggestions<br>given by NIO, M/s Cholamandalam in the EIA<br>are being complied. Copy of the status of EMP<br>recommendations is enclosed as <b>Annexure – 4</b> .                                                                                                                                                                                                                                                                                                                                                                   |
| (xxxiv)  | Company shall prepare operating manual<br>in respect of all activities. It shall cover all<br>safety & environment related issues and<br>system, measures to be taken for<br>protection. One set of environmental<br>manual shall be made available at the<br>project site. Awareness shall be created at<br>each level of the management. All the<br>schedules and results of environmental<br>monitoring shall be available at the project<br>site office.                                                                                                                                                                           | <ul> <li>Complied</li> <li>APDPPL has prepared operating manual for all activities and is certified for ISO 14001: 2015, ISO 9001: 2015 and ISO 45001:2018</li> <li>Complete set of operating manual is available at site.</li> <li>Regular awareness sessions are organized for each level of employee as per the training need identification (TNI) done by HR department.</li> <li>All the schedules and results of environmental monitoring are available at EHS department at project site.</li> </ul>                                                                               |
| (xxxv)   | <ul> <li>Corporate Social Responsibility:</li> <li>a. The Company shall have a well laid<br/>down Environment Policy approved<br/>by the Board of Directors.</li> <li>b. The Environment Policy shall<br/>prescribe for standard operating<br/>process/procedures to bring into<br/>focus any infringements/<br/>deviation/violation of the<br/>environmental or forest norms/<br/>conditions.</li> <li>c. The hierarchical system or<br/>Administrative Order of the company<br/>to deal with environmental issues and<br/>for ensuring compliance with the<br/>environmental clearance conditions<br/>shall be furnished.</li> </ul> | <ul> <li>Being Complied</li> <li>Company has an Environment Policy.</li> <li>All the requirements mention in the condition are being met through Environment Management System (ISO 14001:2015).</li> <li>The hierarchical system or Administrative Order of the company to deal with environmental issues and for ensuring compliance with the environmental clearance conditions (Environment Cell Organogram) is enclosed as Annexure – 7.</li> <li>APDPPL has form a management review committee-comprising of various heads of departments and chaired by site head. This</li> </ul> |



|         | Six monthly Compliance report for Environme<br>rgo Port Terminal Phase – III                                                                                                                                                                                                                                                                                 | ent and CRZ Clearance for the development of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sr. no. | Conditions                                                                                                                                                                                                                                                                                                                                                   | Status/Action taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | the company shall have a well laid<br>down system of reporting of non-<br>compliances/ violations of<br>environmental norms to the Board of<br>Directors of the company and/or<br>shareholders or stakeholders at                                                                                                                                            | to review and monitor EHS performance of<br>the site. All action items are being<br>recorded and implemented.                                                                                                                                                                                                                                                                                                                                                                                                                |
| B. G    | eneral Conditions.                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| i       | Appropriate measures must be taken<br>while undertaking digging activities to<br>avoid any likely degradation of water<br>quality.                                                                                                                                                                                                                           | <b>Being Complied</b><br>There is no digging activities except piling and<br>foundation works of structures. Appropriate<br>measures are being taken during such<br>activities. Two Piezometers have been<br>installed at different locations inside port.<br>Regular monitoring of ground water level &<br>quality is being done through M/s Pollucon<br>Laboratories, a NABL accredited and<br>MoEF&CC recognised laboratory. Copies of<br>reports are enclosed as <b>Annexure 3B</b> .                                    |
| ii      | Full support shall be extended to the<br>officers of this Ministry/ Regional Office at<br>Bhopal by the project proponent during<br>inspection of the project for monitoring<br>purposes by furnishing full details and<br>action plan including action taken reports in<br>respect of mitigation measures and other<br>environmental protection activities. | <ul> <li>Being Complied</li> <li>APDPPL is regularly submitting six monthly compliance reports which comprises of Compliance to the conditions stipulated in Environment and CRZ clearance, environment monitoring reports etc.</li> <li>Whenever any authorities such as MoEF&amp;CC, GPCB and GMB etc. visit the APDPPL full support is extended and APDPPL provides all additional information seek by them during the inspection.</li> <li>Recent visit of Gujarat Pollution Control Board was on 27.12.2019.</li> </ul> |
| iii     | A six-Monthly monitoring report shall need<br>to be submitted by the project proponents<br>to the Regional Office of this Ministry at<br>Bhopal regarding the implementation of<br>the stipulated conditions.                                                                                                                                                | Noted and Complied.<br>APDPPL is regularly submitting six monthly<br>compliance reports which comprises of<br>compliance to the conditions stipulated in<br>Environment and CRZ clearance, environment<br>monitoring reports and EMP Status etc. and<br>Last submission was on done vide letter No.<br>APPPL-EHS/MOEF RO/EC Comp (III) dated<br>23.11.2019.                                                                                                                                                                  |
| iv      | Ministry of Environment, Forest and                                                                                                                                                                                                                                                                                                                          | Noted and Agreed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



|         | art A: Six monthly Compliance report for Environment and CRZ Clearance for the development o<br>Iulti Cargo Port Terminal Phase – III                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                         |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sr. no. | Conditions                                                                                                                                                                                                                                                                                            | Status/Action taken                                                                                                                                                                                                                                                                                                                     |
|         | Climate Change or any other competent<br>authority may stipulate any additional<br>conditions or modify the existing ones, if<br>necessary in the interest of environment<br>and the same shall be complied with                                                                                      |                                                                                                                                                                                                                                                                                                                                         |
| V       | The Ministry reserves the right to revoke<br>this clearance if any of the conditions<br>stipulated are not complied with the<br>satisfaction of the Ministry.                                                                                                                                         | Noted & Agreed.                                                                                                                                                                                                                                                                                                                         |
| vi      | In the event of a change in project profile<br>or change in the implementation agency, a<br>fresh reference shall be made to the<br>Ministry of Environment, Forest and<br>Climate Change.                                                                                                            | <b>Complied</b><br>There is no change in the implementation of project profile/agency.                                                                                                                                                                                                                                                  |
| vii     | The project proponents shall inform the<br>Regional Office as well as the Ministry, the<br>date of financial closure and final approval<br>of the project by the concerned authorities<br>and the date of start of land development<br>work.                                                          | <ul> <li>Complied</li> <li>Financial closure date for the project is 29/10/2014.</li> <li>Consent to Establish from Gujarat Pollution control Board is obtained on 08/09/2015, valid up to 07.07.2020</li> <li>Start of land development (23 Ha. reclamation) work 17.10.2017.</li> </ul>                                               |
| vili    | A copy of the clearance letter shall be<br>marked to concerned Panchayat/local<br>NGO, if any, from whom any suggestion/<br>representation has been made received<br>while processing the proposal.                                                                                                   | <b>Complied</b><br>Copy of the clearance letter is submitted to<br>concern Panchayat/ local NGO by hand and<br>by register speed post. Copy of the<br>acknowledgement and receipt of speed post<br>were submitted along with half-yearly<br>compliance report vide letter no. APPPL-<br>EHS/MOEF RO/EC Comp (III), dated<br>28.11.2017. |
| ix      | A copy of the environmental clearance<br>letter shall also be displayed on the<br>website of the concerned State Pollution<br>Control Board. The EC letter shall also be<br>displayed at the Regional Office, District<br>Industries centre and Collector's Office/<br>Tehsildar's office for 30 days | <b>Complied</b><br>This condition does not belong the project<br>proponent, however, APDPPL has submitted<br>request letter along with a copy of<br>environment clearance letter for display to<br>Gujarat Pollution Control Board, District<br>Industries Centre and Collector's Office vide<br>letter dated 27.10.2016.               |
| 11      | These stipulations would be enforced<br>among others under the provisions of<br>Water (Prevention and Control of<br>Pollution) Act 1974, the Air (Prevention and<br>Control of Pollution) Act 1981, the                                                                                               | Noted & Agreed                                                                                                                                                                                                                                                                                                                          |



|         | art A: Six monthly Compliance report for Environment and CRZ Clearance for the development o<br>Iulti Cargo Port Terminal Phase – III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sr. no. | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Status/Action taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | Environment (Protection) Act, 1986, the<br>Public Liability (Insurance) Act, 1991 and<br>EIA Notification 1994, including the<br>amendments and rules made thereafter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12      | All other statutory clearances such as the<br>approvals for storage of diesel from Chief<br>Controller of Explosives, Fire Department,<br>Civil Aviation Department, Forest<br>Conservation Act, 1980 and Wildlife<br>(Protection) Act, 1972 etc. shall be<br>obtained, as applicable by project<br>proponents from the respective competent<br>authorities.                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Complied</li> <li>For storage of HSD approval has been taken from PESO vide letter no P/WC/GJ/14/3668(P221616) and valid up to 31.12.2022.</li> <li>Forest clearance has been taken for 38 ha of land (Phase II) vide letter no A-1006(10-9)SF-76-K dated 1<sup>st</sup> July 2008 from DOEF.</li> <li>Clarence from MOEF was obtained vide letter no 6-GJC060/2006-BHO/1508 dated 16<sup>th</sup> June 2008.</li> <li>Fire NOC: Not Applicable.</li> <li>Civil Aviation: Not Applicable.</li> <li>Permission under Wildlife (Protection) Act, 1972: Not Applicable.</li> </ul> |
| 13      | The project proponent shall advertise in at<br>least two local Newspapers widely<br>circulated in the region, one of which shall<br>be in the vernacular language informing<br>that the project has been accorded<br>Environmental and CRZ Clearance and<br>copies of clearance letters are available<br>with the State Pollution Control Board and<br>may also be seen on the website of the<br>Ministry of Environment, Forest and<br>Climate Change at<br>http://www.envfor.nic.in. The<br>advertisement should be made within<br>Seven days from the date of receipt of the<br>Clearance letter and a copy of the same<br>should be forwarded to the Regional office<br>of this Ministry at Bhopal. | <ul> <li>Complied</li> <li>Environment clearance letter is publish in<br/>"Indian Express" and "Gujarat Guardian"<br/>newspapers on dated 25th October 2016<br/>which is within 7 days of from the date of<br/>the receipt of clearance letter.</li> <li>Copy of advertisement has been submitted<br/>to Regional Office MOEF on 28th October<br/>2016 vide letter no APDPPL/MOEF-<br/>RO/01/2016. Copy of the same was<br/>submitted along with half-yearly<br/>compliance report vide letter no. APPPL-<br/>EHS/MOEF RO/EC Comp (III), dated<br/>28.11.2017.</li> </ul>                |
| 14      | This Clearance is subject to final order of<br>the Hon'ble Supreme Court of India in the<br>matter of Goa Foundation Vs Union of<br>India in Writ Petition (Civil) No.460 of 2004<br>as may be applicable to this project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15      | Status of compliance to the various stipulated environmental conditions and environmental safeguards will be uploaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Complied.</b><br>The status of environment clearance conditions is available on company website                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



| Sr. no. | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Status/Action taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | by the project proponent in its website.                                                                                                                                                                                                                                                                                                                                                                                                                         | that i.e. <u>www.adaniports.com/ports-downloads</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16      | Any appeal against this Clearance shall lie<br>with the National 18 Tribunal, if preferred,<br>within a period of 30 days as prescribed<br>under Section 16 of The National Green<br>Tribunal, Act, 2010.                                                                                                                                                                                                                                                        | Noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 17      | A copy of the clearance letter shall be sent<br>by the proponent to concerned Panchayat,<br>Zilla Parisad/Municipal Corporation, Urban<br>Local Body and the Local NGO, if any,<br>from- whom suggestions/representations,<br>if any, were received while processing<br>the proposal. The clearance letter shall<br>also be put on the website of the company<br>by the proponent.                                                                               | <ul> <li>Complied</li> <li>Copy of the clearance letter is submitted<br/>to concerned Panchayat, Zila Parisad<br/>local body and the local NGO by hand<br/>and registers speed post. Copy of the<br/>acknowledgement and receipt of speed<br/>post was submitted along with half-<br/>yearly compliance report vide letter no<br/>APPPL-EHS/MOEF RO/EC Comp (III)<br/>dated 28.11.2017.Copy of environment<br/>clearance is also available on company<br/>website i.e. <u>www.adaniports.com/ports-<br/>downloads</u></li> </ul> |
| 18      | The proponent shall upload the status of<br>compliance of the stipulated EC<br>conditions, including results of monitored<br>data on their website and shall update the<br>same periodically. It shall simultaneously<br>be sent to the Regional Office of MoEFCC,<br>the respective Zonal Office of CPCB and<br>the SPCB.                                                                                                                                       | <ul> <li>Complied</li> <li>Compliance reports along with monitored data are available on company website i.e. <u>www.adaniports.com/ports-downloads</u></li> <li>Same is being regularly submitted to concerned authorities. Last submission was on 23.11.2019</li> </ul>                                                                                                                                                                                                                                                        |
| 19      | The environmental statement for each financial year ending 31st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of EC conditions and shall also be sent to the respective Regional Offices of MoEFCC by email. | <ul> <li>Complied</li> <li>Environment statement regularly being submitted to Gujarat Pollution Control Board. Last report was submitted dated 23.11.2019. Copy of report is also available on company website i.e. www.adaniports.com/ports-downloads</li> <li>Same has been sent by email to RO, GPCB, Bharuch, MS, GPCB(Gandhinagar) Regional office, Bhopal, MoEF &amp; CC on 23.011.2019.</li> </ul>                                                                                                                        |

|   | Conditions                                                                                                                                                                                                                                                                                                                | Status/Action taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | The provisions of the CRZ Notification of 2011 shall be strictly adhered to by M/s APDPPL. No activity in contradiction to the provisions of the CRZ Notification shall be carried out by M/s APDPPL                                                                                                                      | <ul> <li>Complied.</li> <li>All the construction activities are being carried out as per the provisions of CRZ notification 2011 and EIA notification 2006.</li> <li>No activity or work other than those permitted in Coastal Regulation Zone Notification has been carried out in Coastal Regulation Zone area.</li> </ul>                                                                                                                                                                                                                                                 |
| 2 | The APDPPL shall ensure that there shall not<br>be any blockage of creek and free flow of<br>water is maintained                                                                                                                                                                                                          | <b>Complied.</b><br>No creeks are blocked due to project activity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3 | The APDPPL shall have to comply with the agreement made by them with GACL regarding re-routing of the pipeline of GACL and M/s APDPPL shall have to borne the cost as per agreement.                                                                                                                                      | <b>Complied.</b><br>Re-routing of the pipeline of GACL has been<br>completed and all expenditure has been borne by<br>APDPPL.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4 | The APDPPL shall not construct any storage<br>facilities for material/chemicals in the CRZ<br>area except for those permissible as per<br>Annexure – II of the CRZ Notification -2011.<br>Also for other Hazardous chemical, outside<br>CRZ areas, the APDPPL shall have to consult<br>SDMA for Disaster Management Plan. | <ul> <li>Being Complied</li> <li>APDPPL is handling dry cargo mainly coal<br/>and other bulk cargos at designated storage<br/>areas as per approval &amp; CRZ notification<br/>2011.</li> <li>APDPPL has a well-defined DMP and regular<br/>mock drills are being conducted. DMP is also<br/>reviewed at regular interval Last Mock drill<br/>was conducted on 27.02.2020. Last revision<br/>in the DMP was done on 01.12.2019.</li> </ul>                                                                                                                                   |
| 5 | All necessary permission from different<br>Government Departments / agencies shall be<br>obtained by M/s APDPPL before<br>commencing the activities.                                                                                                                                                                      | <ul> <li>Complied</li> <li>Consent to establish has already been obtained vide GPCB/BRCH-B/CCA-06(6)/ID 31664/326835 dated 08/09/2015.valid up to 07.07.2020</li> <li>For storage of HSD approval has been taken from PESO vide letter no P/WC/GJ/14/3668(P221616) and valid up to 31.12.2022.</li> <li>Forest clearance has been taken for 38 ha of land (Phase II) vide letter no A-1006(10-9)SF-76-K dated 1<sup>st</sup> July 2008 from DOEF.</li> <li>Clarence from MOEF was obtained vide letter no 6-GJC060/2006-BHO/1508 dated 16<sup>th</sup> June 2008.</li> </ul> |
| 6 | The APDPPL shall ensure that there shall be                                                                                                                                                                                                                                                                               | Complied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



|         | Six monthly compliance report for CRZ Clearan<br>ort Terminal Phase – III                                                                                                                                                                                                                                                 | nce/recommendation for development of Multi                                                                                                                                                                                                                                                                                                                                          |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sr. no. | Conditions                                                                                                                                                                                                                                                                                                                | Status/Action taken                                                                                                                                                                                                                                                                                                                                                                  |
|         | given by Cholamanadalam MS Risk Services<br>Limited, Chennai in their Environment<br>Impact Assessment reports for conservation /<br>protection and betterment of environment<br>shall be implemented strictly by M/s<br>APDPPL.                                                                                          | <ul> <li>All the recommendations and suggestions given by NIO, M/s Cholamandalam in the EIA are being complied.</li> <li>Copy of the status of EMP recommendations is enclosed as Annexure 4.</li> </ul>                                                                                                                                                                             |
| 8       | The construction and operational shall be<br>carried out in such a way that there is no<br>negative impact on mangroves, if any, and<br>other important coastal/ marine habitats.<br>The construction activities shall be carried<br>out only under the guidance / supervision of<br>the reputed institute/ organization. | <ul> <li>Being Complied</li> <li>Construction and operation activities are being done in such a way that there is no impact on the mangroves. Free access to the "Pagadiya" fishermen is available. There is no impact on fishermen livelihood due to project activity.</li> <li>Gujarat Marine Board is regularly monitoring the project progress.</li> </ul>                       |
| 9       | The construction debris and/or any other<br>type of waste shall not be disposed of into<br>the sea, creek or in the CRZ areas. The debris<br>shall be removed from the construction site<br>immediately after the construction is over.                                                                                   | <ul> <li>Complied</li> <li>No debris or other construction waste is being disposed into the sea, creek or in CRZ areas.</li> <li>Reclamation of the area is being done as per the approval received.</li> </ul>                                                                                                                                                                      |
| 10      | The construction camps shall be located<br>outside the CRZ area and the construction<br>labour shall be provided with the necessary<br>amenities, including sanitation, water supply<br>and fuel and it shall be ensured that the<br>environmental conditions are not<br>deteriorated by the construction labours.        | <b>Complied</b><br>No labour camps are located in Coastal<br>Regulation Zone area. Labours are managed<br>through contractors and they are from<br>surrounding villages and have been provided<br>residential facilities in the surrounding villages.                                                                                                                                |
| 11      | M/s APDPPL shall prepare and regularly<br>update the local oil spill contingency and<br>Disaster Management Plan in consonance<br>with the National Oil Spill and Disaster<br>Contingency plan and shall submit the same<br>to this Department after having it vetted<br>through the Indian Coast Guard.                  | <ul> <li>Complied</li> <li>Oil Spill Contingency Plan is submitted to Coast Guard, Gandhinagar for verification vide letter dated. 10/10/2012.</li> <li>APDPPL has a well-defined DMP and regular mock drills are being conducted. DMP is also reviewed at regular interval Last Mock drill was conducted on 27.02.2020. Last revision in the DMP was done on 01.12.2019.</li> </ul> |
| 12      | M/s APDPPL shall bear the cost of the external agency that may be appointed by this Department for supervision /monitoring of proposed activities and the impact of the proposed activities.                                                                                                                              | Noted and shall be complied.                                                                                                                                                                                                                                                                                                                                                         |
| 13      | The jetty and most of the approach would be                                                                                                                                                                                                                                                                               | Complied.                                                                                                                                                                                                                                                                                                                                                                            |



|         | Six monthly compliance report for CRZ Clearan<br>ort Terminal Phase – III                                                                                                                                                                                                                                                                                                                                              | nce/recommendation for development of Multi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sr. no. | Conditions                                                                                                                                                                                                                                                                                                                                                                                                             | Status/Action taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14      | supported on piles allowing adequate flow of water without significant obstruction                                                                                                                                                                                                                                                                                                                                     | Jetty approach is already operational. No new jetty is proposed under the phase III development except the widening of rubble bund.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14      | The ground water shall not be tapped within<br>the CRZ areas by the APDPPL to meet the<br>water requirement in any case.                                                                                                                                                                                                                                                                                               | <b>Complied.</b><br>Ground water is not tapped in CRZ area for the project. Water requirement is been met through GIDC water supply.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15      | M/s APDPPL shall take up massive greenbelt<br>development activities in consultation with<br>Forest Department / GEER Foundation /<br>Gujarat Ecology commission. A<br>comprehensive plan for this purpose has to<br>be submitted to the Forests and Environment<br>Department.                                                                                                                                        | <b>Complying with.</b><br>Green belt is being developed in an area of 19.3894 ha including periphery of the project boundary. Detailed plan of the green belt development plan is enclosed as <b>Annexure - 5</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16      | Mangrove plantation in 50 Ha. Shall be<br>carried out in consultation with the Gujarat<br>Ecology Commission/ Forest Department by<br>M/s APDPPL within a period of two years<br>from the date of issuance of the CRZ<br>clearance by the MoEF&CC, GOI and an<br>action plan in this regard shall be submitted<br>to this Department along with satellite<br>images and GPS readings with Latitudes and<br>Longitudes. | <b>Complied.</b><br>The mangrove plantation of 50 ha has completed<br>at Devjagan, Jambusar taluka in consultation<br>with M/s. Saline Area Vitalization Enterprise<br>Limited (SAVE). Report of 50 ha Mangrove<br>Plantation was submitted along with half yearly<br>compliance report vide letter no. APPPL-<br>EHS/MOEF RO/EC Comp (III) dated 29/05/2019.                                                                                                                                                                                                                                                                                                                                                                                          |
| 17      | The APDPPL shall have to take up bio-<br>shielding development programme in<br>consultation with the Forests Department/<br>PCCF and an action plan in this regard shall<br>have to be submitted to the MoEF&CC – GOI<br>and this department.                                                                                                                                                                          | <ul> <li>Being Complied <ul> <li>Area identification for Bio shield project is done at Malpur and Isanpur village, Jambusar Taluka, Bharuch district is completed.</li> <li>M/s. Saline Area Vitalization Enterprise Limited (SAVE) is carrying out Bio Shield development programme in collaboration with local villagers.</li> </ul> </li> <li>Some highlights of project is as below; <ul> <li>Area to be developed: 20ha</li> <li>Width: 200 – 300 mt. Length: 1,000 mt. (01 Km)</li> <li>Plants: Mangroves, Pilu (Salvadora, Unt Morad and local grass species</li> <li>Completion Period: 36 Months</li> <li>A mangrove nursery having 35150 saplings has been developed by SAVE in association with village women, these</li> </ul> </li> </ul> |



| Sr. no. | Conditions                                                                                                                                                                                                                                                                                                                                                                               | Status/Action taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>women will be executing the process of<br/>Bio shield right from plantation to gap<br/>filling and maintenance.</li> <li>In the period from December- January,<br/>the sapling counting of the Nursery was<br/>done and is was found that 27110 Plants<br/>are living, which is around 77% survival</li> <li>Nursery formation completed and<br/>mangroves plantation, Gap filling and<br/>maintenance on Sea-side was under<br/>process during compliance period.</li> <li>Final report will be submitted along with<br/>compliance on completion of Bio Shield<br/>development Programme.</li> </ul> |
| 18      | M/s APDPPL shall have to contribute                                                                                                                                                                                                                                                                                                                                                      | Complied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | financially for taking up the socio-economic<br>upliftment activities in this region in<br>consultation with the Forests and<br>Environment Department and the District<br>Collector / District Development Officer.                                                                                                                                                                     | The CSR activities are executed at group level by<br>Adani Foundation. Adani Foundation is taking<br>care of Social-economic establishment activities<br>and details of the same for the period of October,<br>2019 to March, 2020 is attached as <b>Annexure – 2</b> .                                                                                                                                                                                                                                                                                                                                         |
| 19      | A separate budget shall be earmarked for<br>environmental management and socio-<br>economic activities including the green belt<br>/mangrove plantation and details thereof<br>shall be furnished to this department as well<br>as the MoEF&CC, GOI. The details with<br>respect to the expenditure from this budget<br>head shall also be furnished alongwith the<br>compliance report. | <b>Complied.</b><br>Separate budget is allocated for Environmental<br>Management. Key components of environment<br>budget are environmental Monitoring, STP's<br>(Operations and Maintenance), Closed Conveyor<br>System Maintenance and etc. The allocation of<br>revenue budget for Environment Cell for the FY<br>2019-20 was approx. Rs. 407.26lacs. Details of<br>the environmental budget and expenditure<br>during compliance period from October 2019 to<br>March 2020 is enclosed as <b>Annexure – 6</b> .                                                                                             |
| 20      | A separate Environment Management Cell<br>with qualified personnel shall be created for<br>environmental monitoring and management<br>during construction and operational phases<br>of the project                                                                                                                                                                                       | <b>Complied.</b><br>APDPPL has a well structured Environment<br>Management Cell, staffed with qualified<br>manpower for implementation of the<br>Environment Management Plan. Detail of the<br>Environment cell is enclosed as <b>Annexure – 7</b> .                                                                                                                                                                                                                                                                                                                                                            |
| 21      | Environmental Audit report indicating the changes, if any, with respect to the baseline environment quality in the coastal and marine environment shall be submitted every year by M/s APDPPL to this Department as well as to the MoEF&CC, GOI.                                                                                                                                         | <ul> <li>Being Complied</li> <li>The quality of ambient air, treated effluents, sea water and sediment, ground water and noise levels is being monitored through M/s Pollucon Laboratories, a NABL accredited agency. Monitoring Reports for the period of</li> </ul>                                                                                                                                                                                                                                                                                                                                           |



|         | Six monthly compliance report for CRZ Clearar<br>ort Terminal Phase – III                                                                                                                                                                                                        | nce/recommendation for development of Multi                                                                                                                                                                                                                                                                                                                       |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sr. no. | Conditions                                                                                                                                                                                                                                                                       | Status/Action taken                                                                                                                                                                                                                                                                                                                                               |
|         |                                                                                                                                                                                                                                                                                  | <ul> <li>October, 2019 to March, 2020 is enclosed as Annexure 3.</li> <li>Report confirms that there is no significant change in the quality in comparison to base line (wherever available)</li> </ul>                                                                                                                                                           |
| 22      | A six monthly report on compliance of the<br>conditions mentioned in this letter shall have<br>to be furnished by M/s APDPPL on a regular<br>basis to this Department as well as to the<br>Ministry of Environment, Forest and Climate<br>Change, Government of India.           | <ul> <li>Complying with.</li> <li>APDPPL is regularly submitting six monthly compliance reports which comprises of compliance to the conditions stipulated in Environment and CRZ clearance, environment monitoring reports, status of EMP etc.</li> <li>Last submission was done on vide letter No. APPPL-EHS/MOEF RO/EC Comp (III) Dated 23.11.2019.</li> </ul> |
| 23      | Any other condition that may be stipulated<br>by this Department / Ministry of<br>Environment, Forest and Climate Change,<br>Government of India from time to time for<br>environmental protection / management<br>purpose shall also have to be complied with<br>by M/s APDPPL. | <b>Noted and agreed to comply with</b><br>Any other condition that may be stipulated by<br>this Department / Ministry of Environment,<br>Forest and Climate Change, Government of India<br>from time to time for environmental protection.                                                                                                                        |

### Annexure – 2

### **Corporate Social Responsibility Report**

#### Half Yearly Report- Adani Port- Dahej (October to March, 2019- 20)

#### Education

#### Learning Enrichment Program

Learning Enrichment Program (LEP) implemented by Vidhya Bharati Foundation, Ahmedabad in 8 Govt. schools of Lakhigam, Suva, Luwara, Dahej, Jolwa, Jageshwar and Atali. Objective of this program is to filling the gap of minimum level of learning in Gujarati language and Arithmetic. 350 students of standard 3<sup>rd</sup> to 5<sup>th</sup> were enrolled under this program. Life skills training were also imparted to 813 students of std.6<sup>th</sup> to 8<sup>th</sup> of these schools.

In Learning Enrichment Program students were categorized into 10 levels as per the guidelines of Gujarat Education Department. Remedial classes, activity based, periodical evaluation & appreciation encouraged students to do better. As a result, out of 180 students enrolled in Gujarati language moved to the next level and in Arithmetic 108 promoted to next level.

| Sr. | School                             | Remedial<br>(Gr. 3 to 5) |
|-----|------------------------------------|--------------------------|
| 1   | Dahej Kumar School                 | 22                       |
| 2   | Dahej Girls School                 | 24                       |
| 3   | Primary Mix School , Lakhi village | 19                       |
| 4   | Primary Mix School, Luvara         | 19                       |
| 5   | Primary Mix S chool, Jageshwar     | 28                       |
| 6   | Primary school, Jolva              | 19                       |
| 7   | Primary school, Suva               | 29                       |
| 8   | Ashramshala, Atali                 | 20                       |
|     | Total No. of Students              | 180                      |

#### No. of students in remedial classes:

| S.N | Level | OCT`19 | NOV`19 | DEC'19 | JAN'20 | FEB'20 | MAR'20 |
|-----|-------|--------|--------|--------|--------|--------|--------|
| 1   | 0     | 53     | 53     | 31     | 25     | 19     | 19     |
| 2   | 1     | 46     | 46     | 30     | 29     | 29     | 26     |
| 3   | 2     | 41     | 40     | 38     | 32     | 23     | 18     |
| 4   | 3     | 27     | 27     | 33     | 29     | 17     | 16     |
| 5   | 4     | 9      | 9      | 36     | 19     | 21     | 15     |
| 6   | 5     | 0      | 0      | 8      | 32     | 23     | 15     |
| 7   | 6     | 0      | 0      | 1      | 13     | 24     | 11     |

| 8  | 7           | 0   | 0   | 0   | 0   | 19  | 27  |
|----|-------------|-----|-----|-----|-----|-----|-----|
| 9  | 8           | 0   | 0   | 0   | 0   | 4   | 19  |
| 10 | 9           | 0   | 0   | 0   | 0   | 0   | 10  |
| 11 | 10          | 0   | 0   | 0   | 0   | 0   | 3   |
| 12 | Main Stream | 0   | 0   | 0   | 0   | 0   | 0   |
| 13 | Absent      | 3   | 4   | 2   | 0   | 0   | 0   |
| 14 | Left        | 1   | 1   | 1   | 1   | 1   | 1   |
| 15 | Total       | 180 | 180 | 180 | 180 | 180 | 180 |

#### **ARITHMETIC : PROGRESS OF LEARNING LEVEL**

| S.N | Level       | OCT <sup>~</sup> 19 | NOV <sup>~</sup> 19 | DEC'19 | JAN'20 | FEB'20 | MAR '20 |
|-----|-------------|---------------------|---------------------|--------|--------|--------|---------|
| 1   | 0           | 129                 | 130                 | 116    | 95     | 76     | 70      |
| 2   | 1           | 45                  | 45                  | 34     | 36     | 34     | 30      |
| 3   | 2           | 0                   | 0                   | 18     | 30     | 22     | 13      |
| 4   | 3           | 0                   | 0                   | 8      | 12     | 15     | 15      |
| 5   | 4           | 0                   | 0                   | 0      | 4      | 22     | 16      |
| 6   | 5           | 0                   | 0                   | 0      | 1      | 5      | 12      |
| 7   | 6           | 0                   | 0                   | 0      | 0      | 3      | 15      |
| 8   | 7           | 0                   | 0                   | 0      | 0      | 1      | 4       |
| 9   | 8           | 0                   | 0                   | 0      | 0      | 0      | 2       |
| 10  | 9           | 0                   | 0                   | 0      | 0      | 0      | 1       |
| 11  | 10          | 0                   | 0                   | 0      | 0      | 0      | 0       |
| 12  | Main Stream | 0                   | 0                   | 0      | 0      | 0      | 0       |
| 13  | Absent      | 5                   | 4                   | 3      | 1      | 1      | 1       |
| 14  | Left        | 1                   | 1                   | 1      | 1      | 1      | 1       |
| 15  | Total       | 180                 | 180                 | 180    | 180    | 180    | 180     |

**Success Stories:** 



Teacher, I don't like to study. - Tushar

Tushar is a hyperactive student. He is always found occupying the last benches of the class doing pranks. He was least concerned whether the teacher is present or not, or what is being taught in the

class. He was always busy playing the fool and least interested in studies. Neither does he study nor does he allow anyone else to do so and if he is called he does not respond.

To understand his strange behaviour once I asked him why he does not study. He replied "Teacher, I do not like study." From his reply I realised that the activity called Study did not interest him at all. It was for him real hard work. He was a bundle of energy which is spent having fun. All he was interested was to play mischief all day long enjoying himself and make everyone around him laugh.

To make any changes in students it is important for the teacher to start from the position where the student is and then move forward. Tushar is a student whose existence is to have fun. I realised that if we can introduce the element of fun into studies the teaching game can be won.

From the next class onwards I turned all teaching into games which Tushar and then all his class mates enjoyed. Day by day the students made good progress learning their lesson the "Playing way". Soon all were happy. The students realised that they are indeed "clever" and the teacher was happy for the changes he had made in the student.

Tushar was now, not a back bencher but an active participating student. Beginning with the identification of the alphabet, he gradually began to read, write words, sentences and paragraphs. His mischief making days were over and to everyone's shock he became a lover of studies. The kid who didn't even stand up and speak his name in class, now leads the games and sings the Barakshari. He does homework regularly.

Tushar also find the teacher's new approach to teaching is encouraging. What he could not learn earlier is learnt by him now faster. His class teacher now praises him by saying "Tushar is responding in studies and has become a wise boy".

Due to his participation in various activities in school, the principal has called me during the teachers meet and honoured by three steps clapping.

I said, "Sir, Tushar has played an important role for his own transformation. No one can change without their own acceptance. Many possibilities are hidden and unexplored in him. I request that you come to our class and encourage him."

When the Principal has praised him in front of class, I saw the expression on his face and remembered his words "Teacher, I don't like to study".

- LEP Teacher

VIRAL



Class of Learning Enrichment Program started at school. The 'PRIYA (favourite)' students (Weak in academics) playing educational game called 'Khul Ja Sim Sim' with teacher. Viral came to the door and said "Main Aau Teacher?". Teacher said "Why is it late, Son?" Viral said in his Gujarati-Hindi mix language "Mai, Moda Ho Gaya, Teacher" And whole class laughed loudly, Tears were in his eyes because he became fun factor of his class.

Viral is a very sensitive boy, if someone speaks loudly with him, he starts weeping.

Teacher has made the class quiet, called Viral near to her and made him calm with love and asked to the students "Why you all laughed? Then students told "Viral always speaks in Hindi & Gujarati mix" .Teacher said "It happens, if somebody belongs to other state and studying in Gujarati School, so those people can't speak properly, there is no point to laugh on it."

Everybody replied, "Teacher, he is Gujarati but because most of the time he is watching Hindi Serials in TV ". Teacher makes viral understand "Beta, we should watch the program which one likes the most. If we watch TV whole day, we can harm our eyes as well as our time. But why is it that you are so late in the class?"

Before Viral say something, all said "He would be drawing picture". Teacher said "Drawing picture? Viral becomes quiet and calm and to say yes nodded his head only. Teacher said "Would you like to draw pictures?" Students said "Yes Teacher, He always draws". Viral gained courage and said "No Teacher, Not all the time but whenever I get the time then only" Teacher said "so, what is wrong in that? This is your own skill. Please show me your pictures"

Viral has opened a treasure trove of pictures from his drawing book. Teacher surprises while observing his art of drawing and passion. Teacher said "Wow, wonderful, how beautiful pictures you can draw!!!, You are so talented my dear son!!!" His sad face became the nail rose with proud smile and said "But Teacher, I do not know to read, write and calculate, I am far behind in the class". Teacher said "Don't worry Beta, Now this is my responsibility, I will teach you everything and you will also draw pictures".

Whole class said "Teacher, secretly, Viral has also drawn your picture". Teacher said, "Wow, let me see Beta". Teacher hugged him by seeing her picture. Then Viral became a regular student of the class and playing all the academic games. At the end of the year Viral learned all the necessary things with his passion of drawing.

On the last day of school, Viral has wrapped a small box of gift from the discarded one, picked up a flower from the garden of school and presented to his teacher. Teacher eagerly opened and looked inside a small box, there is a small eraser, a cartoon portrait of a mischievous child wrapped with dupatta of teacher. And 'THANK YOU TEACHER' was written in a small chit.

Today, Teacher was not in position to control her tears....

#### LEP Teacher

#### LIFE SKILL EDUCATION:

#### **Objective:**

Under the Learning Enrichment Program, a life-skills and character-building curriculum is running along with remedial education. Including various skills that can withstand practical life challenges, as well as the morale value of being a responsible citizen.

The teacher who is appointed in the school by the institute for remedial teaching education in grades 3 to 5 also teaches a life skill course in the free period to grades 6 to 8. So that the regular course of this standard is not disturbed. Since students are very interested in these various activities and fun way method, there is a willingness in them to participate.

#### Syllabus & approach of implementation:

This course is designed for students in grades 6 to 8. It includes activity based 30 lessons yearly for each standard. Each term has 15 lessons to teach. There is a total of 90 lessons course for grades 6 to 8.

Life skills have been defined by the World Health Organization (WHO) as "abilities for adaptive and positive behavior that enable individuals to deal effectively with the demands and challenges of everyday life".

The syllabus is designed based on the following topics:

- Self-Awareness (2)
- Communication (3)
- Problem solving Capability
- Critical Thinking
- Emotional intelligence
- Sensitivity
- Interpersonal relation
- Decision Making
- Creative Thinking
- Stress Management Capability

This course is designed specifically for students in the age group of 10 to 18 years to live a meaningful life as a future citizen. So that they have a sense of purpose, self-esteem, goals, ambition, higher vision etc. towards the country.

There is no specific tool to measure the level of understanding and sensitivity developed in the students. So we have not compelled any examination of it.

#### No. of Students in Life Skill Education:

| Sr. | School                            | Life Skill<br>(Gr. 5 to 8) |
|-----|-----------------------------------|----------------------------|
| 1   | Dahej Kumar School                | 160                        |
| 2   | Dahej Girls School                | 135                        |
| 3   | Primary Mix School, Lakhi Village | 190                        |
| 4   | Primary Mix School, Luvara        | 84                         |
| 5   | Primary Mix School, Jageshwar     | 64                         |
| 6   | Primary School , Jolva            | 61                         |
| 7   | Primary School, Suva              | 65                         |
| 8   | Ashram School , Atali             | 54                         |
|     | Total No. of Students             | 813                        |

#### Success Stories:

#### Teacher, now I don't eat outside food ...

As a part of Life Skill education course, I taught 3 lessons of 'Eating Habits of Good Food' in Std. 6<sup>th</sup>.

I observed, a student Vrushali was learning with full of concentration in the class.

A few days later, she meets me in the recess and shows her lunch box. I asked, what is it? She replied, "Teacher, see and have a homemade breakfast. I told my mom that the teacher always tells that if we eat outside food we would get sick. So now my mom makes breakfast every day at home."

I know that most of the children use to eat packed food available outside the school during the recess like wafers etc.

I was very happy to see the smiley face of Vrushali. I felt that what a positive impact was on an innocent mind by the power of our words.

The Life Skill education creates an understanding of small but meaningful things in our life. In the long term, it forms habit and makes our life very successful.

\_

The motivated face of Vrushali and her trust inspires me towards my work with more enthusiasm.

LEP Teacher Kanyashala, Dahej

#### Harpaksh

#### An aroma of understanding

There was a deep thought in my mind that while teaching and learning process of each and every values of life skill education gives me something missing somewhere in my life. Various aspects of value education such as self-awareness, creativity, communication, identifying and bringing out the talent, development of thoughtfulness, etc. taught a lot in life.

Learning was more fun during one-on-one activities than just teaching. I become as curious as children. The petals began to grow from each bud of understanding while thinking with kids about each activity and scent of the floral of understanding began to spread.

A question raised in mind if I learned it in my childhood? But I am blessed because this is not too late.

Harpaksh Lathia, a student of Std.7<sup>th</sup> who grew up like flower in the garden while conducting the activity. It is felt that his laughter spreads the aroma of understanding. In the activity of each chapter his enthusiastic involvement is very noticeable, He absorbs a lot from small things and one can see it in his behaviour. I have observed expanding horizon of his understanding.

His strong self-confidence, sweet speech with the sense of how much and how to speak and where to keep silence. In front of audience, he can effectively deliver the thoughts with free flaw speech.

All of this makes him a winner of the debate competition of Group Schools of Dahej area.

In the primary education, if a child's conceptual power develops the complexity of life become clear. Lead the life with true understanding; he can evaluate himself at each and every step of life.

On behalf of Adani Foundation and Vidyabharti Foundation, when I participate in such activity at School, I feel peace and calm in the stressful life.

LEP Teacher,

Primary Mishra School, Lakhigam

Glimpses of Life Skill Education:









#### **Teachers Training**

07 days training for the teachers conducted during at Kumarshala, Dahej. All the teachers with coordinator have participated with very enthusiasm. The sessions conducted by Mr. Jayesh Rathod and Mrs. Jeeta Trivedi.

#### . Particulars of Teachers Training:

| Sr. | From       | То         | Days | Participants |
|-----|------------|------------|------|--------------|
|     |            |            |      |              |
| 1   | 28-11-2019 | 30-11-2019 | 3    | 9            |
| 2   | 26-02-2020 | 29-02-2020 | 4    | 9            |
|     | •          | Total Days | 7    | 18           |

#### Topics covered:

- > New Evaluation System of Remedial Education
- > Orientation & Implementation of remedial classes for new teachers
- Syllabus of Life Skill Education Semester 1st & 2nd.
- > Orientation of Joyful Learning of Social Science subject.



#### JOYFUL LEARNING CAMP:

#### Date: 3rd to 7th February , 2020,

#### Subject: Social Science

Joyful Learning (Fun education) Camp at Government Primary School in Dahej Cluster is organized by Vidyabharti Foundation for the children of grades 6 to 8. This is a one day camp. During 3rd to 7th February, 2020, it was done in 5 schools. Keeping the social science subject as the core part in mind, through various activities in-depth content for understanding the subject was given, so that children would enjoy variety of activities. Activities that develop understanding with fun were organized covering the various lessons of social science from grades 6 to 8.

The students, teachers and principal of every school participated enthusiastically in this camp and responded positively. They too saw flashcards and monitored and appreciated the activity. They said that excellent content of the subject is given in the card. Tough content of activity, maps, sample of things, various educational materials like game and flash card, through the module and techniques of learning the children participated peacefully and learnt a lot of new things. By this way of teaching children could remember for a long time the activities taught to them.

**Facilitators of the camp:** Jayesh Rathod, **Collaboration**: Ms. Krupali Parmar as well as LEP teacher appointed by the Vidyabharti and Adani Foundation.

| No<br>· | Date       | Name of the School           | Subject        | Grade | Number<br>of<br>students |
|---------|------------|------------------------------|----------------|-------|--------------------------|
| 1.      | 03-02-2020 | Ashram school, Atali         | Social Science | 6,7,8 | 68                       |
| 2.      | 04-02-2020 | Primary School, Jolva        | Social Science | 6,7,8 | 62                       |
| 3.      | 05-02-2020 | Primary School, Suva         | Social Science | 6,7,8 | 87                       |
| 4.      | 06-02-2020 | Primary School,<br>Jageshwar | Social Science | 6,7,8 | 74                       |

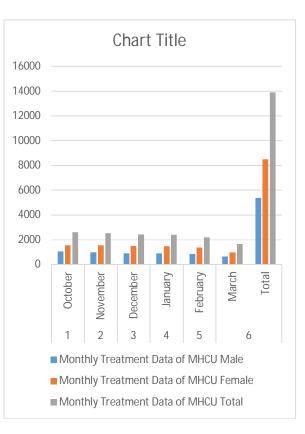
#### Details of the number of children attending the camp and their school name:

| 5. | 07-02-2020 | Primary School,<br>Luvara | Social Science | 6,7,8 | 63  |
|----|------------|---------------------------|----------------|-------|-----|
|    |            | Total                     |                |       | 354 |

#### Activities conducted for the different grades:

| No. | Std. | Activity                         |
|-----|------|----------------------------------|
| 1.  | 6    | Lets play with maps              |
| 2.  | 6    | Lets assume                      |
| 3.  | 6    | Hey there it is!                 |
| 4.  | 7    | Learn to fill the<br>information |
| 5.  | 7    | Along with time                  |
| 6.  | 8    | Let's play the court             |
| 7.  | 8    | India's today & tomorrow         |






### **Community Health**

13897 patients were treated at Mobile Healthcare Unit in the period October 2019 to March 2020.

| Monthly Treatment Data of MHCU |           |          |           |       |  |  |
|--------------------------------|-----------|----------|-----------|-------|--|--|
| S.N                            | Month     | Male     | Female    | Total |  |  |
| 1                              | October   | 1070     | 1565      | 2635  |  |  |
| 2                              | November  | 971      | 1573      | 2544  |  |  |
| 3                              | December  | 918      | 1519      | 2437  |  |  |
| 4                              | January   | 904      | 1500      | 2404  |  |  |
| 5                              | February  | 865      | 1359      | 2224  |  |  |
| 6                              | March     | 656      | 997       | 1653  |  |  |
|                                | Total     | 5384     | 8513      | 13897 |  |  |
|                                | Conoral H | oalth Ca | mn Dotail | c.    |  |  |

| General Health Camp Details |                       |          |       |  |  |  |  |
|-----------------------------|-----------------------|----------|-------|--|--|--|--|
| S.N                         | Village               | Month    | Total |  |  |  |  |
| 1                           | Dahej                 | October  | 112   |  |  |  |  |
| 2                           | Lakhigam              | October  | 25    |  |  |  |  |
| 3                           | Ashram<br>shala Atali | November | 53    |  |  |  |  |
| 4                           | Dahej                 | November | 76    |  |  |  |  |
| 5                           | Ambheta               | December | 60    |  |  |  |  |
| 6                           | Jageshwar             | December | 48    |  |  |  |  |
| 7                           | Dahej                 | December | 40    |  |  |  |  |
| 8                           | Jolva                 | January  | 42    |  |  |  |  |
| 9                           | Ashram<br>shala Atali | January  | 52    |  |  |  |  |
| 10                          | Koliyad               | February | 48    |  |  |  |  |
| 11                          | Ashram<br>shala Atali | March    | 31    |  |  |  |  |
|                             |                       | Total    | 587   |  |  |  |  |



|     | Health Awareness Camp Details |          |            |              |  |  |  |  |  |
|-----|-------------------------------|----------|------------|--------------|--|--|--|--|--|
| S.N | Торіс                         | Village  | Date       | Participants |  |  |  |  |  |
| 1   | Arthritis                     | Dahej    | 12-10-2019 | 112          |  |  |  |  |  |
| 2   | Water Borne Diseases          | Vengni   | 16-10-2019 | 37           |  |  |  |  |  |
| 3   | Water Borne Diseases          | Lakhigam | 17-10-2019 | 26           |  |  |  |  |  |
| 4   | Water Borne Diseases          | Ambheta  | 18-10-2019 | 31           |  |  |  |  |  |
| 5   | Sanitation                    | Lakhigam | 19-10-2019 | 47           |  |  |  |  |  |
| 6   | other                         | kaladara | 21-10-2019 | 23           |  |  |  |  |  |
| 7   | other                         | Jolva    | 22-10-2019 | 30           |  |  |  |  |  |
| 8   | Sanitation                    | Lakhigam | 24-10-2019 | 53           |  |  |  |  |  |
| 9   | Hyper-Tension                 | kaladara | 11-11-2019 | 31           |  |  |  |  |  |
| 10  | Hyper-Tension                 | Suva     | 12-11-2019 | 42           |  |  |  |  |  |
| 11  | Sanitation                    | Koliyad  | 13-11-2019 | 24           |  |  |  |  |  |
| 12  | Diabetes                      | Lakhigam | 14-11-2019 | 31           |  |  |  |  |  |

| 13 | Diabetes   | Ambheta               | 15-11-2019 | 45  |
|----|------------|-----------------------|------------|-----|
| 14 | other      | Dahej                 | 30-11-2019 | 33  |
| 15 | Sanitation | Ambheta               | 06-12-2019 | 40  |
| 16 | Sanitation | Jageshwar             | 07-12-2019 | 48  |
| 17 | Sanitation | Dahej                 | 28-12-2019 | 40  |
| 18 | Sanitation | Jolva                 | 11-01-2020 | 41  |
| 19 | Sanitation | Atali Ashram<br>Shala | 29-01-2020 | 98  |
| 20 | Sanitation | Koliyad               | 26-02-2020 | 53  |
|    |            |                       | Total      | 885 |

| Referral Details |           |     |  |  |  |  |  |
|------------------|-----------|-----|--|--|--|--|--|
| S.N              | S.N Month |     |  |  |  |  |  |
| 1                | October   | 58  |  |  |  |  |  |
| 2                | November  | 14  |  |  |  |  |  |
| 3                | December  | 14  |  |  |  |  |  |
| 4                | January   | 10  |  |  |  |  |  |
| 5                | February  | 10  |  |  |  |  |  |
| 6                | March     | 5   |  |  |  |  |  |
|                  | Total     | 111 |  |  |  |  |  |

### Specialized Health Camp

A specialized health camp was organized on 9th February, 2020 in Govt. Primary School, Lakhigam. This camp was based on diagnostic pattern of patients treated at Mobile Healthcare Unit. **357** patients of 5 villages Lakhigam, Luvara, Jageshwar, Dahej and Ambheta were treated.

These patients were treated by Dr.Lukhman Seth (Orthopaedic Surgeon), Dr.Sohel Vajha (General Physician) and Dr.Rajat Bhatia (Dermatologist).

Some patients were common in all categories.

| S.N | Disease/Treatment             | No. of<br>Patients |
|-----|-------------------------------|--------------------|
| 1   | Skin disease                  | 152                |
| 2   | Arthritis                     | 108                |
| 3   | Hypertension & diabetes check | 57                 |
| 4   | General complain              | 197                |
| 5   | ECG                           | 12                 |



#### WORLD DIABETES DAY

World Diabetes Day was held on 14<sup>th</sup> November 2019 in Lakhigam & Ambheta villages. 109 people underwent blood sugar test. Awareness sessions were also organized. Dr. Pipalia and his team aware on hypertension, diabetes & complications.

All 109 people's weight and blood pressure were taken.



#### **CLEANLINESS DRIVE**



Pre-Condition: Dirty Lane

Post Drive: Clean Lane

Adani Foundation in association with Lakhigam Gram Panchayat, Helpage India and Narrotam Lal Foundation launched a cleanliness drive on 19<sup>th</sup> October, 2019 in Rathod Falia of Lakhigam village. School children were enthusiastically participated in this drive.

In August month there was heavy rainfall in project area. Lakhigam village was flooded as all drains, ponds and other potholes were choked with plastics. As a result, water entered in their houses. An awareness session was also held to encourage people to keep their water source clean.

#### **Case Study**

Name : Chhitubhai khushalbhai Parmar Age : 80 Years old Gender: Male Village : Jageshwar Disease: Bronchial Asthama With Hyper-Tension

Family History: - Chhitubhai is 80 years old living in Jageshwar village located in Vagra Taluka. He had one son who expired in road Accident 25 years ago. His daughter got married and staying very far from this village and settled with her own family. Currently Chhitubhai and his wife (75 years) live together. Both are support of each other now.



Previously he was having temporary service in semi government to inspect the crop of cottonseed for 12 years and then he started his own farm in the year 1985. He did not find any profit from this farming hence given up the farming job. Now at present he is getting some nominal amount from some investment and leading his life. He does not have any other sources of income.

**Medical History and Diagnosis:** - Before 4 years he was suffering from chronic bronchial asthma. He took treatment from local Dr. Subhashbhai Dahej. He was having some urinary complaints and not recovered by local treatment and referred to Bharuch hospital. There he was operated, and recovered from the disease. After some days he got hypertension and it was not controlled. Then he went to Palm Land Hospital, Bharuch. His recovered from urinary tract problem but COPD was not recovered. He started treatment at MHU since 2 years. He was under regular check-up.

**Current Status:** - At present he feels better and performs his daily routine work. A good & regular counselling and medical advice can cure even the chronic disease. He is very happy for the treatment given by MHU and conveys warm regards to Adani Foundatuib & HelpAge India for treatment

Mr. Chhitubhai is thankful to ADANI Foundation and Help Age India for such a good service.

.....

## Sustainable Livelihood Development

### **PASHUDHAN PROGRAM**

Adani Foundation in partnership with BAIF institute for Sustainable Development (BISLD) is implementing Cattle Breeding Centre (CBC) i.e. Animal Husbandry Project (Pashudhan Program) and vegetable cultivation in 12 villages surrounding Adani Port, Dahej.

Specific Objective

Create self-employment/ supplementary income through animal livestock development in project villages of Special Economic Zone, Dahej

Other Objectives

- Increase awareness among villagers for livestock development through trainings & exposure visits
- Provide preventive health care services
- Organize infertility treatment camps for timely diagnosis & treatment of infertile animals
- Provide door to door insemination services

| PROCESS                                                                                                                                                  | Required OUTPUT                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAPACITY<br>BUILDING                                                                                                                                     | <ul> <li>Villagers aware with modern practices of cattle management</li> <li>Decision making</li> </ul>                                                                                                                                                                                                              |
| Calf Rearing<br>Animal<br>Healthcare<br>Infertility Treatment Carr                                                                                       | <ul> <li>Improve health conditions of animals</li> <li>Reduce chances of morbidity &amp; mortality against bacterial &amp; viral diseases</li> <li>Reduce long inter calving period</li> </ul>                                                                                                                       |
| Allied<br>Activities<br>Demo of Improved Fodder<br>Animal Housing Demo<br>Urea Treatment Demo<br>Kitchen Garden<br>Vermi Composting<br>Formation of SHGs | <ul> <li>Create awareness for fodder varieties</li> <li>Impact of proper housing on health of animal</li> <li>Value addition in fodder</li> <li>Meet out requirement of seasonal vegetables &amp; a source of income</li> <li>Develop an integrated, eco-friendly waste management</li> <li>Empower women</li> </ul> |

|     |           |            | Pashudh | an Progra | am Status as on 3          | 1st March | , 2020  |     |                      |         |
|-----|-----------|------------|---------|-----------|----------------------------|-----------|---------|-----|----------------------|---------|
|     |           |            |         |           | Artificial<br>Insemination |           |         |     |                      |         |
| S.N | Village   | Animal Pop | ulation |           | During the                 | month: N  | larch   | Du  | ring 20 <sup>°</sup> | 19 - 20 |
|     |           | Cow        | Buffalo | Total     | AI                         | PD        | Calving | AI  | PD                   | Calving |
| 1   | Dahej     | 37         | 224     | 261       | 16                         | 9         | 6       | 127 | 58                   | 39      |
| 2   | Lakhigam  | 13         | 132     | 145       | 9                          | 7         | 1       | 68  | 30                   | 26      |
| 3   | Luvara    | 39         | 152     | 191       | 6                          | 3         | 3       | 51  | 32                   | 24      |
| 4   | Jageshver | 9          | 81      | 90        | 6                          | 1         | 0       | 15  | 8                    | 1       |
| 5   | Ambheta   | 0          | 108     | 108       | 0                          | 1         | 0       | 2   | 5                    | 0       |
| 6   | Suva      | 31         | 236     | 267       | 0                          | 0         | 1       | 3   | 3                    | 5       |
| 7   | Rahiyad   | 0          | 103     | 103       | 1                          | 1         | 0       | 8   | 4                    | 7       |
| 8   | Jolava    | 142        | 78      | 220       | 0                          | 0         | 1       | 1   | 1                    | 2       |
| 9   | Koliyad   | 19         | 149     | 168       | 3                          | 4         | 1       | 62  | 34                   | 28      |
| 10  | Vagani    | 166        | 108     | 274       | 16                         | 5         | 0       | 130 | 81                   | 91      |
| 11  | Kaladara  | 207        | 440     | 647       | 1                          | 1         | 11      | 92  | 54                   | 43      |
| 12  | Atali     | 4          | 118     | 122       | 1                          | 0         | 0       | 11  | 7                    | 2       |
|     |           | 0          | 0       | 0         | 0                          | 0         | 0       | 0   | 0                    | 0       |
|     | Total     | 667        | 1929    | 2596      | 59                         | 32        | 24      | 570 | 317                  | 268     |

|     | Project Activities : Planning vs Achievement |      |      |        |       |         |          |  |  |
|-----|----------------------------------------------|------|------|--------|-------|---------|----------|--|--|
| S.N | Project Activities                           | Pla  | in   | Achiev | ement | SINCE I | NCEPTION |  |  |
|     |                                              | Unit | No.  | Unit   | No.   | Unit    | No.      |  |  |
| 1   | Livestock Training                           | 5    | 150  | 5      | 258   | 23      | 1122     |  |  |
| 2   | Exposure Visit                               | 2    | 100  | 2      | 95    | 4       | 201      |  |  |
| 3   | Calf Rearing                                 | 49   | 49   | 49     | 49    | 76      | 125      |  |  |
| 4   | Deworming                                    | 3044 | 3044 | 2173   | 2173  | 7231    | 7358     |  |  |
| 5   | Infertility Treatment Camps                  | 8    | 150  | 8      | 274   | 18      | 609      |  |  |
| 6   | Fodder Demo Beni./Demo Plot                  | 6    | 15   | 21     | 21    | 36      | 36       |  |  |
| 7   | Cattel Shed Beni/Shed                        | 3    | 3    | 0      | 0     | 2       | 2        |  |  |

| 8  | Chaffcutter Demo in SHG Member   | 1   | 20  | 1   | 10  | 2   | 20  |
|----|----------------------------------|-----|-----|-----|-----|-----|-----|
| 9  | Kitchen Garden/ Beni             | 250 | 250 | 103 | 103 | 353 | 353 |
| 10 | Vermicomposting Beni/Beds        | 5   | 5   | 5   | 5   | 20  | 20  |
| 11 | Pregnant Animal Feed Support     | 34  | 34  | 34  | 34  | 34  | 34  |
| 12 | Travis ( Animal Treatment Work ) | 5   | 5   | 5   | 5   | 5   | 5   |
| 13 | Sorted Semen                     | 80  | 80  | 49  | 62  | 49  | 62  |
| 14 | Calf Rally                       | 1   | 70  | 1   | 1   | 1   | 1   |

## **PROJECT HEROS**





Haribhai Buddhabhai Ahir, 44 years old lives in Lakhigam village. He works in Hindustan MI Sakva Private Limited, SEZ I, Dahej. His wife Jasuben is a housewife. He has one daughter Shraddha and one son Mitesh, a student of Class X in Patanjali Vidyalaya, Kamrej (Surat).

Animal husbandry is his family business. In 2001, GIDC acquired land of Lakhigam for SEZ, Dahej. Due to industrialization, cultivable land decreased and animal husbandry affected a lot. Haribhai joined a company but he used to keep himself engaged with cattle (whatever he had) in morning & evening.

In 2017, Project of Livestock Management launched by Adani Foundation in partnership with BAIF. Team visited his house for baseline survey. He came to know the objectives of the project. He got a chance of reviving his passion of livestock management. Now he took part in every project activity. His wife also gets involved. They started taking care of their cattle, stopped open grazing, started giving green fodder & feed as suggested by the team. Haribhai avails benefits of AI as he understands that genetically improved breed would boost his milk selling business. Due to AF's project, Haribhai is getting additional income apart from his monthly salary. This income supports him in son's education, daughter's treatment and

purchase of new cattle

## Pashudhan : Our Livelihood



Mrs. Jaguben wife of Kundanbhai Gohil says ' Pashudhan is our only source of income. They have two children one daughter and one son studying in class 5<sup>th</sup> and 3<sup>rd</sup>. They have 34 animals. Kundanbhai and Jaguben spend maximum time of their daily routine with their cattle. Before Adani Foundation's intervention Kundanbhai was worried about cattle's health as unavailability of green fodder and lack of knowledge of animal healthcare. Adani Foundation – BAIF's Pashudhan Project proved a boon for them. They avail project's benefits. They sell 45 litres milk per day in Aditya Birla Township. Their net income is Rs.23600 per month. They are thankful to Adani Foundation for such a meaningful project

## COMMUNITY PARTICIPATION IS THE SUCCESS OF THE PROJECT

| S.N | Particular                  | Total Amount | AF's contribution | Beneficiary's<br>contribution<br>per unit |
|-----|-----------------------------|--------------|-------------------|-------------------------------------------|
| 1   | Sorted semen                | Rs.1500/-    | Rs.1200/-         | Rs.300/                                   |
| 2   | Feed                        | Rs.1950/-    | Rs.1550/-         | Rs.400/-                                  |
| 3   | Vermi compost<br>(2 beds)   | Rs.3000/-    | Rs.2400/-         | Rs.600/-                                  |
| 4   | Chauff cutter (group basis) | Rs.30000/-   | Rs.25500/-        | Rs.4500/-                                 |
| 5   | Cattle shed construction    | Rs.45000/-   | Rs.36000/-        | Rs.9000/-                                 |
| 6   | Exposure visit              |              |                   | Rs.200/-                                  |

Under Pashudhan Program Calf Rally was organized in Luvara village on 25<sup>th</sup> February 2020

105 calves of 88 beneficiaries of Lakhigam, Luvara, Dahej, Jageshwar, Vegani, Rahiyad and Kaladra villages participated in this event.

To encourage the practices of animal husbandry calves were selected among different age group by a panel of experts and prizes given to beneficiaries. On this occasion Shri Ishwarbhai Patel (President of Vagara Taluka), Shri Manoj Katar (COO) Adani Port –Dahej, Mr.Shailesh Singh (HR Head- Adani Dahej Port), Mr.J R Mori (Chief Program Executive –BAIF), Mr. A M Kanani(Advisor-BAIF), Mr.Mahendra Patel(KVK, Chaswad) & villagers were present.

| S.N | Village   | Calf (Cow) | Calf (Buffalo) |
|-----|-----------|------------|----------------|
| 1   | Lakhigam  | 8          | 8              |
| 2   | Luvara    | 7          | 13             |
| 3   | Jageshwar | 2          | 8              |
| 4   | Dahej     | 15         | 19             |
| 5   | Vengani   | 6          | 0              |
| 6   | Koliyad   | 4          | 6              |
| 7   | Kaladra   | 2          | 7              |
|     | Total     | 44         | 61             |



## Women Empowerment

## SHIVSHAKTI SAKHI MANDAL, Jageshwar

Members: 10

Income Generation Activities

- School bags stitching
- Jute bags stitching
- Clothe bags stitching

## **Income Generation Activities Details**

| S.N | Activity                    | Order                | Unit<br>Cost<br>(in Rs.) | Quantity | Selling<br>Unit<br>Price<br>(in Rs.) | Total<br>Cost<br>Price | Total<br>Selling<br>Price (in<br>Rs.) | Profit (in<br>Rs.) |
|-----|-----------------------------|----------------------|--------------------------|----------|--------------------------------------|------------------------|---------------------------------------|--------------------|
| 2   | Jute bag<br>stitching       | Birla Copper         | 155                      | 135      | 180                                  | 20925                  | 24300                                 | 3375               |
| 3   | Jute bag<br>stitching       | Adani Dahej<br>Port  | 155                      | 100      | 180                                  | 15500                  | 18000                                 | 2500               |
| 4   | Jute bag<br>stitching       | Local<br>shopkeepers | 145                      | 60       | 165                                  | 8700                   | 9900                                  | 1200               |
| 5   | Cloth bag<br>stitching      | Adani Dahej<br>Port  | 43                       | 700      | 55                                   | 30100                  | 38500                                 | 8400               |
| 6   | Blanket<br>tag<br>stitching | Adani<br>Foundation  | 10                       | 700      | 20                                   | 7000                   | 14000                                 | 7000               |
|     | Total                       |                      |                          |          |                                      | 82225                  | 104700                                | 22475              |

• **Skill Based Training:** Shiv Shakti Sakhi Mandal, Jageshwar members got one-day training on skill enhancement on proper measurement and cutting of materials.



## Meeting with Livelihood Mission Officials

Adani Foundation team had a meeting with Mrs. Jyotiben (DLM District Livelihood Manager) and Mr. V S Rathod (TLM Taluka Livelihood Manager) at District Development office, Bharuch on 27<sup>th</sup> November, 2019.

## Points of discussion

- > Adani Foundation's CSR activities
- > Shiv Shakti Sakhi Mandal's income generation activities
- Livelihood mission's support in formation of new SHGs, strengthening of present SHGs and their linkage to income generation activities

Collective efforts to revive defunct SHGs

Officials provided list of SHGs of project villages.



## Formation of New SHGs

2 new SHGs are formed in January 2020. These are:

- ✓ Mahadev Mahila Sakhi Mandal, Luvara : 11 members and
- ✓ Sadhadadh Mahila Sakhi Mandal, Lakhigam: 11 members

## Activities

- Regular Meetings
- Both SHGs have started monthly savings from January 2020. Mahadev Mahila Sakhi Mandal, Luvara has decided monthly savings of Rs.100 per member whereas Sadhadadh Sakhi Mandal's per member saving is Rs.200
- Mahadev Mahila Sakhi Mandal has decided vermi compost production & selling as their income generation activity. On the other hand, Sadhadadh Sakhi Mandal, Lakhigam has chosen snacks preparation & selling as source of their income generation.

## > Exposure Visit:

20 members of Sadhadada Mahila Sakhi Mandal, Lakhigam & Mahadev Mahila Sakhi Mandal, Luvara went on an exposure visit to Adivasi Taleem Vikas Kendra, Lachhakadi (Navsari). These women got training on income generation activities & record keeping. They got an opportunity to visit women cooperatives' production units, warehouses and shops.

## > Capacity Building of SHG:

Mahadev Mahila Sakhi Mandal, Luvara has opted vermi compost production as an income generation activity. AF in association with BAIF organized a skill based training for SHG members on vermi compost bed preparation, care, quality check and record keeping of production vs income. 22 beds distributed among 11 members of SHG.



Exposure visit

Vermibed distribution

## **Community Infrastructure Development**



Overhead Water Tank, Jageshwar

CAPACITY: 35000 Litre Direct Beneficiaries: 1571



Lakhabawa Campus

Direct beneficiaries: 4938 Indirect beneficiaries: 20000



RO Plant, Ashramshala Atali Direct beneficiaries: 205



Ashramshala Atali road



Jageshwar bus stand Direct beneficiaries: 1571



Ambheta Community Hall Direct beneficiaries: 1330, Indirect beneficiaries: 12000



Dahej Pond



Suva Gaushala

## **KICK OFF MEETING WITH CONTRACTORS**

## Objective: Maintain necessary compliances in infrastructure work of Adani Foundation

A meeting with contractors engaged in Community Infrastructure Development work was held in Dry Cargo Department, Dahej Port. In this meeting Safety, Security, Engineering Services, HR & Admin, Adani Foundation, contractors of M/S Vrajvasi Construction & M/S J T Enterprise. It was chaired by Sh. Sandip Shah, AGM, Dry Cargo, Dahej Port. **Meeting of Minutes** 

- Safety Induction is mandatory for all staff who will work at site.
- Job specific PPEs to wear during execution of job.
- All PPEs should be of IS standard.
- Informed about action to be taken in case of emergency / assembly points
- Share emergency contact no. to site supervisor.
- Submission of pending medical fitness report of deployed staff to OHC by 20<sup>th</sup> Nov.
- Following Adani lifesaving rules.
- Contractor has to conduct TBT on daily basis prior to starting of work.
- Working area to be properly barricaded with pipe / barricading tap.
- Proper housekeeping to maintain at work place.
- Underground pipe / cable to be verified prior to excavation work.
- In case of carrying out hot work, arrangement for fire extinguisher should be done.
- Height work (above 1.8 mtrs) to be done with scaffolding using proper harnessing.
- Good quality Safety net to be tied up during construction at height.
- During construction at height, overhead elect cables to be taken care.
- Near miss, unsafe condition should be reported immediately to EIC.
- Prior to starting of work, site visit to be done by Safety person along with concerns.
- Proper lighting arrangement to be done in case of night work.
- Supervisor should be available at location whenever any critical working is under execution

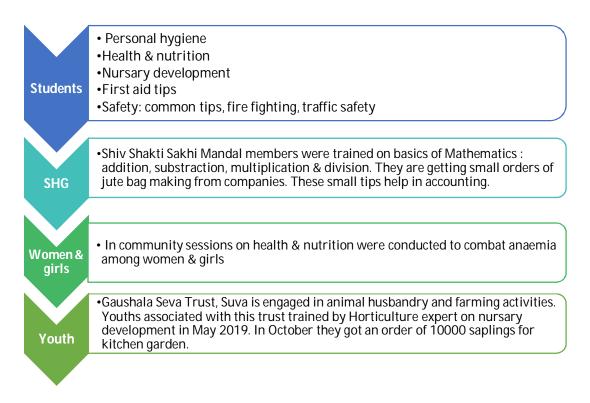


## **PROJECT SuPoshan**

### A

unique community based intervention to

- Reduce the occurrence of malnutrition in children (0-5years)
- Reduce occurrence of malnutrition & anaemia in adolescent girls & women in reproductive age group
- Create a pool of resource at community level, especially SuPoshan Sanginis
- Support Government's efforts in reducing IMR & MMR COVERAGE
- Total no. of Anganwadis covered: 13
- Total Population Covered: 24820
- Total no. of villages Covered: 7
- Total no. of SuPoshan Sanginis: 8


| S.N | Community Engagement and other Activities                              | Numbers |
|-----|------------------------------------------------------------------------|---------|
| 1   | Focus Group Discussion                                                 | 503     |
| 2   | Family Counselling                                                     | 823     |
| 3   | Village level Events                                                   | 32      |
| 4   | No of SAM children referred to CMTC                                    | 0       |
| 5   | No of SAM children provided with Energy Dense Food (Only New children) | 0       |
| 6   | No of total Hb & BMI screening - Women in reproductive age             | 1196    |
| 7   | No of total Hb & BMI screening - Adolescent girls                      | 254     |
| 8   | No of women in reproductive age provided with IFA Tablets              | 19      |
| 9   | No of adolescent girls provided with IFA Tablets                       | 0       |

| S.N | Project Achievement          | Numbers |
|-----|------------------------------|---------|
| 1   | SAM to MAM                   | 25      |
| 2   | MAM to Healthy               | 107     |
| 3   | Severe to Moderate shifting  | 30      |
| 4   | Moderate to Healthy shifting | 121     |
| 5   | Severe to moderate anaemia   | 9       |
| 6   | Moderate to mild anaemia     | 43      |
| 7   | Mild to no anaemia           | 9       |





## **EMPLOYEE VOLUNTEERING**



## **EVP SESSION AT ASHRAMSHALA ATALI**



EVP Session at Ashramshala Atali

On 4th December 2019 a session on Personal Hygiene & First Aid Tips was held students with of Ashramshala Atali. This session was led by Mr. Naim Patel, male nurse of QHSE. During the session, 2 children suffering from fever got medicines and 2 children got first aid.

Ashramshala Atali is a residential school for children of migrant laborers. Students and teachers of this school found EVP session very productive. They request for more such sessions in future.

## **ROAD SAFETY WEEK**

Adani Petronet Dahej Port Private Limited celebrated Road safety week from 11<sup>th</sup> to 16<sup>th</sup> January 2020. On this occasion a drawing competition was organized in two schools of project area – Govt. Primary School, Luwara and Govt. Primary School, Jageshwar. Students of Class 6<sup>th</sup>, 7<sup>th</sup> and 8<sup>th</sup> participated in this competition.

Theme: Road safety

Total participants: 130

Jageshwar School: 47 & Luwara School: 83

Winners were felicitated in concluding ceremony of safety week at Dahej Port by Sh. Manoj Katar, COO, Dahej Port and other seniors of different departments.



## **Community Engagement**

Women's Day celebrated with good nos of women participation with great enthusiasm and zeal. 159 women of 3 villages Lakhigam, Luvara and Jageshwar participated in different sports events: Kabaddi, Khokho, Musical Chair and Spoon race. In Special Economic Zone this is the first occasion when sports events organized in villages. 1000 women celebrated the ever

Winners were felicitated by trophies and prizes. On t eve of women's day front line health worke Aanganwadi workers & Women PRI members were al honoured by Adani Foundation for their contribution nation building





LAKHIGAM CRICKET

## TOURNAMENT

Objective: Promotion of sports among village youths

Adani Foundation in association with Lakhigam Gram Panchayat and Adani Dahej Port organized Lakhigam cricket tournament at Lakhigam. Total 30 teams participated in this tournament.

Final match was played between Shivam 11 and Shiv Shakti on 26<sup>th</sup> January 2020. Shivam 11 emerged as a winner. They defeated Shiv Shakti by 6 wickets.

Trophies were given in following categories in presence of Adani Dahej Port officials, Adani Foundation and Sarpanch, Depurty Sarpanch of Lakhigam Gram Panchayat and other distinguished persons of the village.

Winners, runner up, man of the series, man of the match, best bowler, best batsman.

- During the tournament villagers highly appreciated CSR activities implemented by AF in Lakhigam.
- A group of young school boys of 9-11 years approached Adani Foundation & requested to organize School level cricket tournament.



## Media Coverage



## અદાણી ફાઉન્ડેશન- દહેજ દ્વારા "વિશ્વ મહિલા દિવસ-૨૦૨૦"ની ઉત્સાહભેર ઉજવણી



જાગેશ્વર ગામોની બહેનો સાથે કરવાનો હતો.

ઉજવણીમાં ૧૬૦ જેટલા બહેનો સંગીત ખુરશી, ખોખો, કબ્બડી, આપવામાં આવ્યા હતા.

વિશ્વ મહિલા દિવસ નિમિત્તે મહિલાઓને સશક્ત કરવાનો તેમજ હતુ. આ સ્પર્ધાઓમાં બહેનોએ પી.એચ. સી. દહેજ ખાતેથી હતા. કાર્યક્રમમાં આંગણવાડીનાં આસપાસના લખીગામ, લવારા અને તેમના આત્મવિશ્વાસમાં ઉમેરો ખુબજ ઉત્સાહ પૂર્વકભાગ લીધો તરુણાબેન, અદાણી પોર્ટદહેજ બહેનો તેમજ આશા વર્કરોને પણ હતો. વિજેતા બહેનોને તેમજ ટીમને તરફથી ધર્મે શ ગાંધી, ઇનામ આપી પોત્સાહિત કરવામાં આંતરરાષ્ટ્રિય મહિલા દિવસની આંતરરાષ્ટ્રિય મહિલા દિવસ પ્રેરણામળીરહેતેમજતેમનો ઉત્સાહ ધનશ્યામભાઇ તેમજ અદાણી આવ્યા હતા. કાર્યક્રમને સફળ ઉજવણી કરવામાં આવી હતી. આ અંતંગતબહેનોતેમજકિશોરીઓમાટે વધારવા માટે ટ્રોફી તેમજ ઇનામો ફાઉનડેશન તરકથી ઉધા મિશ્રા બનાવવા માટે અદાણી ફાઉનડેશન ઉપસ્થિત રહી પ્રાસંગિક માહિતી દહેજનાં અન્ય સ્ટાફની કામગીરી

તેમજ કિશોરીઓએ ભાગ લીધો લિમ્બુચમચીઅને અન્ય રમત-ગમત 🛛 કાર્યક્રમમાં લખીગામ પ્રાથમિક આપી હતી તેમજ સ્પર્ધાનાં વિજેતા ખુબ સરાહનીય રહી હતી.







#### સંદેશ 01.02.20 SATURDAY, 01+02+2020 સંક્ષિપ્ત સમાચાર લખીગામમાં અદાણી ક્રિકેટ ગુજરાત ટેકના. યુનિ.ના ટોપટેનમાં SRICTના પ વિદ્યાર્થીઓ ઝળક્યા ટુર્નામેન્ટનું આયોજન મંકલેશ્વર SRICT ૭ મા સેમેસ્ટર પરિશામોમાં જરીય રોય ૧૮માં મેસમારમાઇસીટીના ૫ વિદ્યાર્થીમાં આખાં યુનિવર્કિટીના તમામ વિદ્યાર્થીઓમાં સીજપીએ મુજબના રોપ ૧૦માં આવ્યાં છે. આ સિદિ માટે ટ્રસ્ટી સહી તમામ કેકલ્ટીએ ગીરવ અનુમળું છે. રોય ટેનના પાંચ વિદ્યાર્થીઓ ધેકી કેવિકલ એન્જિનિયરિંગના ૩ વિદ્યાર્થીઓ adani જરીપુના બધ કેમિકલ એન્પ્રિનિપરિયના વિદ્યાર્થીઓમાં રોય 10 માં છે. જઆરટીયુ અંતરંત આવતી 11૪ Fishinger કોવેલોમાંથી એસઆરઆઇસીટીને ૪થો ક્રમ આપવામાં આવ્યો છે. પર્યવરણીય ટેકનોલોજ વિભાગના કુ.મહિમા દતેજ આદણી કાઈન્ટેશન તેમજ સાથ પંચાયત લખીચય દારા લખીચયે ક્રિકેટ ટૂર્નાયેન્ટનું આયોજન મહેશ્વરીએ ૭ મા સેમેસ્ટરના જીરીયુ પરિણાયમાં કરાયુ હતુ. જેમાં લખી સમયી વિવિધ ટીમોએ ભાગ લીધો એસપીઆઈ ૧૦ મેળવ્યા છે. કેવિકલ ટેકનોલોજના હતો. કાઈનલ મેચ શિવમ ઉલેવન અને શિવસકિત શિમ યુવરાજ સુરમાએ ૭ મા સેમેસ્ટરમાં જીરીયુ પરિશામમાં વચ્ચે ચોલઈ હતી જેમાં શિવય ઇલેવન વિજેત થઈ હતી. સીપીએ મુજયનો પ્રથય ક્રમ પ્રાપ્ત કર્યો છે. જ્યારે કે એ કેવિકલ અંગ્લિપરિયતા તીલ પટેલે છટીવુ પરિણાયમાં આ પ્રસંગે સરપંચ સનિય ગોહિલ, તલારી પ્રવિદ્યસિંહ, આપ્યી કાઈન્ટેશનના તેડ ઉપાયેન, કર્યચારીઓ, ચાયજનો ખોલું સ્થન મેળવ્યું છે.

વાલિયામાં જિલ્લા પ્રભારી સચિવના

અને ખેલાડીઓ ઉપસ્થિત રહ્યા હતા. વિજેતા અને

ઉપવિજેતા દીધને ટોકી આપી સન્યનિત કરાય હતા.

## **Appreciation**

**Dilipkumar** Thakor



No.Min/L&E/D.M./Y.V./ ~ /2019 Minister of Labour & Employment, Disaster Management, Yatradham Vikas, Government of Gujarat Swamim Sankul-1, 1\* Floor, Sachivalaya, Gandhinagar. Phone: 079-232 50128, 232 50129, Fax : 232 50306 E-Mail : min-labour@gujarat.gov.in min.labouremployment@gmail.com Date: 23 / 12/2019

### MESSAGE

It is a matter of great pleasure for me to learn the significant and commendable contributions by Adani Hazira & Adani Dahej Port through Adani Foundation in the areas of Education services, Community health and development activities, Sustainable livelihood activities and Rural Infrastructure development activities, Special flagship projects for National development. This creates great opportunities and livelihoods that benefit millions of people. I congratulate and appreciate for deep commitment to community for the Nation building process.

acarea.s.e (Dilipkumar Thakor)

To, Shri Pranav Choudhary CEO - Adani Hazira & Dahej Ports Head - Adani Foundation





No.Min/L&I/DM/YV/46776 (2019) Minister of Labour & Employment, Disaster Management, Vatradham Vikas, Government of Gajarat Swarinin Sankula (1971or), Sachivalay, Candhinaga Phone: (79-232 50128, 232 50129, Fax: 232 50306 E-Mali: min-labour@joyment@gmal.com Date: **3**o/ 12/2019

Namaskar,

### MESSAGE

It is a matter of great pleasure for us to know the various CSR initiatives running at many locations of South Gujarat by Adani Hazira Port & Adani Dahej Port through "Adani Foundation" under your leadership. It was nice to interact and discuss with your young motivated team member on dated 23 Dee 2019. Today, India has expectation from this type of motivated youth. I appreciate the dedication, zeal, energy level and enthusiasm of your team member. It conveyed us glorious history of Adani Foundation and contributions to humanity in the interest of our society and nation at large. I am deeply touched and impressed.

I arge. I am deeply touched and impressed. We are witnessed of the contributions of "Adani Foundation" in the areas of Education services, Community health and Sustainable livelihood activities, Rural Infrastructure development and Special flagship projects for National development. This creates a great opportunities and livelihoods that benefit millions of people for their positive transformation. Adani Foundation helped them become selfdependent and created opportunity for their family. Today, these families have improved their standard of living and raised prosperity, self-reliance and lead a dignified life. Your team member of Hazira conveyed us many examples of people, benefited by these initiatives. These initiatives have instilled a new confidence and bring smiles on the faces of people.

On behalf of the Government of Gujarat, we congratulate you for deep commitment towards "Nation Building" and creating "New India" by 2022.



To, Dr. Priti G. Adani The Chairperson, Adani Foundation 8th floor, Shikhar Building, Nr. Mithakhali Circle, Navrangpura, Ahmedabad.



| Sh. Manoj Katar         | Chief Operating Officer   |      |  |
|-------------------------|---------------------------|------|--|
| Ms. Usha Mishra         | Unit CSR Head             |      |  |
| Ms. Varsha Pandit       | Project Officer           |      |  |
| Mr. Mahendrasinh Sindha | Project Officer           |      |  |
| Mr. Yogesh Meghpara     | Project Officer           |      |  |
|                         | Partners                  |      |  |
| The Helpage India       | Vidhya Bharati Foundation | BAIF |  |

Adani Foundation 7<sup>th</sup> Floor, Adani Corporate House II, Adani Shantigram Township, Near Vaishnodevi Circle, SG Highwary, Ahmedabad, Ahmedabad – 382421 (Gujarat), www.adanifoundation.org Adani Foundation Adani Petronet (Dahej) Port Pvt. Ltd At & PO Lakhigam, Taluka Vagra Via Dahej, Bharuch 392130 Gujarat www.adanifoundation.org

## Environment Monitoring Report for the period from October-19 to March-20

## **3A. AMBIENT AIR QUALITY MONITORING: -**

## Table No.: 1.1 - Ambient Air Quality Monitoring Results At Near Marine Building

| DN IN      |                     | POLLUCON         |                   |       | N POLLUC          | ocation           | -1: Nea           | r Marine          | Buildin                       | g               |                 |       |       |
|------------|---------------------|------------------|-------------------|-------|-------------------|-------------------|-------------------|-------------------|-------------------------------|-----------------|-----------------|-------|-------|
| Sr.<br>No. | Date of<br>Sampling | PM <sub>10</sub> | PM <sub>2.5</sub> | Pb    | BaP               | As                | Ni                | СО                | C <sub>6</sub> H <sub>6</sub> | NH <sub>3</sub> | SO <sub>2</sub> | NOx   | 03    |
| IN PC      |                     | µg/m³            | µg/m³             | µg/m³ | ng/m <sup>3</sup> | ng/m <sup>3</sup> | ng/m <sup>3</sup> | mg/m <sup>3</sup> | µg/m³                         | µg/m³           | µg/m³           | µg/m³ | µg/m³ |
| 1          | 01-10-2019          | 69.51            | 31.58             | BDL*  | BDL*              | BDL*              | BDL*              | 0.53              | BDL*                          | 46.29           | 23.47           | 30.50 | 18.61 |
| 2          | 04-10-2019          | 83.63            | 46.21             | BDL*  | BDL*              | BDL*              | BDL*              | 0.57              | BDL*                          | 39.49           | 17.82           | 35.66 | 26.21 |
| 3          | 08-10-2019          | 92.42            | 53.50             | 0.68  | BDL*              | BDL*              | 10.32             | 0.93              | BDL*                          | 25.36           | 21.52           | 38.30 | 20.44 |
| 4          | 11-10-2019          | 88.27            | 49.22             | BDL*  | BDL*              | 2.78              | BDL*              | 0.86              | BDL*                          | 34.29           | 19.35           | 41.65 | 29.48 |
| 5          | 15-10-2019          | 93.40            | 43.29             | 0.82  | BDL*              | 2.96              | 10.85             | 0.78              | BDL*                          | 48.20           | 25.42           | 37.65 | 16.2  |
| 6          | 18-10-2019          | 74.59            | 35.39             | BDL*  | BDL*              | BDL*              | BDL*              | 0.54              | BDL*                          | 38.37           | 22.31           | 39.30 | 24.43 |
| 7          | 22-10-2019          | 84.33            | 41.31             | BDL*  | BDL*              | 2.65              | BDL*              | 0.77              | BDL*                          | 29.24           | 18.54           | 34.25 | 21.37 |
| 8          | 25-10-2019          | 90.25            | 52.69             | 0.76  | BDL*              | 3.11              | 10.54             | 0.71              | BDL*                          | 35.43           | 24.27           | 44.54 | 15.57 |
| 9          | 29-10-2019          | 79.32            | 39.41             | BDL*  | BDL*              | BDL*              | BDL*              | 0.88              | BDL*                          | 32.39           | 16.57           | 29.47 | 19.21 |
| 10         | 01-11-2019          | 86.39            | 40.25             | BDL*  | BDL*              | BDL*              | BDL*              | 0.71              | BDL*                          | 43.60           | 18.51           | 39.44 | 13.79 |
| 11         | 05-11-2019          | 93.67            | 52.86             | 0.72  | BDL*              | 2.46              | 10.39             | 0.81              | BDL*                          | 20.65           | 24.52           | 41.21 | 22.65 |
| 12         | 08-11-2019          | 88.66            | 46.37             | BDL*  | BDL*              | BDL*              | BDL*              | 0.76              | BDL*                          | 46.32           | 19.35           | 33.45 | 28.57 |
| 13         | 12-11-2019          | 79.65            | 42.72             | BDL*  | BDL*              | BDL*              | BDL*              | 0.90              | BDL*                          | 38.73           | 23.44           | 44.56 | 26.21 |
| 14         | 15-11-2019          | 92.69            | 53.67             | 0.59  | BDL*              | 2.72              | 10.61             | 0.61              | BDL*                          | 16.58           | 20.65           | 38.28 | 17.63 |
| 15         | 19-11-2019          | 87.57            | 49.33             | BDL*  | BDL*              | BDL*              | BDL*              | 0.46              | BDL*                          | 32.31           | 16.45           | 32.89 | 25.35 |
| 16         | 22-11-2019          | 95.63            | 55.37             | 0.84  | BDL*              | 2.85              | 10.88             | 0.54              | BDL*                          | 28.60           | 25.66           | 35.95 | 29.28 |
| 17         | 26-11-2019          | 89.38            | 47.54             | BDL*  | BDL*              | BDL*              | BDL*              | 0.62              | BDL*                          | 25.37           | 21.53           | 40.27 | 27.56 |
| 18         | 29-11-2019          | 91.52            | 43.50             | BDL*  | BDL*              | BDL*              | BDL*              | 0.78              | BDL*                          | 40.34           | 26.32           | 37.54 | 24.26 |
| 19         | 03-12-2019          | 87.63            | 34.33             | BDL*  | BDL*              | BDL*              | BDL*              | 0.41              | BDL*                          | 37.36           | 19.36           | 44.59 | 25.35 |
| 20         | 06-12-2019          | 92.49            | 54.26             | 0.65  | BDL*              | 2.82              | 10.65             | 0.68              | BDL*                          | 41.50           | 23.44           | 36.34 | 27.57 |
| 21         | 10-12-2019          | 84.56            | 45.34             | BDL*  | BDL*              | BDL*              | BDL*              | 0.89              | BDL*                          | 27.64           | 26.27           | 40.24 | 18.65 |
| 22         | 13-12-2019          | 90.23            | 50.55             | 0.76  | BDL*              | 2.56              | 10.51             | 0.30              | BDL*                          | 44.51           | 20.58           | 43.56 | 15.32 |
| 23         | 17-12-2019          | 88.36            | 47.38             | BDL*  | BDL*              | BDL*              | BDL*              | 0.32              | BDL*                          | 21.38           | 28.25           | 32.40 | 20.45 |
| 24         | 20-12-2019          | 95.68            | 53.68             | 0.84  | BDL*              | 2.77              | 10.89             | 0.76              | BDL*                          | 36.56           | 10.57           | 35.34 | 23.47 |

-07to

**Authorized Signatory** 

●FSSAI Approved Lab ● Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

• ISO 14001 : 2004 GPCB apprved

• OHSAS 18001 : 2007 ISO

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

POLLUCON LABORATORIES PVT. LTD.

| 25 | 24-12-2019 | 79.55 | 33.41 | BDL* | BDL* | BDL* | BDL*  | 0.62 | BDL* | 17.54 | 24.54 | 39.55 | 26.39 |
|----|------------|-------|-------|------|------|------|-------|------|------|-------|-------|-------|-------|
| 26 | 27-12-2019 | 85.39 | 42.46 | BDL* | BDL* | BDL* | BDL*  | 0.90 | BDL* | 20.75 | 17.11 | 30.57 | 24.56 |
| 27 | 31-12-2019 | 93.54 | 52.34 | BDL* | BDL* | BDL* | BDL*  | 0.42 | BDL* | 46.23 | 21.67 | 38.23 | 28.47 |
| 28 | 03-01-2020 | 85.47 | 41.24 | BDL* | BDL* | BDL* | BDL*  | 0.85 | BDL* | 48.25 | 11.57 | 25.30 | 23.52 |
| 29 | 07-01-2020 | 96.84 | 48.63 | 0.56 | BDL* | 2.56 | 10.58 | 0.70 | BDL* | 31.23 | 20.35 | 34.52 | 29.23 |
| 30 | 10-01-2020 | 82.44 | 51.61 | BDL* | BDL* | BDL* | BDL*  | 0.49 | BDL* | 43.40 | 23.46 | 42.41 | 27.68 |
| 31 | 14-01-2020 | 93.82 | 55.25 | 0.84 | BDL* | 2.62 | 10.37 | 0.22 | BDL* | 29.44 | 21.33 | 35.61 | 24.27 |
| 32 | 17-01-2020 | 74.51 | 33.36 | BDL* | BDL* | BDL* | BDL*  | 0.53 | BDL* | 33.42 | 18.70 | 39.43 | 28.48 |
| 33 | 21-01-2020 | 68.47 | 27.68 | BDL* | BDL* | BDL* | BDL*  | 0.84 | BDL* | 41.28 | 13.56 | 44.26 | 26.52 |
| 34 | 24-01-2020 | 86.67 | 53.41 | BDL* | BDL* | BDL* | BDL*  | 0.95 | BDL* | 46.58 | 26.54 | 37.61 | 16.92 |
| 35 | 28-01-2020 | 94.25 | 49.56 | 0.62 | BDL* | 2.34 | 10.50 | 0.30 | BDL* | 37.27 | 14.32 | 41.35 | 25.46 |
| 36 | 31-01-2020 | 73.67 | 36.56 | BDL* | BDL* | BDL* | BDL*  | 0.93 | BDL* | 42.33 | 17.49 | 30.48 | 17.4  |
| 37 | 04-02-2020 | 90.46 | 52.40 | 0.76 | BDL* | 2.62 | 10.45 | 0.78 | BDL* | 49.47 | 18.58 | 37.27 | 17.54 |
| 38 | 07-02-2020 | 86.29 | 42.45 | BDL* | BDL* | BDL* | BDL*  | 0.58 | BDL* | 15.63 | 26.49 | 42.63 | 14.22 |
| 39 | 11-02-2020 | 78.59 | 39.19 | BDL* | BDL* | BDL* | BDL*  | 0.69 | BDL* | 42.67 | 20.38 | 39.21 | 25.4  |
| 40 | 14-02-2020 | 83.84 | 48.22 | BDL* | BDL* | BDL* | BDL*  | 0.62 | BDL* | 48.54 | 15.26 | 40.21 | 28.26 |
| 41 | 18-02-2020 | 92.45 | 54.28 | 0.82 | BDL* | 2.82 | 10.51 | 0.82 | BDL* | 38.44 | 24.30 | 38.51 | 22.89 |
| 42 | 21-02-2020 | 71.27 | 38.40 | BDL* | BDL* | BDL* | BDL*  | 1.03 | BDL* | 29.47 | 19.37 | 34.81 | 24.38 |
| 43 | 25-02-2020 | 89.21 | 46.38 | BDL* | BDL* | BDL* | BDL*  | 0.73 | BDL* | 35.61 | 21.52 | 36.26 | 27.65 |
| 44 | 28-02-2020 | 93.44 | 53.57 | 0.64 | BDL* | 2.46 | 10.88 | 0.87 | BDL* | 32.43 | 25.69 | 32.56 | 21.49 |
| 45 | 03-03-2020 | 87.63 | 49.64 | 0.56 | BDL* | 2.46 | BDL*  | 0.62 | BDL* | 32.47 | 19.55 | 25.72 | 23.56 |
| 46 | 06-03-2020 | 94.30 | 55.70 | 0.76 | BDL* | 2.34 | BDL*  | 0.77 | BDL* | 45.43 | 24.26 | 38.44 | 29.61 |
| 47 | 10-03-2020 | 79.69 | 38.70 | BDL* | BDL* | BDL* | BDL*  | 0.72 | BDL* | 29.39 | 13.49 | 35.33 | 27.31 |
| 48 | 13-03-2020 | 91.52 | 52.63 | 0.65 | BDL* | 2.75 | BDL*  | 0.94 | BDL* | 49.62 | 17.84 | 30.48 | 18.68 |
| 49 | 17-03-2020 | 74.27 | 40.26 | BDL* | BDL* | BDL* | BDL*  | 0.45 | BDL* | 42.76 | 20.37 | 40.34 | 13.74 |
| 50 | 20-03-2020 | 95.33 | 48.38 | 0.82 | BDL* | 2.64 | BDL*  | 0.76 | BDL* | 39.64 | 22.55 | 37.33 | 25.3  |
| 51 | 24-03-2020 | 80.20 | 43.67 | BDL* | BDL* | BDL* | BDL*  | 0.87 | BDL* | 33.47 | 18.62 | 28.48 | 22.53 |
| 52 | 27-03-2020 | 76.29 | 37.36 | BDL* | BDL* | BDL* | BDL*  | 0.92 | BDL* | 46.32 | 12.33 | 33.64 | 26.59 |

**Observation:** Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-I Dt: 18/11/2009National Ambient Air Quality Standards, New Delhi, for 24 hourly or 8 hourly or 1 hourly monitored values **Note:** BDL\*: Below Detection Limit, Minimum Detection Limit, Lead as Pb:  $0.1 \ \mu g/m^3$ , Carbon Monoxide as CO:  $0.1 \ m g/m^3$ , Benzene as  $C_6H_6$ :  $2 \ \mu g/m^3$ , Benzo (a) Pyrene (BaP) - Particulate Phase only:  $0.5 \ n g/m^3$ , Arsenic as As:  $2 \ n g/m^3$ , Nickel as Ni:  $5 \ n g/m^3$ 

-D-D

**Authorized Signatory** 

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 Sec. 12 of Environmental (Protection) Act-1986
 Schedule II auditor

• GPCB apprved • ISO 14001 : 2004 schedule II auditor

• OHSAS 18001 : 2007

• ISO 9001 ·

2008

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

## Table No.: 1.2 - Ambient Air Quality Monitoring Results At Near PMC Building

| ON PO      |                     | POLLICON         |                   |       |                   | Locatio           | n-2: Ne           | ar PMC            | Building                      | CON POLLU       |                                                                                                                                                                                                                                                                                                                                                   |       |                       |
|------------|---------------------|------------------|-------------------|-------|-------------------|-------------------|-------------------|-------------------|-------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|
| Sr.<br>No. | Date of<br>Sampling | PM <sub>10</sub> | PM <sub>2.5</sub> | Pb    | BaP               | As                | Ni                | СО                | C <sub>6</sub> H <sub>6</sub> | NH <sub>3</sub> | SO2          µg/m³         17.37         8.65         11.45         15.44         19.54         16.25         12.64         21.68         10.13         12.60         16.23         22.66         20.35         14.68         19.41         6.85         15.25         11.34         6.53         13.55         20.37         16.21         12.55 | NOx   | <b>O</b> <sub>3</sub> |
| ON PO      |                     | µg/m³            | µg/m³             | µg/m³ | ng/m <sup>3</sup> | ng/m <sup>3</sup> | ng/m <sup>3</sup> | mg/m <sup>3</sup> | µg/m³                         | µg/m³           | µg/m³                                                                                                                                                                                                                                                                                                                                             | µg/m³ | µg/m                  |
|            | 01-10-2019          | 58.32            | 25.63             | BDL*  | BDL*              | BDL*              | BDL*              | 0.18              | BDL*                          | 32.62           | 17.37                                                                                                                                                                                                                                                                                                                                             | 27.65 | 13.39                 |
| 2          | 04-10-2019          | 71.54            | 37.51             | BDL*  | BDL*              | BDL*              | BDL*              | 0.44              | BDL*                          | 14.57           | 8.65                                                                                                                                                                                                                                                                                                                                              | 30.33 | 21.51                 |
| 3          | 08-10-2019          | 56.39            | 23.62             | BDL*  | BDL*              | BDL*              | BDL*              | 0.34              | BDL*                          | 38.22           | 11.45                                                                                                                                                                                                                                                                                                                                             | 19.46 | 16.83                 |
| 4          | 11-10-2019          | 79.56            | 45.55             | BDL*  | BDL*              | 2.46              | BDL*              | 0.36              | BDL*                          | 29.45           | 15.44                                                                                                                                                                                                                                                                                                                                             | 24.22 | 25.38                 |
| 5          | 15-10-2019          | 84.57            | 41.57             | 0.56  | BDL*              | BDL*              | 10.28             | 0.46              | BDL*                          | 45.61           | 19.54                                                                                                                                                                                                                                                                                                                                             | 29.27 | 23.7                  |
| 6          | 18-10-2019          | 63.40            | 33.43             | BDL*  | BDL*              | BDL*              | BDL*              | 0.64              | BDL*                          | 49.57           | 16.25                                                                                                                                                                                                                                                                                                                                             | 33.64 | 12.49                 |
| 7          | 22-10-2019          | 53.37            | 28.32             | BDL*  | BDL*              | BDL*              | BDL*              | 0.31              | BDL*                          | 18.92           | 12.64                                                                                                                                                                                                                                                                                                                                             | 26.40 | 14.57                 |
| 8          | 25-10-2019          | 70.57            | 30.38             | BDL*  | BDL*              | BDL*              | BDL*              | 0.48              | BDL*                          | 23.56           | 21.68                                                                                                                                                                                                                                                                                                                                             | 35.43 | 20.58                 |
| 9          | 29-10-2019          | 64.29            | 34.54             | BDL*  | BDL*              | BDL*              | BDL*              | 0.60              | BDL*                          | 42.55           | 10.13                                                                                                                                                                                                                                                                                                                                             | 17.65 | 22.56                 |
| 10         | 01-11-2019          | 56.30            | 23.58             | BDL*  | BDL*              | BDL*              | BDL*              | 0.66              | BDL*                          | 15.43           | 12.60                                                                                                                                                                                                                                                                                                                                             | 24.35 | 15.61                 |
| 11         | 05-11-2019          | 76.35            | 40.62             | BDL*  | BDL*              | BDL*              | BDL*              | 0.21              | BDL*                          | 43.59           | 16.23                                                                                                                                                                                                                                                                                                                                             | 35.64 | 17.51                 |
| 12         | 08-11-2019          | 68.60            | 35.50             | BDL*  | BDL*              | BDL*              | BDL*              | 0.22              | BDL*                          | 19.50           | 22.66                                                                                                                                                                                                                                                                                                                                             | 41.57 | 10.7                  |
| 13         | 12-11-2019          | 70.70            | 38.48             | BDL*  | BDL*              | BDL*              | BDL*              | 0.80              | BDL*                          | 11.54           | 20.35                                                                                                                                                                                                                                                                                                                                             | 38.69 | 24.21                 |
| 14         | 15-11-2019          | 60.31            | 31.71             | BDL*  | BDL*              | BDL*              | BDL*              | 0.39              | BDL*                          | 24.84           | 14.68                                                                                                                                                                                                                                                                                                                                             | 27.55 | 22.35                 |
| 15         | 19-11-2019          | 73.65            | 42.29             | BDL*  | BDL*              | BDL*              | BDL*              | 0.33              | BDL*                          | 13.53           | 19.41                                                                                                                                                                                                                                                                                                                                             | 36.21 | 14.67                 |
| 16         | 22-11-2019          | 84.38            | 36.46             | 0.65  | BDL*              | BDL*              | BDL*              | 0.24              | BDL*                          | 25.44           | 6.85                                                                                                                                                                                                                                                                                                                                              | 16.51 | 11.56                 |
| 17         | 26-11-2019          | 61.57            | 28.50             | BDL*  | BDL*              | BDL*              | BDL*              | 0.34              | BDL*                          | 17.62           | 15.25                                                                                                                                                                                                                                                                                                                                             | 33.50 | 19.27                 |
| 18         | 29-11-2019          | 72.30            | 25.90             | BDL*  | BDL*              | BDL*              | BDL*              | 0.41              | BDL*                          | 32.45           | 11.34                                                                                                                                                                                                                                                                                                                                             | 30.54 | 13.65                 |
| 19         | 03-12-2019          | 57.59            | 24.65             | BDL*  | BDL*              | BDL*              | BDL*              | 0.36              | BDL*                          | 28.68           | 6.53                                                                                                                                                                                                                                                                                                                                              | 15.27 | 20.7                  |
| 20         | 06-12-2019          | 64.51            | 32.66             | BDL*  | BDL*              | BDL*              | BDL*              | 0.33              | BDL*                          | 23.40           | 13.55                                                                                                                                                                                                                                                                                                                                             | 23.30 | 18.22                 |
| 21         | 10-12-2019          | 72.65            | 39.46             | BDL*  | BDL*              | BDL*              | BDL*              | 0.66              | BDL*                          | 17.50           | 20.37                                                                                                                                                                                                                                                                                                                                             | 26.34 | 14.54                 |
| 22         | 13-12-2019          | 69.20            | 35.33             | BDL*  | BDL*              | BDL*              | BDL*              | 0.57              | BDL*                          | 26.34           | 16.21                                                                                                                                                                                                                                                                                                                                             | 31.65 | 12.29                 |
| 23         | 17-12-2019          | 83.63            | 44.59             | BDL*  | BDL*              | BDL*              | BDL*              | 0.79              | BDL*                          | 36.25           | 12.55                                                                                                                                                                                                                                                                                                                                             | 19.22 | 16.43                 |
| 24         | 20-12-2019          | 79.54            | 41.30             | BDL*  | BDL*              | BDL*              | BDL*              | 0.15              | BDL*                          | 33.27           | 17.21                                                                                                                                                                                                                                                                                                                                             | 22.26 | 19.54                 |
| 25         | 24-12-2019          | 52.76            | 22.40             | BDL*  | BDL*              | BDL*              | BDL*              | 0.19              | BDL*                          | 38.28           | 22.50                                                                                                                                                                                                                                                                                                                                             | 34.56 | 23.62                 |
| 26         | 27-12-2019          | 73.68            | 36.58             | BDL*  | BDL*              | BDL*              | BDL*              | 0.72              | BDL*                          | 14.36           | 10.70                                                                                                                                                                                                                                                                                                                                             | 27.28 | 21.74                 |
| 27         | 31-12-2019          | 80.27            | 43.30             | BDL*  | BDL*              | BDL*              | BDL*              | 0.53              | BDL*                          | 20.81           | 15.81                                                                                                                                                                                                                                                                                                                                             | 32.52 | 26.41                 |

-07-D

**Authorized Signatory** 

• FSSAI Approved Lab • Recognised by MoEF, New Delhi Under Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

• ISO 14001 : 2004 • OHSAS 18001 : 2007

• ISO 9001 ·

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

# PC

POLLUCON LABORATORIES PVT. LTD.

| 28  | 03-01-2020      | 65.87                 | 26.44    | BDL*      | BDL*      | BDL*    | BDL*      | 0.57     | BDL*      | 41.55       | 20.33     | 43.51                | 21.64     |
|-----|-----------------|-----------------------|----------|-----------|-----------|---------|-----------|----------|-----------|-------------|-----------|----------------------|-----------|
| CON | CHURDN POLLICON | PERCENCIÓN DE PENCIÓN | N POLLUC | IN POLLUC | ON POLLIE | ON POLL | CON POLIT | CON POLL | ICON POLI | LICON POLLU | LICON POI | EUCON PO             | LUCION PC |
| 29  | 07-01-2020      | 77.60                 | 41.51    | BDL*      | BDL*      | BDL*    | BDL*      | 0.60     | BDL*      | 22.45       | 24.39     | 31.50                | 23.48     |
| 30  | 10-01-2020      | 67.26                 | 34.22    | BDL*      | BDL*      | BDL*    | BDL*      | 0.38     | BDL*      | 27.59       | 18.46     | 21.56                | 12.68     |
| 31  | 14-01-2020      | 73.44                 | 37.25    | BDL*      | BDL*      | BDL*    | BDL*      | 0.17     | BDL*      | 23.44       | 23.32     | 42.63                | 16.22     |
| 32  | 17-01-2020      | 69.34                 | 25.48    | BDL*      | BDL*      | BDL*    | BDL*      | 0.27     | BDL*      | 37.52       | 11.61     | 35.32                | 11.48     |
| 33  | 21-01-2020      | 76.44                 | 20.19    | BDL*      | BDL*      | BDL*    | BDL*      | 0.50     | BDL*      | 48.32       | 9.53      | 38.23                | 18.35     |
| 34  | 24-01-2020      | 81.21                 | 44.18    | BDL*      | BDL*      | BDL*    | BDL*      | 0.45     | BDL*      | 28.33       | 21.54     | 19.33                | 13.21     |
| 35  | 28-01-2020      | 78.62                 | 29.41    | BDL*      | BDL*      | BDL*    | BDL*      | 0.62     | BDL*      | 45.35       | 19.32     | 37.41                | 15.57     |
| 36  | 31-01-2020      | 62.66                 | 33.47    | BDL*      | BDL*      | BDL*    | BDL*      | 0.71     | BDL*      | 33.50       | 6.17      | 22.31                | 20.8      |
| 37  | 04-02-2020      | 70.20                 | 36.52    | BDL*      | BDL*      | BDL*    | BDL*      | 0.24     | BDL*      | 30.27       | 15.84     | 25.67                | 15.68     |
| 38  | 07-02-2020      | 62.62                 | 27.54    | BDL*      | BDL*      | BDL*    | BDL*      | 0.52     | BDL*      | 38.51       | 9.63      | 20.46                | 22.33     |
| 39  | 11-02-2020      | 58.25                 | 33.47    | BDL*      | BDL*      | BDL*    | BDL*      | 0.25     | BDL*      | 21.53       | 12.87     | 23.48                | 20.4      |
| 40  | 14-02-2020      | 67.51                 | 34.52    | BDL*      | BDL*      | BDL*    | BDL*      | 0.31     | BDL*      | 25.88       | 21.30     | 33.49                | 14.53     |
| 41  | 18-02-2020      | 82.69                 | 45.63    | BDL*      | BDL*      | BDL*    | BDL*      | 0.53     | BDL*      | 27.51       | 14.58     | 27.66                | 21.12     |
| 42  | 21-02-2020      | 78.64                 | 23.48    | BDL*      | BDL*      | BDL*    | BDL*      | 0.60     | BDL*      | 37.55       | 11.59     | 24.50                | 12.22     |
| 43  | 25-02-2020      | 83.76                 | 42.67    | BDL*      | BDL*      | BDL*    | BDL*      | 0.26     | BDL*      | 42.35       | 13.64     | 32.65                | 25.3      |
| 44  | 28-02-2020      | 76.57                 | 35.73    | BDL*      | BDL*      | BDL*    | BDL*      | 0.18     | BDL*      | 18.68       | 20.59     | 29. <mark>4</mark> 3 | 23.31     |
| 45  | 03-03-2020      | 82.39                 | 45.45    | BDL*      | BDL*      | BDL*    | BDL*      | 0.47     | BDL*      | 16.67       | 9.33      | 16.66                | 21.57     |
| 46  | 06-03-2020      | 74.32                 | 42.43    | BDL*      | BDL*      | BDL*    | BDL*      | 0.96     | BDL*      | 31.32       | 15.61     | 32.39                | 27.5      |
| 47  | 10-03-2020      | 67.17                 | 32.74    | BDL*      | BDL*      | BDL*    | BDL*      | 0.60     | BDL*      | 19.64       | 17.71     | 26.56                | 18.49     |
| 48  | 13-03-2020      | 55.36                 | 35.72    | BDL*      | BDL*      | BDL*    | BDL*      | 0.40     | BDL*      | 15.49       | 13.50     | 22.49                | 16.68     |
| 49  | 17-03-2020      | 84.33                 | 46.46    | BDL*      | BDL*      | BDL*    | BDL*      | 0.71     | BDL*      | 21.63       | 6.78      | 15.73                | 17.6      |
| 50  | 20-03-2020      | 62.68                 | 33.49    | BDL*      | BDL*      | BDL*    | BDL*      | 0.55     | BDL*      | 29.49       | 12.27     | 25.38                | 20.3      |
| 51  | 24-03-2020      | 76.42                 | 39.41    | BDL*      | BDL*      | BDL*    | BDL*      | 0.61     | BDL*      | 23.62       | 21.29     | 34.59                | 24.3      |
| 52  | 27-03-2020      | 66.55                 | 31.64    | BDL*      | BDL*      | BDL*    | BDL*      | 0.73     | BDL*      | 35.47       | 18.48     | 37.63                | 19.2      |

**Observation:** Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-I Dt: 18/11/2009 National Ambient Air Quality Standards, New Delhi, for 24 hourly or 8 hourly or 1 hourly monitored values **Note:** BDL\*: Below Detection Limit, Minimum Detection Limit, Lead as Pb: 0.1  $\mu$ g/m<sup>3</sup>, Carbon Monoxide as CO: 0.1 mg/m<sup>3</sup>, Benzene as C<sub>6</sub>H<sub>6</sub>: 2  $\mu$ g/m<sup>3</sup>, Benzo (a) Pyrene (BaP) - Particulate Phase only: 0.5 ng/m<sup>3</sup>, Arsenic as As: 2 ng/m<sup>3</sup>, Nickel as Ni: 5 ng/m<sup>3</sup>

-D-D

**Authorized Signatory** 

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 Sec. 12 of Environmental (Protection) Act-1986
 Schedule II auditor

● GPCB apprved ● ISO 14001 : 2004 ● OHSAS 18001 : 2007 schedule II auditor

ISO 9001 : 2008

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

## Table No.: 1.3 - Ambient Air Quality Monitoring Results At Sub-Station-7B Building

| Sr.   | ION POLLUCON        | OLLUCON                 |                   |       | Loca              | ation-3           | : Sub-S           | tation-           | 7B Buil                       | ding            |                        | /m³         µg/m³           2.53         21.59           0.61         24.56           .49         26.46           .49         26.46           .49         26.46           .49         26.46           .49         26.46           .49         26.46           .49         26.46           .49         26.46           .49         26.46           .42         33.44           0.46         20.56           .58         35.21           .58         35.21           .64         22.31           .64         22.31           .64         22.31           .64         18.31           .62         21.55           .61         15.59           .61         15.59           .62         26.84           .53         26.84           .52         20.31           .52         20.31 |                       |
|-------|---------------------|-------------------------|-------------------|-------|-------------------|-------------------|-------------------|-------------------|-------------------------------|-----------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| No    | Date of<br>Sampling | <b>PM</b> <sub>10</sub> | PM <sub>2.5</sub> | Pb    | BaP               | As                | Ni Po             | СО                | C <sub>6</sub> H <sub>6</sub> | NH <sub>3</sub> | <b>SO</b> <sub>2</sub> | NOx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>O</b> <sub>3</sub> |
| DELLA |                     | µg/m³                   | µg/m³             | µg/m³ | ng/m <sup>3</sup> | ng/m <sup>3</sup> | ng/m <sup>3</sup> | mg/m <sup>3</sup> | µg/m³                         | µg/m³           | µg/m³                  | µg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | µg/m³                 |
| 1     | 01-10-2019          | 53.60                   | 22.30             | BDL*  | BDL*              | BDL*              | BDL*              | 0.23              | BDL*                          | 24.29           | 12.53                  | 21.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.44                 |
| 2     | 04-10-2019          | 65.24                   | 27.58             | BDL*  | BDL*              | BDL*              | BDL*              | 0.14              | BDL*                          | 29.76           | 10.61                  | 24.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.22                 |
| 3     | 08-10-2019          | 50.66                   | 19.39             | BDL*  | BDL*              | BDL*              | BDL*              | 0.61              | BDL*                          | 35.67           | 6.49                   | 26.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.38                 |
| 4     | 11-10-2019          | 44.20                   | 24.31             | BDL*  | BDL*              | BDL*              | BDL*              | 0.25              | BDL*                          | 18.20           | 17.20                  | 37.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.47                 |
| 5     | 15-10-2019          | 64.28                   | 31.59             | BDL*  | BDL*              | BDL*              | BDL*              | 0.50              | BDL*                          | 41.20           | 8.42                   | 33.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.34                 |
| 6     | 18-10-2019          | 58.30                   | 17.50             | BDL*  | BDL*              | BDL*              | BDL*              | 0.16              | BDL*                          | 34.39           | 19.46                  | 20.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.57                 |
| 7     | 22-10-2019          | 66.58                   | 38.52             | BDL*  | BDL*              | BDL*              | BDL*              | 0.38              | BDL*                          | 27.29           | 9.58                   | 35.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.19                 |
| 8     | 25-10-2019          | 78.63                   | 42.54             | BDL*  | BDL*              | BDL*              | BDL*              | 0.42              | BDL*                          | 30.29           | 15.81                  | 25.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.43                 |
| 9     | 29-10-2019          | 59.28                   | 28.24             | BDL*  | BDL*              | BDL*              | BDL*              | 0.29              | BDL*                          | 25.26           | 7.17                   | 32.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.71                 |
| 10    | 01-11-2019          | 61.20                   | 29.59             | BDL*  | BDL*              | BDL*              | BDL*              | 0.40              | BDL*                          | 25.65           | 8.64                   | 22.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.56                 |
| 11    | 05-11-2019          | 82.37                   | 48.62             | BDL*  | BDL*              | BDL*              | BDL*              | 0.63              | BDL*                          | 17.56           | 11.56                  | 32.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.29                 |
| 12    | 08-11-2019          | 58.67                   | 28.63             | BDL*  | BDL*              | BDL*              | BDL*              | 0.32              | BDL*                          | 33.63           | 13.64                  | 18.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.58                 |
| 13    | 12-11-2019          | 63.66                   | 30.32             | BDL*  | BDL*              | BDL*              | BDL*              | 0.42              | BDL*                          | 24.26           | 18.62                  | 21.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.22                 |
| 14    | 15-11-2019          | 86.32                   | 45.39             | BDL*  | BDL*              | BDL*              | BDL*              | 0.16              | BDL*                          | 30.91           | 12.35                  | 25.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.5                  |
| 15    | 19-11-2019          | 52.61                   | 25.53             | BDL*  | BDL*              | BDL*              | BDL*              | 0.26              | BDL*                          | 18.66           | 7.61                   | 15.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.78                 |
| 16    | 22-11-2019          | 79.23                   | 27.54             | BDL*  | BDL*              | BDL*              | BDL*              | 0.47              | BDL*                          | 21.25           | 10.53                  | 19.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.7                  |
| 17    | 26-11-2019          | 68.69                   | 34.24             | BDL*  | BDL*              | BDL*              | BDL*              | 0.23              | BDL*                          | 22.36           | 19.64                  | 29.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.6                  |
| 18    | 29-11-2019          | 55.34                   | 22.09             | BDL*  | BDL*              | BDL*              | BDL*              | 0.44              | BDL*                          | 14.58           | 9.53                   | 26.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.53                 |
| 19    | 03-12-2019          | 67.34                   | 37.54             | BDL*  | BDL*              | BDL*              | BDL*              | 0.54              | BDL*                          | 21.72           | 14.52                  | 38.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.14                 |
| 20    | 06-12-2019          | 52.66                   | 29.32             | BDL*  | BDL*              | BDL*              | BDL*              | 0.34              | BDL*                          | 31.33           | 9.52                   | 20.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.21                 |
| 21    | 10-12-2019          | 65.41                   | 34.30             | BDL*  | BDL*              | BDL*              | BDL*              | 0.11              | BDL*                          | 10.34           | 16.42                  | 23.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.58                 |
| 22    | 13-12-2019          | 78.60                   | 42.36             | BDL*  | BDL*              | BDL*              | BDL*              | 0.60              | BDL*                          | 23.53           | 10.26                  | 18.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.46                 |
| 23    | 17-12-2019          | 68.29                   | 39.54             | BDL*  | BDL*              | BDL*              | BDL*              | 0.21              | BDL*                          | 40.24           | 7.62                   | 15.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.41                 |
| 24    | 20-12-2019          | 84.50                   | 46.51             | BDL*  | BDL*              | BDL*              | BDL*              | 0.65              | BDL*                          | 20.25           | 13.57                  | 32.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.28                 |
| 25    | 24-12-2019          | 64.29                   | 30.77             | BDL*  | BDL*              | BDL*              | BDL*              | 0.56              | BDL*                          | 15.65           | 8.78                   | 25.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.55                 |
| 26    | 27-12-2019          | 56.54                   | 26.21             | BDL*  | BDL*              | BDL*              | BDL*              | 0.31              | BDL*                          | 29.20           | 6.53                   | 16.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.84                 |
| 27    | 31-12-2019          | 61.52                   | 33.68             | BDL*  | BDL*              | BDL*              | BDL*              | 0.71              | BDL*                          | 24.62           | 12.88                  | 19.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.35                 |

## -07-10-

**Authorized Signatory** 

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 Sec. 12 of Environmental (Protection) Act-1986
 Schedule II auditor

GPCB apprved • ISO 14001 : 2004 chedule II auditor

• OHSAS 18001 : 2007

• ISO 9001

2008

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.



## POLLUCON LABORATORIES PVT. LTD.

| 28 | 03-01-2020 | 58.68 | 31.55 | BDL* | BDL* | BDL* | BDL* | 0.11 | BDL* | 44.57 | 6.53  | 32.33 | 18.63 |
|----|------------|-------|-------|------|------|------|------|------|------|-------|-------|-------|-------|
| 29 | 07-01-2020 | 63.46 | 35.38 | BDL* | BDL* | BDL* | BDL* | 0.23 | BDL* | 35.65 | 14.57 | 25.64 | 16.37 |
| 30 | 10-01-2020 | 55.37 | 38.20 | BDL* | BDL* | BDL* | BDL* | 0.47 | BDL* | 38.31 | 10.32 | 30.20 | 21.24 |
| 31 | 14-01-2020 | 68.47 | 25.36 | BDL* | BDL* | BDL* | BDL* | 0.13 | BDL* | 27.64 | 19.52 | 31.22 | 23.42 |
| 32 | 17-01-2020 | 56.32 | 23.26 | BDL* | BDL* | BDL* | BDL* | 0.31 | BDL* | 43.67 | 9.56  | 16.51 | 14.31 |
| 33 | 21-01-2020 | 49.34 | 15.33 | BDL* | BDL* | BDL* | BDL* | 0.40 | BDL* | 37.85 | 12.34 | 23.67 | 12.31 |
| 34 | 24-01-2020 | 65.38 | 29.63 | BDL* | BDL* | BDL* | BDL* | 0.26 | BDL* | 32.32 | 20.24 | 28.68 | 22.46 |
| 35 | 28-01-2020 | 72.48 | 36.35 | BDL* | BDL* | BDL* | BDL* | 0.55 | BDL* | 12.44 | 13.26 | 20.32 | 20.53 |
| 36 | 31-01-2020 | 67.59 | 24.24 | BDL* | BDL* | BDL* | BDL* | 0.14 | BDL* | 26.50 | 8.43  | 18.62 | 15.4  |
| 37 | 04-02-2020 | 51.50 | 26.75 | BDL* | BDL* | BDL* | BDL* | 0.48 | BDL* | 16.58 | 8.27  | 15.57 | 19.22 |
| 38 | 07-02-2020 | 69.26 | 30.45 | BDL* | BDL* | BDL* | BDL* | 0.44 | BDL* | 12.68 | 16.24 | 34.50 | 12.42 |
| 39 | 11-02-2020 | 53.49 | 22.42 | BDL* | BDL* | BDL* | BDL* | 0.36 | BDL* | 30.42 | 14.34 | 28.49 | 14.12 |
| 40 | 14-02-2020 | 74.27 | 43.56 | BDL* | BDL* | BDL* | BDL* | 0.55 | BDL* | 33.44 | 6.79  | 17.51 | 22.67 |
| 41 | 18-02-2020 | 55.62 | 28.25 | BDL* | BDL* | BDL* | BDL* | 0.49 | BDL* | 24.38 | 10.60 | 20.28 | 15.46 |
| 42 | 21-02-2020 | 66.30 | 31.20 | BDL* | BDL* | BDL* | BDL* | 0.39 | BDL* | 18.32 | 15.28 | 27.21 | 20.66 |
| 43 | 25-02-2020 | 58.67 | 24.26 | BDL* | BDL* | BDL* | BDL* | 0.42 | BDL* | 20.45 | 11.41 | 24.35 | 23.54 |
| 44 | 28-02-2020 | 68.29 | 27.63 | BDL* | BDL* | BDL* | BDL* | 0.16 | BDL* | 28.66 | 9.64  | 19.24 | 18.43 |
| 45 | 03-03-2020 | 71.64 | 35.51 | BDL* | BDL* | BDL* | BDL* | 0.24 | BDL* | 19.67 | 14.31 | 19.37 | 10.78 |
| 46 | 06-03-2020 | 63.37 | 39.66 | BDL* | BDL* | BDL* | BDL* | 0.88 | BDL* | 25.68 | 12.58 | 24.59 | 23.32 |
| 47 | 10-03-2020 | 84.58 | 44.32 | BDL* | BDL* | BDL* | BDL* | 0.44 | BDL* | 15.71 | 9.62  | 21.53 | 15.33 |
| 48 | 13-03-2020 | 76.37 | 48.21 | BDL* | BDL* | BDL* | BDL* | 0.69 | BDL* | 21.33 | 11.20 | 31.33 | 11.59 |
| 49 | 17-03-2020 | 68.32 | 31.30 | BDL* | BDL* | BDL* | BDL* | 0.58 | BDL* | 26.37 | 16.41 | 26.52 | 24.37 |
| 50 | 20-03-2020 | 89.29 | 42.52 | BDL* | BDL* | BDL* | BDL* | 0.21 | BDL* | 14.31 | 7.76  | 32.53 | 18.17 |
| 51 | 24-03-2020 | 54.24 | 19.68 | BDL* | BDL* | BDL* | BDL* | 0.52 | BDL* | 29.54 | 10.32 | 23.63 | 16.74 |
| 52 | 27-03-2020 | 61.39 | 28.25 | BDL* | BDL* | BDL* | BDL* | 0.66 | BDL* | 20.68 | 15.49 | 28.30 | 12.23 |

**Observation:** Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-I Dt: 18/11/2009 National Ambient Air Quality Standards, New Delhi, for 24 hourly or 8 hourly or 1 hourly monitored values **Note:** BDL\*: Below Detection Limit, Minimum Detection Limit, Lead as Pb: 0.1  $\mu$ g/m<sup>3</sup>, Carbon Monoxide as CO: 0.1 mg/m<sup>3</sup>, Benzene as C<sub>6</sub>H<sub>6</sub>: 2  $\mu$ g/m<sup>3</sup>, Benzo (a) Pyrene (BaP) - Particulate Phase only: 0.5 ng/m<sup>3</sup>, Arsenic as As: 2 ng/m<sup>3</sup>, Nickel as Ni: 5 ng/m<sup>3</sup>

-D-D

**Authorized Signatory** 

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 Sec. 12 of Environmental (Protection) Act-1986
 Schedule II auditor

● GPCB apprved ● ISO 14001 : 2004 ● OHSAS 18001 : 2007 schedule II auditor

ISO 9001 : 2008

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

## Table No.: 1.4 - Ambient Air Quality Monitoring Results At GCPTL Gate

| CON P      | POLLICON POLLUCO    | N POLLICON         | POLLUCO           | N POLITICO | N POLLUCO | Loc               | ation-4:          | GCPTL             | Gate                          | ON POLLUC       | ON POLLU        | CON POLLU | CON POLL |
|------------|---------------------|--------------------|-------------------|------------|-----------|-------------------|-------------------|-------------------|-------------------------------|-----------------|-----------------|-----------|----------|
| Sr.<br>No. | Date of<br>Sampling | PM <sub>10</sub>   | PM <sub>2.5</sub> | Pb         | BaP       | As                | Ni                | СО                | C <sub>6</sub> H <sub>6</sub> | NH <sub>3</sub> | SO <sub>2</sub> | NOx       | 03       |
| CON P      | POLLICON POLLIC     | µg/m³              | µg/m³             | µg/m³      | ng/m³     | ng/m <sup>3</sup> | ng/m <sup>3</sup> | mg/m <sup>3</sup> | µg/m³                         | µg/m³           | µg/m³           | µg/m³     | µg/m³    |
|            | 01-10-2019          | 49.33              | 19.57             | BDL*       | BDL*      | BDL*              | BDL*              | 0.11              | BDL*                          | 35.34           | 15.66           | 25.41     | 21.64    |
| 2          | 04-10-2019          | 59.34              | 30.21             | BDL*       | BDL*      | BDL*              | BDL*              | 0.49              | BDL*                          | 22.64           | 13.16           | 21.24     | 12.58    |
| 3          | 08-10-2019          | 63.49              | 25.38             | BDL*       | BDL*      | BDL*              | BDL*              | 0.21              | BDL*                          | 28.20           | 8.54            | 15.49     | 24.81    |
| 4          | 11-10-2019          | 70.29              | 21.37             | BDL*       | BDL*      | BDL*              | BDL*              | 0.39              | BDL*                          | 39.93           | 6.47            | 26.54     | 18.54    |
| 5          | 15-10-2019          | 55.62              | 23.22             | BDL*       | BDL*      | BDL*              | BDL*              | 0.37              | BDL*                          | 31.53           | 12.33           | 18.58     | 20.66    |
| 6          | 18-10-2019          | 50.29              | 20.22             | BDL*       | BDL*      | BDL*              | BDL*              | 0.19              | BDL*                          | 27.58           | 9.66            | 30.27     | 16.29    |
| 7          | 22-10-2019          | 77.30              | 34.29             | BDL*       | BDL*      | BDL*              | BDL*              | 0.41              | BDL*                          | 21.66           | 7.25            | 20.30     | 13.53    |
| 8          | 25-10-2019          | 60.57              | 26.40             | BDL*       | BDL*      | BDL*              | BDL*              | 0.24              | BDL*                          | 18.50           | 10.38           | 28.37     | 10.32    |
| 9          | 29-10-2019          | 52.39              | 22.53             | BDL*       | BDL*      | BDL*              | BDL*              | 0.22              | BDL*                          | 37.27           | 14.68           | 23.57     | 17.79    |
| 10         | 01-11-2019          | 66.50              | 32.64             | BDL*       | BDL*      | BDL*              | BDL*              | 0.57              | BDL*                          | 33.83           | 6.48            | 18.60     | 11.21    |
| 11         | 05-11-2019          | 56.60              | 36.56             | BDL*       | BDL*      | BDL*              | BDL*              | 0.53              | BDL*                          | 11.24           | 8.33            | 26.39     | 14.24    |
| 12         | 08-11-2019          | 64.51              | 31.34             | BDL*       | BDL*      | BDL*              | BDL*              | 0.64              | BDL*                          | 24.39           | 10.27           | 23.47     | 18.28    |
| 13         | 12-11-2019          | <mark>58.39</mark> | 26.33             | BDL*       | BDL*      | BDL*              | BDL*              | 0.19              | BDL*                          | 31.59           | 12.01           | 35.75     | 12.79    |
| 14         | 15-11-2019          | 65.36              | 30.49             | BDL*       | BDL*      | BDL*              | BDL*              | 0.50              | BDL*                          | 21.37           | 9.34            | 19.53     | 24.58    |
| 15         | 19-11-2019          | 78.31              | 37.61             | BDL*       | BDL*      | BDL*              | BDL*              | 0.36              | BDL*                          | 37.52           | 14.22           | 29.45     | 19.47    |
| 16         | 22-11-2019          | 62.49              | 24.34             | BDL*       | BDL*      | BDL*              | BDL*              | 0.29              | BDL*                          | 10.62           | 16.64           | 25.64     | 17.89    |
| 17         | 26-11-2019          | 73.46              | 40.36             | BDL*       | BDL*      | BDL*              | BDL*              | 0.58              | BDL*                          | 13.69           | 13.80           | 22.52     | 13.61    |
| 18         | 29-11-2019          | 60.24              | 27.37             | BDL*       | BDL*      | BDL*              | BDL*              | 0.52              | BDL*                          | 26.34           | 7.56            | 17.54     | 10.62    |
| 19         | 03-12-2019          | 73.52              | 31.52             | BDL*       | BDL*      | BDL*              | BDL*              | 0.49              | BDL*                          | 16.84           | 7.24            | 21.57     | 19.27    |
| 20         | 06-12-2019          | 57.69              | 25.61             | BDL*       | BDL*      | BDL*              | BDL*              | 0.13              | BDL*                          | 19.53           | 15.63           | 28.51     | 16.53    |
| 21         | 10-12-2019          | 60.21              | 28.48             | BDL*       | BDL*      | BDL*              | BDL*              | 0.58              | BDL*                          | 20.66           | 12.32           | 33.43     | 13.44    |
| 22         | 13-12-2019          | 55.50              | 30.65             | BDL*       | BDL*      | BDL*              | BDL*              | 0.22              | BDL*                          | 13.63           | 18.73           | 36.42     | 17.34    |
| 23         | 17-12-2019          | 63.47              | 35.43             | BDL*       | BDL*      | BDL*              | BDL*              | 0.29              | BDL*                          | 25.33           | 11.57           | 29.49     | 22.43    |
| 24         | 20-12-2019          | 72.67              | 38.39             | BDL*       | BDL*      | BDL*              | BDL*              | 0.40              | BDL*                          | 29.58           | 19.55           | 25.33     | 10.37    |
| 25         | 24-12-2019          | 48.38              | 19.53             | BDL*       | BDL*      | BDL*              | BDL*              | 0.17              | BDL*                          | 31.20           | 13.64           | 37.57     | 18.49    |
| 26         | 27-12-2019          | 50.35              | 23.48             | BDL*       | BDL*      | BDL*              | BDL*              | 0.16              | BDL*                          | 24.38           | 8.45            | 19.36     | 11.26    |
| 27         | 31-12-2019          | 69.52              | 36.35             | BDL*       | BDL*      | BDL*              | BDL*              | 0.61              | BDL*                          | 22.53           | 17.81           | 24.23     | 15.45    |

-07-D

**Authorized Signatory** 

• FSSAI Approved Lab • Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

GPCB apprved

• ISO 14001 : 2004 OHSAS 18001

: 2007

ISO

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

# POLLI

POLLUCON LABORATORIES PVT. LTD.

| / CON | POLITICON POLITIC |       | AL BOALT DE | THE REAL PROPERTY OF | SAL POLICE | CONT NOVELLY | ON BOULD | CON BOTH | CON DOLL | CON POUL | CON DOL | TOON TOOL | MOON NO |
|-------|-------------------|-------|-------------|----------------------|------------|--------------|----------|----------|----------|----------|---------|-----------|---------|
| 28    | 03-01-2020        | 53.42 | 22.41       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.21     | BDL*     | 32.55    | 8.50    | 27.56     | 10.17   |
| 29    | 07-01-2020        | 71.68 | 29.20       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.64     | BDL*     | 25.47    | 18.34   | 19.23     | 13.51   |
| 30    | 10-01-2020        | 49.26 | 30.53       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.37     | BDL*     | 31.34    | 13.47   | 29.39     | 16.6    |
| 31    | 14-01-2020        | 61.53 | 20.37       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.48     | BDL*     | 18.25    | 11.81   | 17.56     | 14.54   |
| 32    | 17-01-2020        | 50.24 | 15.47       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.41     | BDL*     | 22.52    | 7.57    | 33.37     | 18.57   |
| 33    | 21-01-2020        | 44.37 | 23.33       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.61     | BDL*     | 34.26    | 15.34   | 28.31     | 22.52   |
| 34    | 24-01-2020        | 54.54 | 26.51       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.39     | BDL*     | 36.72    | 12.46   | 24.23     | 15.26   |
| 35    | 28-01-2020        | 65.41 | 33.56       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.32     | BDL*     | 42.58    | 9.63    | 16.88     | 19.63   |
| 36    | 31-01-2020        | 51.24 | 18.58       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.36     | BDL*     | 39.32    | 19.26   | 25.47     | 11.67   |
| 37    | 04-02-2020        | 76.56 | 40.25       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.54     | BDL*     | 40.28    | 12.65   | 28.33     | 23.39   |
| 38    | 07-02-2020        | 50.57 | 22.65       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.38     | BDL*     | 26.57    | 19.34   | 26.31     | 17.6    |
| 39    | 11-02-2020        | 72.64 | 37.83       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.46     | BDL*     | 18.45    | 11.51   | 21.58     | 15.37   |
| 40    | 14-02-2020        | 60.24 | 28.45       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.13     | BDL*     | 30.52    | 14.76   | 18.24     | 24.57   |
| 41    | 18-02-2020        | 70.55 | 36.71       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.17     | BDL*     | 21.23    | 16.55   | 23.55     | 12.28   |
| 42    | 21-02-2020        | 55.41 | 20.23       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.76     | BDL*     | 14.55    | 7.28    | 15.35     | 16.56   |
| 43    | 25-02-2020        | 77.55 | 38.54       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.50     | BDL*     | 28.33    | 17.23   | 20.13     | 21.63   |
| 44    | 28-02-2020        | 58.40 | 24.36       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.29     | BDL*     | 13.54    | 6.17    | 30.52     | 10.2    |
| 45    | 03-03-2020        | 56.29 | 26.42       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.29     | BDL*     | 13.52    | 17.61   | 31.53     | 14.64   |
| 46    | 06-03-2020        | 69.64 | 34.26       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.27     | BDL*     | 22.37    | 20.62   | 27.60     | 18.32   |
| 47    | 10-03-2020        | 59.62 | 28.64       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.79     | BDL*     | 11.55    | 12.85   | 30.27     | 13.58   |
| 48    | 13-03-2020        | 71.60 | 41.43       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.36     | BDL*     | 24.66    | 8.59    | 26.35     | 21.69   |
| 49    | 17-03-2020        | 61.63 | 27.84       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.85     | BDL*     | 18.43    | 14.32   | 33.40     | 19.47   |
| 50    | 20-03-2020        | 50.32 | 22.62       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.57     | BDL*     | 35.38    | 9.53    | 28.58     | 12.64   |
| 51    | 24-03-2020        | 62.97 | 29.47       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.78     | BDL*     | 14.58    | 16.34   | 32.91     | 10.2    |
| 52    | 27-03-2020        | 57.54 | 25.63       | BDL*                 | BDL*       | BDL*         | BDL*     | 0.54     | BDL*     | 17.37    | 7.35    | 15.94     | 15.29   |

**Observation:** Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-I Dt: 18/11/2009 National Ambient Air Quality Standards, New Delhi, for 24 hourly or 8 hourly or 1 hourly monitored values **Note:** BDL\*: Below Detection Limit, Minimum Detection Limit, Lead as Pb: 0.1  $\mu$ g/m<sup>3</sup>, Carbon Monoxide as CO: 0.1 mg/m<sup>3</sup>, Benzene as C<sub>6</sub>H<sub>6</sub>: 2  $\mu$ g/m<sup>3</sup>, Benzo (a) Pyrene (BaP) - Particulate Phase only: 0.5 ng/m<sup>3</sup>, Arsenic as As: 2 ng/m<sup>3</sup>, Nickel as Ni: 5 ng/m<sup>3</sup>

-D-D

**Authorized Signatory** 

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 Sec. 12 of Environmental (Protection) Act-1986
 Schedule II auditor

● GPCB apprved ● ISO 14001 : 2004 ● OHSAS 18001 : 2007 schedule II auditor

ISO 9001 : 2008

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

## Table No.: 1.5 - Ambient Air Quality Monitoring Results At Near Silo Porta Cabin

| CON P      | SELUCON POLILICO           | N POLLUCON       | POLLUCO           | N POLITICO | N POLLUC          | ocation           | -5: Nea           | r Silo Po         | rta Cabi                      | n Polluc             | ON POLLU        | CON POLLU | CON POLL |
|------------|----------------------------|------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------------------|----------------------|-----------------|-----------|----------|
| Sr.<br>No. | Date of<br>Sampling        | PM <sub>10</sub> | PM <sub>2.5</sub> | Pb         | BaP               | As                | Ni                | СО                | C <sub>6</sub> H <sub>6</sub> | NH <sub>3</sub>      | SO <sub>2</sub> | NOx       | 03       |
| CON P      | Samping<br>rollicon rollic | µg/m³            | µg/m³             | µg/m³      | ng/m <sup>3</sup> | ng/m <sup>3</sup> | ng/m <sup>3</sup> | mg/m <sup>3</sup> | µg/m³                         | µg/m³                | µg/m³           | µg/m³     | µg/m³    |
|            | 01-10-2019                 | 63.51            | 27.66             | BDL*       | BDL*              | BDL*              | BDL*              | 0.30              | BDL*                          | 26.31                | 10.24           | 16.55     | 16.52    |
| 2          | 04-10-2019                 | 55.62            | 23.42             | BDL*       | BDL*              | BDL*              | BDL*              | 0.80              | BDL*                          | 32.54                | 6.82            | 18.64     | 20.25    |
| 3          | 08-10-2019                 | 77.56            | 29.55             | BDL*       | BDL*              | BDL*              | BDL*              | 0.27              | BDL*                          | 19.26                | 13.26           | 31.27     | 18.44    |
| 4          | 11-10-2019                 | 82.66            | 36.54             | BDL*       | BDL*              | BDL*              | BDL*              | 0.47              | BDL*                          | 25.49                | 11.22           | 22.35     | 24.36    |
| 5          | 15-10-2019                 | 59.37            | 33.23             | BDL*       | BDL*              | BDL*              | BDL*              | 0.45              | BDL*                          | 35.22                | 17.14           | 35.58     | 15.18    |
| 6          | 18-10-2019                 | 69.27            | 26.39             | BDL*       | BDL*              | BDL*              | BDL*              | 0.17              | BDL*                          | 31.28                | 12.12           | 27.53     | 22.22    |
| 7          | 22-10-2019                 | 57.31            | 30.35             | BDL*       | BDL*              | BDL*              | BDL*              | 0.26              | BDL*                          | 24.57                | 14.57           | 30.52     | 11.3     |
| 8          | 25 <mark>-10-2</mark> 019  | 65.32            | 38.26             | BDL*       | BDL*              | BDL*              | BDL*              | 0.40              | BDL*                          | 21.52                | 8.30            | 23.49     | 14.39    |
| 9          | 29-10-2019                 | 48.58            | 19.23             | BDL*       | BDL*              | BDL*              | BDL*              | 0.52              | BDL*                          | 17.56                | 18.33           | 36.39     | 25.64    |
| 10         | 01-11-2019                 | 50.67            | 20.22             | BDL*       | BDL*              | BDL*              | BDL*              | 0.25              | BDL*                          | 18.52                | 9.88            | 30.21     | 18.64    |
| 11         | 05-11-2019                 | 68.66            | 39.37             | BDL*       | BDL*              | BDL*              | BDL*              | 0.30              | BDL*                          | 31.64                | 13.26           | 21.69     | 16.49    |
| 12         | 08-11-2019                 | 74.66            | 43.20             | BDL*       | BDL*              | BDL*              | BDL*              | 0.38              | BDL*                          | 21.55                | 18.24           | 26.48     | 11.66    |
| 13         | 12-11-2019                 | 52.62            | 23.49             | BDL*       | BDL*              | BDL*              | BDL*              | 0.31              | BDL*                          | 15.30                | 14.58           | 29.55     | 20.44    |
| 14         | 15-11-2019                 | 70.21            | 38.62             | BDL*       | BDL*              | BDL*              | BDL*              | 0.27              | BDL*                          | 33.68                | 19.61           | 31.65     | 10.75    |
| 15         | 19-11-2019                 | 58.61            | 34.56             | BDL*       | BDL*              | BDL*              | BDL*              | 0.37              | BDL*                          | 20.38                | 10.62           | 23.63     | 13.48    |
| 16         | 22-11-2019                 | 67.51            | 31.25             | BDL*       | BDL*              | BDL*              | BDL*              | 0.18              | BDL*                          | 14.54                | 8.58            | 32.70     | 23.42    |
| 17         | 26-11-2019                 | 79.58            | 37.56             | BDL*       | BDL*              | BDL*              | BDL*              | 0.55              | BDL*                          | 28.30                | 11.28           | 16.60     | 17.97    |
| 18         | 29-11-2019                 | 50.20            | 21.45             | BDL*       | BDL*              | BDL*              | BDL*              | 0.17              | BDL*                          | 36.54                | 15.32           | 22.62     | 22.45    |
| 19         | 03-12-2019                 | 62.64            | 28.58             | BDL*       | BDL*              | BDL*              | BDL*              | 0.18              | BDL*                          | 19.26                | 11.33           | 26.54     | 23.22    |
| 20         | 06-12-2019                 | 71.21            | 37.52             | BDL*       | BDL*              | BDL*              | BDL*              | 0.24              | BDL*                          | 34.27                | 18.43           | 29.57     | 13.29    |
| 21         | 10-12-2019                 | 55.48            | 31.27             | BDL*       | BDL*              | BDL*              | BDL*              | 0.50              | BDL*                          | 1 <mark>4.</mark> 57 | 9.63            | 18.56     | 16.23    |
| 22         | 13-12- <mark>2</mark> 019  | 60.22            | 38.49             | BDL*       | BDL*              | BDL*              | BDL*              | 0.64              | BDL*                          | 17.84                | 6.27            | 23.20     | 14.34    |
| 23         | 17-12-2019                 | 72.66            | 27.66             | BDL*       | BDL*              | BDL*              | BDL*              | 0.38              | BDL*                          | 30.41                | 14.20           | 25.27     | 19.31    |
| 24         | 20-12-2019                 | 68.41            | 32.53             | BDL*       | BDL*              | BDL*              | BDL*              | 0.55              | BDL*                          | 24.21                | 8.27            | 16.24     | 21.65    |
| 25         | 24-12-2019                 | <u>58.64</u>     | 25.39             | BDL*       | BDL*              | BDL*              | BDL*              | 0.48              | BDL*                          | 20.20                | 16.46           | 19.58     | 25.69    |
| 26         | 27-12-2019                 | 63.55            | 29.55             | BDL*       | BDL*              | BDL*              | BDL*              | 0.14              | BDL*                          | 32.43                | 12.31           | 21.64     | 18.32    |
| 27         | 31-12-2019                 | 74.55            | 40.58             | BDL*       | BDL*              | BDL*              | BDL*              | 0.39              | BDL*                          | 37.54                | 19.67           | 28.26     | 20.34    |

-07-D

**Authorized Signatory** 

• FSSAI Approved Lab • Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

GPCB apprved

• ISO 14001 : 2004 • OHSAS 18001 : 2007

• ISO 9001 ·

2008

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

POLLUCON LABORATORIES PVT. LTD.

| 28 | 03-01-2020 | 71.56 | 29.59 | BDL* | BDL* | BDL* | BDL* | 0.44 | BDL* | 36.36 | 16.29 | 34.37 | 15.63 |
|----|------------|-------|-------|------|------|------|------|------|------|-------|-------|-------|-------|
| 29 | 07-01-2020 | 59.65 | 26.25 | BDL* | BDL* | BDL* | BDL* | 0.15 | BDL* | 40.23 | 11.32 | 28.29 | 19.54 |
| 30 | 10-01-2020 | 72.46 | 28.53 | BDL* | BDL* | BDL* | BDL* | 0.77 | BDL* | 23.58 | 8.64  | 24.52 | 23.68 |
| 31 | 14-01-2020 | 57.50 | 32.48 | BDL* | BDL* | BDL* | BDL* | 0.24 | BDL* | 32.48 | 15.69 | 21.63 | 11.23 |
| 32 | 17-01-2020 | 61.52 | 18.34 | BDL* | BDL* | BDL* | BDL* | 0.16 | BDL* | 26.39 | 13.59 | 26.23 | 16.53 |
| 33 | 21-01-2020 | 55.31 | 30.30 | BDL* | BDL* | BDL* | BDL* | 0.42 | BDL* | 22.13 | 6.37  | 33.57 | 20.66 |
| 34 | 24-01-2020 | 60.25 | 34.56 | BDL* | BDL* | BDL* | BDL* | 0.65 | BDL* | 19.55 | 18.78 | 20.27 | 10.26 |
| 35 | 28-01-2020 | 54.31 | 19.27 | BDL* | BDL* | BDL* | BDL* | 0.34 | BDL* | 25.88 | 7.22  | 29.23 | 13.4  |
| 36 | 31-01-2020 | 45.31 | 15.52 | BDL* | BDL* | BDL* | BDL* | 0.46 | BDL* | 20.33 | 14.40 | 15.31 | 26.25 |
| 37 | 04-02-2020 | 64.23 | 30.25 | BDL* | BDL* | BDL* | BDL* | 0.34 | BDL* | 25.39 | 10.55 | 31.54 | 21.21 |
| 38 | 07-02-2020 | 55.31 | 18.26 | BDL* | BDL* | BDL* | BDL* | 0.41 | BDL* | 35.46 | 14.70 | 30.49 | 10.22 |
| 39 | 11-02-2020 | 62.46 | 26.20 | BDL* | BDL* | BDL* | BDL* | 0.21 | BDL* | 12.39 | 18.23 | 34.59 | 18.21 |
| 40 | 14-02-2020 | 56.34 | 23.28 | BDL* | BDL* | BDL* | BDL* | 0.11 | BDL* | 15.36 | 8.72  | 24.23 | 12.64 |
| 41 | 18-02-2020 | 77.53 | 39.40 | BDL* | BDL* | BDL* | BDL* | 0.23 | BDL* | 18.29 | 12.48 | 32.42 | 17.82 |
| 42 | 21-02-2020 | 50.23 | 16.56 | BDL* | BDL* | BDL* | BDL* | 0.19 | BDL* | 20.98 | 9.25  | 20.35 | 14.62 |
| 43 | 25-02-2020 | 63.27 | 27.21 | BDL* | BDL* | BDL* | BDL* | 0.57 | BDL* | 31.51 | 19.54 | 27.55 | 19.51 |
| 44 | 28-02-2020 | 53.52 | 20.33 | BDL* | BDL* | BDL* | BDL* | 0.40 | BDL* | 24.20 | 15.03 | 22.57 | 11.65 |
| 45 | 03-03-2020 | 65.33 | 32.43 | BDL* | BDL* | BDL* | BDL* | 0.41 | BDL* | 24.23 | 6.63  | 26.25 | 16.2  |
| 46 | 06-03-2020 | 58.29 | 27.29 | BDL* | BDL* | BDL* | BDL* | 0.64 | BDL* | 18.49 | 17.27 | 29.61 | 21.33 |
| 47 | 10-03-2020 | 48.34 | 22.69 | BDL* | BDL* | BDL* | BDL* | 0.15 | BDL* | 23.48 | 8.39  | 20.45 | 22.43 |
| 48 | 13-03-2020 | 86.37 | 46.43 | BDL* | BDL* | BDL* | BDL* | 0.30 | BDL* | 11.39 | 15.20 | 23.53 | 25.45 |
| 49 | 17-03-2020 | 54.43 | 23.23 | BDL* | BDL* | BDL* | BDL* | 0.48 | BDL* | 15.29 | 10.67 | 30.64 | 20.58 |
| 50 | 20-03-2020 | 67.35 | 37.69 | BDL* | BDL* | BDL* | BDL* | 0.25 | BDL* | 17.57 | 13.30 | 18.60 | 15.56 |
| 51 | 24-03-2020 | 72.78 | 34.58 | BDL* | BDL* | BDL* | BDL* | 0.18 | BDL* | 26.48 | 7.65  | 15.41 | 12.44 |
| 52 | 27-03-2020 | 50.28 | 21.41 | BDL* | BDL* | BDL* | BDL* | 0.13 | BDL* | 12.49 | 9.37  | 17.68 | 17.72 |

Observation: Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-I Dt: 18/11/2009 National Ambient Air Quality Standards, New Delhi, for 24 hourly or 8 hourly or 1 hourly monitored values Note: BDL\*: Below Detection Limit, Minimum Detection Limit, Lead as Pb: 0.1 µg/m<sup>3</sup>, Carbon Monoxide as CO: 0.1 mg/m<sup>3</sup>, Benzene as  $C_6H_6$ : 2 µg/m<sup>3</sup>, Benzo (a) Pyrene (BaP) - Particulate Phase only: 0.5 ng/m<sup>3</sup>, Arsenic as As: 2 ng/m<sup>3</sup>, Nickel as Ni: 5 ng/m<sup>3</sup>

-D-D

**Authorized Signatory** 

• FSSAI Approved Lab • Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

● ISO 14001 : 2004 ● OHSAS 18001 : 2007 GPCB apprved

ISO 9001 : 2008

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

## Table No.: 1.6 - Ambient Air Quality Monitoring Results At JS - 2 Junction

| CON P      | DELUCON POLILICO          | N POLLUCON       | POLLUCO           | N POLITICO | N POLLICO         | Locat             | ion-6: J          | S – 2 Ju          | nction                        | ON POLLUK       | ON POLLU        | CON POLLU | CON POLI |
|------------|---------------------------|------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------------------|-----------------|-----------------|-----------|----------|
| Sr.<br>No. | Date of<br>Sampling       | PM <sub>10</sub> | PM <sub>2.5</sub> | Pb         | BaP               | As                | Ni                | со                | C <sub>6</sub> H <sub>6</sub> | NH <sub>3</sub> | SO <sub>2</sub> | NOx       | 03       |
|            |                           | µg/m³            | µg/m³             | µg/m³      | ng/m <sup>3</sup> | ng/m <sup>3</sup> | ng/m <sup>3</sup> | mg/m <sup>3</sup> | µg/m³                         | µg/m³           | µg/m³           | µg/m³     | µg/m³    |
|            | 01-10-2019                | 74.52            | 35.70             | BDL*       | BDL*              | BDL*              | BDL*              | 0.33              | BDL*                          | 41.58           | 20.49           | 36.20     | 22.34    |
| 2          | 04-10-2019                | 90.26            | 51.25             | BDL*       | BDL*              | 2.13              | BDL*              | 0.32              | BDL*                          | 36.54           | 15.31           | 31.57     | 17.57    |
| 3          | 08-10-2019                | 81.36            | 48.51             | 0.56       | BDL*              | 2.03              | 10.05             | 0.66              | BDL*                          | 23.65           | 17.51           | 28.68     | 26.38    |
| 4          | 11-10-2019                | 73.21            | 41.30             | BDL*       | BDL*              | 2.93              | BDL*              | 0.56              | BDL*                          | 45.25           | 25.26           | 34.53     | 19.41    |
| 5          | 15-10-2019                | 88.66            | 47.93             | 0.76       | BDL*              | 2.64              | 10.67             | 0.74              | BDL*                          | 52.43           | 21.19           | 32.42     | 24.22    |
| 6          | 18-10-2019                | 78.59            | 29.48             | BDL*       | BDL*              | BDL*              | BDL*              | 0.89              | BDL*                          | 40.20           | 14.36           | 43.63     | 28.24    |
| 7          | 22-10-2019                | 71.29            | 46.38             | BDL*       | BDL*              | 2.55              | BDL*              | 0.70              | BDL*                          | 35.16           | 23.55           | 38.24     | 23.54    |
| 8          | 25 <mark>-10-2019</mark>  | 84.20            | 49.33             | 0.71       | BDL*              | 2.76              | 10.39             | 0.62              | BDL*                          | 38.58           | 18.21           | 41.28     | 18.25    |
| 9          | 29-10-2019                | 69.22            | 31.53             | BDL*       | BDL*              | BDL*              | BDL*              | 0.68              | BDL*                          | 28.53           | 22.21           | 27.30     | 29.30    |
| 10         | 01-11-2019                | 75.60            | 37.33             | BDL*       | BDL*              | BDL*              | BDL*              | 0.65              | BDL*                          | 48.50           | 15.36           | 26.65     | 23.21    |
| 11         | 05-11-2019                | 88.66            | 44.48             | 0.68       | BDL*              | 2.24              | 10.13             | 0.92              | BDL*                          | 39.29           | 20.25           | 38.33     | 25.24    |
| 12         | 08-11-2019                | 78.61            | 40.53             | BDL*       | BDL*              | BDL*              | BDL*              | 0.82              | BDL*                          | 30.37           | 11.31           | 29.31     | 22.46    |
| 13         | 12-11-2019                | 86.35            | 48.57             | BDL*       | BDL*              | BDL*              | BDL*              | 1.01              | BDL*                          | 33.50           | 10.91           | 32.58     | 14.54    |
| 14         | 15-11-2019                | 68.46            | 36.32             | 0.52       | BDL*              | 2.58              | 10.53             | 0.88              | BDL*                          | 28.50           | 23.27           | 35.80     | 20.68    |
| 15         | 19-11-2019                | 80.22            | 46.27             | BDL*       | BDL*              | BDL*              | BDL*              | 0.73              | BDL*                          | 24.61           | 12.48           | 25.49     | 18.50    |
| 16         | 22-11-2019                | 72.60            | 39.27             | 0.72       | BDL*              | 2.46              | 10.69             | 0.94              | BDL*                          | 34.53           | 19.26           | 39.28     | 21.24    |
| 17         | 26-11-2019                | 83.58            | 45.68             | BDL*       | BDL*              | BDL*              | BDL*              | 0.70              | BDL*                          | 40.22           | 16.86           | 36.59     | 15.85    |
| 18         | 29-11-2019                | 78.56            | 29.81             | BDL*       | BDL*              | BDL*              | BDL*              | 0.87              | BDL*                          | 46.82           | 18.34           | 33.64     | 26.33    |
| 19         | 03-12-2019                | 78.29            | 40.22             | BDL*       | BDL*              | BDL*              | BDL*              | 0.46              | BDL*                          | 39.39           | 22.30           | 41.98     | 17.24    |
| 20         | 06-12-2019                | 86.24            | 46.26             | 0.52       | BDL*              | 2.76              | 10.59             | 0.27              | BDL*                          | 44.20           | 19.56           | 32.67     | 24.28    |
| 21         | 10-12-2019                | 79.39            | 43.53             | BDL*       | BDL*              | BDL*              | BDL*              | 0.47              | BDL*                          | 31.62           | 18.59           | 43.27     | 21.27    |
| 22         | 13-12- <mark>2</mark> 019 | 84.36            | 47.54             | 0.64       | BDL*              | 2.65              | 10.26             | 0.69              | BDL*                          | 34.51           | 21.20           | 37.40     | 18.54    |
| 23         | 17-12-2019                | 77.58            | 32.58             | BDL*       | BDL*              | BDL*              | BDL*              | 0.25              | BDL*                          | 45.22           | 17.59           | 40.20     | 14.19    |
| 24         | 20-12-2019                | 89.27            | 49.61             | 0.72       | BDL*              | 2.70              | 10.61             | 0.63              | BDL*                          | 38.48           | 15.23           | 28.68     | 25.61    |
| 25         | 24-12-2019                | 74.84            | 38.32             | BDL*       | BDL*              | BDL*              | BDL*              | 0.85              | BDL*                          | 25.24           | 20.35           | 31.58     | 28.50    |
| 26         | 27-12-2019                | 67.52            | 33.77             | BDL*       | BDL*              | BDL*              | BDL*              | 0.52              | BDL*                          | 35.62           | 14.38           | 24.59     | 26.55    |
| 27         | 31-12-2019                | 85.30            | 48.20             | BDL*       | BDL*              | BDL*              | BDL*              | 0.94              | BDL*                          | 43.52           | 23.53           | 34.51     | 23.15    |

#### -07-D

**Authorized Signatory** 

• FSSAI Approved Lab • Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

GPCB apprved

● ISO 14001 : 2004 ● OHSAS 18001 : 2007

• ISO

9001

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

# PC

POLLUCON LABORATORIES PVT. LTD.

| 28 | 03-01-2020 | 80.23 | 34.68 | BDL* | BDL* | BDL* | BDL*  | 0.73 | BDL* | 25.32 | 18.23 | 39.21 | 21.30 |
|----|------------|-------|-------|------|------|------|-------|------|------|-------|-------|-------|-------|
| 29 | 07-01-2020 | 89.34 | 45.61 | 0.72 | BDL* | 2.34 | 10.33 | 0.63 | BDL* | 38.25 | 9.43  | 42.29 | 27.55 |
| 30 | 10-01-2020 | 77.56 | 42.65 | BDL* | BDL* | BDL* | BDL*  | 0.56 | BDL* | 35.48 | 12.60 | 34.57 | 19.40 |
| 31 | 14-01-2020 | 87.62 | 59.37 | 0.68 | BDL* | 2.76 | 10.09 | 0.29 | BDL* | 15.68 | 26.33 | 38.62 | 26.39 |
| 32 | 17-01-2020 | 79.21 | 37.55 | BDL* | BDL* | BDL* | BDL*  | 0.66 | BDL* | 46.20 | 16.87 | 29.73 | 22.36 |
| 33 | 21-01-2020 | 61.45 | 33.13 | BDL* | BDL* | BDL* | BDL*  | 0.58 | BDL* | 28.63 | 24.23 | 41.26 | 16.89 |
| 34 | 24-01-2020 | 75.30 | 40.22 | BDL* | BDL* | BDL* | BDL*  | 0.68 | BDL* | 40.31 | 15.29 | 33.21 | 20.32 |
| 35 | 28-01-2020 | 85.32 | 44.55 | 0.56 | BDL* | 2.18 | 10.25 | 0.82 | BDL* | 30.12 | 11.39 | 30.19 | 28.52 |
| 36 | 31-01-2020 | 58.43 | 28.23 | BDL* | BDL* | BDL* | BDL*  | 0.78 | BDL* | 45.62 | 21.23 | 36.55 | 24.60 |
| 37 | 04-02-2020 | 82.67 | 46.26 | 0.64 | BDL* | 2.36 | 10.30 | 0.84 | BDL* | 46.23 | 14.36 | 34.22 | 25.64 |
| 38 | 07-02-2020 | 74.61 | 37.48 | BDL* | BDL* | BDL* | BDL*  | 0.47 | BDL* | 23.39 | 21.24 | 38.36 | 19.65 |
| 39 | 11-02-2020 | 67.57 | 29.28 | BDL* | BDL* | BDL* | BDL*  | 0.63 | BDL* | 39.44 | 16.43 | 31.29 | 22.41 |
| 40 | 14-02-2020 | 78.64 | 45.35 | BDL* | BDL* | BDL* | BDL*  | 0.56 | BDL* | 42.29 | 18.43 | 36.50 | 16.23 |
| 41 | 18-02-2020 | 88.48 | 48.41 | 0.74 | BDL* | 2.42 | 10.61 | 0.74 | BDL* | 33.64 | 22.20 | 33.57 | 24.28 |
| 42 | 21-02-2020 | 60.56 | 34.62 | BDL* | BDL* | BDL* | BDL*  | 0.80 | BDL* | 25.78 | 13.52 | 30.33 | 21.59 |
| 43 | 25-02-2020 | 70.28 | 35.62 | BDL* | BDL* | BDL* | BDL*  | 0.45 | BDL* | 45.54 | 23.55 | 42.35 | 26.30 |
| 44 | 28-02-2020 | 86.20 | 38.68 | 0.56 | BDL* | 2.22 | 10.45 | 0.65 | BDL* | 29.22 | 17.54 | 39.39 | 15.25 |
| 45 | 03-03-2020 | 77.59 | 39.75 | 0.72 | BDL* | 2.12 | BDL*  | 0.53 | BDL* | 29.92 | 12.70 | 33.27 | 18.78 |
| 46 | 06-03-2020 | 88.45 | 47.47 | 0.68 | BDL* | 2.26 | BDL*  | 0.34 | BDL* | 38.66 | 22.78 | 35.64 | 25.58 |
| 47 | 10-03-2020 | 73.54 | 35.71 | BDL* | BDL* | BDL* | BDL*  | 0.37 | BDL* | 26.61 | 15.46 | 38.28 | 20.34 |
| 48 | 13-03-2020 | 81.56 | 37.62 | 0.54 | BDL* | 2.52 | BDL*  | 0.74 | BDL* | 27.91 | 20.25 | 34.26 | 13.63 |
| 49 | 17-03-2020 | 89.46 | 43.59 | BDL* | BDL* | BDL* | BDL*  | 0.56 | BDL* | 32.69 | 24.51 | 27.67 | 26.25 |
| 50 | 20-03-2020 | 75.01 | 30.66 | 0.75 | BDL* | 2.46 | BDL*  | 0.65 | BDL* | 20.48 | 18.35 | 21.43 | 22.59 |
| 51 | 24-03-2020 | 67.33 | 36.29 | BDL* | BDL* | BDL* | BDL*  | 1.00 | BDL* | 36.57 | 13.20 | 39.53 | 19.64 |
| 52 | 27-03-2020 | 71.58 | 33.20 | BDL* | BDL* | BDL* | BDL*  | 0.86 | BDL* | 42.55 | 19.54 | 31.84 | 23.39 |

**Observation:** Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-I Dt: 18/11/2009 National Ambient Air Quality Standards, New Delhi, for 24 hourly or 8 hourly or 1 hourly monitored values **Note:** BDL\*: Below Detection Limit, Minimum Detection Limit, Lead as Pb: 0.1  $\mu$ g/m<sup>3</sup>, Carbon Monoxide as CO: 0.1 mg/m<sup>3</sup>, Benzene as C<sub>6</sub>H<sub>6</sub>: 2  $\mu$ g/m<sup>3</sup>, Benzo (a) Pyrene (BaP) - Particulate Phase only: 0.5 ng/m<sup>3</sup>, Arsenic as As: 2 ng/m<sup>3</sup>, Nickel as Ni: 5 ng/m<sup>3</sup>

-D-D

**Authorized Signatory** 

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 Sec. 12 of Environmental (Protection) Act-1986
 Schedule II auditor

● GPCB apprved ● ISO 14001 : 2004 ● OHSAS 18001 : 2007 schedule II auditor

ISO 9001 : 2008

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

## 3B. GROUND WATER LEVEL & QUALITY ANALYSIS (PIEZOMETERS) MONITORING: -

Table– 1: Ground Water Level & Quality Analysis (Pizometer) Results for the period: October-19 to March-20

## 3B.1Near Sub Station-7B

|            | LUCON POLLUCON POLLUCON POLLUCON<br>ICON POLLUCON POLLUCON POLLUCON F | OLLUCON POLL | LUCON POLLUCC |            | OBSER      | VATION     |            |            |
|------------|-----------------------------------------------------------------------|--------------|---------------|------------|------------|------------|------------|------------|
| SR.<br>NO. | TEST PARAMETER                                                        | UNIT         | Oct-19        | Nov-19     | Dec-19     | Jan-20     | Feb-20     | March-20   |
| N POLL     | LUCON FOLLICON FOLLICON FOLLICON<br>CON FOLLICON FOLLICON FOLLICON F  | OLUC CON PO  | 18-10-2019    | 25-11-2019 | 26-12-2019 | 28-01-2020 | 11-02-2020 | 19-03-2020 |
|            | Temperature                                                           | °C           | 31            | 30.3       | 29.6       | 29.9       | 30         | 31.8       |
| 2          | pHI POLLUCON POLLUCON POLLUCON F                                      |              | 7.96          | 7.98       | 7.72       | 8.57       | 8.14       | 8.13       |
| 3          | Total Dissolved Solids                                                | mg/L         | 1812          | 1904       | 1872       | 898        | 856        | 1184       |
| 4          | Salinity                                                              | ppt          | 1.25          | 1.31       | 1.28       | 0.24       | 0.23       | 0.37       |
| 5          | Chloride as Cl                                                        | mg/L         | 699           | 729        | 709        | 134        | 128        | 210        |
| 6          | Depth of Water Level from<br>Ground Level                             | meter        | con 2         | 2.2        | 1.5        | 1.5        | 1.5        | 1.7        |
| 7          | Status of Tide                                                        | CUCON POLI   | High Tide     | High Tide  | High Tide  | High Tide  | High Tide  | High Tide  |

## **3B.2Near QHSE Office**

| ON PO      | ILLICON POLLICON POLLICON POLLICO         | N POLLICON POL | LUCON POLLU |            | OBSER      | VATION     |            |            |
|------------|-------------------------------------------|----------------|-------------|------------|------------|------------|------------|------------|
| SR.<br>NO. | TEST PARAMETER                            | UNIT           | Oct-19      | Nov-19     | Dec-19     | Jan-20     | Feb-20     | March-20   |
| ON PO      | LUCON POLLICON POLLICO POLLUCO            | N POLLICON PC  | 18-10-2019  | 25-11-2019 | 26-12-2019 | 28-01-2020 | 11-02-2020 | 19-03-2020 |
|            | Temperature                               | °C             | 31.2        | 31         | 29.5       | 29.8       | 30         | 31.9       |
| 2          | pH POLLICON POL CON POLLICO               | N OLLUCON POL  | 7.61        | 7.72       | 7.58       | 8.61       | 8.42       | 8.27       |
| 3          | Total Dissolved Solids                    | mg/L           | 1856        | 1910       | 1820       | 879        | 862        | 1034       |
| 4          | Salinity                                  | ppt            | 1.35        | 1.36       | 1.35       | 0.22       | 0.21       | 0.3        |
| 5          | Chloride as Cl                            | mg/L           | 719         | 794        | 750        | 124        | 118        | 170        |
| 6          | Depth of Water Level from<br>Ground Level | meter          | 1.8         | 2          | 2.5        | 2.5        | 2.5        | 2.8        |
| 7          | Status of Tide                            | POLLUCOPI POL  | High Tide   | High Tide  | High Tide  | High Tide  | High Tide  | High Tide  |

-D-D

**Authorized Signatory** 

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

● GPCB apprved ● ISO 14001 : 2004 ● OHSAS 18001 : 2007 ● ISO 9001 schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

## 3C. SEA WATER (SURFACE & BOTTOM) QUALITY ANALYSIS MONITORING:-

 Table No.: 3C.1 - Sea Water (Surface & Bottom) Quality Analysis Results of sea water south side for the period: October 2019 to March 2020: 

|      |                                                                             |                             |                                                                                                | K                                                                     | ESULIS                                                                     | JF SEA W                                                            | VATER Q                                                                                            | UALITY A                                                              | ANALISI                                                                               | 5 5EA W                                                              | ATER SU                                                                                      | <b>JULU 211</b>                                               | JE                                                                                                    |                                                                 |
|------|-----------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Sr.  |                                                                             |                             | 001                                                                                            | -19                                                                   | NO\                                                                        | /-19                                                                | DEC                                                                                                | C-19                                                                  | JAN                                                                                   | I-20                                                                 | FEB                                                                                          | 8-20                                                          | MARC                                                                                                  | CH-20                                                           |
| NO.  | TEST PARAMETERS                                                             | UNIT                        | 18-10                                                                                          | -2019                                                                 | 25-11                                                                      | -2019                                                               | 26-12                                                                                              | -2019                                                                 | 28-01                                                                                 | -2020                                                                | 11-02                                                                                        | -2020                                                         | 1                                                                                                     | -2020                                                           |
|      |                                                                             |                             | Surface                                                                                        | Bottom                                                                | Surface                                                                    | Bottom                                                              | Surface                                                                                            | Bottom                                                                | Surface                                                                               | Bottom                                                               | Surface                                                                                      | Bottom                                                        | Surface                                                                                               | Bottom                                                          |
| 1    | pН                                                                          |                             | 8.27                                                                                           | 8.15                                                                  | 8.17                                                                       | 8.09                                                                | 8.1                                                                                                | 7.97                                                                  | 7.8                                                                                   | 8.12                                                                 | 8.25                                                                                         | 8.12                                                          | 8.14                                                                                                  | 8.07                                                            |
| 2    | Temperature                                                                 | °C                          | 29.8                                                                                           | 29                                                                    | 29.6                                                                       | 29                                                                  | 29.9                                                                                               | 29.5                                                                  | 29.9                                                                                  | 29.7                                                                 | 29.6                                                                                         | 29.4                                                          | 30.3                                                                                                  | 30                                                              |
| 3    | Total Suspended<br>Solids                                                   | mg/L                        | 356                                                                                            | 372                                                                   | 304                                                                        | 356                                                                 | 290                                                                                                | 267                                                                   | 420                                                                                   | 316                                                                  | 374                                                                                          | 402                                                           | 370                                                                                                   | 398                                                             |
| 4    | BOD (3 Days @<br>27 °C)                                                     | mg/L                        | 3.4                                                                                            | Not<br>Detected                                                       | 4.8                                                                        | Not<br>Detected                                                     | 4                                                                                                  | Not<br>Detected                                                       | 8                                                                                     | 4.2                                                                  | 5.8                                                                                          | 3                                                             | 4.6                                                                                                   | Not<br>Detected                                                 |
| 5    | Dissolved Oxygen                                                            | mg/L                        | 6                                                                                              | 5.7                                                                   | 5.6                                                                        | 5.9                                                                 | 5.5                                                                                                | 5.8                                                                   | 5.6                                                                                   | 5.8                                                                  | 5.6                                                                                          | 5.7                                                           | 5.8                                                                                                   | 5.6                                                             |
| 6    | Salinity                                                                    | ppt                         | 30.7                                                                                           | 31.2                                                                  | 30.5                                                                       | 31.3                                                                | 31.8                                                                                               | 32.5                                                                  | 28.5                                                                                  | 29.9                                                                 | 29.2                                                                                         | 29.8                                                          | 30.4                                                                                                  | 30.6                                                            |
| 7    | Oil & Grease                                                                | mg/L                        | Not<br>Detected                                                                                | Not<br>Detected                                                       | Not<br>Detected                                                            | Not<br>Detected                                                     | Not<br>Detected                                                                                    | Not<br>Detected                                                       | Not<br>Detected                                                                       | Not<br>Detected                                                      | Not<br>Detected                                                                              | Not<br>Detected                                               | Not<br>Detected                                                                                       | Not<br>Detected                                                 |
| 8    | Nitrate as NO <sub>3</sub>                                                  | µmol/<br>L                  | 1.8                                                                                            | 1.97                                                                  | 2.16                                                                       | 2                                                                   | 2.67                                                                                               | 2.1                                                                   | 6.28                                                                                  | 7.42                                                                 | 5.9                                                                                          | 6.19                                                          | 5.17                                                                                                  | 5.11                                                            |
| 9    | Nitrite as NO <sub>2</sub>                                                  | µmol/<br>L                  | 0.21                                                                                           | 0.13                                                                  | 1.14                                                                       | 1                                                                   | 0.94                                                                                               | 0.76                                                                  | 1.46                                                                                  | 1.5                                                                  | 1.18                                                                                         | 1.24                                                          | 1.94                                                                                                  | 1.46                                                            |
| 10   | AmmonicalNitroge<br>nas NH <sub>3</sub>                                     | µmol/<br>L                  | 1.58                                                                                           | 1.77                                                                  | 3.24                                                                       | 2.98                                                                | 3.56                                                                                               | 3.29                                                                  | 1.91                                                                                  | 2.18                                                                 | 1.74                                                                                         | 1.89                                                          | 2.93                                                                                                  | 2.73                                                            |
| 11   | Phosphates as PO <sub>4</sub>                                               | µmol/<br>L                  | 2.1                                                                                            | 2.36                                                                  | 2.76                                                                       | 2.51                                                                | 2.64                                                                                               | 2.57                                                                  | 4.19                                                                                  | 4.53                                                                 | 3.86                                                                                         | 3.97                                                          | 2.64                                                                                                  | 2.38                                                            |
| 12   | Total Nitrogen                                                              | µmol/<br>L                  | 3.29                                                                                           | 3.87                                                                  | 6.54                                                                       | 5.98                                                                | 7.17                                                                                               | 6.15                                                                  | 9.65                                                                                  | 11.1                                                                 | 8.82                                                                                         | 9.32                                                          | 10.04                                                                                                 | 9.3                                                             |
| 13   | Petroleum<br>Hydrocarbon                                                    | µg/L                        | 7.2                                                                                            | Not<br>Detected                                                       | 9.6                                                                        | Not<br>Detected                                                     | 11                                                                                                 | Not<br>Detected                                                       | Not<br>Detected                                                                       | Not<br>Detected                                                      | Not<br>Detected                                                                              | Not<br>Detected                                               | Not<br>Detected                                                                                       | Not<br>Detected                                                 |
| 14   | Total Dissolved<br>Solids                                                   | mg/L                        | 32950                                                                                          | 33468                                                                 | 32890                                                                      | 33398                                                               | 34116                                                                                              | 34364                                                                 | 31168                                                                                 | 31684                                                                | 30246                                                                                        | 31540                                                         | 32840                                                                                                 | 33368                                                           |
| 15   | COD                                                                         | mg/L                        | 18.6                                                                                           | Not<br>Detected                                                       | 21                                                                         | Not<br>Detected                                                     | 25                                                                                                 | Not<br>Detected                                                       | 31                                                                                    | 20                                                                   | 25.4                                                                                         | 17.2                                                          | 25                                                                                                    | 18                                                              |
| Α    | Flora and Fauna                                                             |                             |                                                                                                |                                                                       |                                                                            |                                                                     |                                                                                                    |                                                                       |                                                                                       |                                                                      |                                                                                              |                                                               |                                                                                                       |                                                                 |
| 16.1 | Primary<br>Productivity                                                     | mgC/L/d<br>ay               | 10.8                                                                                           | 8.32                                                                  | 13.9                                                                       | 9.36                                                                | 14.4                                                                                               | 9.45                                                                  | 14.85                                                                                 | 13.5                                                                 | 14.17                                                                                        | 13.27                                                         | 18.45                                                                                                 | 16.2                                                            |
| В    | Phytoplankton                                                               |                             |                                                                                                |                                                                       |                                                                            |                                                                     |                                                                                                    |                                                                       |                                                                                       |                                                                      |                                                                                              |                                                               |                                                                                                       |                                                                 |
| 17.1 | Chlorophyll                                                                 | mg/m <sup>3</sup>           | 3.15                                                                                           | 2.99                                                                  | 3.31                                                                       | 2.62                                                                | 2.72                                                                                               | 2.35                                                                  | 3.04                                                                                  | 2.94                                                                 | 3.26                                                                                         | 2.8                                                           | 3.74                                                                                                  | 3.36                                                            |
| 17.2 | Phaeophytin                                                                 | mg/m <sup>3</sup><br>Unit x | 1.04                                                                                           | 1.2                                                                   | 0.35                                                                       | 0.6                                                                 | 1.09                                                                                               | 1.31                                                                  | 2.38                                                                                  | 2.52                                                                 | 2.01                                                                                         | 2.61                                                          | 1.2                                                                                                   | 1.79                                                            |
| 17.3 | Cell Count                                                                  | 10 <sup>3</sup> /L          | 192                                                                                            | 82                                                                    | 184                                                                        | 78                                                                  | 194                                                                                                | 84                                                                    | 146                                                                                   | 90                                                                   | 156                                                                                          | 104                                                           | 156                                                                                                   | 104                                                             |
| 17.4 | Name of Group<br>Number<br>and name of<br>group<br>species of each<br>group |                             | Coscino<br>discus<br>sp.<br>Navicul<br>a sp.<br>Thallasi<br>osira<br>sp.<br>Biddulp<br>hia sp. | Coscino<br>discus<br>sp.<br>Navicul<br>a sp.<br>Nitzschi<br>a sp.<br> | Thallasi<br>onema<br>sp.<br>Biddulp<br>hia sp.<br>Coscino<br>discus<br>sp. | Fragilla<br>ria sp.<br>Nitzschi<br>a sp.<br>Rhizoso<br>lenia<br>sp. | Asterio<br>nella<br>sp.<br>Nitzschi<br>a sp.<br>Coscino<br>discus<br>sp.<br>Pleuros<br>igma<br>sp. | Nitzschi<br>a sp.<br>Navicul<br>a sp.<br>Thallasi<br>osira<br>sp.<br> | Navicul<br>a sp.<br>Nitzschi<br>a sp.<br>Gyrosig<br>ma sp.<br>Cosino<br>discus<br>sp. | Nitzschi<br>a sp.<br>Navicul<br>a sp.<br>Thalasi<br>osira<br>sp.<br> | Navicul<br>a sp.<br>Asterio<br>nella<br>sp.<br>Coscino<br>discus<br>sp.<br>Nitzschi<br>a sp. | Nitzschi<br>a sp.<br>Synedr<br>a sp.<br>Cosmar<br>ium sp.<br> | Biddulp<br>hia sp.<br>Rhizoso<br>lenia<br>sp.<br>Coscino<br>discus<br>sp.<br>Thallasi<br>onema<br>sp. | Nitzsch<br>a sp.<br>Navicul<br>a sp.<br>Fragilla<br>ria sp.<br> |

Continue...

-D-D

**Authorized Signatory** 

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 Sec. 12 of Environmental (Protection) Act-1986
 Schedule II auditor

● GPCB apprved ● ISO 14001 : 2004 ● OHSAS 18001 : 2007 ● ISO 9001 : 2008 schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.



|      |                                                                       |                                           |                                     | RESULTS OF SE                         | A WATER QUALITY                            | NALYSIS SEA WATI                       | R SOUTH SIDE                                |                                        |
|------|-----------------------------------------------------------------------|-------------------------------------------|-------------------------------------|---------------------------------------|--------------------------------------------|----------------------------------------|---------------------------------------------|----------------------------------------|
| Sr.  |                                                                       |                                           | OCT-19                              | NOV-19                                | DEC-19                                     | JAN-20                                 | FEB-20                                      | MARCH-20                               |
| NO.  | TEST PARAMETERS                                                       | UNIT                                      | 18-10-2019                          | 25-11-2019                            | 26-12-2019                                 | 28-01-2020                             | 11-02-2020                                  | 17-03-2020                             |
|      |                                                                       |                                           | South Side                          | South Side                            | South Side                                 | South Side                             | South Side                                  | South Side                             |
| С    | Zooplanktons                                                          |                                           |                                     | •                                     |                                            |                                        |                                             |                                        |
| 18.1 | Abundance<br>(Population)                                             | noX10 <sup>3</sup> /<br>100m <sup>3</sup> | 43                                  | 41                                    | 47                                         | 42                                     | 39                                          | 32                                     |
| 18.2 | Name of Group<br>Number<br>and name of group<br>species of each group |                                           | Copepods<br>Decapods<br>Polychaetes | Copepods<br>Gastropods<br>Polychaetes | Ostracods<br>Nauplius larvae<br>Gastropods | Polychaetes<br>Bivalves<br>Crustaceans | Polychaetes<br>Nauplius Iarvae<br>Ostracods | Polychaetes<br>Crustaceans<br>Bivalves |
| 18.3 | Total Biomass                                                         | ml/100 m <sup>3</sup>                     | 3.45                                | 3.75                                  | 3.8                                        | 1.6                                    | 1.55                                        | 2.8                                    |
| D    | Microbiological Para                                                  | meters                                    |                                     | •                                     |                                            |                                        |                                             |                                        |
| 19.1 | Total Bacterial Count                                                 | CFU/ml                                    | 1860                                | 1800                                  | 1820                                       | 2050                                   | 2180                                        | 1560                                   |
| 19.2 | Total Coliform                                                        | /ml                                       | Absent                              | Absent                                | Absent                                     | Absent                                 | Absent                                      | Absent                                 |
| 19.3 | E.coli                                                                | /ml                                       | Absent                              | Absent                                | Absent                                     | Absent                                 | Absent                                      | Absent                                 |
| 19.4 | Enterococcus species                                                  | /ml                                       | Absent                              | Absent                                | Absent                                     | Absent                                 | Absent                                      | Absent                                 |
| 19.5 | Salmonella species                                                    | /ml                                       | Absent                              | Absent                                | Absent                                     | Absent                                 | Absent                                      | Absent                                 |
| 19.6 | Shigella species                                                      | /ml                                       | Absent                              | Absent                                | Absent                                     | Absent                                 | Absent                                      | Absent                                 |
| 19.7 | Vibrio species                                                        | /ml                                       | Absent                              | Absent                                | Absent                                     | Absent                                 | Absent                                      | Absent                                 |

### BDL\* - Below Detection Limit

**Observation:** From the above results it is concluded that there is No Significant Changes in the Quality of Sea Water.

-D-D

Authorized Signatory

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

● GPCB apprved ● ISO 14001 : 2004 ● OHSAS 18001 : 2007 ● ISO 9001 : 2008 schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

POLLUCON LABORATORIES PVT. LTD.

## Table No.: 3C.2 - Sea Water (Surface & Bottom) Quality Analysis Results of Sea Water North Side for the period: October 2019 to March 2020:-

|                                                                          | , I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RESULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S OF SEA V                                                                                    | VATER QU/                                                     | LITY ANAL                                                                            | YSIS NORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TEST                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                               |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MARC                                                                                        | :H-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PARAMETERS                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                               |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17-03                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u>↓ </u> /                                                              | ┢───┤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                               |                                                               |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    | Bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             | Bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |                                                               |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                           | 8.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                          | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29.9                                                                                          | 29.6                                                          | 29.8                                                                                 | 29.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29.8                                                                               | 29.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.4                                                                                        | 30.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Solids                                                                   | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 246                                                                                           | 258                                                           | 548                                                                                  | 492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 386                                                                                | 412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 392                                                                                         | 405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| °C)                                                                      | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Not<br>Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not<br>Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                             | Not<br>Detected                                               | 9.2                                                                                  | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.3                                                                                | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.8                                                                                         | Not<br>Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Dissolved Oxygen                                                         | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                             | 5.9                                                           | 5.8                                                                                  | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.7                                                                                | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.9                                                                                         | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Salinity                                                                 | ppt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                               | 32.8                                                          | 28.8                                                                                 | 29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29.4                                                                               | 29.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.4                                                                                        | 30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Oil & Grease                                                             | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not<br>Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not<br>Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Not<br>Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Not<br>Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Not<br>Detected                                                                               | Not<br>Detected                                               | Not<br>Detected                                                                      | Not<br>Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Not<br>Detected                                                                    | Not<br>Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Not<br>Detected                                                                             | Not<br>Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Nitrate as NO <sub>3</sub>                                               | µmol/<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.56                                                                                          | 2.13                                                          | 7.9                                                                                  | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.82                                                                               | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.28                                                                                        | 5.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Nitrite as NO <sub>2</sub>                                               | µmol/<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.87                                                                                          | 0.7                                                           | 2.18                                                                                 | 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.28                                                                               | 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.7                                                                                         | 1.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| AmmonicalNitrogen<br>as NH <sub>3</sub>                                  | µmol/<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.62                                                                                          | 3.24                                                          | 1.31                                                                                 | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.96                                                                               | 2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.84                                                                                        | 2.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Phosphates as PO <sub>4</sub>                                            | µmol/<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.58                                                                                          | 2.39                                                          | 4.68                                                                                 | 3.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.79                                                                               | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                                                                                         | 2.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Total Nitrogen                                                           | µmol/<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.05                                                                                          | 6.07                                                          | 11.39                                                                                | 10.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.06                                                                               | 9.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.82                                                                                        | 9.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Petroleum<br>Hydrocarbon                                                 | µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not<br>Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not<br>Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14                                                                                            | Not<br>Detected                                               | Not<br>Detected                                                                      | Not<br>Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Not<br>Detected                                                                    | Not<br>Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Not<br>Detected                                                                             | Not<br>Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Total Dissolved<br>Solids                                                | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33916                                                                                         | 35180                                                         | 30940                                                                                | 31978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31164                                                                              | 31736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32910                                                                                       | 33204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| COD                                                                      | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Not<br>Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Not<br>Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27                                                                                            | Not<br>Detected                                               | 39                                                                                   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                 | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Flora and Fauna                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                               |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    | <b></b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             | . <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Productivity                                                             | mgC/L/<br>day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.5                                                                                          | 11.7                                                          | 15.75                                                                                | 13.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.3                                                                               | 14.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.4                                                                                        | 15.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Phytoplankton                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                               |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                               |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Phaeophytin                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |                                                               |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             | 2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Cell Count                                                               | 10 <sup>3</sup> /L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 186                                                                                           | 74                                                            | 152                                                                                  | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 146                                                                                | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 146                                                                                         | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Name of Group<br>Number<br>and name of group<br>species of each<br>group |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rhizoso<br>lenia<br>sp.<br>Coscino<br>discus<br>sp.<br>Navicul<br>a sp.<br>Gomph<br>onema                                                                                                                                                                                                                                                                                                                                                                                                  | Synedr<br>a sp.<br>Cymbel<br>la sp.<br>Thallasi<br>osira<br>sp.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Navicul<br>a sp.<br>Biddulp<br>hia sp.<br>Rhizoso<br>lenia<br>sp.<br>Nitzschi<br>a sp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nitzschi<br>a sp.<br>Fragilla<br>ria sp.<br>Coscino<br>discus<br>sp.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Coscino<br>discus<br>sp.<br>Nitzschi<br>a sp.<br>Rhizoso<br>lenia<br>sp.<br>Thallasi<br>onema | Navicul<br>a sp.<br>Synedr<br>a sp.<br>Pleuros<br>igma<br>sp. | Navicul<br>a sp.<br>Melosir<br>a sp.<br>Thalasi<br>osira<br>sp.<br>Gyrosig<br>ma sp. | Navicul<br>a sp.<br>Nitzschi<br>a sp.<br>Fragilla<br>ria sp.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nitzschi<br>a sp.<br>Asterio<br>nella<br>sp.<br>Coscino<br>discus<br>sp.<br>cosmar | Navicul<br>a sp.<br>Spirulin<br>a sp.<br>Nitzschi<br>a sp.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nitzschi<br>a sp.<br>Rhizoso<br>lenia<br>sp.<br>Coscino<br>discus<br>sp.<br>Pleuros<br>igma | Nitzscl<br>a sp.<br>Syned<br>a sp.<br>Cyclot<br>Ila sp<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                          | PARAMETERS         pH         Temperature         Total Suspended<br>Solids         BOD (3 Days @ 27<br>°C)         Dissolved Oxygen         Salinity         Oil & Grease         Nitrate as NO3         Nitrite as NO2         AmmonicalNitrogen<br>as NH3         Phosphates as PO4         Total Nitrogen         Petroleum         Hydrocarbon         Total Dissolved<br>Solids         COD         Flora and Fauna         Primary<br>Productivity         Phaeophytin         Cell Count         Name of Group<br>Number<br>and name of group<br>species of each | PARAMETERSUNI1pHTemperature°CTotal Suspended<br>Solidsmg/LBOD (3 Days @ 27<br>°C)mg/LDissolved Oxygenmg/LSalinitypptOil & Greasemg/LNitrate as NO3µmol/<br>LNitrate as NO2µmol/<br>LAmmonicalNitrogen<br>as NH3µmol/<br>LPhosphates as PO4µmol/<br>LPetroleum<br>Hydrocarbonµg/LTotal Dissolved<br>Solidsmg/LCODmg/LPetroleum<br>Hydrocarbonµg/LTotal Dissolved<br>Solidsmg/LCODmg/LPinary<br>Productivitymg/LPhaeophytin<br>(Diorophyll<br>Number<br>and name of group<br>species of each | PARAMETERSUN1118-10-<br>SurfacepH8.2Temperature°C29.8Total Suspended<br>Solidsmg/L362BOD (3 Days @ 27<br>°C)mg/L3.8Dissolved Oxygenmg/L5.9Salinityppt30.8Oil & Greasemg/L1.84Nitrate as NO3 $\mu$ mol/<br>L1.84Nitrite as NO2 $\mu$ mol/<br>L0.23AmmonicalNitrogen<br>as NH3 $\mu$ mol/<br>L2.23Total Nitrogen $\mu$ mol/<br>L3.56Petroleum<br>Hydrocarbon $\mu$ g/L7Total Dissolved<br>Solidsmg/L32983CODmg/L20.6Flora and Faunamg/L10.75Primary<br>Productivitymg/L10.75PhytoplanktonUnit x<br>103/L198Cell CountUnit x<br>103/L198Name of Group<br>Number<br>and name of group<br>species of each<br>groupSp.<br>Navicul<br>a sp. | PARAMETERSUNIT $18-10-2019$ pH8.28.13Temperature°C29.829.1Total Suspended<br>Solidsmg/L362390BOD (3 Days @ 27<br>°C)mg/L3.8Not<br>DetectedDissolved Oxygenmg/L5.95.7Salinityppt30.831.3Oil & Greasemg/LNot<br>DetectedNot<br>DetectedNitrate as NO3 $\mu$ mol/<br>L1.841.9Nitrite as NO2 $\mu$ mol/<br>L0.230.16AmmonicalNitrogen<br>as NH3 $\mu$ mol/<br>L3.563.69Petroleum<br>Hydrocarbon $\mu$ g/L7Not<br>DetectedTotal Dissolved<br>Solidsmg/L3298333234CODmg/L20.6Not<br>DetectedPrimary<br>Productivitymg/C1/<br>day10.758.1Phytoplankton<br>CollUnit x<br>10 <sup>3</sup> /L19880Name of Group<br>Number<br>and name of group<br>species of each<br>groupSynedr<br>a sp.<br>Sp.<br>Navicul<br>a sp.Synedr<br>a sp.<br>Sp.<br>Sp. | PARAMETERS         UNI1         18-10-2019         25-11           Surface         Bottom         Surface           pH          8.2         8.13         8.14           Temperature         °C         29.8         29.1         29.6           Total Suspended<br>Solids         mg/L         362         390         312           BOD (3 Days @ 27<br>°C)         mg/L         5.9         5.7         5.7           Salinity         ppt         30.8         31.3         30.6           Dissolved Oxygen         mg/L         5.9         5.7         5.7           Salinity         ppt         30.8         31.3         30.6           Nitrate as NO3         µmol/<br>L         1.84         1.9         2.1           Nitrate as NO2         µmol/<br>L         0.23         0.16         1.26           AmmonicalNitrogen<br>as NH3         µmol/<br>L         1.49         1.63         3.38           Phosphates as PO4         µmol/<br>L         1.49         1.63         3.38           Phoroleum<br>Hydrocarbon         µg/L         7         Not<br>Detected         10.3           Total Dissolved<br>Solids         mg/L         32983         33234         32516 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                        | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$        | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                               | TEST<br>PARAMETERS         UNIT         OCT-19<br>18-10-2019         IOV-19<br>25-11-2019         DEC-19<br>26-12-2019         JAN<br>28-01           pH          8.2         8.13         8.14         8         8.13         8.06         7.94           Temperature         °C         29.8         29.1         29.6         29.2         29.9         29.6         29.8           Solids         mg/L         362         390         312         339         246         258         548           BOD (3 Days @ 27<br>C)Csolved Oxygen         mg/L         5.9         5.7         5.7         5.9         6         5.9         5.8           Salinity         ppt         30.8         31.3         30.6         31.3         32.8         28.8         018 crease         mg/L         0.23         0.16         1.26         1.14         0.87         0.7         2.18           AmmonicalNitrogen         µmol/<br>L         1.63         3.38         3.25         3.62         3.24         1.31           Phosphates as P04         µmol/<br>L         1.63         3.38         3.25         3.62         3.24         1.31           Phosphates as P04         µmol/<br>Hydrocarbon         1.49         0.51 <td< td=""><td><math display="block"> \begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td><td>PARAMETERS         UM11<br/>Surface         18-10-2019<br/>Surface         25-11-2019<br/>Surface         26-12-2019<br/>Surface         28-01-2020<br/>Bottom         11-02<br/>Surface           pH          8.2         8.13         8.14         8         8.13         8.06         7.94         8.07         8.07         8.23           Temperature         °C         29.8         29.1         29.6         29.2         29.9         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.5         7         5.7         5.9         6         5.9         5.7         5.7         5.9         6         5.9         5.7         5.7         5.9         6         5.9         5.8         2.9.4         Not           Disolved Oxygen         mg/L         30.8         31.3         30.06         31.3         32.2         21.3         7.9         8.2         5.82           Nitrate as N0,         µmol/&lt;</td><td><math display="block"> \begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td><td>PEST<br/>PARAMETERS         UNIT         OCT-19         NOV-19         DEC-19         JAN-20         FEB-20         MAR         PER-20         MAR           pH          8.12         Bottom         Surface         Surface         Bottom         Surface         Surface         Bottom         Surface         <t< td=""></t<></td></td<> | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                            | PARAMETERS         UM11<br>Surface         18-10-2019<br>Surface         25-11-2019<br>Surface         26-12-2019<br>Surface         28-01-2020<br>Bottom         11-02<br>Surface           pH          8.2         8.13         8.14         8         8.13         8.06         7.94         8.07         8.07         8.23           Temperature         °C         29.8         29.1         29.6         29.2         29.9         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.6         29.8         29.5         7         5.7         5.9         6         5.9         5.7         5.7         5.9         6         5.9         5.7         5.7         5.9         6         5.9         5.8         2.9.4         Not           Disolved Oxygen         mg/L         30.8         31.3         30.06         31.3         32.2         21.3         7.9         8.2         5.82           Nitrate as N0,         µmol/< | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                     | PEST<br>PARAMETERS         UNIT         OCT-19         NOV-19         DEC-19         JAN-20         FEB-20         MAR         PER-20         MAR           pH          8.12         Bottom         Surface         Surface         Bottom         Surface         Surface         Bottom         Surface         Surface <t< td=""></t<> |

Continue.

-D-D **Authorized Signatory** 

• FSSAI Approved Lab • Recognised by MoEF, New Delhi Under

 GPCB apprved ● ISO 14001 : 2004 ● OHSAS 18001 : 2007 ● ISO 9001 : 2008 Sec. 12 of Environmental (Protection) Act-1986 schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.



|      | TEST PARAMETERS                                                       | UNIT                                      | RESULTS OF SEA WATER QUALITY ANALYSIS NORTH SIDE |                            |                                           |                               |                                     |                                            |  |  |  |
|------|-----------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|----------------------------|-------------------------------------------|-------------------------------|-------------------------------------|--------------------------------------------|--|--|--|
| Sr.  |                                                                       |                                           | OCT-19                                           | NOV-19                     | DEC-19                                    | JAN-20                        | FEB-20                              | MARCH-20                                   |  |  |  |
| NO.  |                                                                       |                                           | 18-10-2019                                       | 25-11-2019                 | 26-12-2019                                | 28-01-2020                    | 11-02-2020                          | 17-03-2020                                 |  |  |  |
|      |                                                                       |                                           | North Side                                       | North Side                 | North Side                                | North Side                    | North Side                          | North Side                                 |  |  |  |
| С    | Zooplanktons                                                          |                                           |                                                  |                            |                                           |                               |                                     |                                            |  |  |  |
| 18.1 | Abundance<br>(Population)                                             | noX10 <sup>3</sup> /<br>100m <sup>3</sup> | 50                                               | 47                         | 49                                        | 43                            | 41                                  | 35                                         |  |  |  |
| 18.2 | Name of Group<br>Number<br>and name of group<br>species of each group |                                           | Chaetognathes<br>Polychaetes<br>Decapods         | Copepods<br>Gastropods<br> | Nauplius larvae<br>Copepods<br>Gastropods | Polychaetes<br>Gastropods<br> | Decapods<br>Copepods<br>Polychaetes | Polychaetes<br>Decapods<br>Nauplius larvae |  |  |  |
| 18.3 | Total Biomass                                                         | ml/100 m <sup>3</sup>                     | 4.45                                             | 3.8                        | 3.95                                      | 1.75                          | 1.85                                | 2.9                                        |  |  |  |
| D    | Microbiological Para                                                  | ological Parameters                       |                                                  |                            |                                           |                               |                                     |                                            |  |  |  |
| 19.1 | Total Bacterial Count                                                 | CFU/ml                                    | 1100                                             | 950                        | 1180                                      | 2210                          | 2160                                | 1720                                       |  |  |  |
| 19.2 | Total Coliform                                                        | /ml                                       | Absent                                           | Absent                     | Absent                                    | Absent                        | Absent                              | Absent                                     |  |  |  |
| 19.3 | E.coli                                                                | /ml                                       | Absent                                           | Absent                     | Absent                                    | Absent                        | Absent                              | Absent                                     |  |  |  |
| 19.4 | Enterococcus species                                                  | /ml                                       | Absent                                           | Absent                     | Absent                                    | Absent                        | Absent                              | Absent                                     |  |  |  |
| 19.5 | Salmonella species                                                    | /ml                                       | Absent                                           | Absent                     | Absent                                    | Absent                        | Absent                              | Absent                                     |  |  |  |
| 19.6 | Shigella species                                                      | /ml                                       | Absent                                           | Absent                     | Absent                                    | Absent                        | Absent                              | Absent                                     |  |  |  |
| 19.7 | Vibrio species                                                        | /ml                                       | Absent                                           | Absent                     | Absent                                    | Absent                        | Absent                              | Absent                                     |  |  |  |

BDL\* - Below Detection Limit **Observation:** From the above results it is concluded that there is No Significant Changes in the Quality of Sea Water.

-D-D **Authorized Signatory** 

•FSSAI Approved Lab • Recognised by MoEF, New Delhi Under

Recognised by MoEF, New Delhi Under • GPCB apprved • ISO 14001 : 2004 • OHSAS 18001 : 2007 schedule II auditor

ISO 9001 : 2008

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

## 3D. SEA SEDIMENT QUALITY ANALYSIS MONITORING: -

Table - Sea Sediment Quality Analysis (South Side) Results for the period: October 2019 to March 2020

| Sr.<br>No | LLUCON POLLUCON POLLUCO                                                                                | UNIT                                                               | OCT-19                           | NOV-19                  | DEC-19                                       | JAN-20                            | FEB-20                                                                              | MARCH-20                                                                                    |
|-----------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|-------------------------|----------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|           | PARAMETERS                                                                                             |                                                                    | 18-10-2019                       | 25-11-2019              | 26-12-2019                                   | 28-01-2020                        | 11-02-2020                                                                          | 17-03-2020                                                                                  |
| 1 N       | Organic Matter                                                                                         | %                                                                  | 0.84                             | 0.69                    | 0.82                                         | 0.69                              | 0.67                                                                                | 0.52                                                                                        |
| 2         | Phosphorus as P                                                                                        | µg/g                                                               | 694                              | 648                     | 710                                          | 729                               | 684                                                                                 | 674                                                                                         |
| 3         | Texture                                                                                                | an periluc                                                         | Sandy                            | Sandy Sandy             | Sandy                                        | Sandy                             | Sandy                                                                               | Sandy                                                                                       |
| 4         | Petroleum Hydrocarbon                                                                                  | µg/g                                                               | Not Detected                     | Not Detected            | Not Detected                                 | Not Detected                      | Not Detected                                                                        | Not Detected                                                                                |
| 5         | Heavy Metals                                                                                           |                                                                    |                                  |                         |                                              |                                   |                                                                                     |                                                                                             |
| 5.1       | Aluminum as Al                                                                                         | %                                                                  | 4.28                             | 4.36                    | 4.68                                         | 4.76                              | 4.62                                                                                | 5.7                                                                                         |
| 5.2       | Total Chromium as Cr <sup>+3</sup>                                                                     | µg/g                                                               | 210                              | 270                     | 210                                          | 181                               | 153                                                                                 | 164                                                                                         |
| 5.3       | Manganese as Mn                                                                                        | µg/g                                                               | 1073                             | 1128                    | 1050                                         | 926                               | 897                                                                                 | 736                                                                                         |
| 5.4       | Iron as Fe                                                                                             | %                                                                  | 5.18                             | 4.89                    | 4.9                                          | 4.85                              | 4.74                                                                                | 5.46                                                                                        |
| 5.5       | Nickel as Ni                                                                                           | µg/g                                                               | 42                               | 37                      | 1 POLL 29 1 POLL                             | 32.6                              | 35.6                                                                                | 0103800                                                                                     |
| 5.6       | Copper as Cu                                                                                           | µg/g                                                               | 38                               | 58                      | 46                                           | 41.2                              | 32                                                                                  | 50                                                                                          |
| 5.7       | Zinc as Zn                                                                                             | µg/g                                                               | 174                              | 230                     | 201                                          | 210                               | 156                                                                                 | 136                                                                                         |
| 5.8       | Lead as Pb                                                                                             | µg/g                                                               | 1.4                              | 2.67                    | 2.17                                         | 1.53                              | 1.72                                                                                | 2.13                                                                                        |
| 5.9       | Mercury as Hg                                                                                          | µg/g                                                               | Not Detected                     | Not Detected            | Not Detected                                 | Not Detected                      | Not Detected                                                                        | Not Detected                                                                                |
| 6         | Benthic Organisms                                                                                      |                                                                    |                                  |                         |                                              |                                   |                                                                                     |                                                                                             |
| 6.1       | Macrobenthos<br>(No and name of groups<br>present,<br>No and name of species<br>of each group present) |                                                                    | Polychaetes<br>Herpacticoids<br> | Copepods<br>Polychaetes | Polychaete<br>worms<br>Oligochates<br>Mysids | Polychaete<br>worms<br>Gastropods | Polychaete<br>worms<br>Gastropods<br>Bivalves                                       | Polychaetes<br>Gastropods<br>Bivalves                                                       |
| 6.2       | MeioBenthos<br>(No and name of groups<br>present,<br>No and name of species<br>of each group present)  | N POLLIC<br>POLLICO<br>N POLLICO<br>OLLICO<br>N POLLICO<br>POLLICO | Nematodes                        | Nematodes               | Foraminiferans                               | Foraminiferans                    | OLLUCON POLLUC<br>LUCON POLLUC<br>OLLUCON POLLUC<br>ILUCON POLLUC<br>OLLUCON POLLUC | ON POLLUCON PO<br>ON POLLUCON PO<br>ON POLLUCON PO<br>ON POLLUCON POLLUCON<br>9 POLLUCON PO |
| 6.3       | Population                                                                                             | no/m <sup>2</sup>                                                  | 733                              | 676                     | 794                                          | 735                               | 765                                                                                 | 647                                                                                         |

BDL\* - Below Detection Limit

**Observation:** From the above results it is concluded that there is No Significant Changes in the Quality of Sea Sediment.

-D-D

**Authorized Signatory** 

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

● GPCB apprved ● ISO 14001 : 2004 ● OHSAS 18001 : 2007 ● ISO schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

#### 3D. SEA SEDIMENT QUALITY ANALYSIS MONITORING: -Table - Sea Sediment Quality Analysis Results (North Side) for the period: Oct-19 to March-2020:-

| Sr.  | DELUCON POLLUCON POLLUCO                                                                               | POLLICO           | OCT-19                    | NOV-19                                                             | DEC-19                                         | JAN-20                             | FEB-20                                        | MARCH-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|--------------------------------------------------------------------------------------------------------|-------------------|---------------------------|--------------------------------------------------------------------|------------------------------------------------|------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No   | PARAMETERS                                                                                             | UNIT              | 18-10-2019                | 25-11-2019                                                         | 26-12-2019                                     | 28-01-2020                         | 11-02-2020                                    | 17-03-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N IN | Organic Matter                                                                                         | %                 | 0.83                      | 0.76                                                               | 0.7                                            | 0.62                               | 0.68                                          | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2    | Phosphorus as P                                                                                        | mg/kg             | 612                       | 697                                                                | 590                                            | 638                                | 657                                           | 610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3    | Texture                                                                                                |                   | Sandy                     | Sandy Co                                                           | Sandy                                          | Sandy                              | Sandy                                         | Sandy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4    | Petroleum Hydrocarbon                                                                                  | mg/kg             | Not Detected              | Not Detected                                                       | Not Detected                                   | Not Detected                       | Not Detected                                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5    | Heavy Metals                                                                                           | CON POLLUC        | ON POLLI ON PO            | LLUCON POLLUCON                                                    | N P<br>ROL                                     | N POLLUCON PO                      | POLLUCON POLLUCO                              | CON POLLUCON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5.1  | Aluminum as Al                                                                                         | %                 | 4.73                      | 4.48                                                               | 4.85                                           | 4.7                                | 4.65                                          | 5.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5.2  | Total Chromium as Cr <sup>+3</sup>                                                                     | mg/kg             | 248                       | 190                                                                | 169                                            | 185                                | 138                                           | 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.3  | Manganese as Mn                                                                                        | mg/kg             | 1093                      | 958                                                                | 984                                            | 920                                | 894                                           | 794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.4  | Iron as Fe                                                                                             | %                 | 4.94                      | 4.84                                                               | 5.2                                            | 4.8                                | 4.92                                          | 5.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5.5  | Nickel as Ni                                                                                           | mg/kg             | 38                        | 58                                                                 | 39                                             | 35.8                               | 31                                            | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5.6  | Copper as Cu                                                                                           | mg/kg             | 57                        | 41                                                                 | 53                                             | 43.6                               | 36.2                                          | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5.7  | Zinc as Zn                                                                                             | mg/kg             | 172                       | 198                                                                | 130                                            | 170                                | 188                                           | 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.8  | Lead as Pb                                                                                             | mg/kg             | 2.3                       | CON P1.7 JCON                                                      | 1.84                                           | 1.35                               | 1.75                                          | 201 201 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5.9  | Mercury as Hg                                                                                          | mg/kg             | Not Detected              | Not Detected                                                       | Not Detected                                   | Not Detected                       | Not Detected                                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6    | Benthic Organisms                                                                                      | ICON F LLUC       | N POLLUCON POLL           | LLUCON POLLUCON                                                    | VOLLUCON POLLUR                                | N POLLUCON PO                      | POLLUCON POLLUCO                              | N POLLUCON PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6.1  | Macrobenthos<br>(No and name of groups<br>present,<br>No and name of species<br>of each group present) |                   | Polychaetes<br>Gastropods | Polychaetes<br>Crustaceans<br>                                     | Polychaete<br>worms<br>Gastropods<br>Amphipods | Polychaete<br>worms<br>Crustaceans | Polychaete<br>worms<br>Gastropods<br>Bivalves | Polychaetes<br>Crustaceans<br>Bivalves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6.2  | MeioBenthos<br>(No and name of groups<br>present,<br>No and name of species<br>of each group present)  |                   | Nematodes                 | ICON POLLICON<br>LUCON POLLICON<br>LUCON POLLICON<br>ICON POLLICON | Nematodes                                      | Nematodes                          | Nematodes                                     | DN POLLUCON POL |
| 6.3  | Population                                                                                             | no/m <sup>2</sup> | 704                       | 647                                                                | 765                                            | 588                                | 735                                           | 618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

BDL\* - Below Detection Limit

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Sediment.

-D-D

**Authorized Signatory** 

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 Sec. 12 of Environmental (Protection) Act-1986
 Schedule II auditor

● GPCB apprved ● ISO 14001 : 2004 ● OHSAS 18001 : 2007 ● ISO schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

#### **3E. DUMP POND WATER QUALITY ANALYSIS MONITORING: -**

### Table - Dump Pond Water Quality Analysis Results for the period: October-19 to March-20

|           | ON FOLLICON FOLLICON FOLLICON FO    | LEUCON POLLUC | Nov-19                     | Feb-20                     | Feb-20                     |  |
|-----------|-------------------------------------|---------------|----------------------------|----------------------------|----------------------------|--|
|           | Date Date                           | LEUCON POLLUC | 29-11-2019                 | 11-02-2020                 | 11-02-2020                 |  |
| Sr. No.   | Test Parameters                     | Unit          | Dump Pond<br>Discharge -J3 | Dump Pond<br>Discharge -J3 | Dump Pond<br>Discharge –SS |  |
| N POLLUCO | pH UCON POLLICON POLLICON POLL      |               | 7.92                       | 7.9                        | 8.16                       |  |
| 2.        | Total Dissolved Solids              | mg/L          | 1480                       | 1584                       | 1426                       |  |
| 3.        | Total Suspended Solids              | mg/L          | 31                         | 26                         | 31                         |  |
| 4.        | Turbidity                           | NTU           | 2.69                       | 3.8                        | 2.7                        |  |
| 5.        | BOD (3 Days @ 27 °C)                | mg/L          | N POLLUCO 14 LUCON POL     | 16                         | 13.2                       |  |
| 6.        | Dissolved Oxygen                    | mg/L          | 5.9                        | 5.8                        | 5.9                        |  |
| 7         | COD                                 | mg/L          | follow 63 low foll         | 67                         | 58                         |  |
| 8.        | Salinity                            | ppt           | 0.24                       | 0.25                       | 0.24                       |  |
| 9.        | Oil & Grease                        | mg/L          | Not Detected               | Not Detected               | Not Detected               |  |
| 10.       | Total Hardness as CaCO <sub>3</sub> | mg/L          | 586                        | 560                        | 608                        |  |
| 11.       | Fluoride as F                       | mg/L          | 0.26                       | 0.38                       | 0.31                       |  |
| 12.       | Chloride as Cl                      | mg/L          | 138                        | 142                        | 138                        |  |
| 13.       | Zinc as Zn                          | mg/L          | 0.2                        | 0.34                       | 0.26                       |  |
| 14.       | Cadmium as Cd                       | mg/L          | Not Detected               | Not Detected               | Not Detected               |  |
| 15.       | Lead as Pb                          | mg/L          | Not Detected               | Not Detected               | Not Detected               |  |
| 16.       | Mercury as Hg                       | mg/L          | Not Detected               | Not Detected               | Not Detected               |  |

BDL\*: Below Detection Limit

**Observation:** From the above results it is concluded that there is No Significant Changes in the Quality of Dump Pond Discharge Water.

-D-D

**Authorized Signatory** 

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 • GPCB apprved • ISO 14001 : 2004 schedule II auditor

OHSAS

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

#### **3F. STP TREATED WATER QUALITY ANALYSIS MONITORING: -**

#### TABLE - STP TREATED WATER QUALITY ANALYSIS RESULTS FOR THE PERIOD: OCTOBER-19 TO MARCH-20

| JCON<br>ON PC | TEST PARAMETERS                                                                     | POLLUCON          | STP Treated Water Quality Analysis Results |            |            |            |            |                        |  |  |
|---------------|-------------------------------------------------------------------------------------|-------------------|--------------------------------------------|------------|------------|------------|------------|------------------------|--|--|
| SR.<br>NO.    |                                                                                     | UNIT              | Oct-19                                     | Nov-19     | Dec-19     | Jan-20     | Feb-20     | March-20<br>19-03-2020 |  |  |
| ON PC         | OLLUCON FOLLUCON FOLLUCON<br>LUCON FOLLUCON FOLLUCON P<br>OLLUCON FOLLUCON FOLLUCON | POLLUCON POLLUCON | 18-10-2019                                 | 25-11-2019 | 27-12-2019 | 28-01-2020 | 11-02-2020 |                        |  |  |
| 1.            | pHucon follucon follucon                                                            | OLLUCON T         | 7.48                                       | 7.68       | 7.42       | 7.5        | 7.1        | 7.2                    |  |  |
| 2.            | Total Suspended Solids                                                              | mg/L              | 14                                         | 18         | 12         | 22         | 25         | 21                     |  |  |
| 3.            | BOD (3 Days @ 27 °C)                                                                | mg/L              | 10                                         | 12         | 8          | 10         | 14         | 15                     |  |  |
| 4.            | Residual Free Chlorine                                                              | mg/L              | 0.6                                        | 0.6        | 0.6        | 0.4        | 0.6        | 0.8                    |  |  |
| 5.            | Oil & Grease                                                                        | mg/L              | 1.8                                        | 2.2        | 1.8        | 3.4        | 2.4        | 2.2                    |  |  |

**Observation:** From the above results it is concluded that there is No Significant Changes in the Quality of STP Treated Water.

-D-D **Authorized Signatory** 

• FSSAI Approved Lab • Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

● GPCB apprved ● ISO 14001 : 2004 ● OHSAS 18001 : 2007 schedule II auditor

ISO 9001 : 2008

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

#### **3G. AMBIENT NOISE LEVEL MONITORING: -**

Tables - 1 - Behind QHSE Office Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

| N POLLUCON POLLUCON POL |                   |                   | 1 - Behind (          | QHSE Office                |                    |                 |
|-------------------------|-------------------|-------------------|-----------------------|----------------------------|--------------------|-----------------|
| Sampling Location       | LICON POLLUCON PO | DILLICON POLLUCON | <b>During Day Tir</b> | ne - dB(A)Leq <sup>#</sup> | ON POLLUCON POLLU  | CON POLLUCON P  |
| Date of Monitoring      | 01-10-2019        | 01-11-2019        | 02-12-2019            | 01-01-2020                 | 03-02-2020         | 02-03-2020      |
| 6:00-7:00               | 52.1              | 56.3              | 41.6                  | 51.9                       | 51.4               | 49.3            |
| 7:00-8:00               | 62.1              | 48.3              | 55.6                  | 55.5 POLI                  | CON PO 55.6 ON POL | 54.4            |
| 8:00-9:00               | 47.1              | 50.1              | 56.2                  | 47.7                       | 60.8               | 57.4            |
| 9:00-10:00              | 50.2              | 55.4              | 55.4                  | 51.4                       | 48.2               | 56.7            |
| 10:00-11:00             | 44.6              | 47.1              | 51.2                  | 48.1                       | 43.8               | 48.5            |
| 11:00-12:00             | 48.2              | 61.3              | 60.7                  | 61.2                       | 44.2               | 58.5            |
| 12:00-13:00             | 54.6              | 58.6              | 57.1                  | 44.3                       | 58.5               | 45.7            |
| 13:00-14:00             | 47.5              | 60.2              | 1 POLLU 51.3 P        | 52.6                       | con 20 44.5 on 201 | 52.2            |
| 14:00-15:00             | 67.1              | 44.3              | 60.5                  | 58.1                       | 61.3               | 60.3            |
| 15:00-16:00             | 42.8              | 51.2              | 63.8                  | 60.2                       | 45.9               | 51.3            |
| 16:00-17:00             | 61.1 CON 10       | 53.4 CON          | 65.3                  | FOLLU 54.1 POLLUC          | N POL 50.4 POLL    | CON PO 53.50N 1 |
| 17:00-18:00             | 53.2              | 49.3              | 55.2                  | 40.5                       | 56.2               | 47.5            |
| 18:00-19:00             | 65.2              | 54.6              | 58.9                  | 49.3                       | 46.8               | 61.3            |
| 19:00-20:00             | 58.1              | 67.8              | 51.8                  | 43.5                       | 52.4 MOL           | 55.4 00         |
| 20:00-21:00             | 44.4              | 43.8              | 48.3                  | 46.5                       | 62.3               | 44.3            |
| 21:00-22:00             | 52.1              | 46.6              | 45.9                  | 56.4                       | 50.8               | 47.6            |

| Sampling Location  | LICON POL CON PC                          | I control from relation relation relation Period QHSE Office |                            |                            |                            |                            |  |  |  |  |
|--------------------|-------------------------------------------|--------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|--|
| Sampling Location  | During Night Time - dB(A)Leq <sup>#</sup> |                                                              |                            |                            |                            |                            |  |  |  |  |
| Date of Monitoring | 01-10-2019 &<br>02-10-2019                | 01-11-2019 &<br>02-11-2019                                   | 02-12-2019 &<br>03-12-2019 | 01-01-2020 &<br>02-01-2020 | 03-02-2020 &<br>04-02-2020 | 02-03-2020 &<br>03-03-2020 |  |  |  |  |
| 22:00-23:00        | 60.5                                      | 65.8                                                         | 51.4                       | 47.5                       | 48.5                       | 64.2                       |  |  |  |  |
| 23:00-00:00        | 41.9                                      | 42.7                                                         | 40.6                       | 50.6                       | 60.5                       | 49.4                       |  |  |  |  |
| 00:00-01:00        | 65.7                                      | 64.8                                                         | 48.2                       | 61.9                       | 52.9                       | 50.2                       |  |  |  |  |
| 01:00-02:00        | 65.3                                      | 56.7                                                         | 46.6                       | 44.7                       | 40.8                       | 66.1                       |  |  |  |  |
| 02:00-03:00        | 54.7                                      | 54.8                                                         | 58.2                       | 51.2                       | 49.7                       | 46.9                       |  |  |  |  |
| 03:00-04:00        | 60.3                                      | 56.9                                                         | 61.1                       | 46.3                       | 59.4                       | 61.0                       |  |  |  |  |
| 04:00-05:00        | 59.5                                      | 60.2                                                         | 50.6                       | 53.6                       | 53.9                       | 58.4                       |  |  |  |  |
| 05:00-06:00        | 53.1                                      | 53.7                                                         | 47.2                       | 42.3                       | 50.2                       | 51.6                       |  |  |  |  |

<sup>#</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-D-D

**Authorized Signatory** 

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 Sec. 12 of Environmental (Protection) Act-1986
 Schedule II auditor

• GPCB apprved • ISO 14001 : 2004 schedule II auditor

OHSAS 18001

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

#### Tables -2 - PMC Office Back Side Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period o f October 2019 to March 2020

| CON POLLUCON POLLUCON PO | 2 - PMC Office Back Side |                  |                       |                            |                    |                |  |  |  |
|--------------------------|--------------------------|------------------|-----------------------|----------------------------|--------------------|----------------|--|--|--|
| Sampling Location        | LLICON POLLICON          | POLLUCON POLLUCO | <b>During Day Tir</b> | ne - dB(A)Leq <sup>#</sup> | CON POLLUCON POL   | LUCON POLLUCON |  |  |  |
| Date of Monitoring       | 02-10-2019               | 02-11-2019       | 03-12-2019            | 02-01-2020                 | 04-02-2020         | 03-03-2020     |  |  |  |
| 6:00-7:00                | 61.2                     | 61.8             | 55.7                  | 65.7                       | 61.5               | 55.5           |  |  |  |
| 7:00-8:00                | 55.1 CON 10              | 55.1 CON         | 01100051.3            | 51.8                       | 58.4               | 67.1           |  |  |  |
| 8:00-9:00                | 68.2                     | 44.7             | 50.8                  | 48.3                       | 50.8               | 60.4           |  |  |  |
| 9:00-10:00               | 48.1                     | 52.8             | 57.2                  | 50.7                       | 48.5               | 58.3           |  |  |  |
| 10:00-11:00              | 54.4                     | 51.5             | 50.3                  | 55.8                       | 60.2               | 45.1           |  |  |  |
| 11:00-12:00              | 47.1                     | 65.7             | 53.4                  | 45.6                       | 43.9               | 44.7           |  |  |  |
| 12:00-13:00              | 52.2                     | 45.6             | 50.6                  | 44.2                       | 51.6               | 53.1           |  |  |  |
| 13:00-14:00              | 51.6                     | 50.2             | 49.7                  | 52.3                       | 47.4               | 47.9           |  |  |  |
| 14:00-15:00              | 44.8 column              | 56.2             | 01100053.1            | rollui61.1 olluid          | N POLL 55.8 POLLU  | 50.6 M         |  |  |  |
| 15:00-16:00              | 50.2                     | 48.8             | 58.2                  | 57.4                       | 58.7               | 46.8           |  |  |  |
| 16:00-17:00              | 47.1                     | 67.9             | 60.3                  | 42.8                       | 44.6               | 59.3           |  |  |  |
| 17:00-18:00              | 60.3                     | 42.1             | 51.9 0                | 47.5 POL 47.5              | CON PO 50.3 ON POL | 62.3           |  |  |  |
| 18:00-19:00              | 54.2                     | 49.9             | 54.3                  | 50.4                       | 49.5               | 48.7           |  |  |  |
| 19:00-20:00              | 43.8                     | 62.3             | 47.5                  | 53.2                       | 53.7               | 54.5           |  |  |  |
| 20:00-21:00              | 50.2 CON 050.2           | 52.1 CON         | 011100 55.8 1 CO      | 52.8                       | 46.5 POLL          | ON 10 42.7 N   |  |  |  |
| 21:00-22:00              | 64.2                     | 64.3             | 51.4                  | 56.8                       | 56.3               | 56.5           |  |  |  |

| CON POLLUCON POLLUCON PO | 2 - PMC Office Back Side<br>During Night Time - dB(A)Leq <sup>#</sup> |                            |                            |                            |                            |                            |  |  |  |
|--------------------------|-----------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
| Sampling Location        |                                                                       |                            |                            |                            |                            |                            |  |  |  |
| Date of Monitoring       | 02-10-2019 &<br>03-10-2019                                            | 02-11-2019 &<br>03-11-2019 | 03-12-2019 &<br>04-12-2019 | 02-01-2020 &<br>03-01-2020 | 04-02-2020 &<br>05-02-2020 | 03-03-2020 &<br>04-03-2020 |  |  |  |
| 22:00-23:00              | 54.5                                                                  | 55.1                       | 60.4                       | 51.7                       | 51.4                       | 60.3                       |  |  |  |
| 23:00-00:00              | 41.0                                                                  | 42.0                       | 48.4                       | 49.6                       | 47.6                       | 49.2                       |  |  |  |
| 00:00-01:00              | 61.8                                                                  | 62.5 UCON                  | 46.6                       | rollu(47.1 00 00           | 48.6                       | 58.5 <sup>0</sup> N        |  |  |  |
| 01:00-02:00              | 51.8                                                                  | 52.5                       | 60.1                       | 51.0                       | 52.3                       | 47.5                       |  |  |  |
| 02:00-03:00              | 66.1                                                                  | 66.5                       | 47.2                       | 46.4                       | 59.8                       | 53.2                       |  |  |  |
| 03:00-04:00              | 68.1                                                                  | 65.5                       | 55.3 0000                  | 62.2                       | 44.4                       | 59.0                       |  |  |  |
| 04:00-05:00              | 55.9                                                                  | 56.4 CO                    | 54.2                       | 43.8                       | 53.8                       | 47.6                       |  |  |  |
| 05:00-06:00              | 58.4                                                                  | 58.9                       | 51.8                       | 53.9                       | 47.5                       | 65.3                       |  |  |  |

<sup>#</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-O-D

**Authorized Signatory** 

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

• GPCB apprved • ISO 14001 : 2004 • OHSAS 18001 schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

#### Tables - 3 - Sub Station - 6 Back Side Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

| CON POLLICON POLLICON PO | 3 - Sub Station - 6 Back Side |                  |                       |                            |                    |                |  |  |  |
|--------------------------|-------------------------------|------------------|-----------------------|----------------------------|--------------------|----------------|--|--|--|
| Sampling Location        | LLICON POLLICON               | POLLUCON POLLUCO | <b>During Day Tir</b> | ne - dB(A)Leq <sup>#</sup> | ICON POLLUCON POL  | LUCON POLLUCON |  |  |  |
| Date of Monitoring       | 03-10-2019                    | 04-11-2019       | 04-12-2019            | 03-01-2020                 | 05-02-2020         | 04-03-2020     |  |  |  |
| 6:00-7:00                | 50.0                          | 46.2             | 47.5                  | 46.2                       | 55.1               | 50.2           |  |  |  |
| 7:00-8:00                | 55.1                          | 47.2             | 61.3                  | 50.3                       | 51.8               | 55.7           |  |  |  |
| 8:00-9:00                | 61.2                          | 55.2             | 60.6                  | 51.7                       | 45.3               | 61.5           |  |  |  |
| 9:00-10:00               | 58.1                          | 67.6             | 55.7                  | 53.1                       | 49.3               | 47.1           |  |  |  |
| 10:00-11:00              | 44.4                          | 42.8             | 62.1                  | 58.2                       | 60.3               | 45.8           |  |  |  |
| 11:00-12:00              | 67.2                          | 53.1             | 58.3                  | 60.8                       | 44.7               | 51.1           |  |  |  |
| 12:00-13:00              | 55.2                          | 51.6             | 60.8                  | 48.7                       | 61.5               | 68.3           |  |  |  |
| 13:00-14:00              | 60.1                          | 49.2             | 54.1                  | 51.1                       | 53.2               | 44.2           |  |  |  |
| 14:00-15:00              | 49.2 com d                    | 60.4             | 59.3                  | 47.6                       | 58.3               | 53.6 M         |  |  |  |
| 15:00-16:00              | 51.6                          | 55.3             | 61.7                  | 43.6                       | 48.6               | 42.2           |  |  |  |
| 16:00-17:00              | 53.1                          | 67.4             | 58.6                  | 64.1                       | 54.4               | 61.5           |  |  |  |
| 17:00-18:00              | 67.6                          | 44.2             | 69.5                  | 55.2 POL 55.2              | CON 10 51.4 ON 101 | 50.5           |  |  |  |
| 18:00-19:00              | 42.8                          | 58.7             | 68.1                  | 44.5                       | 61.1               | 56.7           |  |  |  |
| 19:00-20:00              | 55.2                          | 60.3             | 54.3                  | 57.1                       | 57.5               | 70.1           |  |  |  |
| 20:00-21:00              | 47.2                          | 55.9 CON         | 59.2                  | 50.8                       | 42.6 0000          | 101 10 45.9 N  |  |  |  |
| 21:00-22:00              | 46.2                          | 50.0             | 55.1                  | 48.6                       | 49.4               | 60.0           |  |  |  |

| CON POLLUCON POLLUCON PO | 3 - Sub Station - 6 Back Side<br>During Night Time - dB(A)Leq <sup>#</sup> |                            |                            |                            |                            |                            |  |  |  |
|--------------------------|----------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
| Sampling Location        |                                                                            |                            |                            |                            |                            |                            |  |  |  |
| Date of Monitoring       | 03-10-2019 &<br>04-10-2019                                                 | 04-11-2019 &<br>05-11-2019 | 04-12-2019 &<br>05-12-2019 | 03-01-2020 &<br>04-01-2020 | 05-02-2020 &<br>06-02-2020 | 04-03-2020 &<br>05-03-2020 |  |  |  |
| 22:00-23:00              | 66.5                                                                       | 66.4                       | 44.6                       | 55.3                       | 58.6                       | 49.9                       |  |  |  |
| 23:00-00:00              | <mark>5</mark> 6.7                                                         | 55.9                       | 47.2                       | 48.3                       | 60.4                       | 50.7                       |  |  |  |
| 00:00-01:00              | 60.2                                                                       | 66.8 CON                   | 60.7                       | 60.6                       | 59.0 POLL                  | 58.6                       |  |  |  |
| 01:00-02:00              | 52.0                                                                       | 57.3                       | 48.6                       | 61.4                       | 47.7                       | 42.5                       |  |  |  |
| 02:00-03:00              | 62.7                                                                       | 62.9                       | 55.4                       | 51.6                       | 68.1                       | 48.6                       |  |  |  |
| 03:00-04:00              | 67.4                                                                       | 50.2                       | 46.1                       | 50.9                       | 54.5                       | 54.0                       |  |  |  |
| 04:00-05:00              | 40.5                                                                       | 42.3                       | 58.2                       | 68.2                       | 42.8                       | 47.3                       |  |  |  |
| 05:00-06:00              | 50.8                                                                       | 50.4                       | 59.1                       | 56.3                       | 61.8                       | 55.2                       |  |  |  |

\*dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-O-D

**Authorized Signatory** 

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 Sec. 12 of Environmental (Protection) Act-1986
 Schedule II auditor

• GPCB apprved • ISO 14001 : 2004 • OHSAS 18001 : 2007 schedule II auditor

ISO

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

## Tables - 4 -Sub Station - 8 (Marine Building)Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

| ON POLLICON POLLICON PO | 4 -Sub Station - 8 (Marine Building) |                  |                       |                            |                    |                |  |  |  |
|-------------------------|--------------------------------------|------------------|-----------------------|----------------------------|--------------------|----------------|--|--|--|
| Sampling Location       | LUICON POLLUCON                      | POLLUCON POLLUCO | <b>During Day Tir</b> | ne - dB(A)Leq <sup>#</sup> | ICON POLLUCON POL  | LUCON POLLICON |  |  |  |
| Date of Monitoring      | 04-10-2019                           | 05-11-2019       | 05-12-2019            | 04-01-2020                 | 06-02-2020         | 05-03-2020     |  |  |  |
| 6:00-7:00               | 67.1                                 | 50.3             | 48.1                  | 58.4                       | 50.1               | 49.2           |  |  |  |
| 7:00-8:00               | 44.2                                 | 49.6             | 50.8                  | 43.8                       | 48.5               | 50.1           |  |  |  |
| 8:00-9:00               | 50.3                                 | 60.1             | 48.6                  | 51.6                       | 60.2               | 53.7           |  |  |  |
| 9:00-10:00              | 58.2                                 | 47.7             | 45.1                  | 46.7                       | 70.1               | 45.5           |  |  |  |
| 10:00-11:00             | 68.1                                 | 51.4             | 46.6                  | 60.1                       | 44.6               | 58.0           |  |  |  |
| 11:00-12:00             | 48.6                                 | 45.5             | 55.8                  | 48.5                       | 51.4               | 47.7           |  |  |  |
| 12:00-13:00             | 44.8                                 | 42.4             | 50.1                  | 51.2                       | 58.6               | 43.0           |  |  |  |
| 13:00-14:00             | 69.1                                 | 64.8             | 58.1                  | 50.3                       | 61.3               | 53.5           |  |  |  |
| 14:00-15:00             | 64.3 COM 64.3                        | 69.1             | 60.8                  | 41.7                       | 49.9               | 58.1           |  |  |  |
| 15:00-16:00             | 42.4                                 | 44.8             | 55.1                  | 47.8                       | 62.1               | 45.9           |  |  |  |
| 16:00-17:00             | 45.3                                 | 48.2             | 61.3                  | 57.2                       | 45.8               | 42.1           |  |  |  |
| 17:00-18:00             | 51.6                                 | 68.2             | 68.1                  | 65.7                       | con ro 64.1 on rol | 56.8           |  |  |  |
| 18:00-19:00             | 47.8                                 | 58.1             | 58.4                  | 56.2                       | 53.4               | 43.9           |  |  |  |
| 19:00-20:00             | 60.2                                 | 50.8             | 56.7                  | 49.3                       | 47.6               | 59.1           |  |  |  |
| 20:00-21:00             | 49.6                                 | 44.4 UCON 1      | 52.1                  | 52.1                       | 56.1 0010          | 64.20N         |  |  |  |
| 21:00-22:00             | 50.3                                 | 67.1             | 50.9                  | 50.0                       | 58.1               | 60.1           |  |  |  |

| CON POLLUCON POLLUCON PC | 4 -Sub Station - 8 (Marine Building)<br>During Night Time - dB(A)Leq <sup>#</sup> |                            |                            |                            |                            |                            |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
| Sampling Location        |                                                                                   |                            |                            |                            |                            |                            |  |  |  |
| Date of Monitoring       | 04-10-2019 &<br>05-10-2019                                                        | 05-11-2019 &<br>06-11-2019 | 05-12-2019 &<br>06-12-2019 | 04-01-2020 &<br>05-01-2020 | 06-02-2020 &<br>07-02-2020 | 05-03-2020 &<br>06-03-2020 |  |  |  |
| 22:00-23:00              | 66.4                                                                              | 66.1                       | 47.6                       | 60.3                       | 51.5                       | 49.3                       |  |  |  |
| 23:00-00:00              | <mark>5</mark> 6.4                                                                | 56.5                       | 46.7                       | 53.3                       | 59.7                       | 45.7                       |  |  |  |
| 00:00-01:00              | 41.5 ON PC                                                                        | 41.8 UCON 41.8             | 01100041.2                 | 55.7 00 00                 | 49.4 000                   | ON 10 51.3 N 10            |  |  |  |
| 01:00-02:00              | 60.7                                                                              | 57.4                       | 58.2                       | 50.7                       | 45.4                       | 56.2                       |  |  |  |
| 02:00-03:00              | 50.9                                                                              | 50.1                       | 60.3                       | 44.9                       | 52.7                       | 45.1                       |  |  |  |
| 03:00-04:00              | 49.8                                                                              | 49.2                       | 47.2                       | 47.3                       | 49.5                       | 42.3                       |  |  |  |
| 04:00-05:00              | 64.7                                                                              | 65.9                       | 46.8                       | 49.5                       | 60.3                       | 58.0                       |  |  |  |
| 05:00-06:00              | 66.8                                                                              | 67.2                       | 52.1                       | 52.4                       | 53.2                       | 60.4                       |  |  |  |

<sup>#</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-O-D

**Authorized Signatory** 

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 Sec. 12 of Environmental (Protection) Act-1986
 Schedule II auditor

• GPCB apprved • ISO 14001 : 2004 • OHSAS 18001 schedule II auditor

: 2007

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

### Tables - 5 - Near Sub Station-7BAmbient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

| Sampling Location  | 5 - Near Sub Station-7B |                   |                       |                            |                    |                  |  |  |  |
|--------------------|-------------------------|-------------------|-----------------------|----------------------------|--------------------|------------------|--|--|--|
| Sampling Location  | LLUCON POLLUCON         | POLLUCON POLLUCOS | <b>During Day Tir</b> | ne - dB(A)Leq <sup>#</sup> | CON POLLUCON POL   | LUCON POLLUCON   |  |  |  |
| Date of Monitoring | 05-10-2019              | 06-11-2019        | 06-12-2019            | 06-01-2020                 | 07-02-2020         | 06-03-2020       |  |  |  |
| 6:00-7:00          | 49.2                    | 51.3              | 50.9                  | 51.4                       | 49.9               | 55.1             |  |  |  |
| 7:00-8:00          | 61.5                    | 50.4              | 70.2                  | 48.8                       | 50.0               | 43.8             |  |  |  |
| 8:00-9:00          | 67.2                    | 51.8              | 65.4                  | 49.7                       | 51.4               | 45.4             |  |  |  |
| 9:00-10:00         | 64.3                    | 47.4              | 68.2                  | 55.9                       | 48.8               | 58.4             |  |  |  |
| 10:00-11:00        | 45.4                    | 61.2              | 58.8                  | 47.2                       | 45.7               | 60.5             |  |  |  |
| 11:00-12:00        | 55.6                    | 53.8              | 60.3                  | 52.4                       | 55.3 mol           | 65.2             |  |  |  |
| 12:00-13:00        | 48.2                    | 61.1              | 63.7                  | 65.8                       | 60.5               | 42.5             |  |  |  |
| 13:00-14:00        | 45.6                    | 44.6              | 59.7                  | 50.1                       | 67.2               | 49.0             |  |  |  |
| 14:00-15:00        | 44.4 CON 0              | 45.8 (CON)        | 60.2                  | 46.7                       | IN POLL 45.4 POLLU | CON PO 50.4 0N 0 |  |  |  |
| 15:00-16:00        | 61.2                    | 48.1              | 58.1                  | 44.7                       | 56.5               | 62.1             |  |  |  |
| 16:00-17:00        | 53.4                    | 55.6              | 60.4                  | 53.4                       | 61.0               | 60.2             |  |  |  |
| 017:00-18:00       | 61.2                    | 45.3              | 58.3                  | 60.0 0011                  | con ro 46.6 mol    | 54.8             |  |  |  |
| 18:00-19:00        | 47.6                    | 64.1              | 55.1                  | 40.3                       | 52.7               | 45.7             |  |  |  |
| 19:00-20:00        | 51.8                    | 67.2              | 52.6                  | 51.3                       | 57.4               | 40.9             |  |  |  |
| 20:00-21:00        | 50.1                    | 61.4 CON          | 51.2                  | 49.6                       | 62.0 POLL          | 53.20N           |  |  |  |
| 21:00-22:00        | 51.2                    | 49.8              | 53.8                  | 54.8                       | 49.8               | 57.2             |  |  |  |

| CON POLLUCON POLLUCON PC | ILLUCON POLL LON                          | POLLUCON POLLUCO           | 5 - Near Sul               | b Station-7B               |                            |                            |  |  |  |
|--------------------------|-------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
| Sampling Location        | During Night Time - dB(A)Leg <sup>#</sup> |                            |                            |                            |                            |                            |  |  |  |
| Date of Monitoring       | 05-10-2019 &<br>06-10-2019                | 06-11-2019 &<br>07-11-2019 | 06-12-2019 &<br>07-12-2019 | 06-01-2020 &<br>07-01-2020 | 07-02-2020 &<br>08-02-2020 | 06-03-2020 &<br>07-03-2020 |  |  |  |
| 22:00-23:00              | 52.9                                      | 56.3                       | 65.5                       | 54.3                       | 56.4                       | 58.8                       |  |  |  |
| 23:00-00:00              | 65.4                                      | 66.3                       | 60.8                       | 47.9                       | 48.7                       | 45.3                       |  |  |  |
| 00:00-01:00              | 63.3                                      | 62.8 UCON                  | 68.1                       | 42.5                       | 68.3 1011                  | 55.8                       |  |  |  |
| 01:00-02:00              | 64.4                                      | 64.4                       | 50.2                       | 52.9                       | 42.4                       | 50.4                       |  |  |  |
| 02:00-03:00              | 63.7                                      | 64.1                       | 51.8                       | 60.4                       | 54.4                       | 42.7                       |  |  |  |
| 03:00-04:00              | 65.1                                      | 64.3                       | 45.3                       | 48.1                       | 58.5                       | 48.7                       |  |  |  |
| 04:00-05:00              | 57.1                                      | 58.4                       | 55.2                       | 50.0                       | 51.8                       | 62.1                       |  |  |  |
| 05:00-06:00              | 43.4                                      | 43.9                       | 52.3                       | 58.3                       | 45.3                       | 65.2                       |  |  |  |

<sup>\*</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-O-D

**Authorized Signatory** 

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 Sec. 12 of Environmental (Protection) Act-1986
 Schedule II auditor

• GPCB apprved • ISO 14001 : 2004 • OHSAS 18001 schedule II auditor

: 2007

ISO

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

#### Tables -6 - JS - 1 (Nr. Lakhigam) Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

| Compline Leastion  | 6 - JS - 1 (Nr. Lakhigam)               |            |            |               |                      |                 |  |  |  |
|--------------------|-----------------------------------------|------------|------------|---------------|----------------------|-----------------|--|--|--|
| Sampling Location  | During Day Time - dB(A)Leq <sup>#</sup> |            |            |               |                      |                 |  |  |  |
| Date of Monitoring | 07-10-2019                              | 07-11-2019 | 07-12-2019 | 07-01-2020    | 08-02-2020           | 07-03-2020      |  |  |  |
| 6:00-7:00          | <mark>48.4</mark>                       | 59.2       | 60.4       | 50.2          | 61.1                 | 68.0            |  |  |  |
| 7:00-8:00          | 54.2                                    | 46.4       | 63.1       | 61.8          | 41.8                 | 48.6            |  |  |  |
| 8:00-9:00          | 50.1 CON T                              | 50.8       | 52.7       | 58.4          | 44.5                 | 50.1            |  |  |  |
| 9:00-10:00         | 58.2                                    | 49.4       | 59.3       | 56.9          | 50.9                 | 57.7            |  |  |  |
| 10:00-11:00        | 45.7                                    | 54.8       | 60.8       | 48.7          | 58.6                 | 45.2            |  |  |  |
| 11:00-12:00        | 55.1                                    | 42.1       | 50.8       | 51.3          | 60.0                 | 55.9            |  |  |  |
| 12:00-13:00        | 48.8                                    | 44.6       | 51.8       | 60.2          | 45.4                 | 54.3            |  |  |  |
| 13:00-14:00        | 65.2                                    | 60.3       | 53.9       | 44.1          | 49.8                 | 42.8            |  |  |  |
| 14:00-15:00        | 60.3 COM                                | 64.8       | 52.3       | 53.8 0000     | IN POLI 57.1 ( POLL) | 48.6            |  |  |  |
| 15:00-16:00        | 44.6                                    | 48.8       | 55.2       | 47.3          | 53.2                 | 51.2            |  |  |  |
| 16:00-17:00        | 42.8                                    | 55.2       | 59.7       | 46.2          | 46.7                 | 50.4            |  |  |  |
| 17:00-18:00        | 54.4 CON                                | 45.7       | 55.9 00 0  | 56.8 POL 56.8 | 59.8 on rol          | UCON 61.1 CON   |  |  |  |
| 18:00-19:00        | 49.7                                    | 58.2       | 50.1       | 42.8          | 54.4                 | 43.9            |  |  |  |
| 19:00-20:00        | 50.2                                    | 50.3       | 51.7       | 51.9          | 46.5                 | 47.2            |  |  |  |
| 20:00-21:00        | 46.6                                    | 54.1 CON   | 50.4       | 45.7 00000    | DN POL 52.8 ( POL L  | CON 10 54.8 N 1 |  |  |  |
| 21:00-22:00        | 59.2                                    | 48.7       | 48.7       | 49.3          | 51.4                 | 56.1            |  |  |  |

| CON POLLUCON POLLUCON PC | ILLUCON POLL LON                          | POLLUCON POLLUCO           | 6 - JS - 1 (N              | r. Lakhigam)               | ICON POLLUCON POL          | LUCON FOLLICON             |  |  |  |
|--------------------------|-------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
| Sampling Location        | During Night Time - dB(A)Leg <sup>#</sup> |                            |                            |                            |                            |                            |  |  |  |
| Date of Monitoring       | 07-10-2019 &<br>08-10-2019                | 07-11-2019 &<br>08-11-2019 | 07-12-2019 &<br>08-12-2019 | 07-01-2020 &<br>08-01-2020 | 08-02-2020 &<br>09-02-2020 | 07-03-2020 &<br>08-03-2020 |  |  |  |
| 22:00-23:00              | 56.6                                      | 55.2                       | 44.3                       | 45.2                       | 55.5                       | 56.3                       |  |  |  |
| 23:00-00:00              | <mark>5</mark> 2.3                        | 53.4                       | 62.1                       | 50.5                       | 56.8                       | 49.7                       |  |  |  |
| 00:00-01:00              | 54.1                                      | 1000 54.1 UCON             | 01110051.911100            | 52.7                       | 43.9 POLL                  | 45.4 <sup>0</sup> 45.4     |  |  |  |
| 01:00-02:00              | 64.0                                      | 61.8                       | 40.7                       | 44.4                       | 52.6                       | 42.2                       |  |  |  |
| 02:00-03:00              | 62.6                                      | 63.1                       | 48.2                       | 46.9                       | 59.4                       | 58.9                       |  |  |  |
| 03:00-04:00              | 40.8                                      | 40.3                       | 51.6                       | 56.4                       | 46.9                       | 60.2                       |  |  |  |
| 04:00-05:00              | 62.1                                      | 62.4                       | 56.8                       | 42.1                       | 53.5                       | 53.3                       |  |  |  |
| 05:00-06:00              | 51.0                                      | 51.8                       | 51.2                       | 59.3                       | 50.8                       | 59.4                       |  |  |  |

<sup>\*</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-O-D

**Authorized Signatory** 

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

• GPCB apprved • ISO 14001 : 2004 • OHSAS 18001 schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

#### Tables -7 - Behind S.S. - 11 (Silo)Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

|                    | 7 - Behind S.S 11 (Silo)<br>During Day Time - dB(A)Leq <sup>#</sup> |            |            |                  |                     |                 |  |  |  |
|--------------------|---------------------------------------------------------------------|------------|------------|------------------|---------------------|-----------------|--|--|--|
| Sampling Location  |                                                                     |            |            |                  |                     |                 |  |  |  |
| Date of Monitoring | 08-10-2019                                                          | 08-11-2019 | 09-12-2019 | 08-01-2020       | 10-02-2020          | 09-03-2020      |  |  |  |
| 6:00-7:00          | 54.4                                                                | 49.1       | 62.3       | 48.4             | 55.4                | 56.1            |  |  |  |
| 7:00-8:00          | 44.4                                                                | 50.1       | 60.5       | 51.1 POLLO       | 68.1                | 48.2            |  |  |  |
| 8:00-9:00          | 60.2                                                                | 42.6       | 63.1       | 55.4             | 48.1                | 45.8            |  |  |  |
| 9:00-10:00         | 65.1                                                                | 50.5       | 65.8       | 60.1             | 51.9                | 55.6            |  |  |  |
| 10:00-11:00        | 49.8                                                                | 46.8       | 67.1       | 49.5             | 5 <mark>6.4</mark>  | 59.1            |  |  |  |
| 11:00-12:00        | 52.8                                                                | 47.2       | 65.5       | 50.7             | 58.7                | 44.9            |  |  |  |
| 12:00-13:00        | 62.3                                                                | 68.1       | 68.2       | 52.3             | 47.6                | 45.6            |  |  |  |
| 13:00-14:00        | 52.1                                                                | 58.3       | 64.8       | 44.4             | 45.6                | 50.1            |  |  |  |
| 14:00-15:00        | 58.2.000                                                            | 52.1 DICON | 60.6       | 48.2             | DN POLI51.3 ( POLLU | 64.1            |  |  |  |
| 15:00-16:00        | 68.1                                                                | 62.1       | 58.3       | 56.1             | 49.6                | 42.8            |  |  |  |
| 16:00-17:00        | 47.2                                                                | 52.8       | 55.1       | 58.1             | 54.9                | 55.2            |  |  |  |
| 17:00-18:00        | 46.8                                                                | 49.8       | 60.9       | ON POL 42.6 POLL | CON PC52.6 ON POL   | 44.8            |  |  |  |
| 18:00-19:00        | 50.2                                                                | 65.1       | 55.6       | 46.3             | 58.1                | 46.9            |  |  |  |
| 19:00-20:00        | 42.6                                                                | 60.2       | 51.3       | 57.2             | 44.9                | 59.1            |  |  |  |
| 20:00-21:00        | 60.2                                                                | 44.4 CON   | 47.5       | 61.8             | 56.3 POL 56.3       | CON 10 60.0 N 1 |  |  |  |
| 21:00-22:00        | 49.2                                                                | 54.3       | 49.5       | 46.1             | 60.5                | 61.1            |  |  |  |

| CON POLLUCON POLLUCON PC | ILLUCON POLL LON           |                            | 7 - Behind S.              | S 11 (Silo)                |                            |                            |
|--------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Sampling Location        | ILLUCON POLICON            | POLLICON POLLUCO           | <b>During Night Ti</b>     | me - dB(A)Leq              | CON POLLUCON POL           | LUEON POLLUCON             |
| Date of Monitoring       | 08-10-2019 &<br>09-10-2019 | 08-11-2019 &<br>09-11-2019 | 09-12-2019 &<br>10-12-2019 | 08-01-2020 &<br>09-01-2020 | 10-02-2020 &<br>11-02-2020 | 09-03-2020 &<br>10-03-2020 |
| 22:00-23:00              | 47.0                       | 47.1                       | 52.4                       | 61.3                       | 50.6                       | 51.5                       |
| 23:00-00:00              | <mark>5</mark> 4.2         | 54.5                       | 50.0                       | 51.5                       | 59.6                       | 53.4                       |
| 00:00-01:00              | 41.1 CON PC                | 41.6 UCON 41.6             | 47.6                       | 58.4                       | N POL 47.1 POLL            | 45.9 <sup>0</sup> N        |
| 01:00-02:00              | 58.2                       | 58.3                       | 44.8                       | 46.7                       | 54.8                       | 68.5                       |
| 02:00-03:00              | 62.9                       | 63.4                       | 65.3                       | 54.9                       | 60.8                       | 43.9                       |
| 03:00-04:00              | 59.1                       | 59.2                       | 60.1                       | 48.5                       | 42.6                       | 56.4                       |
| 04:00-05:00              | 65.5                       | 66.0                       | 59.2                       | 45.3                       | 46.5                       | 40.7                       |
| 05:00-06:00              | 52.8                       | 52.6                       | 44.6                       | 50.4                       | 55.0                       | 53.1                       |

<sup>#</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-O-D

**Authorized Signatory** 

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 Sec. 12 of Environmental (Protection) Act-1986
 Schedule II auditor

• GPCB apprved • ISO 14001 : 2004 • OHSAS 18001 schedule II auditor

: 2007

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

### Tables - 8 – Nr. S&S Entry Gate (Dahej Road) & Silo Loading Point Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

| Compline Leastion  | 8 - Silo Loading Point<br>During Day Time - dB(A) Leq <sup>#</sup> |                   |                |            |                     |              |  |  |  |
|--------------------|--------------------------------------------------------------------|-------------------|----------------|------------|---------------------|--------------|--|--|--|
| Sampling Location  |                                                                    |                   |                |            |                     |              |  |  |  |
| Date of Monitoring | 09-10-2019                                                         | 09-11-2019        | 10-12-2019     | 09-01-2020 | 11-02-2020          | 10-03-2020   |  |  |  |
| 6:00-7:00          | 47.5                                                               | 44.1              | 58.3           | 65.1       | 4 <mark>8</mark> .4 | 60.1         |  |  |  |
| 7:00-8:00          | 44.4                                                               | 56.1              | 57.1           | 44.3       | 50.2                | 57.2         |  |  |  |
| 8:00-9:00          | 51.2                                                               | 61.8              | 60.2           | 48.2       | 51.2                | 48.2         |  |  |  |
| 9:00-10:00         | 60.2                                                               | 48.5              | 64.3           | 55.4       | 47.4                | 45.8         |  |  |  |
| 10:00-11:00        | 48.2                                                               | 45.8              | 66.1           | 57.8       | 55.7                | 59.1         |  |  |  |
| 11:00-12:00        | 56.4                                                               | 54.7              | 60.1           | 50.0       | 61.5 m m            | 70.1         |  |  |  |
| 12:00-13:00        | 61.2                                                               | 64.1              | 58.4           | 47.5       | 47.3                | 42.9         |  |  |  |
| 13:00-14:00        | 50.3                                                               | 65.8              | 55.3           | 53.1       | 44.3                | 50.1         |  |  |  |
| 14:00-15:00        | 42.8                                                               | 50.0              | 01110052.1     | 46.2       | N POL 55.6 POLLU    | 44.6         |  |  |  |
| 15:00-16:00        | 64.3                                                               | 68.2              | 57.9           | 56.2       | 52.3                | 55.8         |  |  |  |
| 16:00-17:00        | 54.2                                                               | 56.4              | 54.2           | 44.8       | 42.6                | 47.6         |  |  |  |
| 17:00-18:00        | 45.8                                                               | 48.2              | 51.3 0         | 51.6 0011  | 59.7 M              | 68.1         |  |  |  |
| 18:00-19:00        | 48.3                                                               | 60.8              | 61.2           | 53.2       | 62.1                | 45.9         |  |  |  |
| 19:00-20:00        | 61.2                                                               | 51.1              | 55.1           | 47.6       | 47.8                | 66.1         |  |  |  |
| 20:00-21:00        | 56.3 CON 056.3                                                     | 10000 44.3 0000 I | 01110052.3 1CO | 49.7       | 49.7                | ON 10 52.8 N |  |  |  |
| 21:00-22:00        | 44.2                                                               | 47.3              | 50.5           | 45.8       | 46.5                | 47.8         |  |  |  |

| CON POLLUCON POLLUCON PC | ILLUCON POLL LON                           | POLLUCON POLLUCO           | 8 - Silo Loa               | ading Point                |                            |                            |  |  |  |
|--------------------------|--------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
| Sampling Location        | During Night Time - dB(A) Leg <sup>#</sup> |                            |                            |                            |                            |                            |  |  |  |
| Date of Monitoring       | 09-10-2019 &<br>10-10-2019                 | 09-11-2019 &<br>10-11-2019 | 10-12-2019 &<br>11-12-2019 | 09-01-2020 &<br>10-01-2020 | 11-02-2020 &<br>12-02-2020 | 10-03-2020 &<br>11-03-2020 |  |  |  |
| 22:00-23:00              | 49.6                                       | 67.1                       | 51.6                       | 54.1                       | 56.5                       | 58.7                       |  |  |  |
| 23:00-00:00              | 51.5                                       | 51.4                       | 60.4                       | 61.7                       | 44.2                       | 48.8                       |  |  |  |
| 00:00-01:00              | 40.2                                       | 43.7 UCON 43.7             | 48.3                       | 42.7                       | 46.4 2011                  | 57.0                       |  |  |  |
| 01:00-02:00              | 54.0                                       | 54.4                       | 44.6                       | 45.7                       | 50.5                       | 41.8                       |  |  |  |
| 02:00-03:00              | 61.2                                       | 61.7                       | 41.6                       | 51.9                       | 53.7                       | 60.0                       |  |  |  |
| 03:00-04:00              | 63.9                                       | 64.9                       | 58.2                       | 56.9                       | 42.7                       | 43.7                       |  |  |  |
| 04:00-05:00              | 56.5                                       | 55.3                       | 51.1                       | 44.2                       | 51.0                       | 56.5                       |  |  |  |
| 05:00-06:00              | 48.9                                       | 49.7                       | 55.2                       | 40.3                       | 57.5                       | 48.4                       |  |  |  |

<sup>#</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-O-D

**Authorized Signatory** 

• FSSAI Approved Lab • Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

• GPCB apprved • ISO 14001 : 2004 • OHSAS 18001 schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

### Tables -9 - GCPTL Gate Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

| Compliant Continue | 9 - GCPTL Gate<br>During Day Time - dB(A)Leq <sup>#</sup> |                          |            |                   |                   |            |  |  |  |
|--------------------|-----------------------------------------------------------|--------------------------|------------|-------------------|-------------------|------------|--|--|--|
| Sampling Location  |                                                           |                          |            |                   |                   |            |  |  |  |
| Date of Monitoring | 10-10-2019                                                | 11-11- <mark>2019</mark> | 11-12-2019 | 10-01-2020        | 12-02-2020        | 11-03-2020 |  |  |  |
| 6:00-7:00          | 61.2                                                      | 61.2                     | 57.2       | 48.8              | 51.0              | 52.1       |  |  |  |
| 7:00-8:00          | 58.4                                                      | 44.8                     | 55.3       | 55.3              | 55.1              | 56.2       |  |  |  |
| 8:00-9:00          | 51.2                                                      | 55.8                     | 60.1       | 49.1              | 61.2              | 48.8       |  |  |  |
| 9:00-10:00         | 67.3                                                      | 61.1                     | 58.4       | 50.1              | 44.6              | 50.1       |  |  |  |
| 10:00-11:00        | 45.4                                                      | 65.2                     | 59.2       | 61.2              | 45.8              | 61.2       |  |  |  |
| 11:00-12:00        | 50.2                                                      | 51.0                     | 62.3       | 44.5              | 46.9              | 44.9       |  |  |  |
| 12:00-13:00        | 48.6                                                      | 45.9                     | 65.2       | 51.3              | 50.1              | 51.2       |  |  |  |
| 13:00-14:00        | 49.3                                                      | 58.5                     | 60.7       | 53.6              | 58.2              | 47.9       |  |  |  |
| 14:00-15:00        | 58.4 CONT                                                 | 49.6 CON                 | 63.1       | 44.9 00000        | 60.8 not 60.8     | 44.6       |  |  |  |
| 15:00-16:00        | 45.5                                                      | 48.4                     | 66.8       | 45.6              | 42.9              | 56.2       |  |  |  |
| 16:00-17:00        | 51.6                                                      | 50.8                     | 65.4       | 52.6              | 48.2              | 59.1       |  |  |  |
| 17:00-18:00        | 65.4 CON                                                  | 45.4                     | 52.8       | ON POL 47.3 NOLLI | CON PC54.1 ON POL | 47.9       |  |  |  |
| 18:00-19:00        | 61.1                                                      | 67.1                     | 51.3       | 58.2              | 56.0              | 45.8       |  |  |  |
| 19:00-20:00        | 54.2                                                      | 51.2                     | 50.3       | 60.0              | 45.3              | 58.2       |  |  |  |
| 20:00-21:00        | 44.8                                                      | 58.1 CON                 | 48.7       | 61.5              | 59.1 roll         | 60.0       |  |  |  |
| 21:00-22:00        | 61.3                                                      | 61.7                     | 49.3       | 46.8              | 52.6              | 53.1       |  |  |  |

| CON POLLUCON POLLUCON INC | LLUCON POLL LON                           |                            | 9 - GCP                    | TL Gate                    |                            |                            |  |  |  |
|---------------------------|-------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
| Sampling Location         | During Night Time - dB(A)Leq <sup>#</sup> |                            |                            |                            |                            |                            |  |  |  |
| Date of Monitoring        | 10-10-2019 &<br>11-10-2019                | 11-11-2019 &<br>12-11-2019 | 11-12-2019 &<br>12-12-2019 | 10-01-2020 &<br>11-01-2020 | 12-02-2020 &<br>13-02-2020 | 11-03-2020 &<br>12-03-2020 |  |  |  |
| 22:00-23:00               | 66.6                                      | 66.9                       | 57.8                       | 45.1                       | 54.7                       | 49.8                       |  |  |  |
| 23:00-00:00               | <mark>5</mark> 8.6                        | 57.1                       | 47.6                       | 52.5                       | 49.9                       | 68.3                       |  |  |  |
| 00:00-01:00               | 60.1                                      | 60.4 CON                   | 56.1                       | 61.8 00 00                 | N POL 51.2 POLL            | ON PO 51.10N PO            |  |  |  |
| 01:00-02:00               | 42.5                                      | 42.2                       | 51.6                       | 47.2                       | 57.3                       | 57.4                       |  |  |  |
| 02:00-03:00               | 65.9                                      | 66.6                       | 40.8                       | 44.3                       | 55.3                       | 48.5                       |  |  |  |
| 03:00-04:00               | 60.6                                      | 61.1                       | 47.4                       | 56.8                       | 44.5                       | 42.6                       |  |  |  |
| 04:00-05:00               | 57.7                                      | 58.1                       | 58.1                       | 51.8                       | 49.3                       | 57.9                       |  |  |  |
| 05:00-06:00               | 58.3                                      | 58.5                       | 56.4                       | 57.4                       | 54.6                       | 59.1                       |  |  |  |

<sup>#</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-O-D

**Authorized Signatory** 

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 Sec. 12 of Environmental (Protection) Act-1986
 Schedule II auditor

• GPCB apprved • ISO 14001 : 2004 • OHSAS 18001 schedule II auditor

: 2007

D ISO

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

### Tables - 10 - Lakhi Village (Primary School) Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

| CON POLLICON POLLICON PO | 10 - Lakhi Village (Primary School)<br>During Day Time - dB(A)Leq <sup>#</sup> |            |            |                    |                     |               |  |  |  |
|--------------------------|--------------------------------------------------------------------------------|------------|------------|--------------------|---------------------|---------------|--|--|--|
| Sampling Location        |                                                                                |            |            |                    |                     |               |  |  |  |
| Date of Monitoring       | 11-10-2019                                                                     | 12-11-2019 | 12-12-2019 | 11-01-2020         | 13-02-2020          | 12-03-2020    |  |  |  |
| 6:00-7:00                | 55.2                                                                           | 47.1       | 63.8       | 51.2               | 44.8                | 45.9          |  |  |  |
| 7:00-8:00                | 67.2                                                                           | 52.2       | 51.1       | 48.1               | 55.5 POLL           | 50.1          |  |  |  |
| 8:00-9:00                | 55.3 CON 1                                                                     | 60.4       | 50.4       | 45.7               | 55.3                | 48.2          |  |  |  |
| 9:00-10:00               | 60.1                                                                           | 53.4       | 55.3       | 49.6               | 48.6                | 56.2          |  |  |  |
| 10:00-11:00              | 47.6                                                                           | 41.3       | 58.4       | 50.3               | 49.4                | 58.1          |  |  |  |
| 11:00-12:00              | 44.8                                                                           | 44.2       | 54.2       | 55.1               | 53.2 00 00          | 50.3          |  |  |  |
| 12:00-13:00              | 50.2                                                                           | 54.2       | 68.3       | 49.2               | 55.2                | 42.9          |  |  |  |
| 13:00-14:00              | 48.6                                                                           | 57.1       | 61.6       | 51.8               | 57.6                | 61.2          |  |  |  |
| 14:00-15:00              | 57.4 CONID                                                                     | 48.6       | 50.8       | 52.4 101110        | DN POLL45.8 POLLU   | CON PO 59.2   |  |  |  |
| 15:00-16:00              | 54.2                                                                           | 50.2       | 51.3       | 44.6               | 60.1                | 43.9          |  |  |  |
| 16:00-17:00              | 44.6                                                                           | 44.9       | 56.8       | 47.8               | 5 <mark>6</mark> .1 | 60.1          |  |  |  |
| 17:00-18:00              | 41.3 CON                                                                       | 47.6       | 49.2       | ON POL 53.4 N POLL | 42.8                | 61.2          |  |  |  |
| 18:00-19:00              | 53.4                                                                           | 60.1       | 56.1       | 54.0               | 43.9                | 40.9          |  |  |  |
| 19:00-20:00              | 60.1                                                                           | 55.3       | 58.1       | 46.5               | 49.8                | 45.6          |  |  |  |
| 20:00-21:00              | 52.3 CON                                                                       | 67.2 CON   | 49.7       | 48.6               | 50.0 POL 50.0       | CON 10 54.20N |  |  |  |
| 21:00-22:00              | 47.4                                                                           | 55.1       | 47.2       | 54.9               | 54.4                | 68.1          |  |  |  |

| CON POLLUCON POLLUCON PO | ILLUCON POLL LON                          | POLLUCON POLLU10           | - Lakhi Village            | (Primary Scho              | ol) rollucon pol           |                            |  |  |  |
|--------------------------|-------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
| Sampling Location        | During Night Time - dB(A)Leq <sup>#</sup> |                            |                            |                            |                            |                            |  |  |  |
| Date of Monitoring       | 11-10-2019 &<br>12-10-2019                | 12-11-2019 &<br>13-11-2019 | 12-12-2019 &<br>13-12-2019 | 11-01-2020 &<br>12-01-2020 | 13-02-2020 &<br>14-02-2020 | 12-03-2020 &<br>13-03-2020 |  |  |  |
| 22:00-23:00              | 66.7                                      | 64.5                       | 60.5                       | 49.3                       | 42.5                       | 56.8                       |  |  |  |
| 23:00-00:00              | <mark>5</mark> 7.4                        | 59.9                       | 44.2                       | 50.8                       | 50.7                       | 42.1                       |  |  |  |
| 00:00-01:00              | 52.5 Start                                | 53.1 UCON                  | 01100065.1011000           | 56.6                       | N POLL 61.1 POLLU          | 45.2 <sup>0</sup> 45.2     |  |  |  |
| 01:00-02:00              | 39.5                                      | 40.5                       | 50.8                       | 60.8                       | 45.2                       | 40.8                       |  |  |  |
| 02:00-03:00              | 52.2                                      | 53.0                       | 44.6                       | 54.2                       | 49.2                       | 51.4                       |  |  |  |
| 03:00-04:00              | 63.1                                      | 63.7                       | 52.3                       | 48.7                       | 58.2                       | 58.3                       |  |  |  |
| 04:00-05:00              | 55.7                                      | 60.8                       | 47.8                       | 42.6                       | 56.9                       | 46.1                       |  |  |  |
| 05:00-06:00              | 61.1                                      | 62.1                       | 43.2                       | 57.1                       | 53.1                       | 54.6                       |  |  |  |

<sup>#</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-O-D

**Authorized Signatory** 

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

• GPCB apprved • ISO 14001 : 2004 • OHSAS 18001 schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

### Tables -11 - ERMS Workshop Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

|                    | 11 - ERMS Workshop<br>During Day Time - dB(A)Leq <sup>#</sup> |            |            |                  |                   |                 |  |  |  |
|--------------------|---------------------------------------------------------------|------------|------------|------------------|-------------------|-----------------|--|--|--|
| Sampling Location  |                                                               |            |            |                  |                   |                 |  |  |  |
| Date of Monitoring | 12-10-2019                                                    | 13-11-2019 | 13-12-2019 | 13-01-2020       | 14-02-2020        | 13-03-2020      |  |  |  |
| 6:00-7:00          | 56.2                                                          | 47.9       | 60.2       | 58.6             | 56.7              | 57.1            |  |  |  |
| 7:00-8:00          | 47.2                                                          | 45.2       | 68.2       | 50.4             | 50.8              | 60.1            |  |  |  |
| 8:00-9:00          | 58.6                                                          | 44.3       | 64.5       | 48.7             | 47.5              | 47.9            |  |  |  |
| 9:00-10:00         | 47.5                                                          | 65.8       | 61.8       | 60.2             | 44.3              | 45.8            |  |  |  |
| 10:00-11:00        | 65.1                                                          | 53.2       | 65.2       | 68.1             | 60.5              | 51.0            |  |  |  |
| 11:00-12:00        | 44.2                                                          | 50.6       | 60.4       | 45.2             | 68.4              | 44.9            |  |  |  |
| 12:00-13:00        | 60.1                                                          | 48.8       | 58.2       | 56.8             | 48.2              | 48.5            |  |  |  |
| 13:00-14:00        | 55.6                                                          | 60.8       | 55.4       | 40.2             | 55.5              | 56.3            |  |  |  |
| 14:00-15:00        | 60.1 CON 6                                                    | 55.6       | 52.4       | 55.4 0000        | 58.4              | CON PO 65.4 N P |  |  |  |
| 15:00-16:00        | 48.8                                                          | 60.1       | 50.3       | 46.8             | 46.8              | 42.8            |  |  |  |
| 16:00-17:00        | 50.0                                                          | 44.2       | 56.7       | 50.9             | 50.7              | 53.4            |  |  |  |
| 17:00-18:00        | 53.1 LUCO                                                     | 65.1       | 58.6       | ON POL 54.6 POLL | CON PC57.4 ON POL | UCON 57.2 CON   |  |  |  |
| 18:00-19:00        | 65.2                                                          | 47.1       | 52.1       | 58.4             | 54.6              | 45.8            |  |  |  |
| 19:00-20:00        | 44.2                                                          | 58.7       | 56.1       | 47.8             | 48.7              | 52.6            |  |  |  |
| 20:00-21:00        | 45.2                                                          | 47.2 CON   | 54.6       | 52.6             | 51.8 roll         | 50.0 N D        |  |  |  |
| 21:00-22:00        | 47.8                                                          | 56.1       | 53.1       | 44.4             | 42.4              | 46.9            |  |  |  |

| CON POLLUCON POLLUCON PO | ILLUCON POLL LON                          | POLLUCON POLLUCON          | 11 - ERMS                  | Workshop                   | ICON POLLUCON POL          | LUCON POLLUCON             |  |  |  |
|--------------------------|-------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
| Sampling Location        | During Night Time - dB(A)Leq <sup>#</sup> |                            |                            |                            |                            |                            |  |  |  |
| Date of Monitoring       | 12-10-2019 &<br>13-10-2019                | 13-11-2019 &<br>14-11-2019 | 13-12-2019 &<br>14-12-2019 | 13-01-2020 &<br>14-01-2020 | 14-02-2020 &<br>15-02-2020 | 13-03-2020 &<br>14-03-2020 |  |  |  |
| 22:00-23:00              | 58.0                                      | 58.2                       | 44.2                       | 49.7                       | 61.5                       | 65.4                       |  |  |  |
| 23:00-00:00              | <mark>6</mark> 0.4                        | 60.7                       | 48.3                       | 52.8                       | 46.3                       | 43.8                       |  |  |  |
| 00:00-01:00              | 55.6                                      | 64.2 CON                   | 40.3                       | 53.4                       | N POL 53.4 POLU            | 54.2                       |  |  |  |
| 01:00-02:00              | 53.8                                      | 54.2                       | 58.1                       | 46.1                       | 59.5                       | 59.2                       |  |  |  |
| 02:00-03:00              | 42.7                                      | 40.6                       | 50.0                       | 59.4                       | 42.3                       | 49.5                       |  |  |  |
| 03:00-04:00              | 62.8                                      | 64.7                       | 55.8                       | 58.7                       | 47.3                       | 55.4                       |  |  |  |
| 04:00-05:00              | 51.4 <b>5</b> 1.4                         | 51.7                       | 51.2                       | 42.9                       | 51.3                       | 58.1                       |  |  |  |
| 05:00-06:00              | 58.8                                      | 59.4                       | 56.2                       | 45.4                       | 49.6                       | 41.9                       |  |  |  |

<sup>#</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-O-D

**Authorized Signatory** 

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

• GPCB apprved • ISO 14001 : 2004 schedule II auditor

• OHSAS 18001

: 2007

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

#### Tables - 12 - Behind Pump House Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

| ON POLLUCON POLLUCON PC | 12 - Behind Pump House<br>During Day Time - dB(A)Leq <sup>#</sup> |            |            |                  |                    |                |  |  |  |
|-------------------------|-------------------------------------------------------------------|------------|------------|------------------|--------------------|----------------|--|--|--|
| Sampling Location       |                                                                   |            |            |                  |                    |                |  |  |  |
| Date of Monitoring      | 14-10-2019                                                        | 14-11-2019 | 14-12-2019 | 14-01-2020       | 15-02-2020         | 14-03-2020     |  |  |  |
| 6:00-7:00               | 65.1                                                              | 51.8       | 64.8       | 61.2             | 44.7               | 51.5           |  |  |  |
| 7:00-8:00               | 51.2                                                              | 54.2       | 60.3       | 57.3             | 50.1               | 58.6           |  |  |  |
| 8:00-9:00               | 40.8                                                              | 53.9       | 58.3       | 50.0             | 47.6               | 45.8           |  |  |  |
| 9:00-10:00              | 53.5                                                              | 49.1       | 51.4       | 48.3             | 51.2               | 48.5           |  |  |  |
| 10:00-11:00             | 69.1                                                              | 57.1       | 56.6       | 60.3             | 58.8               | 60.1           |  |  |  |
| 11:00-12:00             | 62.2                                                              | 61.8       | 59.7       | 56.4             | 56.3               | 50.1           |  |  |  |
| 12:00-13:00             | 55.3                                                              | 42.3       | 61.1       | 45.6             | 44.5               | 44.9           |  |  |  |
| 13:00-14:00             | 50.6                                                              | 46.8       | 51.7       | 58.3             | 56.0               | 54.2           |  |  |  |
| 14:00-15:00             | 46.2.000                                                          | 50.9       | 55.300     | 46.4 0000        | DN POL.44.9 POLL   | con no 47.8    |  |  |  |
| 15:00-16:00             | 42.8                                                              | 53.3       | 57.4       | 48.6             | 40.8               | 58.1           |  |  |  |
| 16:00-17:00             | 61.1                                                              | 62.5       | 65.8       | 54.3             | 55.1               | 53.2           |  |  |  |
| 17:00-18:00             | 57.2 JCON                                                         | 69.1       | 60.1       | ON POL 47.9 POLL | CON PC 53.8 ON POL | 65.0           |  |  |  |
| 18:00-19:00             | 49.1                                                              | 53.1       | 58.2       | 52.4             | 47.3               | 61.0           |  |  |  |
| 19:00-20:00             | 53.9                                                              | 41.3       | 51.9       | 65.3             | 52.2               | 42.9           |  |  |  |
| 20:00-21:00             | 54.2 CON                                                          | 51.2 CON   | 52.6       | 53.1             | 60.8 POL 60.8      | CON 10 52.5 ON |  |  |  |
| 21:00-22:00             | 51.6                                                              | 65.0       | 50.2       | 51.3             | 49.2               | 57.1           |  |  |  |

| CON POLLUCON POLLUCON PC | ILLUCON POLL LON                          | POLLUCON POLLUCON          | 12 - Behind                | Pump House                 | ICON POLLUCON POL          | LUCON POLLUCON             |  |  |  |
|--------------------------|-------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
| Sampling Location        | During Night Time - dB(A)Leg <sup>#</sup> |                            |                            |                            |                            |                            |  |  |  |
| Date of Monitoring       | 14-10-2019 &<br>15-10-2019                | 14-11-2019 &<br>15-11-2019 | 14-12-2019 &<br>15-12-2019 | 14-01-2020 &<br>15-01-2020 | 15-02-2020 &<br>16-02-2020 | 14-03-2020 &<br>15-03-2020 |  |  |  |
| 22:00-23:00              | 46.0                                      | 46.3                       | 61.3                       | 41.8                       | 47.9                       | 46.8                       |  |  |  |
| 23:00-00:00              | <mark>5</mark> 9.3                        | 59.6                       | 44.8                       | 55.6                       | 55.4                       | 55.5                       |  |  |  |
| 00:00-01:00              | 50.1                                      | 50.5 UCON                  | 58.1                       | 101144.1 00                | 60.6                       | 68.2                       |  |  |  |
| 01:00-02:00              | 57.3                                      | 57.8                       | 51.3                       | 52.6                       | 45.7                       | 65.1                       |  |  |  |
| 02:00-03:00              | 58.1                                      | 58.8                       | 47.6                       | 49.1                       | 44.3                       | 48.9                       |  |  |  |
| 03:00-04:00              | 40.6                                      | 41.2                       | 63.1                       | 54.4                       | 51.9                       | 000N 51.7 00N              |  |  |  |
| 04:00-05:00              | 54.6                                      | 54.9                       | 60.6                       | 46.2                       | 54.3                       | 57.3                       |  |  |  |
| 05:00-06:00              | 51.3                                      | 51.9                       | 58.2                       | 48.8                       | 43.6                       | 59.5                       |  |  |  |

<sup>#</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-O-D

**Authorized Signatory** 

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

• GPCB apprved • ISO 14001 : 2004 • OHSAS 18001 schedule II auditor

: 2007

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

### Tables - 13 - Rock Bond Approach (Jetty) Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

| Compliant Legation | 13 - Rock Bond Approach (Jetty)<br>During Day Time - dB(A)Leq <sup>#</sup> |            |            |            |                     |                  |  |  |  |
|--------------------|----------------------------------------------------------------------------|------------|------------|------------|---------------------|------------------|--|--|--|
| Sampling Location  |                                                                            |            |            |            |                     |                  |  |  |  |
| Date of Monitoring | 15-10-2019                                                                 | 15-11-2019 | 16-12-2019 | 15-01-2020 | 17-02-2020          | 16-03-2020       |  |  |  |
| 6:00-7:00          | 50.6                                                                       | 48.2       | 50.3       | 51.8       | 56.5                | 56.1             |  |  |  |
| 7:00-8:00          | 42.8                                                                       | 62.3       | 54.8       | 45.3       | 58.7                | 58.1             |  |  |  |
| 8:00-9:00          | 58.6                                                                       | 64.4       | 60.4       | 58.7       | 40.9                | 55.0             |  |  |  |
| 9:00-10:00         | 47.4                                                                       | 50.8       | 68.3       | 47.3       | 54.4                | 60.1             |  |  |  |
| 10:00-11:00        | 48.5                                                                       | 52.2       | 64.6       | 60.5       | 45.4                | 57.5             |  |  |  |
| 11:00-12:00        | 43.4                                                                       | 67.2       | 56.3       | 55.3       | 49.8                | 54.2             |  |  |  |
| 12:00-13:00        | 67.1                                                                       | 46.6       | 59.5       | 45.1       | 61.2                | 47.9             |  |  |  |
| 13:00-14:00        | 53.8                                                                       | 66.1       | 64.9       | 47.5       | 48.9                | 44.4             |  |  |  |
| 14:00-15:00        | 66.1 COM                                                                   | 53.8       | 61.2       | 66.3       | 50.0 POL 50.0       | CON PO 51.2 N    |  |  |  |
| 15:00-16:00        | 42.3                                                                       | 67.6       | 60.7       | 65.7       | 5 <mark>6</mark> .1 | 45.8             |  |  |  |
| 16:00-17:00        | 67.1                                                                       | 45.8       | 59.3       | 40.3       | 58.2                | 61.2             |  |  |  |
| 17:00-18:00        | 46.6                                                                       | 48.6       | 55.1 0     | 56.2       | CON 10 59.1 ON 101  | 68.1             |  |  |  |
| 18:00-19:00        | 50.1                                                                       | 47.4       | 52.3       | 44.8       | 42.7                | 44.9             |  |  |  |
| 19:00-20:00        | 56.4                                                                       | 58.1       | 54.7       | 58.9       | 44.6                | 48.3             |  |  |  |
| 20:00-21:00        | 62.3                                                                       | 45.3 CON   | 52.7       | 50.3 00110 | 0N POL 45.8 ( POL L | CON 10 50.1 ON 1 |  |  |  |
| 21:00-22:00        | 47.8                                                                       | 50.5       | 50.7       | 41.8       | 54.2                | 58.2             |  |  |  |

| CON POLLUCON POLLUCON PC | 13 - Rock Bond Approach (Jetty) |                            |                            |                            |                            |                            |  |  |
|--------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|
| Sampling Location        | ILLUCON POLICION                | POLLICON POLLUCO           | During Night Ti            | me - dB(A)Leq              | CON POLLUCON POL           | LUEON POLLUCON             |  |  |
| Date of Monitoring       | 15-10-2019 &<br>16-10-2019      | 15-11-2019 &<br>16-11-2019 | 16-12-2019 &<br>17-12-2019 | 15-01-2020 &<br>16-01-2020 | 17-02-2020 &<br>18-02-2020 | 16-03-2020 &<br>17-03-2020 |  |  |
| 22:00-23:00              | 50.4                            | 50.8                       | 52.3                       | 48.4                       | 54.9                       | 60.5                       |  |  |
| 23:00-00:00              | 53.3                            | 53.8                       | 50.1                       | 48.0                       | 51.7                       | 59.3                       |  |  |
| 00:00-01:00              | 52.7                            | 57.2 UCON                  | 48.6                       | 47.7                       | 46.2                       | 47.9                       |  |  |
| 01:00-02:00              | 59.9                            | 60.9                       | 44.8                       | 54.6                       | 48.3                       | 45.6                       |  |  |
| 02:00-03:00              | 63.6                            | 63.5                       | 43.3                       | 44.5                       | 50.1                       | 50.8                       |  |  |
| 03:00-04:00              | 48.8                            | 49.3                       | 61.2                       | 64.3                       | 60.2                       | 52.3                       |  |  |
| 04:00-05:00              | 53.4                            | 54.3                       | 60.5                       | 48.2                       | 45.9                       | 60.6                       |  |  |
| 05:00-06:00              | 38.9                            | 44.3                       | 56.1                       | 43.5                       | 53.0                       | 44.9                       |  |  |

<sup>#</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-O-D

**Authorized Signatory** 

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 Sec. 12 of Environmental (Protection) Act-1986
 Schedule II auditor

● GPCB apprved ● ISO 14001 : 2004 ● OHSAS 18001 : 2007 schedule II auditor

ISO

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

#### Tables -14 - New Gate Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

| ON POLLUCON POLLUCON P | 14 - New Gate During Day Time - dB(A)Leq <sup>#</sup> |            |             |            |                    |            |  |  |  |
|------------------------|-------------------------------------------------------|------------|-------------|------------|--------------------|------------|--|--|--|
| Sampling Location      |                                                       |            |             |            |                    |            |  |  |  |
| Date of Monitoring     | 16-10-2019                                            | 16-11-2019 | 17-12-2019  | 16-01-2020 | 18-02-2020         | 17-03-2020 |  |  |  |
| 6:00-7:00              | 52.4                                                  | 52.7       | 52.2        | 46.9       | 61.4               | 48.9       |  |  |  |
| 7:00-8:00              | 50.8                                                  | 50.7       | 50.6        | 60.8       | 50.3               | 45.6       |  |  |  |
| 8:00-9:00              | 47.2                                                  | 49.8       | 65.7        | 48.5       | 48.6               | 58.1       |  |  |  |
| 9:00-10:00             | 62.6                                                  | 46.3       | 69.7        | 64.1       | 45.8               | 56.2       |  |  |  |
| 10:00-11:00            | 47.8                                                  | 42.8       | 65.1        | 44.2       | 55.4               | 68.1       |  |  |  |
| 11:00-12:00            | 59.2                                                  | 61.1       | 55.2        | 54.8       | 57.5 m roj         | 50.0       |  |  |  |
| 12:00-13:00            | 55.4                                                  | 44.6       | 58.7        | 47.4       | 60.1               | 58.1       |  |  |  |
| 13:00-14:00            | 68.6                                                  | 46.4       | 52.1        | 48.8       | 44.9               | 44.5       |  |  |  |
| 14:00-15:00            | 46.6 CON 1                                            | 68.1       | 62.4        | 52.8       | IN POLL 47.9       | 47.9       |  |  |  |
| 15:00-16:00            | 44.8                                                  | 55.0       | 64.7        | 50.8       | 57.9               | 51.2       |  |  |  |
| 16:00-17:00            | 61.1                                                  | 59.8       | 61.8        | 55.1       | 59.2               | 55.3       |  |  |  |
| 17:00-18:00            | 42.6                                                  | 47.3       | 54.3 0      | 65.4 OLL   | con rc 54.3 on rol | 58.4       |  |  |  |
| 18:00-19:00            | 46.4                                                  | 62.1       | 52.6        | 70.1       | 55.0               | 42.8       |  |  |  |
| 19:00-20:00            | 49.2                                                  | 47.8       | 50.4        | 48.4       | 49.9               | 49.8       |  |  |  |
| 20:00-21:00            | 50.0                                                  | 50.2       | 101110 49.3 | 50.1       | IN POL 52.0 POL U  | 52.8 N     |  |  |  |
| 21:00-22:00            | 52.6                                                  | 52.6       | 51.3        | 52.3       | 54.8               | 54.1       |  |  |  |

| ON POLLUCON POLLUCON I | DILLUCON POLL LON                         |                            | 14 - Ne                    | w Gate                     |                            |                            |  |  |  |
|------------------------|-------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
| Sampling Location      | During Night Time - dB(A)Leq <sup>#</sup> |                            |                            |                            |                            |                            |  |  |  |
| Date of Monitoring     | 16-10-2019 &<br>17-10-2019                | 16-11-2019 &<br>17-11-2019 | 17-12-2019 &<br>18-12-2019 | 16-01-2020 &<br>17-01-2020 | 18-02-2020 &<br>19-02-2020 | 17-03-2020 &<br>18-03-2020 |  |  |  |
| 22:00-23:00            | 47.3                                      | 47.9                       | 60.1                       | 51.4                       | 40.8                       | 47.7                       |  |  |  |
| 23:00-00:00            | 58.9                                      | 59.1                       | 58.1                       | 45.8                       | 48.9                       | 51.0                       |  |  |  |
| 00:00-01:00            | 61.9 CON R                                | 62.3 UCON                  | 46.2                       | 69.1                       | N POL 50.9 POLL            | 48.2                       |  |  |  |
| 01:00-02:00            | 42.1                                      | 42.6                       | 44.2                       | 45.5                       | 56.3                       | 50.9                       |  |  |  |
| 02:00-03:00            | 64.9                                      | 65.4                       | 51.3                       | 55.9                       | 60.9                       | 55.9                       |  |  |  |
| 03:00-04:00            | 68.3                                      | 67.9                       | 61.3                       | 44.8                       | 55.9                       | 56.9                       |  |  |  |
| 04:00-05:00            | 64.6                                      | 65.6                       | 48.2                       | 65.8                       | 47.4                       | 57.6                       |  |  |  |
| 05:00-06:00            | 60.0                                      | 60.0                       | 50.1                       | 55.8                       | 44.8                       | 60.7                       |  |  |  |

<sup>#</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-O-D

**Authorized Signatory** 

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 Sec. 12 of Environmental (Protection) Act-1986
 Schedule II auditor

• GPCB apprved • ISO 14001 : 2004 • OHSAS 18001 : 2007 schedule II auditor

ISO

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

### Tables - 15 - Security Barrier Gate Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

| ON POLLICON POLLICON PO | 15 - Security Barrier Gate<br>During Day Time - dB(A)Leq <sup>#</sup> |            |            |                             |                   |               |  |  |  |
|-------------------------|-----------------------------------------------------------------------|------------|------------|-----------------------------|-------------------|---------------|--|--|--|
| Sampling Location       |                                                                       |            |            |                             |                   |               |  |  |  |
| Date of Monitoring      | 17-10-2019                                                            | 18-11-2019 | 18-12-2019 | 17-01-2020                  | 19-02-2020        | 18-03-2020    |  |  |  |
| 6:00-7:00               | 47.5                                                                  | 50.1       | 67.5       | 45.5                        | 48.8              | 60.1          |  |  |  |
| 7:00-8:00               | 58.2                                                                  | 57.2       | 66.1       | 48.2                        | 51.2              | 61.2          |  |  |  |
| 8:00-9:00               | 67.7                                                                  | 59.1       | 60.3       | 58.1                        | 56.4              | 47.9          |  |  |  |
| 9:00-10:00              | 48.6                                                                  | 49.2       | 65.1       | 47.2                        | 53.1              | 58.1          |  |  |  |
| 10:00-11:00             | 50.1                                                                  | 51.6       | 59.7       | 65.1                        | 43.2              | 60.1          |  |  |  |
| 11:00-12:00             | 52.4                                                                  | 48.7       | 58.8       | 66.1                        | 42.9              | 48.2          |  |  |  |
| 12:00-13:00             | 46.8                                                                  | 60.0       | 61.8       | 50.2                        | 53.6              | 58.1          |  |  |  |
| 13:00-14:00             | 44.2                                                                  | 52.8       | 63.4       | 55.2                        | 47.8              | 55.3          |  |  |  |
| 14:00-15:00             | 1000 51.6 CON 1                                                       | 44.8 CON   | 59.4       | <b>1 roll 51.4 roll 1</b> 0 | DN POLI61.0 POLIL | con no 45.9   |  |  |  |
| 15:00-16:00             | 60.3                                                                  | 46.2       | 60.4       | 60.1                        | 58.1              | 42.9          |  |  |  |
| 16:00-17:00             | 48.8                                                                  | 52.3       | 68.1       | 68.2                        | 55.6              | 53.3          |  |  |  |
| 17:00-18:00             | 51.6 DCO                                                              | 50.3       | 65.7       | ON POL 45.8 POLL            | 68.1              | UCON 57.1 CON |  |  |  |
| 18:00-19:00             | 49.2                                                                  | 48.4       | 58.7       | 47.1                        | 52.3              | 58.1          |  |  |  |
| 19:00-20:00             | 59.9                                                                  | 67.1       | 55.2       | 58.2                        | 61.1              | 60.1          |  |  |  |
| 20:00-21:00             | 57.2 CON                                                              | 58.2       | 52.4       | 52.7 101110                 | 42.8              | CON 10 51.2 N |  |  |  |
| 21:00-22:00             | 50.1                                                                  | 47.6       | 51.2       | 62.2                        | 57.1              | 52.3          |  |  |  |

| CON POLLUCON POLLUCON INC | 15 - Security Barrier Gate<br>During Night Time - dB(A)Leg <sup>#</sup> |                            |                            |                            |                            |                            |  |  |  |
|---------------------------|-------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
| Sampling Location         |                                                                         |                            |                            |                            |                            |                            |  |  |  |
| Date of Monitoring        | 17-10-2019 &<br>18-10-2019                                              | 18-11-2019 &<br>19-11-2019 | 18-12-2019 &<br>19-12-2019 | 17-01-2020 &<br>18-01-2020 | 19-02-2020 &<br>20-02-2020 | 18-03-2020 &<br>19-03-2020 |  |  |  |
| 22:00-23:00               | 56.0                                                                    | 56.6                       | 50.1                       | 47.4                       | 55.2                       | 45.5                       |  |  |  |
| 23:00-00:00               | <mark>5</mark> 9.6                                                      | 60.1                       | 61.2                       | 53.8                       | 51.6                       | 61.1                       |  |  |  |
| 00:00-01:00               | 64.8                                                                    | 65.7 UCON                  | 60.1                       | 65.2                       | 45.6 0000                  | 50.0 <sup>0</sup> N        |  |  |  |
| 01:00-02:00               | 55.1                                                                    | 56.0                       | 48.8                       | 52.1                       | 56.1                       | 53.6                       |  |  |  |
| 02:00-03:00               | 60.9                                                                    | 61.5                       | 40.6                       | 51.1                       | 46.7                       | 42.4                       |  |  |  |
| 03:00-04:00               | 51.6                                                                    | 51.6                       | 58.1                       | 56.5                       | 50.0                       | 49.0                       |  |  |  |
| 04:00-05:00               | 49.0                                                                    | 49.8                       | 47.2                       | 41.9                       | 52.4                       | 61.1                       |  |  |  |
| 05:00-06:00               | 42.3                                                                    | 44.6                       | 48.1                       | 49.8                       | 49.1                       | 57.2                       |  |  |  |

<sup>#</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-D-D

**Authorized Signatory** 

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

• GPCB apprved • ISO 14001 : 2004 • OHSAS schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

### Tables - 16 - JS-2Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

| ON POLLICON POLLICON PO | 16 - JS-2<br>During Day Time - dB(A)Leq <sup>#</sup> |                           |            |                  |                     |            |  |  |  |
|-------------------------|------------------------------------------------------|---------------------------|------------|------------------|---------------------|------------|--|--|--|
| Sampling Location       |                                                      |                           |            |                  |                     |            |  |  |  |
| Date of Monitoring      | 18-10-2019                                           | 19-11- <mark>2</mark> 019 | 19-12-2019 | 18-01-2020       | 20-02-2020          | 19-03-2020 |  |  |  |
| 6:00-7:00               | 54.6                                                 | 55.3                      | 68.4       | 60.2             | 51.6                | 51.2       |  |  |  |
| 7:00-8:00               | 55.6                                                 | 59.4                      | 60.8       | 48.3             | 61.4                | 58.1       |  |  |  |
| 8:00-9:00               | 42.6                                                 | 50.7                      | 65.3       | 45.2             | 45.7                | 60.1       |  |  |  |
| 9:00-10:00              | 45.3                                                 | 51.9                      | 61.4       | 55.3             | 5 <mark>0.3</mark>  | 47.9       |  |  |  |
| 10:00-11:00             | 57.2                                                 | 60.4                      | 59.1       | on 101 53.3 1011 | 47.6                | 45.9       |  |  |  |
| 11:00-12:00             | 48.8                                                 | 46.6                      | 53.1       | 51.4             | 51.7                | 55.6       |  |  |  |
| 12:00-13:00             | 46.9                                                 | 50.3                      | 58.6       | 65.9             | 55.4                | 50.3       |  |  |  |
| 13:00-14:00             | 52.4                                                 | 56.6                      | 65.1       | 48.2             | 56.4                | 56.0       |  |  |  |
| 14:00-15:00             | 56.6 CON                                             | 52.3                      | 60.1       | 60.1             | 49.8                | 57.2       |  |  |  |
| 15:00-16:00             | 50.2                                                 | 46.9                      | 59.4       | 44.2             | 52.4                | 42.9       |  |  |  |
| 16:00-17:00             | 46.6                                                 | 48.8                      | 54.8       | 48.8             | 47.4                | 49.5       |  |  |  |
| 17:00-18:00             | 60.1                                                 | 57.5                      | 55.3 0     | ON POL 50.4 POLL | CON PC51.5 ON POL   | 54.8       |  |  |  |
| 18:00-19:00             | 51.4                                                 | 45.4                      | 50.2       | 55.4             | 57.8                | 56.2       |  |  |  |
| 19:00-20:00             | 50.5                                                 | 42.9                      | 48.1       | 44.9             | 44.5                | 45.8       |  |  |  |
| 20:00-21:00             | 59.4 CON                                             | 55.7 CON                  | 45.3       | 51.9 00000       | DN POL 53.5 4 POL U | 40.9 M     |  |  |  |
| 21:00-22:00             | 50.2                                                 | 50.9                      | 44.2       | 50.6             | 50.8                | 65.3       |  |  |  |

| CON POLLUCON POLLUCON INC | 16 - JS-2<br>During Night Time - dB(A)Leg <sup>#</sup> |                            |                            |                            |                            |                            |  |  |  |
|---------------------------|--------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
| Sampling Location         |                                                        |                            |                            |                            |                            |                            |  |  |  |
| Date of Monitoring        | 18-10-2019 &<br>19-10-2019                             | 19-11-2019 &<br>20-11-2019 | 19-12-2019 &<br>20-12-2019 | 18-01-2020 &<br>19-01-2020 | 20-02-2020 &<br>21-02-2020 | 19-03-2020 &<br>20-03-2020 |  |  |  |
| 22:00-23:00               | 54.8                                                   | 55.4                       | 48.2                       | 65.1                       | 61.2                       | 54.7                       |  |  |  |
| 23:00-00:00               | <mark>5</mark> 3.0                                     | 53.5                       | 40.1                       | 59.1                       | 52.5                       | 37.0                       |  |  |  |
| 00:00-01:00               | 50.3                                                   | 60.3 UCON                  | 61.2                       | 58.2                       | N POL 58.3 POLL            | 61.5                       |  |  |  |
| 01:00-02:00               | 39.6                                                   | 40.2                       | 60.3                       | 50.3                       | 56.7                       | 47.2                       |  |  |  |
| 02:00-03:00               | 58.7                                                   | 59.3                       | 44.8                       | 61.2                       | 45.1                       | 56.7                       |  |  |  |
| 03:00-04:00               | 55.8                                                   | 57.5                       | 51.1                       | 48.9                       | 48.2                       | 43.1 CON                   |  |  |  |
| 04:00-05:00               | 51.1 CON                                               | 57.0                       | 46.2                       | 50.1                       | 51.1                       | 45.8                       |  |  |  |
| 05:00-06:00               | 53.9                                                   | 53.9                       | 50.3                       | 53.2                       | 59.2                       | 50.1                       |  |  |  |

<sup>#</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-D-D

**Authorized Signatory** 

• FSSAI Approved Lab • Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

• GPCB apprved • ISO 14001 : 2004 • OHSAS 18001 schedule II auditor

: 2007

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

### Tables - 17 - Railway Dead End Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

| Sampling Location  | 17 - Railway Dead End<br>During Day Time - dB(A)Leq <sup>#</sup> |            |            |                    |                    |                 |  |  |  |
|--------------------|------------------------------------------------------------------|------------|------------|--------------------|--------------------|-----------------|--|--|--|
| Sampling Location  |                                                                  |            |            |                    |                    |                 |  |  |  |
| Date of Monitoring | 19-10-2019                                                       | 20-11-2019 | 20-12-2019 | 20-01-2020         | 21-02-2020         | 20-03-2020      |  |  |  |
| 6:00-7:00          | 51.4                                                             | 58.7       | 70.8       | 50.7               | 56.8               | 58.1            |  |  |  |
| 7:00-8:00          | 60.1                                                             | 54.4       | 66.3       | 46.4               | 49.2               | 47.9            |  |  |  |
| 8:00-9:00          | 55.6                                                             | 55.9       | 63.8       | 53.8               | 48.9               | 42.8            |  |  |  |
| 9:00-10:00         | 46.4                                                             | 58.1       | 68.8       | 58.1               | 55.2               | 55.3            |  |  |  |
| 10:00-11:00        | 47.2                                                             | 48.6       | 61.3       | 62.6               | 5 <mark>9.8</mark> | 48.4            |  |  |  |
| 11:00-12:00        | 57.1                                                             | 43.5       | 65.1       | 58.3               | 45.4               | 56.2            |  |  |  |
| 12:00-13:00        | 61.4                                                             | 54.2       | 59.1       | 44.6               | 44.7               | 60.1            |  |  |  |
| 13:00-14:00        | 58.2                                                             | 51.8       | 56.7       | 48.7               | 55.6               | 58.1            |  |  |  |
| 14:00-15:00        | 50.2 CON 1                                                       | 58.3       | 51.8       | 56.4               | 50.7               | CON PO 65.10N P |  |  |  |
| 15:00-16:00        | 54.2                                                             | 61.2       | 50.1       | 52.3               | 50.4               | 44.9            |  |  |  |
| 16:00-17:00        | 43.3                                                             | 57.3       | 55.3       | 59.1               | 46.9               | 49.9            |  |  |  |
| 17:00-18:00        | 48.6                                                             | 47.9       | 58.2       | ON POL 41.8 N POLL | CON 0056.7 ON 001  | 10CON 50.0 CON  |  |  |  |
| 18:00-19:00        | 58.1                                                             | 46.4       | 60.4       | 59.4               | 40.9               | 53.1            |  |  |  |
| 19:00-20:00        | 50.0                                                             | 55.4       | 56.4       | 56.8               | 43.9               | 57.3            |  |  |  |
| 20:00-21:00        | 54.4 CON                                                         | 60.2 CON   | 53.8       | 47.2               | 53.2 roll          | 00N 00 46.4 N   |  |  |  |
| 21:00-22:00        | 58.1                                                             | 51.4       | 50.6       | 41.6               | 56.5               | 51.0            |  |  |  |

| CON POLLUCON POLLUCON PC | 17 - Railway Dead End                     |                            |                            |                            |                            |                            |  |  |  |
|--------------------------|-------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
| Sampling Location        | During Night Time - dB(A)Leq <sup>#</sup> |                            |                            |                            |                            |                            |  |  |  |
| Date of Monitoring       | 19-10-2019 &<br>20-10-2019                | 20-11-2019 &<br>21-11-2019 | 20-12-2019 &<br>21-12-2019 | 20-01-2020 &<br>21-01-2020 | 21-02-2020 &<br>22-02-2020 | 20-03-2020 8<br>21-03-2020 |  |  |  |
| 22:00-23:00              | 45.4                                      | 45.8                       | 40.3                       | 50.2                       | 54.2                       | 61.2                       |  |  |  |
| 23:00-00:00              | 57.6                                      | 58.0                       | 48.2                       | 40.1                       | 48.1                       | 56.0                       |  |  |  |
| 00:00-01:00              | 60.8                                      | 61.0 UCON                  | 01100051.4                 | 68.1                       | N POLL 44.9 POLLU          | ON 10 57.10N 10            |  |  |  |
| 01:00-02:00              | 44.6                                      | 42.8                       | 56.8                       | 42.8                       | 50.3                       | 61.4                       |  |  |  |
| 02:00-03:00              | 54.9                                      | 59.5                       | 60.1                       | 55.1                       | 59.1                       | 46.2                       |  |  |  |
| 03:00-04:00              | 42.6                                      | 55.7                       | 52.6                       | 60.9                       | 60.1                       | 50.5                       |  |  |  |
| 04:00-05:00              | <mark>5</mark> 9.7                        | 60.5                       | 48.6                       | 45.9                       | 55.8                       | 47.8                       |  |  |  |
| 05:00-06:00              | 59.8                                      | 55.5                       | 45.2                       | 54.8                       | 47.2                       | 42.8                       |  |  |  |

<sup>#</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-O-D

**Authorized Signatory** 

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 Sec. 12 of Environmental (Protection) Act-1986
 Schedule II auditor

• GPCB apprved • ISO 14001 : 2004 • OHSAS 18001 schedule II auditor

: 2007

D ISO

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

### Tables -18 - S and S Yard (South) and Open Storage Yard – 1 Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

| N POLLUCON POLLUCON POLL | 18 – Open Storage Yard – 1<br>During Day Time - dB(A) Leq <sup>#</sup> |            |                         |                 |                    |                 |  |  |  |
|--------------------------|------------------------------------------------------------------------|------------|-------------------------|-----------------|--------------------|-----------------|--|--|--|
| Sampling Location        |                                                                        |            |                         |                 |                    |                 |  |  |  |
| Date of Monitoring       | 21-10-2019                                                             | 21-11-2019 | 21-12-2019              | 21-01-2020      | 22-02-2020         | 21-03-2020      |  |  |  |
| 6:00-7:00                | 58.4 CON                                                               | 50.8       | 66.2                    | 46.8            | 00N P0 44.6 0N P0L | 65.1            |  |  |  |
| 7:00-8:00                | 46.2                                                                   | 61.4       | 68.3                    | 42.3            | 61.8               | 58.2            |  |  |  |
| 8:00-9:00                | 55.1                                                                   | 59.3       | 62.1                    | 54.4            | 51.9               | 47.8            |  |  |  |
| 9:00-10:00               | 47.2                                                                   | 49.6       | 63.1                    | 55.1            | 56.1               | 45.6            |  |  |  |
| 10:00-11:00              | 51.6                                                                   | 45.8       | 65.4                    | 59.6            | 42.3               | 57.1            |  |  |  |
| 11:00-12:00              | 60.2                                                                   | 68.1       | 60.9                    | 47.9            | 50.5               | 55.2            |  |  |  |
| 12:00-13:00              | 57.1                                                                   | 50.2       | 58.1                    | 44.5            | 45.8               | 44.8            |  |  |  |
| 13:00-14:00              | 53.6 LCON                                                              | 48.2       | 56.3                    | 68.3            | 49.7               | 53.1            |  |  |  |
| 14:00-15:00              | 47.2                                                                   | 43.8       | 59.1                    | 52.1            | 52.6               | 57.1            |  |  |  |
| 15:00-16:00              | 50.3                                                                   | 57.1       | 58.9                    | 56.9            | 47.2               | 61.2            |  |  |  |
| 16:00-17:00              | 68.1                                                                   | 60.1       | <u>55.8 Con</u>         | 50.5            | N POLL 51.3 POLLU  | 60.0            |  |  |  |
| 17:00-18:00              | 45.6                                                                   | 51.6       | 59.2                    | 48.9            | 57.6               | 47.9            |  |  |  |
| 18:00-19:00              | 49.8                                                                   | 47.4       | 57.4                    | 51.1            | 44.3               | 56.1            |  |  |  |
| 19:00-20:00              | 58.1.000 S                                                             | 55.0       | <b>1</b> 0111155.7 0111 | N POL 62.3 POLL | 00N PO 49.10N POU  | UCON 150.1 (CO) |  |  |  |
| 20:00-21:00              | 61.4                                                                   | 46.2       | 52.8                    | 51.2            | 58.2               | 46.9            |  |  |  |
| 21:00-22:00              | 50.8                                                                   | 58.9       | 50.8                    | 49.2            | 53.4               | 49.1            |  |  |  |

| Compliant          | UCON POLLICO PO                            | LUCON POLLICON F           | 18 – Open Sto              | orage Yard – 1             | IN POLLUCON POLLU          | CON POLLICON PO            |  |  |  |
|--------------------|--------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
| Sampling Location  | During Night Time - dB(A) Leq <sup>#</sup> |                            |                            |                            |                            |                            |  |  |  |
| Date of Monitoring | 21-10-2019 &<br>22-10-2019                 | 21-11-2019 &<br>22-11-2019 | 21-12-2019 &<br>22-12-2019 | 21-01-2020 &<br>22-01-2020 | 22-02-2020 &<br>23-02-2020 | 21-03-2020 &<br>22-03-2020 |  |  |  |
| 22:00-23:00        | 59.4                                       | 59.8                       | 62.8                       | 64.1                       | 50.4                       | 47.1                       |  |  |  |
| 23:00-00:00        | 63.5                                       | 63.8                       | 60.1                       | 48.6                       | CON PO 55.1 ON POL         | 68.1                       |  |  |  |
| 00:00-01:00        | 59.2                                       | 59.7                       | 48.8                       | 53.5                       | 53.6                       | 58.2                       |  |  |  |
| 01:00-02:00        | 52.1                                       | 52.7                       | 47.6                       | 47.6                       | 42.9                       | 56.1                       |  |  |  |
| 02:00-03:00        | 45.1 CON 19                                | 43.6 LICON 4               | 55.2 LICON                 | 56.0                       | 46.6                       | 55.3 N TO                  |  |  |  |
| 03:00-04:00        | 49.7                                       | 67.3                       | 51.2                       | 60.5                       | 57.1                       | 42.9                       |  |  |  |
| 04:00-05:00        | 57.5                                       | 57.9                       | 46.4                       | 56.7                       | 57.2                       | 55.0                       |  |  |  |
| 05:00-06:00        | 50.2 CON                                   | 50.9                       | 53.1                       | 46.8                       | 48.8                       | 49.1                       |  |  |  |

<sup>#</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

**Observation:** Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-O-D

**Authorized Signatory** 

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

• GPCB apprved • ISO 14001 : 2004 schedule II auditor

OHSAS 18001

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

### Tables -19 -S & S Yard (North) Boundary Wall Loco Shed Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

| ION POLLICON POLLICON PO | 19 – Loco Shed<br>During Day Time - dB(A) Leq <sup>#</sup> |            |             |                  |                   |                |  |  |  |
|--------------------------|------------------------------------------------------------|------------|-------------|------------------|-------------------|----------------|--|--|--|
| Sampling Location        |                                                            |            |             |                  |                   |                |  |  |  |
| Date of Monitoring       | 22-10-2019                                                 | 22-11-2019 | 23-12-2019  | 22-01-2020       | 24-02-2020        | 23-03-2020     |  |  |  |
| 6:00-7:00                | 47.4                                                       | 55.1       | 69.1        | 50.1             | 48.2              | 50.1           |  |  |  |
| 7:00-8:00                | 57.1                                                       | 53.8       | 65.1        | 55.9             | 55.3              | 58.2           |  |  |  |
| 8:00-9:00                | 51.1 CON 10                                                | 56.1       | 68.1        | 51.5             | 60.1              | 61.0           |  |  |  |
| 9:00-10:00               | 50.6                                                       | 48.9       | 70.3        | 48.4             | 58.7              | 65.1           |  |  |  |
| 10:00-11:00              | 69.1                                                       | 42.6       | 58.2        | 47.8             | 45.6              | 68.2           |  |  |  |
| 11:00-12:00              | 48.6                                                       | 54.6       | 60.8        | 53.9             | 55.1              | 55.3           |  |  |  |
| 12:00-13:00              | 42.6                                                       | 52.4       | 61.2        | 49.4             | 46.9              | 47.4           |  |  |  |
| 13:00-14:00              | 47.6                                                       | 50.4       | 56.1        | 51.0             | 44.2              | 48.5           |  |  |  |
| 14:00-15:00              | 50.1 CON PO                                                | 47.6 CON   | 011000 54.3 | 56.3 00000       | N POLL 51.8 POLLU | ON PO 57.1 N P |  |  |  |
| 15:00-16:00              | 52.4                                                       | 45.5       | 50.2        | 53.4             | 42.8              | 55.3           |  |  |  |
| 16:00-17:00              | 54.6                                                       | 48.7       | 56.3        | 70.1             | 58.0              | 42.9           |  |  |  |
| 17:00-18:00              | 42.4 ICON                                                  | 69.1       | 51.6        | N POL 52.8 POL L | 54.8 M POL        | 45.8           |  |  |  |
| 18:00-19:00              | 48.8                                                       | 50.5       | 50.8        | 68.1             | 44.9              | 68.1           |  |  |  |
| 19:00-20:00              | 56.6                                                       | 51.2       | 48.2        | 50.9             | 51.0              | 51.0           |  |  |  |
| 20:00-21:00              | 53.2 00                                                    | 57.2 CON 1 | 53.1        | 45.2 01100       | 47.8              | ON PO 54.1 N P |  |  |  |
| 21:00-22:00              | 55.1                                                       | 47.2       | 49.2        | 40.8             | 50.1              | 57.2           |  |  |  |

| CON POLLUCON POLLUCON PO | 19 – Loco Shed<br>During Night Time - dB(A) Leg <sup>#</sup> |                            |                            |                            |                            |                            |  |  |  |
|--------------------------|--------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
| Sampling Location        |                                                              |                            |                            |                            |                            |                            |  |  |  |
| Date of Monitoring       | 22-10-2019 &<br>23-10-2019                                   | 22-11-2019 &<br>23-11-2019 | 23-12-2019 &<br>24-12-2019 | 22-01-2020 &<br>23-01-2020 | 24-02-2020 &<br>25-02-2020 | 23-03-2020 &<br>24-03-2020 |  |  |  |
| 22:00-23:00              | 56.8                                                         | 55.6                       | 55.3                       | 56.1                       | 60.0                       | 52.1                       |  |  |  |
| 23:00-00:00              | <mark>6</mark> 6.9                                           | 67.0                       | 53.9                       | 46.6                       | 52.8                       | 50.6                       |  |  |  |
| 00:00-01:00              | 56.9                                                         | 57.6 UCON                  | 011110047.4                | 44.6                       | 48.4                       | ON 10 48.1 10              |  |  |  |
| 01:00-02:00              | 68.4                                                         | 68.8                       | 50.1                       | 60.1                       | 49.6                       | 55.1                       |  |  |  |
| 02:00-03:00              | 41.2                                                         | 39.6                       | 58.1                       | 62.3                       | 58.1                       | 51.2                       |  |  |  |
| 03:00-04:00              | 64.5                                                         | 65.2                       | 44.2                       | 45.6                       | 46.8                       | 40.9                       |  |  |  |
| 04:00-05:00              | 65.0                                                         | 65.3                       | 56.2                       | 40.2                       | 56.0                       | 54.3                       |  |  |  |
| 05:00-06:00              | 55.5                                                         | 56.1                       | 61.1                       | 63.1                       | 54.1                       | 60.1                       |  |  |  |

<sup>\*</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-O-D

**Authorized Signatory** 

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 Sec. 12 of Environmental (Protection) Act-1986
 Schedule II auditor

• GPCB apprved • ISO 14001 : 2004 • OHSAS 18001 schedule II auditor

: 2007

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

### Tables - 20 - Lakhi Village (Below Conveyer Belt) Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of October 2019 to March 2020

| ON POLLICON POLLICON PC | 20 - Lakhi Village (Below Conveyer Belt) |            |            |                    |                     |                  |  |  |  |
|-------------------------|------------------------------------------|------------|------------|--------------------|---------------------|------------------|--|--|--|
| Sampling Location       | During Day Time - dB(A)Leq <sup>#</sup>  |            |            |                    |                     |                  |  |  |  |
| Date of Monitoring      | 23-10-2019                               | 23-11-2019 | 24-12-2019 | 23-01-2020         | 25-02-2020          | 24-03-2020       |  |  |  |
| 6:00-7:00               | 57.4                                     | 45.3       | 71.6       | 55.0               | 51.2                | 61.0             |  |  |  |
| 7:00-8:00               | 50.6                                     | 54.3       | 69.8       | 48.6               | 55.8                | 47.9             |  |  |  |
| 8:00-9:00               | 61.1                                     | 44.4       | 65.1       | 50.3               | 61.1                | 45.8             |  |  |  |
| 9:00-10:00              | 47.3                                     | 57.6       | 67.9       | 47.4               | 48.4                | 55.6             |  |  |  |
| 10:00-11:00             | 44.8                                     | 47.8       | 63.1       | 55.2               | 44.8                | 48.1             |  |  |  |
| 11:00-12:00             | 46.6                                     | 55.2       | 61.2       | 44.8               | 52.8                | 56.1             |  |  |  |
| 12:00-13:00             | 50.2                                     | 50.1       | 68.7       | 42.9               | 49.9                | 49.8             |  |  |  |
| 13:00-14:00             | 62.3                                     | 48.3       | 66.8       | 61.1               | 52.1                | 53.1             |  |  |  |
| 14:00-15:00             | 42.3                                     | 52.2 CON   | 58.4       | 46.6               | DN POLL46.6         | CON PO 58.1 0N 1 |  |  |  |
| 15:00-16:00             | 50.4                                     | 52.9       | 60.3       | 59.2               | 41.9                | 42.8             |  |  |  |
| 16:00-17:00             | 55.2                                     | 46.7       | 59.1       | 62.1               | 54.1                | 47.9             |  |  |  |
| 17:00-18:00             | 47.8                                     | 44.9       | 62.2       | ON POL 45.9 N POLL | CON PC47.5 ON POL   | UCON 50.1 CON    |  |  |  |
| 18:00-19:00             | 44.4                                     | 47.3       | 54.1       | 51.6               | 53.1                | 53.8             |  |  |  |
| 19:00-20:00             | 57.6                                     | 63.9       | 52.7       | 53.7               | 56.2                | 47.4             |  |  |  |
| 20:00-21:00             | 41.2 CON                                 | 50.6       | 58.1       | 56.9               | DN POL 51.4 V POL U | CON 10 51.2 ON 1 |  |  |  |
| 21:00-22:00             | 54.3                                     | 57.4       | 50.4       | 48.1               | 52.0                | 55.0             |  |  |  |

| CON POLLUCON POLLUCON PC | 20 - Lakhi Village (Below Conveyer Belt)  |                            |                            |                            |                            |                            |  |  |  |
|--------------------------|-------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
| Sampling Location        | During Night Time - dB(A)Leg <sup>#</sup> |                            |                            |                            |                            |                            |  |  |  |
| Date of Monitoring       | 23-10-2019 &<br>24-10-2019                | 23-11-2019 &<br>24-11-2019 | 24-12-2019 &<br>25-12-2019 | 23-01-2020 &<br>24-01-2020 | 25-02-2020 &<br>26-02-2020 | 24-03-2020 &<br>25-03-2020 |  |  |  |
| 22:00-23:00              | 61.4                                      | 62.2                       | 51.2                       | 47.8                       | 61.3                       | 47.4                       |  |  |  |
| 23:00-00:00              | <mark>5</mark> 6.1                        | 56.2                       | 55.3                       | 53.1                       | 47.8                       | 55.6                       |  |  |  |
| 00:00-01:00              | 40.7                                      | 43.5 UCON                  | 01110047.2                 | 40.8                       | 44.6 POLL                  | 48.3                       |  |  |  |
| 01:00-02:00              | 56.2                                      | 56.8                       | 42.8                       | 52.3                       | 58.7                       | 57.8                       |  |  |  |
| 02:00-03:00              | 52.6                                      | 52.9                       | 55.6                       | 60.2                       | 52.9                       | 50.3                       |  |  |  |
| 03:00-04:00              | 58.5                                      | 59.0                       | 42.3                       | 49.2                       | 55.6                       | DCON 53.9 CON              |  |  |  |
| 04:00-05:00              | 55.5                                      | 61.3                       | 52.8                       | 51.3                       | 49.8                       | 46.0                       |  |  |  |
| 05:00-06:00              | 57.8                                      | 58.6                       | 50.7                       | 56.2                       | 45.8                       | 40.6                       |  |  |  |

<sup>#</sup>dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am. **Observation:** Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

-O-D

**Authorized Signatory** 

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

• GPCB apprved • ISO 14001 : 2004 • OHSAS 18001 schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

#### **3H. DG SETS STACK EMISSION AND NOISE LEVEL MONITORING: -**Table No.: **3H.1 – DG Sets Stack Emission Monitoring Results for the period: October-19 to March-20**

| Sr. | Davametera                        | Unit               | DG Set # 1      | MRSS (SS5)      |                 | et # 2<br>7B)   | DG Set # 3 N    | Aarine (SS8)    | DG Set # 4      | Silo (SS11)     |
|-----|-----------------------------------|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| No. | Parameters                        | Unit               | NOV-19          | FEB-20          | NOV-19          | FEB-20          | NOV-19          | FEB-20          | NOV-19          | FEB-20          |
| 1   | Particulate Matter                | mg/Nm <sup>3</sup> | 24.86           | 18.76           | 22.36           | 20.82           | 18.61           | 22.65           | 20.76           | 15.37           |
| 2   | Sulphur Dioxide                   | ppm                | 8.12            | 7.85            | 6.29            | 5.2             | 7.73            | 8.57            | 5.25            | 4.77            |
| 3   | Oxide of Nitrogen                 | ppm                | 40.31           | 32.73           | 34.6            | 32.83           | 31.82           | 35.44           | 37.48           | 30.62           |
| 4   | Non Methyl Hydro<br>Carbon (NMHC) | mg/m <sup>3</sup>  | Not<br>Detected |
| 5   | Carbon Monoxide<br>(CO)           | mg/m <sup>3</sup>  | 3.44            | 9.64            | 6.03            | 6.87            | 4.74            | 8.44            | 2.33            | 6.13            |

Table No.: 3H.2 - DG Sets Noise Level Monitoring Results for the period: October-19 to March-20

| Sr. No. | DG Set Average Noise Level In Leq. dB(A) |                   |                |  |  |  |  |
|---------|------------------------------------------|-------------------|----------------|--|--|--|--|
|         | Sampling Location                        | At 1 m from the e | nclose outside |  |  |  |  |
|         | Sampling Date                            | NOV-19            | FEB-20         |  |  |  |  |
| 1.      | DG Set # 1MRSS (SS5)                     | 70.2              | 68.4           |  |  |  |  |
| 2.      | DG Set # 2 SS7B                          | 69.6              | 67.5           |  |  |  |  |
| 3.      | DG Set # 3Marine (SS8)                   | 71.8              | 72.6           |  |  |  |  |
| 4.      | DG Set # 4Silo (SS11)                    | 72.7              | 73.4           |  |  |  |  |

OLLUCON POLLUCON POL

-0-0-

Authorized Signatory

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

● GPCB apprved ● ISO 14001 : 2004 ● OHSAS 18001 : 2007 ● ISO schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

#### S. No. **EMP Conditions** Compliance Status Α. **ENVIRONMENTAL MANAGEMENT PLAN (CONSTRUCTION PHASE)** 1.1 **Air Quality Management Plan** Dust suppression systems will be installed for **Complying with**. fugitive dust emission control while undertaking Water sprinkler and mist canon is being used to civil works. suppress the fugitive dust during construction activity. Regular wetting of roads will be undertaken on Complying with. the paved and unpaved artillery roads. Regular wetting of roads is undertaken on the paved and unpaved arterial roads. Vehicle tyre washing facilities will be provided at Complied the entrance to prevent spillover of dust sticking Vehicle tyre washing system has been provided. on tyre outside the facility. Construction materials kept in open area will be Complying with. provided with barrier in order to prevent wind Construction material is being kept in a secure carryover of dust. area. Construction materials transportation in and Complying with. outside the port will be appropriately covered to Material transportation is being done through prevent fugitive dust emissions. trucks covered with tarpaulin. Civil and Mechanical fabrication works will be Complying with. carried out within the port facility at an Civil and Mechanical fabrication is being done appropriate location to avoid impact on the local within the port premises. air quality at project construction site. All construction equipment's at site will be Complying with. subjected to regular maintenance to minimize All vehicles are being regularly maintained to minimize the vehicle exhaust. the vehicle exhaust. All trucks deployed at site will be a provided with Complying with. fitness and pollution under control certificate. All vehicles are being checked for PUC. DG set with appropriate stack height as per Complying with. CPCB guidelines for effective dispersion of All DG sets (standby source) are provided with pollutants shall be provided. stack height in compliance to the CPCB standards. 1.2 Noise Quality Management Plan DG set with acoustic enclosure will be installed **Complying with**. for power supply to construction activities. All DG sets (standby source) are provided with acoustic enclosures. Complying with. All high decibel noise generating equipment's should be repaired to meet the compliance noise Noise generating equipment's are provided level. with acoustic enclosures. No activity involving with high intensity and Complying with. magnitude of operation should be deployed. All construction and operation activities Silencers will be provided in Vehicle exhaust. are in compliance with the Noise level Norms. Monitoring of noise level is being done by • Laboratories, NABL M/s Pollucon accredited and MoEF&CC recognized laboratory. Monitoring reports are presented in the Annexure 3G.

# <u>Annexure-4</u>: Compliance Status of EMP as mentioned in the EIA study For Phase-III Expansion of Adani Petronet (Dahej) Port Pvt. Ltd., March -2020

| S. No. | EMP Conditions                                                                                                                                                                                                                                                                                  | Compliance Status                                                                                                                                                                                                                                                                                      |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Onsite fabrication activities will be undertaken at<br>a designated location, which should be located<br>away from the office buildings and any other<br>working areas.                                                                                                                         | <b>Complying with.</b><br>Separate designated fabrication yard has been provided.                                                                                                                                                                                                                      |
|        | In case noise emissions from the fabrication activities exceed a level of 85 dB(A) at the fence-<br>line of the fabrication yard, temporary noise barrier will be installed.                                                                                                                    | <ul> <li>Complying with.</li> <li>There is no occasion till date for exceeding the noise level at the port boundary.</li> <li>Persons working in the fabrication yard are provided with PPEs.</li> </ul>                                                                                               |
|        | Portable diesel engine generators and diesel<br>engine driven compressors, if any, will be<br>covered with acoustic enclosures.                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                        |
| 1.3    | Sewage Management Plan                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                        |
|        | Sewage generated from the construction site<br>will be treated in existing STP of 27 m <sup>3</sup> capacity.<br>Treated water will be used for green belt<br>development / landscaping after achieving GPCB<br>prescribed standards.                                                           | <b>Complying with.</b><br>Domestic effluent is being treated in STPs. The treated water confirming to the norms is being used for horticulture purpose. The monitoring results of the treated wastewater from STP for the period from October 2019 to March 2020 are enclosed as <b>Annexure –3F</b> . |
| 1.4    | Solid and Hazardous Waste Management Plan                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                        |
|        | Solid waste generated will be segregated at<br>source for biodegradable and non-<br>biodegradable with an option of reuse or recycle<br>before disposal                                                                                                                                         | • All solid waste is being segregated for                                                                                                                                                                                                                                                              |
|        | All hazardous waste generated will be<br>categorized as per Hazardous Waste<br>Management Rules, 2008.                                                                                                                                                                                          | Hazardous waste is being managed in compliance to the Hazardous Waste Management Rules 2016.                                                                                                                                                                                                           |
|        | Recycle/Reuse waste will be sold to authorized recyclers                                                                                                                                                                                                                                        | <b>Complying with.</b><br>Recyclable waste such as used oil etc. is being sold to authorize recyclers only.                                                                                                                                                                                            |
| 1.5    | Construction Phase Storm Water Runoff                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                        |
|        | Existing storm water drainage network will be<br>further strengthened and developed near the<br>project site to prevent surface runoff to the sea.                                                                                                                                              | Storm water drainage system has been provided and regular maintenance is being done.                                                                                                                                                                                                                   |
| В.     | ENVIRONMENTAL MANAGEMENT PLAN (OPE                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                        |
| 2.1    | Air Quality Management Plan - Coal Handling a                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |
|        | Appropriate stack height will be provided to DG<br>sets to disperse the gases into the atmosphere as<br>per the guidelines suggested by Central Pollution<br>Control Board.                                                                                                                     | All DG sets (standby source) are provided with stack height in compliance to the CPCB standards.                                                                                                                                                                                                       |
|        | Existing Port has installed robust dry fog dust<br>suppression system (DFDS) at the Jetty,<br>conveyor belt, transfer tower, and discharge<br>point at coal stack yard area. Various types of<br>water spray nozzles have been installed and the<br>water spray is carried out through atomized | All dust control systems are maintained and operating well.                                                                                                                                                                                                                                            |

| S. No. | EMP Conditions                                     | Compliance Status                                           |
|--------|----------------------------------------------------|-------------------------------------------------------------|
|        | water spray over the sources using compressors     |                                                             |
|        | thereby controlling the fugitive dust effectively. |                                                             |
|        | Total number of nozzles installed in the port is   |                                                             |
|        | 350 nos. It is recommended to maintain the same    |                                                             |
|        | systems for the proposed project activities        |                                                             |
|        | At coal stack yard, 100 sprinklers have been       | Complying with.                                             |
|        | installed to control fugitive coal dust emissions. | • At coal stack yard, 100 sprinklers are                    |
|        | At a time 4 sprinklers will be operated and        |                                                             |
|        | consumes water around 3600 LPM. Similarly, for     | 1 0                                                         |
|        | the proposed expansion of port from 11.7 to 23     | completed. Installation of water sprinklers                 |
|        | MMTPA such a robust DFDS and Sprinklers will       |                                                             |
|        | be installed and maintained with maximum           | before storage of coal.                                     |
|        | efficiency.                                        | berore storage of coal.                                     |
|        | To prevent wind carryover of dust from coal        | Shall be complied                                           |
|        | stack yard, wind barrier have been erected         |                                                             |
|        | around the coal stock pile area at a height of 14m |                                                             |
|        | from the ground level. The wind barrier is of      |                                                             |
|        | galvanized sheet with perforated holes to          | completed.                                                  |
|        | withstand high velocity wind has been fitted in    |                                                             |
|        | the structural beams and erected in solid          |                                                             |
|        | foundation thereby effectively control the wind    |                                                             |
|        | carryover of dust from the stock piles.            |                                                             |
|        | Road sweeping of dust is being undertaken using    | Complying with.                                             |
|        | mobile van thereby preventing settled dust gets    | Two dust sweeping machines (mobile van) are                 |
|        | airborne due to movement of vehicles and high      | working at site.                                            |
|        | wind velocity and the same is recommended          | working at site.                                            |
|        | High capacity vacuum cleaning machine              |                                                             |
|        | installed at mobile truck is deployed for removal  |                                                             |
|        | of dust settled on roads and the same practices    |                                                             |
|        | will be implemented in the proposed project.       |                                                             |
|        | Regular wetting of the roads is undertaken         | Complying with                                              |
|        | through dedicated truck mounted spray              | Sprinkling of water is being done on the roads              |
|        | arrangement with least water consumption. The      |                                                             |
|        | same will be implemented in the proposed           |                                                             |
|        | activities.                                        |                                                             |
| 2.2    | Noise Control Management Plan                      |                                                             |
|        | High speed rotating equipments such as gantry      | Shall be complied.                                          |
|        | cranes motors, hydraulic systems will be           |                                                             |
|        |                                                    | done.                                                       |
|        | maintain the noise decibel as per the              |                                                             |
|        | manufacturer specifications                        |                                                             |
|        | DG sets installed in open area will be provided    | Complying with                                              |
|        | with acoustic enclosure                            | DG sets installed in open area will be provided             |
|        |                                                    | with acoustic enclosure                                     |
|        | Compressors and Diesel generators and pump         |                                                             |
|        | house will be installed in separate building       |                                                             |
|        | provided with noise absorbing materials on the     |                                                             |
|        | walls                                              | enclosures.                                                 |
|        | Movement of vehicles within the port will be       |                                                             |
|        | restricted with speed control measures             | • Speed is limited within the port premises.                |
|        |                                                    | <ul> <li>Proper signage also provided within the</li> </ul> |
|        |                                                    | premises.                                                   |
|        |                                                    | promisos.                                                   |

| S. No. | EMP Conditions                                                                                                                                                                                                                                                                                                                                                | Compliance Status                                                                                                                                                                                             |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Using silent exhaustion pipes for major diesel<br>engine vehicles and heavy trucks operated inside<br>the port                                                                                                                                                                                                                                                |                                                                                                                                                                                                               |
|        | Planting trees which acts as barrier to arrest<br>dispersion of noise levels along the internal roads<br>and port boundary                                                                                                                                                                                                                                    |                                                                                                                                                                                                               |
|        | Using electricity powered equipment inside the<br>port instead of diesel powered ones will be<br>explored to the extent possible                                                                                                                                                                                                                              | 150                                                                                                                                                                                                           |
|        | Change management process will be<br>implemented to modify operation to address<br>noise pollution if occurs                                                                                                                                                                                                                                                  | <b>Complying with.</b><br>APDPPL is certified with the ISO 14001:2015. A proper change management process in place for any kind of deviation. However, there is no occurrence of noise level exceeding norms. |
| 2.3    | Storm Water Management Plan                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                               |
|        | <ul> <li>Following areas will be provided with storm water<br/>drainage systems to prevent any surface run-off<br/>in to the sea.</li> <li>Reclamation of 23 Ha back up area</li> <li>Coal stock pile development of 7.7 Ha area</li> <li>Railway siding area</li> </ul>                                                                                      | <b>Complying with.</b><br>Coal stock pile and Railway siding area are<br>provided with storm water drainage.<br>Reclamation of 23 Ha area is being done.                                                      |
|        | <ul> <li>The drainage water will be channeled through a<br/>series of sediment traps to remove the majority<br/>of the coal sediment before discharging into<br/>the natural drains.</li> </ul>                                                                                                                                                               | <b>Complied with.</b><br>Runoff from the coal storage is being routed<br>through dump pond where all the particles<br>settled down.                                                                           |
| 2.4    | Solid & Hazardous Waste Management Plan                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                               |
|        | Port operator will prepare the robust waste<br>management plan for the entire operations,<br>process carried out during operation. As part of<br>the plan, a scavenging boat will be anchored for<br>collection of waste due to windblown in to the<br>sea.                                                                                                   | A waste management plan is in place and a boat<br>is provided to collect the waste blown due to<br>high wind into the sea.                                                                                    |
|        | In addition to the plan, the wastes that are<br>expected to be generated will be disposed<br>accordingly. The hazardous waste generated<br>from the port operation will be disposed as per<br>the HWM Rules 2008.                                                                                                                                             | All the wastes are being managed in compliance to the respective waste management rules as amended in 2016.                                                                                                   |
|        | Solid Waste generated during port operations<br>will be disposed as per Solid Waste (Management<br>& Handling) Rules 2000. Wherever possible the<br>recycle and reuse will be explored for possibilities<br>of recovery of any useful material. Option for<br>recycle/reuse if not economical, then the waste<br>will be disposed as per the SWM Rules, 2000. |                                                                                                                                                                                                               |
| 2.5    | Green Belt Development Plan:                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                               |
|        | It is proposed to develop nearly 6 ha. of green<br>cover all along the boundary of the port. Green<br>Buffer Zone is being implemented at Eastern                                                                                                                                                                                                             |                                                                                                                                                                                                               |
| L      | Long is soning implomontou at Editorn                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                               |

| S. No. | E                                                                                                                                                                                                            | MP Conditions                                                                                                                                                                   | Compliance Status                                                                                                                                                                                                         |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | project site alor                                                                                                                                                                                            | ng the boundary. Saplings of                                                                                                                                                    | Three tier Green belt is being developed in an                                                                                                                                                                            |
|        | Casuarina and Pe                                                                                                                                                                                             | dilanthus are planted along the                                                                                                                                                 | area of 19.3894 ha including periphery of the                                                                                                                                                                             |
|        | coal stacking yard                                                                                                                                                                                           | ds and periphery of port area.                                                                                                                                                  | project boundary.                                                                                                                                                                                                         |
|        | It is proposed                                                                                                                                                                                               | to develop further three tier                                                                                                                                                   |                                                                                                                                                                                                                           |
|        | greenbelt to incre                                                                                                                                                                                           | ease efficiency of dust control.                                                                                                                                                |                                                                                                                                                                                                                           |
| 2.6    | Community Dev                                                                                                                                                                                                | 5                                                                                                                                                                               |                                                                                                                                                                                                                           |
|        | •                                                                                                                                                                                                            | SR programs are based on the                                                                                                                                                    | Complied.                                                                                                                                                                                                                 |
|        | study. The pro<br>initially implement<br>study area that is<br>Ambetha and Da<br>the CSR program<br>other villages ap<br>proposed CSR Pr<br>following subheat<br>Health Promotion<br>✓ Health Ca<br>programs | s Lakhigam, Luvara, Jageshwar,<br>ahej. Based on the outcome of<br>ms, it can be expanded to the<br>part from the study area. The<br>rograms can be grouped into the<br>adings. | The CSR activities are executed at group level<br>by Adani Foundation. Adani Foundation is<br>taking care of Social-economic establishment<br>activities and details of the same are enclosed<br>as <b>Annexure – 8</b> . |
|        | ✓ Mobile Clir<br>Education Prom                                                                                                                                                                              | nic                                                                                                                                                                             |                                                                                                                                                                                                                           |
|        | Drinking<br>facilities ar                                                                                                                                                                                    | sustenance funds for<br>g School Infrastructure like<br>water Facilities, Sanitation<br>nd providing supplies etc<br>scholarship programs                                       |                                                                                                                                                                                                                           |
|        |                                                                                                                                                                                                              | opment Programs                                                                                                                                                                 |                                                                                                                                                                                                                           |
|        | <ul> <li>✓ Knowledge<br/>government<br/>technology</li> </ul>                                                                                                                                                | e centre regarding various<br>nt schemes and latest                                                                                                                             |                                                                                                                                                                                                                           |
|        | Women Empow                                                                                                                                                                                                  |                                                                                                                                                                                 |                                                                                                                                                                                                                           |
|        | •                                                                                                                                                                                                            | Promotion Programs<br>on and Maintenance of<br>complex                                                                                                                          |                                                                                                                                                                                                                           |
|        | Infrastructure d                                                                                                                                                                                             | evelopment Programs                                                                                                                                                             |                                                                                                                                                                                                                           |
|        | <ul> <li>✓ Developing</li> <li>✓ Solar Street</li> </ul>                                                                                                                                                     | 8                                                                                                                                                                               |                                                                                                                                                                                                                           |
|        | <ul> <li>✓ Construction</li> <li>Communit</li> <li>✓ Social Fore</li> </ul>                                                                                                                                  | y Halls                                                                                                                                                                         |                                                                                                                                                                                                                           |
| 2.7    | Programs:                                                                                                                                                                                                    | Infrastructure Development                                                                                                                                                      |                                                                                                                                                                                                                           |
|        | S.<br>No. Village                                                                                                                                                                                            | Programs                                                                                                                                                                        |                                                                                                                                                                                                                           |
|        | 1. Luvara                                                                                                                                                                                                    | Developing proper drainage system in the village.                                                                                                                               |                                                                                                                                                                                                                           |

| 2.       Dahej       Providing Safe Drinking water Facilities in the schools         3.       Dahej       Developing medical facilities in the PHC such as facilities for storage of perishable medicines,         4.       Jageshwar       Developing       Drainage System         5.       Lakhigam       Developing       Drainage System         6.       Lakhigam       Developing Solar Street Light and Internal Village Jageshwar       Developing         7.       Ambetha       Developing       Drainage |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3.DahejDeveloping medical facilities<br>in the PHC such as facilities<br>for storage of perishable<br>medicines,4.JageshwarDeveloping<br>System5.Lakhigam<br>Luvara<br>Luvara<br>JageshwarDeveloping<br>Solar<br>Roads6.Lakhigam<br>Luvara<br>Developing<br>Developing<br>Developing<br>Data<br>Developing<br>Solar<br>Drainage<br>Drainage7.AmbethaDeveloping<br>Developing<br>Drainage                                                                                                                             |      |
| in the PHC such as facilities         for storage of perishable         medicines,         4.       Jageshwar         Developing       Drainage         System         5.       Lakhigam         Developing       Drainage         System         6.       Lakhigam         Luvara       Light and Internal Village         Jageshwar       Roads         7.       Ambetha       Developing         Drainage       Drainage                                                                                          |      |
| for storage of perishable medicines,         4. Jageshwar       Developing Drainage System         5. Lakhigam       Developing Drainage System         6. Lakhigam       Developing Solar Street Luvara Light and Internal Village Jageshwar Roads         7. Ambetha       Developing Drainage                                                                                                                                                                                                                     |      |
| 4.       Jageshwar       Developing       Drainage         5.       Lakhigam       Developing       Drainage         6.       Lakhigam       Developing       Solar         1       Luvara       Light       and         1       Jageshwar       Roads         7.       Ambetha       Developing       Drainage                                                                                                                                                                                                      |      |
| 4.JageshwarDeveloping<br>SystemDrainage<br>Drainage5.LakhigamDeveloping<br>SystemDrainage<br>Drainage6.Lakhigam<br>Luvara<br>JageshwarDeveloping<br>RoadsSolar<br>Street7.AmbethaDeveloping<br>DevelopingDrainage                                                                                                                                                                                                                                                                                                    |      |
| System         5.       Lakhigam         Developing       Drainage         System         6.       Lakhigam         Luvara       Light         Jageshwar       Roads         7.       Ambetha    Developing Drainage                                                                                                                                                                                                                                                                                                 |      |
| 5.       Lakhigam       Developing       Drainage         6.       Lakhigam       Developing       Solar         1       Luvara       Light       and         1       Jageshwar       Roads         7.       Ambetha       Developing       Drainage                                                                                                                                                                                                                                                                 |      |
| System       6.     Lakhigam       Luvara     Light and Internal Village       Jageshwar     Roads       7.     Ambetha       Developing     Drainage                                                                                                                                                                                                                                                                                                                                                                |      |
| 6.LakhigamDevelopingSolarStreetLuvaraLightandInternalVillageJageshwarRoads7.AmbethaDevelopingDrainage                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| JageshwarRoads7.AmbethaDevelopingDrainage                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 7. Ambetha Developing Drainage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| Constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 8. Study Mobile Clinic providing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Area medical facilities in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| Villages villages of the study area by                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| having periodic visits and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| 9. Study Developing Safe Drinking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| Area facilities at Schools in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| Villages study area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| 10. Jageshwar Providing training programs                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| on latest technology of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| fishing, free fishing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| equipments and providing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| vocational training                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| programme for alternate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| income source.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| 2.8 Environmental Management Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| APPPL has already established and maintained <b>Complied.</b><br>an Environmental Management Cell (EMC) with APDPPL has a well structured Enviror                                                                                                                                                                                                                                                                                                                                                                    | mont |
| Head of Department (EHS), supported by field Management Cell with qualified manpow                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| level executives and horticulturist for implementation of the Enviror                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| implementation of the compliance conditions as Management Plan. Detail of the Enviror                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| per Environmental Clearance obtained and cell is enclosed as <b>Annexure – 7</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| GPCB Consent Conditions. Periodical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| monitoring activities are being undertaken by                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| MoEF recognized and NABL accredited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| environmental laboratories. Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| compliance reports are regularly submitted to                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| MoEF regional office, Vadodara and New Delhi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| EMC will be further strengthened in view of the proposed expansion by augmenting resources                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| such as manpower and field equipments, for                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| effective compliance of environmental clearance                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| conditions. Environmental monitoring program                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| will be undertaken by MoEF recognized and                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| NABL accredited environmental laboratories as                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| part of compliance report preparation and its                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |

| S. No. | EMP Conditions                                   | Compliance Status                        |
|--------|--------------------------------------------------|------------------------------------------|
|        | submission to GPCB, MoEF Regional Office,        |                                          |
|        | Vadodara and New Delhi.                          |                                          |
| 2.9    | Cost Estimates for Environmental                 |                                          |
|        | Management Plan:                                 |                                          |
|        | The estimated total cost of the proposed project | Complied.                                |
|        | is Rs.464.32 Crores. Under the project, about    | Separate budget is allocated for         |
|        | Rs.173.35 Crores is allocated towards pollution  | Environmental Management and Socio       |
|        | control equipment, implementation of             | Economic activities.                     |
|        | environmental pollution control measures and     | Key components of environment budget are |
|        | environmental management programs.               | environmental Monitoring, STP's (O&M),   |
|        |                                                  | Closed Conveyor System Maintenance etc.  |
|        |                                                  | The allocation of revenue budget for     |
|        |                                                  | Environment Cell for the FY 2019-20 was  |
|        |                                                  | approx. Rs. 407.26lacs. Details of the   |
|        |                                                  | environmental budget and expenditure for |
|        |                                                  | the period October 2019 to March 2020 is |
|        |                                                  | enclosed as Annexure – 6.                |

|        |                                                                   |       | Ann        | exure - 5 Green Zone Details - APDPPL,Dahe                        | ej –                |                          |         |             |           |
|--------|-------------------------------------------------------------------|-------|------------|-------------------------------------------------------------------|---------------------|--------------------------|---------|-------------|-----------|
| Sr.no. | Sr.no. Location                                                   |       | Tree (No.) | Tree Spp.                                                         | Shrubs<br>(Sq. Mt.) | Green Carpet<br>(Sq.Mt.) | Palm    | Remarks     | FY        |
|        |                                                                   | 0.45  | 500        | Delonix regia/ Peltoforum /casurina (3 x3 m )                     |                     |                          | 25      |             |           |
|        | PMC office area Landscape / old pump house /Road side             | 0.23  | 250        | Cassia semia/peltoforum/conocarpus (3 x3 m)                       | 1000                | 1500                     |         |             |           |
| 4      |                                                                   | 0.20  | 450        | Coconut spp./ fruit trees / Dragon fruit /boganvallia (1.5 x 3 m) |                     |                          |         | Implemented | 2010-11   |
| 1      | Back side lakhibaba temple &Boundry site plantation (phase -1)    | 0.39  | 1300       | Casurina Equsitifolia (1.5x 2 m)                                  | 0                   | 0                        |         |             |           |
|        | Back side lakhibaba temple &Boundry site plantation (phase -1 a ) | 0.27  | 600        | Casurina Equsitifolia (1.5x 3 m)                                  | 0                   | 0                        | 0       | Implemented | 2011-12   |
|        | Total                                                             | 1.54  | 3100       |                                                                   | 1000                | 1500                     | 25      |             |           |
|        | Gcptcl boudry wall site plantation (phase-1)                      | 1.35  | 6000       | Casurina Equsitifolia (1.5x 1.5 m)                                |                     |                          |         | Implemented |           |
| 2      | APPPL office area (SS-7)                                          | 0.32  | 400        | Delonix regia /peltoforum/conocarpus/neem (2x4 m)                 | 800                 | 8000                     | 200     | Implemented | 2011-12   |
|        | Gcptcl boudry wall site plantation (phase-1 a)                    | 0.11  | 500        | eucalyptus/ conocarpus (1.5x 1.5 m)                               | 0                   | 0                        | 0       | Implemented |           |
|        | Total                                                             | 1.78  | 6900       |                                                                   | 800                 | 8000                     | 200     |             |           |
| 3      | LNG Site Boundry wall site plantation                             | 0.90  | 4000       | Casurina Equsitifolia /conocarpus(1.5x 1.5 m)                     | 0                   |                          | 500     | Implemented |           |
| 4      | Stack yard                                                        | 0.68  | 3000       | Casurina Equsitifolia/Eucalyptus /conocarpus(1.5x 1.5 m)          | 0                   | 0                        | 0       | Implemented | 2012-2013 |
|        | Total                                                             | 1.58  | 7000       |                                                                   | 0                   | 0                        | 500     | •           |           |
|        | Road site Avenue tree plantation                                  | 0.68  | 1500       | Casurina Equsitifolia/Conocarpus (1.5x 3 m)                       | 3000                | 200                      | 200     |             |           |
| 5      |                                                                   | 1.44  | 1600       | Conocarpus (3x3 m)                                                |                     |                          |         | Implemented | 2013-2014 |
|        |                                                                   | 0.90  | 1500       | Conocarpus (2x3m)                                                 |                     |                          |         |             | 2013-2014 |
|        | Total                                                             | 3.02  | 4600.00    |                                                                   | 3000                | 200                      | 200     |             |           |
|        |                                                                   | 0.24  | 525.00     | Casurina Equsitifolia (1.5x 3 m)                                  |                     |                          |         | Implemented |           |
|        |                                                                   | 0.35  | 220.00     | Conocarpus (4x4 m)                                                |                     |                          |         | Implemented |           |
| 0      |                                                                   | 0.23  | 500.00     | Golden Bamboo (1.5x 3 m)                                          |                     |                          |         | Implemented | 2014-15   |
| 6      | Main gate Area Perifery /EHS/Road side                            | 0.60  | 500        | Azardirecta indica /peltoforum/ Casurina (3x 4 m)                 |                     |                          |         | Implemented | 2015-16   |
|        |                                                                   | 0.256 | 320        | Conocarpus /Casurina/forest trees (2x4 m)                         | 3450                | 2500                     |         | Implemented |           |
|        |                                                                   | 0.324 | 810        | Conocarpus /Casurina (2x 2 m)                                     |                     |                          |         | Implemented |           |
|        | Total                                                             | 2.0   | 2875.0     |                                                                   | 3450                | 2500                     | 0       |             |           |
|        |                                                                   | 0.15  | 255        | Conocarpus /Casurina (2x 3 m)                                     | 0                   | 0                        |         |             |           |
|        | Coal yard area /Railaway yard                                     | 1.13  | 5000       | Casurina Equsitifolia/conocarpus (1.5x1.5 m)                      | 0                   | 0                        | 2000    | Implemented | 2016-17   |
| 7      |                                                                   | 1.13  | 5000       | Casurina Equsitifolia/conocarpus (1.5x 1.5m)                      |                     | 0                        |         | Implemented | 2017-18   |
|        |                                                                   | 2.40  | 10255.00   |                                                                   | 0                   | 0                        |         | • • • • • • | -         |
|        | Permenant Godown area                                             | 0.36  | 1380       | Shrubs and forest tree plantation                                 | 1500                | 2100                     | 100     | Implemented |           |
|        | Coal Yard Area                                                    | 1.14  | 2861       | Conocarpus /Casurina (2x 2 m)                                     | 1200                | 0                        | 0       | Implemented | 2018-19   |
|        | Perifery road side                                                | 0.68  | 3000       | eucalyptus /conocarpus(1.5x 1.5 m)                                | 0                   | 0                        |         | Implemented | 1         |
|        | Total                                                             | 2.18  | 7241.00    |                                                                   | 2700.00             | 2100.00                  | 2000.00 | -           |           |
| 8      | Near J10 Junction                                                 | 0.05  | 120        | Conocarpus /Casurina (1 x 1 m)                                    |                     |                          |         |             | 1         |
|        | Sea side New Development                                          | 0.27  | 1480       | eucalyptus /conocarpu/ Bouganvallia/ shrubs (1x 1 m)              | 500                 |                          |         |             | 1         |
|        | Marine Police Station                                             | 0.17  | 250        | Azardirecta indica /peltoforum/ Casurina (3x 4 m)                 | 200                 |                          |         |             | 2019-20   |

|      | Old pump house /silo area                     | 0.11     | 480      | Azardirecta indica /peltoforum/ Casurina (1.5x 1.5 m) |          |          |         |  |
|------|-----------------------------------------------|----------|----------|-------------------------------------------------------|----------|----------|---------|--|
|      | Port Yard Area                                | 0.12     | 400      | eucalyptus /conocarpus(0.80x 0.80m)                   |          |          |         |  |
|      | Ramji Temple Area / Lakhigam school           | 0.49     | 820      | Azardirecta indica /peltoforum/ Casurina/conocarpus   |          |          |         |  |
|      | Total                                         | 1.21     | 3550     |                                                       |          |          |         |  |
|      | Trees Total Green Zone Area (Ha)              |          | 45521.00 |                                                       | 10950.00 | 14300.00 | 2925.00 |  |
| Shru | Shrub/carpet /palm Total Green Zone Area (Ha) |          |          |                                                       | 1.095    | 1.43     | 1.17    |  |
|      | Total Green Zone Area (Ha)                    | 19.38945 |          |                                                       |          |          |         |  |

| S.  | ACTIVITY/ CATEGORY                                                                 | BUDGET   | EXPENDITURE |  |
|-----|------------------------------------------------------------------------------------|----------|-------------|--|
| NO. | ACTIVITY/CATEGORY                                                                  | (IN LAC) | (IN LAC)    |  |
| 1.  | EHS Manpower                                                                       | 7.12     | 3.56        |  |
| 2.  | Legal & Statutory Expenses                                                         | 2.00     | 0.20        |  |
| 3.  | Environmental Monitoring Services                                                  | 23.10    | 9.78        |  |
| 4.  | Cost for Water Consumption and use dust suppression                                | 61.20    | 35.84       |  |
| 5.  | Hazardous Waste Management & Disposal                                              | 3.00     | 2.12        |  |
| 6.  | Greenbelt Development and Plantation                                               | 50.59    | 20.00       |  |
| 7.  | O&M of Sewage Treatment Plant                                                      | 7.05     | 2.79        |  |
| 8.  | Environment Day Celebration                                                        | 0.50     | 0.00        |  |
| 9.  | Treatment and Disposal of Bio-Medical Waste                                        | 1.92     | 0.96        |  |
| 10. | Operation and Maintenance of Road Cleaning equipment and manpower                  | 45.66    | 17.97       |  |
| 11. | Operation and Maintenance of Fire staff engage in water sprinkling activity        | 83.98    | 32.81       |  |
| 12. | Marine Ecology / Shoreline Monitoring                                              | 15.0     | 10.35       |  |
| 13. | Ergonomics and Health-hygiene Survey                                               | 1.50     | 0.0         |  |
| 14. | Environmental Study / Audit and Consultancy (Biodiversity – First<br>Season Study) | 15.0     | 9.18        |  |
| 15. | Bio Shield Project at village Malpur & Jambusar, Bharuch 1000m x 200m(1.0km)       | 27.14    | 13.57       |  |
|     | TOTAL AMOUNT (IN LACS)                                                             | 344.76   | 159.13      |  |

### <u>Annexure – 6</u>: Environment Budget and Expenditure for the FY: 2019-2020

| CAPITAL EXPENDITURE |                                                                                  |                    |                         |  |  |  |  |
|---------------------|----------------------------------------------------------------------------------|--------------------|-------------------------|--|--|--|--|
| S. NO.              | ACTIVITY/ CATEGORY                                                               | BUDGET<br>(IN LAC) | EXPENDITURE<br>(IN LAC) |  |  |  |  |
| 1.                  | Horticulture Development                                                         | 22.50              | 8.00                    |  |  |  |  |
| 2.                  | EHS Display Board                                                                | 5.00               | 2.50                    |  |  |  |  |
| 3.                  | Sewage Treatment Plant (STP -50KL (Membrane Biological Reactor (MBR) Technology) | 35.00              | 20.50                   |  |  |  |  |
|                     | TOTAL AMOUNT (IN LACS)                                                           | 62.50              | 31.00                   |  |  |  |  |

| TOTAL AMOUNT (IN LACS) | 407.26 | 190.13 |
|------------------------|--------|--------|
|------------------------|--------|--------|

#### Annexure - 7: Organogram of APDPPL - Environment Management Cell



| ADANI PETRONET (DAHEJ) PORT PVT. LTD. |
|---------------------------------------|
|                                       |

Department: QHSE Management Cell

|           |                                  | Details                       | of Environment Cell                                                    |                 |
|-----------|----------------------------------|-------------------------------|------------------------------------------------------------------------|-----------------|
| S.<br>No. | Name                             | Designation                   | Qualification                                                          | Work Experience |
| 1.        | Kaushal Singh                    | Dy. Manager -HSE              | Dip-Mech, PGDFS, NEBOSH                                                | 13 Years        |
| 2.        | Denish Khanpara                  | Dy. Manager<br>(Horticulture) | B.Sc. Horticulture, Post Diploma In<br>Environment Technology (PDIEMT) | 13 Years        |
| 3.        | Kaushal Patel Dy. Manager (Fire) |                               | B.Sc. Fire, Post Diploma In Environment<br>Technology (PDIEMT)         | 15 Years        |
| 4.        | Hemant Kumawat                   | Sr. Officer (Safety)          | Dip – Mech, Dip. In Fire & Safety, NEBOSH                              | 10.5 Years      |
| 5.        | Om Prakash Yadav                 | Sr. Officer (Environment)     | M.Sc. Environment Science                                              | 6.0 Years       |
| 6.        | Mehul Morabiya                   | Jr. Officer                   | B.Sc. Fire & Safety, Advance Diploma in<br>Industrial Safety, NEBOSH   | 10 Years        |