

Ports and Logistics

Letter No.: APDPPL-EHS/MOEF RO/EC Comp (I&II)/2022/01 Date: 01.12.2022

To,

Inspector general of Forest/Scientist C
Integrated Regional office
Ministry of Environment Forest and Climate Change
Aranya Bhavan, A Wing, Room Number 409,
Near CH-3 Circle Sector 10A
Gandhinagar – 382007
Gujarat

Sub.: - Six Monthly Compliance Report of Environment and CRZ Clearance for the period from April 2022 to September 2022

Ref.: - 1) Environmental and CRZ clearances granted to M/s. Adami Petronet (Dahej) Port Pvt. Ltd. for Phase-I and Phase-II vide letters dated 6th July 2007 and 11th November 2008 bearing F. No.: 11-37/2007-IA-III, respectively.

 CRZ Clearance / Recommendation issued by Department of Environment & Forest, GoG vide letter dated 16th May 2007 bearing No.: ENV-102006-71-P for Phase-I and letter dated 29th September 2008 bearing No.: ENV-10-2007-2126-E for Phase-II.

Dear Sir,

Please find enclosed herewith point wise compliance report of conditions stipulated in the above referred letters for the period April 2022 to September 2022.

Thanking you,

Yours Faithfully,

For M/s Adani Petronet (Dahej) Port Pvt. Ltd.

(Authorized Signatory)

Copy to:

- Add. Secretory, Ministry of Environment, Forest and Climate Change, Regional Office (WZ), E-5, Kendriya Paryavaran Bhawan, Arera Colony, Link Road-3, Ravishankar Nagar, Bhopal - 462016 (Madhya Pradesh).
- The Director (Monitoring-IA Division), Ministry of Environment, Forest & Climate Change, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi-110 003.
- The Director, Forest and Environment Department, Block-14, 8th Floor, Sachivalaya, Gandhinagar, Gujarat-382 010.
- The Zonal Officer, Central Pollution Control Board, Zonal Office Vadodra, Parivesh Bhawan, Opposite VMC Ward office No. 10, Subhanpura, Vadodra-390 023.
- The Chairman, Gujarat Pollution Control Board, Parvayaran Bhawan, Sector-10A, Gandhinagar-382010 (Gujarat).
- 6. The Regional Officer, Gujarat Pollution Control Board, Bharuch (Gujarat).

Adani Petronet (Dahej) Port Pvt Ltd

At & PO: Lakhigam Taluka: Vagra, Via Dahej Bheruch 392 130 Gujarat, India Tel +91 2641 28 5002 Fax +91 2641 28 5019

www.adaniports.com

From: April 2022

To : Sept. 2022

SIX MONTHLY COMPLIANCE REPORT OF ENVIRONMENT & CRZ CLEARANCE PHASE –I & II FOR

DEVELOPMENT OF SOLID CARGO PORT TERMINAL AT DAHEJ, DISTRICT: BHARUCH, GUJARAT

(FOR THE PERIOD: APRIL 2022 TO SEPTEMBER 2022)

BY

ADANI PETRONET (DAHEJ) PORT PVT LTD. VILLAGE: LAKHIGAM, TALUKA: VAGRA, DISTRICT: BHARUCH, GUJARAT- 392130

ADANI PETRONET (DAHEJ) PORT PVT LTD.

From: April 2022 To : Sept. 2022

LIST OF APPENDIXES

S. No.	DETAILS
1.	Environmental and CRZ clearances for Phase-I and Phase-II issue by MOEF&CC,
	New Delhi vide letters dated 6 th July, 2007 and 11 th November, 2008 bearing F. No.:
	11-37/2007-IA-III. M/s. Adani Petronet (Dahej) Port Pvt. Ltd.
2.	CRZ Clearance / Recommendation issued by Department of Environment & Forest,
	GoG vide letter dated 16 th May, 2007 bearing No.: ENV-102006-71-P for Phase-I and
	letter dated 29 th September, 2008 bearing No.: ENV-10-2007-2126-E for Phase-II.
	M/s. Adani Petronet (Dahej) Port Pvt. Ltd.

From: April 2022 To : Sept. 2022

List of Annexure

Annexure 1 : Forest Compliance

Annexure 2 : Details of Fixed Mobile Fire Fighting System

Annexure 3 : Environment Monitoring Report

Annexure 4 : Green Belt Development Plan

Annexure 5 : CCA Copy

Annexure 6 : Environmental Budget & Expenditure for FY 22-23

Annexure 7 : Compliance status of EMP as per Guidelines

Annexure 8 : CSR Report form April 2022 to September 2022

Annexure 9 : Environment Cell Organogram

ADANI PETRONET (DAHEJ) PORT PVT LTD.

From: April 2022 To : Sept. 2022

_	yearly Compliance report for Environment and CRZ Clearance for the development of I Cargo Port Terminal Phase – I and Phase – II.				
Sr. No.	Specific Conditions	Compliance			
P2(i)	All the conditions stipulated by Ministry of Environment and Forests, Regional Office, Western Region, Bhopal vide their letter No. 6-GJ060/2006-BHO/1508, dtd., 16.6.2008 shall be strictly adhered to	Complied. All the conditions mention by Ministry of Environment and Forests, Regional Office, Western Region, Bhopal vide their letter No. 6-GJ060/2006-BHO/1508, dtd., 16.6.2008 have been complied with. Copy of the compliance status enclosed as Annexure – 1.			
P2(ii)	All the conditions stipulated by Forest and Environment Department, Govt. of Gujarat vide their letter NoFCA-1006(10-9) SF-76-K, dated., 1.7.2008 dated 16.6.2008 shall be strictly adhered to	Complied. All the conditions mention by Forest and Environment Department, Govt. of Gujarat vide their letter NoFCA-1006(10-9) SF-76-K, dated., 1.7.2008 dated 16.6.2008 have been complied with. Copy of the compliance status enclosed as Annexure – 1.			
P2(iii)	No reclamation will be carried out for the activity	Complied. Project (Phase I & II) has been developed within existing land without any reclamation.			
P2(iv)	All the conditions stipulated by the Gujarat Coastal Zone Management Authority including Ministry of Environment and Forests clearance dated 16.6.2008 under the Forest Conservation Act shall complied.	We complied with the conditions stipulated by GCZMA including MOEF dated 16.06.2008. Copy of the compliance status enclosed as			
P2(v), P1(i)	Sewage Treatment Plant should be included in the project	Complied. Sewage generated from port is being treated in designated STP of 80KL/Day capacity. Capacity Quantity of Type of Wastewater (Avg. STP from April 2022 to Sept. 2022.) 80KLD 22.68 KLD MBR The treated water from STP is being utilized on land for horticulture purpose within port premises after achieving permissible norms prescribed in			
		CCA order. Treated water report are attached in Annexure 3F. Monthly monitoring of STP was being done by M/s. Pollucon Laboratories. Summary of STP treated water analysis results during compliance period from April 2022 to Sept. 2022 are mentioned below. Parameters Unit Min Max Perm. Limit PH - 7.09 8.06 6.5-8.5 TSS mg/L 21 29 30			

Sr. No.	Specific Conditions		Comp	liance		
		BOD (3 Days @ 27 °C	mg/L	14	18	20
		Residual Free Chlorine	mg/L	0.5	0.8	0.5(Min)
		Oil & Grease	mg/L	2.5	4.2	-
P2(vi), P1(ii)	Afforestation in 200 ha. with mangroves should be undertaken under the project, as identified by the Gujarat Forest Department.	Complied. Mangrove afforestation has been carried of an area of 400 ha Phase I & II (200 Ha for be Details are given below. 1. 100 ha near village Dandi, District Surat— 2011 2. 50 ha near village Jakhau, District Kutch — 2011 3. 50 ha near Padri bit, District Bhavnagar — 2011 4. 200 ha near Malpur, Ta. Jambusar — 2013-14 5. 50 ha Devjagan/Nada Ta. Jambusar — 2 — 18 (Done as compliance to Phase — III &CRZ clearance) Reports of 400 Ha Mangrove afforestation of submitted along with half yearly compliance to Phase — III Comp (I & II) dated 28.11.2017 and Report of the Mangrove afforestation (2017-18) submitted along with half yearly compliance along with half yearly compliance to Phase — IIII (2017-18) submitted along with half yearly compliance to Phase — III (2017-18) submitted along with half yearly compliance to Phase — III (2017-18) submitted along with half yearly compliance to Phase — III (2017-18) submitted along with half yearly compliance to Phase — III (2017-18) submitted along with half yearly compliance to Phase — III (2017-18) submitted along with half yearly compliance to Phase — III (2017-18) submitted along with half yearly compliance to Phase — III (2017-18) submitted along with half yearly compliance to Phase — III (2017-18) submitted along with half yearly compliance to Phase — III (2017-18) submitted along with half yearly compliance to Phase — III (2017-18)			sar – 2017 ise –III EC ation were compliance EF RO/EC eport of 50 1-18) was	
P2(vii)	Afforestation @1:3 shall be carried out in case of any trees to be cut.	 Afforestation completed wind during 2012-1 Land has be vide notification the same was compliance in EHS/MoEF 1 28.11.2017. 	th the half. en declion date submit	elp of lared ed 23/ ted alo ide let	forest of as research 12/2008 and with ter no.	erve forest B. Copy of half yearly APDPPL-
P2(viii), P1(iii)	The recommendations of the Risk Assessment Report should be incorporated	Complied. Risk Assessmen with compliance recommendation	report of nd be	dated risk eing	20/02/ assess followe	2008. The sment is

1	ly Compliance report for Environment and go Port Terminal Phase – I and Phase – II.	CRZ Clearance 1	or the d	evelopmen	t of
Sr. No.	Specific Conditions		Compl	liance	
P2(ix), P1(v)	The materials for the filling and pavement construction should be made available from approved quarries.	Complied. Construction of completed in Fello		•	I & II) was
P2(x), P1(vi)	Sufficient fixed and mobile firefighting system should be provided exclusively for the terminal in consultation with the local statutory bodies.	Complied. Adequate fixed and mobile firefighting systems are provided. Details of firefighting systems available with APDPPL is submitted to District collector, Mamlatdar (Disaster) and Gujara Maritime Board, Bharuch, vide letter no APDPPL/EHS/DMP/Rev-07/2020-21, 123 & 124 dated 20.01.2021. Details of the same are enclosed as Annexure – 2.			ng systems d to District and Gujarat letter no. , 123 & 124
P2(xi), P1(x)	All development in the port should be carried out in accordance with the Coastal Regulation Zone Notification, 1991 and approved Coastal Zone Management Plan of Gujarat.	Complied. Construction of I in February 201 accordance with	1 and s	ame was ca	arried out in
P2(xii), P1(xi)	There shall be no withdrawal of ground water in CRZ area for this project. The proponent should ensure that as a result of the proposed constructions, ingress of saline water into ground water does not take place. Piezometers shall be installed for regular monitoring for this purpose at appropriate locations on the project site.	Ground water is not tapped for the project. Entire freshwater requirement is being met through GIDC water supply. Two Piezometers have been installed at different locations inside port. Monthly monitoring of ground water level & quality is being done.			d at different onitoring of being done MoEF&CC aboratories, alysis results oril 2022 to
		Test Parameter	Unit	Min	Max
		Temperature	°C	28.9	30.7
		рН		7.14	8.21
		Total Dissolved Solids	mg/L	648	1240
		Salinity	ppt	0.14	0.31
		Chloride as Cl	mg/L	76.97	174.0
		Depth of Water Level from Ground Level	meter	1.5	1.5
		Copies of moni Annexure 3B.	toring re	eports are o	enclosed as

Half yearly Compliance report for Environment and CRZ Clearance for the development of
Solid Cargo Port Terminal Phase – I and Phase – II.

Solid Car	Solid Cargo Port Terminal Phase – I and Phase – II.						
Sr. No.	Specific Conditions	Compliance					
P2(xiii), P1(xii)	The project shall not be commissioned till the requisite water supply and electricity to the project are provided by the PWD/Electricity Department.	Complied. Project is commissioned after obtaining permission from PWD and Electricity Department. 1. GIDC permission dated 19.02.2013. 2. Electricity Department approval dated 18.02.2011					
P2(xiv), P1(xiii)	Specific arrangements for rainwater harvesting shall be made in the project design and the rain water so harvested shall be optimally utilized. Details in this regard shall be furnished to this Ministry's Regional Office at Bhopal within 3 months	Complied. The feasibility study for rainwater harvesting was conducted. Based on the report it was concluded that rainwater harvesting is not advisable as the area is next to the coast. Report was submitted along with the half-yearly compliance report dated 22.05.2015. Ministry of Water Resources (May 2000) it is mentioned that "The upper 3 m of the unsaturated zone is not considered for recharging, since it may cause adverse environmental impact e.g. water logging, soil salinity, etc. The post monsoon depth to water level represents a situation of minimum thickness of vadose zone available for recharge which can be considered vis-a-vis surplus monsoon run off in the area." Point no. I of Sub Para D of para VI on Page 7/11 of CGWA Guideline issued by Central Ground Water Authority (CGWA) for Criteria for evaluation of proposals/requests for GW abstraction (wef. 15/11/2012) it is mentioned that "(i). Mandatory clause on RWH may be relaxed in case of waterlogged/shallow water level (< 5 m bgl during pre-monsoon) areas." As per point no. VIII of para 2.1.2. of Guidelines for issuance of No Objection Certificate (NOC) for ground water withdrawal issued by Central Ground Water Authority Ministry of Water Resources, RD & GR Government of India; Point no. VI of Para 2.7, it is mention on page no 13. That "VI. Mandatory clause on rain water harvesting may be relaxed in case of water logged/shallow water level (< 5 m bgl during post monsoon or as per state policy) areas." As mentioned above it is not permissible/advisable to develop ground water recharge structure in case ground water level is less than 5 m.					

Sr. No.	Specific Conditions	Compliance
P2(xv), P1(xv)	No land reclamation should be carried out for this project.	Complied. Project (Phase I & II) has been developed within existing land without any reclamation.
P2(xvi) ,P1(xvi)	Green buffer zone should be provided all around the project area in consultation with local forest department and report submitted to this Ministry's Regional Office at Bhopal.	Being Complied Considering the expansion plan, green belt is being developed on periphery of the project boundary. So far 23.54 Ha of green belt is developed which mainly includes casuarina, wasigtonia palm, cassia samiea, peltoforum, delonix regia, ficus sps. Details of green belt area are enclosed as Annexure – 4.
P2(xvii) ,P1(xiv)	The facilities to be constructed in the CRZ area as part of this project should be strictly in conformity with the provisions of the CRZ Notification, 1991 as amended subsequently.	Complied. Construction of the project (Phase I & II) was completed in February 2011 and same is in conformity with the provisions of the CRZ Notification 1991.
P2(xviii), P1(xvii)	No product other than those permissible in the Coastal Regulation Zone Notification, 1991 should be stored in the Coastal Regulation Zone area.	Complied. APDPPL is handling only dry cargo mainly coal and other bulk cargos or project cargo at designated storage areas in compliance to the CRZ Notification 1991 and 2011 and as per approval received.
P1(iv)	Location of general cargo berth should be taken into considerations with regard to location of LNG terminal	Complied. General cargo berth (Solid Cargo Port Terminal jetty) is approx. 500 m away from the LNG jetty of Petronet LNG Ltd.
P1(vii)	The wave tranquility study and the ship maneuvering studies carried out should be taken into account while operating the Port.	Complied. Ship mooring study and wave tranquility studies were carried out to understand the wind wave and swell wave conditions. The recommendations are being regularly followed during port operations.
P1(viii)	The project proponent should ensure that during construction and operation of the port there will be no impact on the livelihood of the fisherman. The fisherman should be provided free access to carry out the fishing activity.	Complied. There is no commercial fishing in the area. Free access to the "Pagadiya" fishermen is available. They are continuing with their activities without any impact from project.
P1(ix)	All necessary precaution while undertaking construction and operation of the port should be taken keeping in view the bathymetric changes caused due to cyclones.	Complied. Construction (Phase I & II) activities are completed in February, 2011. APDPPL has a well-defined DMP (covering natural disasters including cyclones) and regular mock drills are being conducted. DMP is also reviewed at regular interval. Mock drill is being conducted as per plan. Last Mock drill was conducted on

_	Half yearly Compliance report for Environment and CRZ Clearance for the development of Solid Cargo Port Terminal Phase – I and Phase – II.					
Sr. No.	Specific Conditions	Compliance				
		22.09.2022. Last revision in the DMP was done on 01.07.2022 (Rev. 9).				
General (Conditions					
P2(i), P1(i)	Construction of proposed structures shall be undertaken meticulously conforming to the existing Central/local rules and regulations including Coastal Regulation Zone Notification 1991 & its amendments. All the construction designs/drawings relating to the proposed construction activities must have approvals of the concerned state Government Departments/Agencies.	 Complied. All the development activities are being taken up in accordance with the CRZ notification, 1991 & its subsequent amendments. The approval for the project has been obtained from concern government department that is GMB as per their NOC date 23/02/2006. Necessary approval has been obtained from GIDC for the setting of the project vide letter ref no. GIDC/DM/CG/ANK/87. Approval of GPCB NOC has taken for the project vide letter ref. no. CTE no. 111311 dated 22.02.2021 valid till 07.07.2023. 				
P2(ii), P1(ii)	Adequate provision for infrastructure facilities such as water supply, fuel, sanitation etc. should be ensured for construction workers during the construction phase of the project so as to avoid felling of trees/mangroves and pollution of water and the surrounding.	Complied. Construction of the project (Phase I & II) was completed on February 2011. During construction all facilities such as water supply, fuel, sanitation etc. was provided.				
P2(iii), P1(iii)	The project authorities must make necessary arrangements for disposal of solid waste and for the treatment of effluents by providing a proper wastewater treatment plant outside the CRZ area. The quality of treated effluents, solid wastes and noise level etc. must conform to the standards laid down by the competent authorities including the Central/State Pollution Control Board and the Union Ministry of Environment and Forest under the Environmental (Protection) Act, 1986, whichever are more stringent.	 Complied. The Project (Phase I & II) activities are not generating any trade effluent. Only domestic effluent is being generated which was treated in the STP outside CRZ area and used for horticulture within the premises. Details regarding STP are given in point number- V (Refer above point) Noise monitoring (Once in a month) is carried out by NABL accredited and MoEFCC approved agency namely M/s Pollucon Laboratories Pvt. Ltd. The noise level confirm to the standard laid down by Gujarat Pollution Control Board. Monthly monitoring of Noise has been carried out from M/s. Pollucon Laboratories. Summary & Copy of Noise level monitoring are enclosed as Annexure – 3G. 				

Sr. No.	Specific Conditions	Compliance			
		Sr. No.	Location	Day Time (dBA)	Night Time (dBA)
		1	Behind QHSE office	71.5	59.7
		2	Substation 6	68.7	57.2
		3	Marine Building	71.7	52.4
		4	Substation 7B	72.4	63.6
		5	JS 1 (Lakhigam)	73.5	62.2
		6	Lakhi Village	70.3	56.2
		7	ERMS workshop	69.3	54.8
		8	Jetty (Rock Bond Approach)	70.9	61.2
		9	Open Storage Yard 1	71.7	63.5
		10	Lakhi Village	69.5	63.1
			(Nr. Conveyor Belt)		
	emission under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981 from the Gujarat State Pollution Control Board before commissioning of the project and a copy of each of these shall be sent to this Ministry.	Act, 1974 and the Air (Prevention and Control Pollution) Act, 1981 form the Gujarat Standard Pollution Control Board vide No. AWH 1098 dated: 19.10.2020 and CCA amendment Let			
P2(v), P1(v)	The proponent shall provide for a regular monitoring mechanism so as to ensure that the treated effluents conform to the prescribed standards. The record of analysis reports must be properly maintained and made available for inspection to the concerned State/Central officials during their visits.	 No industrial effluent is generated from the port as no industrial process is carried out. Domestic effluent is being treated in STPs. Details regarding the same are given above in point number V (Refer above) 			
P2(vi), P1(vi)	In order to carry out the environmental monitoring during the operational phase of the project, the project authorities should provide an environmental laboratory well equipped with standard equipment and facilities and qualified manpower to carry	Complied. Ambient Air quality monitoring (twice in a week and Noise level (once in a month) monitoring are being carried out by M/s Pollucon Laboratories, and NABL accredited and MoEF & CC recognised			

Sr. No.	Specific Conditions			Compl	liance	Compliance			
140.	out the testing of various environmental parameters.	al The monitoring results for the period from 2022 to September 2022 are enclo Annexure – 3A to 3H. Summary of Ambient Air Monitoring Regiven below:				osed as			
		Sr. No.	Location	PM ₁₀	PM _{2.5}	SO ₂	NO _x		
		1	Marine Building	91.45	50.34	26.12	30.73		
		2	SS 7B	80.68	42.45	20.18	33.45		
		3	Nr. PMC office	76.82	39.63	23.37	38.47		
		4	Nr. GCPTL Gate	71.67	43.67	20.58	34.56		
		5	Nr. JS 2	85.46	47.05	24.66	40.23		
		6	Silo Porta Cabin	72.41	40.25	17.65	36.39		
P2(vii), P1(vii)	The sand dunes and mangroves, if any on the site should not be disturbed in any way.								
P2(viii), P1(viii)	A copy of the clearance letter will be marked to the concern Panchayat/local NGO, if any, from whom any suggestion/representation has been received while processing the proposal.	Complied. Copy of the letter submitted to local panchaya was submitted along with half yearly compliance.				npliance			
P2(ix), P1(ix)	The Gujarat State Pollution Control Board should display a copy of the clearance letter at the Regional Office, District Industries Centre, and Collector's Office/Tehsildar's Office for 30 days.	This condition does not belong to the projec proponent.				project			
P2(x), P1(x)	The fund earmarked for environment protection measures should be maintained in a separate account and there should be no diversion of these funds for any other purpose. A year-wise expenditure on environmental safeguards should be reported to this Ministry's Regional Office at Bhopal and the State Pollution Control Board.	Separate budget is allocated for Environmental Management. Key components of environment budget are Environmental Monitoring, waste monitoring, STP (Operations and Maintenance), Dust Suppression and Closed Conveyor System Maintenance etc. The allocation of revenue							

0	rgo Port Terminal Phase – I and Phase – II.	O !!
Sr. No.	Specific Conditions	Compliance
P2(xi), P1(xi)	Full support should be extended to the officers of this Ministry's Regional Office at Bhopal and the officers of the Central and State Pollution Control Boards by the project proponents during their inspection for monitoring purposes, by furnishing full details and action plans including the action taken reports in respect of mitigative measures and other environmental protection activities.	 Complying with. Whenever any authorities from MoEF&CC GPCB and GMB etc. visit APDPPL, for support is extended and APDPPL provides a additional information sought by them during the inspection. No officer of MoEF&CC, regional office and CPCB visited the port during the compliance period. Last visit of Gujarat Pollution Control Board during the compliance period was o 27.06.2022.
P2(xii), P1(xii)	In case of deviation or alteration in the project including the implementing agency, a fresh reference should be made to this Ministry for modification in the clearance conditions or imposition of new ones for ensuring environmental protection.	Noted. There is no change in the Phase I & development.
P2(xiii), P1(xiii)	This Ministry reserves the right to revoke this clearance, if any of the conditions stipulated are not complied with to the satisfaction of the Ministry.	Noted & agreed.
P2(xiv), P1(xiv)	This Ministry or any other competent authority may stipulate any other additional conditions subsequently, if deemed necessary, for environmental protection, which shall be complied with.	Noted & agreed.
P2(xv), P1(xv)	The project proponent should advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned informing that the project has been accorded environmental clearance and copies of clearance letters are available with the State Pollution Control Board and may also be seen at Website of the Ministry of Environment & Forest at http://www.envfornic.in . The advertisement should be made within 7 days from the date of issue of the clearance letter and a copy of the same should be forwarded to the	 Advertisement of phase 1 approval was published in Gujarati language in "Sandesl newspaper dated 01/09/2007 and in English language in "GUJARAT SAMACHAF newspaper dated 11.9.2007. Advertisement of phase 2 approval was published in Gujarati language in "Divy Bhaskar" newspaper and in English language in "The Times of India" dated 19/11/2008.

Complied.

Regional Office of this Ministry at Bhopal.

P2(xvi), P1(xvi)

The Project proponents should inform the Regional Office at Bhopal as well as the

1 -	Half yearly Compliance report for Environment and CRZ Clearance for the development of Solid Cargo Port Terminal Phase – I and Phase – II.					
Sr. No.	Specific Conditions	Compliance				
	Ministry the date of financial closure and final approval of the project by the concerned authorities and the date of start of Land Development Work.	2007.				
P2(xvii)	Any appeal against this environment clearance shall lie with the National Environment Appellate Authority, if preferred, within a period of 30 days as prescribed under Section 11 of the National Appellate Act, 1997	Noted.				

From: April 2022 To : Sept. 2022

Appendix - 1

Compliance to the conditions stipulated in CRZ clearance/ recommendation for proposed cargo port terminal phase I, II

Sr. no.	Phase – I and Phase – II Conditions	Status/Action taken
P2(1), P1(1)	The provisions of the CRZ notification of 1991 and subsequent amendments issued from time to time shall be strictly adhered to by the APPPL. No activity in contradiction to the provisions of the CRZ Notification shall be carried out by the APPPL.	Complied. All the activities carried out are complying with the provisions of the CRZ notification and subsequent amendments.
P2(2), P1(2)	All necessary permissions from different Government Departments / agencies shall be obtained by the APPPL before commencing the expansion activities.	 All the necessary permissions have been obtained by M/s. APDPPL. NOC obtained from Gujarat Maritime Board vide letter No. GMB/N/PVT/264(10)1/1858-10215 Dated 27.06.2006 Environment Clearance for phase I & Phase II obtained vide letters dated 6th July 2007 & 11th November 2008 and bearing F. No. 11-37/2007-IA-III respectively Consent to Establish (CTE) and Consent to Operate (CTO) are obtained from GPCB and renewed/amendment from time to time as per the progress of the project activity.
P2(3), P1(5)	The APPPL shall carry out the construction activities either in the CRZ area or into the sea / estuary only after having the detailed study with respect to chances of erosion / accretion due to the proposed activities conducted through the NIO and vetted through the CWPRS and shall implement all necessary steps / actions as may be suggested by these institutes for mitigating the potential negative impacts including the checking of erosion and/or accretion in the region. Further, the company shall have to have the construction drawings approved for this purpose through a competent agency before undertaking any construction and/or enabling activities at the site	 Complied. Construction (Phase I & II) of the port was completed in February 2011. The approval for the project has been obtained from concern government department that is GMB as per their NOC date 23/02/2006. Necessary approval has been obtained from GIDC for the setting of the project vide letter ref no. GIDC/DM/CG/ANK/87.
P2(4), P1(7)	The APPL shall have to face the consequences whatsoever due to implementation of the Kalpsar Project proposed by the	Noted and agreed to comply.

Sr. no.	Conditions	Status/Action taken
	Government of Gujarat and shall have to take all necessary actions as may be desired by the Government, from time to time.	
P2(5), P1(10)	No dredging and/or reclamation activity shall be carried out in the CRZ area categorized as CRZ I (i) and it shall have to be ensured that the mangrove habitats and other ecologically important and significant areas are not affected due to any of the project activities.	 Complied. No dredging/reclamation have been done in CRZ I (i) There is no wildlife sanctuary, national park in the vicinity of the project.
P2(6), P1(11)	No effluent or sewage shall be discharged into the sea / creek or in the CRZ area and shall be treated to conform to the norms prescribed by the Gujarat Pollution Control Board and would be reused / recycled within the plant premises to the extract possible.	 No industrial effluent is generated from the port as no industrial process is carried out. Domestic effluent is being treated in STPs. The treated water confirming to the norms is being used for horticulture purpose. The monitoring results of the treated wastewater from STP for the period from Apri 2022 to September 2022 are enclosed as Annexure – 3F. Reports are available at site for the inspection and ADDRDI as available at site for the inspection and ADDRDI as available at site for the inspection and applications.
P2(7), P1(12)	All the recommendations and suggestions given by the NIO in the Comprehensive Environment Impact Assessment report for conservation / protection and betterment of environment shall be implemented strictly by the APPPL.	APDPPL regularly submits report to GPCB. Being Complied. A Separate EIA has been prepared for phase II development, which includes EMP for the current scenario. All the recommendations and suggestions given by M/s Cholamandalam in the EMP are being complied. Copy of the status of EMP recommendations is enclosed as Annexure 7.
P2(8), P1(13)	The construction and operational activities shall be carried out in such a way that there is no negative impact on mangroves and other coastal/marine habitat. The construction activities shall be carried out only under the constant supervision of the NIO.	 Complied. Construction (Phase I & II) of the project was completed on February 2011. Free flow to the mangroves near the jetty approach is maintained.
P2(9), P1(14)	The APPL shall strictly ensure that no creeks are blocked due to any activity at port and the mangroves habitat are neither disturbed nor destroyed due to any activity.	 Complied. No creeks are blocked due to port activity. Free flow to the mangroves near the jetty approach is maintained.
P2(10), P1(15)	The APPL shall participate financially for any common facility that may be established or any	Noted and agreed to comply. APDPPL is committed for participate financially for any common facility being established or any common study

Sr. no.	Conditions	Status/Action taken					
	common study that may be carried out for the Gulf of Khambhat region for environmental protection and/or management purpose.	carried out in Gulf of Khambhat region for the environment protection and management purpose.					
P2(11), P1(16)	The construction debris and/or any other type of waste shall not be disposed into the sea, creek or in the CRZ areas. The debris shall be removed from the construction site immediately after the construction is over.	Complied. Construction of the project was completed on February 2011.					
P2(12), P1(17)	The construction camps shall be located outside the CRZ area and the construction labour shall be provided the necessary amenities, including sanitation, water supply and fuel and it shall be ensured that the environmental conditions are not deteriorated by the construction labours.	 Complied. Construction of the project was completed or February 2011. No labour camps were located in Coastal Regulation Zone area. Labours are managed through contractors and they are from surrounding villages and have been provided residential facilities in the surrounding villages. 					
P2(13), P1(18)	The APPPL shall prepare and regularly update their Local Oil Spill Contingency and Disaster Management Plan in consonance with the National Oil Spill and Disaster Contingency plan and shall submit the same to this Department after having it vetted through the India Coast Guard.	 Oil Spill Contingency plan is prepared and resubmitted Tier 10SR Facility Dahej port Terminals on dated 15.09.2022. Request letter for approval of Oil Spill Contingency plan submitted to the chairman, NOS-DCP, Central Coordinating authority, Cost Guard Headquarters National stadium Complex, New Delhi & Coast Guard Gandhinagar vide letter dated 16/09/2020 Oil Spill Contingency plan is prepared and resubmitted to The chairman, NOS-DCP, Central Coordinating authority, Cost Guard Headquarters National stadium Complex, New Delhi & Coast Guard Gandhinagar for verification vide letter dated 27.07.2018. Oil Spill Contingency Plan is submitted to Coast Guard, Gandhinagar for verification vide letter dated 10/10/2012. APDPPL has a well-defined DMP and regular mock drills are being conducted. Mock drill is being conducted as per plan. Last Mock drill was conducted on 22.09.2022. Last revision in the DMP was done or 01.07.2022. 					

	mpliance report for CRZ Clearance Phase – I and Phase – II	/recommendation for development of Solid Cargo
Sr. no.	Conditions	Status/Action taken
P2(14),P1(19)	The APPPL shall bear the cost of the external agency that may be appointed by this Department for supervision/monitoring of proposed activities and the environmental impacts of the proposed activities.	Noted and agreed to comply.
P2 (15)	The mangrove plantation in 50 ha. of area on Gujarat cost line shall be carried out by the applicant in a phased manner in five years	Complied. Mangrove afforestation has been carried out in an area of 450 ha. Details are given below. 1. 100 ha near village Dandi, Dist Surat– 2011 2. 50 ha near village Jakhau, Dist Kutch – 2011 3. 50 ha near Padri bit, Dist Bhavnagar – 2011 4. 200 ha near Malpur, Ta. Jambusar – 2013-14 5. 50 ha Devjagan/Nada Ta. Jambusar – 2017 – 18 (Done as part of compliance to Phase – III EC & CRZ Clearance conditions) Reports of 400 Ha Mangrove afforestation were submitted along with half yearly compliance report vide letter no. APPPL-EHS/MoEF RO/EC Comp (I & II) dated 28.11.2017 and Report of 50 ha. Mangrove afforestation was submitted along with half yearly compliance report vide letter no. APPPL-EHS/MoEF RO/EC Comp (I & II) dated 29/05/2019.
P2 (16)	The construction activities in the Forest land and the Gauchar land shall be carried out as per the permission accorded by the concerned Authority for the said purpose	Complied. Construction of the project was completed in February
P1(3)	The APPPL shall take up massive mangrove plantation in 200 ha of area in and around the project site or at an alternative site to be selected in consultation with this Department.	Complied. Mangrove afforestation has been carried out in an area of 450 ha. Details are given below. 1. 100 ha near village Dandi, Dist Surat—2011 2. 50 ha near village Jakhau, Dist Kutch—2011 3. 50 ha near Padri bit, Dist Bhavnagar—2011 4. 200 ha near Malpur, Ta. Jambusar—2013-14 5. 50 ha Devjagan/Nada

Sr. no.	Conditions	Status/Action taken
		Ta. Jambusar – 2017 – 18 (Done as part of compliance to Phase – III EC & CRZ Clearanc conditions) Reports of 400 Ha Mangrove afforestation were submitter along with half yearly compliance report vide letter not APPPL-EHS/MoEF RO/EC Comp (I & II) date 28.11.2017 and Report of 50 ha. Mangrove afforestation was submitted along with half yearly compliance report vide letter not APPPL-EHS/MoEF RO/EC Comp (I & II) dated 29/05/2019.
P1(4)	The approach road and trestle passing through the forestland shall be constructed only after obtaining necessary permissions under the relevant forest laws including the forest (Conservation) Act. further, no activity shall be carried out in the forestland or in the area having natural plantation / forest till all mandatory clearances under various Forest Acts including the Forests Conservation Act obtained.	 Complied. All the activities on forest land have been started only after obtaining forest land clearance. Clarence from MOEF was obtained vide letter no 6 GJC060/2006-BHO/1508 dated 16th June 2008. The same was communicated by State Forest Department vide letter no A-1006(10-9) SF-76-1 dated 1st July 2008 from DOEF.
P1(6)	The project proponent shall have to make a separate application and shall have to obtain prior clearance under the CRZ Notification for any activities other than those proposed and got approved as part of this phase I activities.	Complied. APDPPL had obtained Environmental & CRZ Clearance on Nov 11, 2008 for phase 2 vide letter no.11-37/2007 IA.III.
P1(8)	The project proponents shall	Complied. Alternative access to the sea is available adjoining to th project site.
P1(9)	The project proponents shall ensure that the construction period shall be reduced by proper planning and executing the construction program in time-bound manner to avoid any time over-run.	Complied. Construction of the project was completed in Februar 2011.

Sr. no.	Conditions	Status/Action taken					
P1(20)	The jetty and most of the approach would be supported on piles allowing adequate flow of water without significant obstruction. General Conditions	The jetty and most of the approach of 1270 meter					
P2(17),P1(21)	The groundwater shall not be tapped by the APPPL to meet with the water requirements in any case.	Complied. Ground water is not tapped for the project. Water requirement is being met through GIDC water supply. Two Piezometers have been installed at different locations inside port. Regular monitoring of ground water level & quality is being done through NABL accredited & MoEF&CC recognized laboratory M/s Pollucon Laboratories, Surat. Results are attached in Annexure 3B.					
P2(18),P1(22)	The APPL shall take up massive green belt development activities in consultation with the Gujarat Institute of Desert Ecology/Forest Department. A comprehensive plan for this purpose has to be submitted to the Forests and Environment Department.	Complying with. Green belt is being developed in an area of 23.54 ha including periphery of the project boundary. Details of the green development is enclosed is Annexure – 4.					
P2(19),P1(23)	The APPPL shall have to be contributing financially for taking up the socio-economic up-liftment activities in this region in consultation with the Forests and Environment Department and the District Collector/District Development Officer.	Complied. The CSR activities are executed by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure – 8.					
P2(20),P1(24)	A separate budget shall be earmarked for environmental management and socio – economic activities and details thereof shall be furnished to this department as well as the MoEF, GOI. The details with respect to the expenditure from this budget head shall also be furnished.	Complied. Separate budget is allocated for Environmental Management and Socio-Economic activities. • Key components of environment budget are environmental Monitoring, STP's (Operations and Maintenance), and Closed Conveyor System Maintenance etc. The allocation of budget for Environment Cell for the FY 2022-23 was approx. Rs. 235 lacs. Details of the environmental budget and expenditure for the past 3 years is enclosed as Annexure –6. • Socio Economic activities are taken up in the areas of Education, Community Health and Sustainable livelihood development, Rural Infrastructure development etc. Details are enclosed as Annexure – 8. Annual Budget of CSR for FY 2022-23 is 387.68 lacs.					

	mpliance report for CRZ Clearance Phase – I and Phase – II	recommendation for development of Solid Cargo						
Sr. no.	Conditions	Status/Action taken						
P2(21),P1(25)	A separate environmental management cell with qualified personnel shall be created for environmental monitoring and management during construction and operational phases of the project.	APDPPL has a well-structured Environment Management Cell with qualified manpower for implementation of the Environment Management Plan. Detail of the Environment cell is enclosed as Annexure – 9 .						
P2(22),P1(26)	Environmental Audit report indicating the changes, if any, with respect to the baseline environmental quality in the coastal and marine environment shall be submitted every year by the APPPL to this Department as well as to the MoEF, GOI.	Seawater and sediment is being monitored monthly by NABL accredited & MoEF&CC recognized laboratory M/s Pollucon Laboratories, Surat. Monitoring Report for the period April 2022 to September 2022 is enclosed in Annexure 3C & 3D. No significant changes observed.						
P2(23),P1(28)	A six monthly report on compliance of the condition mentioned in this letter shall have to be furnished by the APPL on regular basis to this Department.	 Changes observed. Being Complied APDPPL is regularly submitting six monthly compliance reports which comprises of Compliance to the conditions stipulated in Environment and CRZ clearance, environment monitoring reports. Last compliance report was submitted vide letter no. APPPL-EHS/MOEF RO/EC Comp (I&II) dated 29.11.2021 in soft copy via mail dated 29.11.2021. It is also uploaded in our website: www.adaniports.com Please refer below for the details regarding past 10 compliance submissions. S. No Compliance Period Date of Submission 1 Apr'17 to Sep'17 28.11.2017 2 Oct'17 to Mar'18 28.05.2018 3 Apr'18 to Sep'18 23.11.2018 4 Oct'18 to Mar'19 29.05.2019 5 Apr'19 to Sep'19 20.11.2019 6 Oct'19 to Mar'20 20.05.2020 7 Apr'20 to Sep'20 25.11.2020 8 Oct' 20 to Mar' 21 25.05.2021 						
P2(24),P1(29)	Any other condition that may be stipulated by this Department from time to time for environmental protection/management purpose shall also have to be complied by the APPL.	Noted and agreed to comply with any other condition that may be stipulated by this Department / Ministry of Environment, Forest and Climate Change, Government of India from time to time for environmental protection.						
P1(27)	The APPPL shall have to contribute financially to support the National Green Corps scheme	Complied.						

Annexure – 1:

Compliance status of the conditions by Forest and Environment Department, Govt. of Gujarat vide their latter No.-FCA-1006(10-9)SF-76-K, dated., 1.7.2008 and by Ministry of Environment and Forests, Regional Office, Western Region, Bhopal vide their latter No. 6-GJ060/2006-BHO/1508, dated 16.6.2008

<u>Compliance:</u> Both above mentioned letters have the same conditions; Compliance of the same is given in table below:

S. No.	given in table below: Condition	Compliance
1	The legal status of the forest land	Noted.
	shall remain unchanged	
2(a)	Compensatory afforestation shall be taken up by the forest department over 38.00 Ha non forest land (Survey No.2, Village- Pingot, Ta. Valiya, Dist. Bharuch at the cost of the project authority.	 Complied. APDPPL has transferred equivalent non forest land of 38 ha. Area of village Pingot, S. No. 2 paiki, Ta. Valiya, Dist. Bharuch in favour of Forest Department APDPPL has deposited Rs. 33,06,000/towards the cost of compensatory afforestation Compensatory plantation was taken up by Forest Department, Govt. of Gujarat.
2(b)	This CA land shall be notified as Reserved Forests.	Complied. The CA land has been notified as Reserved Forest vide notification dated 23/12/2008.
2(c)	The copy of the Notification issued under section 4 of the Indian Forest Act, 1927 shall be sent to this office within six months from the date of handing over of this forest land to the project authority.	Complied Copy of the same was submitted along with half yearly compliance report vide letter no. APPPL-EHS/MoEF RO/EC Comp (I & II) dated 28.11.2017.
3	Penal compensatory afforestation shall be raised over 4.00 ha. Degraded forest land in (Survey No. – 572) Village mirapur, Ta. Valia, Dist. Bharuch	 Complied. APDPPL has deposited Rs. 3,48,000/-towards the cost of penal compensatory afforestation. Compensatory plantation was taken up by Forest Department, Govt. of Gujarat.
4	All the funds received from the user agency under the project shall be transferred to the Ad-hoc Compensatory Afforestation Fund management & planning Agency (CAMPA) in A/c No. CA-1583 of Corporation bank Block 11, CGO Complex, Phase – I, Lodhi Road, New Delhi – 110003.	Complied. All the funds received from user agency under project have been transferred to CAMPA by Forest Department, Govt. of Gujarat.
5	The forest land shall not be used for any purpose other than that specified in the project proposal.	Complied. Forest land is being used as per the proposal for which clearance has been obtained.

Annexure – 2: Details of the Fixed and Mobile Firefighting system

Fire Fighting Systems	Details
Fire Hydrant	136 Nos.
Fire Monitor	65 Nos.
Risers	17 Nos.
Total Fire Extinguisher	465 Nos.
Smoke Detector	325 Nos.
Fire Bucket	89 Nos.
Emergency Siren	06 Nos.
Port Water Reservoir Pump House	5040 KL
Silo Water Reservoir Pump House	4700 KL (AG + UG)
Fire Vehic	cles Detail
Multi-Purpose Fire Tender – Water & Foam	10 KL & 1.5
Dry Chemical Powder @ 50 Kgs. (MFT)	2 Nos.
CO ₂ @ 4.5 Kgs. (MFT)	2 Nos.
Fire Tender (01 No.)	12 KL
Fire Water Bowser (01 No.)	7.5 KL
Trailer Pump (01 No.)	1800 LPM

Environment Monitoring Report for the period from April-22 To September-22 3A. AMBIENT AIR QUALITY MONITORING: -

Table No.: 1.1 - Ambient Air Quality Monitoring Results At Near Marine Building

_	Date of Sampling	Location-1: Near Marine Building											
Sr. No.		PM ₁₀	PM _{2.5}	Pb	BaP	As	Ni	СО	C ₆ H ₆	NH ₃	SO ₂	NOx	O ₃
		μg/m³	µg/m³	μg/m³	ng/m³	ng/m³	ng/m³	mg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m ³
1	01/04/2022	78.62	40.31	ND*	ND*	ND*	ND*	0.34	ND*	31.51	21.59	41.75	27.27
2	05/04/2022	88.12	48.20	0.64	ND*	2.46	10.67	0.48	ND*	43.12	26.12	44.87	22.25
3	08/04/2022	72.58	39.44	ND*	ND*	ND*	ND*	0.77	ND*	40.53	18.35	35.23	30.73
4	12/04/2022	85.66	49.53	ND*	ND*	ND*	ND*	1.00	ND*	47.52	22.45	38.57	23.46
5	15/04/2022	90.55	52.45	0.76	ND*	2.28	10.77	0.79	ND*	42.57	24.65	45.32	25,35
6	19/04/2022	71.51	36.82	ND*	ND*	ND*	ND*	0.87	ND*	45.31	20.65	40.38	21.26
7	22/04/2022	82.48	45.67	ND*	ND*	ND*	ND*	0.66	ND*	48.45	23.36	33.58	26.56
8	26/04/2022	87.57	50.25	0.62	ND*	2.34	10.46	0.42	ND*	35.98	19.33	46.30	28.45
9	29/04/2022	79.58	47.61	ND*	ND*	ND*	ND*	0.47	ND*	25.58	14.47	36.53	24,27
10	03/05/2022	85.68	48.92	0.80	1!0*	2.46	10.49	0.93	ND*	45.33	23.53	40.22	25.32
11	06/05/2022	78.67	45.28	ND*	ND*	ND*	ND*	0.86	ND*	28.24	25.69	45.77	20.96
12	10/05/2022	73.54	34.76	ND*	ND*	ND*	ND*	0.80	ND*	34.23	22.09	37.65	23.42
13	13/05/2022	79.88	42.84	ND*	ND*	ND*	ND*	0.78	ND*	36.85	19.36	43.43	21.56
14	17/05/2022	69.33	30.23	ND*	ND*	ND*	ND*	0.90	ND*	44.03	16.79	35.44	24.66
15	20/05/2022	91.45	50.34	0.68	ND*	2.62	10.31	0.66	ND*	30.54	24.27	38.54	30.83
16	24/05/2022	76.84	46,37	ND*	ND*	ND*	ND*	0.87	ND*	37.66	21.55	44.54	28.47
17	27/05/2022	88.68	52.20	0.64	ND*	2.28	10.55	0.56	ND*	52.65	14.29	30.69	26.34
18	31/05/2022	82.08	43.30	ND*	ND*	ND*	ND*	0.85	ND*	46.53	17.55	33.97	29.44
19	03/06/2022	70.30	38.46	ND*	ND*	ND*	ND*	0.87	ND*	27.63	19.86	43.44	28.33
20	07/06/2022	75.62	34.51	ND*	ND*	ND*	ND*	0.90	ND*	32.78	17.40	35.66	30.23
21	10/06/2022	90.21	51.24	0.56	ND*	2.32	10.62	0.69	ND*	42.62	25.63	42,66	22.32
22	14/06/2022	81.25	45.32	ND*	ND*	ND*	ND*	0.95	ND*	46.53	27.81	45.69	20.94
23	17/06/2022	88.52	53.44	0.69	ND*	2.46	10.69	0.85	ND*	31.96	23.65	41.20	32.63
24	21/06/2022	79.67	48.52	0.57	ND*	2.56	10.57	0.37	ND*	36.82	21.24	37.22	29.15
25	24/06/2022	69.57	37.11	ND*	ND*	ND*	ND*	0.78	ND*	43.56	16.52	34.62	23.45

					-								
26	28/06/2022	78.62	46.24	0.76	ND*	2.08	10.40	0.66	ND*	30.82	26.28	38.43	25.33
27	01/07/2022	78.43	45.70	ND*	ND*	ND*	ND*	1.08	ND*	20.82	20.89	44.59	30.14
28	05/07/2022	86.28	44.91	0.72	ND*	2.56	10.49	0.61	ND*	26.11	18.55	40.21	17.57
29	08/07/2022	67.38	32.18	ND*	ND*	ND*	ND*	0.97	ND*	40.16	21.31	34.34	25.49
30	12/07/2022	72.78	37.19	ND*	ND*	ND*	ND*	0.66	ND*	42.27	24.54	37.81	28.34
31	15/07/2022	82.62	42.58	0.64	ND*	2.38	10.57	0.53	ND*	37.66	17.84	43.58	23.46
32	19/07/2022	76.81	36.61	ND*	ND*	ND*	ND*	0.80	ND*	22.62	22.22	39.25	22.81
33	22/07/2022	68.60	34.69	ND*	ND*	ND*	ND*	0.32	ND*	35,83	25.16	35.24	26.25
34	26/07/2022	61.52	28.43	ND*	ND*	ND*	ND*	0.34	ND*	32.77	19.54	28.47	24.31
35	29/07/2022	77.52	41.20	ND*	ND*	ND*	ND*	0.55	ND*	28.12	16.86	42.46	15.69
36	02/08/2022	82.48	44.58	0.75	ND*	2.42	10.49	0.66	ND*	38.56	27.17	45.33	26.53
37	05/08/2022	72.66	37.21	ND*	ND*	ND*	ND*	0.76	ND*	30.35	16.48	38.55	29.12
38	09/08/2022	78.64	45.30	ND*	ND*	ND*	ND*	0.85	ND*	28.73	20.30	29.37	23.56
39	12/08/2022	85.61	48.63	0.80	ND*	2.75	10.69	0.81	ND*	44.47	21.48	41.52	25.89
40	16/08/2022	62.43	39.52	ND*	ND*	ND*	ND*	0.70	ND*	24.22	19.29	31.45	22.64
41	19/08/2022	75.64	35.44	ND*	ND*	ND*	ND*	0.61	ND*	37.58	26.14	36.16	18.56
42	23/08/2022	79.57	43.55	0.65	ND*	2.54	10.46	1.02	ND*	41.83	17.50	42.61	28.42
43	26/08/2022	65.93	40.50	ND*	ND*	ND*	ND*	0.95	ND*	35.18	22.47	35.88	30.22
44	30/08/2022	76.57	46.51	ND*	ND*	ND*	ND*	1.05	ND*	51.21	14.46	28.25	19.23
45	02/09/2022	77.55	41.24	0.62	ND*	2.24	10.43	0.72	ND*	41.53	19.31	32.47	23.24
46	06/09/2022	71.57	36.50	ND*	ND*	ND*	ND*	0.81	ND*	28.41	21.48	35.27	25.32
47	09/09/2022	66.32	34.25	ND*	ND*	ND*	ND*	1.03	ND*	37.76	25.67	43.13	28.39
48	13/09/2022	86.21	49.23	0.68	ND*	2.38	10.60	0.57	ND*	33.68	15.35	40.57	22,23
49	16/09/2022	75.62	38.56	ND*	ND*	ND*	ND*	0.48	ND*	27.26	24.39	44.20	29.45
50	20/09/2022	68.65	40.66	ND*	ND*	ND*	ND*	0.78	ND*	25.07	17.62	38.40	15.21
51	23/09/2022	81.26	44.27	0.59	ND*	2.15	10.37	0.98	ND*	31.52	20.67	36.55	30.27
52	27/09/2022	73.55	35.19	ND*	ND*	ND*	ND*	1.07	ND*	23.68	23.21	45.31	20.37
53	30/09/2022	80.27	45.36	ND*	ND*	ND*	ND*	0.40	ND*	35.68	13.61	39.57	27.86

Note: Not Detected, Detection Limit, Lead as Pb: $0.1\mu g/m^3$, Carbon Monoxide as CO: $0.1\ mg/m^3$, Benzene as C_6H_6 : $2\ \mu g/m^3$, Benzo (a) Pyrene (BaP) - Particulate Phase only: $0.5ng/m^3$, Arsenic as As: $2ng/m^3$, Nickel as Ni: $5\ ng/m^3$

Table No.: 1.2 - Ambient Air Quality Monitoring Results At Near PMC Building

	-3	Location-2: Near PMC Building												
Sr. No.	Date of Sampling	PM ₁₀	PM _{2.5}	Pb	ВаР	As	Ni	СО	C ₆ H ₆	NH ₃	SO ₂	NOx	O ₃	
		µg/m³	µg/m³	µg/m³	πg/m³	ng/m³	ng/m³	mg/m³	μg/m³	μg/m³	μg/m³	µg/m³	μg/m	
1	01/04/2022	64.38	32.47	ND*	ND*	ND*	ND*	0.40	ND*	22.88	10.19	38.47	25.46	
2	05/04/2022	71.57	38.43	ND*	ND*	ND*	ND*	0.68	ND*	29.12	17.70	29.23	14.43	
3	08/04/2022	58.26	27.52	ND*	ND*	ND*	ND*	0.90	ND*	33.13	15.52	32.39	18.33	
4	12/04/2022	51.51	24.84	ND*	ND*	ND*	ND*	0.64	ND*	19.22	20.56	35.40	22.68	
5	15/04/2022	76.56	44.37	ND*	ND*	ND*	ND*	0.50	ND*	32.51	18.46	31.29	17.56	
6	19/04/2022	67.57	29.41	ND*	ND*	ND*	ND*	0.97	ND*	21.68	11.63	28.52	19.63	
7	22/04/2022	77.55	34.88	ND*	ND*	ND*	ND*	0.39	ND*	42.43	13.40	25.44	24.32	
8	26/04/2022	65.34	28.68	ND*	ND*	ND*	ND*	0.19	ND*	26.56	16.46	37.56	13.45	
9	29/04/2022	57.64	30.22	ND*	ND*	ND*	ND*	0.13	ND*	17.34	6.22	30.47	23.72	
10	03/05/2022	72.77	39.31	ND*	ND*	ND*	ND*	0.68	ND*	18.54	16.48	28.41	17.67	
11	06/05/2022	67.58	36.52	ND*	ND*	ND*	ND*	0.41	ND*	20.67	20.82	33.43	13.54	
12	10/05/2022	51.58	24.21	ND*	ND*	ND*	ND*	0.47	ND*	28.17	12.57	25.34	19.27	
13	13/05/2022	66.14	38.57	ND*	ND*	ND*	ND*	0.36	ND*	25.35	18.83	36.42	30.36	
14	17/05/2022	53.83	20.98	ND*	ND*	ND*	ND*	0.38	ND*	29.92	11.27	19.45	23.54	
15	20/05/2022	70.24	35.62	ND*	ND*	ND*	ND*	0.34	ND*	13.22	9.60	22.37	25.72	
16	24/05/2022	65.75	27.47	ND*	ND*	ND*	ND*	0.55	ND*	23.42	14.24	34.22	16.32	
17	27/05/2022	78.84	33.75	ND*	ND*	ND*	ND*	0.27	ND*	46.77	10.38	27.72	11.35	
18	31/05/2022	48.23	17.38	ND*	ND*	ND*	ND*	0.37	ND*	36.26	15.62	24.43	24.83	
19	03/06/2022	47.26	19.53	ND*	ND*	ND*	ND*	0.19	ND*	19.21	11.07	32.44	11.25	
20	07/06/2022	52.62	25.67	ND*	ND*	ND*	ND*	0.25	ND*	13.91	6.83	19.34	16.77	
21	10/06/2022	61.73	34.02	ND*	ND*	ND*	ND*	0.33	ND*	32.56	21.73	39.52	14.23	
22	14/06/2022	76.82	39.63	ND*	ND*	ND*	ND*	0.53	ND*	35.25	23.37	37.55	27.97	
23	17/06/2022	62.42	35.87	ND*	ND*	ND*	ND*	0.71	ND*	23.37	19.30	33.25	19.9	
24	21/06/2022	68.23	43.09	ND*	ND*	ND*	ND*	0.57	ND*	25.41	15.60	30.42	22.67	
25	24/06/2022	50.24	24.33	ND*	ND*	ND*	ND*	0.27	ND*	33.54	12.94	20.36	28.66	
26	28/06/2022	63.46	36.54	ND*	ND*	ND*	ND*	0.50	ND*	18.27	20.26	35.43	15.2	
27	01/07/2022	57.77	28.22	ND*	ND*	ND*	ND*	0.71	ND*	15.36	18.40	42.36	16.47	
28	05/07/2022	72.63	37.31	ND*	ND*	ND*	ND*	0.33	ND*	21.53	16.57	24.25	19.53	

29	08/07/2022	46.21	21.28	ND*	ND*	ND*	ND*	0.29	ND*	27.56	19.21	26.51	23.57
30	12/07/2022	62.45	24.29	ND*	ND*	ND*	ND*	0.26	ND*	36.84	12.51	32.40	25.35
31	15/07/2022	77.57	39.48	ND*	ND*	ND*	ND*	0.58	ND*	33.52	15.67	36.44	15.51
32	19/07/2022	65.43	32.31	ND*	ND*	ND*	ND*	0.22	ND*	10.88	20.24	33.57	28.17
33	22/07/2022	58.46	25.70	ND*	ND*	ND*	ND*	0.36	ND*	18.66	17.53	25.14	12.91
34	26/07/2022	52.66	23.48	ND*	ND*	ND*	ND*	0.73	ND*	20.64	11.20	23.44	14.24
35	29/07/2022	73.52	38.60	ND*	ND*	ND*	ND*	0.18	ND*	37.97	8.68	31.51	18.41
36	02/08/2022	60.52	30.29	ND*	ND*	ND*	ND*	0.62	ND*	16.38	22.67	40.73	13.53
37	05/08/2022	67.36	24.30	ND*	ND*	ND*	ND*	0.42	ND*	27.68	17.27	35.36	25,99
38	09/08/2022	63.76	37.36	ND*	ND*	ND*	ND*	0.69	ND*	24.95	15.64	23.62	22.36
39	12/08/2022	73.23	31.59	ND*	ND*	ND*	ND*	0.37	ND*	32.66	10.52	26.44	20.67
40	16/08/2022	57.03	34.65	ND*	ND*	ND*	ND*	0.44	ND*	18.48	18.30	22.55	11.6
41	19/08/2022	64.58	25.33	ND*	ND*	ND*	ND*	0.38	ND*	21.94	16.34	29.45	15.36
42	23/08/2022	69.74	35.62	ND*	ND*	ND*	ND*	0.68	ND*	20.57	14.34	38.45	10.56
43	26/08/2022	45.43	18.30	ND*	ND*	ND*	ND*	0.26	ND*	14.51	19.43	33.63	18.33
44	30/08/2022	66.23	26.56	ND*	ND*	ND*	ND*	0.63	ND*	45.81	11.44	17.52	23.45
45	02/09/2022	61.17	32.43	ND*	ND*	ND*	ND*	0.26	ND*	31.28	14.20	19.55	18.31
46	06/09/2022	47.58	20.36	ND*	ND*	ND*	ND*	0.65	ND*	23.52	19.14	28.48	30.36
47	09/09/2022	59.36	28.44	ND*	ND*	ND*	ND*	0.31	ND*	26.38	17.40	37.27	19,52
48	13/09/2022	75.25	40.57	ND*	ND*	ND*	ND*	0.54	ND*	19.53	9.73	24.54	16.8
49	16/09/2022	64.53	30.24	ND*	ND*	ND*	ND*	0.21	ND*	21.91	16.10	35.41	20.57
50	20/09/2022	46.21	21.24	ND*	ND*	ND*	ND*	0.45	ND*	15.62	13.14	22.25	22.37
51	23/09/2022	70.55	38.46	ND*	ND*	ND*	ND*	0.50	ND*	13.55	11.55	32.53	28.23
52	27/09/2022	63.52	31.59	ND*	ND*	ND*	ND*	0.38	ND*	16.56	15.71	38.62	21.16
53	30/09/2022	57. 55	35.64	ND*	ND*	ND*	ND*	0.41	ND*	25.35	18.31	33.58	13.75

Note:ND*: Not Detected, Detection Limit, Lead as Pb: $0.1~\mu g/m^3$, Carbon Monoxide as CO: $0.1~mg/m^3$, Benzene as C_6H_6 : $2~\mu g/m^3$, Benzene (BaP) - Particulate Phase only: $0.5 mg/m^3$, Arsenic as As: $2 mg/m^3$, Nickel as Ni: $5~mg/m^3$

Table No.: 1.3 - Ambient Air Quality Monitoring Results At Sub-Station-7B Building

					Loca	ation-3	: Sub-S	tation-	7B Buil	ding			
Sr. No.	Date of Sampling	PM ₁₀	PM _{2.5}	Pb	BaP	As	Ni	СО	C ₆ H ₆	NH ₃	SO ₂	NO _X	O ₃
		µg/m³	µg/m³	µg/m³	ng/m³	ng/m³	ng/m³	mg/m³	μg/m³	µg/m³	µg/m³	μg/m³	µg/m
1	01/04/2022	55.63	26.46	ND*	ND*	ND*	ND*	0.45	ND*	12.46	16.56	19.21	11.26
2	05/04/2022	76.51	35.28	ND*	ND*	ND*	ND*	0.71	ND*	20.33	12.60	23.68	17.2
3	08/04/2022	64.22	31.51	ND*	ND*	ND*	ND*	0.65	ND*	16.52	6.84	18.25	14.6
4	12/04/2022	73.46	42.45	ND*	ND*	ND*	ND*	0.85	ND*	24.53	9.54	14.54	20.2
5	15/04/2022	67.52	30,55	ND*	ND*	ND*	ND*	0.56	ND*	33.44	20.18	28.44	22.3
6	19/04/2022	47.68	18.53	ND*	ND*	ND*	ND*	0.60	ND*	37.54	15.20	25.73	15.3
7	22/04/2022	57.53	29.42	ND*	ND*	ND*	ND*	0.30	ND*	19.81	11.54	22.44	13.86
8	26/04/2022	77.52	41.36	ND*	ND*	ND*	ND*	0.24	ND*	23.61	13.87	33.45	18.53
9	29/04/2022	51.87	25.45	ND*	ND*	ND*	ND*	0.16	ND*	14.06	10.44	20.58	12.68
10	03/05/2022	50.33	22.29	ND*	ND*	ND*	ND*	0.50	ND*	13.57	8.62	16.34	21.64
11	06/05/2022	61.54	32.47	ND*	ND*	ND*	ND*	0.33	ND*	14.86	13.26	30.53	11.56
12	10/05/2022	44.36	16.65	ND*	ND*	ND*	ND*	0.70	ND*	20.25	18.44	21.24	17.22
13	13/05/2022	51.54	24.83	ND*	ND*	ND*	ND*	0.25	ND*	11.62	6.26	23.18	19.56
14	17/05/2022	42.27	14.85	ND*	ND*	ND*	ND*	0.31	ND*	32.77	15.35	32,42	20.27
15	20/05/2022	80.68	38.42	ND*	ND*	ND*	ND*	0.39	ND*	18.48	7.35	15.46	23.32
16	24/05/2022	60.56	33.18	ND*	ND*	ND*	ND*	0.63	ND*	28.66	9.74	24.66	25.44
17	27/05/2022	54.37	23.14	ND*	ND*	ND*	ND*	0.32	ND*	37.38	12.41	17.75	15.54
18	31/05/2022	67.66	26.94	ND*	ND*	ND*	ND*	0.62	ND*	25.24	14.68	22.97	13.35
19	03/06/2022	56.20	17.55	ND*	ND*	ND*	ND*	0.82	ND*	15.23	7.73	18.31	20.62
20	07/06/2022	60.21	31.53	ND*	ND*	ND*	ND*	0.54	ND*	18.51	14.95	22.31	18.02
21	10/06/2022	53.12	28.26	ND*	ND*	ND*	ND*	0.40	ND*	22.78	19.29	29.44	15.67
22	14/06/2022	64.54	36.26	ND*	ND*	ND*	ND*	0.38	ND*	27.82	16.07	19.92	21.75
23	17/06/2022	74.56	44.72	ND*	ND*	ND*	ND*	0.41	ND*	17.06	9.79	25.60	12.84
24	21/06/2022	55.67	33.54	ND*	ND*	ND*	ND*	0.24	ND*	12.67	11.92	21.22	14.54
25	24/06/2022	43.15	18.45	ND*	ND*	ND*	ND*	0.17	ND*	24.25	6.40	15.62	16.33
26	28/06/2022	68.23	26.36	ND*	ND*	ND*	ND*	0.47	ND*	14.57	17.04	28.23	19.53
27	01/07/2022	75.78	35.78	ND*	ND*	ND*	ND*	0.39	ND*	18.21	16.58	23.25	23.34
28	05/07/2022	58.31	20.22	ND*	ND*	ND*	ND*	0.48	ND*	12.26	8.24	32.69	16.87

29	08/07/2022	42.55	18.61	ND*	ND*	ND*	ND*	0.84	ND*	33.91	11.97	20.33	20.13
30	12/07/2022	53.21	22.81	ND*	ND*	ND*	ND*	0.52	ND*	22.82	9.34	24.58	12,47
31	15/07/2022	67.26	30.89	ND*	ND*	ND*	ND*	0.23	ND*	26.56	12.64	31,12	18.2
32	19/07/2022	70.22	24.19	ND*	ND*	ND*	ND*	0.68	ND*	14.67	15.25	27.64	15.35
33	22/07/2022	51.55	17.48	ND*	ND*	ND*	ND*	0.42	ND*	23.64	13.52	16.47	19.63
34	26/07/2022	47.25	21.51	ND*	ND*	ND*	ND*	0.21	ND*	29.82	10.79	30.53	21.22
35	29/07/2022	64.28	28.30	ND*	ND*	ND*	ND*	0.41	ND*	17.33	6.43	21.62	14.58
36	02/08/2022	67.55	38.66	ND*	ND*	ND*	ND*	0.45	ND*	25.68	18.44	26.53	18.66
37	05/08/2022	52.34	22.79	ND*	ND*	ND*	ND*	0.31	ND*	26.95	6.86	18.27	22.44
38	09/08/2022	47.81	20.22	ND*	ND*	ND*	ND*	0.50	ND*	14.12	13.58	25.45	25.37
39	12/08/2022	61.56	24.52	ND*	ND*	ND*	ND*	0.47	ND*	19.01	20.48	33.58	14.35
40	16/08/2022	46.58	28.48	ND*	ND*	ND*	ND*	0.54	ND*	20.66	14.55	27.57	17.26
41	19/08/2022	60.17	19.62	ND*	ND*	ND*	ND*	0.36	ND*	11.67	19.62	22.44	20.43
42	23/08/2022	66.14	31.55	ND*	ND*	ND*	ND*	0.29	ND*	30.26	10.24	34.59	24.32
43	26/08/2022	50.23	23.43	ND*	ND*	ND*	ND*	0.18	ND*	22.28	12.37	13.28	12.67
44	30/08/2022	55.58	27.52	ND*	ND*	ND*	ND*	0.39	ND*	32.05	7.62	16.80	15.62
45	02/09/2022	70.58	37.62	ND*	ND*	ND*	ND*	0,17	ND*	26.56	9.58	16.83	13.53
46	06/09/2022	65.37	29.45	ND*	ND*	ND*	ND*	0.25	ND*	14.37	14.35	24.27	19.31
47	09/09/2022	43.54	17.50	ND*	ND*	ND*	ND*	0.76	ND*	17.56	10.89	17.26	24.63
48	13/09/2022	66.28	36.28	ND*	ND*	ND*	ND*	0.61	ND*	15.98	6.61	19.82	17.81
49	16/09/2022	58.27	26.32	ND*	ND*	ND*	ND*	0.36	ND*	11.55	8.54	30.15	14.38
50	20/09/2022	63.57	28.29	ND*	ND*	ND*	ND*	0.44	ND*	18.37	11.31	26.17	12.14
51	23/09/2022	50.22	23.43	ND*	ND*	ND*	ND*	0.60	ND*	22.46	7.83	15.62	16.54
52	27/09/2022	41.53	19.56	ND*	ND*	ND*	ND*	0.42	ND*	19.66	20.30	28.51	18.96
53	30/09/2022	53.41	25.37	ND*	ND*	ND*	ND*	0.53	ND*	23.81	16.50	22.44	20.78

Note: ND*: Not Detected, Detection Limit, Lead as Pb: 0.1 $\mu g/m^3$, Carbon Monoxide as CO: 0.1 mg/m^3 , Benzene as C_6H_6 : 2 $\mu g/m^3$, Benzene (BaP) - Particulate Phase only: 0.5 mg/m^3 , Arsenic as As: $2mg/m^3$, Nickel as Ni: $5mg/m^3$

Table No.: 1.4 - Ambient Air Quality Monitoring Results At GCPTL Gate

	4	Location-4: GCPTL Gate												
Sr. No.	Date of Sampling	PM ₁₀	PM _{2.5}	Pb	BaP	As	Ni	СО	C ₆ H ₆	NH ₃	SO ₂	NO _x	O ₃	
		μg/m³	μg/m³	µg/m³	ng/m³	ng/m³	ng/m³	mg/m³	μg/m³	μg/m³	μg/m³	μg/m³	µg/m	
1	01/04/2022	42.42	17.56	ND*	ND*	ND*	ND*	0.38	ND*	13.83	12.46	25.33	19.44	
2	05/04/2022	50.34	20.58	ND*	ND*	ND*	ND*	0.44	ND*	17.03	15.81	18.59	12.96	
3	08/04/2022	55.47	28.69	ND*	ND*	ND*	ND*	0.21	ND*	10.25	19.48	32.47	11.36	
4	12/04/2022	70.22	43.67	ND*	ND*	ND*	ND*	0.34	ND*	21.45	13.41	29.37	18.33	
5	15/04/2022	56.57	19.64	ND*	ND*	ND*	ND*	0.14	ND*	12.52	8.81	15.68	24.85	
6	19/04/2022	60.37	31.21	ND*	ND*	ND*	ND*	0.47	ND*	23.68	16.99	22.44	10.66	
7	22/04/2022	48.68	18.52	ND*	ND*	ND*	ND*	0.19	ND*	15.83	9.82	26.83	16.33	
8	26/04/2022	58.66	25.44	ND*	ND*	ND*	ND*	0.24	ND*	11.32	14.82	17.17	14.58	
9	29/04/2022	51.96	27.84	ND*	ND*	ND*	ND*	0.22	ND*	14.32	10.22	24.37	17.39	
10	03/05/2022	65.38	29.54	ND*	ND*	ND*	ND*	0.18	ND*	34.56	13.51	31.52	24.27	
11	06/05/2022	57.61	26.46	ND*	ND*	ND*	ND*	0.52	ND*	15.36	9.36	22,46	15.64	
12	10/05/2022	67.53	31.54	ND*	ND*	ND*	ND*	0.57	ND*	26.54	7.50	16.41	21.25	
13	13/05/2022	60.36	33.57	ND*	ND*	ND*	ND*	0.22	ND*	18.72	17.26	26.45	12.78	
14	17/05/2022	47.85	16.57	ND*	ND*	ND*	ND*	0.48	ND*	23.63	14.50	23.66	14.27	
15	20/05/2022	64.33	25.69	ND*	ND*	ND*	ND*	0.58	ND*	25.42	15.44	30.74	16.84	
16	24/05/2022	51.34	23.53	ND*	ND*	ND*	ND*	0.40	ND*	16.57	18.71	19.27	18.68	
17	27/05/2022	72.03	36.42	ND*	ND*	ND*	ND*	0.44	ND*	32.98	11.98	21.39	13.66	
18	31/05/2022	56.88	32.48	ND*	ND*	ND*	ND*	0.53	ND*	29.44	8.78	15 <i>.</i> 73	19.85	
19	03/06/2022	43.67	14.69	ND*	ND*	ND*	ND*	0.44	ND*	21.72	16.97	23.16	12.93	
20	07/06/2022	56.34	22.79	ND*	ND*	ND*	ND*	0.49	ND*	26.26	8.63	28.52	25.43	
21	10/06/2022	73.16	32.67	ND*	ND*	ND*	ND*	0.46	ND*	14.64	15.25	25.16	19.25	
22	14/06/2022	48.87	19.48	ND*	ND*	ND*	ND*	0.36	ND*	24.77	20.03	33.37	24.53	
23	17/06/2022	54.27	30.17	ND*	ND*	ND*	ND*	0.65	ND*	20.17	13.58	21.52	16.22	
24	21/06/2022	49.21	28.48	ND*	ND*	ND*	ND*	0.18	ND*	27.32	6.39	19.75	23.53	
25	24/06/2022	64.65	25.70	ND*	ND*	ND*	ND*	0.39	ND*	30.48	11.80	31.22	11.48	
26	28/06/2022	58.73	23.42	ND*	ND*	ND*	ND*	0.56	ND*	25.31	9.27	34.56	20.23	
27	01/07/2022	66.34	25.20	ND*	ND*	ND*	ND*	0.82	ND*	13.15	11.58	26.48	26.32	
28	05/07/2022	41.33	14.49	ND*	ND*	ND*	ND*	0.65	ND*	14.86	7.66	17.55	24.2	

29	08/07/2022	50.64	20.31	ND*	ND*	ND*	ND*	0.25	ND*	17.92	9.28	23.51	15.17
30	12/07/2022	58.62	30.09	ND*	ND*	ND*	ND*	0.77	ND*	28.91	15.37	28.61	17.87
31	15/07/2022	52.62	26.52	ND*	ND*	ND*	ND*	0.56	ND*	31.25	18.59	24.86	12.26
32	19/07/2022	54.27	18.41	ND*	ND*	ND*	ND*	0.30	ND*	16.27	12.43	20.47	10.95
33	22/07/2022	40.24	15.58	ND*	ND*	ND*	ND*	0.27	ND*	29.26	16.30	21.25	13.57
34	26/07/2022	35.64	17.53	ND*	ND*	ND*	ND*	0.69	ND*	24.23	8.46	16.66	19.44
35	29/07/2022	59.24	24.56	ND*	ND*	ND*	ND*	0.64	ND*	22.96	14.26	27.54	16.64
36	02/08/2022	71.67	35.34	ND*	ND*	ND*	ND*	0.53	ND*	28.34	12.52	32.17	24.24
37	05/08/2022	42.62	21.64	ND*	ND*	ND*	ND*	0.56	ND*	17.26	9.58	21.26	14.51
38	09/08/2022	56.88	27.53	ND*	ND*	ND*	ND*	0.30	ND*	20.03	18.61	36.42	17.51
39	12/08/2022	65.98	38.58	ND*	ND*	ND*	ND*	0.21	ND*	22.18	13.67	22.23	21.24
40	16/08/2022	50.65	22.66	ND*	ND*	ND*	ND*	0.49	ND*	13.15	11.61	16.56	13.18
41	19/08/2022	46.96	15.69	ND*	ND*	ND*	ND*	0.27	ND*	31.55	21.69	33.11	11.55
42	23/08/2022	54.38	18.66	ND*	ND*	ND*	ND*	0.60	ND*	24.01	8.68	28.87	26.42
43	26/08/2022	40.77	25.37	ND*	ND*	ND*	ND*	0.22	ND*	11.85	17.31	25.14	16.25
44	30/08/2022	60.27	23.53	ND*	ND*	ND*	ND*	0.74	ND*	29.34	10.82	19.34	20.39
45	02/09/2022	49.53	21.57	ND*	ND*	ND*	ND*	0.37	ND*	14.52	13.53	27.58	21.25
46	06/09/2022	54.38	23.49	ND*	ND*	ND*	ND*	0.18	ND*	18.26	16.36	19.47	13.18
47	09/09/2022	47.56	25.63	ND*	ND*	ND*	ND*	0.14	ND*	10.65	20.42	35.38	10.24
48	13/09/2022	57.56	29.57	ND*	ND*	ND*	ND*	0.52	ND*	12.66	8.61	16.29	26.66
49	16/09/2022	51.53	20.71	ND*	ND*	ND*	ND*	0.32	ND*	24.66	10.25	26.21	11.57
50	20/09/2022	42.47	13.59	ND*	ND*	ND*	ND*	0.71	ND*	22.56	14.80	31.54	20.67
51	23/09/2022	46.21	19.36	ND*	ND*	ND*	ND*	0.55	ND*	15.85	9.63	25.35	18.24
52	27/09/2022	53.66	26.35	ND*	ND*	ND*	ND*	0.30	ND*	13.28	12.45	23.44	23.63
53	30/09/2022	67.52	38.65	ND*	ND*	ND*	ND*	0.19	ND*	11.64	11.24	18.63	15.36

Note: ND*: Not Detected, Detection Limit, Lead as Pb: 0.1 $\mu g/m^3$, Carbon Monoxide as CO: 0.1 mg/m^3 , Benzene as C_6H_6 : 2 $\mu g/m^3$, Benzene (BaP) - Particulate Phase only: 0.5 mg/m^3 , Arsenic as As: $2mg/m^3$, Nickel as Ni: $5mg/m^3$

Table No.: 1.5 - Ambient Air Quality Monitoring Results At Near Silo Porta Cabin

		Location-5: Near Silo Porta Cabin												
Sr. No.	Date of Sampling	PM ₁₀	PM _{2.5}	Pb	BaP	As	Ni	СО	C ₆ H ₆	NH ₃	SO ₂	NOx	O ₃	
		µg/m³	µg/m³	μg/m³	ng/m³	ng/m³	ng/m³	mg/m³	µg/m³	μg/m³	μg/m³	μg/m³	ug/m³	
1	01/04/2022	45.32	18.42	ND*	ND*	ND*	ND*	0.55	ND*	20.64	9.61	16.52	18.26	
2	05/04/2022	55.46	21.22	ND*	ND*	ND*	ND*	0.36	ND*	26.36	15.81	37.44	12.46	
3	08/04/2022	47.57	16.36	ND*	ND*	ND*	ND*	0.46	ND*	30.56	10.50	17.53	19.31	
4	12/04/2022	66.31	36.41	ND*	ND*	ND*	ND*	0.18	ND*	34.54	7.23	29.47	26.74	
5	15/04/2022	70.22	39.20	ND*	ND*	ND*	ND*	0.57	ND*	15.65	14.83	24.22	20.58	
6	19/04/2022	42.37	20.33	ND*	ND*	ND*	ND*	0.33	ND*	22.43	8,25	15.32	13.39	
7	22/04/2022	50.31	24.56	ND*	ND*	ND*	ND*	0.44	ND*	28.52	17.61	19.51	16.25	
8	26/04/2022	72.41	40.25	ND*	ND*	ND*	ND*	0.32	ND*	16.23	6.53	27.51	11.61	
9	29/04/2022	67.51	37.64	ND*	ND*	ND*	ND*	0.41	ND*	19.33	12.46	23.45	25.8	
10	03/05/2022	56.27	35.44	ND*	ND*	ND*	ND*	0.29	ND*	24.52	6.56	24.33	12.61	
11	06/05/2022	48,66	22.53	ND*	ND*	ND*	ND*	0.26	ND*	12.53	18.22	27.57	22.62	
12	10/05/2022	62.64	25.45	ND*	ND*	ND*	ND*	0.61	ND*	23.87	16.13	32.73	15.39	
13	13/05/2022	55.67	27.63	ND*	ND*	ND*	ND*	0.45	ND*	15.46	12.70	19.77	24.32	
14	17/05/2022	60.22	24.48	ND*	ND*	ND*	ND*	0.21	ND*	19.55	9.54	36.39	18.24	
15	20/05/2022	76.07	33.48	ND*	ND*	ND*	ND*	0.65	ND*	10.34	11.65	26.52	14.52	
16	24/05/2022	47.76	18.43	ND*	ND*	ND*	ND*	0.30	ND*	13.78	13.66	28.63	19.44	
17	27/05/2022	65.38	26.54	ND*	ND*	ND*	ND*	0.46	ND*	38.68	8.24	16.65	21.88	
18	31/05/2022	53.54	29.30	ND*	ND*	ND*	ND*	0.23	ND*	21.23	10.88	31.74	23.97	
19	03/06/2022	51.20	22.32	ND*	ND*	ND*	ND*	0.60	ND*	25.74	13.48	20.27	16.54	
20	07/06/2022	40.21	16.46	ND*	ND*	ND*	ND*	0.77	ND*	21.66	16.36	31.57	21,47	
21	10/06/2022	57.54	24.56	ND*	ND*	ND*	ND*	0.52	ND*	26.65	8.78	18.61	11.14	
22	14/06/2022	53.53	29.57	ND*	ND*	ND*	ND*	0.32	ND*	16,42	6.52	23.89	19.41	
23	17/06/2022	58.43	23.53	ND*	ND*	ND*	ND*	0.61	ND*	11.84	17.55	29.32	23.37	
24	21/06/2022	44.43	21.65	ND*	ND*	ND*	ND*	0.21	ND*	17.84	10.92	34.30	26.29	
25	24/06/2022	55.36	14.60	ND*	ND*	ND*	ND*	0.22	ND*	15.51	7.52	24.22	15.34	
26	28/06/2022	50.20	20.16	ND*	ND*	ND*	ND*	0.89	ND*	12.76	12.65	15.32	12.45	
27	01/07/2022	54.94	21.79	ND*	ND*	ND*	ND*	0.47	ND*	11.21	14.63	17.35	18.56	
28	05/07/2022	62.67	30.20	ND*	ND*	ND*	ND*	0.57	ND*	18.33	12.16	29.93	12.63	

29	08/07/2022	46.27	27.49	ND*	ND*	ND*	ND*	0.74	ND*	24.35	17.65	31.20	27.54
30	12/07/2022	43.13	18.49	ND*	ND*	ND*	ND*	0.19	ND*	13.82	19.36	25.32	15.44
31	15/07/2022	56.56	22.58	ND*	ND*	ND*	ND*	0.40	ND*	20.36	11.62	28.24	10.66
32	19/07/2022	49.25	14.62	ND*	ND*	ND*	ND*	0.76	ND*	19.44	7.54	30.29	19.23
33	22/07/2022	45.65	23.18	ND*	ND*	ND*	ND*	0.46	ND*	12.71	10.67	18.64	14.37
34	26/07/2022	40.65	19.53	ND*	ND*	ND*	ND*	0.60	ND*	10.58	15.33	21.75	17.33
35	29/07/2022	51.58	20.38	ND*	ND*	ND*	ND*	0.44	ND*	16.31	13.40	24.63	11.29
36	02/08/2022	56.27	25.45	ND*	ND*	ND*	ND*	0.19	ND*	20.38	17.45	23.55	20.85
37	05/08/2022	48.63	18.52	ND*	ND*	ND*	ND*	0.25	ND*	14.22	11.59	26.71	11.9
38	09/08/2022	43.41	14.53	ND*	ND*	ND*	ND*	0.41	ND*	23.22	9.31	28.72	19.53
39	12/08/2022	57.84	20.65	ND*	ND*	ND*	ND*	0.65	ND*	15.03	16.19	30.36	23.87
40	16/08/2022	40.36	15.48	ND*	ND*	ND*	ND*	0.32	ND*	19.83	8.18	19.52	15.23
41	19/08/2022	53.57	22,42	ND*	ND*	ND*	ND*	0.40	ND*	27.37	14.24	32.51	10.86
42	23/08/2022	62.67	24.56	ND*	ND*	ND*	ND*	0.34	ND*	16.21	6.55	15.52	13.23
43	26/08/2022	58.16	31.64	ND*	ND*	ND*	ND*	0.46	ND*	21.82	13.25	20.57	21.86
44	30/08/2022	50.21	19.59	ND*	ND*	ND*	ND*	0.23	ND*	26.38	12.40	22.66	24.56
45	02/09/2022	45.23	24.53	ND*	ND*	ND*	ND*	0.62	ND*	19.21	10.56	24.64	16.62
46	06/09/2022	39.36	15.65	ND*	ND*	ND*	ND*	0.33	ND*	16.34	7.60	17.55	10.91
47	09/09/2022	56.41	20.63	ND*	ND*	ND*	ND*	0.24	ND*	11.71	14.67	22.53	23.51
48	13/09/2022	61.24	33.42	ND*	ND*	ND*	ND*	0.49	ND*	28.96	11.69	31.83	18.46
49	16/09/2022	48.63	18.62	ND*	ND*	ND*	ND*	0.15	ND*	13.77	18.16	33.36	24.19
50	20/09/2022	51.53	25.30	ND*	ND*	ND*	ND*	0.56	ND*	21.38	6.45	15.59	13.42
51	23/09/2022	64.23	31.23	ND*	ND*	ND*	ND*	0.23	ND*	24.33	13.23	23.56	25.58
52	27/09/2022	49.31	22.64	ND*	ND*	ND*	ND*	0.34	ND*	18.53	16.19	18.55	14.54
53	30/09/2022	62.48	32.42	ND*	ND*	ND*	ND*	0.93	ND*	20.37	8.35	27.21	17.52

Note:ND*: Not Detected, Detection Limit, Lead as Pb: 0.1 $\mu g/m^3$, Carbon Monoxide as CO: 0.1 $m g/m^3$, Benzene as $C_6 H_6$: 2 $\mu g/m^3$, Benzene (BaP) - Particulate Phase only: 0.5 $m g/m^3$, Arsenic as As: $2 m g/m^3$, Nickel as Ni: $5 m g/m^3$

Table No.: 1.6 - Ambient Air Quality Monitoring Results At JS - 2 Junction

						Locati	on-6: J	S – 2 Ju	ınction				
Sr. No.	Date of Sampling	PM ₁₀	PM _{2.5}	Pb	ВаР	As	Ni	со	C ₆ H ₆	NH ₃	SO ₂	NO _x	O ₃
		μg/m³	µg/m³	µg/m³	ng/m³	ng/m³	ng/m³	mg/m³	μg/m³	μg/m³	µg/m³	µg/m³	μg/m³
1	01/04/2022	70.23	35.49	ND*	ND*	ND*	ND*	0.94	ND*	38.46	12.58	35.37	21.55
2	05/04/2022	83.21	43.65	0.61	ND*	2.34	10.34	1.01	ND*	34.23	20.33	39.44	19.21
3	08/04/2022	68.43	36.53	ND*	ND*	ND*	ND*	1.09	ND*	37.67	16.27	29.86	26.80
4	12/04/2022	79.51	45.35	ND*	ND*	ND*	ND*	1.05	ND*	43.52	18.67	32.44	29.43
5	15/04/2022	85.46	49.64	0.52	ND*	2.18	10.40	0.72	ND*	39.53	22.67	36.23	14.22
6	19/04/2022	62.68	25.64	ND*	ND*	ND*	ND*	1.08	ND*	42.62	19.20	34.82	20.43
7	22/04/2022	72,41	37.55	ND*	ND*	ND*	ND*	0.54	ND*	31.85	21.21	37.66	15.49
8	26/04/2022	82.46	46.25	0.58	ND*	2.24	10.22	0.37	ND*	19.43	10.77	40.23	23.61
9	29/04/2022	74.51	42.43	ND*	ND*	ND*	ND*	0.89	ND*	24.24	15.21	33.27	28.39
10	03/05/2022	78.53	44.27	0.71	ND*	2.34	10.34	0.54	ND*	42.54	21.44	37.58	15.48
11	06/05/2022	71.22	38.33	ND*	ND*	ND*	ND*	0.60	ND*	23.58	16.22	36.25	24.56
12	10/05/2022	57.34	28.35	ND*	ND*	ND*	ND*	0.94	ND*	32.43	18.34	30.23	13.49
13	13/05/2022	73.42	35.34	ND*	ND*	ND*	ND*	0.71	ND*	30.25	10.24	39.26	27.52
14	17/05/2022	65.68	26.06	ND*	ND*	ND*	ND*	0.81	ND*	18.65	7.43	28.51	16.52
15	20/05/2022	85.34	43.58	0.64	ND*	2.45	10.28	0.73	ND*	20.52	22.46	35.21	28.57
16	24/05/2022	70.37	41.75	ND*	ND*	ND*	ND*	0.84	ND*	36.35	11.58	38.48	23.85
17	27/05/2022	83.25	45.72	0.52	ND*	2.12	10.41	0.95	ND*	44.13	9.20	15.25	18.47
18	31/05/2022	72.27	36.05	ND*	ND*	ND*	ND*	0.72	ND*	40.46	19.65	27.46	21.13
19	03/06/2022	60.30	25.22	ND*	ND*	ND*	ND*	1.07	ND*	37.14	22.56	36.21	25.65
20	07/06/2022	65.22	28.31	ND*	ND*	ND*	ND*	0.72	ND*	29.06	10.78	25.28	22.77
21	10/06/2022	78,62	44.84	0.53	ND*	2.18	10.48	0.62	ND*	38.72	13.52	22.14	20.33
22	14/06/2022	68.73	42.85	ND*	ND*	ND*	ND*	0.84	ND*	42.77	24.54	41.58	28.48
23	17/06/2022	79.85	47.05	0.66	ND*	2.36	10.29	0.97	ND*	26.57	15.21	32.93	11.93
24	21/06/2022	73.77	37.62	0.55	ND*	2.42	10.37	0.29	ND*	30.25	18.44	28.98	15.45
25	24/06/2022	58.76	31.91	ND*	ND*	ND*	ND*	0.63	ND*	39.21	9.57	26.22	26.35
26	28/06/2022	71.27	29.42	0.64	ND*	2.06	10.15	0.58	ND*	21.87	16.25	23.46	17.26
27	01/07/2022	73.65	31.19	ND*	ND*	ND*	ND*	0.63	ND*	25.45	12.28	38.81	21.56
28	05/07/2022	78.63	40.81	0.56	ND*	2.42	10.26	0.88	ND*	31.37	17.25	35.45	28.73

1													
. 29	08/07/2022	63.57	29.50	ND*	ND*	ND*	ND*	0,72	ND*	41.24	14.31	29.33	22.13
: 30	12/07/2022	67.64	27.59	ND*	ND*	ND*	ND*	1.04	ND*	34.03	20.62	34.20	23.82
31	15/07/2022	70.68	33.42	0.62	ND*	2.21	10.37	0.79	ND*	27.44	10.37	26.24	26.48
32	19/07/2022	52.61	26.60	ND*	ND*	ND*	ND*	0.37	ND*	24.62	16.29	36.23	17.74
33	22/07/2022	64.54	30.48	ND*	ND*	ND*	ND*	0.92	ND*	32.35	19.46	31.76	24.54
34	26/07/2022	56.62	25.64	ND*	ND*	ND*	ND*	1.03	ND*	30.07	13.24	25.46	16.15
35	29/07/2022	69.32	34.23	ND*	ND*	ND*	ND*	0.50	ND*	19.34	9.66	28.35	25.17
36	02/08/2022	75.61	42.63	0.65	ND*	2.24	10.37	0.33	ND*	32.83	24.66	30.46	16.58
37	05/08/2022	60.34	34.32	ND*	ND*	ND*	ND*	0.64	ND*	24.14	14.85	33.46	19.37
38	09/08/2022	67.54	40.81	ND*	ND*	ND*	ND*	0.82	ND*	16.66	11.22	31.54	27.53
39	12/08/2022	76.97	28.95	0.75	ND*	2.65	10.21	0.55	ND*	39.53	18.58	38.16	30.84
40	16/08/2022	52.82	31.24	ND*	ND*	ND*	ND*	0.57	ND*	15.58	16.40	24.65	24.83
41	19/08/2022	68.21	29.60	ND*	ND*	ND*	ND*	0.52	ND*	35.23	23.66	26.62	13.47
42	23/08/2022	73.97	38.25	0.52	ND*	2.46	10.90	0.71	ND*	37.65	12.86	41.73	21.65
43	26/08/2022	61.23	35.57	ND*	ND*	ND*	ND*	0.88	ND*	29.95	20.20	28.57	25.44
44	30/08/2022	72.68	33.25	ND*	ND*	ND*	ND*	0.77	ND*	40.26	15.50	25.67	17.67
45	02/09/2022	65.43	27.58	0.58	ND*	2.16	10.18	1.02	ND*	35.28	17.51	29.45	24.26
46	06/09/2022	59.67	32.57	ND*	ND*	ND*	ND*	0.74	ND*	20.63	9.29	31.23	26.25
47	09/09/2022	52.65	19.56	ND*	ND*	ND*	ND*	0.64	ND*	31.88	24.81	40.26	30.57
48	13/09/2022	81.27	45.29	0.65	ND*	2.24	10.31	0.82	ND*	23.48	13.45	28.64	20.28
49	16/09/2022	71.52	34.54	ND*	ND*	ND*	ND*	0.29	ND*	17.45	22.42	42.82	15.46
50	20/09/2022	58.61	31.25	ND*	ND*	ND*	ND*	0.90	ND*	28.72	19.54	35.59	18.67
51	23/09/2022	76.53	41.55	0.51	ND*	2.36	10.23	0.46	ND*	26.94	10.49	27.67	22.45
52	27/09/2022	57.57	28.55	ND*	ND*	ND*	ND*	0.94	ND*	11.85	14.14	32.27	27.52
53	30/09/2022	75.33	42.57	ND*	ND*	ND*	ND*	0.68	ND*	32.82	20.32	36.75	11.68

Note:ND*: Not Detected, Detection Limit, Lead as Pb: 0.1 $\mu g/m^3$, Carbon Monoxide as CO: 0.1 mg/m^3 , Benzene as C_6H_6 : 2 $\mu g/m^3$, Benzene (BaP) - Particulate Phase only: 0.5 mg/m^3 , Arsenic as As: $2mg/m^3$, Nickel as Ni: $5mg/m^3$

3B. GROUND WATER LEVEL & QUALITY ANALYSIS (PIEZOMETERS) MONITORING: -

Table- 1: Ground Water Level & Quality Analysis (Pizometer) Results for the period: April-22 To September-22

3B.1Near Sub Station-7B

SR.			OBSERVATION									
NO.	TEST PARAMETER	UNIT	Apr-22	May-22	Jun-22	Jul-22	Aug-22	Sep-22				
			26/04/22	28/05/22	30/06/22	29/07/22	26/08/22	14/09/22				
1	Temperature	°C	30.7	30.3	30.1	29.8	28.9	30.1				
2	рН		8.14	7.91	8.13	8.21	8.16	7.14				
3	Total Dissolved Solids	mg/L	648	1093	1175	1208	1240	826				
4	Salinity	ppt	0.140	0.250	0.263	0.280	0.240	0.310				
5	Chloride as Cl	mg/L	76.97	1360	146	159	168	174				
6	Depth of Water Level from Ground Level	meter	1.5	1.5	1.5	1.5	1.5	1.5				
7	Status of Tide	AL 49	Law Tide	Law Tide	Law Tide	Law Tide	Law Tide	Law Tide				

3B.2Near QHSE Office

SR.					OBSER	VATION		
NO.	TEST PARAMETER	UNIT	Apr-22	May-22	Jun-22	Jul-22	Aug-22	Sep-22
			26/04/22	28/05/22	30/06/22	29/07/22	26/08/22	14/09/22
1	Temperature	°C	30.8	30,2	30.1	29.6	28.6	30.0
2	рН		8.12	7.96	8.05	8.17	8.24	7.37
3	Total Dissolved Solids	mg/L	656	1028	1093	1156	1164	658
4	Salinity	ppt	0.140	0.220	0.249	0.270	0.210	0.350
5	Chloride as Cl	mg/L	75.97	123	138	149	154	193
6	Depth of Water Level from Ground Level	meter	2.0	1.5	1.5	1.5	1.5	1.0
7	Status of Tide	ACK FOLLU	Law Tide					

3C. SEA WATER (SURFACE & BOTTOM) QUALITY ANALYSIS MONITORING:Table No.: 3C.1 - Sea Water (Surface & Bottom) Quality Analysis Results of sea water south side for the period: April-22 To September-22:-

				RES	ULTS O	F SEA W	ATER Q	JALITY .	ANALYS	IS SEA	WATER	SOUTH	SIDE	
Sr.	TEST	UNIT	Apr	-22	Mar	y-22		1-22		-22	7	1-22		p-22
NO.	PARAMETERS	ONII	26/0	4/22	28/0	5/22		6/22	;	7/22		8/22		19/22
			Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottor
1	pH		8,15	8.1	8.14	8.1	8.19	8.12	8.27	8.24	8.35	8.30	7.98	7.87
2	Temperature	°C	30.5	30.4	30.3	30	30.2	30	30.3	30.1	29.7	29.6	29.5	29.3
3	Total Suspended Solids	mg/L	193	178	205	190	216	197	185	172	204	193	217	208
4	BOD (3 Days @ 27 °C)	mg/L	3.36	2.97	3.26	3.14	2.84	2.49	3.26	3.15	2.36	2.10	3.50	2.60
5	Dissolved Oxygen	mg/L	5.95	5.80	5.95	5.80	6.00	5.95	5.95	5.85	6.00	5.80	5.90	5.75
6	Salinity	ppt	34.52	34.86	35.20	35.56	34.97	35.28	34.28	34.97	34.58	34.72	33.70	34,28
7	Oil & Grease	mg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detacted
8	Nitrate as NO ₃	µmol/ L	3.29	3.14	3.54	3.40	2.83	2.67	3.14	2.93	2.63	2.41	3.56	3.40
9	Nitrite as NO ₂	µmol/	0.95	0.87	0.67	0.53	0.64	0.58	0.79	0.65	0.28	0.20	0.41	0.35
10	AmmonicalNitro genas NH ₃	µmol/ L	2.23	2.16	2.25	2,14	1.97	1.83	2.15	2.10	1.89	1.77	2.19	2.08
11	Phosphates as PO ₄	hwol/	2.56	2.40	2.49	2.38	2.35	2.28	1.98	1.87	2.35	2.23	2.56	2.41
12	Total Nitrogen	µmol/	6.47	6.17	6.45	6.07	5.44	5.08	6.08	5.68	4.80	4.38	6.16	5.83
13	Petroleum Hydrocarbon	µg/L	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not
14	Total Dissolved Solids	mg/L	35128	35946	36284	36612	35124	36408	35529	36125	35708	35914	34899	Detected 35478
15	COD	mg/L	14.95	13.68	14.30	13.46	12.38	10.64	14.68	13.24	9.10	7,60	13.60	11.70
A	Phytoplankton								21100	1 10.61	3.10	7.00	13.00	11.70
6.1	Chiorophyli	mg/m³	2.63	2.56	2,67	2,38	2.37	2.13	2.53	2.48	2.29	2.24	2.53	2.48
6.2	Phaeophytin	mg/m³	0.31	0.48	0.15	0.31	0.97	1.19	0.51	0.92	1.24	1.01	0.51	0.92
6.3	Cell Count	Unit x 10 ³ /L	178	124	172	114	210	162	220	178	196	164	214	174
6.4	Name of Group Number and name of group species of each group	To the control of the	Odont ella sp., Cheat ocerou s sp., Thalas siothri x sp., Coscin odiscu s sp.	Cerati um sp., Navicu la sp., Nitzsc hia sp., Pleuro sigma sp.	Amiph ora sp., Chaet oceros sp., Guinar dia sp., Odont ella sp.	Navicu la sp., Cerati um sp., Pieuro sigma sp., Tricbo desmi um sp.	Coscin odiscu s sp., Nitzsc hia sp., Astari onella sp., Guinar dia sp., Melosi ra sp.	Navicu la sp., Cyclot ella sp., Pleuro sigma sp., Syend ra sp.	Chaet oceros sp., Cerati um sp., Guinar dia sp., Odent ella sp., Melosi ra sp.	Navicu la sp., Nitzsc hia sp., Pleuro sigma sp., Rhizos olenia sp.	Odent ella sp., Rhizos olenio sp., Chaet oceros sp., Guinar dia sp., Melosi ra sp.	Navicu la sp., Tricho desmi um sp., Pleuro sigma sp., Fragill aria sp.	Coscin odiscu s sp., Asteri onella sp., Melosi ra sp., Spiruli na sp., Thalla siosira sp.	Navicu a sp., Nitzsch ia sp., Fragilla ria sp., Closter ium sp., Pleuros igma sp.

				RESULTS OF SEA	WATER QUALITY A	NALYSIS SEA WAT	ER SOUTH SIDE	
Sr.	TEST	UNIT	Apr-22	May-22	Jun-22	Jul-22	Aug-22	Sep-22
NO.	PALAMETERS	DIATE	26/04/22	28/05/22	30/06/22	29/07/22	26/08/22	14/09/22
			South Side	South Side	South Side	South Side	South Side	South Side
В	Zooplanktons							<u> </u>
17 1	Abundance (Population)	noX10 ³ / 100m ³	22	27	24	31	34	24
17 2	Name of Group Number and name of group species of each group	***	Cyclops, Polychaetes, Ostracods, Nauplius larvae.	Pollychates , Bivalves, Gastropod , Copepods	Pollychates , Bivalves, Gastropods	Polychaetes , Bivalves, Crustaceans, Copepods	Pollychates , Decapods, Gastropod , Amphipods, Copepods	Cyclops, Nauplius Iarvae, Ostracods, Polychaetes
17 3	Total Biomass	ml/100 m ³	2.10	2.65	2.35	2.95	3.15	2.25
C	Microbiological Pa	rameters						
18 1	Total Bacterial Count	CFU/mt	2470	2420	2380	2250	2720	2610
18.2	Total Coliform	/ml	Present	Present	Present	Present	Present	Present
18.3	E.coli	/ml	Absent	Absent	Absent	Absent	Absent	Absent
18.4	Enterococcus species	/ml	Present	Present	Present	Present	Present	Present
18 5	Salmonella species	/ml	Absent	Absent	Absent	Absent	Absent	Absent
18 6	Shigella species	/m!	Absent	Absent	Absent	Absent	Absent	Absent
18,7	Vibrio species	/ml	Absent	Absent	Absent	Absent	Absent	Absent

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Water.

Table No.: 3C.2 - Sea Water (Surface & Bottom) Quality Analysis Results of Sea Water North Side for the period: April-22 To September-22:-

TEST	IINTT			Mar								Sei	p-22
PARAMETERS	0.421									26/0	8/22	14/0	09/22
рН	_												Вотгол
Temperature				-									7.92
Total Suspended Solids	mg/L	187	173	203	185	217	198	186	164	213	189	228	29.5 214
BOD (3 Days @ 27 °C)	mg/L	3.20	2.89	3.00	2.94	2.94	2.86	3.37	3.12	2.47	2.30	3.40	2.68
Dissolved Oxygen	mg/L	5.90	5.75	5.90	5.75	6.05	5.90	5.95	5.90	6.05	5.85	5.95	5.80
Salinity	ppt	34.60	34.98	35.32	35.94	34.86	35.32	34.49	34.80	34.68	34.96	33.67	34,39
Oil & Grease	mg/L	Not Detected			Not Detected	Not Detected	Not Detected	Not Detected	Net	Net	Not	Not	Not
Nitrate as NO ₃	µmol /L	3.35	3.25	3.46	3,30	2.91	2.70	3.08	2.84	2.48	2.37	3.29	Detecte 3.18
Nitrite as NO ₂	µmol /L	0.89	0.81	0.65	0.59	0.62	0.57	0.71	0.69	0,23	0.16	0.55	0.47
enas NH ₃	/L	2.34	2.28	2.37	2.30	2.18	2.03	2.37	2.28	1.95	1.83	2.27	2,18
Phosphates as PO₄	/L	2.47	2.36	2.28	2.20	2.31	2.24	2.15	2.07	2.27	2.19	2.39	2.25
Total Nitrogen	µmol _/L	6.58	6.34	6.48	6.19	5.71	5.3 0	6.16	5.81	4.66	4.36	6.10	5.83
Hydrocarbon	µg/L	Not Detected	Not Detected	Not Detected	Not: Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detecte
Solids	mg/L	35706	36084	36380	36958	35990	36412	35674	35982	35804	36130	34893	35578
	mg/L	14.28	12.76	14.95	13.12	13.18	12.93	14.73	13.28	9.80	8.20	14.80	12,30
	mg/m ³	2.56	2.40	2.68	2 33	2 56	2.24	2.60	2 22	2 50	2.40	0.7-	
Phaeophytin	17.	0.44											2.42
Cell Count	Unit x 103/L	184	116	164	116	184	108	234	172	210	192	226	0.82 185
Name of Group Number and name of group species of each group		Melosir a sp., Thallas ionem a sp., Coscin odiscu s sp., Gyro sigma sp., Rhizos olenia sp.	Nitzsc hia 5p., Asterio nella sp., Navicu la sp., Syned ra sp., Cosma rium sp.	Guinar dia sp., Rhizos olenio sp., Coscin odiscu s sp., Tricho desmi um sp., Chaet oceros sp., Odent ella	Nitzsc hia sp., Navicu la sp., Pleuro sigma sp., Skeele tonem a sp., Syend ra sp.	Syend ra sp., Coscin odiscu s sp., Guinar dia sp., Odent ella sp.	Spiruli na sp., Closte rium sp., Navicu la sp., Nitzsc hia sp.	Skelet onema sp., Coscin odiscu s sp., Guinar dia sp., Tricho desmi um sp., Rhizos olenia sp.	Nitzsc hia sp., Syned ra sp., Cerati um sp., Syned ra sp., Fragill aria sp.	Amphi prora sp., Guinar dia sp., Thalla siosira sp., Chaet oceros sp., Odent ella sp.	Nitzsc hia sp., Tricho desml um sp., Melosi ra sp., Fragill aria sp.	Coscin odiscu s sp., Asteri onella sp., Spiruli na sp., Odent ella sp., Cheat ocerou s sp.	Navicu a sp., Nitzsch a sp., Pleuros gma sp., Thallas onema sp., Fragilla ria sp.
	PARAMETERS pH Temperature Total Suspended Solids BOD (3 Days ® 27 °C) Dissolved Oxygen Salinity Oil & Grease Nitrate as NO ₂ AmmonicalNitrog enas NH ₃ Phosphates as PO ₂ Total Nitrogen Petroleum Hydrocarbon Total Dissolved Solids COD Phytoplankton Chilorophyll Phaeophytin Cell Count Name of Group Number and name of group Species of each	PARAMETERS UNIT PH	PARAMETERS Color	PARAMETERS DNT 26/04/22 Surface Bottom 8.17 8.12 Temperature °C 30.6 30.4 Total Suspended Solids BOD (3 Days @ 27 °C) mg/L 3.20 2.89 Dissolved Oxygen Salinity ppt 34.60 34.98 Not Detected Detected Nitrate as NO3 /L 0.89 0.81 Not Detected Nitrate as NO2 /L 0.89 0.81 AmmonicalNitrog µmol /L 2.34 2.28 Phosphates as PO4 /L 2.47 2.36 Potender Po4 Petroleum Pydrocarbon Pydro Detected Detected	PARAMETERS PH	TEST PARAMETERS UNIT Apr-22 28/05/	TEST PARAMETERS UNIT Apr-22 Bottom Surface Bettom Surf	TEST PARAMETERS UNIT Apr-22 28/05/22 30/06/22 28/05/22 30/06/22 28/05/22 30/06/22 30/06/22 30/06 30.4 30.1 30.3	TEST PARAMETERS UNIT Apr-22 28/05/22 30/06/22 29/05 29	TEST PARAMETERS UNIT PARAMETERS UNIT PARAMETERS UNIT PARAMETERS Edition Surface Beattom Surface Surface Beattom Surface Surface Beattom Surface Surface Beattom Surface Surf	TEST PARAMETERS UNIT Apr 22 28/05/22 30/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 29/07/22 26/05 20/06/22 20/0	PARAMETERS	PARAMETES

- ph

				RESULTS (OF SEA WATER QUA	LITY ANALYSISNO	RTH SIDE		
Sr.	TEST	UNIT	Apr-22	May-22	Jun-22	Jul-22	Aug-22	Sep-22	
NO.	PANAMETERS	UNZI	26/04/22	28/05/22	30/06/22	29/07/22	26/08/22	14/09/22	
			North Side	North Side	North Side	North Side	North Side	North Side	
B	Zooplanktons								
17 1	Abundance (Population)	noX10 ³ / 100m ³	20	28	25	30	36	29	
17 2	Name of Group Number and name of group species of each group		Colpoda sp., Isopods, Polychaetes sp.	Pollychates , Copepods, Gastropod	Pollychates , Gastropods, Bivalves, Amphipods	Polychaetes, Crustaceans, Copepods	Bivalves, Gastropod, Copepods, Pollychates	Polychaetes, Cyclops, Ostracods, Bivalves	
173	Total Biomass	ml/100 m ³	2.05	2.75	2.45	2.90	3.45	A 2.70	
q	Microbiological Pa	rameters						1	
18 1	Total Bactorial Count	CFU/ml	2710	2350	2610	2470	2550	2740	
18 2	Total Coliform	/ml .	Present	Present	Present	Present		Present	
183	E.coli	/ml	Absent	Absent	Absent	Absent	Absent	Absent	
18 4	Enterococcus species	/ml	Present	Present	Present	Present	Present	Present	
18.5	Salmonella species	/ml	Absent	Absent	Absent	Absent	Absent	Absent	
18,6	Shigella species	/mt	Absent	Absent	Absent	Absent	Absent	Absent	
8.7	Vibrio species	/ml	Absent	Absent	Absent	Absent	Absent	Absent	

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Water.

16/20

3D. SEA SEDIMENT QUALITY ANALYSIS MONITORING: -

Table-Sea Sediment Quality Analysis (South Side) Results for the period: April-22 To September-22

Sr.	PARAMETERS	UNIT	Apr-22	May-22	Jun-22	Jul-22	Aug-22	Sep-22
No	PARAMETERS	UNIT	26/04/22	28/05/22	30/06/22	29/07/22	26/08/22	14/09/22
1	Organic Matter	%	0.42	0.36	0.33	0.46	0.40	0.30
2	Phosphorus as P	µg/g	639	709	607	732	684	613
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy
4	Petroleum Hydrocarbon	µg/g	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
5	Heavy Metals							
5.1	Aluminum as Al	%	4.72	4.96	4.82	5.04	4.96	5.16
5.2	Total Chromium as Cr ⁺³	µg/g	108	107	129	113	135	124
5.3	Manganese as Mn	µg/g	573	586	614	672	594	639
5.4	Iron as Fe	%	4.70	4.92	4.68	4.89	4.69	4.83
5.5	Nickel as Ni	µg/g	44.86	47.63	53.76	42.35	37.39	43.95
5.6	Copper as Cu	µg/9	37.50	36.50	41.93	37.69	45.63	39.17
5.7	Zinc as Zn	ha/a	128	120	109	93.24	87.64	105
5.8	Lead as Pb	рд/д	2.68	2,79	2,07	1.73	2.14	1.83
5.9	Mercury as Hg	µ9/9	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
6	Benthic Organisms							
6.1	Macrobenthos (No and name of groups present, No and name of species of each group present)	-	Crustaceans, Gastropods, Crustaceans, Polychaetes	Polychates, Gastropods, Bvalves, Amphipods	Polychates, Gastropods, Bivalves	Polychaetes, Amphipods, Crustaceans, Bivalves	Polychates, Bvalves, Amphipods	Echinoderms Molluscans, Oligochaetes
6.2	MeioBenthos (No and name of groups present, No and name of species of each group present)		Foraminifera ns	ion flythire comproduct asologic and	Foraminifera ns, Nematodes	LINÇÊN PUNIN OULLEOV PON LINCOM POULLE DISAVEÇIN PELL	Nematodes	Polychaetes Nematodes
6.3	Population	no/m²	353	412	292	439	351	497

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Sediment.

3D. SEA SEDIMENT QUALITY ANALYSIS MONITORING: Table -Sea Sediment Quality Analysis Results (North Side) for the period: April-22 To September-22:-

Sr. No.	PARAMETERS	UNIT	Apr-22	May-22	Jun-22	Jul-22	Aug-22	Sep-22
	PARAMETERS	DMII	26/04/22	28/05/22	30/06/22	29/07/22	26/08/22	14/09/22
1	Organic Matter	%	0.45	0.35	0.32	0.47	0.42	0.38
2	Phosphorus as P	mg/kg	606	673	620	709	689	713
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy
4	Petroleum Hydrocarbon	mg/kg	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
5	Heavy Metals							
5.1	Aluminum as Al	%	4.61	4.92	4.87	4.98	5.13	5.29
5.2	Total Chromium as Cr+3	mg/kg	103	128	112	95.27	109	135
5.3	Manganese as Mn	mg/kg	618	609	631	658	713	675
5.4	Iron as Fe	%	4.86	4.87	4.78	4.87	5.29	4.97
5.5	Nickel as Ni	mg/kg	46.73	49.91	55.62	43.98	53.68	48.29
5.6	Copper as Cu	mg/kg	40.18	43.85	40.13	35.29	47,34	41.75
5.7	Zinc as Zn	mg/kg	131	130	107	97.15	116	95.28
5.8	Lead as Pb	mg/kg	2.54	2.14	2.23	1.36	1.77	2.19
5.9	Mercury as Hg	mg/kg	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
6	Benthic Organisms							
6.1	Macrobenthos (No and name of groups present, No and name of species of each group present)		Crustaceans, Gastropods, Molluscans	Polychates, Gastropods, Amphipods	Polychates, Gastropods, Bivalves	Polychaetes, Gastropods, Amphipods, Bivalves	Polychates, Bvalves, Crustaceans	Echinoderm, Oligochaete, Crustaceans, Bivalves
6.2	MeioBenthos (No and name of groups present, No and name of species of each group present)		Foraminifera ns	Nematodes	Nematodes	Foraminifera ns	Nematodes	Foraminifera ns
6.3	Population	no/m²	409	380	324	411	381	528

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Sediment.

Authorized Signatory

SORATORICS ON THE SURAT OF THE

3E. DUMP POND WATER QUALITY ANALYSIS MONITORING: -

Table - Dump Pond Water Quality Analysis Results for the period: April-22 To September-22

	Date		May-22	May-22	Aug-22	Aug-22
			28/05/2022	28/05/2022	26/08/2022	26/08/2022
Sr. No.	Test Parameters	Unit	Dump Pond Discharge - J3	Dump Pond Discharge (2)- J8	Dump Pond Discharge -	Dump Pond Discharge (2)- J8
1.	pH		8.67	8.7	8.65	8.85
2.	Total Dissolved Solids	mg/L	1809	2056	1621	1768
3.	Total Suspended Solids	mg/L	17	15	15	24
4.	Turbidity	NTU	3.28	2.27	3.11	2,56
5.	BOD (3 Days @ 27 °C)	mg/L	9.7	8.4	7	8
6.	Dissolved Oxygen	mg/L	6	5.9	5	6.1
7.	COD	mg/L	47	41	42	34
8.	Salinity	ppt	0.243	0.256	0.197	0.23
9.	Oil & Grease	mg/L	Not Detected	Not Detected	Not Detected	Not Detected
10.	Total Hardness as CaCO ₃	mg/L	603	592	549	574
11.	Fluoride as F	mg/L	0.54	0.33	0.56	0.48
12.	Chloride as Cl	mg/L	135	142	119	129
13.	Zinc as Zn	mg/L	0.23	0.18	0.15	0.12
14.	Cadmium as Cd	mg/L	Not Detected	Not Detected	Not Detected	Not Detected
15.	Lead as Pb	mg/L	Not Detected	Not Detected	Not Detected	Not Detected
16.	Mercury as Hg	mg/L	Not Detected	Not Detected	Not Detected	Not Detected

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Dump Pond Discharge Water.

3F. STP TREATED WATER QUALITY ANALYSIS MONITORING: -

TABLE - STP TREATED WATER QUALITY ANALYSIS RESULTS FOR THE PERIOD: APRIL-22 TO SEPTEMBER-22

			STP Treated Water Quality Analysis Results										
SR, NO.	TEST PARAMETERS	UNIT	Apr-22	May-22	Jun-22	Jul-22	Aug-22	Sep-22					
			26/04/22	28/05/22	30/06/22	29/07/22	26/08/22	14/09/22					
1.	рH		8.06	7.56	7.69	7.82	7.76	7.09					
2.	Total Suspended Solids	mg/L	21	29	23	28	24	21					
3.	BOD (3 Days @ 27 °C)	mg/L	14	17	15	18	16	17					
4.	Residual Free Chlorine	mg/L	0.8	0.8	0.7	0.6	0.5	0.7					
5.	Oil & Grease	mg/L	3.6	4.2	3.2	2.5	2.8	3.1					

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of STP Treated Water.

- Al-D

3G. AMBIENT NOISE LEVEL MONITORING: -

Tables - 1 - Behind QHSE Office Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location				QHSE Office			
		D	uring Day Tir	ne - dB(A)Led	#		
Date of Monitoring	01/04/2022	02/05/2022	01/06/2022	01/07/2022	01/08/2022	01/09/2022	
6:00-7:00	55.8	55.6	60.7	64.5	60.8	69.5	
7:00-8:00	61.0	60.5	63.7	66.1	63.5	62,1	
8:00-9:00	62.1	63.6	66.9	70.4	59.1	68.8	
9:00-10:00	52.4	62.8	65.2	69.8	66.4	69.8	
10:00-11:00	62.2	65.6	61.4	65.2	69.2	65.2	
11:00-12:00	55.0	61.3	58.9	63.5	65.3	63.5	
12:00-13:00	54.2	60.6	64.6	58.7	62.1	58.7	
13:00-14:00	46.3	55.7	60.5	64.2	61.4	64.2	
14:00-15:00	65.1	58.9	62.5	66.8	54.5	66.8	
15:00-16:00	59.5	63.7	67.8	71.4	67.3	71.4	
16:00-17:00	58.3	67.8	70.4	73.2	70.5	73.2	
17:00-18:00	60.9	71.3	68.5	65.1	66.8	65.1	
18:00-19:00	50.8	62.4	65.6	61.6	59.5	61.6	
19:00-20:00	45.8	70.2	66.7	71.2	73.6	71.2	
20:00-21:00	57.1	66.7	71.5	68.7	69.5	68.7	
21:00-22:00	51.7	62.5	59.5	63.6	64.3	63.6	

Sampling Location			1 - Behind	QHSE Office		
		Di	ıring Night Ti	me - dB(A)Le	q [#]	
Date of Monitoring	01/04/2022 & 02/04/2022	02/05/2022 & 03/05/2022	01/06/2022 & 02/06/2022	01/07/2022 & 02/07/2022	01/08/2022 & 02/08/2022	01/09/2022 & 02/09/2022
22:00-23:00	54.9	56.7	54.2	56.9	60.2	52.5
23:00-00:00	51.9	50.1	56.3	60.4	47.8	57.6
00:00-01:00	55.3	54.3	59.7	55.1	51.4	51.4
01:00-02:00	56.2	59.1	62.5	58.6	55,1	53,3
02:00-03:00	48.6	52.8	56.8	54.1	52.3	50.5
03:00-04:00	43.2	56.3	60.2	64.3	50.4	61.2
04:00-05:00	47.1	50.2	54.6	51.6	48.9	47.5
05:00-06:00	45.5	58.9	63.4	60.5	61.3	58.9

#dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Tables -2 - PMC Office Back Side Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location	2 - PMC Office Back Side During Day Time - dB(A)Leq#								
Date of Monitoring	02/04/2022	03/05/2022	02/06/2022	02/07/2022	02/08/2022	02/09/2022			
6:00-7:00	47.7	52.4	55.6	60.2	56.1	60.2			
7:00-8:00	51.8	55.2	51.4	56.3	52.4	56.3			
8:00-9:00	60.3	63.7	68.6	64.1	68.4	64.1			
9:00-10:00	49.4	62.1	57.2	62.5	60.2	62.5			
10:00-11:00	50.8	61.4	66.7	64.3	65.6	64.3			
11:00-12:00	48.2	53.8	55.2	60.2	57.3	60.2			
12:00-13:00	56.2	58.5	61.3	66.8	60.4	66.8			
13:00-14:00	53.9	64.4	67.8	62.3	68.3	61.6			
14:00-15:00	64.6	62.2	64.6	60.4	65.1	57.7			
15:00-16:00	56.3	68.9	71.5	67.3	70.3	69.5			
16:00-17:00	56.9	69.7	64.3	60.2	65.4	55.4			
17:00-18:00	53.7	67.7	62.2	65.9	69.5	61.3			
18:00-19:00	54.2	64.2	69.5	64.3	62.1	66.8			
19:00-20:00	60.9	58.9	62,4	66.4	61.5	68.3			
20:00-21:00	44.0	61.2	65.3	60.4	65.8	56.2			
21:00-22:00	60.2	58.6	56.2	54.2	62.6	58.9			

Sampling Location	2 - PMC Office Back Side								
	During Night Time - dB(A)Leg#								
Date of Monitoring	02/04/2022 & 03/04/2022	03/05/2022 & 04/05/2022	02/06/2022 & 03/06/2022	02/07/2022 & 03/07/2022	02/08/2022 & 03/08/2022	02/09/2022 & 03/09/2022			
22:00-23:00	51.5	52.2	56.1	51.2	58.7	49.5			
23:00-00:00	44.9	53.6	58.9	54.3	55.4	51.2			
00:00-01:00	58.5	50.4	54.2	50.5	48.5	48,9			
01:00-02:00	54.7	51.4	57.8	59.7	49.2	56.4			
02:00-03:00	54.8	48.9	52.4	56.3	45.8	47.9			
03:00-04:00	50.3	52.4	58.7	61.4	55.3	58.6			
04:00-05:00	46.2	58.9	66.8	64.5	54.1	60.2			
05:00-06:00	43.4	51.3	64.1	59.4	49.8	54.3			

[&]quot;dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Tables - 3 - Sub Station - 6 Back Side Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location	3 - Sub Station - 6 Back Side								
Sampling Eccation	During Day Time - dB(A)Leq#								
Date of Monitoring	04/04/2022	04/05/2022	03/06/2022	04/07/2022	03/08/2022	03/09/2022			
6:00-7:00	45.6	51.4	56.3	61.5	54.5	66.3			
7:00-8:00	45.0	54.6	58.7	65.4	60.6	64.4			
8:00-9:00	58.0	57.6	62.2	59.6	62.4	54.1			
9:00-10:00	52.0	61.8	58.4	55.4	65.7	59.7			
10:00-11:00	44.3	53.2	56.1	51.1	56.2	53.4			
11:00-12:00	52.4	53.7	56.7	61.3	59.8	66.7			
12:00-13:00	48.2	59.1	63.7	66.9	69.4	62,5			
13:00-14:00	41.3	72.6	69.5	64.5	70.1	60.6			
14:00-15:00	44.9	64.3	70.4	66.2	68.2	69.5			
15:00-16:00	54.9	60.7	64.3	61.4	61.5	59.4			
16:00-17:00	48.7	63.6	60.2	55.8	66.3	60.2			
17:00-18:00	49.5	68.4	65.3	70.2	68.0	73.5			
18:00-19:00	51.4	50.1	56.2	52.2	55.6	54.3			
19:00-20:00	56.8	54.3	52.2	58.7	57.5	61.7			
20:00-21:00	59.3	47.3	52.8	55.1	51.4	52.8			
21:00-22:00	48.3	56.3	60.4	65.4	59.4	67.3			

Sampling Location	3 - Sub Station - 6 Back Side								
oumping Location	During Night Time - dB(A)Leq#								
Date of Monitoring	04/04/2022 & 05/04/2022	04/05/2022 & 05/05/2022	03/06/2022 & 04/06/2022	04/07/2022 & 05/07/2022	03/08/2022 & 04/08/2022	03/09/2022 & 04/09/2022			
22:00-23:00	47.6	56.8	58.3	62.2	49.3	58.7			
23:00-00:00	52.8	68.9	61.3	66.5	57.2	61,3			
00:00-01:00	55.4	51.2	62.4	66.9	54.1	60.2			
01:00-02:00	49.5	50.3	59.8	56.4	52.8	51.1			
02:00-03:00	43.1	48.9	51.1	58.4	50.4	52,6			
03:00-04:00	48.7	58.8	49.7	52.1	57.6	47.7			
04:00-05:00	45.3	52.3	52.3	57.0	58.8	50.8			
05:00-06:00	51.4	56.9	63.4	66.4	57.3	61.7			

[&]quot;dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000

Tables - 4 -Sub Station - 8 (Marine Building) Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location	4 -Sub Station - 8 (Marine Building) During Day Time - dB(A)Leq#								
Date of Monitoring	05/04/2022	05/05/2022	04/06/2022	05/07/2022	04/08/2022	05/09/2022			
6:00-7:00	42.8	58.9	63.4	66.6	62.5	61,4			
7:00-8:00	65.7	55.1	51.2	56.2	59.6	58.2			
8:00-9:00	52.1	66.8	70.5	67.3	67.4	71.7			
9:00-10:00	60.3	60.2	58.3	65.4	63.6	60.3			
10:00-11:00	65.9	63.3	66.7	70.2	64.2	67.4			
11:00-12:00	54.8	54.2	58.5	54.3	56.4	52.3			
12:00-13:00	62.9	49.4	52.4	56.1	52.4	60.6			
13:00-14:00	54.2	59.8	63.6	66.9	62.6	70.5			
14:00-15:00	54.3	45.3	51.3	55.2	48.6	51.6			
15:00-16:00	49.3	63.8	61.1	66.8	65.4	69.2			
16:00-17:00	44.3	59.7	64.5	69.1	63.5	65.3			
17:00-18:00	43.3	47.5	53.6	56.2	51.4	58.8			
18:00-19:00	64.9	56.3	61.2	65.4	60.7	62.1			
19:00-20:00	49.7	60.4	65.5	70.2	64.5	65.2			
20:00-21:00	61.3	56.2	52.2	59.6	61,2	56.8			
21:00-22:00	43.4	49.7	54.7	60.3	52.5	57.5			

Sampling Location	4 -Sub Station - 8 (Marine Building) During Night Time - dB(A)Leq#								
- Cocation									
Date of Monitoring	05/04/2022 & 06/04/2022	05/05/2022 & 06/05/2022	04/06/2022 & 05/06/2022	05/07/2022 & 06/07/2022	04/08/2022 & 05/08/2022	05/09/2022 & 06/09/2022			
22:00-23:00	42.2	45.8	53.6	58.4	50.1	52.2			
23:00-00:00	50.0	56.1	56.8	60.6	52.4	54.3			
00:00-01:00	54.6	62.3	63.7	59.1	59.8	54.6			
01:00-02:00	36.7	45.2	53.6	57.8	49.5	53.8			
02:00-03:00	44.4	54.8	65.8	61.3	58.7	59.7			
03:00-04:00	42.6	58.9	58,4	60.6	60.2	62.4			
04:00-05:00	51.2	50.4	50.3	55.3	53.3	51.3			
05:00-06:00	42.1	46.3	56.0	60.5	50.6	55.7			

[&]quot;dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

8-5

Tables - 5 - Near Sub Station-7B Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location	5 - Near Sub Station-7B During Day Time - dB(A)Leq#								
- Cocación									
Date of Monitoring	06/04/2022	06/05/2022	06/06/2022	06/07/2022	05/08/2022	06/09/2022			
6:00-7:00	56.1	56.3	59.5	64.6	63.8	67.5			
7:00-8:00	41.1	65.4	61.3	68.4	61.2	69.6			
8:00-9:00	41.4	62.5	66.7	70.1	66.7	68.4			
9:00-10:00	44.2	58.4	64.2	71.5	55.4	67.6			
10:00-11:00	55.2	49.3	52.4	56.2	53.2	52,4			
11:00-12:00	50.9	57.6	63.6	66.8	62.1	63.6			
12:00-13:00	48.0	56.1	59.2	62.5	52.2	58.2			
13:00-14:00	45.4	71.4	69.5	62.6	68.1	66.1			
14:00-15:00	44.0	67.9	72.4	67.5	72.5	60.3			
15:00-16:00	56.9	53.4	57.1	62.4	59.8	67.0			
16:00-17:00	51.5	51.2	55.5	60.3	56.3	54.1			
17:00-18:00	56.4	56.8	62.6	66.3	60.2	61.2			
18:00-19:00	49.7	50.4	55.4	61.5	51.4	63.3			
19:00-20:00	50.1	65.3	70.3	67.8	62.0	64.8			
20:00-21:00	52.5	54.1	60.2	63.7	59.6	68.2			
21:00-22:00	49.9	51.6	56.4	62.4	54.3	57.5			

Sampling Location	5 - Near Sub Station-78									
Sumpling Location		During Night Time - dB(A)Leg#								
Date of Monitoring	06/04/2022 & 07/04/2022	06/05/2022 & 07/05/2022	06/06/2022 & 07/06/2022	06/07/2022 & 07/07/2022	05/08/2022 & 06/08/2022	06/09/2022 & 07/09/2022				
22:00-23:00	47.4	43.2	45.2	49.7	46.6	45.2				
23:00-00:00	46.0	49.8	59.4	56.1	48.4	50.8				
00:00-01:00	45.6	42.1	52.4	50.5	45.3	45.5				
01:00-02:00	45.1	44.8	56.3	60.3	51.6	54.9				
02:00-03:00	42.7	61.3	64.1	61.2	59.8	56.4				
03:00-04:00	40.6	51.7	60.7	65.9	54.3	59.7				
04:00-05:00	42.6	47.3	48.3	52.2	51.5	45.5				
05:00-06:00	40.0	55.2	58.5	61.4	56.8	63.6				

[&]quot;dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Tables -6 - JS - 1 (Nr. Lakhigam) Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location	6 - JS - 1 (Nr. Lakhigam) During Day Time - dB(A)Leq#								
Date of Monitoring	07/04/2022	07/05/2022	07/06/2022	07/07/2022	06/08/2022	07/09/2022			
6:00-7:00	42.4	67.9	72.5	67.5	70.2	72.6			
7:00-8:00	44.8	50.4	54.3	61.8	54.6	57.1			
8:00-9:00	46.5	68.9	65.5	69.4	71.4	65.3			
9:00-10:00	50.4	54.3	58.7	61.5	52.2	68.5			
10:00-11:00	53.1	58.4	62.2	66.3	61.6	63.2			
11:00-12:00	58.4	50.3	54.3	64.6	54.5	67.1			
12:00-13:00	54.8	64.3	67.4	68.3	69.7	70.5			
13:00-14:00	48.2	69.5	72.4	67.4	73.5	64.8			
14:00-15:00	55.2	56.3	60.3	54.2	57.8	52.7			
15:00-16:00	51.7	55.7	61.2	66.7	61.2	68,3			
16:00-17:00	53.5	61.9	66.7	71.4	66.7	66.4			
17:00-18:00	50.5	51.2	56.2	61.5	56.2	63.1			
18:00-19:00	49.5	62.4	64.3	60.6	67.0	57.5			
19:00-20:00	48.7	59.8	63.8	68.2	55.4	65.8			
20:00-21:00	45.1	50.2	54.1	51.5	57.2	56.4			
21:00-22:00	43.9	53.0	56.9	64.0	58.1	62.2			

Sampling Location	6 - JS - 1 (Nr. Lakhigam)								
Sampling Location	During Night Time - dB(A)Leg#								
Date of Monitoring	07/04/2022 & 08/04/2022	07/05/2022 & 08/05/2022	07/06/2022 & 08/06/2022	07/07/2022 & 08/07/2022	06/08/2022 & 07/08/2022	07/09/2022 & 08/09/2022			
22:00-23:00	49.9	61.5	66.9	62.2	58.5	65.4			
23:00-00:00	39.9	55.3	61.2	66.4	53.3	60.6			
00:00-01:00	44.7	46.6	50.4	54.1	49.8	49.3			
01:00-02:00	42.9	51.5	56.4	60.5	57.6	52.7			
02:00-03:00	52.4	50.8	46.7	51.6	55.3	47.6			
03:00-04:00	49.3	59.7	62.2	65.2	56.6	61,4			
04:00-05:00	43.1	46.3	56.4	61.3	50.5	55.6			
05:00-06:00	39.1	56.1	66.8	63.8	53.4	60.5			

^{*}dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Tables -7 - Behind S.S. - 11 (Silo) Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location	7 - Behind S.S 11 (Silo) During Day Time - dB(A)Leq#								
3									
Date of Monitoring	08/04/2022	09/05/2022	08/05/2022	08/07/2022	08/08/2022	08/09/2022			
6:00-7:00	44.5	57.7	62.4	57.3	62.5	61.5			
7:00-8:00	46.4	62.3	67.8	72.4	57.2	69.8			
8:00-9:00	47.7	63.8	69.9	66.5	66.8	62.7			
9:00-10:00	49.8	50.1	55.4	61.3	53.4	58.5			
10:00-11:00	50.5	64.4	68.7	71.5	66.5	68.4			
11:00-12:00	57.8	54.2	60.2	55.5	56.2	59.6			
12:00-13:00	55.5	66.8	70.5	64.2	70.4	61.3			
13:00-14:00	50.4	68.9	72.8	69.8	72.3	67.4			
14:00-15:00	56.4	57.3	62.2	66.3	60.1	70.5			
15:00-16:00	53.2	59.7	54.3	61.2	63.5	56.2			
16:00-17:00	57.6	71.2	68.7	70.5	68.9	68.3			
17:00-18:00	53.8	52.6	56.2	63.6	55.4	69.6			
18:00-19:00	54.4	55.3	60.1	54.2	60.2	51.6			
19:00-20:00	48.9	51.2	56.5	61.5	56.2	66.7			
20:00-21:00	50.3	56.8	61.4	66.3	62.5	61,0			
21:00-22:00	48.8	62.4	67.1	72.5	66.4	67.3			

Sampling Location	7 - Behind S.S 11 (Silo)								
Sumpling Location	During Night Time - dB(A)Leq#								
Date of Monitoring	08/04/2022 & 09/04/2022	09/05/2022 & 10/05/2022	08/06/2022 & 09/06/2022	08/07/2022 & 09/07/2022	08/08/2022 & 09/08/2022	08/09/2022 & 09/09/2022			
22:00-23:00	48.5	56.3	60.5	57.8	52.4	51.1			
23:00-00:00	47.7	52.7	56.1	60.5	57,5	54.2			
00:00-01:00	43.4	58.9	62.3	67.3	60.6	62,3			
01:00-02:00	46.5	62.3	66.7	62,4	58.9	57,4			
02:00-03:00	48.2	52.2	56.8	59.6	57.2	55.8			
03:00-04:00	42.4	55.3	60.4	55.3	55.0	48.9			
04:00-05:00	47.4	66.4	63.2	66.4	63.1	58.2			
05:00-06:00	45.4	47.8	44.1	49.7	49.6	46.1			

[&]quot;dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Tables - 8 -Nr. S&S Entry Gate (Dahej Road) & Silo Loading Point Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location	8 - Silo Loading Point During Day Time - dB(A) Leq#							
Date of Monitoring	09/04/2022	10/05/2022	09/06/2022	09/07/2022	09/08/2022	09/09/2022		
6:00-7:00	56.0	54.3	61.5	65.4	52.4	68.7		
7:00-8:00	41.7	49.8	54.6	59.1	53.2	63.2		
8:00-9:00	44.2	66.3	70.4	67.3	69.3	63.1		
9:00-10:00	57.8	53.3	56.4	60.1	57.4	55.2		
10:00-11:00	62.3	56.8	61.2	66.6	56.2	61.3		
11:00-12:00	59.1	65.4	68.9	70.4	65.1	68.7		
12:00-13:00	61.4	45.5	51.8	56.3	50.5	52.3		
13:00-14:00	62.4	62,4	66.7	69.8	67.3	64.7		
14:00-15:00	65.6	52.8	56.2	60.1	57.8	63.6		
15:00-16:00	59.3	56.7	61.3	66.7	61.3	70.4		
16:00-17:00	64.3	59.4	65.1	67.8	62.2	62.5		
17:00-18:00	74.0	50.2	54.2	59.5	47.3	55.2		
18:00-19:00	60.3	54.2	61.3	66.5	58.5	63.6		
19:00-20:00	44.8	64.3	69.5	73.4	69.6	69.1		
20:00-21:00	42.7	60.1	65.4	61.5	55.8	57.4		
21:00-22:00	60.1	67.8	72.9	67.4	64.5	69.2		

Sampling Location	8 - Silo Loading Point During Night Time - dB(A) Leq#								
Sampling Location									
Date of Monitoring	09/04/2022 & 10/04/2022	10/05/2022 & 11/05/2022	09/06/2022 & 10/06/2022	09/07/2022 & 10/07/2022	09/08/2022 & 10/08/2022	09/09/2022 & 10/09/2022			
22:00-23:00	48.1	54.2	59.8	62.4	56.6	57.5			
23:00-00:00	50.7	47.1	52.6	55.6	52.1	52.4			
00:00-01:00	47.4	51.0	56.3	60.1	58.8	53.0			
01:00-02:00	54.3	42.9	46.7	50.2	46.5	59.8			
02:00-03:00	46.8	53.6	56.9	63.3	58.4	58.6			
03:00-04:00	54.1	49.8	54.2	61.5	53.2	56.2			
04:00-05:00	41.0	61.2	58.3	54.2	58.7	49.8			
05:00-06:00	46.5	51.9	56.4	61.8	54.5	64.7			

[#]dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Tables -9 - GCPTL Gate Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location	9 - GCPTL Gate During Day Time - dB(A)Leq#								
Date of Monitoring	11/04/2022	11/05/2022	10/06/2022	11/07/2022	10/08/2022	10/09/2022			
6:00-7:00	43.7	72.5	68.7	63.1	68.9	60.3			
7:00-8:00	46.6	57.9	62.5	67.0	61.4	66.1			
8:00-9:00	45.9	64.2	66.8	70.5	66.5	72.2			
9:00-10:00	46.9	66.0	62.3	59.8	70.4	56,1			
10:00-11:00	54.3	59.2	63,4	65.3	62.7	63.6			
11:00-12:00	52.2	54.1	60.5	64.1	50.4	61.1			
12:00-13:00	41.3	62.3	59.8	55.6	67.8	52.4			
13:00-14:00	54.1	55.7	61.2	65.2	58,5	68.6			
14:00-15:00	72.2	50.2	53.2	56.1	53.6	52.5			
15:00-16:00	56.1	60.1	62.5	59.7	65.4	54.6			
16:00-17:00	55.3	66.4	61.5	66.3	69.8	69.4			
17:00-18:00	45.7	63.9	69.8	71.4	60.2	68.2			
18:00-19:00	58.3	50.1	54.2	56.2	54.8	54.1			
19:00-20:00	52.1	60.4	54.3	58.9	57.0	61.5			
20:00-21:00	54.8	63.8	67.4	70.6	66.5	71.3			
21:00-22:00	58.0	50.6	52.5	56.1	53.4	56.1			

Sampling Location	9 - GCPTL Gate During Night Time - dB(A)Leg#								
Samping Location									
Date of Monitoring	11/04/2022 & 12/04/2022	11/05/2022 & 12/05/2022	10/06/2022 & 11/06/2022	11/07/2022 & 12/07/2022	10/08/2022 & 11/08/2022	10/09/2022 & 11/09/2022			
22:00-23:00	45.5	58.4	62.4	66.4	53.2	61.7			
23:00-00:00	49.7	55.3	51.3	56.1	50.6	51.5			
00:00-01:00	50.1	45.4	50.2	62.3	49.8	56.4			
01:00-02:00	43.7	51.3	56.1	61.5	55.7	58.9			
02:00-03:00	48.5	59.6	54.3	60.5	63.2	57,4			
03:00-04:00	44.2	61.3	59.8	55.4	60.3	53.2			
04:00-05:00	40.6	59.8	53.2	59.8	64.5	54.1			
05:00-06:00	52.7	56.3	51,5	56.4	51.7	50,5			

[&]quot;dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Tables - 10 - Lakhi Village (Primary School) Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location	10 - Lakhi Village (Primary School) During Day Time - dB(A)Leq#								
Sampling Location									
Date of Monitoring	12/04/2022	12/05/2022	11/06/2022	12/07/2022	11/08/2022	12/09/2022			
6:00-7:00	49.8	58.7	50.1	58.7	50.9	54,1			
7:00-8:00	58.1	66.2	54.6	66.5	52.3	63.2			
8:00-9:00	66.6	67.8	53.5	70.3	49.7	68.4			
9:00-10:00	63.2	51.4	50.2	60.4	51.7	63.6			
10:00-11:00	61.4	62.5	47.2	63.2	49.8	59.8			
11:00-12:00	55.8	56.3	46.3	58.4	52.9	52.0			
12:00-13:00	54.1	52.4	41.2	61.5	54.1	57.4			
13:00-14:00	64.1	61,2	45.2	62.6	52.7	65.1			
14:00-15:00	55.7	65.3	49.6	67.9	50.9	61.3			
15:00-16:00	48.8	46.8	52.2	54.3	51.7	56.4			
16:00-17:00	50.2	62.4	53.6	62.1	54.2	66.5			
17:00-18:00	62.4	57.5	54.2	59.8	51.3	64.2			
18:00-19:00	55.9	58.9	47.7	65.4	52.9	68.3			
19:00-20:00	68.6	63.1	54.4	67.3	51.2	64.2			
20:00-21:00	63.0	66.3	52.6	69.5	50.2	67,6			
21:00-22:00	53.0	60.9	48.9	56.0	49.3	60.2			

Sampling Location	10 - Lakhi Village (Primary School) During Night Time - dB(A)Leg#								
Sampling Location									
Date of Monitoring	12/04/2022 & 13/04/2022	12/05/2022 & 13/05/2022	11/06/2022 & 12/06/2022	12/07/2022 & 13/07/2022	11/08/2022 & 12/08/2022	12/09/2022 & 13/09/2022			
22:00-23:00	44.2	63.7	40.5	61.6	44.1	49.8			
23:00-00:00	51.1	51.3	41.9	50.8	42.7	45.5			
00:00-01:00	63.0	66.9	44.2	66.8	41.4	60.0			
01:00-02:00	34.8	52.4	42.5	52.6	42.6	48.3			
02:00-03:00	39.7	61.3	43.7	61.4	40.8	54.4			
03:00-04:00	43.5	59.7	40.3	56.2	42.8	51.5			
04:00-05:00	48.2	49.3	41.3	49.7	41.1	44.3			
05:00-06:00	52.2	60.5	42.4	59.4	44.2	53.2			

[&]quot;dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Tables -11 - ERMS Workshop Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location	11 - ERMS Workshop During Day Time - dB(A)Leq*							
Date of Monitoring	13/04/2022	13/05/2022	13/06/2022	13/07/2022	12/08/2022	13/09/2022		
6:00-7:00	46.2	52.8	57.8	62.2	57.4	65.9		
7:00-8:00	47.5	63.6	66.8	70.4	66.1	67.2		
8:00-9:00	50.6	50.8	54.2	56.1	53.3	60.5		
9:00-10:00	52.2	52.7	56.3	60.2	56.4	55.1		
10:00-11:00	56.3	58.6	62.4	65.8	60,2	61.3		
11:00-12:00	55.6	54.3	60.5	54.1	57.8	52.2		
12:00-13:00	63.1	56.1	62.8	66.3	51.6	60.4		
13:00-14:00	63.8	56.3	61.1	68.9	60.4	73.2		
14:00-15:00	67.7	48.9	52.6	57.2	50.4	52.8		
15:00-16:00	64.0	51.5	56.1	54.3	54.3	59.6		
16:00-17:00	69.3	60.8	65.7	69.5	63.8	63.3		
17:00-18:00	70.3	57.3	60.5	64.3	55.4	59.5		
18:00-19:00	67.8	51.4	56.4	60.8	56.3	54.1		
19:00-20:00	66.7	49.9	54.2	59.4	52.4	53.8		
20:00-21:00	65.6	51.1	56.6	61.9	57.8	59.7		
21:00-22:00	63.7	54.7	60.2	57.4	57.9	52.1		

Sampling Location	11 - ERMS Workshop During Night Time - dB(A)Leg#								
Sampling Location									
Date of Monitoring	13/04/2022 & 14/04/2022	13/05/2022 & 14/05/2022	13/06/2022 & 14/06/2022	13/07/2022 & 14/07/2022	12/08/2022 & 13/08/2022	13/09/2022 & 14/09/2022			
22:00-23:00	63.4	51.4	48.5	52.2	54.0	47.7			
23:00-00:00	59.3	46.3	51.3	56.4	47.5	59.8			
00:00-01:00	57.8	59.7	55.4	59.8	63.7	63.5			
01:00-02:00	62.0	45.5	50.6	54.2	49.6	51.6			
02:00-03:00	52,6	61.2	65.8	61.4	63.3	64.6			
03:00-04:00	54.2	54.0	59.7	55.1	59.4	59.7			
04:00-05:00	47.3	46.3	50.3	52.4	50.2	46.2			
05:00-06:00	46.4	54.8	61.4	63.9	51.7	58.5			

[&]quot;dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Tables - 12 - Behind Pump House Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location	12 - Behind Pump House During Day Time - dB(A)Leq#								
Sampling Location									
Date of Monitoring	14/04/2022	14/05/2022	14/05/2022	14/07/2022	13/08/2022	14/09/2022			
6:00-7:00	44.1	53.4	57.8	64.4	58.9	68.5			
7:00-8:00	47.1	64.8	69.2	67.3	66.5	70.6			
8:00-9:00	49.9	56.2	61.1	64.5	62.1	66.2			
9:00-10:00	51.4	63.3	69.7	66.1	68.7	71.4			
10:00-11:00	55.1	54,4	61.5	66.3	61.2	61.5			
11:00-12:00	58.8	59.0	62.4	68.9	66.9	63.8			
12:00-13:00	59.0	49.7	53.6	56.1	47.1	62.8			
13:00-14:00	62.8	61.1	66.9	62.2	65.8	54.2			
14:00-15:00	64.4	58.5	62.7	65.1	63.6	69.6			
15:00-16:00	69.2	57.3	54.1	59.7	54.5	62.5			
16:00-17:00	69.5	52.8	60.5	63.6	58.6	58.7			
17:00-18:00	67.8	64.4	69.9	63.8	69.7	67.4			
18:00-19:00	69.7	57.2	61.4	66.6	60.1	70.2			
19:00-20:00	68.0	51.3	55.2	58.4	57.3	51.1			
20:00-21:00	68.5	64.5	69.7	67.4	70.0	62,2			
21:00-22:00	63.9	73.8	70.6	68.5	68.8	63.1			

Sampling Location	12 - Behind Pump House During Night Time - dB(A)Leq#								
Sampling Location									
Date of Monitoring	14/04/2022 & 15/04/2022	14/05/2022 & 15/05/2022	14/06/2022 & 15/06/2022	14/07/2022 & 15/07/2022	13/08/2022 & 14/08/2022	14/09/2022 & 15/09/2022			
22:00-23:00	63.8	64.8	59.7	62.8	64.8	65,5			
23:00-00:00	60.5	48.5	52.6	55.1	48.5	55.6			
00:00-01:00	59.8	51.9	57.3	61.3	51.9	57.6			
01:00-02:00	53.2	47.3	52.2	56.6	47.3	52.2			
02:00-03:00	50.3	54.9	56.7	61.2	54.9	63.0			
03:00-04:00	51.2	66.2	61.3	57.4	66.2	62.7			
04:00-05:00	49.8	64.8	59.5	63.5	64.8	59.2			
05:00-06:00	48.0	50.4	46.2	51.8	52.3	53.0			

[&]quot;dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Tables - 13 - Rock Bond Approach (Jetty) Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leg for the period of April-22 To September-22

Sampling Location	13 - Rock Bond Approach (Jetty) During Day Time - dB(A)Leq#								
Date of Monitoring	15/04/2022	16/05/2022	15/06/2022	15/07/2022	15/08/2022	15/09/2022			
6:00-7:00	45.5	55.5	61.4	59.8	61.4	53.1			
7:00-8:00	51.9	61.6	66.8	69.4	65.6	65.0			
8:00-9:00	43.8	64.3	70.4	65.2	68.2	61.6			
9:00-10:00	45.6	56.2	61.2	67.3	52.1	62.1			
10:00-11:00	50.7	46.7	52.4	55.8	50.9	51.3			
11:00-12:00	58.6	51.3	56.3	60.5	56.1	57.6			
12:00-13:00	51.8	55.8	61.8	65.4	61.2	61.3			
13:00-14:00	51.6	53.8	57.4	61.3	58.9	55,2			
14:00-15:00	56.0	61.4	64.5	69.8	66.8	64.1			
15:00-16:00	56.2	57.8	62.3	57.8	60.4	52.4			
16:00-17:00	45.9	56.3	61.4	66.3	62,2	61.1			
17:00-18:00	42.0	54.2	60.5	57.4	51.1	53.6			
18:00-19:00	66.4	52.1	56.9	61.2	55.6	65.7			
19:00-20:00	53.4	64.8	69.5	67.8	67.7	69.3			
20:00-21:00	63.4	60.3	64.4	69.3	53,2	67,4			
21:00-22:00	59.8	62.1	66.8	61.2	64.8	54.6			

Sampling Location	13 - Rock Bond Approach (Jetty)								
Sampling Location		Di	uring Night Ti	me - dB(A)Le	q#				
Date of Monitoring	15/04/2022 & 16/04/2022	16/05/2022 & 17/05/2022	15/06/2022 & 16/06/2022	15/07/2022 & 16/07/2022	15/08/2022 & 16/08/2022	15/09/2022 & 16/09/2022			
22:00-23:00	54.1	61.2	57.3	60.4	58.4	62.6			
23:00-00:00	41.2	56.9	51.4	55.6	60.3	48.9			
00:00-01:00	44.8	63.1	59.8	54.1	59.5	52.5			
01:00-02:00	40.6	52.4	47.6	50.5	55.8	45.1			
02:00-03:00	48.3	64.9	60.2	55.4	61.2	58.4			
03:00-04:00	48.8	51.4	49.7	53.7	56.7	60.1			
04:00-05:00	47.6	45.3	48.6	53.6	48.7	57.7			
05:00-06:00	40.5	42.5	45.5	49.3	48.9	45.6			

[&]quot;dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Tables -14 - New Gate Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location	14 - New Gate During Day Time - dB(A)Leq#								
Date of Monitoring	16/04/2022	17/05/2022	16/06/2022	16/07/2022	16/08/2022	16/09/2022			
6:00-7:00	55.2	50.1	55.5	60.2	47.8	63.6			
7:00-8:00	57.4	56.7	62.8	65.4	59.3	68.9			
8:00-9:00	47.0	61.8	66.9	70.6	66.8	72.5			
9:00-10:00	65.0	60.2	64.3	69.8	58.4	64.2			
10:00-11:00	54.0	49.1	46.7	50.2	51.4	52,4			
11:00-12:00	57.0	53.2	57.8	63.8	58.6	61.2			
12:00-13:00	46.7	54.3	61.5	65.4	60.8	62.6			
13:00-14:00	57.1	46.8	50.5	55.2	50.3	60.9			
14:00-15:00	48.6	64.6	70.9	67.9	66.1	73.6			
15:00-16:00	43.3	61.2	66.7	71.4	59.8	67.2			
16:00-17:00	49.7	58.9	62.4	66.3	52.4	65.2			
17:00-18:00	55.1	61.3	65.3	61.4	66.3	56.2			
18:00-19:00	62.4	54.2	61.5	66.3	58.7	69.8			
19:00-20:00	51.8	56.1	62.3	60.2	61.1	63.4			
20:00-21:00	50.7	59.8	62.4	67.5	63.5	62,7			
21:00-22:00	60.7	64.4	66.8	62.4	68.1	57.9			

Sampling Location	14 - New Gate								
- Camping Location	During Night Time - dB(A)Leq#								
Date of Monitoring	16/04/2022 & 17/04/2022	17/05/2022 & 18/05/2022	16/06/2022 & 17/06/2022	16/07/2022 & 17/07/2022	16/08/2022 & 17/08/2022	16/09/2022 & 17/09/2022			
22:00-23:00	41.7	56.9	60.4	58.3	61.2	64.8			
23:00-00:00	48.7	51.4	57.8	61.2	56.5	65.4			
00:00-01:00	41.8	49.8	54.2	52.3	48.7	58.5			
01:00-02:00	44.4	62.5	65.3	61.4	57.4	63.7			
02:00-03:00	45.7	61.3	57.7	52.6	55.2	49.3			
03:00-04:00	41.9	52.7	56.3	60.4	47.6	57.2			
04:00-05:00	41.2	44.2	46.3	50.2	51.9	46.1			
05:00-06:00	39.8	55.3	59.5	63.9	60.5	60.7			

^{*}dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Tables - 15 - Security Barrier Gate Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location			15 - Security	Barrier Gate					
	During Day Time - dB(A)Leg#								
Date of Monitoring	18/04/2022	18/05/2022	17/06/2022	18/07/2022	17/08/2022	17/09/2022			
6:00-7:00	50.5	49.8	52.4	55.6	52.4	55.6			
7:00-8:00	57.2	54.3	60.3	63.7	56.1	63.7			
8:00-9:00	53.1	63.0	67.5	54.2	67.4	64.2			
9:00-10:00	57.3	51,2	55.8	59.8	54.2	54.2			
10:00-11:00	61.6	58.4	62.4	66.2	61.3	62.6			
11:00-12:00	45.9	61.4	68.9	70.1	66.7	67.3			
12:00-13:00	74.0	57.6	54.2	59.8	62.5	55.4			
13:00-14:00	69.1	62.8	66.3	62.3	68.9	59.6			
14:00-15:00	50.9	45.3	51.2	55.6	50.2	60.2			
15:00-16:00	44.5	53.0	56.7	60.4	59.6	58.0			
16:00-17:00	49.3	53.6	59.5	64.9	57.8	66.8			
17:00-18:00	60.1	64.3	69.5	64.7	67.4	62.6			
18:00-19:00	46.7	56.2	61.4	66.5	60.1	71.7			
19:00-20:00	56.5	58.9	64.1	60.2	63.6	56.2			
20:00-21:00	50.2	67.3	72.4	67.9	70.4	61.7			
21:00-22:00	45.4	51.5	56.8	59.4	56.2	52.8			

Sampling Location	15 - Security Barrier Gate								
Sampling Location	During Night Time - dB(A)Leq#								
Date of Monitoring	18/04/2022 & 19/04/2022	18/05/2022 & 19/05/2022	17/06/2022 & 18/06/2022	18/07/2022 & 19/07/2022	17/08/2022 & 18/08/2022	17/09/2022 & 18/09/2022			
22:00-23:00	49.7	66.7	61.2	65.4	63.5	60.3			
23:00-00:00	53.4	54.2	50.3	54.3	57.4	53.9			
00:00-01:00	55.9	46.3	52.5	56.1	50.1	61.7			
01:00-02:00	48.8	52.4	56.9	59.7	56.3	62.4			
02:00-03:00	44.2	56.3	61.4	66.3	52.7	59.6			
03:00-04:00	65.6	. 51.1	57.4	51.2	58.2	54.5			
04:00-05:00	45.0	66.8	59.5	54.3	65.4	58.9			
05:00-06:00	49.9	54.0	61.3	58.4	51.2	51.2			

[&]quot;dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Tables - 16 - JS-2 Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location	16 - JS-2 During Day Time - dB(A)Leq#							
Date of Monitoring	19/04/2022	19/05/2022	18/06/2022	19/07/2022	18/08/2022	19/09/2022		
6:00-7:00	59.7	51.6	56.7	52.4	56.3	54.2		
7:00-8:00	50.0	58.3	63.9	60.6	62.4	57.4		
8:00-9:00	50.8	65.1	71.4	67.8	68.6	63.6		
9:00-10:00	53.3	62.4	67.9	70.4	58.4	70.4		
10:00-11:00	46.2	51.4	55.3	61.3	56.2	66.2		
11:00-12:00	41.9	49.8	47.9	51.5	53.5	58.3		
12:00-13:00	50.7	42.3	46.9	50.2	45.1	53.4		
13:00-14:00	56.6	63.7	68.4	64.3	67.8	61.2		
14:00-15:00	45.8	56.2	61.3	67.8	61.5	70.1		
15:00-16:00	58.8	58.7	54.2	61.3	63.4	67.2		
16:00-17:00	49.6	50.6	45.3	50.5	52.7	54.6		
17:00-18:00	46.1	54.1	61.1	65.4	56.3	61.0		
18:00-19:00	59.8	51.5	56.7	61.8	47.7	57.5		
19:00-20:00	67.7	62.3	61.5	67.9	59.4	69.5		
20:00-21:00	56.2	51.2	58.7	62.4	56.2	59.1		
21:00-22:00	48.5	66.9	70.3	72.4	68.7	68.3		

Sampling Location	16 - JS-2 During Night Time - dB(A)Leq#							
Sampling Location								
Date of Monitoring	19/04/2022 & 20/04/2022	19/05/2022 & 20/05/2022	18/06/2022 & 19/06/2022	19/07/2022 & 20/07/2022	18/08/2022 & 19/08/2022	19/09/2022 & 20/09/2022		
22:00-23:00	40.8	56.9	52.6	56.2	58.7	50.4		
23:00-00:00	54.1	44.1	49.8	53.6	49.5	56.5		
00:00-01:00	43.9	56.8	61.4	58.4	62.3	63.8		
01:00-02:00	67.5	61.3	65.8	69.7	64.4	68.0		
02:00-03:00	55.4	54.2	59.7	55.4	58.9	54.9		
03:00-04:00	41.8	46.8	50.5	53.6	44.5	49.8		
04:00-05:00	47.0	47.7	51.6	56.8	50.2	52.2		
05:00-06:00	42.0	51.3	56.6	51.4	48.6	53.6		

[&]quot;dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Tables - 17 - Railway Dead End Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location	17 - Railway Dead End								
	During Day Time - dB(A)Leq*								
Date of Monitoring	20/04/2022	20/05/2022	20/06/2022	20/07/2022	19/08/2022	20/09/2022			
6:00-7:00	55.7	54.2	59.7	56.3	59.1	52.1			
7:00-8:00	46.9	61.3	66.4	70.4	66.7	73.5			
8:00-9:00	51.2	52.0	56.2	60.1	56.2	55,4			
9:00-10:00	49.3	62.5	66.5	69.8	58.9	65.1			
10:00-11:00	50.9	44.7	51.5	57.2	49.2	62.4			
11:00-12:00	49.2	62,3	66.8	61.3	66.1	56.6			
12:00-13:00	57.3	52.2	57.4	60.8	56.4	63.7			
13:00-14:00	45.2	60.3	65.3	70.6	65.4	68.4			
14:00-15:00	45.0	62.9	67.5	64.3	66.3	62.1			
15:00-16:00	62.5	61.4	65.8	61.9	66.7	57.4			
16:00-17:00	52.3	42.2	45.1	51.2	46.5	57,2			
17:00-18:00	44.5	65.3	66.9	62.4	71.4	67.8			
18:00-19:00	61.7	54.5	59.7	63.9	58.6	63.9			
19:00-20:00	67.9	56.1	62.3	66.3	51.1	66.3			
20:00-21:00	48.7	64.5	69.2	64.1	68.9	64.1			
21:00-22:00	42.5	66.9	72.4	67.3	62.2	67.3			

Sampling Location	17 - Railway Dead End								
	During Night Time - dB(A)Leg#								
Date of Monitoring	20/04/2022 & 21/04/2022	20/05/2022 & 21/05/2022	20/06/2022 & 21/06/2022	20/07/2022 & 21/07/2022	19/08/2022 & 20/08/2022	20/09/2022 & 21/09/2022			
22:00-23:00	50.4	61.5	58.8	62.5	66.2	65.1			
23:00-00:00	60.0	59.7	62.4	66.9	56.4	63.7			
00:00-01:00	50.0	44.2	49.3	45.3	46.3	46.2			
01:00-02:00	56.6	51.3	55.7	60.4	46.2	57.3			
02:00-03:00	42.9	56.4	61.4	67.4	50.1	64.1			
03:00-04:00	49.6	61.3	66.8	60.3	56.5	56.7			
04:00-05:00	57.3	52.7	55.3	51.5	45.1	47.1			
05:00-06:00	53.3	44.4	50.2	54.2	42.3	51.6			

[&]quot;dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Tables -18 - S and S Yard (South) and Open Storage Yard — 1 Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location	18 – Open Storage Yard – 1								
	During Day Time - dB(A) Leq#								
Date of Monitoring	21/04/2022	21/05/2022	21/06/2022	21/07/2022	20/08/2022	21/09/2022			
6:00-7:00	42.9	47.4	52.2	56.6	53.6	56.6			
7:00-8:00	48.6	43.3	45.8	51.4	45.2	51.4			
8:00-9:00	52.4	59.1	63.7	67.8	63.5	67.8			
9:00-10:00	59.0	54.8	58.3	62.4	51,4	64.4			
10:00-11:00	56.1	66.4	71.4	69.8	72.3	69.8			
11:00-12:00	48.5	54.3	59.8	62.2	52.1	62,2			
12:00-13:00	42.4	52.9	59.8	55.6	58.7	55.6			
13:00-14:00	57.9	45.5	50.5	54.1	51.2	54.1			
14:00-15:00	60.8	61.2	66.8	68.3	66.8	68,3			
15:00-16:00	46.7	60.9	64.7	61.8	65.4	61.8			
16:00-17:00	65.8	66.1	70.4	67.3	68.5	67.3			
17:00-18:00	71.7	69.5	65.8	60.8	64.2	60.8			
18:00-19:00	45.1	49.8	54.2	59.6	47.7	59.6			
19:00-20:00	51.0	54.2	59.8	64.3	59.8	60,5			
20:00-21:00	52.2	44.0	50.2	54.6	52.3	51.8			
21:00-22:00	55.7	59.7	63.8	57.9	63.7	53.2			

Sampling Location	18 - Open Storage Yard - 1							
		Du	ring Night Ti	me - dB(A) Le	eq#			
Date of Monitoring	21/04/2022 & 22/04/2022	21/05/2022 & 22/05/2022	21/06/2022 & 22/06/2022	21/07/2022 & 22/07/2022	20/08/2022 & 21/08/2022	21/09/2022 & 22/09/2022		
22:00-23:00	51.2	56.3	61.4	65.6	52.4	61.8		
23:00-00:00	44.5	57.4	63.6	60.4	62,2	59.5		
00:00-01:00	52.1	53.6	56.8	63.1	57.8	66.3		
01:00-02:00	60.8	50.2	54.2	51.8	53.3	46.5		
02:00-03:00	60.3	41.8	45.7	49.6	45.7	52.8		
03:00-04:00	47.5	66.4	62.3	66.4	62.1	64.3		
04:00-05:00	52.0	57.5	60.2	57.6	60.3	51.7		
05:00-06:00	38.0	61.3	57.6	63.5	65.4	66.8		

^{*}dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Tables -19 -S & S Yard (North) Boundary Wall Loco Shed Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location			19 - L	oco Shed		-			
	During Day Time - dB(A) Leq#								
Date of Monitoring	22/04/2022	23/05/2022	22/05/2022	22/07/2022	22/08/2022	22/09/2022			
6:00-7:00	61.8	64.3	69.8	71.4	67.5	67.5			
7:00-8:00	66.1	51.3	56.2	60.3	57.4	62.6			
8:00-9:00	46.4	63.8	67.8	64.5	68.2	61.7			
9:00-10:00	47.4	53.2	59.5	54.3	56.3	52.3			
10:00-11:00	59.8	50.1	54.3	60.2	47.5	59.8			
11:00-12:00	60.4	52.6	56.4	61.5	54.8	68.9			
12:00-13:00	51.0	61.3	65.5	62.4	65.9	56.2			
13:00-14:00	46.6	64.8	70.6	66.9	69.4	68.7			
14:00-15:00	48.3	59.8	63.4	61.9	63.2	59.3			
15:00-16:00	59.4	67.6	72.4	68.3	70.2	60.5			
16:00-17:00	50.3	56.3	61.5	65.4	60.1	66.8			
17:00-18:00	57.7	62.2	63.8	59.7	66.6	53.4			
18:00-19:00	47.0	51.0	56.8	62.2	56.3	58.1			
19:00-20:00	46.5	63.6	67.4	70.4	66.7	72.2			
20:00-21:00	45.7	56.9	61.2	66.9	61.2	60.7			
21:00-22:00	48.2	51.2	56.8	54.2	53.4	51.1			

Sampling Location	19 – Loco Shed								
Sampling Location	During Night Time - dB(A) Leq#								
Date of Monitoring	22/04/2022 & 23/04/2022	23/05/2022 & 24/05/2022	22/06/2022 & 23/06/2022	22/07/2022 & 23/07/2022	22/08/2022 & 23/08/2022	22/09/2022 & 23/09/2022			
22:00-23:00	49.5	54.6	51.3	56.9	50.1	53.0			
23:00-00:00	54.2	57.8	60.4	54.3	52.5	50.4			
00:00-01:00	57.2	52.2	58.9	62.2	47.3	65.9			
01:00-02:00	63.4	49.7	45.7	49.1	45.6	45.7			
02:00-03:00	46.5	53.6	49.5	54.5	49.8	49.8			
03:00-04:00	43.8	46.8	53.6	56.6	51.3	51.9			
04:00-05:00	56.2	60.2	61.3	59.8	58.4	54.4			
05:00-06:00	52.4	54.3	48.7	52.4	56.1	57.3			

[&]quot;dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Tables - 20 - Lakhi Village (Below Conveyer Belt) Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April-22 To September-22

Sampling Location	20 - Lakhi Village (Below Conveyer Belt) During Day Time - dB(A)Leq#								
Jumping Location									
Date of Monitoring	23/04/2022	24/05/2022	23/06/2022	23/07/2022	23/08/2022	23/09/2022			
6:00-7:00	50.4	47.8	42.4	56.1	51.2	53.3			
7:00-8:00	53.7	42.1	40.9	52.4	48.1	58.7			
8:00-9:00	62.5	49.4	44.2	59.8	52.8	62.2			
9:00-10:00	50.2	61.3	48.6	69.5	53.6	66.1			
10:00-11:00	52.9	67.8	53.1	65.3	49.4	61.6			
11:00-12:00	44.9	46.9	54.4	56.1	50.9	52.8			
12:00-13:00	50.5	50.1	49.9	60.8	47.5	54.6			
13:00-14:00	58.9	42.4	45.2	52.2	52.8	50.8			
14:00-15:00	57.1	56.3	49.1	65.4	53.5	61.1			
15:00-16:00	45.8	52.8	51.9	59.9	47.2	64.7			
16:00-17:00	43.7	61.9	53.2	61.8	51.0	67.6			
17:00-18:00	59.8	51.0	54.3	60.2	48.9	55.2			
18:00-19:00	63.7	45.7	50.7	56.9	52.9	51.3			
19:00-20:00	72.1	65.8	48.3	57.4	50.7	62.2			
20:00-21:00	48.4	52.2	47.6	60.3	51.2	65,9			
21:00-22:00	52.1	44.1	45.7	56.4	47.2	57.7			

Sampling Location	20 - Lakhi Village (Below Conveyer Belt) During Night Time - dB(A)Leq#								
Samping Location									
Date of Monitoring	23/04/2022 & 24/04/2022	24/05/2022 & 25/05/2022	23/06/2022 & 24/06/2022	23/07/2022 & 24/07/2022	23/08/2022 & 24/08/2022	23/09/2022 & 24/09/2022			
22:00-23:00	52.3	61.5	44.2	64.6	43.8	59.5			
23:00-00:00	56.1	63.3	43.8	56.8	40.5	51.2			
00:00-01:00	59.2	50.5	40.6	57.4	41.4	54.4			
01:00-02:00	68.8	59.8	41.9	66.9	43.9	62.8			
02:00-03:00	45.9	47.4	42.7	59.8	43.5	58.6			
03:00-04:00	44.4	56.2	44.3	54.2	40.7	50.5			
04:00-05:00	58.1	61.3	40.8	59.7	41.3	52.2			
05:00-06:00	51.9	64.7	42.4	51.1	42.1	47.3			

[&]quot;dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

3H. DG SETS STACK EMISSION AND NOISE LEVEL MONITORING: -

Table No.: 3H.1 - DG Sets Stack Emission Monitoring Results for the period: April-22 To September-22

				THE STATE OF	May-22				
Sr.	Parameters	A Para Cha	28/05/2022						
No.	raiameters	Unit	DG Set # 1MRSS (SS5)	DG Set # 2 S57B	DG Set # 3Marine (SS8)	DG Set # 4Silo (SS11)	DG Set # 5 (SS7A)		
1	Particulate Matter	mg/Nm ³	26.27	24.54	21.54	23.47	25.3		
2	Sulphur Dioxide	ppm	3.63	4.57	4.02	8.45	7.55		
3	Oxide of Nitrogen	ppm	33.44	35.62	30.26	36.55	32.5		
4	Non Methyl Hydro Carbon (NMHC)	mg/m³	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected		
5	Carbon Monoxide	mg/m³	0.029	0.0173	0.0237	0.0317	0.0269		

Table No.: 3H.2 ~ DG Sets Stack Emission Monitoring Results for the period: April-22 To September-22

					August-22				
Sr.	Parameters	11-24	26/08/2022						
No.	Parameters	Unit	DG Set # 1MRSS (SS5)	DG Set # 2 SS7B	DG Set # 3Marine (SS8)	DG Set # 4Silo (SS11)	DG Set # 5 (SS7A)		
1	Particulate Matter	mg/Nm ³	22.61	27.53	24.35	28.83	21.55		
2	Sulphur Dioxide	ppm	4.67	5.05	6.35	7.55	5.97		
3	Oxide of Nitrogen	ppm	30.65	33.59	32.44	38.46	35.66		
4	Non Methyl		Not Detected	Not Detected	Not Detected				
5	Carbon Monoxide	mg/m³	0.0252	0.0202	0.0265	0.0398	0.0313		

<u>epl-7</u>

Table No.: 3H.3 - DG Sets Noise Level Monitoring Results for the period: April-22 To September-22

Sr. No.	DG Set Average Noise Level In Leq. dB(A)						
	Sampling Location	At 1 m from the	enclose outside				
	Sampling Date	May-22 28/05/2022	August-22 26/08/2022				
1.	DG Set # 1MRSS (SS5)	72.6	70.5				
2.	DG Set # 2 SS7B	69.5	72.1				
3.	DG Set # 3Marine (SS8)	70.8	73.6				
4.	DG Set # 4Silo (SS11)	73.2	71.5				
5	DG Set # 5 (SS7A)	71.4	72.4				

< 1/D

Annexure 4: Green Belt Details

Adani Petronet Dahej Port Pvt. Ltd., Dahej Green Zone details up to September 2022

Sr. No.	Green Zone No	Location	Area in (Hect.)	Tree (No.)	Tree Spp.	Shrubs (Sq. Mt.)	Green Carpet (Sq.Mt.)	Palm	Remarks
		00.2	0.02	200	İxora		(-,-,/		
		CG-3	0.01	139 270	Hibicus Eranthemum				
			0.45	500	Delonix regia			l '	
			0.23	250	cassia simia		+		1
			0.20	450	Coconut spp.		-		1
		PMC office area Landscape	0.10	400	Shrub	1000			1
			0.15		Lawn	1000	1500		Implimented
1	68 (a)						1500		1
	-		0.020		Palm			50	-
			0.008000	20	peltoferum				1
		Back side lakhibaba temple &Boundry site plantation (phase -1)	0.39	1300	Casurina Equsitifolia				
		Back side lakhibaba temple &Boundry site plantation (phase -1 a)	0.27	600	Casurina Equsitifolia				Implimented
		Total	1.88	3120,00		1000.00	1500,00	50.00	
		Gcptcl boudry wall site plantation (phase-1)	1.35	6000	Casurina Equsitifolia				Implimented
		APPPL office area (SS-7)	0.36	450	Delonix regia				Implimented
2	68 (b)		0.16	700	Delonix regia				Implimented
2	00 (D)	Control to the state of the sta	0.10		Shrub	1000			
		Goptol boudry wall site plantation (phase-1 a)	0.8		Lawn		8000		
			0.04		Palm		 	100	
		Total	2.81	7150.00		1000.00	8000.00	100.00	
			0.95	4200	Casurina Equsitifolia		1		Implimented
3	68(C)	LNG Site Boundry wall site plantation	0.04	4200	Palm Palm		\vdash	100	implimented
	00.10						+	100	H
4	68 (d)	Stack yard	0.72	3200	Casurina Equsitifolia				Implimented
		Total	1.71	7400.00		0.00	0.00	100.00	
			0.77	1700	Casurina Equaltifolia				1
			1.53	1700	Conocarpus				
	00 (=)	Dond site Assessed two destricts	1.08	1800	Conocarpus				
5	68 (e)	Road site Avenue tree plantation	0.30		Shrub	3000			1
			0.02		Lawn		200		1
			0.02		Palm		+	200	1
		Total			1 4011	****			
			3.78	5200.00		3000.00	200,00	200,00	
		Beautification from Main Gate to GCPL Divider (Bhutmama Temple)	0.39	2200.00	neerium				
			3.75	1500	Peltofouram		ļ	L	Implimented
			0.60	500	Azardirecta indica				Implimented
			0.26	320	Conocarpus				
			0.32	810	Conocarpus				
6	68 (f)	Main gate Area	0.24	525	Conocarpus Casurina Equatifolia		+		
-	07		0.24	220	Conocarpus		\vdash		
				500			+		
			0.23	500	Golden Bamboo		+		
			0.35		Shrub	3450	\perp		
			0.25		Lawn		2500		
		Total	6.73	4375.00		3450.00	2500.00	0.00	
			1,13	5000	Casurina Equsitifolia				Implimented
			0.0175	175	Paltoferoum				
7	68 (g)	Railway yard area Phase 1	1.13	5000	Casurina Equsitifolia		+		
	107	Controlly Assessment Control	0.15	255	Conocarpus		\vdash		
				200	Palm		+	200	Institute of the
		Total	0.08	404	Fall		+	200	Implimented
		i Otali	2.50	10430.00		0.00	0.00	200.00	
		cg-2	0.05	500.00	Conocarpus		1 1		
		*	0.0130]	neerium	130.00	1 1		1
	Ī		0.44	1680	Shrubs and forest tree plantation			L '	
		Permenant Godown area	0.15		Srub	1500			
		Hermenant Godown area	0.21		Lawn		2100		
			0.06		Palm		 	150	
			1.23	3086	Conocarpus /Casurina		+		
							\vdash		
8	68 (h)	Coal Yard Area	0.12	523	Conocarpus		+		
			0.03	120	peltoferum		+		
			0.12		Lawn	1200	\perp		
	L		0.72	3200	eucalyptus /conocarpus		!		
	ŀ	Perifery road side	0.72						
		Perifery road side	0.05		Shrub		500	!	1
	-	Perflery road side Dahej Ramji Tempte Green belf	0.05				500	150	
	-		0.05 0.24	800	Palm		500	150	
	-	Dahej Ramji Temple Green belt	0.05 0.24 0.72	800		2700.00			
			0.05 0.24	800 9409.00 47084.00	Palm	2700.00 11150.00	2600.00 14800.00	300.00 950.00	

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector-10-A, Gandhinagar-382 010

Phone: (079) 23226295 : (079) 23232156 Website: www.gpcb.gov.in

By R.P.A.D.

CONSOLIDATED CONSENT AND AUTHORIZATION (CC & A) CCA NO: AWH- 109820

NO: GPCB/BRCH-B/CCA-06(7)/ID-31664/

DT:

In exercise of the power conferred under section-25 of the Water (Prevention and Control of Pollution) Act-1974, under section-21 of the Air (Prevention and control of pollution)-1981 and Authorization under rule 3(c) & 5(5) of the Hazardous waste (Management and Handling & Trans boundary movement) rules, 2008 framed under the Environmental (Protection) Act- 1986. This Board is empowered to Grant CC&A.

And whereas Board has received consolidated consent application letter No. 177366 dated 30.06.2020 for the Consolidated Consent and Authorization (CC & A) of this board under the provisions/ rules of the aforesaid Acts. Consents & Authorization are hereby granted as under:

CONSENTS AND AUTHORISATION

(Under the provisions/rules of the aforesaid environmental acts) M/s ADANI PETRONET (DAHEJ) PORT PVT LTD **AT & PO LAKHIGAM-392130** TAL- VAGRA. DIST-BHARUCH.

- 1. Consent Order No. AWH- 109820 date of issue 19.10.2020
- 2. The consents shall be valid up to 16/07/2025 for use of outlet for the discharge of trade effluent and emission due to operation of Port/ Jetty having facilities for storage and Distribution of Solid Cargo handling facility of 0.99 MMTPM at Adani Petronet (Dahej) Port Pvt. Ltd. Village: - Lakhigam - 392130, Tal: - Vagra, District: - Bharuch.
- 3. SUBJECT TO THE FOLLOWING SPECIFIC CONDITIONS: -
- The applicant shall comply with the Environment Protection Act- 1986, Hazardous Waste 3.1 (Management, Handling & Transboundary Movement) Rule-2008, Forest (Conservation) Act - 1980 and Rule 1981. The Petroleum and Minerals Pipeline (Acquisition of Right of User land) Act 1962
- 3.2 Necessary Clearance for the adequacy of safety measures shall be obtained from concerned
- authorities.

 The applicant shall obtain necessary permission for acquisition of land for infrastructure 3.3 Corridors (Rail & Road) from the concerned authorities.
- 3.4 On site - off site emergency plan & disaster management plan shall be prepared.

Clean Gujarat Green Gujarat

ISO - 9001 - 2008 & ISO - 14001 - 2004 Certified Organisation

- 3.5 Application shall provide all required / adequate measures for controlling water pollution, air pollution and noise pollution resulting during construction phase & operation phase.
- The applicant shall have to comply with the Manufacture, Storage and Import of Hazardous Chemicals Rule, 1989 framed under the Environment (Protection) Act-1986.
- 3.7 Adequate provisions infrastructure facilities such as water supply, road, sanitations etc. should ensure to avoid environmental degradation in the surrounding areas. These facilities should be brought into existence during the construction phase/ and will remain in existence therefore asperof the infrastructure built up in the area for local development purpose.
- 3.8 Adequate culverts should be provided incivil structures in the intertidal area to allow for freeflow of water.
- 3.9 All details regarding the mangrove belt and other forestation work must be worked out in consultation with the state forest department and details sent to GPCB.
- 3.10 Ground water extraction will not be allowed at any stage.
- 3.11 Adequate noise control measures should be ensured in various projects—activities—and due—to increase in traffic, which is take place during construction and operation phase.
- 3.12 An organization structure should with latest R&D facilities and suitable equipment for environmental andforestry management activities through creation of environment management cell. Adequate funds should be earmarked for this cell.
- 3.13 To prevent discharge of bilge wastes sewage and other liquid wastes from the oil tankers/ships into marine environment, adequate system for collection treatment and disposal of waste must be provided as per provisions of MARPOL convention.
- 3.14 Solid waste shall be disposed of at approved landfill site.
- 3.15 All measures for control of environmental pollution shall be provided before putting the port terminal & storage facilities into operation and the responsibility tor adhering to all norms of environment& pollution control shall rest with the project developer.
- 3.16 All design, contraction & operation philosophy as specified in the comprehensive marine environmental impact assessment will be adhered to.
- 3.17 A specific Oil Spill Response Plan shall be prepared before commissioning of the Project.

4. CONDITIONS UNDER THE WATER ACT: -

- 4.1 The quantity of total water consumption shall not exceed 4500 KL/day
- 4.2 The generation and disposal of the industrial effluent from the manufacturing process and other ancillary industrial operations shall be NIL.
- 4.3 The quantity of Sewage effluent from the factory shall not exceed 80KL/Day
- 4.4 The applicant shall provide adequate sewage treatment facilities in order to achieve the quality of the treated effluent.
- 4.5 Sewage shall be treated separately to conform to the following standards and utilized on land for irrigation / plantation.

OUKWALO

PARYAVARAN BHAVAN

Sector-10-A, Gandhinagar-382 010

Phone : (079) 23226295 Fax : (079) 23232156

Website: www.gpcb.gov.in

4.6 80 KL/Day domestic sewage shall be treated separately in sewage Treatment Plant (STP) to conform the following standards and treated sewage shall be utilized on land for irrigation/Plantation.

BOD (5 Days at 20°C)	Less than 20 mg/l
Total Suspended Solids (TSS)	Less than 30 mg/l
Residual Chlorine	Minimum 0.5 ppm

All efforts shall be made to remove colour& unpleasant odour as far as practicable.

- 4.7 The final treated effluent confirming to the above standards shall be discharged on land for irrigation plantation purpose within the premises only.
- 5 CONDITIONS UNDER THE AIR ACT: -

5.1 The following shall be used as fuel in D.G. Sets.

Sr. No.	Fuel	Quantity
1.	Diesel	12500 lit/day

5.2 The flue gas emission through stack attached to D.G. sets shall conform to the following standards.

Sr. No.	Stack attached to	Stack height (m)	АРСМ	Parameter	Permissible limit
1	DG set* 3000 KVA 4 nos. in phases	11m (for		PM SO2	150 mg/NM3 100 ppm
2	DG set* 380 KVA 1 nos. in phases	each DG)		NOX	50 ppm
3	DG set* 40 KVA 1 nos. in phases				
4	DG set* 125 KVA 4 nos. in phases				

^{*}It will be used only in case of failure of power supply.

5.3 There shall be no process emission from operation of I Jetty having facilities for Storage and Distribution of Cargo handling.

5.4 The concentration of the following parameters in the ambient air within the premises of the unit shall not exceed the limits specified hereunder.

Sr. No.	> Parameters	Permissible Limit (microgram /m³)				
	N'Y	Annual	24 Hours Average			
1.	Particulate Matter (PM ₁₀)	60	100			
2.	Particulate Matter (PM _{2.5})	40	60			
3. ~9	Oxides of Sulphur (SO _x)	50	80			
4,	Oxides of Nitrogen (NO _x)	40	80			

Clean Gujarat Green Gujarat

- Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.
- 24 hourly or 08 hourly or 01 hourly monitored values, as applicable, shall be complied with 98% of the time in a year. 2% of the time, they may exceed the limits but not on two consecutive days of monitoring.
- 5.5 Unit shall operate industrial plant / air pollution control equipment very efficiently and continuously so that the gaseous emission always conforms to the standards specified as above.
- 5.6 The consent to operate the industrial plant shall lapse if at any time the parameters of the gaseous emission are not within the tolerance limits specified as above.
- 5.7 Unit shall provide portholes, ladder, platform etc at chimney(s) for monitoring the air emissions and the same shall be open for inspection to/and for use of Board's staff. The chimney(s) vents attached to various sources of emission shall be designed by numbers such as S-1, S-2, etc. and these shall be painted/ displayed to facilitate identification.
- Unit shall take adequate measures for control of noise levels from its own sources within the premises so as to maintain ambient air quality standards in respect of noise to less than 75 dB(a) during day time and 70 dB (A) during night time. Daytime is reckoned in between 6a.m. and 10 p.m. and nighttime is reckoned between 10 p.m. and 6 a.m.
- 6 AUTHORISATION FOR THE MANAGEMENT & HANDLING OF HAZARDOUS WASTES Form-2 (See role 3 (c) & 5 (5))

Form for grant of authorization for occupier or operator handling hazardous waste

- 6.1 Number of authorization: AWH-109820.
- 6.2 M/s. Adani Petronet (Dahej) Port Pvt Ltd is hereby granted an authorization to operate facility for Following hazardous wastes on the premises situated at AT &PO· LAKHIGAM-392130, TAL-VAGRA, DIST-BHARUCH.

Sr. No.	Type of Waste	Quantity	Category	Mode of disposal
1.	Sludge and filters contaminated with oil	10 MT/Year	I-3.3	Collection, storage, Transportation and Disposal by sent to approved CHWIF/ co-processing facility
2.	Used /Spent Oil	20 MT/Year	5.1	Collection, storage, transportation and disposal by utilized for lubrications of machine s & remaining selling to register refiners/re-processors

OUKWALA

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector-10-A, Gandhinagar-382 010

Phone : (079) 23226295 Fax : (079) 23232156

Website: www.gpcb.gov.in

3.	Wastes or residues containing Oil	10 MT/Year	I-5.2	Collection, storage, Transportation and Disposal by sent to approved CHWIF/co-processing facility
4.	Process wastes, residues & sludge(paint)	10 MT/Year	I-21.1	Collection, storage, Transportation and Disposal by sent to approved CHWIF/co-processing facility
5.	Empty barrels/containers/liners /contaminated with hazardous chemical/waste	10 MT/Year	l-33.1	Collection, Storage, Decontamination Transportation & disposal by selling to approved recyclers
6.	Contaminated cotton rags or other cleaning materials	10 MT/Year	I-33.2	Collection, storage, Transportation and Disposal by sent to approved CHWIF/co-processing facility

- 6.3 The authorization is granted to operate a facility for collection, storage, within the factory premises, transportation and ultimate disposal of Hazardous wastes as per mode of disposal mention in table above.
- 6.4 The authorization shall be in force for a period up to date 16/07/2025.
- 6.5 The authorization is subject to the conditions stated below and such other conditions as may be specified in the rules from time to time under the Environment (Protection) Act-1986.

7 TERMS AND CONDITIONS OF AUTHORISATION:

- 7.1 The authorised person shall comply with the provisions of the Environment (Protection) Act, 1986, and the rules made there under.
- 7.2 The authorisation or its renewal shall be produced for inspection at the request of an officer authorised by the Gujarat Pollution Control Board.
- 7.3 The person authorised shall not rent, lend, sell, transfer or otherwise transport the hazardous and other wastes except what is permitted through this authorisation.
- 7.4 Any unauthorised change in personnel, equipment or working conditions as mentioned in the application by the person authorised shall constitute a breach of his authorisation.
- 7.5 The person authorised shall implement Emergency Response Procedure (ERP) for which this authorisation is being granted considering all site specific possible scenarios such as spillages, leakages, fire etc. and their possible impacts and also carry out mock drill in this regard at regular interval of time;
- 7.6 The person authorised shall comply with the provisions outlined in the Central Pollution Control Board guidelines on "Implementing Liabilities for Environmental Damages due to Handling and Disposal of Hazardous Waste and Penalty"
- 7.7 It is the duty of the authorised person to take prior permission of the Gujarat Pollution Control Board to close down the facility.

Clean Gujarat Green Gujarat

- The imported hazardous and other wastes shall be fully insured for transit as well as for any 7.8 accidental occurrence and its clean-up operation.
- The record of consumption and fate of the imported hazardous and other wastes shall be 7.9 maintained.
- The hazardous and other waste which gets generated during recycling or reuse or recovery 7.10 or pre-processing or utilization of imported hazardous or other wastes shall be treated and disposed of as per specific conditions of authorization.
- The importer or exporter shall bear the cost of import or export and mitigation of damages 7.11 if, any.
- An application for the renewal of an authorization shall be made as laid down under 7.12 Hazardous & Other Wastes (Management and Transboundary Movement) Rules-2016.
- Any other conditions for compliance as per the Guidelines issued by the Ministry of 7.13 Environment, Forest and Climate Change or Central Pollution Control Board from time to time.
- 7.14 Annual return shall be filed by June 30th for the period ensuring 31st March of the year.
- Unit shall have to display the relevant information with regard to hazardous waste 7.15 as indicated in the Court's order in W.P. No. 657 of 1995 dated 14th October 2003.
- 7.16 Unit shall have to display on-line data outside the main factory gate with regard to and nature of hazardous chemicals being handled in the plant, including waste water and air emission and solid hazardous waste generated within the factory premises.
- 7.17 Unit shall have to manage used or spent oil; empty or discarded barrels / containers / liners contaminated with hazardous chemicals / wastes, process waste as per Other Wastes (Management and Transboundary Movement) Rules-2016, framed under the E(P)Act-1986 and shall apply Authorization for all applicable waste.

For and on behalf of **GUJARAT POLLUTION CONTROL BOARD**

(P.B. Patel)

Dy. ENVIRONMENT ENGINEER

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector-10-A, Gandhinagar-382 010

Phone : (079) 23226295 Fax : (079) 23232156

Website: www.gpcb.gov.in

By R.P.A.D.

CONSOLIDATED CONSENT AND AUTHORIZATION (CC & A – Amendment) CCA AMENDMENT NO: AWH - 116434

NO: GPCB/BRCH-B/CCA-6 (7)/ID-31664/

DT: /03/2022

To.

M/s. Adani Petronet (Dahej) Port Pvt Ltd At & PO: Lakhigam,

Tal: Vagra, Dist: Bharuch.

SUB: Amendment in Consolidated Consent & Authorization (CC&A) under various

Environmental Acts/Rules.

REF: (1) Your application No. 201795 dated 02/09/2021.

(2) CCA No. AWH-109820 dated: 01/11/2020.

(3) CTE Amendment No: 111311 dated 22/02/2021

Sir.

This has reference to the CCA order no: AWH-109820 issued vide letter no. GPCB/BRCH-B/CCA-06 (7)/ID-31664/571845 dated 01/11/2020 which stands amended as under.

The Validity of this order shall be up to 16/07/2025.

1. Unit shall operate following facility:

Sr. No.	Name of Facility	Quantity/Capacity (MMTPM)		ty
		Existing	Proposed	Total
1.	Port/Jetty having facilities for storage and distribution of solid cargo handling facility	0.99	0.35	1.34

2. Specific conditions:

- a) Unit shall comply with all the conditions stipulated by MoEF & CC in the order of Environment Clearance & CRZ clearance issued vide letter no. F. No. 11-37/2007-IA III dated 14/10/2016.
- b) Unit shall not carry out any construction activities and production which attracts provisions of Environment Clearance without obtaining EC from competent authority under EIA notification dated 14/09/2006 and amended thereafter.
- c) Unit shall maintain ZLD.
- d) There shall be no change in water consumption, waste water generation and its mode of disposal due to proposed expansion.
- e) There shall be no change in fuel consumption and flue gas emission due to proposed expansion.
- There shall be no process gas emission due to proposed expansion.
- 'g) There shall be no change in Hazardous waste quantity / category due to proposed expansion.

Page 1 of 2

Clean Gujarat Green Gujarat

ISO - 9001 - 2008 & ISO - 14001 - 2004 Certified Organisation

- h) Unit shall follow coal storage and handling guideline framed by the Board.
- 3. All other conditions of the CCA order no: AWH-109820 issued vide letter no. GPCB/BRCH-B/CCA-06 (7)/ID-31664/571845 dated 01/11/2020 shall remain unchanged.

FOR AND ON BEHALF OF GUJARAT POLLUTION CONTROL BOARD

(IREAN KAGZI) DY. ENVIRONMENT ENGINEER

Outrated to: 62 to all 103 12022

<u>Annexure – 6</u>: Environment Budget and Expenditure for the FY: 2022-23

S. NO.	ACTIVITY/ CATEGORY	Cos	Budgeted Cost (INR IN Lacs)		
		2020- 2021	2021-2022	2022-2023	2022-2023
1.	EHS Manpower	6.85	5.5	3.00	7.0
2.	Legal & Statutory Expenses	7.16	1.12	0.15	1.0
3.	Environmental Monitoring Services	16.52	14.71	5.50	16.0
4.	Cost for Water Consumption and use dust suppression	46.08	84.62	134.0	126.0
5.	Hazardous Waste Management & Disposal	2.72	1.32	2.00	3.0
6.	Greenbelt Development and Plantation	44.00	38.0	15.58	42.21
7.	O&M of Sewage Treatment Plant	6.77	5.99	3.00	6.0
8.	Environment Day Celebration	0.10	0.36	0.35	0.50
9.	Treatment and Disposal of Bio- Medical Waste	1.92	1.92	1.00	2.0
10.	Operation and Maintenance of Road Cleaning equipment and manpower	49.83	61.68	24.27	62.26
11.	Operation and Maintenance of Fire staff engage in water sprinkling activity	59.70	99.04	38.94	89.19
12.	Environmental Study / Audit and Consultancy	3.07	0.54	0.30	1.0
13.	Bio Shield Project at village Malpur & Jambusar, Bharuch 1000m x 200m(1.0km)	6.78	4.07	2.30	3.0
14	Environment Display Board	5.36	0.39	0	1.0
	Total Amount (In Lacs)	256.86	319.26	230.39	234.16

<u>Annexure-7</u>: Compliance Status of EMP as mentioned in the EIA study For Phase-III Expansion of Adani Petronet (Dahej) Port Pvt. Ltd.,

S. No	EMP Conditions	Compliance Status
Α.	ENVIRONMENTAL MANAGEMENT PLAN (C	CONSTRUCTION PHASE)
1.1	Air Quality Management Plan	,
	Dust suppression systems will be installed for	Complying with. Water sprinkler and mist canon is being used to suppress the fugitive dust during construction activity.
	Regular wetting of roads will be undertaken on the paved and unpaved artillery roads.	Complying with. Regular wetting of roads is undertaken on the paved and unpaved arterial roads.
	Vehicle tyre washing facilities will be provided at the entrance to prevent spillover of dust sticking on tyre outside the facility.	
	Construction materials kept in open area will be provided with barrier in order to prevent wind carryover of dust.	Construction material is being kept in a secure area.
	Construction materials transportation in and outside the port will be appropriately covered to prevent fugitive dust emissions.	Material transportation is being done through trucks covered with tarpaulin.
	Civil and Mechanical fabrication works will be carried out within the port facility at an appropriate location to avoid impact on the local air quality at project construction site.	Complying with. Civil and Mechanical fabrication is being done within the port premises.
	All construction equipment's at site will be subjected to regular maintenance to minimize the vehicle exhaust.	All vehicles are being regularly maintained to minimize the vehicle exhaust.
	All trucks deployed at site will be provided with fitness and pollution under control certificate.	All vehicles are being checked for PUC Certificate.
	DG set with appropriate stack height as per CPCB guidelines for effective dispersion of pollutants shall be provided.	
1.2	Noise Quality Management Plan	
	DG set with acoustic enclosure will be installed for power supply to construction activities.	All DG sets (standby source) are provided with acoustic enclosures.
ii.	All high decibel noise generating equipment's should be repaired to meet the compliance noise level.	Complying with. Noise generating equipment's are provided with acoustic enclosures.
	No activity involving with high intensity and magnitude of operation should be deployed. Silencers will be provided in Vehicle exhaust.	 Complying with. All construction and operation activities are in compliance with the Noise level Norms.
		 Monitoring of noise level is being done by M/s Pollucon Laboratories, NABL accredited, and MoEF&CC recognized laboratory.

S. No.	EMP Conditions	Compliance Status
1101		Monitoring reports are presented in the Annexure 3G.
	Onsite fabrication activities will be undertaken at a designated location, which should be located away from the office buildings and any other working areas.	Complying with. Separate designated fabrication yard has been provided.
	In case noise emissions from the fabrication activities exceed a level of 85 dB(A) at the fence-line of the fabrication yard, temporary noise barrier will be installed.	
	Portable diesel engine generators and diesel engine driven compressors, if any, will be covered with acoustic enclosures.	Complying with.
1.3	Sewage Management Plan Sewage generated from the construction site will be treated in existing STP of 27 m³ capacity. Treated water will be used for green belt development / landscaping after achieving GPCB prescribed standards.	Domestic effluent is being treated in STPs. The treated water confirming to the norms is
1.4	Solid and Hazardous Waste Management P	
	Solid waste generated will be segregated at source for biodegradable and non-biodegradable with an option of reuse or recycle before disposal	 Complying with. All solid waste is being segregated for biodegradable and non-biodegradable. Biodegradable waste is being decomposed in vermicomposting yard and other waste is being disposed in compliance to the Solid Waste Management Rules - 2016.
	All hazardous waste generated will be categorized as per Hazardous Waste Management Rules, 2008.	
	Recycle/Reuse waste will be sold to authorized recyclers	Complying with. Recyclable waste such as used oil, Discarded drum etc. is being sold to authorize recyclers only.
1.5	Construction Phase Storm Water Runoff	
	Existing storm water drainage network will be further strengthened and developed near the project site to prevent surface runoff to the sea.	Storm water drainage system has been provided and regular maintenance is being done.
B.	ENVIRONMENTAL MANAGEMENT PLAN (C	
2.1	Air Quality Management Plan - Coal Handli Appropriate stack height will be provided to DG sets to disperse the gases into the atmosphere as per the guidelines suggested by Central Pollution Control Board. Existing Port has installed robust dry fog dust	Complying with. All DG sets (standby source) are provided with stack height in compliance to the CPCB standards.
	suppression system (DFDS) at the Jetty,	

S.	EMP Conditions	Compliance Status
No.	Road sweeping of dust is being undertaken using mobile van thereby preventing settled dust gets airborne due to movement of vehicles and high wind velocity and the same is recommended. High-capacity vacuum cleaning machine installed at mobile truck is deployed for removal of dust settled on roads and the same practices will be implemented in the proposed project.	Complying with. Road cleaning both inside and outside the port premises is a continuous activity carried out by below two methods. The road sweeping by both methods is carried out till 3 Km from the port main gate on the main road leading to Dahej by APDPPL. • Road cleaning by sweeping machine: APDPPL, have 02 nos. of large capacity road sweeping machine. Truck mounted Industrial Vacuum Cleaning Machines have road cleaning capacity substantially as the storage capacity of the chassis mounted vacuum machine are 04 tone/ hour each which allow rapid collection of spillage, dust and subsequent disposal. Manual Road Cleaning: In addition to the sweeping machine APDPPL has employed labour for continuous cleaning of roads both inside and outside the port area. It is done by three team consisting of 5 members each. All the coal dust collected is sent to the coal yard.
	Regular wetting of the roads is undertaken through dedicated truck mounted spray arrangement with least water consumption. The same will be implemented in the proposed activities.	Sprinkling of water is being done on the
2.2	Noise Control Management Plan	
	High speed rotating equipments such as gantry cranes motors, hydraulic systems will be installed within-built acoustic systems to maintain the noise decibel as per the manufacturer specifications	Mechanization of the south jetty is yet to be
	DG sets installed in open area will be provided with acoustic enclosure	DG sets installed in open area are provided with acoustic enclosure
	Compressors and Diesel generators and pump house will be installed in separate building provided with noise absorbing materials on the walls	Complying with. Compressor and DG sets & Pump house are installed in separate building and provided with acoustic enclosures.
	Movement of vehicles within the port will be restricted with speed control measures	 Complying with. Speed is limited within the port premises. Proper signage also provided within the premises.
	Using silent exhaustion pipes for major diesel engine vehicles and heavy trucks operated inside the port	

S.	EMP Conditions	Compliance Status
No.		·
	Planting trees which act as barrier to arrest dispersion of noise levels along the internal roads and port boundary	Green belt is being developed in an area of 23.39 ha including periphery of the project boundary. The green belt has been developed with plantation of native species and species which helps in creating a barrier for coal dust movement.
	Using electricity powered equipment inside the port instead of diesel-powered ones will be explored to the extent possible	Liebherr & Gottwald Crane, Stacking & Reclaiming Conveyor, BWSR equipment are using electricity powered instead of diesel powered inside the port.
	implemented to modify operation to address noise pollution if occurs	Complying with. APDPPL is certified with the ISO 9001:2015, ISO 14001:2015, and ISO 45001:2018, ISO 50001:2018, ISO 28000:2007. A proper change management process in place for any kind of deviation. However, there is no occurrence of noise level exceeding norms.
2.3	Storm Water Management Plan	
	Following areas will be provided with storm water drainage systems to prevent any surface run-off into the sea. Reclamation of 23 Ha back up area Coal stockpile development of 7.7 Ha area Railway siding area	
	 The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. 	Runoff from the coal storage is being routed through dump pond where all the particles settled down.
2.4	Solid & Hazardous Waste Management Plan	
	Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be anchored for collection of waste due to windblown into the sea.	A waste management plan is in place and a boat is provided to collect the waste blown due to high wind into the sea.
	In addition to the plan, the wastes that are expected to be generated will be disposed accordingly. The hazardous waste generated from the port operation will be disposed as per the HWM Rules 2008.	All the wastes are being managed in compliance to the respective waste management rules as amended.
	Solid Waste generated during port operations will be disposed as per Solid Waste (Management & Handling) Rules 2000. Wherever possible the recycle and reuse will be explored for possibilities of recovery of any useful material. Option for recycle/reuse if not economical, then the waste will be disposed as per the SWM Rules, 2000.	
2.5	Green Belt Development Plan:	

S. No.	EMP Conditions	Compliance Status
NO.	It is proposed to develop nearly 6 ha. of green cover all along the boundary of the port. Green Buffer Zone is being implemented at Eastern project site along the boundary. Saplings of Casuarina and Pedilanthus are planted along the coal stacking yards and periphery of port area. It is proposed to develop further three tier greenbelt to increase efficiency of dust control.	Three tier green belt is being developed in an area of 23.39 ha including periphery of the project boundary. The green belt has been developed with plantation of native
2.6	Community Development Plan	
	The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can be initially implemented in the five villages of the study area that is Lakhigam, Luvara, Jageshwar, Ambetha and Dahej. Based on the outcome of the CSR programs, it can be expanded to the other villages apart from the study area. The proposed CSR Programs can be grouped into the following subheadings. ✓ Health Promotions Programs ✓ Health Camps and Health Awareness programs on Institutional Births and Immunization programs	The CSR activities are executed by Adani Foundation. Adani Foundation is taking care
	✓ Mobile Clinic	
	Education Promotion Programs ✓ Providing sustenance funds for maintaining School Infrastructure like Drinking water Facilities, Sanitation facilities and providing supplies etc ✓ Providing scholarship programs ✓ Sport Coaching centre	
	Economic Development Programs ✓ Knowledge centre regarding various government schemes and latest technology ✓ Skill Development Training Programs	
	Women Empowerment ✓ Sanitation Promotion Programs ✓ Construction and Maintenance of Sanitation complex ✓ Awareness Programs	
	Infrastructure development Programs ✓ Developing internal roads of villages ✓ Developing drainage systems ✓ Solar Street Lights ✓ Construction / Maintenance of Community Halls	
2.7	✓ Social Forestry Village Specific Infrastructure Development Programs:	

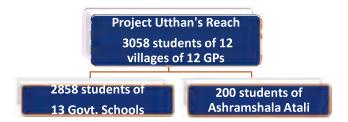
S.		EM	P Conditions	Compliance Status
No.	S.	Village	Programs	
	No.	Luvara	Developing proper drainage system in the village.	
	2.	Dahej	Providing Safe Drinking water Facilities in the schools	
	3.	Dahej	Developing medical facilities in the PHC such as facilities for storage of perishable medicines,	
	4.	Jageshwar	Developing Drainage System	
	5.	Lakhigam	Developing Drainage System	
	6.	Lakhigam Luvara Jageshwar	Developing Solar Street Light and Internal Village Roads	
	7.	Ambetha	Developing Drainage System	
	8.	Study Area Villages		
	9.	Study Area Villages	Developing Safe Drinking facilities at Schools in the study area.	
	10.	Jageshwar	Providing training programs on latest technology of fishing, free fishing equipments and providing vocational training programme for alternate income source.	
2.8	Envi	ronmental N	lanagement Cell	
	APPI main Cell supp hortic comp	PL has a tained an E (EMC) with I orted by ficulturist for bliance cond	already established and invironmental Management Head of Department (EHS), eld level executives and implementation of the itions as per Environmental	Environment cell is enclosed as Annexure –
	Clear Conc are I and labor repor	rance obtai ditions. Perio peing undert NABL a ratories. E rts are regi	ned and GPCB Consent odical monitoring activities aken by MoEF recognized accredited environmental nvironmental compliance ularly submitted to MoEF adodara and New Delhi.	9.
	EMC the resou	will be furth proposed e urces such	ner strengthened in view of expansion by augmenting as manpower and field effective compliance of	

S.	EMP Conditions	Compliance Status
No.		-
	environmental clearance conditions. Environmental monitoring program will be undertaken by MoEF recognized and NABL accredited environmental laboratories as part of compliance report preparation and its submission to GPCB, MoEF Regional Office, Vadodara and New Delhi.	
2.9	Cost Estimates for Environmental	
	Management Plan:	
	The estimated total cost of the proposed project is Rs.464.32 Crores. Under the project, about Rs.173.35 Crores is allocated towards pollution control equipment, implementation of environmental pollution control measures and environmental management programs.	Separate budget is allocated for Environmental Management activities.Separate budget is allocated for Environmental Management. Key

CSR DAHEJ
Six Monthly Report 2022-23

EDUCATION

SDG Alignment


Sustainable Development Goal 4

Goal 4. Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all

- 4.1 By 2030, ensure that all girls and boys complete free, equitable and quality primary and secondary education leading to relevant and effective learning outcomes
- 4.1.1 Proportion of children and young people (a) in grades 2/3; (b) at the end of primary; and (c) at the end of lower secondary achieving at least a minimum proficiency level in (i) reading and (ii) mathematics, by sex
- 4.2 By 2030, ensure that all girls and boys have access to quality early childhood development, care and pre-primary education so that they are ready for primary education

To foster students' learning abilities and achieve better learning outcomes at the grassroots, the Adani Foundation charted an innovative intervention in Year 2018-19 through Project Utthan at Mundra site. Same model is replicated at Dahej site. Adani Foundation, Dahej has signed an MoU with Department of Primary Education, Bharuch for implementation of project in 14 Govt. schools of project area. A separate MoU is signed with Ashramshala Atali. This comprehensive intervention entails:

- √ Adopting Government Primary Schools
- √ Tutoring Priya Vidyarthis (progressive learners)
- √ Arresting dropout rates
- √ Collaborating for teachers' capacity building
- √ Creating joyful learning spaces

Progressive Learners mainstreamed in Reading, Writing and Numeracy

Total 55 Progressive Learners out of 725 mainstreamed in Reading, Writing and Numeracy. In Reading: 19, Writing: 20 and Numeracy: 16. 725 Progressive learners identified out of 1561 students of 11 Schools from Class 3 to 6.

School Name	Number of progressive learners (Reading)	Mainstreamed (Reading)	Number of progressive learners (Writing)	Mainstream ed (Writing)	Number of progressive learners (Numeracy)	Mainstreamed (Numeracy)
Primary School Lakhigam	123	0	123	3	123	0
Primary School Luvara	69	3	69	2	69	1
Primary School Jageshwar	48	2	48	1	48	1
Primary School Ambetha	48	2	48	2	48	2
Primary School Dahej Kanyashala	112	2	112	2	112	2
Primary School Jolva	68	3	68	3	68	3
Primary School Suva	87	3	87	3	87	3
Primary School Ataliasharamshala	56	1	56	1	56	1
Primary School Koliyad	29	0	29	3	29	
Primary School Vegani	24	1	24	1	24	1
Primary School Kaladara	61	2	61	2	61	2
Total	725	19	725	20	725	16

English as a third language in Class 1- 4: Achievements

In Gujarat, the Government introduced English in class 4. Project Utthan initiated English as a third language to provide basics of English from class 1 with a structured syllabus. 530 students are covered so far.

S.N	School Name		Students	Teaching Activities	Remarks
1	Primary Lakhigam	School	84	1.ABCD identification and utter the words	, &
2	Primary Luvara	School	38	2. Three letter words identification	2. Speaking ABCD without looking into books
3	Primary Sch Jageshwar	nool	47	3.English Alphabet poem	3. Speak and write 1 to 10 numbers
4	Primary Ambetha	School		4.Numbers identification from 1 to 10	
5	Dahej Kanyas	hala	77	Utthan Sahayaks taught students	
6	Primary Schoo	ol Jolva	53	- 3 letter words with phonetics	
7	Primary Schoo	ol Suva	52	- Matching 3 letter words with pictures	
8	Primary Rahiyad	School	61	 Indoor games based on 3 letter words 	
9	Primary Vengni	School	18	- Free talk and counting numbers 1 to 50.	
10	Primary Koliyad	School			
11	Primary Kaladara	School	41		
12	Total		530		

Parental Engagement: Mothers' Meet

Project Utthan is conducting Mother's meet every month to discuss an academic and non- academic performance of the student.

Features of Mothers' meet

- Scheduled every second Saturday of each month.
- Pre decided agenda and status of action plan discussed at a length
- Meeting flow: Attendance Prayer Meeting agenda action plan recreational activities for mothers Vote of thanks

	SN	Utthan Sahayak	Village Name	Home Visit		Mothers Meet	No of Mothers	Changes
l	1	Ankitaben	Lakhigam	35	4	8	36	1.Students seating at home for
ı	2	Parulben	Luvara	37	1	5	28	homework and come with completed
ı	3	Dineshbhai	Jageshwar	39	2	7	17	homework
	4	Dimpalben	Ambetha	46	4	5	53	2. Mothers send their children regular
I	5	Arunaben	Dahej	76	2	6	23	to school
Ī	6	Alpaben	Jolva	51	3	6		3. The students come with neat and
Ī	7	Nilamben	Suva	61	3	7	67	clean at school
Ī	8	Dipikaben	Rahiyad	34	1	6	72	4. Mothers send their children regular
Ī	9	Sarojbhai	Vengni	48	1	5	31	to school
	10	Renukaben	Kaladara	71	4	8	48	 Nos of mother's participations is increased and regular follow up with Utthan Sahayaks Nos of mother's participations is increased and Mothers regular follow up with Utthan Sahayaks about her child progress.
I			TOTAL	498	25	63	407	

Summer Activities sessions in Project Utthan

Summer Session activities organized with objective of to help the students to improve their academic foundation as well as develop new skill through innovative ideas. 15 days sessions were focused on scholastic (curricular) and co-scholastic (co-curricular) areas.

School Name	Home Visit	Students covered	Pancha yat Membe r visited	SMC Member Visited
Primary School Lakhigam	12	163	1	1
Primary School Jageshwar	33	154	0	2
Primary School Koliyad	36	103	0	0
Primary School Vegni	05	84	1	0
Primary School Kaladara	69	119	0	1
Primary School Suva	10	137	1	0
Total	165	760	3	4

Reading Corners

The National Education Policy (NEP) 2020 emphasizes the importance of well-stocked school libraries and digital libraries to attain the goal of foundational literacy for all children by the year 2025. Reading corners are developed in schools where students enjoy book reading.

School Name	Books issued (Class 1 - 8)
Primary School Lakhigam	42
Primary School Luvara	26
Primary School Jageshwar	18
Primary School Ambetha	21
Dahej Kanyashala	52
Primary School Jolva	30
Primary School Suva	31
Primary School Rahiyad	34
Ashramshala Atali	33
Primary School Vengni	21
Primary School Kaladara	38
Total	346

SUPER MOM ACTIVITY

Supper Mom activity held in Utthan Project Schools (Lakhigam, Luvara, Jageshwar, Ambetha, Dahej Kanyashala, Jolva, Suva, Koliyad, Vengani and Kaladara Schools).

- Children expressed their feelings for mothers on piece of papers by drawing, slogans, paintings and poems
- Total 659 students participated from class 4 to 8th std
- Total 96 mothers also participated

OTHER ACTIVITIES

Balmela organized in 11 schools as extracurricular activity to help the students to identify different areas of interest, increase self- confidence and build leadership skill. 222 students participated in Balmela activities.

Class-room decoration activity organized in Utthan Schools with objective of creating ownership of class-room where they work and study. Total 110 students have participated from class 3 to 8th in class-room decoration activity like table decoration with flowers, birthday chart, 7 days of week chart, paper craft etc.

DAYS CELEBRATION

- **75 Independence Day celebrated** in Utthan schools. Total 1050 students participated in various programs : singing patriotic songs, dance and speeches on great freedom fighters
- National Sports Day celebrated in 14 Govt. Schools to honor the birth anniversary of hockey hero Late Shri. Major Dhyan Chand. Utthan Sahayaks shared a short biography of Shri Major Dhyan Chnad in morning assembly, mini sports tournament for mothers and students were held and sports quiz competition were also organized for class 5 to 8 students.
- Rakshabhandahan celebrated in 13 Schools. Class 1 to 8 participated in the biodegradable Rakhi making activities and tying with trees.
- **Teachers' Day Celebration:** Total 230 students of class 6 to 8 participated in playing role of teachers. 13 no. of students selected as Headmasters' role in the schools
- Grand Parents Day Celebrated with 233 grand parents. They were greeted in special morning assembly with roses and cards made by the students.
- Hindi Diwas Celebrated in 11 schools with 2001 students. Students of class 6 to 8 presented Dohas of SaintTulsidas & Saint Kabir and wrote essays.
- World Yoga Day" celebrated in 14 schools of Vagra taluka by various activities and celebrations were held from 14th June to 22nd June 2022 at different places in which a total of 1350 children participated enthusiastically.

GSA @ 60 CELEBRATION

Sh. Gautambhai Adani Sir's 60th Birthday celebrated in 31 schools of Bharuch district. 6000 sweet packets distributed among the students. On this occasion Govt. officials, teachers, utthan sahayaks and students sent their best wishes to GSA Sir.

SUSTAINABLE LIVELIHOOD DEVELOPMENT

PASHUDHAN PROGRAM

SDG Alignment: 2/1.1, 2.5

Goal 2. End hunger, achieve food security and improved nutrition and promote sustainable agriculture

1.1 By 2030, eradicate extreme poverty for all people everywhere, currently measured as people living on less than \$1.25 a day

2.5 By 2020, maintain the genetic diversity of seeds, cultivated plants, and farmed and domesticated animals and their related wild species, including through soundly managed and diversified seed and plant banks at the national, regional and international levels, and promote access to and fair and equitable sharing of benefits arising from the utilization of genetic resources and associated traditional knowledge, as internationally agreed

KEY HIGHLIGHTS

- Total 220 inseminations were done out of which 115 inseminations in cows i.e., 53% against total inseminations and remaining 105 in buffaloes i.e., 47% against total inseminations. Buffaloes are seasonal breeder therefore their breeding season will start from August onwards to January.
- Total 115 inseminations were done in cows out of which 66 inseminations were done w.e.f. April to September 2022 for which follow up was done for confirm pregnancy and 31 cows are found confirm pregnant. Conception rate in cows is 47%.
- Total 106 inseminations were done in buffaloes out of which 38 inseminations were done w.e.f. April to September 2022 for which follow up was done for confirm pregnancy and 19 buffaloes are found confirm pregnant. Conception rate in Buffaloes is 50.00%.
- Total 55 inseminations done in Gir cows and 45 non-descript cows inseminated with the use of pure Gir Semen.
- Highest number of inseminations were done in village Vengni 83 where 37.72% against total number of inseminations during this period followed by Dahej and Lakhigam where 15% and 10.45% inseminations were done.
- On 100% Follow up basis 95 inseminations was completed which were done w.e.f. April to June 2022. Examination of 95 animals was done for confirm pregnancy out of which 50 animals were found confirm pregnant to overall conception rate is 52.63% nearly 53%.
- Total 92 calving reported during this period out of which 52 are in cows and 40 in buffaloes.
- Total 51 female calves are born out of 92 calving.

	Cattle Breeding Center Village Wise Details April to September- 2022													
		Al		Pregn	ancy Diag	gnosis	Confe	orm Pregi	nancy	Cow	Calving	Buff	Calving	Total
Village	Cow	Buff	Total	Cow	Buff	Total	Cow	Buff	Total	Male	Female	Male	Female	TULAI
Lakhigam	15	18	33	20	30	50	16	16	32	8	5	3	4	20
Luvara	14	9	23	10	7	17	3	8	11	1	1	1	0	3
lageshwar	3	11	14	9	21	30	6	9	15	2	2	11	11	6
Ambheta	0	10	10	2	11	13	1	7	8	0	0	0	1	1
Dahej	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jolva	0	4	4	0	4	4	0	1	1	0	0	0	1	1
Suva	1	18	19	2	13	15	2	4	6	0	0	0	2	2
Rahiyad	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Koliyad	1	7	8	0	12	12	0	6	6	0	2	3	3	8
Atali	68	15	83	92	22	114	35	10	45	7	8	0	2	17
Vegni	9	10	19	8	14	22	5	6	11	7	7	8	10	32
Kaladra	4	4	8	4	4	8	2	2	4	0	2	0	0	2
Total	115	106	221	147	138	285	70	69	139	25	27	16	24	92

SEX SORTED SEMEN

- During the year 2022-23 (up to September 2022), total 78 Artificial inseminations with the use of sex sorted semen were performed out of which follow up of 9 inseminations for confirm pregnancy was completed, 4 animals are found confirm pregnant
- During the year, total 11 calving reported and all 11 are female calves

CAPACITY BUILDING

5 nos. of trainings on animal management practices held in Suva, Rahiyad, Lakhigam, Vengani and Jageshwar villages. 225 farmers were trained out of which 169 were female participants and remaining 56 were males. These participants holds total 443 milking animals.

PROMOTION OF MINERAL MIXTURE

283kg mineral mixture was given to 113 farmers of 9 project villages

GREEN FODDER CULTIVATION

15 beneficiaries sowed green fodder stumps in 2.95 acres land. They have been receiving production continuously. Up to September 2022, the total production 134.10 ton and savings of 15 beneficiaries is **Rs. 3,74,580/-**.

IMPACT PERIOD: April to September 2022

S.N	Particular	Amount Rs.	Remarks
1	Calving of 05 Cow & Buffalos progenies are occurred till date. Assuming average milk production per lactating progeny will be 2000 litters. Accordingly, it is expected that they will produce total 9000 litters of milk which is being sold @ Cow Rs. 35 & Buffalo 55/litter	3,75,000	
2	Total 185 female calves are born in project villages whose age wise valuation as Asset Value is in attached sheet.	9,83,000	
3	Total 140 male calves are born in project villages whose age wise valuation as Asset Value is in attached sheet.	1,40,000	
	Total Rs.	14,98,000	

	Created Fe	male Asse	t Value Re	port Peri	od: - April -20	22 to Sept-2	2022
S.N	Age (Month)	No of Fema	le		Total Asset Value Rs.		Remarks
	'	Cows	Buffalo	Total	Total		<u>'</u>
1	0 to 6	97	72	169	2,000	3,38,000	
2	6 to 12	-	-	-	6,000	-	-
3	12 to 18	-	-	-	15,000	-	-
4	18 to Up 36	-	-	-	20,000	-	-
5	36 & above	-	-	-	25,000	-	-
6	Progeny Al	2	2	4	30,000	1,20,000	Cow Rs.25000 + Buffalo Rs.30000
7	Progeny Pregnant	3	4	7	37,500	2,62,500	Cow Rs.35000 + Buffalo Rs.40000
8	Progeny Calving	3	2	5	52,500	2,62,500	Cow Rs.45000 + Buffalo Rs.60000
	TOTAL A	105	80	185	- 9,8	33,000	

		BAIF Born Pro	ogeny Production Para	ameter April - S	eptember 2022		
S.N	Animal Species	No. of Animal in production	Average Milk Production in Lactation (in Litre)	Rate of Milk (in Rs.)	Total Milk Production (in litre)	Total Milk Income (in Rs.)	
1	Cow	3	2000	35	6000	210000	
2	Buffalo	2	1500	55	3000	165000	
TOTAL B		5	3500	90	9000	375000	
TOTAL A+B						13,50,000	

		Male Asset	Value Report Pe	riod: - July-202	2 to Sept-2022		
S. N	Age (Month)	No of Male			Market Rate	Total Value	Remarks
					Rs.	Rs	
		Cows	Buffalo	Total			
1	0 to 6	63	40	103	1,000	1,03,000	
2	6 to 12	-	-		2,000		-
3	12 to 18	-	-		5,000		-
4	18 to 36	-	-		8,000		-
5	36 to 48	-	-		15,000		-
6	48 to 60	-					-
Total		63	40	103	-	1,03,000	

PROJECT ANNAPURNA

Training on soil sample collection

AF team conducted theory and practical sessions on soil sample collection for soil test with 35 farmers of farmers of Koliyad and kaladara villages. Points covered:

- Objective of the activity
- Suitable time for soil sample collection
- Farm preparation before soil sample collection
- Required tools
- What details should farmers mention with tag(Farmer name, land details, 2 contact numbers, Address, details of collect sample for how many land, last sowing crop)
- Selection of areas of the farm for sample collection

Smart Agriculture Activity

On 08 August'22 AF organized farmers' training on soil test report of farmers in Koliyad village. This training was conducted by Shri Lalit Patil-Agricultural Scientist Krishi Vigyan Kendra, Bharuch. 22 farmers participated in this training.

Points of discussion:

- · Elements of soil analysis
- Recommendation of biological and chemical fertilizers as per crop report
- · Micronutrients' importance in soil
- Discussion on green manure (green padwas)

Women Empowerment: Self Help Group: Achievements

5.N	Group	Members	Type of Business	Monthly Saving (In Rs.)	Total Savings (In Rs.)	Six Month income
1	Shiv Shakti Sakhi Mandal, Jageshwar village	10	Bag making & face masks	1000/-	77566/-	(In Rs.) 1,36,750/-
2	Mahadev Mahila Sakhi Mandal, Luvara	11	Vermi compost	1100/-	57270/-	29,840/-
3	Sadhdada Mahila Sakhi Mandal, Lakhigam village	11	Amul Parlour & Snacks	5500/-	99,659/-	1,19,176/-
4	Ekta Mahila Sakhi Mandal, Jolva village	10		1000/-	13237/-	
5	Guashala Mahila Sakhi Mandal, Suva	10		1000/-	4000/-	
	Total	52				2.85,766/-

Vande Gujarat Exhibition

SHG Mahadev Mahila Sakhi Mandal, Luvara got an opportunity to participate in "Sakhi Melo and Vande Gujarat" exhibition organized by District Livelihood Mission. In one week long 28th June to 4th July 2022 50 SHGs were participated

Gram Bharti 2022 #Vocal for local

Adani Foundation had organized Gram Bharti 2022 to promote SHGs products

at big platform. SHGs of 5 states -1. Gujarat: Mundra, Dahej & Hazira 2. Maharashra: Tiroda & Dighi

3. Tamilnadu: Kattupalli

4. Chhattisgarh: Surguja & Raipur

5. Uttar Pradesh: Varanasi participated in the exhibition held at Adani Corporate House, Ahmedabad from 26th to 28th September 2022.

Bharuch special SUJANI and bamboo craft items got a big platform @ ACH. Bamboo craft items made by Primitive Tribe Group of KOTWALIYA women of JAY DEVMOGRAMAA GROUP, Hathakundi village (Netrang taluka of Bharuch District got a good response.

Their total sale of 3 days: Rs.41000/- and they got an order of Rs.20000 from Adani Dahej Port.

Sujani is exquisitely woven into beautiful geometric designs and stuffed with clouds of cotton is made by Md. Mujakkir Sujaniwala and his family members. Total sale: Rs.20100/- and got an order of Rs. 25000/- from Adani group.

OTHER ACTIVITIES

Meeting with Shree Maharsingh Vaidik Gir Gaushala, Chandwara:

AF team visited Shree Maharsingh Vaidik Gir Gaushala, Chandwara Ta: Dabhoi, District: Vadodara and met Mr. Vipulbhai Rabari. He is a trained Panchadravya Therapist. This Gaushala works on objective of "Gay Thi Nirogi Jeevan". He would extend his support in training to SHGs, youths for jiwamrit, ghanamrit and other cow dung products and support in marketing of products.

Nurseries of Bharuch & Ankleshwar: Team paid visits to Rang Nursery, Vrindawan Nursery of Bharuch and Shri Nursery and other 3 for vermi compost selling produced by SHG.

Packaging units of GIDC, Bharuch: On 4th June 2022 AF team had meetings with G.Flexipack, Polymer Industries and Packaging Industries for different types of packaging materials for vermi compost bags at economical rate.

HON. CHAIRPERSON'S BIRTHDAY CELEBRATION by SHGs

On 29th Aug'22 Empowered SHG women celebrated birthday of 'Empowerment Icon' Dr. Priti G Adani Ma'am in Lakhigam village. 3 SHGs -Sadhdada Mahila Sakhi Mandal, Mahadev Mahila Sakhi Mandal & Shiv Shakti Sakhi Mandal invited AF team and old age women & other women for this great day. Experience sharing, cake cutting followed by garba were the main attraction. More than 80 women enjoyed the event.

> Birthday also celebrated in Project Utthan Schools. 1006 sweet packets distributed in Govt. Primary Schools as Primary School Lakhigam, Primary School Suva and Primary School Rahiyad. School students have sent birthday cards to respected Ma'am by post.

World Environment Day celebrated at Dahej Port and 5 tribal villages of Netrang taluka. 1375 nos. of plantation were done.

District Level Meeting for Van Mahotsav: AF participated in 73rd Vanmohotsav tree Plantation reference to Green Bharuch District-coordination meeting at Collector office Bharuch. Vanmohotsav objective & planning sharing by Ms. Urvashiben Deputy conservative forest Officer, Bharuch . District Collector Shri Tushar Sumera focused on microplanning to reach the target of tree plantation.

AF got appreciation letter from Forest Department for lead role in plantation in villages.

Jageshwar Panchayat Member visited AF Office

Sapanch – Naginbhai Rathod, PRI Members- Ranjitbhai Patel, Uday Patel, Arjunbhai Patel and Mukeshbhai visited AF office. Purpose of the visit was to get support from AF in village development through CSR activities. They appreciated CSR activities carried out in villages so far.

Jageshwar Panchayat discussed on

- Support to 20 marginalized fisherman of the villages
- New SHG formation
- Major role of AF in village development

Community Infrastructure Development

Work completed

- Library at Eklavya Vidyalaya, Thava, Ta. Netrang. Tribal area students of nearby 15 villages of Netrang and Dediyapada will get benefitted. Seating capacity is 36 students
- · Construction of 2 classrooms at Primary School, Jageshwar
- · Construction of 140 m retention wall at Lakhigam pond
- · Handover of structures:
 - ✓ 2 Classroom developed at Jageshwar School
 - ✓ Toilet block constructed at Lakhigam Secondary School
 - ✓ Construction of retention wall (140 m) at Lakhigam Pond
 - ✓ Bund strengthening of Luvara Pond

Thava Library, Netrang inaugurated by Sh. Capt. A.K.Singh, CEO – Dahej & Hazira Port

Classroom construction @ Primary School, Jageshwar

Work in Progress

- Green belt development around Luvara Pond
- Multi purpose hall, Lakhigam
- Play ground development @Samatpora School

TRIBAL DEVELOPMENT INITIATIVES

Interventions in tribal area of Bharuch District started on regular basis. 18 villages are divided into 2 clusters: Mauja Cluster & Vankhunta Cluster. AF team met stakeholders of the villages

- 51 nos of interactions with SHGs' members held in 18 villages of tribal area Dabhal, Mahudikhanch, Koliyapada, Madvi,Pada, Vankhuta, Mugaj, Machamadi, Vankol, Umarkhada, Anjoli, Mauza, Umadabara, Hathkundi, Pujpujya, Navijamuni, Junijamuni and Kavachiya.
- Meeting with Mr. Hiren Patel, Block Resource Coordinator-Netrang, Department of Education, Govt. of Gujarat, for support in CSR interventions of Adani Foundation in 18 villages of Netrang.
- Meeting with Shantuben Vasava, Taluka Livelihood Manager of Mission Magalam promoted by Gujarat State Livelihoods Promotion Comapny for support in activation of SHGs' which are inactive.
- Meeting with Pinteshbhai Multipurpose Helath Worker (MHW) of Moriyana PHC & (Community Health Officer) CHO Ms. Kinjalben Parmar Mauza village for the support in planned interventions of Adami foundation in the Taluka Netrang.
- Adani Foundation visited 18 village sarpanches, 41 PRI members, 21 Asha workers, 17 Talatis and 18 School Head Teachers for sharing AF's CSR initiatives

HRIM Consultancy & AF's visit

Sh. Kshitij Sharma, Head — Monitoring and Evaluation, AF HO Ahmedabad and Hrim Consultancy, Delhi team Mr. Yashwardhan Singh, Damini Singh and Ayesha along with AF Dahej team visited tribal villages of Netrang block, Bharuch.

Points Discussed

- Health issues of women, Agriculture problems of community, Education issues and major issues come out during the discussion were lack of irrigation facilities, drinking water facility and accessibility to health and education institutions.
- Netrang Block- TDO Mr. R.C. Malik focused on agriculture, animal husbandry and water conservation interventions.

Insights for intervention in EDUCATION

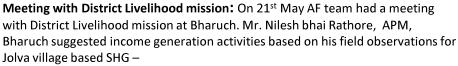
- Coaching for National Means cum Merit Scholarship (NMMS). School teachers can give coaching. (1200rs. Financial assistance from 9th class to 12th class).
- We can promote kabaddi, kho-kho and athletics as students are active and have interest. They can perform better if they get proper training and support of sports materials.

AF team visited Hathakundi and Mauza School, KVK SHG group Chasvad village and Thava School- Netrang Block

- Kotwalia is one of the Particularly Vulnerable Tribal Groups (PTGs) in southern Gujarat. They have expertise in bamboo craft which traditionally is the major source of income for them.
- Total 312 Kotwalia families are in Hathakundi, Punjpujiya, Mota Jamuniya, Pingot, Botangar, Varkhadi and Rupghant villages of Netrang taluka.

Insights for intervention:

 Need support in form of shed for baboo craft work in the village. They have the requirement of small machines for bamboo craft work.


Linkage with Govt. Schemes with objective Beneficiaries: Cattle dwellers, farmers & SHGs avail the benefits of Govt. schemes and get inclination towards natural farming

Adani Foundation, Dahej facilitated **23 dairy farmers** of 5 villages – Lakhigam, Luvara, Atali, Vengani & Kaladara to get register under Govt.'s Animal Husbandry scheme - **Mining assistance to pregnant cattle (cows / buffalos) of common breed breeders.** They will get benefit 100% written assistance for a total of 250 kg mining per beneficiary.

4 dairy farmers registered under scheme of Assistance to general caste cattle herders on purchase of power-driven chaff cutter. He will get benefit whichever is 75% subsidy of the purchase price or Rs.18,000/- whichever is less. 2 beneficiaries have got the benefits.

2 dairy farmers registered under scheme of Plan for organizing the **best Animal Husbandry Award** Ceremony in the state. He will get benefit (1). Taluka Level Award - First Prize - Rs. 10000, Second Prize - Rs. 2000 (2). District Level - First Prize - Rs. 15000, Second Prize - Rs. 10000 (3). State Level Award - First Prize - Rs. 30,000, Second Prize - Rs. 30,000, third prize - Rs. 30,000 Total Prizes = 2

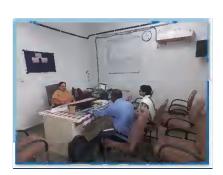
2 animal holder registered under scheme of Assistance on purchase of fodder after sterilization of cattle (cows / buffaloes) of common breeders. He will get benefit 100% per beneficiary for a total of 150 kg mining.

- Home made spices
- Banana & potato chips making
- Vegetables' selling

Jolva village has urbanized culture. Migrant workers in large nos. are residing here. There is a good scope for daily need items.

Meeting with officials of Farmers Training Center, Bharuch

Mr. Suresh Panchal (ATMA Project Block Coordinator) and Mr. Imran bhai of training center shared about the details of training programs organize for farmers at village & district level.


Special training on Subhas Parekar Model of natural farming is also organized. In addition, exposure visits for farmers within district, out of district and out of state are also held.

Meeting with DIET, Bharuch Principal

- Ms. Komalben, Principal, DIET was happy with Project Utthan
- She focused on National Education Policy and Foundation Literacy and Numeracy.
- She referred the books I Meri Jadui Shala, Todo Chand, Diva Na Swapana for Utthan Sahayaks.
- She expressed her willingness to contribute to Project Utthan
- DIET will support in capacity building of Utthan Sahayaks

SUCCESS STORY

Silage effect on milk production

My name is Maheshbhai Haribhai Ahir. I live with my family at Atali village. Milk production and selling is our prime source of income. In my family we have 5 acres cultivable land and animal asset of 3 cows and 23 buffalos. At present 2 cows and 20 buffalos are in lactation period. This is our 2nd generation engaged in rearing of animals.

We face green fodder scarcity in summer as green fodder cultivation is affected due to lack of irrigation facility. In rainy season there is ample green fodder for the animals. Green fodder has an important role in milk production.

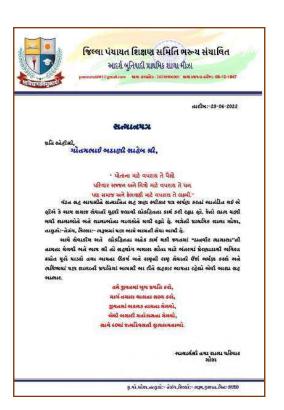
On18. 1. 2022 Adani Foundation had conducted farmers meeting in our village. In this meeting we got information on — Silage making for animals feeding. Silage making would solve the problem of unavailability of green fodder in summer. In March 2022 I got 10 silage bags of 50kgs. Total silage: 500 kgs. After feeding of silage milk production increased by 2 litres per day (from current milk production 6 litres). Total increase in milk production 120 liters in 60 days and total increase in income Rs. 7200/- in just 60 days. I have compared my milk production of last year (2021) and this year (2022) of same season & same animal given in table.

Income-Pr	oduction in y	ear 2021	Income-Pro	duction in ye	ar 2022		
Last Year milk production (Liter)	Rate of Milk (Rs)	Income from Milk (Rs)	This Year milk production (Liter)	Rate of Milk (Rs)	Income from Milk (Rs)	Remarks (II Rs.)	n
300	60	18,000	480	60	28,800	10,800	ī

I left Tobacco addiction: Illaben

My name is Illaben Vinodbhai Rathod, studying in class-6 at kanyaShala Dahej. My parents, Vinodbhai and mother Manjuben are daily wage workers. We live in small Indira Awas got under Government Scheme. My two sisters are doing house cleaning & labour work in Dahej area. My parents were not taking too much interest in my studies as both were engaged with earning bread and butter for the family. Every day I used to go to my Anuty's house to get ready for going to school but my Aunty was addicted with tobacco chewing and alcohol. I had to stay with my aunty Dariyaben as there was no other option. It was continued for almost 3 years. In between I became a tobacco addict. Rather going to school, I helped my aunt in her household work. I was an irregular student — attained the class only four or five times in a month that affected my learning ability.

One day Utthan Sahayaks, Arunaben came in my Rathod community for home visit. She had a small meeting with my classmates' mothers and making them realization of importance of education and benefit of school going. I was standing next to her, and she asked me "which class you are studying" I was not able to utter a single word. My neighbor Dadi says "she is not going to school and simply wondering with peer groups.


After knowing about me, Utthan Sahayak visited two times in a day to meet my parents and aunty to convince them about sending school. After her continuous efforts, she met with my parents and explained how absenteeism could affect learning ability of a child.

After long time I started going to school but my habit of taking tobacco chewing was continued. I didn't take tobacco during school time. I used to run away from school for taking tobacco to my Aunty's house. Utthan sahayak, explained the difficulties of an addicted person. She spent full days with me in the school, it was almost for a week.

Today, I am a regular student and taking interest in learning. I totally stopped tobacco chewing and myself get ready for school. I am grateful to Utthan sahayak for supporting in such conditions and educated me on de-addiction. Within a month I am able to identify the numbers and Guajarati alphabets. She admitted that it is only possible through Arunaben (Utthan Sahayak).

APPRECIATION

लोकतेज

सूरत: वागरा में छुट्टियों को दिलचस्प बना रहे उत्थान पोजेक्ट के समर कैंप छुट्टियों के दौरान छात्रों को पाठ्येतर रचनात्मक गतिविधि

https://www.loktej.com/news/surat -summer-camp-of-utthan-project -making-holidays-interesting-in -vagra

દહેજ અદાણી કાઉન્ડેશન દ્વારા વાગરા તાલકા શાળાઓમાં યોગા સપ્તાહની ઉજવણી કર

પેટીએમની નકાકારકતાને જેપી મોર્ગનન સમર્થન .co

અદાષ્ટ્રી ફાઉન્ડેશને નેત્રેંગ તાલુકાના અંતરિયાળ 🚪 अतुल्य हिन्दुस्तान वागरा में छहियों को दिलचस्प बन रहे उत्थान प्रोजेक्ट के समर कैंप વિસ્તારમાં પુસ્તકાલયની સ્થાપના કરી

ગ્રામીલ વિસ્તારમાં સ્પર્ધાત્મક પરીક્ષાઓની તૈયારી કરતાં યુવાનોને ઘર આંગલે સવિધા મળે એ આશયથી અદાવી ફાઇન્ડ્રાન, દહેજ દ્વારા ભરૂચના અંતરિયાળ થવા ગામમાં સંપૂર્ણ

સુવિધાયુક્ત લાઈબ્રેરીની સ્થાપના કરી

હતી. જેનું ઉદ્દરાટન હજારા અને દહેજ અદાર્શી પોર્ટના સીઇઓ અનિલ

કિશોર સિંહના હસ્તે સ્થાનિક બનાવવાનું નક્કી કરાયુ હતો.આજના લોકાર્પણ કાર્યક્ર આગે વાનોની હાજરીમાં કર્યું હતુ.ગામડાઓનું યુવાધન સ્પર્ધાત્મક દરમિયાન અદાવી ફાઇનેશન,દહેજ હતું નેત્રંગ તાલુકાના થવા અને પરીક્ષા ની તૈયારી સુપ્રેરે કરી શકે એ દ્વારા પુસ્તકાલયમાં વધુ પુસ્તકોની સાથે આસપાસના ગામોના ૧૦૦થી વધુ માટે સંદર્ભ સાહિત્ય સાથે ની સમર્યાતરે વિષય નિષ્ણાંત વકતા અં વિદ્યાર્થીઓ સર્ધાત્મક પરીક્ષામાં ભાગ - પુસ્તકાલયમાં ગુજરાતી,હિન્દી અને - સલાહકારોની શિબિરનું પણ આયોજન લેતા હોય છે.પરંતુ આર્થિક સ્થિતિ અને 🛮 અંગ્રેજી ના પસ્તકો ઇપલબ્ધ કરાવાયા 🛮 કરવામાં આવશે ની જાહેરાત કરવામ વાંચન સામગ્રીની સુવિધાના અભાવે - છે.જેમાં અભ્યાસક્રમ ના પુસ્તકો ઉપરાંત - આવી હતી.અદાણી ફાઉન્ડેંગનો ઉદે પરીક્ષાઓમાં ઉત્તમ પ્રદર્શન કરી શકતા. જનરલ નોલેજ,મહાન વ્યક્તિઓના. પરીક્ષાઓ પાસ કરનારા વિદ્યાર્થીએ ન હતા.જેબાબત ને ધ્યાને લઇ અદાથી જીવનચરિત્ર, નવલ કચાઓ અને મદદરૂપ થવાની સાથે સામાજિક સ ફ્રાઉન્પ્રાન દ્વારા સુવિધા સજજ લાયછેલી. અખબારો નો સમાવે શ કરાયો ઉધિ લાવવાનો છે.

१५०० से अध्धिक छात्र इस पुस्तकालय से लाभान्वित होंगे

अदाणी फाउंडेशन ने नेत्रंग में एक पुस्तकालय की स्थापना की

प्रतियोगिता परीक्षा की तैवारी कर रहे बुदाओं 6 लिए मुजराती, हिंदी, 1जी में पर्याप्त सुविधाओं

વાગરા તાલુકાની સરકારી શાળાઓમાં બાળકોને યોગનું શિક્ષણ અપાયું

ભરૂચ | અદાશી કાઉન્ડેશન સંચાલિત ઉત્થાન પ્રોજેક્ટની વાગરા તાલુકાની 14 શાળાઓમાં 14 જુનથી એક સપ્તાહ સુધી વિવિધ પ્રવૃત્તિ દ્વારા ઉજવણી કરવામાં આવી જેમા કુલ 1350 જેટ્લા બાળકોએ ઉત્સહાથી લાભ લિયો. ઉત્પાન સહાયકોએ પોરશ-6 થી પોરણ-8 ના તમામ બાળકોને રોજ એક્ કલાક શાળાના શિક્ષકો અને અદાવી ફાઇન્ડેશન, દહેજના ઉત્થાન સાહાયકો હારા યોગથી થતા કાયદા અને યોગ વિષે માર્ગદર્શન આપી યોગ નિદર્શન કરી બાળકોને યોગ કરાવવામાં આવ્યા હતા. "વિશ્વ યોગ દિન" ના કરો ભાળકાન યાગે કરાવવામાં આવ્યા હતા. "વિશ્વ યાગે દિન" ના ભાગરુપું વાગરા તાલુકાના લખીગામ, લુવારા, જાગેયર, દંકેજ, જોલવા, સુવા, રહિયાદ, કોલિયાદ, વેગલી, અને કલાદરા ગામના વિદ્યાર્થીઓએ તાડાસન, વૃક્ષાસન, પાદહસ્તાસન, અર્પચક્રાસન, બિકોશાસન, બદાસન, અર્પ ઉદ્યાસન, સંતૃબિધાસન, પુગ્ન મુક્તાસન અને રાવાસન જેવા આસન નિષ્કાંત શિશ્વકના માર્ગદર્શન હેઠળ કરાવવામાં આવ્યા હતા.

દહેજ અદાણી ફાઉન્ડેશન દ્વારા વાગરા તાલુકા શાળાઓમાં યોગા સપ્તાહની ઉજવણી કર

૧ ૩૫૦ જેટલા વિદ્યાર્થીઓને યોગથી થતા ફાયદા અને તેના વિધે માર્ગદર્શન આપ આવ્યુ : યોગ નિદર્શન કરી બાળકોને યોગા કરાવવામાં અ

वागरा में छुट्टियों को दिलचस्प बना रहे उत्थान प्रोजेक्ट के समर कैंप

દહેજ અદાણી ફાઉન્ડેશન દ્વારા ઉત્થાન પ્રોજેક્ટ હેઠળ સમર કેમ્પ્સનું આયોજન કરાયું

" પેટીએમની નકાકારકતાને જેપી મોર્ગનન સમર્થન.**૬**૦

सूरत: वागरा में छुट्टियों को दिलचस्प बना रहे उत्थान प्रोजेक्ट के समर कैंप

छुट्रियों के दौरान छात्रों को पाठ्येतर रचनात्मक गतिविधि... www.loktei.com

https://www.loktej.com/news/surat -summer-camp-of-utthan-project -making-holidays-interesting-in -vagra 8:42 am

વાગરામાં વેકેશનને રસપ્રદ બનાવતા ઉત્થાન પ્રોજક્ટના સમર કેમ્પ્સ... <div style=~background:#eeeeee, border:1p_ યોજી વાગરામાં વેકેશનને રસપ્રદ બનાવતા ઉત્થાન પ્રોજક્ટના સમર કેમ્પ્સ.@ http://bninews.co/Gujarat/106565 Surat: Summer camp of Utthan

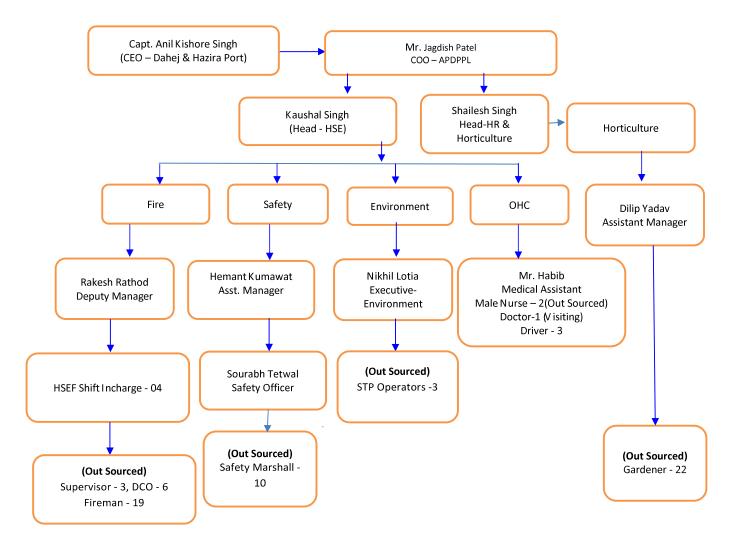
Project making holidays interest... ner camp planned by Adani Fou.

https://youthistaan.com/surat-summer -camp-of-utthan-project-making-holidays -interesting-in-vagra/

ANNEXURE 1: Villages

					undation- Dahe ound Dahej Po	•				
				r mages an			Ger	nder		
S.N.	Village	District	Taluka/Bloc k	Panchayat	Households	Populatio n	Male		SC- Populatio n	ST- Population
	1 Lakhigam	Bharuch	Vagra	Lakhigam	1217	4938	3144	1794	. 87	584
	2 Luvara	Bharuch	Vagra	Luvara	385	1663	873	790	109	963
	3 Jageshwar	Bharuch	Vagra	Jageshwar	383	1571	818	753	18	14
	4 Ambheta	Bharuch	Vagra	Ambheta	347	1552	807	745	67	26
	5 Dahej	Bharuch	Vagra	Dahej	3426	13495	8345	5150	542	209
	6 Jolva	Bharuch	Vagra	Jolva	338	1442	807	635	239	199
	7 Suva	Bharuch	Vagra	Suva	413	1920	973	947	63	354
	8 Rahiyad	Bharuch	Vagra	Rahiyad	355	1694	862	832	105	104
	9 Koliyad	Bharuch	Vagra	Koliyad	152	676	321	355	57	32:
	0 Kaladara	Bharuch	Vagra	Kaladara	393	1663	934	729	108	570
	1 Vengani	Bharuch	Vagra	Vengani	202					279
	2 Atali	Bharuch	Vagra	Atali	239					
	3 Akhod	Bharuch	Vagra	Akhod	174		435			
	4 Galenda	Bharuch	Vagra	Galenda	120		314			
	5 Janiadara	Bharuch	Vagra	Janiadara	150					
	6 Nadarkha	Bharuch	Vagra	Nadarkha	92		220			
	7 Narnavi	Bharuch	Vagra	Narnavi	151		349			
	8 Padariya	Bharuch	Vagra	Padariya	131		340			
	9 Pakhajan	Bharuch	Vagra	Pakhajan	255					
	0 Samatpur	Bharuch	Vagra	Samatpur	79		182			
	1 Sambheti	Bharuch	Vagra	Sambheti	82					
	2 Vadadla	Bharuch	Vagra	Vadadla	201		419			
	3 Vav	Bharuch	Vagra	Vadadid	155		378			
	4 Kadodara	Bharuch	Vagra	Kadodara	420					
	5 Bhensali	Bharuch	Vagra	Bhensali	228					
	6 Khojbal	Bharuch		Khojbal	287					
	7 Kothia		Vagra	Kothia	111					
	8 Nandida	Bharuch Bharuch	Vagra							
			Vagra	Nandida Amleshwar	160					
	9 Amleshwar	Bharuch			494					
	0 Bhadbhut	Bharuch	Bharuch	Bhadbhut	786					
	1 Eksal	Bharuch	Bharuch	Eksal	194					28
	2 Hinglot	Bharuch	Bharuch	Hinglot	395					
	3 Kasva	Bharuch	Bharuch	Kasva	272					
	4 Kesrol	Bharuch	Bharuch	Kesrol	165					
	5 Mahegam	Bharuch	Bharuch	Mahegam	244					
	6 Manad	Bharuch	Bharuch	Manad 	233					
	7 Navetha	Bharuch	Bharuch	Navetha	196					
	8 Vadva	Bharuch	Bharuch	Vadva	114					
	9 Vesdada	Bharuch	Bharuch	Vesdada	142					30
4	0 Desan	Bharuch	Bharuch	Desan	194					
	Total				14075	63075	34590	28485	3119	1590

	Jhagadia & Netrang Blcok tribal Village Detail											
SI.	Village Name	Panchayat	Block	District	Household	Population	Gender		Caste			
							M	F	ST	SC	ОВС	GEN
1	Anjoli	Anjoli	Netrang	Bharuch	288	1498	795	703	1498	C	0	0
2	Hathakundi	Mouza	Netrang	Bharuch	265	1349	671	678	1349	C	0	0
3	Punjpujiya	Kavachiya	Netrang	Bharuch	280	1142	574	568	1142	C	0	0
4	Dabhal	Dabhal	Jhagadia	Bharuch	153	844	416	428	844	C	0	0
5	Junijamuni-1	Mouza	Netrang	Bharuch	270	1265	650	615	1265	C	0	0
6	Kavachiya	Kavachiya	Netrang	Bharuch	530	1870	940	930	1870	C	0	0
7	Koliyapada	Vankol	Netrang	Bharuch	130	874	439	435	874	C	0	0
8	Machamadi	Vankhutha	Netrang	Bharuch	143	724	356	368	724	C	0	0
9	Madavi	Kantol	Jhagadia	Bharuch	78	296	153	143	296	C	0	0
10	Mahudikhach	Dabhal	Jhagadia	Bharuch	78	270	145	125	270	C	0	0
11	Mouza	Mouza	Netrang	Bharuch	248	1175	533	642	1175	C	0	0
12	Mugaj	Vankhutha	Netrang	Bharuch	132	511	259	252	511		0	0
13	Nava Jamuni-1	Mouza	Netrang	Bharuch	261	1000	450	550	1000	С	0	0
14	Pada	Vankhutha	Netrang	Bharuch	130			239		_	_	J
15	Umadabara	Mouza	Netrang	Bharuch	135						_	-
16	Umarkhada	Vankol	Netrang	Bharuch	172	883						-
17	Vankol	Vankol	Netrang	Bharuch	168		363		707		_	-
18	Vankhutha	Vankhutha	Netrang	Bharuch	268				852	_	_	-
	Grand Total				3729	16304	8159		16304		_	_


TOTAL POPULATION

							Gender		Caste	
S.N	District	Blocks	Village	Panchayat	Hoseholds	Population	Female	Male	SC	ST
	1 Bharuch	Vagara	28	28	10646	46152	20255	25897	1991	8700
	2 Bharuch	Bharuch	12	12	3429	16923	8230	8693	934	5857
	3 Bharuch	Jhagadia	3	3	309	1410	696	714	0	1410
Total	4 Bharuch	Netrang 1 4	15 58		3420 17804					

Annexure - 9: Organogram of APDPPL - Environment Management Cell

ADANI PETRONET (DAHEJ) PORT LTD.

Department: QHSE Management Cell

Details of Environment Cell									
S. No.	Name	Designation	Qualification	Work Experience					
1.	Kaushal Singh	Associate Manager -HSE	Dip-Mech, PGDFS, NEBOSH	16 Years					
2.	Rakesh Rathod	Deputy Manager - HSE	B.E. Mech., M. tech – Industrial Safety, PDIS	16 Years					
3.	Dilip Yadav	Assistant Manager (Horticulture)	B. Tech Agriculture Science	14 Years					
4.	Hemant Kumawat	Asst. Manager	Dip – Mech, Dip. In Fire & Safety, NEBOSH	13 Years					
5.	Nikhil Lotia	Executive- (Environment)	B.E. Environment	7 Years					