adani

Letter No.: APPPL-EHS/MOEF RO/EC Comp (I&II)

Date: 23/11/2018

The Additional Principal Chief Conservator of Forests (C), Western Regional Office. Ministry of Environment, Forest & Climate Change E-5, Arera colony, Link Road-3, Ravishankar Nagar, Bhopal-462016 (M.P.) Email: rowz.bpl-mef@nic.in

Dear Sir.

Sub.:- Six Monthly Compliance Report of Environment and CRZ Clearance for the period from April 2018 to September 2018.

Ref.:- 1) Environmental and CRZ clearances granted to M/s. Adani Petronet (Dahej) Port Pvt, Ltd. for Phase-I and Phase-II vide letters dated 6th July, 2007 and 11th November, 2008 bearing F. No.: 11-37/2007-IA-III, respectively.

2) CRZ Clearance / Recommendation issued by Department of Environment & Forest, GoG vide letter dated 16th May, 2007 bearing No.: ENV-102006-71-P for Phase-I and letter dated 29th September, 2008 bearing No.: ENV-10-2007-2126-E for Phase-II.

Please find enclosed herewith point wise compliance report (Hard copy as well as in a CD) of conditions stipulated in the above referred letters.

Thank you,

Yours Faithfully,

For M/s Adani Petronet (Dahej) Port Pvt Ltd.

(Authorized Signatory)

Copy to:

The Director (Monitoring-IA Division), Ministry of Environment, Forest & Climate Change, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi - 110003

2. The Director, Forest and Environment Department, Block-14, 8th Floor, Sachivalaya, Gandhinagar, Gujarat-382010

3. The Zonal Officer, Central Pollution Control Board, Zonal OfficeVadodra, Parivesh Bhawan, Opposite VMC Ward office No. 10, Subhanpura, Vadodra-390023

4. The Chairman, Gujarat Pollution Control Board, Parvayaran Bhawan, Sector 10A, Gandhinagar-382010(Gujarat).

5. The Regional Officer, Gujarat Pollution Control Board, Bharuch, Gujarat

Adani Petronet (Dahej) Port Pvt Ltd At & PO Lakhigam Taluka Vagra, Via Dahej Bharuch 392 130 Guiarat, India CIN: U63012GJ2003PTC041919

Tel +91 2641 285002 +91 2641 285019 info@adani.com www.adaniports.com

Bhawan Hiller / Bhopal - 462016

From : Apr., 2018 To : Sep., 2018

Half yearly Compliance report for Environment and CRZ Clearance for the development of Solid Cargo Port Terminal Phase – I and Phase – II.

Solid Car	go Port Terminal Phase – I and Phase – II.	·
Sr.	Specific Conditions	Compliance
No.		
P2(i)	All the conditions stipulated by Ministry of Environment and Forests, Regional Office, Western Region, Bhopal vide their letter No. 6-GJ060/2006-BH0/1508, dtd., 16.6.2008 shall be strictly adhered to	Complied. All the conditions mention by Ministry of Environment and Forests, Regional Office, Western Region, Bhopal vide their letter No. 6-GJ060/2006-BHO/1508, dtd., 16.6.2008 have been complied with. Copy of the compliance status enclosed as Annex – 1 .
P2(ii)	All the conditions stipulated by Forest and Environment Department, Govt. of Gujarat vide their letter NoFCA-1006(10-9)SF-76-K, dated., 1.7.2008 dated 16.6.2008 shall be strictly adhered to	Complied. All the conditions mention by Forest and Environment Department, Govt. of Gujarat vide their letter NoFCA-1006(10-9)SF-76-K, dated., 1.7.2008 dated 16.6.2008 have been complied with. Copy of the compliance status enclosed as Annex – 1.
P2(iii)	No reclamation will be carried out for the activity	Complied. Project (Phase I & II) has been developed within existing land without any reclamation.
P2(iv)	All the conditions stipulated by the Gujarat Coastal Zone Management Authority including Ministry of Environment and Forests clearance dated 16.6.2008 under the Forest Conservation Act shall complied.	Complied. All the condition mentioned by the Gujarat Coastal Zone Management Authority including Ministry of Environment and Forests clearance dated 16.6.2008 have been complied with. Copy of the compliance status enclosed as Annex – 1 .
P2(v), P1(i)	Sewage Treatment Plant should be included in the project	Complied. Sewage Treatment Plant of capacity 25M^3 / day has been installed and is in operation.
P2(vi), P1(ii)	Afforestation in 200 ha. with mangroves should be undertaken under the project, as identified by the Gujarat Forest Department	Complied. Mangrove afforestation has been carried out in an area of 400 ha. Details are given below. 1. 100 ha near village Dandi, Dist Surat – 2011 2. 50 ha near village Jakhau, Dist Kutch – 2011 3. 50 ha near Padri bit, Dist Bhavnagar – 2011 4. 200 ha near Malpur, Dist Jambusar – 2013-14 Reports of Mangrove afforestation were submitted along with half yearly compliance report vide letter no. APPPL-EHS/MoEF RO/EC Comp (I & II) dated 28.11.2017.

eport for Environment and CRZ Clearance for the development of

From : Apr., 2018

: Sep., 2018

Half year	ly Compliance report for Environment and	CRZ Clearance for the development of
Solid Car	go Port Terminal Phase – I and Phase – II.	
Sr.	Specific Conditions	Compliance
No.	ASS	
P2(vii)	Afforestation @1:3 shall be carried out in case of any trees to be cut.	 Complied. Afforestation on 38 ha. Land has been completed with the help of forest department during 2012-14. Land has been declared as reserve forest vide notification dated 23/12/2008. Copy of the same was submitted along with half yearly compliance report vide letter no. APPPL-EHS/MoEF RO/EC Comp (I & II) dated 28.11.2017.
P2(viii), P1(iii)	The recommendations of the Risk Assessment Report should be incorporated	Complied. Risk Assessment Report was submitted along with compliance report dated 20/02/2008. The recommendation of risk assessment are incorporated and being followed during construction and operation phases.
P2(ix), P1(v)	The materials for the filling and pavement construction should be made available from approved quarries.	Complied. Construction of the project (Phase I & II) was completed in February 2011.
P2(x), P1(vi)	Sufficient fixed and mobile firefighting system should be provided exclusively for the terminal in consultation with the local statutory bodies.	Complied. Adequate fixed and mobile firefighting systems are provided. Details of the same are enclosed as Annexure – 2 .
P2(xi), P1(x)	All development in the port should be carried out in accordance with the Coastal Regulation Zone Notification, 1991 and approved Coastal Zone Management Plan of Gujarat.	Complied. Construction of Phase I & II has been completed in February 2011 and same is carried out in accordance with CRZ Notification 1991.
P2(xii), P1(xi)	There shall be no withdrawal of ground water in CRZ area for this project. The proponent should ensure that as a result of the proposed constructions, ingress of saline water into ground water does not take place. Peizometers shall be installed for regular monitoring for this purpose at appropriate locations on the project site.	Complied. Ground water is not tapped in CRZ area for the project. Water requirement is being met through GIDC water supply. Two Piezometers has been installed at different locations inside port. Regular monitoring of ground water level & quality is being monitored through NABL accredited & MoEF&CC recognized laboratory M/s Pollucon Laboratories, Surat. Copies of reports are enclosed as Annexure 3B.
P2(xiii), P1(xii)	The project shall not be commissioned till the requisite water supply and electricity to the project are provided by the PWD/Electricity Department.	Complied. Project is commissioned after obtaining permission from PWD and Electricity Department.

Half yearly Compliance report for Environment and CRZ Clearance for the development of	
Solid Cargo Port Terminal Phase – I and Phase – II.	

Solid Car	go Port Terminal Phase – I and Phase – II.	•
Sr.	Specific Conditions	Compliance
No.		
		1. GIDC permission dtd 19.02.2013
		2. Electricity Department approval dtd 18.02.2011
P2(xiv),	Specific arrangements for rain water	Complied.
P1(xiii)	harvesting shall be made in the project	The feasibility study for rain water harvesting
	design and the rain water so harvested	was conducted. Based on the report it may be
	shall be optimally utilized. Details in this	concluded that rain water harvesting is not
	regard shall be furnished to this	advisable as the area is next to the coast.
	Ministry's Regional Office at Bhopal	Report was submitted along with the half-
()	within 3 months	yearly compliance report dated 22.05.2015.
P2(xv),	No land reclamation should be carried	Complied. Project (Phase I & II) has been
P1(xv)	out for this project.	developed within existing land without any reclamation.
P2(xvi)	Green buffer zone should be provided all	Complying with.
,P1(xvi)	around the project area in consultation	Considering the expansion plan, Green belt is
, ,	with local forest department and report	being developed on periphery of the project
	submitted to this Ministry's Regional	boundary. So far 8.0 ha of Green belt is
	Office at Bhopal.	developed which mainly includes casuarina,
		wasigtonia palm, cassia samiea, peltoforum,
		delonix regia, ficus sps. Details of green belt
		area is enclosed as Annex - 4.
P2(xvii)	The facilities to be constructed in the	Complied.
,P1(xiv)	CRZ area as part of this project should be	Construction of the project (Phase I & II) was
	strictly in conformity with the provisions	completed in February 2011 and same is in
	of the CRZ Notification, 1991 as	conformity with the provisions of the CRZ Notification 1991.
P2(xviii),	amended subsequently. No product other than those permissible	Complied.
P1(xvii)	in the Coastal Regulation Zone	APDPPL is handling dry cargo mainly coal and
1 1(2011)	Notification, 1991 should be stored in the	other bulk cargos at designated storage
	Coastal Regulation Zone area.	areas in compliance to the CRZ Notification
		1991 and 2011 and as per approval received.
P1(iv)	Location of general cargo berth should	Complied.
	be taken in to considerations with regard	General cargo berth (Solid Cargo Port
	to location of LNG terminal	Terminal jetty) is approx. 500 m away from
		the LNG jetty of Petronet LNG Ltd.
P1(vii)	The wave tranquility study and the ship	Complied.
	maneuvering studies carried out should	Ship mooring study and wave tranquility
	be taken in to account while operating	studies were carried out to understand the
	the Port.	wind wave and swell wave conditions. The
		recommendations are being regularly
P1(viii)	The project proposest should essue	followed during port operations. Complied.
PI(VIII)	The project proponent should ensure that during construction and operation	Compileo.
	that adming construction and operation	

_	ly Compliance report for Environment and go Port Terminal Phase – I and Phase – II.	CRZ Clearance for the development of
Sr. No.	Specific Conditions	Compliance
	of the port there will be no impact on the livelihood of the fisherman. The fisherman should be provided free access to carry out the fishing activity.	There is no commercial fishing in the area. Free access to the "Pagadiya" fishermen is available. They are continuing with their activities without any impact from project.
P1(ix)	All necessary precaution while undertaking construction and operation of the port should be taken keeping in view the bathymetric changes caused due to cyclones.	Complied. Construction (Phase I & II) activities are completed in February, 2011. APDPPL has a well-defined DMP (covering natural disasters including cyclones) and regular mock drills are being conducted. DMP is also reviewed at regular interval. Mock drill is being conducted as per plan. Last Mock drill was conducted on 29.09.2018. Last revision in the DMP was done on 01.12.2017.
	Conditions	
P2(i), P1(i)	Construction of proposed structures shall be undertaken meticulously conforming to the existing Central/local rules and regulations including Coastal Regulation Zone Notification 1991 & its amendments. All the construction designs/drawings relating to the proposed construction activities must have approvals of the concerned state Government Departments/Agencies.	 Complied. All the development activities are being taken up in accordance with the CRZ notification, 1991 & its subsequent amendments. The approval for the project has been obtained from concern government department that is GMB as per their NOC date 23/02/2006. Necessary approval has been obtained from GIDC for the setting of the project vide letter ref no. GIDC/DM/CG/ANK/87.
P2(ii), P1(ii)	Adequate provision for infrastructure facilities such as water supply, fuel, sanitation etc. should be ensured for construction workers during the construction phase of the project so as to avoid felling of trees/mangroves and pollution of water and the surrounding.	Complied. Construction of the project (Phase I & II) was completed on February 2011. During construction all facilities such as water supply, fuel, sanitation etc. was provided.
P2(iii), P1(iii)	The project authorities must make necessary arrangements for disposal of solid waste and for the treatment of effluents by providing a proper wastewater treatment plant outside the CRZ area. The quality of treated effluents, solid wastes and noise level etc. must conform to the standards laid down by the competent authorities	 Complied. The Project (Phase I & II) activities are not generating any trade effluent. Only domestic effluent is being generated which was treated in the STP outside CRZ area and used for horticulture within the premises. The noise monitoring results, are enclosed as Annexure - 3G.

rt Private From : Apr., 2018
To : Sep., 2018

	ly Compliance report for Environment and	CRZ Clearance for the development of
	go Port Terminal Phase – I and Phase – II.	
Sr. No.	Specific Conditions	Compliance
	including the Central/State Pollution Control Board and the Union Ministry of Environment and Forest under the Environmental (Protection) Act, 1986, whichever are more stringent.	 Quality of treated domestic effluent is also being monitored by NABL accredited & MoEF&CC recognized laboratory M/s Pollucon Laboratories, Surat. Please refer Annexure - 3F. Both reports for confirm compliance with applicable standards.
P2(iv), P1(iv)	The proponent shall obtain the requisite consents for discharge of effluents and emission under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981 form the Gujarat State Pollution Control Board before commissioning of the project and a copy of each of these shall be sent to this Ministry.	Complied. APDPPL has obtained renewal of CC&A under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981 form the Gujarat State Pollution Control Board AWH 73359 dated: 28.10.2015 from GPCB which is valid up to 16.7.2020.
P2(v), P1(v)	The proponent shall provide for a regular monitoring mechanism so as to ensure that the treated effluents conform to the prescribed standards. The record of analysis reports must be properly maintained and made available for inspection to the concerned State/Central officials during their visits.	 Domestic effluent is being treated in STPs. The treated water confirming to the norms is being used for horticulture purpose. The monitoring results of the treated wastewater from STP for the period from April 2018 – September 2018 are enclosed as Annexure – 3F. Reports are available at site for the inspection and APDPPL regularly submits report to GPCB.
P2(vi), P1(vi)	In order to carry out the environmental monitoring during the operational phase of the project, the project authorities should provide an environmental laboratory well equipped with standard equipment and facilities and qualified manpower to carry out the testing of various environmental parameters.	 MoEF&CC recognised laboratory for environmental monitoring. The monitoring results for the period from April 2018 – September 2018 are enclosed as Annexure – 3A to 3H.
P2(vii), P1(vii)	The sand dunes and mangroves, if any on the site should not be disturbed in any way.	 Complied. There are no sand dunes in project area. Free flow to the mangroves near the jetty approach is maintained.
P2(viii), P1(viii)	A copy of the clearance letter will be marked to the concern Panchayat/local NGO, if any, from whom any	Complied. Copy of the letter submitted to local panchayat was submitted along with half yearly compliance report vide letter no.

_	ly Compliance report for Environment and	CRZ Clearance for the development of
	go Port Terminal Phase – I and Phase – II.	
Sr. No.	Specific Conditions	Compliance
	suggestion/representation has been received while processing the proposal.	APPPL-EHS/MoEF RO/EC Comp (I&II) dated 28.11.2017.
P2(ix), P1(ix)	The Gujarat State Pollution Control Board should display a copy of the clearance letter at the Regional Office, District Industries Centre and Collector's Office/Tehsildar's Office for 30 days.	This condition does not belong to the project proponent.
P2(x), P1(x)	The fund earmarked for environment protection measures should be maintained in a separate account and there should be no diversion of these funds for any other purpose. A year-wise expenditure on environmental safeguards should be reported to this Ministry's Regional Office at Bhopal and the State Pollution Control Board.	Complied. Separate budget is allocated for Environmental Management. Key components of environment budget are environmental Monitoring, STP's (Operations and Maintenance), and Closed Conveyor System Maintenance etc. The allocation of revenue budget for Environment Cell for the FY 2018-19 was approx. Rs. 242.88 lacs. Details of the environmental budget and expenditure for the FY 2018-19 is enclosed as Annexure -5.
P2(xi), P1(xi)	Full support should be extended to the officers of this Ministry's Regional Office at Bhopal and the officers of the Central and State Pollution Control Boards by the project proponents during their inspection for monitoring purposes, by furnishing full details and action plans including the action taken reports in respect of mitigative measures and other environmental protection activities.	 Complying with. APDPPL is regularly submit six monthly compliance reports which comprises Compliance to the conditions stipulated in Environment and CRZ clearance, environment monitoring reports etc. Whenever any authorities such as MoEF&CC, GPCB and GMB etc. visit the APDPPL full support is extended and APDPPL provides all additional information seek by them during the inspection Recent visit of Gujarat Pollution Control Board was on 26.06.2018.
P2(xii), P1(xii)	In case of deviation or alteration in the project including the implementing agency, a fresh reference should be made to this Ministry for modification in the clearance conditions or imposition of new ones for ensuring environmental protection.	Noted and complied with. There is no change in the Phase I & II development.
P2(xiii), P1(xiii)	This Ministry reserves the right to revoke this clearance, if any of the conditions	Noted & agreed.

	ly Compliance report for Environment and	CRZ Clearance for the development of
	go Port Terminal Phase – I and Phase – II.	
Sr. No.	Specific Conditions	Compliance
INO.	stipulated are not complied with to the satisfaction of the Ministry.	
P2(xiv), P1(xiv)	This Ministry or any other competent authority may stipulate any other additional conditions subsequently, if deemed necessary, for environmental protection, which shall be complied with.	Noted & Agreed
P2(xv), P1(xv)	The project proponent should advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned informing that the project has been accorded environmental clearance and copies of clearance letters are available with the State Pollution Control Board and may also be seen at Website of the Ministry of Environment & Forest at http://www.envfornic.in . The advertisement should be made within 7 days from the date of issue of the clearance letter and a copy of the same should be forwarded to the Regional Office of this Ministry at Bhopal.	 Complied. Advertisement of phase 1 approval was published in Gujarati language in "Sandesh" newspaper dated 01/09/2007 and in English language in "GUJARAT SAMACHAR" newspaper dated 11.9.2007. Advertisement of phase 2 approval was published in gujarati language in "Divya Bhaskar" newspaper and in English language in "The Times of India" dated 19/11/2008. Copies of the advertisements were submitted to MoEF&CC vide compliance report dated 27/11/2013.
P2(xvi), P1(xvi)	The Project proponents should inform the Regional Office at Bhopal as well as the Ministry the date of financial closure and final approval of the project by the concerned authorities and the date of start of Land Development Work.	 Complied. Financial closure date of Project was 31st July 2007. Existing Facility – construction started date July 2007. Land development work for phase II stared in Jan. 2009. The permission to construct of Solid Cargo Beth at Dahej port has been obtained from GMB vide letter dated 23 Feb 2006 bearing no GMB/N/PVT/264(10)/1910/11201.
P2(xvii)	Any appeal against this environment clearance shall lie with the National Environment Appellate Authority, if preferred, within a period of 30 days as prescribed under Section 11 of the National Appellate Act, 1997	Noted.

From: Apr., 2018

: Sep., 2018

Compliance to the conditions stipulated in CRZ clearance/ recommendation for proposed cargo port terminal phase I, II

	Half yearly Compliance report for CRZ Clearance/recommendation for development of Solid Cargo Port Terminal Phase – I and Phase – II	
Sr. no.	Conditions	Status/Action taken
P2(1), P1(1)	The provisions of the CRZ notification of 1991 and subsequent amendments issued from time to time shall be strictly adhered to by the APPL. No activity in contradiction to the provisions of the CRZ Notification shall be carried out by the APPL.	Complied. All the activities are being complying with the provisions of the CRZ notification and subsequent amendments.
P2(2), P1(2)	All necessary permissions from different Government Departments / agencies shall be obtained by the APPL before commencing the expansion activities.	 Complied. All the necessary permissions have been obtained by M/s. APDPPL. Environment Clearance for phase I & Phase II obtained vide letters dated 6th July, 2007 11th November 2008 and bearing F. No. 11-37/2007-IA-III respectively CC&A is obtained from Gujarat Pollution Control Board is obtained vide letter no AWH-73359 dated 28.10.2015 and valid up 16.07.2020.
P2(3), P1(5)	The APPL shall carry out the construction activities either in the CRZ area or into the sea / estuary only after having the detailed study with respect to chances of erosion / accretion due to the proposed activities conducted through the NIO and vetted through the CWPRS and shall implement all necessary steps / actions as may be suggested by these institutes for mitigating the potential negative impacts including the checking of erosion and/or accretion in the region. Further, the company shall have to have the construction drawings approved for this purpose through a competent agency before undertaking any construction and/or enabling activities at the site	 Complied. Construction (Phase I & II) of the port was completed in February 2011. The approval for the project has been obtained from concern government department that is GMB as per their NOC date 23/02/2006. Necessary approval has been obtained from GIDC for the setting of the project vide letter ref no. GIDC/DM/CG/ANK/87.
P2(4), P1(7)	The APPL shall have to face the consequences whatsoever due to implementation of the Kalpsar Project proposed by the Government of Gujarat and shall have to take all necessary actions as may be desired by the Government, from time to time.	Noted and agreed to comply.
P2(5), P1(10)	No dredging and/or reclamation activity shall be carried out in the CRZ area	Complied.

From: Apr., 2018

: Sep., 2018

Half yearly Compliance report for CRZ Clearance/recommendation for development of Solid Cargo Port Terminal Phase – I and Phase – II Sr. no. **Conditions** Status/Action taken categorized as CRZ I (i) and it shall have to No dredging/reclamation have been be ensured that the mangrove habitats and done in CRZ I (i). ecologically important There is no notified ecologically significant areas are not affected due to important and significant area present in any of the project activities. the project vicinity. P2(6), No effluent or sewage shall be discharged Complied. P1(11) into the sea / creek or in the CRZ area and Domestic effluent is being treated in shall be treated to conform to the norms STPs. The treated water confirming to prescribed by the Gujarat Pollution Control the norms is being used for horticulture Board and would be reused / recycled purpose. The monitoring results of the within the plant premises to the extract treated wastewater from STP for the period from April 2018 to September possible. 2018 are enclosed as Annexure - 3F. Reports are available at site for the inspection and **APDPPL** regularly submits report to GPCB. P2(7), All the recommendations and suggestions Complying with. P1(12) given by the NIO in the Comprehensive A Separate EIA has been prepared for phase Environment Impact Assessment report for III development, which includes EMP for the conservation / protection and betterment current scenario. All the recommendations of environment shall be implemented suggestions and given bν M/s strictly by the APPL. Cholamandalam in the EMP are being complied. Copy of the status of EMP recommendations is enclosed as **Annexure** P2(8), The construction and operational activities Complied. P1(13) shall be carried out in such a way that there Construction (Phase I & II) of the project is no negative impact on mangroves and was completed on February 2011. coastal/marine habitat. other The Free flow to the mangroves near the jetty construction activities shall be carried out approach is maintained. only under the constant supervision of the NIO. P2(9), The APPL shall strictly ensure that no Complied. P1(14) creeks are blocked due to any activity at No creeks are blocked due to port port and the mangroves habitat are neither activity. disturbed nor destroyed due to any Free flow to the mangroves near the jetty activity. approach is maintained. P2(10), The APPL shall participate financially for Noted and agreed to comply. APDPPL is P1(15) any common facility that may committed for the environment protection. established or any common study that may be carried out for the Gulf of Khambhat

region for environmental protection and/or

management purpose.

	rly Compliance report for CRZ Clearance/recort Terminal Phase – I and Phase – II	ommendation for development of Solid
Sr. no.	Conditions	Status/Action taken
P2(11), P1(16)	The construction debris and/or any other type of waste shall not be disposed into the sea, creek or in the CRZ areas. The debris shall be removed from the construction site immediately after the construction is over.	Complied. Construction of the project was completed on February 2011. All the debris has been removed.
P2(12), P1(17)	The construction camps shall be located outside the CRZ area and the construction labour shall be provided the necessary amenities, including sanitation, water supply and fuel and it shall be ensure that the environmental conditions are not deteriorated by the construction labours.	 Complied. Construction of the project was completed on February 2011. No labour camps were located in Coastal Regulation Zone area. Labours are managed through contractors and they are from surrounding villages and have been provided residential facilities in the surrounding villages.
P2(13), P1(18)	The APPL shall prepare and regularly update their Local Oil Spill Contingency and Disaster Management Plan in consonance with the National Oil Spill and Disaster Contingency plan and shall submit the same to this Department after having it vetted through the India Coast Guard.	 Oil Spill Contingency Plan is submitted to Coast Guard, Gandhinagar for verification vide letter dated. 10/10/2012. APDPPL has a well-defined DMP and regular mock drills are being conducted. DMP is also reviewed at regular interval Last Mock drill was conducted on 29.09.2018. Last revision in the DMP was done on 01.12.2017.
P2(14), P1(19)	The APPL shall bear the cost of the external agency that may be appointed by this Department for supervision/monitoring of proposed activities and the environmental impacts of the proposed activities.	Noted and agreed to comply.
P2 (15)	The mangrove plantation in 50 ha. of area on Gujarat cost line shall be carried out by the applicant in a phased manner in five years	Complied. Mangrove afforestation has been carried out in an area of 400 ha. Details are given below. 1. 100 ha near village Dandi, Dist Surat – 2011 2. 50 ha near village Jakhau, Dist Kutch – 2011 3. 50 ha near Padri bit, Dist Bhavnagar – 2011 4. 200 ha near Malpur, Dist Jambusar – 2013-14

Sr. no.	ort Terminal Phase – I and Phase – II Conditions	Status/Action taken
31. 110.		Reports of Mangrove afforestation were submitted along with half yearly compliance report vide letter no. APPPL-EHS/MoEF RO/EC Comp (I & II) dated 28.11.2017.
P2 (16)	The construction activities in the Forest land and the Gauchar land shall be carried out as per the permission accorded by the concerned Authority for the said purpose	Complied. Construction of the project was completed on February 2011 in compliance to the approvals.
P1(3)	The APPL shall take up massive mangrove plantation in 200 ha of area in and around the project site or at an alternative site to be selected in consultation with this Department.	Complied. Mangrove afforestation has been carried out in an area of 400 ha. Details are given below. 1. 100 ha near village Dandi, Dist Surat – 2011 2. 50 ha near village Jakhau, Dist Kutch – 2011 3. 50 ha near Padri bit, Dist Bhavnagar – 2011 4. 200 ha near Malpur, Dist Jambusar – 2013-14 Reports of Mangrove afforestation were submitted along with half yearly compliance report vide letter no. APPPL-EHS/MoEF RO/EC Comp (I & II) dated 28.11.2017.
P1(4)	The approach road and trestle passing through the forestland shall be constructed only after obtaining necessary permissions under the relevant forest laws including the forest (Conservation) Act. further, no activity shall be carried out in the forestland or in the area having natural plantation / forest till all mandatory clearances under various Forest Acts including the Forests Conservation Act obtained.	 Complied. All the activities on forest land have been started only after obtaining forest land clearance. Clarence from MOEF was obtained vide letter no 6-GJC060/2006-BHO/1508 dated 16th June 2008. The same was communicated by State Forest Department vide letter no A-1006(10-9)SF-76-K dated 1st July 2008 from DOEF.
P1(6)	The project proponent shall have to make a separate application and shall have to obtain prior clearance under the CRZ Notification for any activities other than those proposed and got approved as part of this phase I activities.	Complied. APDPPL had obtained Environmental & CRZ Clearance on Nov 11, 2008 for phase 2 vide letter no.11-37/2007-IA.III.
P1(8)	The project proponents shall ensure that the local people shall be provided with an	Complied.

Sr. no.	ort Terminal Phase - I and Phase - II Conditions	Status/Action taken
	alternative access to the sea in case the existing access to Rock-Bund could not be made available to them.	Alternative access to the sea is available adjoining to the project site.
P1(9)	The project proponents shall ensure that the construction period shall be reduced by proper planning and executing the construction program in time-bound manner to avoid any time over-run.	Complied. Construction of the project was completed in February 2011.
P1(20)	The jetty and most of the approach would be supported on piles allowing adequate flow of water without significant obstruction.	Complied. The jetty and most of the approach of 1270 meter is supported on piles allowing adequate flow of water without significant obstruction.
	General Conditions	
P2(17), P1(21)	The groundwater shall not be tapped by the APPPL to meet with the water requirements in any case.	Complied. No ground water is being tapped by APDPPL and water demand is met through GIDC.
P2(18), P1(22)	The APPL shall take up massive green belt development activities in consultation with the Gujarat Institute of Desert Ecology/Forest Department. A comprehensive plan for this purpose has to be submitted to the Forests and Environment Department.	Complying with. Green belt is being developed in an area of 8.0 ha including periphery of the project boundary. Details of the green development is enclosed is Annexure – 4.
P2(19), P1(23)	The APPL shall have to be contributing financially for taking up the socio-economic up-liftment activities in this region in consultation with the Forests and Environment Department and the District Collector/District Development Officer.	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure – 8 .
P2(20), P1(24)	A separate budget shall be earmarked for environmental management and socio – economic activities and details thereof shall be furnished to this department as well as the MoEF, GOI. The details with respect to the expenditure from this budget head shall also be furnished.	Complied. Separate budget is allocated for Environmental Management and Socio Economic activities. • Key components of environment budget are environmental Monitoring, STP's (O&M), Closed Conveyor System Maintenance and etc. The allocation of revenue budget for Environment Cell for the FY 2018-19 was approx. Rs. 242.88 lacs. Details of the environmental budget and expenditure for the April'18 to

From : Apr., 2018
To : Sep., 2018
elopment of Solid

Sr. no.	ort Terminal Phase - I and Phase - II Conditions	Status/Action taken
		September'18 is enclosed as Annexure – 5. • Socio Economic activities funds are taken up in Education, Community Health and Sustainable livelihood development, Rural Infrastructure development etc. Details are enclosed as Annexure – 8.
P2(21), P1(25)	A separate environmental management cell with qualified personnel shall be created for environmental monitoring and management during construction and operational phases of the project.	Complied. APDPPL has a well structured Environment Management Cell with qualified manpower for implementation of the Environment Management Plan. Detail of the Environment cell is enclosed as Annexure – 6.
P2(22), P1(26)	Environmental Audit report indicating the changes, if any, with respect to the baseline environmental quality in the coastal and marine environment shall be submitted every year by the APPL to this Department as well as to the MoEF, GOI.	Complied. Seawater and sediment is being monitored through NABL accredited & MoEF&CC recognized laboratory M/s Pollucon Laboratories, Surat. Monitoring Report for the period April'18 to September'18 is enclosed in Annexure 3C and 3D . No significant changes observed.
P2(23), P1(28)	A six monthly report on compliance of the condition mentioned in this letter shall have to be furnished by the APPL on regular basis to this Department.	 Complying with APDPPL is regularly submitting six monthly compliance reports which comprises Compliance to the conditions stipulated in Environment and CRZ clearance, environment monitoring reports. Last compliance report was submitted vide letter dated 25.05.2018.
P2(24), P1(29)	Any other condition that may be stipulated by this Department from time to time for environmental protection/management purpose shall also have to be complied by the APPL.	Noted and agreed to comply with the any other condition that may be stipulated by this Department / Ministry of Environment, Forest and Climate Change, Government of India from time to time for environmental protection.
P1(27)	The APPL shall have to contribute financially to support the National Green Corps scheme being implemented in Gujarat by GEER Foundation, Gandhinagar, in consultation with Forests and Environment Department.	Complied. A request in this regard for asking for the terms of Financial Contribution submitted to the GEER Foundation vide letter dated 17th April, 2009.

Annexure – 1: Compliance status of the conditions by Forest and Environment Department, Govt. of Gujarat vide their latter No.-FCA-1006(10-9)SF-76-K, dated., 1.7.2008 and by Ministry of Environment and Forests, Regional Office, Western Region, Bhopal vide their latter No. 6-GJ060/2006-BH0/1508, dated 16.6.2008

<u>Compliance:</u> Both above mentioned letters have the same conditions; Compliance of the same is given in table below:

S. No.	Condition	Compliance
1	The legal status of the forest land shall remain unchanged	Noted.
2(a)	Compensatory afforestation shall be taken up by the forest department over 38.00 Ha non forest land (Survey No.2, Village-Pingot, Ta. Valiya, Dist. Bharuch at the cost of the project authority.	 Complied. APDPPL has transferred equivalent non forest land of 38 ha. Area of village Pingot, S.No. 2 paiki, Ta. Valiya, Dist. Bharuch in favour of Forest Department APDPPL has deposited Rs. 33,06,000/towards the cost of compensatory afforestation Compensatory plantation was taken up by Forest Department, Govt. of Gujarat.
2(b)	This CA land shall be notified as Reserved Forest.	Complied. The CA land has been notified as Reserved Forest vide notification dated 23/12/2008.
2(c)	The copy of the Notification issued under section 4 of the Indian Forest Act, 1927 shall be sent to this office within six months from the date of handing over of this forest land to the project authority.	Copy of the same was submitted along with half yearly compliance report vide letter no. APPPL-EHS/MoEF RO/EC Comp (I & II) dated 28.11.2017.
3	Penal compensatory afforestation shall be raised over 4.00 ha. Degraded forest land in (Survey No. – 572) Village mirapur, Ta. Valia, Dist. Bharuch	 Complied. APDPPL has deposited Rs. 3,48,000/- towards the cost of penal compensatory afforestation. Compensatory plantation was taken up by Forest Department, Govt. of Gujarat.
4	All the funds received from the user agency under the project shall be transferred to the Ad-hoc Compensatory Afforestation Fund management & planning Agency (CAMPA) in A/c No. CA-1583 of Corporation bank Block 11, CGO Complex, Phase – I, Lodhi Road, New Delhi – 110003.	 All the funds received from user agency under project have been transferred to CAMPA by Forest Department, Govt. of Gujarat.
5	The forest land shall not be used for any purpose other than that specified in the project proposal.	Complied. Forest land is being used as per the proposal for which clearance has been obtained.

Annexure – 2 Details of the Fixed and Mobile Fire Fighting System:

Fire Fighting Systems	Details
Fire Hydrant	135 Nos.
Fire Monitor	65 Nos.
Risers	15 Nos.
Total Fire Extinguisher	407 Nos.
Smoke Detector	54 Nos.
Fire Bucket	68 Nos.
Emergency Siren	4 Nos.
Port Water Reservoir Pump House	5040 KL
Silo Water Reservoir Pump House	5013 KL
Fire Vehicles Deta	pil
Multi-Purpose Fire Tender - Water	10 KL
Multi-Purpose Fire Tender - Foam	1.5 KL
Dry Chemical Powder @ 50 Kgs. (MFT)	2 Nos.
CO ₂ @ 4.5 Kgs. (MFT)	2 Nos.
Fire Tender (01 No.)	12 KL
Fire Water Bowser (01 No.)	7.5 KL
Trailer Pump (01 No.)	1800 LPM

Environment Monitoring Report for the period from April-18 to September-18

3A. AMBIENT AIR QUALITY MONITORING: -

Table No.: 1.1 - Ambient Air Quality Monitoring Results At Near Marine Building

300		EXON		TOURS.	Lo	catlon-	1: Near	Marin	e Bulldi	ing	THE TOTAL	BOOK N	distrib
Sr.	Date of	PM ₁₀	PM ₂₅	Pb	BaP	As	Ni	CO	C ₆ H ₆	NH ₃	SO ₂	NOx	O
40.	Sampling	µg/m²	hū\m ₃	µg/m²	ng/m²	ng/m²	ng/m³	mg/m³	µg/m³	µg/m³	µg/m³	µg/m³	119/m
1	03/04/2018	67.59	38.92	BDL*	BDL*	BDL*	BDL*	0.97	BDL*	31.15	22.82	29.36	28.65
2	06/04/2018	86.27	49.0D	0.71	BDL+	2.49	10.47	0.94	BDL×	39.79	16.45	42.37	18.64
3	10/04/2018	92.40	52.55	0.82	BDL*	2.68	10.62	0.86	BDL*	28.38	19.16	30.75	29.33
4	13/04/2018	84.62	43.94	BDL*	BDL*	BDL*	BDL*	0.47	BDL*	35.7B	23.67	37.19	25.57
5	17/04/2018	72.27	33.63	BDL*	BDL*	BDL*	BDL*	0.42	BDL*	50.27	15.77	44.33	26.78
6	20/04/2018	68.41	29.85	BDL*	BDL*	BDL*	BDL×	0.74	BDL*	24.67	12.60	32.12	27.70
7	24/04/2018	94.38	47.99	0.58	BDL*	2.19	10.18	0.41	BDL*	19.43	24.63	22.45	24.48
8	27/04/201B	88.28	54.72	0.66	BDL*	2.23	BDL*	0.79	BDL*	43.49	14.74	40.30	30.44
9	01/05/2018	82.71	46.61	0.58	BDL*	2.42	10.88	0.60	BDL*	30.65	20.49	35.47	21,73
10	04/05/2018	73.41	30.52	BOL*	BDL*	BDL*	BOL*	0.19	BDL*	18.12	12.91	20.96	28.2
11	08/05/2018	85,63	42.10	BDL*	BDL*	BDL*	10.52	0.61	BDL*	40.44	10.40	33.06	30.45
12	11/05/2018	94.65	52.72	0.84	BDL*	2.32	10.50	0.68	BDL*	50.50	8.94	41.41	23.63
13	15/05/2018	77.68	48.61	BDL*	BDL*	BDL*	BDL*	0.78	BDL*	45.45	19,01	38.46	25.10
14	18/05/2018	84.30	38,50	0.64	BDL*	BDL*	10.21	0.55	BDL*	36.86	18.46	26.36	29.49
15	22/05/2018	90.52	50.37	0.80	BDL*	2.64	10.34	0.84	BDL*	62.46	21.89	31.40	27.27
16	25/05/2018	79,46	39.30	BDL*	BDL*	BDL*	BDL*	0.95	BDL*	27.36	15.76	22.98	24.3
17	29/05/2018	83.28	44.52	0.69	BDL*	2.53	10.25	0.48	BDL*	33.24	17.68	29.51	19.6
18	01/06/2018	75.35	32.82	BDL*	BDL*	BDL*	BDL*	0.73	BDL*	58.31	15.26	38,61	26.8
19	05/06/2018	8D.22	43.72	0.62	BDL*	2.52	10.24	0.63	BDL*	23.66	19.30	26.90	24.5
20	08/06/2018	70.47	34.57	BDL*	BDL*	BDL=	BDL*	0.76	BDL*	37.23	21.68	44.50	27.5
21	12/06/2018	90.32	53.58	0.80	BDL*	2.62	10.32	0.77	BDL*	42.60	9.71	29.28	22.8
22	15/06/2018	78.80	41.69	BDL*	BDL*	BDL*	BDL*	0.25	BDL*	38.37	24.41	36.87	20.4
23	19/06/2018	85.82	45.76	0.71	BDL*	2.26	10.45	0.65	BDL*	51.52	14.30	42.58	30.7
24	22/06/2018	77.60	33.53	BDL*	BDL*	BDL*	BDL*	0.79	BDL*	43.29	18.65	34.54	23.8
25	26/06/2018	94.50	50.54	0.56	BDL*	2.31	10.57	0.61	BOL*	54,33	16.40	39.50	25.8
26	29/06/2018	69.33	26.46	BDL*	BDL*	BDL*	BDL*	0.87	BDL*	26.38	13.63	31.59	28.4

[#] ISO 14001

27	03/07/2018	72.42	29.62	BDL*	BDL*	BDL*	BDL*	0.82	BDL*	24.80	19.46	39.54	23,86
28	07/07/2018	68.36	39.56	BDL*	BDL*	BDL#	BDL*	0.76	BDL*	42.75	14,22	34.20	25.59
29	10/07/2018	84.26	45.64	0.76	BDL*	2.46	10.35	0.87	BDL*	31,62	22.29	29.31	19.28
30	14/07/2018	74.64	37.56	BDL*	BDL*	BOL*	BDL*	0.52	BDL*	48.61	17.70	26.82	29,44
31	17/07/2018	89.30	42.36	0.68	BDL*	2.34	10.63	0.62	BDL*	52.73	20,62	37.26	27.52
32	21/07/2018	69.30	55.70	BDL*	BDL*	BDL*	BDL*	0.23	BDL*	22.54	13.48	27.53	21.21
33	24/07/2018	79.41	30.83	BDL*	BDL*	BDL×	BDL*	0.69	BDL*	29.39	15.25	32.83	30.46
34	28/07/2016	87.49	49.42	0.54	BDL*	2.36	10.28	0.49	BDL*	38.78	24.34	36.43	22.18
35	31/07/2018	76.68	41.35	BDL*	BDL*	BDL*	BDL*	0.55	BDL*	16.34	16.96	40.21	24.53
36	03/08/2018	95.64	55.54	0.76	BDL*	2.34	10.24	0.61	BDL*	43.61	18.47	32.86	25.63
37	07/08/2018	86.33	46.88	BDL+	BDL*	BDL+	BDL*	0.94	BDL*	54.24	21.67	28.37	30.42
38	10/08/2018	90.60	50.42	0.62	BDL*	2.48	10.88	0.45	BDL*	38.34	25.84	30,42	20.34
39	14/08/2018	83.97	48.26	BDL*	BDL*	BDL*	BDL*	0.89	BDL*	45.86	22.83	35.57	19.35
40	17/08/2018	69.63	33.42	BDL*	BDL*	BDL*	BDL*	D.32	BDL*	29.53	15.24	24.63	26.57
41	21/08/2018	78.62	30.37	BDL-	BDL*	BDL*	BDL.	0.40	BDL*	25.62	17.59	29.23	23.44
42	24/08/2018	85.70	43.56	BDL*	BDL*	BDL*	BDL*	0.49	BDL*	20.67	12.45	33.75	29,56
43	28/08/2018	72.64	39.27	BDL*	BDL*	BDL*	BDL*	0.74	BDL*	32.69	14.66	27.38	27.87
44	31/08/2018	91.33	49.38	0.68	BDL*	2.25	10.09	0.78	BDL*	42.60	20.34	38.61	17.43
45	04/09/2018	81.56	45.88	BDL*	BDL*	BDL*	BDL*	0.38	BDL*	50.23	25.54	34.37	15,39
46	07/09/2018	71.54	34.57	BDL*	BDL*	BDL*	BDL*	0.47	BDL*	45.37	16.51	27.21	28.42
47	11/09/2018	87.51	48.55	BDL*	BDL*	BDL*	BDL*	0.94	BDL*	42.60	24.30	39.83	17.25
4B	14/09/2018	92.56	55.37	D.72	BDL*	2.46	10.57	0.44	BDL*	33.7D	20.33	33.32	22.35
49	18/09/2018	65.31	24.27	BDL*	BDL*	BDL*	BDL*	0.72	BDL*	53.64	13,55	30.38	30.26
50	21/09/2018	85.3D	43.26	BDL*	BDL*	BOL*	BDL*	0.63	BDL*	23,47	26.26	44.33	26,89
51	25/09/2018	94.25	40.31	0.84	BDL+	2.56	10.32	0.73	BDL*	48.34	22.48	38.21	18.92
52	28/09/2018	77.54	31.78	BDL*	BDL*	BDL*	BDL*	0.90	BOL*	39.16	17.27	31.22	20.53

Observation: Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-I Dt: 18/11/2009 National Ambient Air Quality Standards, New Delhi, for 24 hourly or 8 hourly or 1 hourly monitored values

Note: BDL*: Below Detection Limit, Minimum Detection Limit, Ozone as O₅: 10 μg/m³, Lead as Pb: 0.5 μg/m³, Carbon Monoxide as CO: 0.01 mg/m³, Ammonia NH₅: 10 μg/m³, Benzene as C₆H₆: 2 μg/m³, Benze (a) Pyrone (BaP) - Particulate Phase only: 0.5 ng/m³, Arsenic as As: 2 ng/m³, Nickel as Ni: 10 ng/m³

[●] ISO 14001

Table No.: 1.2 - Ambient Air Quality Monitoring Results At Near PMC Building

Sr. No. 1 2 3 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1	ocation	-2; Ne	ar PMC	Bulldin	g			
100 DO 0	Date of Sampling	PM ₁₀	PM25	Pb	BaP	As	MI	co	C ₀ H ₀	NH ₃	SO ₂	NOx	03
	out in the	µg/m³	µg/m³	pg/m³	ng/m²	ng/m³	ng/m³	neg/m³	µg/m²	µg/m²	µg/m²	µg/m²	µg/m
1	03/04/2018	56.68	35.83	BDL*	BDL*	BDL*	BDL*	0.62	BDL*	33.68	10.47	19.84	19.22
2	05/04/2018	79.33	45.68	BDL*	BDL*	BDL×	10.01	0.76	BDL*	45.51	14,48	24.51	20.96
3	10/04/2018	68.42	29.9D	BDL*	BDL*	BDL*	BDL*	0.52	BDL*	22.45	22.39	37.66	26.80
4	13/04/2018	72.41	32.40	BDL+	BDL+	BDL*	10,09	0,89	BDL*	43.08	17.76	28.45	28.69
5	17/04/2018	52,31	24.84	BDL*	BDL.*	BOL*	BDL*	0.95	BDL*	25.79	6.70	25.34	29.32
6	20/04/2018	76.41	34.91	8DL*	BDL×	BDL*	BDL+	0.96	BDL+	38.53	19.16	23.44	18.44
7	24/04/2018	81.49	39.08	BDL*	BDL*	BDL*	BDL*	0.19	BDL*	29.13	15.51	34.31	27.52
8	27/04/2018	58.43	31.52	BOL*	BDL*	BDL*	BDL*	0.60	BDL*	26,39	12.39	25.28	16,43
9	01/05/2018	68.67	38.41	BDL*	BDL*	BDL*	BDL*	0.41	BDL*	35.47	16.77	18.13	17.67
10	04/05/2018	54.69	27.39	BDL*	BDL+	BDL*	BDL+	0.32	BDL*	26,79	21,49	27,56	21.20
11	08/05/2018	80.71	22.92	BDL*	BDL*	BDL*	10.30	0.24	BDL*	19.68	8.58	21.61	22.63
12	11/05/2018	65.70	30.94	BDL*	BDL*	BDL*	BDL*	0.18	BDL*	23.17	12.09	29.32	19.59
13	15/05/2018	59,38	26.31	BDL*	BDL*	BDL*	BDL*	0.50	BDL*	30.12	15.03	31.60	20.70
14	18/05/2018	77.62	41.67	BDL*	BDL*	BDL*	BDL×	0.46	BDL*	20.44	7.44	22.35	30.26
15	22/05/2018	82.45	37.50	0.54	BDL*	2.36	BDL*	0.34	BDL*	41.85	19.07	25.70	16.12
16	25/05/2018	53.87	29.27	BDL*	BDL*	BDL*	BDL*	0.45	BDL*	14.34	10.35	19.07	27.47
17	29/05/2018	66.74	34.41	BDL*	BDL*	BDL*	BDL*	D.65	BDL*	17.8D	6.44	17.53	26.51
18	01/06/2018	69.96	28.82	BDL*	BDL*	BDL*	BDL+	0.57	BDL*	46.24	12.69	28.60	21.54
19	05/06/2018	76.18	41.61	BDL*	BDL*	BDL*	BDL*	0.42	BDL*	35.65	16.57	22.50	19.51
20	08/06/2018	64.66	24.45	BDL*	BDL*	BDL*	BDL*	0.69	BDL+	40.68	14.45	32.78	17.65
21	12/05/2018	75.82	45.69	BDL*	BDL*	BDL*	BDL*	0.30	BDL*	26.55	5.54	18.50	24.56
22	15/06/2018	68.60	35.82	BDL*	BDL*	BDL*	BDL*	0.44	BDL*	56.35	19.38	24.32	26.30
23	19/06/2018	59.35	52.53	BDL*	BDL*	BDL*	BDL*	0.55	BDL*	31.26	9.89	35.76	15.64
24	22/06/2018	88.57	47.32	BDL*	BDL*	2.36	10.38	0.23	BDL*	50.44	10.58	27,50	20.63
25	26/06/2018	79.44	43.53	BDL*	BDL*	BDL*	BDL+	0.80	BDL*	39.32	18.34	29.50	29.59
26	29/06/2018	50.64	22,45	BDL*	BDL*	BDL*	BDL*	0.52	BDL*	19.28	7.62	21.22	22.62

· A/ D-

27	03/07/2018	58.58	24.53	BDL*	BDL*	BDL+	BDL*	0.74	BDL*	18.60	13.16	30.28	15.66
28	07/07/2018	63.26	35.66	BDL*	BDL*	BDL*	BDL*	0.25	BDL*	28.94	12.80	26.35	16.77
29	10/07/2018	78.49	38.66	0.64	BDL*	BDL*	BDL*	0.78	BDL*	36.86	17.60	22.84	21.42
30	14/07/2018	69.23	31.62	BDL*	BDL*	BDL*	BDL*	0.34	BDL*	42.45	15.72	19.40	16.57
31	17/07/2018	72.44	28.62	BDL*	BDL*	BDL*	BDL*	0.68	BDL*	31.27	9.62	32.67	25.33
32	21/07/2018	51.71	27.24	BDL*	BDL*	BDL*	BDL*	0.37	BDL*	16.18	11.29	21.50	23.13
33	24/07/2018	65.58	20.66	BDL*	BDL*	BDL*	BDL*	0.63	BDL*	20.49	7.45	17.52	28.30
34	28/07/2018	70.64	46.78	BDL*	BDL*	BDL*	BDL*	0.64	BDL*	25.31	22.51	27.35	26.26
35	31/07/2018	65.48	26.33	BDL*	BDL*	BDL*	BDL*	0.18	BDL*	32.67	14.54	23.23	17.72
36	03/08/2018	76.50	46.32	BDL*	BDL*	BDL*	BDL*	0.64	BDL*	22.57	14.31	29.55	23.62
37	07/08/2018	69,36	39.40	BDL*	BDL*	BDL+	BDL*	0.33	BDL*	38.24	19.59	35.34	26.25
38	10/08/2018	58.67	36.53	BDL*	BDL*	BDL*	BDL*	0.60	BDL*	29.43	15.47	24.22	24.63
39	14/08/2018	78.22	44.57	BDL*	BDL*	BDL*	BDL*	0.50	BDL*	23.64	9.57	20.22	27.64
40	17/08/2018	63.53	26.28	BDL*	BDL*	BDL*	BDL*	0.11	BDL*	16.34	11.25	27.56	18,46
41	21/08/2018	56.79	23.41	BDL+	BDL*	BDL*	BDL*	0.26	BDL*	21.40	13.83	22.66	16.56
42	24/08/2018	67.53	4D.36	BDL*	BDL*	BDL*	BDL*	0.42	BDL*	26.87	18.20	28.63	25,47
43	28/08/2018	77.53	34.28	BDL*	BDL*	BDL*	BDL*	0.58	BDL*	37.86	10.23	23.28	19.21
44	31/08/2018	82.31	45.69	BDL*	BDL*	BDL*	BDL*	0.69	BDL*	49.27	15.71	25.68	20.92
45	04/09/2018	59.34	23.24	BDL*	BDL*	BDL*	BDL*	0.13	BDL*	44.85	15.51	24.56	18,68
46	07/09/2018	66.59	29.24	BDL*	BDL*	BDL*	BDL*	0.11	BDL*	30.56	8.70	30.55	20.33
47	11/09/2018	81.50	42.40	BDL*	BDL*	BDL*	BDL*	0.50	BDL*	51.27	11.21	19.27	23.48
48	14/09/2018	61.35	37.53	BDL*	BDL*	BDL*	BDL*	0.60	BDL*	26.58	18.45	26.74	26.43
49	18/09/2018	79.68	30.49	BDL*	BDL*	BDL*	BDL+	0.36	BDL*	48.58	20.50	20.38	21.20
50	21/09/2018	70.93	35.61	BDL*	BDL*	BDL*	BDL*	0.41	BDL*	34.26	1D.51	31,52	25,46
51	25/09/2018	84.23	28.66	BDL*	BDL*	BDL*	BDL*	0.78	BDL*	38.40	16.39	25.45	22.64
52	28/09/2018	64.26	24.37	BDL*	BDL*	BDL*	BDL*	0.32	BDL*	45.54	9.75	37.43	29.01

Observation: Above given Result are within the norms Specified Limit as per CPCB Notification No8-29016/20/90/PCI-I Dt: 18/11/2009 National Ambient Air Quality Standards, New Delhi, for 24 hourly or 8 hourly or 1 hourly monitored values

Note: BDL*: Below Detection Limit, Minimum Detection Limit, Ozone as O_3 : 10 $\mu g/m^3$, Lead as Pb: 0.5 $\mu g/m^3$, Carbon Monoxide as CO: 0.01 $m g/m^3$, Ammonia NH₃: 10 $\mu g/m^3$, Benzene as $C_6 H_6$: 2 $\mu g/m^3$, Benze (a) Pyrene (BaP) - Particulate Phase only: 0.5 $n g/m^3$, Arsenic as As: 2 $n g/m^3$, Nickel as Ni: 10 $n g/m^3$

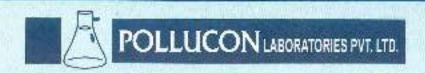


Table No.: 1.3 - Ambient Air Quality Monitoring Results At Sub-Station-78 Building

Sr.					Loca	ation-3	: Sub-5	tation-	7B Buil	ding		Wich C	111111
No.	Date of Sampling	PM ₁₀	PM _{2.5}	Pb	BaP	As	Ni	CO	C ₆ H ₆	NH ₃	502	NOx	O ₃
	Sampang	µg/m³	µg/m²	µg/m³	ng/m³	ng/m³	ng/m³	mg/m³	pg/m³	µg/m³	µg/m"	µg/m²	րց/տ՝
1	03/04/2018	79.58	48.54	BDL*	BDL*	BDL*	BDL*	0.49	BDL*	29.44	20.58	24.65	23.51
2	06/04/2018	63,38	36.90	BDL*	BOL*	2.16	BDL*	D.63	BDL*	36.49	18.79	33.59	26.35
3	10/04/2018	51.18	30.93	BDL*	BDL*	BOL*	BOL*	0.41	BDL*	26.07	10.51	20.26	19.53
4	13/04/2018	67.53	25.98	BDL*	BDL*	BDL*	BDL*	0.45	BDL*	20.85	13.34	39.49	27.56
5	17/04/2018	84.27	39.53	BOL*	BDL*	BDL*	BDL*	0.88	BDL*	35.27	8.37	37.55	25.49
6	20/04/2018	70.41	28.89	BDL*	BDL*	BDL*	BDL"	0.84	BDL*	41.70	16.42	16.55	16.75
7	24/04/2018	65.27	31.89	BDL*	BDL=	BDL*	BDL*	0.32	BDL*	33.12	12.51	18,54	24.19
8	27/04/2018	86.43	49.49	0.61	BDL*	2.12	BOL*	0.21	BDL*	30.36	9.31	38.55	22.36
9	01/05/2018	74.59	25.08	BDL*	BDL*	BDL*	BDL*	0.30	BOL*	39.19	11.22	20.63	26.67
10	04/05/2018	62.49	21.81	BDL*	BDL*	BDL*	BDL*	0.26	BDL*	45.16	5.25	17,88	22.72
11	08/05/2018	78.89	48.46	0.64	BDL*	BDL*	BDL*	0.33	BDL*	33.15	14.68	35.82	17.60
12	11/05/2018	60.46	26.73	BDL*	BDL*	BDL*	BDL*	0.23	BDL*	27.87	17.96	36.79	21.63
13	15/05/2018	52.67	19.52	BDL*	BDL*	BDL*	BDL*	0.16	BDL*	20.66	10.48	28,36	27.51
14	18/05/2018	49,31	29.44	BDL*	BDL*	BDL*	BDL*	D.36	BDL*	29.65	6.51	32.47	24.59
15	22/05/2018	57.20	33,44	BDL*	BDL*	BDL*	BDL*	0.62	BDL*	25.74	16.18	23.49	23.27
16	25/05/2018	63.46	36.52	BDL*	BDL*	BDL*	BDL*	0.40	BDL*	21.32	8.72	15.72	19.37
17	29/05/2018	75.94	31.32	BDL*	BDL*	BDL*	BDL*	0.39	BDL*	23.64	15.17	22.46	25,35
18	01/06/2018	50.64	23.97	BDL*	BDL*	BDL*	BDL*	0.64	BDL*	50.56	B.48	31.50	27.58
19	05/06/2018	45.78	19.36	BDL*	BDL*	BDL*	BDL*	0.78	BDL*	39.58	14.73	18.69	25,69
20	06/06/2018	69.55	29.62	BOL+	BDL*	BDL×	BDL*	0.14	BDL*	36.75	13,61	26.56	23.34
21	12/06/2018	70.61	42.64	0,78	BDL*	BDL*	BDL*	0.36	BDL*	30.33	10.57	34.65	28.57
72	15/06/2018	56.35	26.92	BDL*	BDL*	BDL*	BDL*	0.33	BDL*	43.51	11.59	29.52	21.29
23	19/06/2018	48.57	20.75	BDL*	BDL*	BDL*	BDL*	0.50	BDL*	35.65	7.66	36.50	19.20
24	22/06/2018	82.56	37.54	BDL*	BDL*	2.18	10.10	0.29	BDL*	24.38	15.38	38.46	26.58
25	26/06/2018	74.35	32.71	BDL*	BDL*	BDL*	BDL*	0.55	BDL*	19.54	12.62	20.69	20.39
26	29/06/2018	62.71	15,42	BDL*	BDL*	BDL*	BDL*	0.19	BDL*	21.30	9.21	25.36	24.7

to family

27	03/07/2018	66.52	27.67	BDL*	BOL*	BDL*	BDL*	0.54	BDL*	21.58	10.57	24.67	20,63
26	07/07/2018	46.59	16.83	BDL*	BDL"	BDL*	BDL×	0.50	BDL*	31.50	7,60	19.36	28.62
29	10/07/2018	72.46	34.71	BDL*	BDL*	BDL*	BDL*	0.27	BDL*	16.57	12.49	31,55	25.83
30	14/07/2018	52.68	28.30	BDL×	BDL*	BDL*	BDL*	0.61	BDL*	28.75	19.23	15.62	30.27
31	17/07/2018	79.50	31.36	BDL*	BDL*	BDL*	BDL*	0.40	BDL*	34.56	15.53	22.64	17.62
32	21/07/2018	56.68	24.23	BDL*	BDL*	BDL*	BDL*	0.26	BDL*	19.29	9.32	18.29	15.59
33	24/07/2018	64.65	26.45	BDL*	BDL*	BDL*	BDL*	D.15	BDL*	23.65	5.45	20.25	24.36
34	28/07/2018	82.45	43.45	0.62	BDL+	2.14	10.46	0.14	BDL*	20.31	11.82	25.64	18.47
35	31/07/2018	59.62	23.29	BDL*	BDL*	BDL*	BDL*	0.22	BDL*	36.38	20.51	29.40	23.36
36	03/08/2018	83.55	49.58	BDL*	BDL*	BDL*	BDL*	0.38	BDL*	28.35	16.26	35.63	16.35
37	07/08/2018	73.79	34.62	BOL*	BDL*	BDL*	BDL*	0.48	BDL*	32.47	10.66	17.38	23.97
38	10/08/2018	61.63	30.45	BDL*	BDL=	BDL×	BDL*	0,34	BDL+	24.29	14.23	21.55	18.51
39	14/08/2018	88.63	40.42	BDL*	BDL*	BDL-	BDL*	0.57	BDL*	41.28	18.63	25.47	20.21
40	17/08/2018	54.23	23.23	BDL*	BDL×	BOL*	BDL*	0.17	BDL*	19.26	9.83	15.63	22.53
41	21/08/2018	69.37	29.60	BDL*	BDL*	BDL*	BDL*	0.47	BDL*	12.33	11.58	20.58	26.34
42	24/08/2018	59.34	35.45	BDL*	BDL*	BDL*	BDL*	0.56	BDL*	34.20	8.35	22.43	19.59
43	28/08/2018	80.45	31.54	BDL*	BDL*	BDL*	BDL*	0.25	BDL*	16.46	19.30	30.23	28.57
44	31/08/2018	77.58	38.45	BDL*	BDL*	BDL*	BDL*	0.55	BDL*	30.5B	5.62	33.28	25.12
45	04/09/2018	71.52	35.57	BDL*	BDL*	BDL*	BDL*	0.17	BDL*	23.31	12.63	21.59	28.34
46	07/09/2018	53.65	22.66	BDL*	BDL*	BDL*	BDL*	0.16	BDL*	41.56	18.57	34.53	24.26
47	11/09/2018	76.34	38.58	BDL*	BDL*	BDL*	BDL×	0.56	BDL*	26.40	9.19	26.35	21.58
48	14/09/2018	69.29	32.62	BDL*	BDL*	BDL*	10.24	0.33	BDL*	30.61	13.24	20.27	19.32
49	18/09/2018	82.98	40.37	BDL*	BDL*	BDL*	BDL*	0.25	BDL*	16.39	8.27	17.59	16.41
50	21/09/2018	60.29	31.53	BDL*	BDL*	BDL*	BDL*	0.55	BDL*	39.64	15.60	25.31	18.50
51	25/09/2018	58.99	25.36	BDL*	BDL*	BDL*	BDL*	0.29	BDL*	29.26	11.45	15.52	27-33
52	28/09/2018	73.58	36.54	BDL*	BDL*	BDL*	BDL*	0.46	BDL×	35.33	7.67	18.22	25.88

Observation: Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-T DC: 18/11/2009 National Ambient Air Quality Standards, New Delhi, for 24 hourly or 8 hourly or 1 hourly monitored values

Note: BDL*: Below Detection Limit, Minimum Detection Limit, Ozone as O₃: 10 μg/m³, Lead as Pb: 0.5 μg/m³, Carbon Monoxide as CO: 0.01 mg/m³, Ammonia NH₃: 10 μg/m³, Benzene as C₆H₆: 2 μg/m³, Benzo (a) Pyrene (BaP) - Particulate Phase only: 0.5 ng/m³, Arsenic as As: 2 ng/m³, Nickel as Ni: 10 ng/m³

Table No.: 1.4 - Ambient Air Quality Monitoring Results At GCPTL Gate

						Loca	tion-4:	GCPTL	Gate				
Sr. No.	Date of Sampling	PM ₁₀	PM _{2.5}	Pb	BaP	As	Ni	co	C _s H _s	NHs	502	NOx	03
	Spinipining	µg/m³	pg/m³	pg/m³	ng/m³	ng/m²	ng/m²	mg/m³	µg/m³	µg/m²	µg/m³	ha\w ₃	μg/m²
1	03/04/2018	50.57	24.01	BDL*	BDL*	BDL*	BDL*	0.82	BDL*	22.85	12.53	17.53	25.74
2	06/04/2018	72.53	39.4B	BDL*	BDL*	BDL*	BDL*	0.54	BDL*	32.60	9.76	39.37	28.72
3	10/04/2018	56.40	24.35	BDL*	BDL*	BDL*	BDL*	0.52	BDL*	20.41	16.91	27.85	18.66
4	13/04/2018	49.31	29,93	BDL*	BDL*	BDL*	BDL*	0.78	BDL*	40.21	B.43	31.57	21,66
5	17/04/2018	77.62	30.82	BDL*	BDL*	BDL*	BDL*	0.56	BDL*	28.33	14.45	34.45	15.49
6	20/04/2018	60.42	26.46	BDL*	BDL*	BDL*	BDL*	0.53	BDL+	30.46	21.61	37.42	20.72
7	24/04/2018	52.58	28.44	BDL*	BDL*	BDL*	BDL*	0.29	BDL*	23.46	10.65	25.57	30.15
8	27/04/2018	73.47	41.89	BDL*	BDL*	BDL*	BDL*	0.55	BDL*	33.51	6,67	28,93	29,52
9	01/05/2018	53.00	19.49	BDL*	BDL*	BDL*	BDL*	0.25	BDL*	18.25	5.80	27.37	23.50
10	04/05/2018	76.58	37.70	BDL*	BDL*	BDL*	BDL*	0,15	BDL*	20.84	16.43	16.17	26.37
11	08/05/2018	64.45	25.62	BDL*	BDL*	BDL*	BDL*	0.44	BDL*	27.69	7.24	24.57	21.53
12	11/05/2018	56.57	22,49	BDL*	BDL*	BDL*	BDL=	0.14	BDL*	37.51	15.45	21.28	17.95
13	15/05/2018	74.65	36,44	BDL*	BDL*	BDL*	BDL*	0.47	BDL*	14.52	9,46	15.69	24.20
14	18/05/2018	61.35	33.52	BOL*	BOL*	BDL*	BDL*	0.82	BOL*	34.00	16.57	18.53	19.73
15	22/05/2018	78.38	42.49	BDL*	BDL*	BDL*	BDL*	0.38	BDL*	29.43	13.64	36.30	22.22
16	25/05/2018	59.41	26.45	BDL*	BDL*	BDL*	BDL*	0,64	BDL*	23.90	11.48	31.35	28.42
17	29/05/2018	48.64	21.73	BDL*	BDL*	BDL*	BDL*	D.11	BDL*	10.58	8,26	20,20	27.69
18	01/06/2018	55.61	25.17	BDL*	BDL*	BDL*	BDL*	0,39	BDL*	36.31	16.59	22.61	24.66
19	05/06/2018	71.50	38.40	BDL*	BDL*	BDL*	BDL*	0.48	BDL*	28.78	12.45	32.87	21.86
20	06/06/2018	48,41	20.54	BDL*	BDL*	BDL*	BDL*	0.32	BDL×	16.80	8.42	23.51	25,40
21	12/06/2018	62.61	35.53	BDL*	BDL*	BDL*	BDL*	0.53	BDL=	23.51	6.28	20.59	16.51
22	15/06/2018	50.60	23.67	BDL*	BDL*	BDL*	BDL*	D.18	BDL*	30.45	13.57	21.54	23,48
23	19/06/2018	65.78	37.32	BDL*	BDL*	BDL*	BDL*	0.21	BDL*	39.21	10.44	28.69	27.96
24	22/06/2018	72.74	30.52	BDL*	BDL*	BDL*	BDL*	D.17	BDL*	48.86	11.51	19.55	18.59
25	26/06/2018	52.29	22.71	BDL*	BDL*	BDL*	BDL*	0.24	BDL*	38.61	9.66	24.53	22.77
26	29/06/2018	44.36	18.62	BDL*	BDL*	BDL*	BDL*	0.60	BDL*	12.64	5.72	15.20	29.27

27	03/07/2018	43.70	16.74	BDL*	BDL*	BDL*	BDL*	0.42	BDL*	13.59	7.73	18.65	22,41
28	07/07/7018	51.29	30.52	BDL*	BDL*	BOL×	BOL*	0.31	BDL*	21.68	10.34	22,61	16.47
29	10/07/2018	63,46	27.30	BDL×	BDL×	BDL*	BDL*	0.16	BDL*	33.45	15.58	19.58	23.78
30	14/07/2018	79.27	46,8D	BDL*	BDL*	BDL*	BDL+	0.46	BDL*	25.67	12.61	31.48	18.70
31	17/07/2018	B2.70	37.74	0.58	BOL*	BDL*	BDL*	D.53	BDL*	29.30	17.29	25.47	29.29
32	21/07/2018	40.19	15.65	BDL*	BDL*	BDL*	BDL*	0.33	BDL=	10.62	5.70	16.37	15.42
33	24/07/2018	50.60	23.43	BDL*	BDL*	BDL*	BDL*	0.48	BOL*	14.49	8.90	23.61	30.63
34	28/07/2018	65.47	25.84	BDL*	BDL*	BDL*	BDL*	0.19	BDL*	28.16	13.65	30.72	20.28
35	31/07/2018	70.58	32.52	BDL*	BDL*	BDL*	BDL+	0.41	BDL*	19,54	6.39	33.51	19.49
36	03/08/2018	60,46	31.64	BDL*	BDL*	BDL*	BDL*	0.54	BDL*	22.82	21.52	25.36	26.86
37	07/08/2D1B	54.25	28.55	BDL*	BDL*	BDL*	BDL*	0.80	BDL*	27.68	18.52	20.43	28.43
38	10/08/2018	72.56	39.37	BDL*	BDL*	BDL*	BOL*	0.22	BDL*	35.68	10.33	27.66	22,41
39	14/08/2018	66.69	36.32	BDL*	BDL*	BDL*	BDL*	0.62	BDL*	29.28	7.61	33.13	24.52
40	17/08/2018	42.60	18.54	BDL*	BDL*	BDL*	BDL*	0.23	BDL*	10.43	5.39	19.44	14.45
41	21/08/2018	50,21	21.62	BDL*	BDL*	BDL*	BDL*	D.16	BDL×	15.67	9.65	15.28	20.42
42	24/08/2018	45.3D	25.45	BDL*	BDL*	8DL+	BDL*	0.31	BDL*	24.52	15.44	22.58	23.63
43	28/08/2018	58.62	19.54	BDL*	BDL*	BDL*	BDL*	0.37	BDL*	32.94	11.41	35.87	17.23
44	31/08/2018	68.59	29.35	BDL*	BDL*	BDL*	BDL*	0.24	BDL*	16.83	13.22	17.52	30.14
45	04/09/2018	52.65	29.35	BDL*	BDL*	BDL*	BDL*	0.21	BDL*	36.75	10.75	29.64	16.52
46	07/09/2018	61.23	25.57	BDL*	BDL*	BDL*	BDL*	0.48	BDL*	31.52	6.26	24.26	22.57
47	11/09/2018	70.66	45.67	BDL*	BDL*	BDL*	BDL*	0.62	BDL*	48.23	8.57	36,60	26.34
48	14/09/2018	82.38	48.38	0.62	BDL*	2.26	BDL*	0.22	BDL*	24.30	11.38	30.73	21.36
49	18/09/2018	60.22	20.25	BDL*	BDL*	BDL*	BDL×	0.40	BDL*	39.56	15.20	33.47	19.58
50	21/09/2018	42.67	22.38	BDL*	BDL*	BDL*	BDL*	0.52	BDL*	27.58	17,69	23.61	28,79
51	25/09/2018	71.25	32.32	BDL*	BDL*	8DL*	BDL*	0.23	BDL*	43.56	9.33	19.35	15.72
52	28/09/2018	57.28	16.53	BDL*	BDL*	BDL*	BDL*	D.79	BDL*	26.73	12.38	22.60	18.71

Observation: Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-I Dt: 18/11/2009 National Ambient Air Quality Standards, New Dehi, for 24 hourly or 8 hourly or 1 hourly monitored values

Note: BDL*: Below Detection Limit, Minimum Detection Limit, Ozone as O₃: 10 μg/m³, Lead as Pb: 0.5 μg/m³, Carbon Monoxide as CO: 0.01 mg/m³, Ammonia NH₃: 10 μg/m³, Benzene as C₆H₆: 2 μg/m³, Benzo (a) Pyrene (BaP) - Particulate Phase only: 0.5 ng/m³, Arsenic as As: 2 ng/m³, Nickel as Ni: 10 ng/m³

Authorized Signatory

#ESSAI Approved Lah

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1988.

GPCB approved schedule II suditor

@ USC1 14801

OHSAS 1800

ISO 9001

Table No.: 1.5 - Ambient Air Quality Monitoring Results At Near Silo Porta Cabin

5.51					Lo	cation-	5: Nea	r Silo P	orta Ca	bin			
Sr: No.	Date of Sampling	PM10	PM2.5	Pb	BaP	As	Ni	00	C ₆ H ₆	NH ₃	SO ₂	NOx	03
	Camping	pg/m³	µg/m³	µg/m³	ng/m²	ng/m²	ng/m²	mg/m*	pg/m²	µg/m³	µg/m³	ug/m³	μg/m ⁸
1	03/04/2018	72.59	41.47	BDL*	BDL*	BDL*	BOL*	0.72	BDL+	25.64	8.47	37.78	21.77
2	06/04/2018	59.28	33.14	BDL*	BDL=	BDL-	BDL*	0.18	BDL*	29.53	5.19	26.41	19.47
3	10/04/2018	63.60	21.63	BDL*	BDL*	BDL*	BDL*	0.81	BDL*	31.07	12.47	16.51	30.49
4	13/04/2018	58.29	26,45	BDL*	8DL*	BDL*	BDL*	0.14	BDL*	24.61	5.39	25.72	18.84
5	17/04/2018	64.49	19.54	BDL*	BDL*	BDL*	BDL*	0,48	BDL*	22.46	11.49	19.41	27.45
6	20/04/2018	51.22	23.48	BDL*	BDL*	BDL*	BDL*	0.61	BDL*	35.38	9.17	27.45	22,89
7	24/04/2018	71.53	35.78	BDL*	BDL*	BOL*	BDL*	D.37	BDL×	39.68	13.29	22.30	20.22
8	27/04/2018	62,41	28.58	8DL*	BDL*	BDL*	BDL*	0.15	BDL*	18.77	16.40	34.18	26.38
9	01/05/2018	62.41	27.54	BDL*	BDL*	BDL*	BDL*	0.52	BDL*	21.68	5.61	25.62	24.65
10	04/05/2018	58,63	24.06	BDL*	BDL*	BDL*	BDL*	0.42	BDL*	30.86	13.77	34.20	23.49
11	06/05/2018	70.46	32.47	BDL*	BDL*	BDL*	BDL*	0.21	BDL*	26,43	18.22	31.25	15.44
12	11/05/2018	51.19	19,33	BDL*	BDL*	BDL*	BDL*	0.29	BDL*	17,47	7.64	19.68	22,41
13	15/05/2018	68.70	30.42	BDL*	BDL*	BDL*	BDL*	0.13	BOL*	24.36	12.61	24.37	29.36
14	18/05/2018	54.68	22.76	BDL*	BDL*	BDL*	BDL*	0.17	BDL+	18.43	14.55	33.27	25.59
15	22/05/2018	74.30	28.66	BOL*	BDL*	BDL*	BDL*	0.56	BDL*	33.73	11.50	30.47	18.56
16	25/05/2018	69.40	31.51	BDL*	BDL*	BDL*	BDL*	0.53	BDL*	10.20	6.67	17.69	20.55
17	29/05/2018	59.41	25.48	BDL*	BDL*	BDL*	BDL*	0.31	BDL*	13.90	9.52	15.42	17.22
18	01/06/2018	42.43	19.81	BDL*	BDL*	BDL*	BDL*	0.22	BDL*	3B.62	10.94	35.66	29.52
19	05/06/2018	67.65	34.25	BDL*	BDL*	BDL+	BDL+	0.71	BDL*	48.63	21.54	24.50	26.79
20	08/06/2018	57.78	18.59	BDL×	BDL*	BOL*	BOL*	0.66	BDL*	32.45	17.38	36.28	20.20
21	12/06/2018	78.77	30.68	BDL*	BDL*	BDL*	BDL*	0.31	BDL*	29.58	15.63	23.43	23.51
22	15/06/2018	62.53	38.32	BDL*	BDL*	BDL*	BDL*	0.54	BDL*	35.36	9.47	15.67	30.52
23.	19/06/2018	60.29	32.B2	BDL*	BDL*	BDL*	BDL*	0.26	BDL*	22.69	16.81	38.57	17.57
24	22/06/2018	48.58	22.33	BDL*	BDL*	BDL*	BDL-	0.21	BDL*	30.21	6.89	21.75	25.39
25	26/05/2018	65.58	29.50	BDL*	BDL*	BDL*	BDL*	0.40	BDL*	10.59	13.86	27.51	21.51
26	29/06/2018	55.63	20.35	BDL*	BDL*	BDL*	BDL*	0.16	BDL*	15.39	11.44	18.74	19.61

_			_		-				_		_	_	_
27	03/07/2018	51.45	21.24	BDL*	BDL*	BDL*	BDL*	0.47	BDL*	27.82	16.61	33.68	17.57
26	07/07/2018	40.48	23.75	BDL*	BDL*	BDL=	BDL*	0.17	BDL*	35.64	10.64	30.41	20.47
29	10/07/2018	67.54	24.59	BDL*	BDL*	BDL*	BDL*	0.31	BDL*	20,71	8.59	16,52	22,62
30	14/07/2018	58.65	34.20	BDL*	BOL*	BDL*	BDL*	0.56	BDL*	21.20	21.31	22.70	27,62
31	17/07/2018	66.18	29.42	BDL*	BDL*	BDL*	10.49	0.21	BDL*	38.65	13.85	35.67	15.51
32.	21/07/2018	46.27	18.68	BDL*	BDL*	BDL*	BDL*	0.39	BDL*	13.72	7.82	14.37	18,26
33	24/07/2018	55.70	20.56	BDL*	BDL*	BDL*	BDL*	0.13	BDL*	17.67	12.84	26.28	21.51
34	28/07/2018	60.25	32,40	BDL*	BDL*	BDL*	BDL*	D.32	BDL*	16.42	5.46	23.32	19.25
35	31/07/2018	53.52	27.53	BDL*	BDL*	BDL*	BDL*	0.24	BDL*	23.56	18.51	19.65	25.16
36	03/08/2018	70.56	40.25	BDL*	BDL*	BDL*	BDL*	0.18	BDL*	16.50	12.77	37.52	14.63
37	07/08/2018	59.37	31.85	BDL*	BDL*	BDL*	BDL*	0.63	BDL*	33.27	B.68	23.64	17,60
38	10/08/2018	65.65	42.56	BDL*	BDL*	BDL*	BDL*	0.3D	BDL*	15.33	18.58	33.54	15.31
39	14/08/2018	52.47	28.33	BDL*	BDL×	BOL*	BDL*	0.27	BDL*	38.71	16.37	18.66	22.64
40	17/08/2018	48.30	20.35	BDL*	BDL*	BDL"	BDL*	0.14	BDL*	13.65	7.81	30.75	16.82
41	21/08/2018	62,43	26.82	BDL*	BDL*	BDL*	BDL×	0.15	BDL*	18.33	5.41	26.87	23.57
42	24/08/2018	51.05	29.21	BDL*	BDL*	BDL*	BDL*	0.53	BDL*	29.26	10.89	15.47	27.48
43	28/08/2018	64.23	23.54	BDL*	BDL*	BOL*	BDL*	0.21	BDL*	19.53	20,44	20.34	25.85
44	31/08/2018	73.25	32,48	BDL*	BDL*	BDL*	BOL*	D.44	BDL*	25.34	9.24	28.46	21.47
45	04/09/2018	64.58	33.58	BDL*	BDL*	BDL*	BDL*	D.30	BDL*	39.2B	6.58	16.52	26.16
46	07/09/2018	47.26	15.61	BDL*	BDL*	BDL*	BDL*	0.26	BDL*	26.26	13.70	20.54	18.26
47	11/09/2018	58.34	35.76	BDL*	BDL*	BDL*	BDL*	0.19	BDL*	29.42	19.27	29.28	25.32
48	14/09/2018	67.60	40.21	BDL*	BDL*	BDL*	BDL*	0.15	BDL*	37.51	9.60	23.36	16.30
49	18/09/2018	53.55	17,25	BDL*	BDL*	BDL*	BDL*	0,53	BDL*	21.58	17,53	25,65	28.11
50	21/09/2018	49.38	28.83	BDL*	BDL*	BDL*	BDL*	0.42	BDL*	46.36	8.34	15.33	19.62
51	25/09/2018	62.34	22.50	BDL*	BDL*	BDL=	BDL*	0.49	BDL*	55.33	14.38	32.48	17.56
52	28/09/2018	52.53	19.56	BDL*	BDL×	BDL×	BOL*	0.61	BDL*	30.27	7.50	26.14	15.68

Observation: Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-I Dt: 18/11/2009 National Ambient Air Quality Standards, New Delhi, for 24 hourly or 8 hourly or 1 hourly monitored values

Note: BDL*: Below Detection Limit, Minimum Detection Limit, Ozone as O_3 : 10 $\mu g/m^3$, Lead as Pb: 0.5 $\mu g/m^3$, Carbon Monoxide as CO: 0.01 mg/m^3 , Ammonia NH₃: 10 $\mu g/m^3$, Benzene as C_6H_6 : 2 $\mu g/m^3$, Benzo (a) Pyrene (BaP) - Particulate Phase only: 0.5 ng/m^3 , Arsenic as As: 2 ng/m^3 , Nickel as NI: 10 ng/m^3

Table No.: 1.6 - Ambient Air Quality Monitoring Results At JS - 2 Junction

uni		CHOOK P				Locati	on-6: J	S - 2 Ju	ınction	TOTAL STATE	HOOK NO	Elitery	ral liber
Sr. No.	Date of Sampling	PM ₁₀	PM _{2.5}	Pb	BaP	As	Ni	co	C ₆ H ₆	NH ₃	502	NOx	03
(drm)	ak rouwoak ro	µg/m³	µg/m³	µg/m³	ng/m³	ng/m²	ng/m³	mg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m
1	03/04/2018	87.62	43.04	BDL*	BDL*	BDL*	BDL*	0.88	BDL*	42.63	15.68	33.66	30.44
2	06/04/2018	94.18	52.50	0.64	BDL*	2.68	10.83	0.44	BDL*	54.60	23.55	46.71	25.45
3	10/04/2018	83.43	47.90	0.62	BDL*	2.75	10.38	0.71	BDL*	35.58	26.32	24.27	27.71
4	13/04/2018	78.43	36.93	BDL*	BDL*	BDL*	BDL*	0.38	BDL*	27.84	20.47	41.45	29.42
5	17/04/2018	88.40	42.75	BDL*	BDL*	BDL*	BDL*	0.53	BDL*	33.35	19.90	36,75	21.53
6	20/04/2018	91.40	37.85	0.76	BDL*	2.84	10.56	0.34	BDL*	50.30	17.29	34.58	28.58
7	24/04/2018	86.27	50.37	0.69	BDL*	2.33	10.16	0.26	BDL*	22.70	16.36	28.51	31.45
8	27/04/2018	79.60	33.45	BDL*	BDL*	BDL*	BDL*	0.66	BDL*	39.26	18.43	22.60	17.60
9	01/05/2018	90.47	50.79	0.65	BDL*	2.64	11.27	0.77	BDL*	56.33	18.38	38.66	29.67
10	04/05/2018	83.61	42.45	BDL*	BDL*	BDL*	BDL*	0.70	BDL*	42.34	25.46	29.63	24.48
11	08/05/2018	93.50	52.42	0.78	BDL*	2.52	10.80	0.94	BDL*	22.25	21.60	40.21	26.12
12	11/05/2018	86.33	48.36	0.53	BDL*	2.34	10.29	0.63	BDL*	46,34	10.67	44.57	28.81
13	15/05/2018	70.45	39.44	BDL*	BDL*	BDL*	BDL*	0.37	BDL*	31.74	17.22	34.34	30.17
14	18/05/2018	95.77	47.81	0.82	BDL*	BDL*	10.39	0.76	BDL*	39.38	20.27	37.22	20.34
15	22/05/2018	88.67	45.59	0.75	BDL*	2.65	10.16	0.68	BDL*	35.35	11.74	42.47	25.41
16	25/05/2018	73.68	41.24	BDL*	BDL*	BDL*	BDL*	0.87	BDL*	17.58	19.38	26.45	23.72
17	29/05/2018	91.21	27.59	0.56	BDL*	2.54	10.49	0.74	BDL*	28.67	22.52	32.51	16.67
18	01/06/2018	80.80	36.43	BDL*	BDL*	BDL*	BDL*	0.94	BDL*	52.61	17.52	32.43	28.59
19	05/06/2018	90.50	47.65	0.72	BDL*	2.32	10.76	0.84	BDL*	31.56	24.51	36.75	22.57
20	08/06/2018	77.68	39.46	BDL*	BDL*	BDL*	BDL*	1.01	BDL*	48.39	20.69	30.53	19.47
21	12/06/2018	84.26	50.43	0.86	BDL*	2.46	10.20	0.86	BDL*	37.56	18.68	42.65	30.51
22	15/06/2018	73.41	32.38	BDL*	BDL*	BDL*	BDL*	0.89	BDL*	63.73	22.82	33.52	25.58
23	19/06/2018	92.40	48.65	0.65	BDL*	2.56	10.81	0.96	BDL*	45.59	12.96	45.63	23.66
24	22/06/2018	65.68	26.62	BDL*	BDL*	BDL*	BDL*	0.74	BDL*	33.57	9.26	39.50	27.89
25	26/06/2018	95.79	55.31	0.77	BDL*	2.28	10.61	0.95	BDL*	29.29	21.85	35.81	24.59
26	29/06/2018	74.54	29.68	BDL*	BDL*	BDL*	BDL*	0.46	BDL*	22.69	15.18	28.53	26.50

27	03/07/2018	68,30	32.75	BDL*	BDL+	BDL*	BDL*	0.87	BDL*	30.26	21.42	28.66	26.22
28	07/07/2018	72.72	43.68	BDL*	BDL*	BDL*	BDL*	0.92	BDL*	46.31	18.71	38.66	23.52
29	10/07/2018	90.20	50.47	0.86	BDL*	2.62	10.72	0.44	BDL*	52,40	10.39	39,32	28.28
30	14/07/2018	81.92	44.34	0.66	BDL*	2.54	BOL*	0.95	BDL*	40.36	23.47	33.77	25.78
31	17/07/2018	94.48	37.51	0.78	BDL*	2.46	10.82	0.79	BDL*	56.32	25.66	42.63	20.34
32	21/07/2018	76.29	30.35	BDL*	BDL*	BDL*	BDL*	0.45	BDL*	25.97	15.37	30.51	27.84
33	24/07/2018	69.57	35.73	8DL*	BDL*	BDL*	BDL*	0.38	BDL*	25.71	19.57	34.54	16.35
34	28/07/2018	93.50	54.36	D.88	BDF.	2.24	10.61	0.77	BDL*	34.22	16.42	29,78	21,67
35	31/07/2018	86.51	38.71	BDL*	BDL*	2.84	BDL*	0.58	BDL*	45.63	9.65	37.53	29,35
36	03/08/2018	88.66	52.46	0.65	BDL*	2.52	1D.59	0.73	BDL*	36.84	22.72	43.62	18,31
37-	07/08/2018	79.32	41.53	BDL*	BDL*	BDL*	BDL+	0.36	BDL*	48.33	14.55	31.27	20,88
38	10/08/2018	83.60	45.87	0.56	BDL*	2.78	10.59	0.68	BDL*	33,23	19.64	40.22	25.38
39	14/08/2018	93.44	54.28	BDL=	BDL*	BDL*	BDL×	0.71	BDL*	52.67	25.66	30.65	28.28
40	17/08/2018	59.60	29,40	BDL*	BDL*	BDL×	BDL*	0.29	BDL*	26.54	13.67	21.28	24.76
41	21/08/2018	73.61	33.49	BDL*	BDL*	BDL*	BDL*	0.19	BDL*	30.27	16.14	36.22	30.24
42	24/08/2018	80.44	48.48	BDL*	BDL*	BDL*	BDL*	D.B7	BDL*	44.58	20.23	26.38	21.56
13	28/08/2018	92.46	44.30	BDL*	BDL*	BDL*	BDL*	0.41	BDL*	24.82	23.45	42,62	29.24
44	31/08/2018	85.30	35.85	0.78	BDL*	2,42	10.32	0.86	BOL*	35.49	18.20	35.14	27.59
45	04/09/2018	76.37	42.35	BDL*	BDL*	BDL*	BDL*	0.24	BDL*	57.26	17.34	36.62	28.55
46	07/09/2018	89.36	39.21	BOL*	BDL*	BDL*	BDL*	0.27	BDL*	39.33	12.51	40.29	26.59
47	11/09/2018	92.50	52.75	BDL=	BDL*	BDL*	BDL*	0.74	BDL*	35.77	27.37	33.53	30.32
48	14/09/2018	82.65	45.33	0.80	BDL*	2.64	10.42	0.64	BDL*	41.28	21.26	38.35	18,38
49.	18/09/2018	73.67	34.69	BDL*	BDL*	BDL*	BDL=	0.45	BDL*	33.24	24.66	43,62	23,53
50	21/09/2018	80.23	40.53	BDL*	BDL*	BDL*	BDL*	0.85	BDL*	29.36	22.39	39.36	29.50
51	25/09/2018	78.25	36.31	BDL*	BDL*	BDL*	11,28	0.95	BDL*	61.26	18.23	29.44	25.26
52	28/09/2018	69.27	27.61	BDL*	BDL*	BDL*	BDL*	0.34	BOL*	48.77	14.24	34.67	22.74

Observation: Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-1 Dt: 18/11/2009 National Ambient Air Quality Standards, New Dolhi, for 24 hourly or 8 hourly or 1 hourly monitored values

Note: BDL*: Below Detection Limit, Minimum Detection Limit, Ozone as O_3 : 10 $\mu g/m^3$, Lead as Pb: 0.5 $\mu g/m^3$, Carbon Monoxide as CO: 0.01 mg/m^3 , Ammonia NH₃: 10 $\mu g/m^3$, Benzene as C_0H_6 : 2 $\mu g/m^3$, Benze (BaP) - Particulate Phase only: 0.5 ng/m^3 , Arsenic as As: 2 ng/m^3 , Nickel as NI: 10 ng/m^3

-4-D-

[#] ISO 14001

3B. GROUND WATER LEVEL & QUALITY ANALYSIS (PIEZOMETERS) MONITORING: -

Table – 1: Ground Water Level & Quality Analysis (Pizometer) Results for the period: April-18 to September-18

38.1 Near Sub Station-78

	Loss) (montes fricature fo	- LIA			OBSER	VATION		
SR. NO.	TEST PARAMETER	UNIT	April-18	May-18	June-18	July-18	Aug-18	Sep-18
			27/04/ 2018	29/05/ 2018	29/05/ 2018	23/07/ 2018	21/08/ 2018	18/09/ 2018
1	Temperature	.c	31.6	32	30	30	29	29.6
2	рН	-	8.3	7.8	7.56	7.76	7.58	8.19
3	Total Dissolved Sollds	mg/L	1580	1920	1844	1592	2010	973
4	Salinity	ppt	0,47	0.56	0.69	0.7	1.8	2.27
5	Chloride as CI	mg/L	264	310	384	389	999	126
6	Depth of Water Level from Ground Level	meter	2.4	2.5	2.4	2.3	2.1	2.2
7	Status of Tide**	-	High Tide	Hide Tide	Hide Tide	Hide Tide	Hide Tide	Low Tide

3B.2Near QHSE Office

		1000			OBSER	VATION		
SR. NO.	TEST PARAMETER	UNIT	April-18 27/04/	May-18 29/05/	June-18 29/08/	July-18 23/07/	Aug-18 21/08/	Sep-18 18/09/
			2018	2018	2018	2018	2018	2018
1	Temperature	o,€	32	32.6	30.2	30.1	30.2	30
2	рН	-	8.36	7.95	7.84	7.53	7.48	8.13
3	Total Dissolved Solids	mg/L	902	1210	1139	983	1140	952
4	Salinity	ppt	0.26	0.32	0.31	0.23	0.22	1.81
5	Chloride as CI	mg/L	144	180	175	128	124	116
6	Depth of Water Level from Ground Level	meter	2.7	2,8	2.7	2.6	2,5	2.5
7	Status of Tide**	-0.7	High Tide	Hide Tide	Hide Tide	Hide Tide	Hide Tide	Low Tide

-6)-D-

3C. SEA WATER (SURFACE & BOTTOM) QUALITY ANALYSIS MONITORING:-Table No.: 3C.1 - Sea Water (Surface & Bottom) Quality Analysis Results of sea water south side for the period: April 2018 to September 2018:-

	PANAL STREET	100	Se and Page		RESUL	15 OF 56	ATHAIRE	STATTER.	ANALYSIS	SEA WA	ER SARLIT	HSIDE		
Sr.	YEST	9395	APR	IL-13	MA	f-18	JUN	E-18	_	V-18	AUG	i-18	5EF	-18
N D.	PARAMETER S	UNIT		/2018		/2018		/2018	23/07	/2018	21/08	V2018		/2018
		LUD	Burfait e	Mekto	Surfac	Botle m	Surfac el	Balto	Sunface	licrbio m	Surface	Balto m	Surfac	Bolto
1	pt1	1000	8.17	8.09	8.23	8.15	8.16	8.03	8.25	8.1	8.17	8.12	8.21	8.11
7	Temperature Total	X.	30.8	30.6	31,2	30.8	31.6	31.2	39.8	30.4	30.5	30.4	30.8	30.5
3	Suspended Solids	mg/	210	165	222	196	198	172	257	211	272	208	318	246
4	9 27 'C)	LI,	5.2	4.8	Б	4	4	3	3.75	1	3	2	- 4	2
3	Obygen	mg/ L	6.2	5.8	6.4	5.6	6.2	5.8	6.6	6	6.2	5.8	6.6	6.1
6	Sainty	ppt	31.9	31.5	31.7	31.2	32	31,4	31.8	31.6	31.2	30.9	31	30.8
7	Of B Grease	ma/ L	BDL*	BOL*	BDL*	BDL*	BOL*	BDL*	BDL*	BDL*	BDL*	BDL×	BOL*	BOT.
8	Nibate as NO ₂	lauso 18	20.2	17.4	23.6	15.2	18.8	12.4	5.2	14.26	16.8	12.2	17.8	12.1
9	Nitrite as NO.	µmo UL	2.8	2.4	2.6	2	2.4	1.8	2.61	2.21	2.4	2	1,6	1.2
10	Ammonica Nitr ogenas NI 5	lium fir	3.1	2.5	2	1.5	3.2	2.4	2.81	1.85	2.3	2,1	2.46	2.1
11	Phosphates as PO ₄	µmo UL	1.98	1.75	2.08	1.8	2.1	1.95	2.17	1.85	1.96	1.668	2.1	1.5
12	Total Nibrogen	UL.	7.8	7.4	3.1	2.5	4.8	3.6	10.62	4.47	21.5	15.3	11.89	15.4
13	Petrolauri Hydrocarbon	ug/L	30.4	10.2	18.6	14.2	23.2	12.2	28.4	10.8	20,4	12.2	18	6
14	Total Dissolved Solids	mg/	34210	33940	34108	33720	34740	34210	34170	33850	33972	33704	34212	3397
15	000	mg/	22	18	20	18	18	15	13.6	8.9	10	8	12	.6
A	Roro and Fou	na		100		- 3		Charles of				A +0.1.	S = -77	
15.	Primery Productivity	mgC/L /day	1.7	1.5	2.8	1.3	3.05	1.53	3.74	1.66	2.48	2.25	2.7	2.1
17.	Phytoplankto	51	Tomas II						1					
1	Chlorophy I	mg/m²	1.8	0.4	2.1	1.2	3.73	2.9	3.09	2,59	2.9	1.41	2.17	1,65
2.	Phaeophytin	ug/m,	1.35	0.6	1.5	0.98	2.05	1.78	1.25	0.837	2.23	1.28	1.67	0.96
3	Coll Count	Unit x 10//L	250	80	230	96	248	84	272	90	204	80	216	76
17. 4	Name of Group Number and name of group species of each group		Biddulp his sp. Fregilis rie sp. Mitssch is sp. Meloeir e sp. Coscin adiscus sp.	Progilia rie sp. Synodi a sp. Navioul e sp.	Mewicul e sp. Mittsch la sp. Mekteir e sp. Synetir e sp.	Hervicul a sp. Hitzsch la sp. Synech a sp.	Neutoul 8 Nitzsch is Costin odiscus Clasteri um sp.	Nauicul -5 Bacteri astrom	Rhizos olevia Navicul a Coscin ociacus s Biddulp his Chaeto gradis	Holosir a Havicul 8 Theliasi asira	Newtoul a Nitzsch b Coson odisous s Asterio relle Synedr a	Melosir 6 Newtoul 3 Thallas losira	Newtool A Mittach is Coscin adisous 5 Asterio nolla Synadr 5	Helos B Navici S Symeo B

	FOLINGS COLUMN		DILLEG 9 Joy 1	RESULTS OF SEA	WATER QUALITY	ANALYSIS SEA WA	TER SOUTH SIDE	
Sr.	TEST		APRIL-18	MAY-18	JUNE-18	JULY-12	AUG-18	SEP-16
NO.	PARAMETERS	UNITY	27/04/2018	29/05/2018	29/06/2018	23/07/2018	21/08/2018	18/09/2018
	THE PARTY OF THE P		South Side	South Side	South Side	South Side	South Side	South Side
c	Zooplanktons				ACCOUNT OF THE P	A PARTICOL O	THE PHANE	S PROJECT
18:1	Altundarios (Population)	ign L	20	110	- G	50	54	43
182	Name of Group Number and name of group species of each group	U.S.	Biddulphie sp. Fragiliaria sp. Nitzschia sp.	Cyclops Naupilus Istrae Colpoda sp Daphnia sp	Naupilius Ostracods Cyclops Blunkles	Hydrozoe Gastropods Blvaks Ostrocodes Copepods	Cyclops Nauplius Laryar Ostracodes Polychates	Cyclops Nauplius Laryar Ostracodes Polychates
1B.3	Total Biomass	m)/10 0 m ²	5.8	4.8	6.05	5.6	4.8	5.6
D	Microbiological Pa	ramete	ns .					us terbare
19.1	Total Bacterial Count	CPU/ ml	1560	1740	1650	1850	1860	1550
19.2	Total Golform	/ml	Absent	Absent	Absent	Absent	Absent	Absent
19,3	5:00)	/ml	Absent	Absent	Absent	Absent	Absent	Absent
19.4	Emerococcus species	/mt	Absent	Absent	Absent	Absent	Absent	Absent
19.5	Salmonella species	/ml	Absent	Absent	Absent	Absonit	Absent	Absent
9.6	Shigette apecies	7mt	Absent	Absent	Absent	Absent	Absent	Absent
9.7	Vibrio species	/mi	Absent	Absent	Absent	Absent	Absent	Absent

BDL* - Below Detection Limit

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Water.

Table No.: 3C.2 - Sea Water (Surface & Bottom) Quality Analysis Results of Sea Water North Side for the period: April 2018 to September 2018:-

SE	The state of the s	100									NORTH STOP			
ME.	TEST	and a series		L-16		Y-15		E-12		Y-12		3-18		-18
VO.		UNITY		/2018		y2018		/2018	23/07	/2018		/2018		72018
*	CANCELOWS IN	LEDY.	Surflic	Batto	Suffec	Books	Surfac	Berto	Surface	Boite	Surfac	Botte	Surfac e	Bottle
1	pH H	0.00	8.07	8.01	8.12	80.8	8.15	8.02	8.17	80.8	8.22	8.15	8.24	8,17
2	Temperature	10	30.1	28.7	31	30.6	31.4	31.2	31	30,5	30.8	30.5	30.9	30.7
3	Fotal Suspended Solids	ing/L	440	472	390	320	340	280	290	238	252	196	281	211
4	000 (3 Days 6) 27 SC)	mg/L	5.4	5	4	3	5	4	3	2	3	2	3	BDL
5	Desolved Oxygen	mg/L	6.6	6.2	6.4	6	6	5.4	6.4	5.8	6.4	6.2	6.5	6
5	Salinby	ppc	30.1	30.7	30.8	30.4	31.4	31.2	31.7	31.4	31.1	30.8	30.9	38.6
7	Ol & Grease	mg/L	BOL*	BDL*	BDL*	BOL*	BDL*	BOL*	BDL*	BDL*	BDL*	BDL*	BDL-	BDL
В	Mitrate as NO ₄	hines	20.4	23.2	17.8	18.2	13.8	10.2	17.04	4.47	19.2	13.4	18.4	14.1
0	Mitrite as NO ₂	hmof	1.8	2.2	2.8	2.1	1.5	1.1	2.53	1.8	1.8	1.2	1.4	1.1
10	Ammonical Kiting enas Milj	must,	3.1	2.9	3.4	2.6	2.9	2.4	3.21	2.61	2.1	1.95	1.9	1,6
11	Prosphetes as PO ₄	priot/	2.1 -	1.8	1.96	1.74	2.08	1.95	1.96	1.63	2.04	2.01	2.26	2.05
12	Total Nitrogen	hueA	1.9	4.6	4.4	3.1	3.4	2.8	11.61	8.88	23.1	16.55	21.7	16.8
13	Petroleum Hydrocarbon	pg/L	18	12	16	14	22	18	22,4	8.2	16.2	13.8	15	B.
14	Total Dissolved Solids	mg/L	32460	32090	33218	33102	34110	33780	34292	33742	33812	33618	33984	3351
15-	COD	mg/L	25	20	15	12	20	12	11.7	4.9	8	6	10	BDI.
A	Flora and Fature		-1-0	30	10000			0.000	1000	10000	100			
16.	Prinery Productivity	mgC/L/ day	2.1	1.4	1.64	0.6	2.83	1.23	3.37	1.46	2.36	2.07	2.5	1.9
В	Phytoplanktun		11.00		THE PARTY	SVER 155				_			100	
17.	Chlorophyll	mg/m³	2.7	1.3	2.1	1.1	3.25	1.52	3.54	2.76	2.54	2.18	1.9	1.64
2	Phaeophytin	mg/m ³	1.6	0.58	2.4	0.96	2.4	1.15	3.38	1.44	2.24	1.6	1.68	1.2
17.	Call Count	Unitix 10°/L	290	70	250	75	232	112	310	120	210	92	220	80
17.	kame of Group kumber and name of group species of each group		Mervicu la sp. Mitzsch ie sp. Coscin notiscu s sp. Rhizos olenne sp. Mitosir e sp.	Synadr e sp. Nizsch is sp. Ragil aris sp.	Maxicu la sp. Hitzsch ia sp. Actorio nella sp. Scene desmu s sp.	Newcul a sp. Mitssch le sp.	Navious 8 Mittech 5 Spiruli 18 Mensir 3	Netzech ia Melasir a Newtool	Navicul o NiCosch b Losteri zoni Malosir a Thelies ionena	Herricul a Synodr a Sprirul ia	Navious a Nicosch ta Asterio nota Synodr a Thalias lonera	Navicul S HRISCH Id Holosia S	Mayloul H Hitzsch is Asterio nolia Syneon B Thailas Ionena	Navio a Nitest Histori a


3

	DELICON (STEEL)	201		RESULTS C	OF SEA WATER QU	ALITY ANALYSIS IN	DRITH SIDE	
Sr.	TEST	586 TS	APRIL-18	MAY-18	JUNE-18	JULY-18	AUG-18	5EP-18
NO.	PARAMETERS	UNOT	27/04/2018	29/05/2018	29/06/2018	23/07/2018	21/08/2018	18/09/2018
14.0	CHARLES FOLLOW	10 H	North Side	North Side	North Side	North Side	North Side	North Side
c	Zoopianktone	CONTRACTOR OF THE PARTY OF THE	THE PROPERTY.	and reasoning	PORTUGOR DOLL	CONTRACTO	DEBUCON FOLLS	car sortion
15.1	Abundance (Population)	900.5 400-1	22	20	59	T 28 CO	58	CH (47 H.O.
18.2	kame of Group Kumber and name of group species of each group	4	Copepods Chactognathes Decapods Molluscans	Nauplus larvae Daphnia sp Colpoda sp. Ostracods	Colpoda sp. Nauptus Larure Copepods Ostracods	Nauplius larual cyclops sp. Ostracods sp. Colpoda sp.	Gastripods Polychates Cyclops Oligochaettes	Gestripods Polychates Cyclops Digochaetes
18.3	Total Barrass	m(/10 0 m ³	5.5	4.5	5,75	4.84	5.05	5.5
D.	Nicrobiological Pa	eamate	rs .	THE PERSON AND ADDRESS.		WALKEN TO THE	ALEST MILES	SOR POETIKOS Reportuicina
19.1	Total Bacterial Count	Crty	1720	1940	1850	2050	1948	1940
19.2	Total Collorn	/ml	Absent	Absent	Absent	Absent	Absent	Absent
19.3	Emi	/ml	Absent	Absent	Absent	Absent	Absent	Absent
19.4	brierococcus species	/ml	Absent	Absent	Absent	Absent	Absent	Absent
19.5	Salmone to species	/ml	Absent	Absent	Absent	Absent	Absent	Absent
19.5	Shigella species	/mi	Absent	Absent	Absent	Absent	Absent	Absent
19.7	Wibrio species	/mt	Absent	Absent	Absent	Absent	Absent	Absort

BOL* - Below Detection Umit

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Water.

3D. SEA SEDIMENT QUALITY ANALYSIS MONITORING: -

Table -Sea Sediment Quality Analysis (South Side) Results for the period: April 2018 to September 2018

Sr.	THE RESERVE OF THE PERSON OF T	LIP FO	APRIL-18	MAY-18	JUNE-18	JULY-18	AUG-18	SEP-18
Mo	PARAMETERS	UNIT	27/04/2018	29/05/2018	29/06/2018	23/07/2018	21/08/2018	18/09/2018
1	Organic Matter	%	0.45	0.58	0.52	0.65	0.41	0.58
2	Phosphorus as P	рд/д	680	590	540	740	650	580
3	Texture		Sandy	Sandy	Sandy	Sandy	Sandy	Sandy
4	Petroleum Hydrocarbon	pg/g	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*
5	Heavy Metals		and a resident	TW-2 CXX		CAN STATE		WILLIAM F
5.1	Aluminum as Al	96	6.1	5.9	5.2	5.5	5.3	5.2
5.2	Total Chromium as Cr*3	µg/g	175	152	110	140	120	172
5.3	Manganese as Mn	µg/g	1580	1380	1670	1820	174D	1610
5.4	Iron as Fe	96	5.15	5.1	4.9	5.1	5.4	5.15
5.5	Nickel as Ni	µg/g	68.4	42.4	32.7	37.2	29.6	41.6
5.6	Copper as Qu	υ <u>α</u> /9	42.42	48.6	43.2	44.4	41.6	30.2
5.7	Zinc as Zn	µg/g	125	180	130	210	150	240
5.8	Load as Pb	ид/д	7.4	5.8	8.4	7.5	6.2	2.4
5.9	Mercury as Hg	µg/g	0.12	BDL*	BDL*	BDL*	BDL*	BDL*
6	Benthic Organisms				Turner S		To mulician	OX 100 TO
6.1	Macrobenthos (No and name of groups present, No and name of species of each group present)		Polychaetes Chaetognathe	Polychaete warms Bivalves	Polychaetes Echinoderms	Polychaete worms Oligodieates Echinoderris	Polychaete worms Echinodemis	Polychaete worms Isopods
6.2	MeioBenthos (No and name of groups present, No and name of species of each group present)	1	Copepods Hydrazas	Hematodes Foreminifersn s Gastropods	Nematodes	Nematodes Copepads	Memalodes Foraminiferen S	Nematodes
6.3	Population	no/m²	390	360	353	412	529	500

BDL* - Below Detection Limit

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Sediment.

3D. SEA SEDIMENT QUALITY ANALYSIS MONITORING: Table -Sea Sediment Quality Analysis Results (North Side) for the period: April 2018 to
September 2018:-

Sr.			APRIL-18	MAY-18	JUNE-18	JULY-18	AUG-18	SEP-18
Mo.	PARAMETERS	UNIT	27/04/2018	29/05/2018	29/06/2018	23/07/2018	21/08/2018	18/09/2018
1	Organic Matter	1%	0.39	0.52	0.6	0.78	0,52	0.62
2	Phosphorus as P	mg/kg	430	510	480	690	710	628
3	Texture	2	Sandy	Sandy	Sandy	Sandy	Sandy	Sandy
4	Petroleum Hydrocarbon	mg/kg	BDL*	BDL*	BDL*	BDL"	BDL*	BDL-
5	Heavy Metals	57		(8)			CONTRACTOR	SHEET PROPERTY
5.1	Aluminum as Al	9/2	5.45	5.2	5.35	5.4	5.1	5
5.2	Total Chromium as Cr*8	mg/kg	172	228	198	125	136	196
5.3	Manganese as Mri	mg/kg	1340	1590	1720	1770	1820	1720
5.4	Iron as Fe	%	4.9	4.B	4.98	4.9	4.9	5.2
5.5	Nickel as Ni	mg/kg	32.6	58.6	42.6	42.8	33.6	47.8
5.6	Copper as Cu	mg/kg	52,8	32.4	38.7	54.6	56.6	36.4
5.7	Zinc as Zn	mg/kg	178	212	240	170	218	278
5.8	Lead as Pb	mg/kg	10.4	7.8	5.5	6.2	3.4	2.1
5.9	Mercury as Hg	mg/kg	0.14	BDL*	BDL*	BDL*	BDL*	BDL*
6	Benthic Organisms						Contractor of the Contractor o	THE STATE OF THE S
6.1	Macrobenthos (No and name of groups present, No and name of species of each group present)	4	Polychaetes Bireleus	Echinoderms Corab Binahas	Polychaetes Echinoderms Sivelues	Ethinoderna Bhahes Coolemerates	Princheses Ofgothactes	Polychetes Decapods
	MeioBenthos (No and name of groups present, No and name of species of each group present)		Copepode Hydrosos	Nemalodes Gastropods Copepods	Foreminifera kematodes	Nematodes Poraminiferans	Capepods Foraminiferans	kematodes Forominiferans
6.3	Population	no/m³	450	460	324	382	471	441

BDL* - Below Detection Limit

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Sediment.

3E. DUMP POND WATER QUALITY ANALYSIS MONITORING: -

Table -Dump Pond Water Quality Analysis Results for the period: April - 2018 to Sep - 2018

			Results		COLOR PHILLIPS		
H.	The second of the second	SOUL ACTIVITY	April -18	May-18	August-18		
min	Date	or Paris	27/04/2018	29/05/2018	21/08/2018		
Sr. No.	Test Parameters	Unit	Dump Pond (Near Rajiv Gandhi Statue)				
1.	pH	-	7.65	7.35	7.85		
2.	Total Dissolved Solids	mg/L	1240	1040	1310		
3.	Total Suspended Solids	mg/L	90	70	56		
4.	Turbidity	NTU	7.4	3.4	5.4		
5.	BOD (3 Days @ 27 ℃)	mg/L	48	30	24		
6.	Dissolved Oxygen	mg/L	4.8	5.2	5.6		
7.	COD	mg/L	240	156	138		
8.	Salinity	ppt	0.034	0.027	0.21		
9,	Oil & Grease	mg/L	BDL*	BDL*	BDL*		
10.	Total Hardness as CaCO₃	mg/L	712	610	680		
11.	Fluoride as F	mg/L	0.44	0.52	0.6		
12.	Chloride as Cl	mg/L	19	15	118		
13,	Zinc as Zn	mg/L	0.022	0.018	0.024		
14.	Cadmium as Cd	mg/L	BDL*	BDL*	BDL*		
15.	Lead as Pb	mg/L	BDL*	BDL*	BDL*		
16.	Mercury as Hg	mg/L	BDL*	BDL*	BDL*		

SDL*: Below Detection Limit

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Dump Pond Discharge Water.

3F. STP TREATED WATER QUALITY ANALYSIS MONITORING: -

TABLE - STP TREATED WATER QUALITY ANALYSIS RESULTS FOR THE PERIOD: APRIL-2018 TO SEP-2018

		DESCRIPTION OF THE PARTY OF THE	STP Treated Water Quality Analysis Results						
SR. TEST PARAME	TEST PARAMETERS	UNIT	April-18	May-18	June-18	July-18	Aug-18 16/08/ 2018	Sep-18	
			27/04/ 2018	31/05/ 2018	29/06/ 2018	23/07/ 2018		18/09/ 2018	
1.	pH		8.12	7.22	7.3	7.45	6.96	7.55	
2.	Total Suspended Solids	mg/L	16	24	28	24	15	21	
3.	BOD (3 Days @ 27 °C)	mg/L	14	18	20	18	10	16	
4.	Residual Free Chlorine	mg/L	0.8	0.6	0.7	0.6	0.6	0.8	

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of STP Treated Water.

State of

3G. AMBIENT NOISE LEVEL MONITORING: -

Tables - 1 - Behind QHSE Office Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A) Leg for the period of April 2018 to September 2018

C			1 - Behind	QHSE Office		
6:00-7:00 7:00-8:00 8:00-9:00 9:00-10:00	and the state	D	uring Day Tin	ne - dB(A) Ler	q*	couling top
Date of Monitoring	02/04/2018	01/05/2018	01/06/2018	02/07/2018	01/08/2018	03/09/2018
6:00-7:00	43.3	50.1	41.0	48.3	52.7	62.5
7:00-8:00	44.6	52.7	62.7	63.1	66.1	60.7
8:00-9:00	49.5	58.6	47.0	59.4	52.6	57.5
9:00-10:00	47.9	66.0	55.1	57.7	56.5	64.6
10:00-11:00	46.8	68.6	63,4	62.0	71.2	66.9
11:00-12:00	6D.2	46,0	54.6	49.8	53.5	55.7
12:00-13:00	54.0	43.0	45.7	41.0	46.5	53.9
13:00-14:00	48.9	57.3	46.5	56.6	43.6	52.4
14:00-15:00	56.7	69.4	42.4	55.6	50.7	40.5
15:00-16:00	58.3	47.6	51.6	54.3	49.8	56.3
16:00-17:00	42.7	49.0	53.1	44.2	51.8	45.0
17:00-18:00	40.2	63.1	48.0	64.3	58.0	65.7
18:00-19:00	64.3	59.3	58.3	50.6	61.2	49.9
19:00-20:00	53.8	51.9	57.2	69.0	47.5	61.8
20:00-21:00	62.0	60.7	70.1	53.7	64.1	59.7
21:00-22:00	55.8	48.8	50.4	51.9	54.6	63.5

Caucallian Lamatan	1 - Behind QHSE Office During Night Time - dB(A) Leq*								
Sampling Location									
Date of Monitoring	02/04/2018 & 03/04/2018	01/05/2018 & 02/05/2018	01/06/2018 & 02/06/2018	02/07/2018 & 03/07/2018	01/08/2018 & 02/08/2018	03/09/2018 & 04/09/2018			
22:00-23:00	54.6	41.4	42.9	47.3	46.2	45.6			
23:00-00:00	38.2	45.7	39.8	48.2	49.3	46.4			
00:00-01:00	45.9	48.6	41.0	37.9	43.6	49.9			
01:00-02:00	51.8	44.9	38.7	36,1	41.4	40.1			
02:00-03:00	47.3	34.0	43.3	38.4	44.0	44.4			
03:00-04:00	49.2	40.2	44.3	46.3	42.6	54.5			
04:00-05:00	5D.1	47.3	40.2	44.6	51.3	58.9			
05:00-06:00	41.8	46.0	47.7	42.8	44.8	51.5			

FdB(A) Leg, denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Tables -2 - PMC Office Back Side Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A) Leg for the period of April 2018 to September 2018

Sampling Location	2 - PMC Office Back Side								
sampling Location		D	uring Day Tin	ne - dB(A) Le	7	Constitution of the second			
Date of Monitoring	03/04/2018	02/05/2018	02/06/2018	03/07/2018	02/08/2018	04/09/2018			
6:00-7:00	53.6	44.2	43.9	48.9	44.9	51.1			
7:00-8:00	B.08	59.7	52.0	62.3	55.9	63.6			
8:00-9:00	44.3	57.0	54.6	59.2	53.3	52.3			
9:00-10:00	61.1	62.5	56.4	60.0	50.2	55.3			
10:00-11:00	57.0	46.5	58.5	50.6	48.3	61.3			
11:00-12:00	54.5	64.2	61.5	58.5	49.5	66.2			
12:00-13:00	45.5	65.1	55.0	66.6	61.7	64.5			
13:00-14:00	58.3	43.6	46.1	56.5	54.6	50.6			
14:00-15:00	42.4	54.6	59.8	57.9	51.5	62.1			
15:00-16:00	43.9	63.8	65.0	49.5	54.5	48.3			
16:00-17:00	52.6	58.3	49.4	55.3	62.5	59.3			
17:00-18:00	56.6	47.8	42.9	61.5	52.4	46,5			
18:00-19:00	55.6	50.0	45.3	51.1	46.1	60.9			
19:00-20:00	50.5	61.0	47.7	53.3	57.6	56,8			
20:00-21:00	51.9	52.3	53.3	47.1	60.3	54.6			
21:00-22:00	59.9	55.0	51.4	54.3	56.9	53.7			

Canadian Lander	2 - PMC Office Back Side								
Sampling Location	THE STREET	DL	ring Night Ti	me - dB(A) Le	q*	- 2 m. com successor			
Date of Monitoring	03/04/2018 & 04/04/218	02/05/2018 & 03/05/2018	02/06/2018 & 03/06/2018	03/07/2018 & 04/07/2018	02/08/2018 & 03/08/2018	04/09/2018 8 05/09/2018			
22:00-23:00	42.7	55.4	43.5	46.5	42.3	48.3			
23:00-00:00	5D.D	48.D	46.7	45.6	44.5	40.8			
00;00-01:00	40.8	49.3	54.7	60.5	52.3	50.3			
01:00-02:00	45.1	44.6	49.3	57.3	50.9	56.4			
. 02:00-03:00	44.9	45.1	52.5	53.3	51.1	58.3			
03:00-04:00	48.0	53.2	50.2	52.1	56.3	55-2			
04:00-05:00	41.4	51.5	45.0	44.5	48.2	52.1			
05:00-06:00	43.6	41.4	48.8	39.7	40.7	54.2			

^{*}dB(A) Leg. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Authorized Signatory

◆PSSAI Approved Lab.

Recognised by MoEE. New Delhi Under CPCB approved
Sec. 12 of Environmental (Protection) Act-1986 schedule II moditor Recognised by MoRF. New Delhi Under

₱ ISO 14001

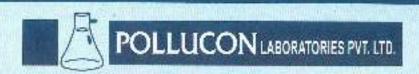
♥ UHSAS 18001

Observations: Above given Results are within the specified norms as per The Noise Poliution (Regulation and Control) Rules 2000.

Tables - 3 - Sub Station - 6 Back Side Ambient Hoise Level Monitoring Results during the Day Time and Night Time in dB(A) Leq for the period of April 2018 to September 2018

Compliant Location	ATT SEATTING TO	William State of	- Sub Statio	n - 6 Back Sld	e	NEW STREET
ampling Location 6:00-7:00 - 7:00-8:00 8:00-9:00 9:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00	C-CLUS O	D	uring Day Tin	ne - dB(A) Lex	CLUSCOB POLLS	cor Pounce
Date of Monitoring	04/04/2018	03/05/2018	04/06/2018	D4/07/2018	03/08/2018	05/09/2018
6:00-7:00	53.5	51.3	38.0	45.3	52.3	48.9
7:00-8:00	48.7	49.5	47.0	50.3	45.8	52.3
8:00-9:00	55.8	59.1	58.3	47.7	61.3	53.0
9:00-10:00	50.7	56.3	61.3	44.5	55.2	58,4
10:00-11:00	52.4	45.4	44.5	41.6	53.3	42.3
11:00-12:00	59.8	57.7	52.8	55.8	60.9	49.6
12:00-13:00	44.3	61.3	48.9	46.3	64.5	40.6
13:00-14:00	51.9	50.3	40.3	51,5	48.1	47.9
14:00-15:00	56.9	52.3	41.3	42.1	63.3	51.7
15:00-16:00	58.4	46.6	54.0	61.0	49.1	59.3
16:00-17:00	57.1	54.2	50.9	53.8	58.7	55.4
17:00-18:00	43.6	48.9	53.6	56.2	51.8	63.5
18:00-19:00	47.2	53.3	51.2	57.7	54.7	46.9
19:00-20:00	46.9	50.1	56.9	58.1	59.3	57.5
20:00-21:00	60.7	55.2	57.5	52.3	50.4	54.2
21:00-22:00	51.6	47.6	49.9	36.6	52.3	43,0

	3 - Sub Station - 6 Back Side During Night Time - dB(A) Leq ^d								
Sampling Location									
Date of Monitoring	04/04/2018 & 05/04/2018	03/05/2018& 04/05/2018	04/06/2018 & 05/06/2018	04/07/2018 & 05/07/2018	03/08/2018 & 04/08/2018	05/09/2018 8 06/09/2018			
22:00-23:00	40.0	48.9	45.7	42.5	43.5	51.2			
23:00-00:00	46.9	51.2	53.4	45.5	48.9	47.2			
00:00-01:00	36.9	46.9	55.4	52.9	54.1	49.8			
01:00-02:00	47.0	58.3	49.3	54.7	56.3	50.7			
02:00-03:00	37.1	56.0	42.3	43.2	55.1	39.8			
03:00-04:00	43,9	42.6	50.1	48.6	47.8	55.1			
04:00-05:00	45.2	47.9	48.6	46.2	49.8	57.3			
05:00-06:00	41.7	49.6	51.2	47.9	50.0	54.7			


[&]quot;dB(A) Leg. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

GPCB approved achedule II auditor

[♠]ISO 14001

Tables - 4 -Sub Station - 8 (Marine Building) Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A) Leg for the period of April 2018 to September 2018

Sampling Location	FIGURES NO.	4 -Sub Station - 8 (Marine Building)								
sampling cocation	Daluenoes	D	uring Day Tin	ne - dB(A) Les	1	Core sounds				
Date of Monitoring	05/04/2018	D4/05/2018	05/06/2018	05/07/2018	04/08/2018	06/09/2018				
6:00-7:00	47.8	46.3	43.0	4D.3	54.3	48.2				
7:00-8:00	54.4	65.3	62.3	53.3	59.D	61.2				
8:00-9:00	59.4	49.3	52.6	56.8	50.0	41.9				
9:00-10:00	60,9	48.3	59.9	45.5	48.3	49.3				
10:00-11:00	65.4	69.0	65.3	68.3	72.7	71.7				
11:00-12:00	57.1	54.2	50,3	58.3	51.1	70.5				
12:00-13:00	46.9	58.2	61.4	64.5	62.4	63.5				
13:00-14:00	52.0	55.3	58.3	59.5	57.5	56.5				
14:00-15:00	61.7	56.0	53.7	60.3	63.3	68.5				
15:00-16:00	58.5	57.5	46.0	54.5	53.3	52.0				
16:00-17:00	53.7	45.8	41.9	43.5	62.5	55.4				
17:00-18:00	63.4	53.6	44.1	55.3	56,1	59.7				
18:00-19:00	41.3	44.4	64.7	39.7	54.6	57.7				
19:00-20:00	64.6	50.3	46.0	52.8	50.6	53.1				
20:00-21:00	55.7	51.2	63.3	62.5	53.3	69.3				
21:00-22:00	62.7	61.3	42.0	41.4	55.3	47.0				

Campling Location	4 -Sub Station - 8 (Marine Building) During Night Time - dB(A) Leq*							
Sampling Location								
Date of Monitoring	05/04/2018 & 06/04/2018	04/05/2018 & 05/05/2018	05/06/2018 & 06/06/2018	05/07/2018 & 06/07/2018	04/08/2018 8. 05/08/2018	06/09/2018 8 07/09/2018		
22:00-23:00	35.6	41.3	40.9	46.7	48.1	37.9		
23:00-00:00	40.9	44.4	48.5	43.9	47.3	45.4		
00:00-01:00	45.7	46.4	55.2	49.8	50.1	41.7		
01:00-02:00	41.7	47.5	42.3	38.2	44.2	39.2		
02:00-03;00	42.2	51.8	44.3	50.2	49.0	48.2		
03:00-04:00	49.5	48.3	43.3	42.4	45.1	47.2		
04:00-05:00	50.4	53.7	49,6	48,6	55.3	58.7		
05:00-06:00	52.0	36.6	41.3	39.1	44.9	43.7		

^{*}d3(A) Leg. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observations: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

GPCB approved schedule II auditor

[●] ISO 14801

Tables - 5 - Near Sub Station-78 Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A) Leq for the period of April 2018 to September 2018

	r to luctor to	queon monto	5 - Near Sul	5 Station-7B	PORTON POR	CONTRACT
Sampling Location Date of Monitoring 6:00-7:00 7:00-8:00 8:00-9:00 9:00-10:00 10:00-11:00 11:00-12:00	- DESIDOR TOUR	D	uring Day Tin	ne - dB(A) Lec	of the same of the	
Date of Monitoring	06/04/2018	05/05/2018	06/06/2018	06/07/2018	05/08/2018	07/09/2018
6:00-7:00	44.2	62.8	53.7	49,2	55.2	59.0
7:00-8:00	50.9	64.3	54.5	55.4	56.2	60,1
8:00-9:00	60.9	50.3	47.5	45.2	52.2	58.5
9:00-10:00	51.0	57.8	55.2	40.8	54.6	66.1
10:00-11:00	66.3	43.3	48.5	39.9	47.9	61.2
11:00-12:00	55.9	68.1	61.9	54.3	53.0	64.5
12:00-13:00	67.6	65.3	51.3	52.8	62.3	57.5
13:00-14:00	58,3	61.8	56.0	62.5	49.8	65.5
14:00-15:00	45.0	54.0	62.7	59.4	52.7	56.3
15:00-16:00	47.5	44.3	46.7	43.9	48.6	42.2
16:00-17:00	48.5	67.7	52.5	57.5	50.9	51.1
17:00-18:00	53.8	66.8	57.8	41.5	48.1	52.9
18:00-19:00	57.2	60.8	63.5	61.1	65.5	69.1
19:00-20:00	54.4	71.2	50.9	60.2	54.0	68.1
20:00-21:00	56.3	47.7	8.08	46.4	57.5	71.6
21:00-22:00	52.7	70.0	49.6	50.6	56.5	62.6

	5 - Near Sub Station-78 During Night Time - dB(A) Leq ²							
Sampling Location								
Date of Monitoring	D5/04/2018 & 07/04/2018	05/05/2018 & 06/05/2018	06/06/2018 & 06/07/2018	05/07/2018 & 07/07/2018	05/08/2018 A 06/08/2018	07/09/2018 & 09/09/2018		
22:00-23:00	44.8	46.5	39.5	43.1	42.3	57.5		
23:00-00:00	49.3	38.4	56.7	45.8	55.4	41.0		
00:00-01:00	45.9	51.1	49.6	52.0	48.6	53.2		
01:00-02:00	50.1	54.0	42.9	49.6	59.5	51.8		
02:00-03:00	52.5	42.7	54.1	44.1	56.3	49.3		
03:00-04:00	40.2	43.1	48.4	38.7	44.2	55.9		
04:00-05:00	42.9	40.0	41.3	37.2	48.2	45.8		
05:00-06:00	39.2	48.6	44.5	46.0	47.1	38.6		

^{*6}B(A) Log, denotes the time weighted everage of the level of sound in dodhols on scale A which is relatable to human hearing.
Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Poliution (Regulation and Control) Rules 2000.

Authorized Signatory

@FSSAt Approved Lab

 Recognised by MoRF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986.

 GPCR approved schedule U auditor ₱4SO 14801

ORISAS 188001

₱ [5O 9801

Tables -6 - JS - 1 (Nr. Lakhigam) Amblent Noise Level Monitoring Results during the Day Time and Night Time in dB(A) Leq for the period of April 2018 to September 2018

Sampling Location	6 - JS - 1 (Nr. Lakhigam) During Day Time - dB(A) Leq ^o								
sampang Location									
Date of Monitoring	07/04/2018	07/05/2018	07/06/2018	07/07/2018	06/08/2018	09/09/2018			
6:00-7:00	47.5	61,4	43,5	60.5	58.9	68.4			
7:00-8:00	52.6	53.6	60.5	65.7	50.0	40.5			
8:00-9:00	43.8	67.1	59.5	66.3	63.5	64.1			
9:00-10:00	55.0	49.9	57.8	58.0	59.3	51.2			
10:00-11:00	53.3	56.3	67.3	51.3	66.8	60.9			
11:00-12:00	64.3	58.2	50.1	52.5	54.3	44.7			
12:00-13:00	67.0	60.4	58.2	62.3	64.4	71.8			
13:00-14:00	54.6	63.5	62.5	56.1	53.1	58.7			
14:00-15:00	61.8	64.7	63.2	68.1	62.2	45.3			
15:00-16:00	48.2	57.1	52.3	54.3	61.2	55.5			
16:00-17:00	58.6	43.5	49.1	61.1	48.4	42.3			
17:00-18:00	57.9	46.9	56.2	53.2	53.4	45.6			
18:00-19:00	46,7	50.2	51.7	59.1	56.5	48.0			
19:00-20:00	60.8	55.1	42.4	63.3	51.3	52.7			
20:00-21:00	50.5	54.7	48.3	49.6	45.2	62.2			
21:00-22:00	49.9	51.2	47.2	50.5	52.6	61,0			

Consultant constant	6 - 35 - 1 (Nr. Lakhigam) During Night Time - dB(A) Leq*							
Sampling Location								
Date of Monitoring	07/04/2018 & 08/04/2018	07/05/2018 & 06/05/2018	07/06/2018 & 08/06/2018	07/07/2018 & 08/07/2018	06/08/2018 & 07/08/2018	09/09/2018 & 09/09/2018		
22:00-23:00	53.8	40.5	36.3	43.3	43.9	37.6		
23:00-00:00	57.7	52.2	49.3	45.4	43.1	42.8		
00:00-01:00	43.2	48.6	40.9	51.3	49.5	44.0		
01:00-02:00	40.8	47.5	51.1	56.8	50.2	52.2		
02:00-03:00	44.1	65.9	62.9	61.3	58.5	63.3		
03:00-04:00	37.2	49.9	46.7	48.8	47.8	55.9		
04:00-05:00	48.3	41.2	47.2	42.8	45.6	50.6		
05:00-06:00	52.5	50.9	57.4	58.9	53.5	59.7		

FdB(A) Leg, denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Authorized Signatory

●FSSAI Approved Lab

 Recognised by MoEF, New Bellit Under Sec. 42 of Reviewmental (Protection) Act-1988. GPGB approved schedule II auditor

● ISO 14001

● OHSAS 18001

@ ISO 908

Tables -7 - Behind S.S. - 11 (Sllo) Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A) Leq for the period of April 2018 to September 2018

Sampling Location	HIGHZ de Po	7 - Behind S.S 11 (Silo)							
Date of Monitoring	During Day Time - dB(A) Leq*								
	09/04/2018	08/05/2018	08/06/2018	09/07/2018	08/08/2018	10/09/2018			
6:00-7:00	54.2	46.5	49.6	48.5	60.7	45.5			
7:00-8:00	50.4	64.0	48.3	60.1	63.7	71.3			
8:00-9:00	47.3	42.0	58.5	57.5	48.2	50.7			
9:00-10:00	57.2	56.8	46.5	51.7	43.1	55.1			
10:00-11:00	65.6	53.3	55.5	47.1	50.3	51.5			
11:00-12:00	60.6	49.8	47.2	71.3	59.0	57.7			
12:00-13:00	63.7	57.8	59.9	65.1	62.2	68.6			
13:00-14:00	66.4	45.5	53.5	56.6	47.5	57.3			
14:00-15:00	64.7	60.5	67.1	52.0	49.0	66.6			
15:00-16:00	61.9	70.5	68.9	74.9	71.3	69.2			
16:00-17:00	62.5	59.1	64.7	52.2	61.5	70.1			
17:00-18:00	74.0	61.3	50.3	49.0	64.5	60.1			
18:00-19:00	68.7	52.5	71.2	55.8	66.0	54,3			
19:00-20:00	48.4	55.3	54.3	58,6	68.5	46.5			
20:00-21:00	44.3	62.0	70.5	59.2	51.3	63.7			
21:00-22:00	58.B	51.0	56.2	53.Z	65.7	42.6			

Consultant continu	7 - Behind S.S 11 (Silo) During Night Time - dB(A) Leq*							
Sampling Location								
Date of Monitoring	09/04/2018 & 10/04/2018	08/05/2018 & 09/05/2018	08/06/2018 & 09/06/2018	09/07/2018 & 10/07/2018	08/08/2018 & 09/08/2018	10/09/2018 & 11/09/2018		
22:00-23:00	39.5	45.5	51.5	42.5	48.0	50.3		
23:00-00:00	43.5	59.5	52.9	48.5	41.6	49.9		
00:00-01:00	41.0	50.5	46.8	51.8	49.3	43.3		
01:00-02:00	47.5	49.1	45.2	40.1	50.5	42.2		
02:00-03:00	50.9	52.2	43.6	47.7	46.8	44.7		
03:00-04:00	40.2	36.9	44.5	41.3	43.3	48.3		
04:00-05:00	44.6	40.8	50.8	38.5	42.0	57.5		
05:00-06:00	53.1	47.7	41.0	44.0	40.7	55.5		

^{*}da(A) Log. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

GPCB approved echedule II auditor

[●] ISO 14001

[•] OHSAS 18001

Tables - 8 -Nr. S&S Entry Gate (Dahej Road) & Silo Loading Point Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April 2018 to September 2018

	8 - Nr. S&S	Entry Gate (Dahej Road)	8-5	8 - Silo Loading Point			
Sampling Location	During L	Day Time - dB	(A) Leq*	During Day Time - dB(A) Leq ^e				
Date of Monitoring	10/04/2018	09/05/2018	09/06/2018	25/07/2018	09/08/2018	11/09/2018		
6:00-7:00	51.4	54.2	61.3	48.5	45.6	56.7		
7:00-8:00	55.6	51.1	49.9	56.6	48.5	44.0		
8:00-9:00	57.3	52.2	58.1	49.3	50.8	55.0		
9:00-10:00	50.7	48.5	52.1	53.3	49.8	43.9		
10:00-11:00	48.1	58.4	53.7	57.3	56.5	61.3		
11:00-12:00	59.2	38.3	46.5	41.2	52.7	50.3		
12:00-13:00	53.9	43.3	44.5	45.6	57.8	41.8		
13:00-14:00	58.3	55.5	54.6	59.6	53.5	57.6		
14:00-15:00	63.1	47.7	56.6	51.5	58.5	52.5		
15:00-16:00	61.9	46.5	45.6	47.5	53,5	48.7		
16:00-17:00	62.7	45.3	48,3	50.5	51.2	46.2		
17:00-18:00	46.7	57.2	64.1	52.7	59.3	54.8		
18:00-19:00	47.6	56.2	62.2	60.3	61.2	59.3		
19:00-20:00	67.8	53.0	59.7	54.3	54.7	45.4		
20:00-21:00	56.6	50.5	51.4	46.0	52.2	47.4		
21:00-22:00	54.1	59.9	47.7	55.8	46.7	53.8		

	8 - Nr. 565	Entry Gate (Dahej Road)	8 - Silo Loading Point During Night Time - dB(A) Leq*			
Sampling Location Date of Monitoring	During N	lght Time - di	B(A) Leq ^a				
	10/04/2018 & 11/04/2018	09/05/2018 & 10/05/2018	09/06/2018 B. 10/06/2018	25/07/2018 & 26/07/2018	09/08/2018 & 10/08/2018	11/09/2018 8 12/09/2018	
22:00-23:00	54.3	55.1	47.4	41.8	48.4	45.3	
23:00-00:00	51.2	46.6	44.8	40.2	45.8	42.8	
00:00-01:00	41.5	50.7	42.2	51.5	44.5	58.9	
01:00-02:00	52.6	41.3	46.5	38.5	42.8	40.3	
02:00-03:00	45.4	51.3	41.7	49.2	43.9	48.5	
03:00-04:00	53.2	49.6	48.3	43.8	52.3	47.3	
04:00-05:00	44.0	42.1	51.0	37.2	49.8	57.1	
05:00-06:00	43.1	48.5	39.7	44.1	42.4	49.4	

^{*}dB(A) Leg, denotes the time weighted average of the lovel of sound in decides on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observations: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Authorized Signatory

●FSSAI Approved Lab

 Recognised by MoEF, New Bullit Under Sec. 12 of Environmental (Protection) Aut-1988 GPCB approved schedule II auditor ● ISO 14001

OHSAS 18001

● ISO 9001

Tables -9 - GCPTL Gate Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A) Leg for the period of April 2018 to September 2018

Complete Land	9 - GCPTL Gate								
Sampling Location	During Day Time - dB(A) Leq*								
Date of Monitoring	11/04/2018	10/05/2018	11/06/2018	11/07/2018	10/08/2018	12/09/2018			
6:00-7:00	46.7	40.0	48.0	42.0	50.5	45.9			
7:00-8:00	43.8	63.8	62.7	48,3	49.8	46.3			
8:00-9:00	44.9	65.5	61.6	63.3	68.2	64.0			
9:00-10:00	42.3	60.0	53.5	58.3	59.3	44.6			
10:00-11:00	57.6	53.6	58.5	47.3	45.3	48.3			
11:00-12:00	50.9	57.6	52.5	60.9	61.2	58.2			
12:00-13:00	40.4	43.8	45.4	39.6	44.6	50.9			
13:00-14:00	55.7	47.7	41.5	40.6	46.B	49.0			
14:00-15:00	73.7	54.3	63.9	56.3	64.2	55.5			
. 15:00-16:00	56.7	50.8	54.9	53.6	58.0	57.5			
16:00-17:00	48.5	51.3	43.7	46.8	56.3	52.8			
17:00-18:00	45.7	52.3	47.4	55.2	53.0	56.2			
18:00-19:00	59.9	66.6	65.8	68.3	62.3	69.6			
19:00-20:00	51.6	45.7	42.9	49.6	47.6	43.5			
20:00-21:00	54.7	62.8	57.4	50.3	55.5	51.6			
21:00-22:00	58.7	59.3	49.3	52.8	51.4	54.6			

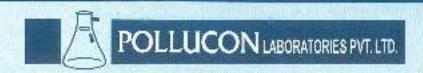
	9 - GCPTL Gate							
Sampling Location		Du	ring Night Ti	me - dB(A) Le	q ^o	A STATE OF THE STA		
Date of Monitoring	11/04/2018 & 12/04/2018	10/05/2018 & 11/05/2018	11/06/2018 & 12/06/2018	11/07/2018 & 12/07/2018	10/08/2018 & 11/08/2018	12/09/2018 & 13/09/2018		
22:00-23:00	39.5	50.5	45.6	43.4	48.5	54.0		
23:00-00:00	42.1	42.2	41.9	39.5	47.9	47.1		
00:00-01:00	40.8	47.3	50.2	48.8	42.8	56.6		
01:00-02:00	48.7	57.2	55,5	54.2	58.2	48.7		
02:00-03:00	39.7	40.6	47.3	49.4	53.3	44.5		
03:00-04:00	50.7	43.9	53.3	45.5	49.9	42.9		
04:00-05:00	44.2	45.8	48.3	46.1	47.1	57.0		
05:00-06:00	46.3	52.3	49.5	51.2	45.5	50.5		

fdB(A) Leg, denotes the time weighted average of the level of sound in decibels on scale A which is reletable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per Tile Noise Pollution (Regulation and Control) Rules 2000.

Authorized Signatory


PSSAI Approved Lab.

 Recognised by MoEF, New Delht Under Sec. 12 of Revisconmental (Protection) Act-1966 CPCB approved schedule II auditor

◆ ISD 14001

● CHSAS 18001

ISO 9001

Tables - 10 - Lakhi Village (Primary School) Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A) Leg for the period of April 2018 to September 2018

Committee Land Com	10 - Lakhi Village (Primary School) During Day Time - dB(A) Leq*							
Sampling Location								
Date of Monitoring	12/04/2018	11/05/2018	12/06/2018	12/07/2018	11/08/2018	13/09/2018		
6:00-7:00	47.2	50.0	45.0	59.3	58.6	69.6		
7:00-8:00	51.7	52.6	47.2	46.3	66.9	62.6		
8:00-9:00	69.B	51.5	57.9	56.2	60.1	63.3		
9:00-10:00	60.2	54.5	52.2	55.0	46.1	61.5		
10:00-11:00	59.6	57.0	58.5	54.2	61.3	53.9		
11:00-12:00	56.5	49.2	55.3	48.0	47.0	57.2		
12:00-13:00	53.3	55.6	60.2	64.9	52.8	51.2		
13:00-14:00	63.3	58.2	64.4	65.1	51.3	67.3		
14:00-15:00	54.2	61.2	59.5	60.8	55.0	58.0		
15:00-16:00	50.1	47.2	43.3	52.3	52.6	49.6		
16:00-17:00	52.9	48.3	46.2	50.7	49.7	45,7		
17:00-18:00	62.0	59.0	44.5	47.0	56.5	55.2		
18;00-19;00	57.1	60.5	56.6	51.4	53.7	54.9		
19:00-20:00	61.9	63.5	62.2	58.9	50.9	68.0		
20:00-21:00	66.D	53.8	50.2	45.4	46.1	56.9		
21:00-22:00	55.3	64.2	51.0	49.1	48.5	56.8		

	10 - Lakhi Villaga (Primary School)							
Sampling Location	18 18 eas	Du	ring Night Ti	me - dB(A) Le	qo			
Date of Monitoring	12/04/2018 & 13/04/2018		12/06/2018 & 13/06/2018	12/07/2018 & 13/07/2018	11/08/2018 & 12/06/2018	13/09/2018 & 14/09/2018		
22:00-23:00	40.8	47.0	63.0	45.0	61.3	57.8		
23:00-00:00	46.9	48.3	50.0	56.0	51.D	53.4		
00:00-01:00	51.8	38.0	36.3	43.4	47.0	49.6		
01:00-02:00	56.4	62.0	52.0	63.7	45.0	65.2		
02:00-03:00	43.1	40.8	53.9	39.2	54.5	42.0		
03:00-04:00	39.3	46.0	43.6	48.5	44.6	58.9		
04:00-05:00	45.5	55.1	52.4	44.8	49.8	64.6		
05:00-06:00	54.9	45.5	51.1	55.4	50.8	41.2		

[&]quot;dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

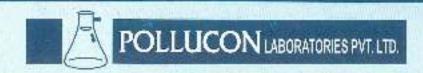
Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Tables -11 - ERMS Workshop Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A) Leq for the period of April 2018 to September 2018

Counting Logotlan	11 - ERMS Workshop During Day Time - dB(A) Leq*							
Sampling Location								
Date of Monitoring	13/04/2018	12/05/2018	13/06/2018	13/07/2018	13/08/2018	14/09/2018		
6:00-7:00	45.4	51.0	43.7	53.9	50.0	48.8		
7:00-8:00	54.9	44.0	58.0	55.1	45.7	50.2		
8:00-9:00	41.7	53.0	62.0	50.3	49.3	54.2		
9:00-10:00	55.8	60.6	66.9	52.7	56.6	53.2		
10:00-11:00	47.9	61.0	48.3	58.2	55.0	56.0		
11:00-12:00	52.5	55.0	50.6	51.7	57.2	60.2		
12:00-13:00	46.6	58.0	53.4	60.0	61.6	55.2		
13:00-14:00	49,5	65.2	40.3	47.2	51.2	58.2		
14:00-15:00	50.1	52.3	57.4	48.0	58.3	61.2		
15:00-16:00	53.2	43.3	46.0	45.8	48.0	47.2		
16:00-17:00	51.3	63.7	52.3	57.9	65,1	62.2		
17:00-18:00	42.1	57.8	49.0	56.0	47.7	59.8		
18:00-19:00	48.7	47.2	44.6	59.0	54.2	46.0		
19:00-20:00	56.6	46.7	55.0	44,4	59.5	51.2		
20:00-21:00	61.7	54.6	70.3	62.0	53.0	52.0		
21:00-22:00	57.0	50.8	45.2	43.7	48.1	49.7		

C			11 - ERMS	Workshop		- Joillion		
Sampling Location	During Night Time - dB(A) Leq ^d							
Date of Monitoring	13/04/2018 B. 14/04/2018	12/05/2018 & 13/05/2018	13/06/2018 & 14/06/218	13/07/2018 & 14/07/2018	13/08/2018 & 14/08/2018	14/09/2018 & 15/09/2018		
22:00-23:00	43.4	38.0	37.2	45.5	46.0	36.7		
23:00-00:00	54.2	39.0	48.1	46.6	45.5	50.1		
00:00-01:00	47.0	42.2	46.2	49.5	44.4	48.5		
01:00-02:00	46.9	37.8	40.6	41.4	48.5	39.3		
02:00-03:00	53.5	43.3	50.3	51.2	41.8	46.0		
03:00-04:00	42.3	47.7	41.2	44.5	53.6	45.1		
04:00-05:00	44.8	46.0	39.0	42.4	43.5	38.5		
05:00-06:00	48.7	44.5	43.4	50.9	45.9	49.0		

^{*}dB(A) Leg. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.


Day Time shall mean from 6:00 arm to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 arm.

Observations: Above given Results are within the specified norms as per The Noise Poliution (Regulation and Control) Rules 2000.

- 6 - D-

GPGB approved schedule II auditor

[●] ISD 14001

Tables - 12 - Behind Pump House Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A) Leg for the period of April 2018 to September 2018

Compliant continu	HILDE-IN		12 - Behind	Pump House				
Sampling Location	During Day Time - dB(A) Leq ²							
Date of Monitoring	14/04/2019	14/05/2018	14/06/2018	15/07/2018	14/08/2018	15/09/2018		
6:00-7:00	41.5	64.5	66.5	70.1	58.8	50.2		
7:00-8:00	49.4	48.5	46.3	52.2	47.5	61.2		
8:00-9:00	46.4	59.2	47.2	61.4	57.9	55.8		
9:00-10:00	57.1	54.2	56.7	55.2	48.7	58.2		
10:00-11:00	47.8	60.5	63.1	59.2	61.0	57.2		
11:00-12:00	53.3	65.2	61.6	57.3	55.2	56.8		
12:00-13:00	65.8	52.8	60.7	67.2	56.2	48,8		
13:00-14:00	56.8	41.4	45.9	47.2	49.5	51.0		
14:00-15:00	54.9	45.8	62.5	50.2	46.3	53.2		
15:00-16:00	58.2	55.3	52.4	51.2	54.7	6D.B		
16:00-17:00	63.1	51.1	53.2	66.6	50.8	62.9		
17:00-18:00	55.8	66.2	64.4	53.9	52.1	59.2		
18:00-19:00	52.1	50.8	58.6	49.3	51.8	67.5		
19:00-20:00	48.8	46.3	41.8	58.4	54.7	52.1		
20:00-21:00	62.6	61.4	57.2	65.2	69.6	64.2		
21:00-22:00	59.3	47.8	48.0	60.8	51.1	54.2		

	12 - Behind Pump House							
Sampling Location		Du	iring Night Ti	me - dB(A) Le	eq"	al little is		
Date of Monitoring	14/04/2018 & 15/04/2018	14/05/2018 & 15/05/2018	14/06/2018 & 15/06/2018	15/07/2018 & 16/07/2018	14/08/2018 & 15/08/2018	15/09/2018 & 16/09/2018		
22:00-23:00	43.3	41.0	47.2	42.9	52.2	55.3		
23:00-00:00	45.2	42.2	48.0	44.5	49.5	43.5		
00:00-01:00	48.0	50.3	41.5	48.8	45.1	53.4		
01:00-02:00	42.6	46.2	52.2	39.4	51.3	56.8		
02:00-03:00	50.1	45.9	44.5	55.5	42.2	52.2		
03:00-04:00	41.3	48.7	49.2	47.0	50.7	59.9		
04:00-05:00	39.3	56.2	50.9	49.0	53.2	54.4		
05:00-06:00	51.2	54.2	55.9	56.6	47.6	65.0		

^{*}dB(A) Leg, denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000-

[●] ISO 14001

Tables - 13 - Rock Bond Approach (Jetty) Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A) Leg for the period of April 2018 to September 2018

Compliant continu		13	- Rock Bond	Approach (Je	tity)				
Sampling Location	During Day Time - dB(A) Leq ^e								
Date of Monitoring	16/04/2018	15/05/2018	15/06/2018	16/07/2018	15/08/2018	18/09/2018			
6:00-7:00	55.1	53.0	50.8	56.1	58.2	51.5			
7:00-8:00	54.3	48.3	49.0	47.0	51.1	56.3			
8:00-9:00	52.9	46.8	51.0	48.6	63.6	50.2			
9:00-10:00	45.7	49.0	47.0	50.2	56.0	46.0			
10:00-11:00	60.5	63.0	62.4	54.8	57.0	48.0			
11:00-12:00	51.0	52.0	53.0	59.5	62.1	43.4			
12:00-13:00	63.3	45.4	55.0	57.7	49.8	47.2			
13:00-14:00	61.7	56.9	59.1	60.0	64.7	54.5			
14:00-15:00	49.7	64.5	52.1	58.0	47.8	55.4			
15:00-16:00	53.9	69.D	66.1	68.9	48.6	59.6			
16:00-17:00	59.7	50.0	43,2	69.0	65.0	63.7			
17:00-18:00	62.9	66.4	67.0	63.0	61.0	65.3			
18:00-19:00	58.1	55.2	57.1	53.1	60.0	38.7			
19:00-20:00	56.1	37.6	45.0	46.0	54.3	42.7			
20:00-21:00	64.6	44.9	46.7	43.7	50.0	49.8			
- 21:00-22:00	57.D	47.2	54.0	52.1	55.9	53.5			

Control Control	13 - Rock Bond Approach (Jetty)							
Sampling Location		Du	ring Night Ti	me - dB(A) Le	sq [#]	I KALI KAND		
Date of Monitoring	16/04/2018 & 17/04/2018		15/06/2018 & 16/06/2018	16/07/2018 & 17/07/2018	15/08/2018 & 16/08/2018	18/09/2018 & 19/09/2018		
22:00-23:00	43.3	41.9	40.4	48.0	44.0	49.5		
23:00-00:00	48.9	58.9	52.5	50.0	54.6	60.6		
00:00-01:00	63.Q	49.0	50.9	47.4	48.9	55.8		
01:00-02:00	33.1	51.9	45.0	55.6	50.0	53.8		
02:00-03:00	41.8	48.4	46.0	43.8	49.4	42.0		
03:00-04:00	44.3	35.6	42.2	40.2	43.6	37.8		
04:00-05:00	46.1	44.5	48.0	41.3	47.4	45.6		
05:00-06:00	53.8	40.1	38.2	42.4	43.4	41.6		

^{*}dB(A) Leg, denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

Tables -14 - New Gate Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A) Leg for the period of April 2018 to September 2018

Sampling	14 - New Gate During Day Time - dB(A) Leq*								
Location									
Date of Monitoring	17/04/2018	16/05/2018	16/06/2018	17/07/2018	16/08/2018	19/09/2018			
6:00-7:00	41.4	51.0	65.0	66.2	59.5	60.7			
7:00-8:00	53.3	55.0	62.0	54.0	61.0	66.8			
8:00-9:00	42.6	56.1	55.0	59.0	50.9	51.2			
9:00-10:00	47.1	60.4	63.0	58.3	62.0	57.6			
10:00-11:00	64.4	44.2	58.0	46.7	49.7	53.0			
11:00-12:00	54.4	59.0	52.2	55.0	58.6	47.2			
12:00-13:00	57.3	52.7	51.0	60.B	54.2	42.2			
13:00-14:00	49.8	62.0	68.1	64,8	70.6	63.5			
14:00-15:00	52,8	58.3	49.8	5D.B	55.8	48.2			
15:00-16:00	61.8	38.8	46.0	43.1	56.7	45.9			
16:00-17:00	59,6	64.7	60.0	57.D	53.1	52.5			
17:00-18:00	62.6	63.7	71.1	65.5	67.4	61.0			
18:00-19:00	60.7	40.6	51.4	45.4	53.9	46.9			
19:00-20:00	58.7	43.3	44.0	41.8	55.8	50.7			
20:00-21:00	56.0	49.7	53.2	51.2	60.9	44.6			
21:00-22:00	48.6	53.8	54.0	52.1	63.2	56.0			

Sampling	14 - New Gate									
Location		During Night Time - dB(A) Leq ^d								
The state of the s	17/04/2018 & 18/04/2018	16/05/2018 & 17/05/2018	16/06/2018 & 17/06/2018	17/07/2018 & 18/07/2018	16/08/2018 & 17/08/2018	19/09/2018 8 20/09/2018				
22:00-23:00	47.9	51.7	45.0	49.1	46.1	43.0				
23:00-00:00	36.5	48.5	55.0	50.2	53.1	49.1				
00:00-01:00	45.6	40.2	39.2	43.8	47.5	44.2				
01:00-02:00	40.5	49.3	34.2	39.0	48.9	41.8				
02:00-03:00	51.2	43.6	56.0	42.2	47.2	46.9				
03:00-04:00	48.6	57.6	53.0	52.2	51.9	55.2				
04:00-05:00	41.2	54.7	42.2	44.9	48.5	50.0				
05:00-06:00	43.4	46.4	54.2	53.2	49.0	52,3				

EdB(A) Leg, denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.
Day Time shall mean from 6:00 am to 10:00 pm and hight Time shall mean from 10:00 pm to 06:00 am.

Discryation: Above given Results are within the specified norms as per The Noise Poliution (Regulation and Control) Rules 2000.

Authorized Signatory

FSSAI Approved Lab.

 Recognised by MoER, New Dollst Under Sec. 12 of Revironmental (Protection) Act-1988. GPGB approved schedule II auditor

ISO 14001

• OHSAS 18001

ISO 900

Tables - 15 - Security Barrier Gata Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A) Leg for the period of April 2018 to September 2018

Counties Levelies		15 - Security Barrier Gate							
Sampling Location	During Day Time - dB(A) Leq*								
Date of Monitoring	18/04/2018	17/05/2018	18/06/2018	18/07/2018	17/08/2018	20/09/2018			
6:00-7:00	52.8	54.0	53.7	59.4	56.3	57,5			
7:00-8:00	51.7	41.1	46.5	48.7	5D.0	49.3			
8:00-9:00	6D.4	44.0	43.5	49.5	51.6	51.8			
9:00-10:00	57.0	51.0	54.0	52.0	55.2	56.0			
10:00-11:00	55.9	8.83	60.0	63.6	70.2	59.6			
11:00-12:00	47.7	52.9	50.6	67.8	62.0	66.0			
12:00-13:00	53.9	63.0	64.0	62.5	60.5	69.0			
13:00-14:00	74.5	73.8	72.1	73.6	71.0	67.8			
14:00-15:00	56.1	67.6	57.4	66.7	54.3	58.6			
15:00-16:00	59.3	62.0	68.0	58.0	54.1	60.8			
16:00-17:00	62.6	49.1	47.2	41.2	59.3	39.8			
17:00-18:00	67.8	59.0	63.0	64.5	61.3	65.6			
18:00-19:00	54.8	64.0	55.0	61.3	57.2	62.0			
19:00-20:00	50.9	55.0	58.2	57.1	52.4	54.1			
20:00-21:00	48.2	58,6	62.0	55.8	65.1	65.3			
21:00-22:00	49.7	50.0	48.0	42.3	47.9	45.1			

e		cure lhuji	15 - Security	Barrier Gate		n extiscs is			
Sampling Location	During Night Time - dB(A) Leq*								
Date of Monitoring	18/04/2018 & 19/04/2018	17/05/2018 & - 18/05/2018	18/06/2018 & 19/06/2018	18/07/2018 & 19/07/2018	17/08/2018 & 18/08/2018	20/09/2018 & 21/09/2018			
22:00-23:00	46.5	35.8	39.0	42.0	44.0	57.1			
23:00-00:00	44.7	56.0	55.0	49.9	50.1	54.6			
00:00-01:00	42.6	45.0	50.0	53.0	41.9	46.0			
01:00-02:00	47.9	39.3	37.1	44.0	43.4	38.9			
02:00-03:00	48.9	49.0	53.0	43.5	42.3	45.7			
03:00-04:00	38.2	40.9	43.0	41.1	48.8	44,9			
04:00-05:00	41.8	48.5	45.1	54.7	53.4	56.4			
05:00-06:00	45.4	51.3	38.9	50.0	46.0	49.3			

^{*}dB(A) Log, denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified name as per The Noise Pollution (Regulation and Control) Rules 2000.

Authorized Signatory

PSSAI Approved Lab

 Recognised by MoRF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCR approved schedule it suditor

● TSO 14001

● OHSAS 18001

ISO 9001

Tables - 16 - JS-2 Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A) Leg for the period of April 2018 to September 2018

Sampling Location	16 - JS-2 During Day Time - dB(A) Leq ²							
samping Locadon								
Date of Monitoring	19/04/2018	18/05/2018	19/06/2018	19/07/2018	18/08/2018	20/09/2018		
6:00-7:00	48.5	46.0	42.8	54.2	63.2	62.2		
7:00-8:00	53.9	57.0	62.2	59.1	52.5	61.0		
8:00-9:00	60.2	53.3	52.4	51.7	62.2	54.0		
9:00-10:00	52.5	45.0	48.0	49.2	46.1	55.3		
10:00-11:00	57.0	62.0	61.4	63.2	55.0	71.3		
11:00-12:00	54.7	6D.4	58.4	55.0	49.9	65.4		
12:00-13:00	46.9	65.2	63.2	59.5	48.4	64.3		
13:00-14:00	44.4	58.9	51.0	61.0	59.2	62.3		
14:00-15:00	55.5	6B.D	49.9	65.5	61.4	67.2		
15:00-16:00	56.4	55.7	65.4	67.6	47.3	60.7		
16:00-17:00	62.0	51.2	41.0	40.8	50.0	57.4		
17:00-18:00	45.8	64.0	68.0	66.3	65.5	63.9		
18:00-19:00	47.7	54.3	6D.9	57.0	62.4	59.1		
19:00-20:00	49.8	50.2	55.0	47.5	45.8	53.2		
20:00-21:00	50.B	61.2	59.2	62.2	60.8	66,4		
21:00-22:00	51.6	56.0	54.4	53.0	58.6	52.0		

Counting Landian	testing in the	CONFILLICATION I	16 -	JS-2		CONTROL N
Sampling Location	district to Fac.	Du	iring Night Ti	me - dB(A) Le	q*	D = 1 F1 F1 F1 F1
Date of Monitoring	19/04/2018 & 20/04/2018	18/05/2018 & 19/05/2018	19/06/2018 & 20/06/2018	19/07/2018 & 20/07/2018	18/08/2018 & 19/08/2016	20/09/2018 & 21/09/2018
22:00-23:00	46.5	49.0	42.5	40.5	43.8	53.2
23:00-00:00	51.5	56,3	50.0	57.0	49.1	58.0
00:00-01:00	50.5	43.0	44.5	51.0	41.8	65,8
01:00-02:00	44.3	42.8	48.5	43.0	55.3	52.6
02:00-03:00	45.8	44.2	46.0	48.0	40.5	47.2
03:00-04:00	47.7	45.4	41.3	50.0	49.0	46.9
. 04:00-05:00	43.5	47.7	49.8	41.2	53.5	55.0
05:00-06:00	49.8	41.2	45.4	52.3	47.8	40.4

^{*}dD(A) Leg, denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

[●] ISO 1400

Tables - 17 - Railway Dead End Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A) Leg for the period of April 2016 to September 2018

Sampling Location	AND THE REAL PROPERTY.	WELFE ENDINGER	and the latest devices the latest devices and	ay Dead End	PALICIANTI			
Samping Location	During Day Time - dB(A) Leq ⁸							
Date of Monitoring	20/04/2018	19/05/2018	20/06/2018	20/07/2018	20/08/2018	21/09/2018		
6:00-7:00	58.8	52.0	47.9	54.2	56.0	53.1		
7:00-8:00	50.8	54.0	62.2	57.2	52,0	60.2		
8:00-9:00	53.6	52.9	46.4	49.7	58.0	52.7		
9:00-10:00	57.3	51.0	53.2	48.6	55.0	45.5		
10:00-11:00	43.8	50.7	60.1	52.2	54.2	51.9		
11:00-12:00	52.5	49.0	51.5	53.8	62.3	50.2		
12:00-13:00	47.5	45.2	48.5	56.6	49.6	42.2		
- 13:00-14:00	48.5	55.5	61.0	59.4	51.0	56,7		
14:00-15:00	54.5	61.9	49.2	50.2	47.2	59.2		
15:00-16:00	64.7	73.2	65.6	67.2	57.8	58.0		
16:00-17:00	55.5	44.8	56.0	60.7	61.2	62.0		
17:00-18:00	62.3	59.2	69.2	63.4	60.8	71.4		
18:00-19:00	67.0	62.7	58.9	55.9	59.2	57.6		
19:00-20:00	59.0	42.3	40.2	41.1	46.8	43.9		
20:00-21:00	45.2	39.5	41.2	42.2	46.1	48.9		
21:00-22:00	56.9	47.9	57.5	51.2	53.7	55.0		

	17 - Raliway Dead End							
Sampling Location	or the second	Du	ring Night Ti	me - dB(A) Le	q#			
Date of Monitoring	20/04/2018 & 21/04/2018	19/05/2018 & 20/05/2018	20/06/2018 & 21/06/2018	20/07/2018 & 21/07/2018	20/08/2018 & 21/08/2018	21/09/2018 & 22/09/2018		
22:00-23:00	46.B	45.4	47.0	56.2	43.8	51.9		
23:00-00:00	57.2	39.7	48.2	40.0	54.6	58.0		
00:00-01:00	37.6	55.3	59.5	57.3	42.7	67.9		
01:00-02:00	45.0	53.2	49.0	46.1	49.1	48.1		
02:00-03:00	48.4	44.4	51.2	45.7	47.2	46.0		
03:00-04:00	39.1	47.2	46.9	44.1	49.3	42.2		
04:00-05:00	44.0	52.2	50.5	54.1	45.2	57.9		
05:00-06:00	50.5	37.7	39.0	34.2	53.5	40.1		

^{*}dB(A) Leg. denotes the time weighted average of the level of sound in doctbols on scale A which is relatable to human hearing.
Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

PSSAI Approved Lab

Recognised by MoEK, New Delbi Under Sec. 12 of Revironmental (Protection) Act-1986

GPCB approved schedule II auditor

[●] ISO 14001

[♠] OHSAS 18001

Tables -18 - S and S Yard (South) and Open Storage Yard - 1 Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A)Leq for the period of April 2018 to September 2018

A POLITICAL POLITICAL IN	18 - S	and S Yard (South)	18-0	pen Storage	Yard - 1
Sampling Location	During L	bay Time - dB	(A) Leg*	During I	Day Time - dB	(A) Leq ^o
Date of Monitoring	21/04/2018	21/05/2018	21/06/2018	26/07/2018	21/08/2018	22/09/2018
6:00-7:00	49.8	40.0	43.0	35.2	53.2	42.3
7:00-8:00	62.2	41.0	45.0	36.2	46.2	43.2
8:00-9:00	47.8	43.2	51.0	41.2	45.2	63.2
9:00-10:00	55.D	50.1	52.3	43.2	52.3	49.2
10:00-11:00	54.4	46.3	53.2	55.6	50.2	41.2
11:00-12:00	48.1	51.2	54.5	45.2	55.2	47.2
12:00-13:00	64.0	56.2	55.5	53.3	56.3	60.0
13:00-14:00	51.5	38.0	36.5	40.2	62.2	50.2
14:00-15:00	46.8	45.4	47.0	56.2	42.4	51.9
15:00-16:00	57.2	39.7	48.2	52.2	54.6	53.2
16:00-17:00	43.6	55.3	59.5	57.3	47.2	67.9
17:00-18:00	45.0	53.2	49.0	46.1	44.1	48.1
18:00-19:00	42.4	44.4	50.9	49.2	48.4	45.0
19:00-20:00	40.1	42.5	46.9	48.5	49,3	44.6
20:00-21:00	44.0	52.5	56.2	54.1	43.5	57.9
21:00-22:00	50.5	37.7	41.2	34.2	53.5	39.2

The second secon	18-5	and S Yard (S	South)	18 - Open Storage Yard - 1 During Night Time - dB(A) Leq ⁸			
Sampling Location	During I	Day Time - dB	(A) Leg ^e				
Date of Monitoring	21/04/2018 B. 22/04/2018	21/05/2018 & 22/05/2018	21/06/2018 & 22/06/2018	26/07/2018 & 27/07/2018	21/08/2018 & 22/08/2018	22/09/2018 8 23/09/2018	
22:00-23:00	49.7	61.6	51.1	56.3	59.2	57.8	
23:00-00:00	53.6	51.2	50.B	46.7	49.2	43.2	
00:00-01:00	52.6	48.2	38.2	39.2	41.7	45.7	
01:00-02:00	37.7	42.2	45.7	41.8	47.2	48.3	
02:00-03:00	62.7	50.8	53.4	54.9	48.6	47.5	
03:00-04:00	44.2	46.2	49.2	48.6	43.6	38.3	
04:00-05:00	46.9	39.8	43.3	36.2	44.7	49,2	
05:00-06:00	51.5	52.2	57.1	49.2	58.4	53.6	

^{*}GB(A) Leg. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.
Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observations: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

GPGB approved schedule II auditor

^{● 18}O 14801

Tables -19 -S & S Yard (North) Boundary Wall Loco Shed Ambient Noise Level Monitoring Results during the Day Time and Night Time in d8(A)Leq for the period of April 2018 to September 2018

Sampling Location	19 - 5 8 5	Yard (North) Wall	Boundary	19 - Loco Shed During Day Time - dB(A) Leq ^o			
	During I	Day Time - d8	(A) Leq"				
Date of Monitoring	23/04/2018	22/05/2018	22/06/2018	27/07/2018	22/08/2018	24/09/2018	
- 6:00-7:00	43.9	45.1	46.0	48.4	49,3	47.2	
7:00-8:00	51.1	57.7	52.5	50.2	47.7	45.7	
8:00-9:00	57.3	55.5	49.9	61.3	54.3	60.9	
9:00-10:00	56.7	66.6	70.6	59.9	52.8	62.2	
10:00-11:00	58.0	48.8	55.0	51.2	49.B	53.3	
11:00-12:00	49,4	65.6	58.3	54.5	59.2	63.2	
12:00-13:00	55.4	68.5	50.9	47.6	57.3	51.2	
13:00-14:00	68.7	50.5	57.1	52.2	53.5	56.0	
14:00-15:00	63.8	64.2	60.5	56.6	62.5	65.2	
15:00-16:00	60.2	51.7	53.4	60.4	55.3	66.4	
16:00-17:00	52.3	56.3	59.7	53.2	58.2	61.6	
17:00-18:00	45.4	62.6	54.3	44.7	56.2	64.3	
18:00-19:00	54.2	54.1	47.5	49.5	50.5	48.6	
19:00-20:00	50.6	43.9	51.B	42.0	46.8	50.9	
20:00-21:00	53.2	61.1	45.3	46.3	51.3	57.2	
21:00-22:00	48.9	67.2	56.0	45.3	44.2	55.3	

Sampling Location Date of Monitoring	19 - 5 & S	Yard (North) Wall	Boundary	19 - Loco Shed			
	During Day Time - dB(A) Leq*			During N	ght Time - df	S(A) Leq*	
	23/04/2018 & 24/04/2018	22/05/2018 & 23/05/2018	22/06/2018 & 23/06/2018	27/07/2018 & 28/07/2018	22/08/2018 & 23/08/2018	24/09/2018 8 25/09/2018	
22:00-23:00	51.2	41.9	44.9	43.9	50.8	49.9	
23:00-00:00	42.9	49.5	43.2	50.3	47.2	51.8	
00:00-01:00	46.0	50.2	49.6	48.5	44.3	52.3	
01:00-02:00	45.2	48.8	46.0	58.2	53.6	56.8	
02:00-03:00	50.5	40.2	52,3	44.3	51.3	36.8	
03:00-04:00	49.9	38.9	39.3	47.0	52.2	46.3	
04:00-05:00	44.2	47.3	42.3	40.9	46.7	55.6	
05:00-06:00	41.8	52.9	51.2	53.3	43.2	58.0	

FdB(A) Leg. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 18:00 pm and Night Time shall mean from 10:00 pm to 86:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

- And

Authorized Signatory

GPCB approved schedule II miditor

^{• (}SC) 1400

OHSAS 18001

[#] ISO 9001

Tables - 20 - Lakhi Village (Below Conveyer Belt) Ambient Noise Level Monitoring Results during the Day Time and Night Time in dB(A) Leg for the period of April 2018 to September 2018

Compling Location	NAME OF STREET	20 - La	akhi Village (E	selow Convey	er Belt)	
Sampling Location Date of Monitoring 6:00-7:00 7:00-8:00 8:00-9:00 9:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 17:00-18:00	CHOICE NATE	COS UNTITIONA	Suring Day Ti	me - dB(A) Le	q*	A LUITTICE I
Date of Monitoring	24/04/2018	23/05/2018	23/06/2018	24/07/2018	23/08/2018	25/09/2018
6:00-7:00	52.1	46.3	44.2	45.2	61.7	62.9
7:00-8:00	51.8	52.3	45.3	58.5	65,0	61.1
8:00-9:00	54.3	51.8	53.3	48.0	49.4	60.8
9:00-10:00	49.6	48.9	55.8	52.2	56.2	64.2
10:00-11:00	65.9	61.3	57.2	53.2	55.6	59.0
11:00-12:00	62.6	55.9	58.8	60.0	66,3	71.2
12:00-13:00	55.3	58.2	49.2	57.2	53.2	50.2
13:00-14:00	57.5	47.2	60.2	50.2	59.7	66.3
14:00-15:00	61.7	60.3	43.6	42.3	47.4	57.0
15:00-16:00	53.3	44.2	51.2	56.9	45.1	63.1
16:00-17:00	68.0	59.1	39.3	51.7	45.9	58.7
17:00-18:00	60.1	50.9	54.2	55.1	49.0	51.1
18:00-19:00	56.4	45.2	48.1	47.5	60.6	55.2
19:00-20:00	59.4	49.3	52.2	43.2	51.2	53.3
20:00-21:00	50.3	57.2	59.9	49.3	58.9	69.4
21:00-22:00	48.9	62.8	56.7	44.9	55.7	54.5

Counties to entire	20 - Lakhi Village (Below Conveyer Belt)								
Sampling Location Date of Monitoring	During Night Time - dB(A) Leq ²								
	24/04/2018 & 25/04/2018	23/05/2018 & 24/05/2018	23/06/2018 & 24/06/2018	24/07/2018 & 25/07/2018	23/08/2018 & 24/08/2018	25/09/2018 8 26/09/2018			
22:00-23:00	49.2	42.6	35.5	47.5	46.1	53.2			
23:00-00:00	44.4	45.2	40.2	54.2	44.1	55.1			
00:00-01:00	42.3	40.2	38.7	34.7	51.8	48.2			
01:00-02:00	52.4	55.0	53.3	51.4	54.3	58,1			
02:00-03:00	50.1	41.2	47.4	35.2	46.9	45.3			
03:00-04:00	38.1	56.4	45.6	53.0	48.4	54.7			
04:00-05:00	48.4	39.2	50.5	42,5	47.0	59.5			
05:00-06:00	45.9	38.5	52.8	57.7	49.3	44.8			

[&]quot;dB(A) Leg. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Poliution (Regulation and Control) Rules 2000.

GPCB approved schedule II auditor

^{●1}SO 1400

3H. DG SETS STACK EMISSION AND NOISE LEVEL MONITORING: -

Table No.: 3H.1 - DG Sets Stack Emission Monitoring Results for the period: April 2018 to Sep- 2018

5h	Parameters	Link	DG Set # 1MRSS (\$\$5)		DG Set # 2 (SS7B)		DG Set # 3Marine (SSB)		DG Set # 4580 (\$\$11)	
Mo.	CHARLES ACTIONS	COLUMN	MAY-18	AUG-18	MAY-16	AUG-18	MAY-18	AUG-18	MAY-18	AUG-18
1	Particulate Matter	mg/Nm²	18.54	12.38	13.37	19.61	20.75	17.83	15.41	10.23
2	Sulphur Okodde	ppm	5.48	8.49	7.95	6.15	4.38	5,63	5.62	3.97
3	Oxide of Nitrogen	ppm	32.76	38.88	39.39	32.68	35.34	38.75	37.81	29.07
4	Non Hethyl Hydro Carbon (NMHC)	mg/m²	BDL*	BDL*	BDL*	BDL+	BDL*	BDL*	BDL*	8DL#
5	Carbon Monoxide (CO)	mg/m²	5.53	7.16	3.66	6.54	2.63	2.99	4.22	5.03

Table No.: 3H.2 - DG Sels Noise Level Monitoring Results for the period: April 2018 to Sep- 2018

Sr. No.	DG Set Avera	ige Noise Level In Leq. dB(A)
	Sampling Location	At 1 m from the enclose out	
DH PI	Sampling Date	MAY-18	AUG-18
1.	DG Set # 1MRSS (SS5)	68.4	70.2
2.	DG Set # 2 SS7B	67.6	66.8
3.	DG Set #3Marine (SS8)	67.2	71.5
4.	DG Set # 4Silo (SS11)	66.8	68.3

- Arab

^{• (}SC) 14004

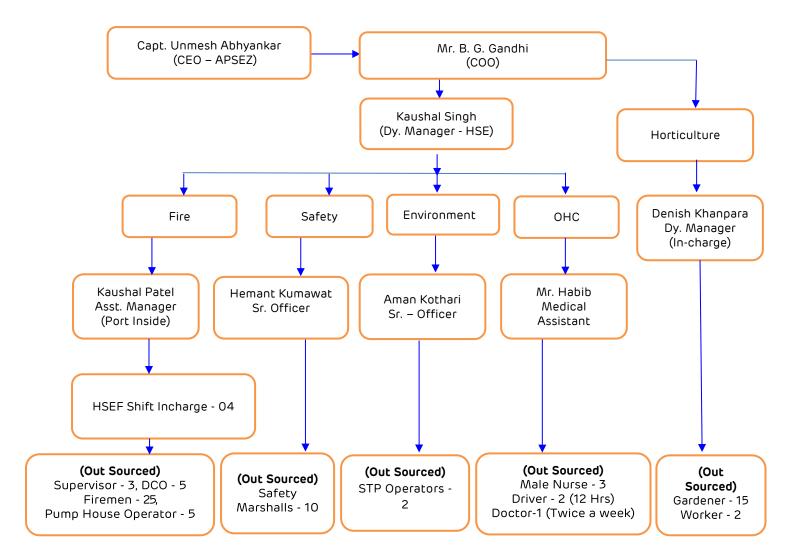
Annexure - 4

Green Zone Details

Adani petronet (Dahej) port pvt.ltd. Green Zone Details

	Green Zone Details						
Sr. No.	Location	Area in (Hect.)	Tree (No.)	Shrubs (Sq. Mt.)	Green Carpet (Sq.Mt.)	Palm	
1	PMC office area Landscape	0.264	500	400	1000	60	
2	Gcptcl boudry wall site plantation	1.455	4500	800	3750	250	
3	APPPL office area (SS 7 B)	0.16	260	200	800	20	
5	LNG Site Boundry wall site plantation	0.885	5000	2500	0	450	
6	Stack yard	0.56	5000	0	0	150	
7	Road site Avenue tree plantation	1.1	4000	0	2000	500	
8	Main gate Area	0.572	450	2000	2500	80	
9	Railway yard area Phase 1	1.091	5000	310	0	150	
10	Railway yard area Phase 2	1.12	5000	600	0	150	
11	EHS Office building	0.46	250	1500	2000	150	
13	SS 7 A Office	0.099	80	250	500	20	
14	Workshop building	0.21	500	0	500	150	
15	WB -6 area	0.024	120	0	0	0	
	Total Green Zone Area	8	30660	8560	13050	2130	

Annexure-5: Environment Budget and Expenditure for the FY: 2018-19


S. NO.	ACTIVITY/ CATEGORY	BUDGET (IN LAC)	EXPENDITURE (IN LAC)
1.	EHS Manpower	5.54	3.27
2.	Legal & Statutory Expenses	1.50	0.34
3.	Environmental Monitoring Services	20.90	9.15
4.	Water Consumption	56.38	19.92
5.	Hazardous Waste Management & Disposal	1.05	0.00
6.	Greenbelt Development and Plantation	47.02	25.0
7.	O&M of Pollution control measures	6.40	3.02
8.	Environment Day Celebration	0.50	0.50
9.	Treatment and Disposal of Bio-Medical Waste	1.92	0.96
10.	Operation and Maintenance of Road Cleaning equipment and manpower	10.93	3.07
11.	Operation and Maintenance of Fire staff	73.74	36.87
12.	Shoreline Monitoring	15.0	0.0
13.	Ergonomics and Health-hygiene Survey	2.0	1.47
	TOTAL AMOUNT (IN LACS)	242.88	103.57

	CAPITAL EXPENDITURE								
S. NO.	ACTIVITY/ CATEGORY	BUDGET (IN LAC)	EXPENDITURE (IN LAC)						
1.	Horticulture Development	35.0	14.0						
2.	EHS Display Board	5.0	2.5						
3.	Bio Diversity	7.0	7.0						
	TOTAL AMOUNT (IN LACS)	47.0	23.5						

Annexure - 6: Organogram of APPPL - Environment Management Cell

ADANI PETRONET (DAHEJ) PORT PVT. LTD.

Dept.: QHSE Management Cell

	Details of Environment Cell									
S. No.	Name	Work Experience								
1.	Kaushal Singh	Dy. Manager -HSE	Dip-Mech, PGDFS, NEBOSH	11 Years						
2.	Denish Khanpara	Dy. Manager	B.Sc. Horticulture, Post Diploma In Environment Technology (PDIEMT)	11 Years						
3.	Kaushal Patel	Asst. Manager	B.Sc. Fire, Post Diploma In Environment Technology (PDIEMT) pursuing	13 Years						
4.	Hemant Kumawat	Sr Officer	Dip – Mech, Dip. In Fire & Safety, NEBOSH	9 Year						
5.	Aman Kothari	Sr Officer	M.Sc. Environment Science & Technology, PDIS	7 Years						

<u>Annexure-7</u>: Compliance Status of EMP as mentioned in the EIA study For Phase-III Expansion of Adani Petronet (Dahej) Port Pvt. Ltd., September 2018:

S. No.	EMP Conditions	Compliance Status	
A.	ENVIRONMENTAL MANAGEMENT PLAN (CONSTRUCTION PHASE)		
1.1	Air Quality Management Plan	·	
	undertaking civil works.	Water sprinkler and mist canon is being used to suppress the fugitive dust during construction activity.	
	Regular wetting of roads will be undertaken on the paved and unpaved artillery roads.	Regular wetting of roads is undertaken on the paved and unpaved artillery roads.	
	provided at the entrance to prevent spillover of dust sticking on tyre outside the facility.	been provided.	
	Construction materials kept in open area will be provided with barrier in order to prevent wind carryover of dust.	Construction material is being kept in a secure area.	
	Construction materials transportation in and outside the port will be appropriately covered to prevent fugitive dust emissions.	l	
	Civil and Mechanical fabrication works will be carried out within the port facility at an appropriate location to avoid impact on the local air quality at project construction site.	Civil and Mechanical fabrication is being done within the port premises.	
	minimize the vehicle exhaust.	All vehicles are being checked for PUC.	
	All trucks deployed at site will be a provided with fitness and pollution under control certificate.	All vehicles are being checked for PUC.	
	DG set with appropriate stack height as per CPCB guidelines for effective dispersion of pollutants shall be provided.		
1.2	Noise Quality Management Plan		
	DG set with acoustic enclosure will be installed for power supply to construction activities. All high decibel noise generating equipments	All DG sets (standby source) are provided with acoustic enclosures. Complying with.	
	should be repaired to meet the compliance noise level. No activity involving with high intensity and	provided with acoustic enclosures.	
	magnitude of operation should be deployed. Silencers will be provided in Vehicle exhaust.	All construction and operation activities are in compliance with the Noise level Norms.	
		 Monitoring of noise level is being done by M/s Pollucon Laboratories, A NABL accredited 	

		and MoEF&CC recognized
		laboratory.
		Monitoring reports are
		presented in the Annexure 3G .
	Onsite fabrication activities will be	, , ,
	undertaken at a designated location, which	
	should be located away from the office	yard has been provided.
	buildings and any other working areas.	
	In case noise emissions from the fabrication	Complying with.
	activities exceed a level of 85 dB(A) at the	There is no occasion till date for
	fence-line of the fabrication yard, temporary	exceeding the noise level at the
	noise barrier will be installed.	port boundary.
		 Persons working in the
		fabrication yard are provided
		with PPEs.
	Portable diesel engine generators and diesel	
	engine driven compressors, if any, will be	· · · ·
	covered with acoustic enclosures.	provided with acoustic enclosures.
1.3	Sewage Management Plan	provided with acoustic enclosures.
1.5	Sewage Management Plan Sewage generated from the construction site	Complying with
	will be treated in existing STP of 27 m ³	Domestic effluent is being treated in
	capacity.	STPs. The treated water confirming
		-
	Treated water will be used for green belt	=
	development / landscaping after achieving	· ·
	GPCB prescribed standards.	monitoring results of the treated
		wastewater from STP for the period
		from April 2018 – September 2018 are enclosed as Annexure –3F .
1.4	Solid and Hazardous Waste Management Plar	
1.4	Solid waste generated will be segregated at	
	source for biodegradable and non-	, , ,
	biodegradable with an option of reuse or	, conc week
	recycle before disposal	segregated for biodegradable and non-biodegradable.
	recycle before disposar	
		Biodegradable waste is being
		decomposed in Bioneer and
		other waste is being disposed in
		compliance to the Solid Waste
		Management Rules - 2016.
	•	Complying with.
	categorized as per Hazardous Waste	
	Management Rules, 2008.	in compliance to the Hazardous
		Waste Management Rules 2016.
	The state of the s	Complying with.
	authorized recyclers	Recyclable waste such as used oil
		etc. is being sold to authorize
		recyclers only.
1.5	Construction Phase Storm Water Runoff	
	Existing storm water drainage network will	· · · ·
	be further strengthened and developed near	_ ,
	the project site to prevent surface runoff to	,
	the sea.	maintenance is being done.
В.	ENVIRONMENTAL MANAGEMENT PLAN (OPI	ERATION PHASE)
2.1	Air Quality Management Plan - Coal Handling	

Appropriate stack height will be provided to Complying with. DG sets to disperse the gases into the All DG sets (standby source) are atmosphere as per the guidelines suggested provided with stack height in by Central Pollution Control Board. compliance to the CPCB standards. Existing Port has installed robust dry fog dust Complying with. suppression system (DFDS) at the Jetty, are All dust control systems conveyor belt, transfer tower, and discharge maintained and operating well. point at coal stack yard area. Various types of water spray nozzles have been installed and the water spray is carried out through atomized water spray over the sources using compressors thereby controlling the fugitive dust effectively. Total number of nozzles installed in the port is 350 nos. It is recommended to maintain the same systems for the proposed project activities At coal stack yard, 100 sprinklers have been Complying with. installed to control fugitive coal dust • At coal stack yard, 100 sprinklers emissions. At a time 4 sprinklers will be and 4 sprinklers are maintained operated and consumes water around 3600 and operating well. LPM. Similarly, for the proposed expansion of Pavement of the additional port from 11.7 to 23 MMTPA such a robust storage area is completed. DFDS and Sprinklers will be installed and Installation of water sprinklers maintained with maximum efficiency. and other DSS measures will be complete before storage of coal. To prevent wind carryover of dust from coal Shall be complied. stack yard, wind barrier have been erected Wind breaker of the same around the coal stock pile area at a height of specification shall be provided in 14m from the ground level. The wind barrier the additional storage area once is of galvanized sheet with perforated holes completed. to withstand high velocity wind has been fitted in the structural beams and erected in solid foundation thereby effectively control the wind carryover of dust from the stock piles. Road sweeping of dust is being undertaken Complying with. using mobile van thereby preventing settled Two dust sweeping dust gets airborne due to movement of (mobile van) are working at site. vehicles and high wind velocity and the same is recommended High capacity vacuum cleaning machine installed at mobile truck is deployed for removal of dust settled on roads and the same practices will be implemented in the proposed project. Regular wetting of the roads is undertaken Complying with. through dedicated truck mounted spray Sprinkling of water is being done on arrangement with least water consumption. the roads to control the dust. The same will be implemented in the proposed activities. 2.2 Noise Control Management Plan High speed rotating equipments such as Shall be complied.

gantry cranes motors, hydraulic systems will

be installed within-built acoustic systems to maintain the noise decible as per the manufacturer specifications DG sets installed in open area will be provided with acoustic enclosure Compressors and Diesel generators and pump house will be installed in separate building provided with noise absorbing installed in separate building provided with noise absorbing installed in separate building provided with speed control measures Movement of vehicles within the port will be restricted with speed control measures Using silent exhaustion pipes for major diesel engine vehicles and heavy trucks operated inside the port Planting trees which acts as barrier to arrest dispersion of noise levels along the internal roads and port boundary Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible explored to the extent possible explored to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs Change management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. • Reclamation of 23 Ha back up area • Coal stock pile development of 7.7 Ha area • Coal stock pile development of 7.7 Ha area • Call stock pile development of 7.7 Ha area • Call stock pile development of 7.7 Ha area • Call stock pile development of 7.7 Ha area • Call stock pile development of 7.7 Ha area • Call stock pile development of 7.7 Ha area • Call stock pile development of 7.7 Ha area • Call stock pile development of 7.7 Ha area • Call stock pile development of 7.7 Ha area • Call stock pile development of 7.7 Ha area • Call of Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, of the particles settled down. 2.4 Solid 4 Hazardous Waste Ma			
manufacturer specifications DG sets installed in open area will be provided with acoustic enclosure Compressors and Diesel generators and pump house will be installed in separate building provided with noise absorbing materials on the walls Movement of vehicles within the port will be restricted with speed control measures Wising silent exhaustion pipes for major diesel engine vehicles and heavy trucks operated inside the port Planting trees which acts as barrier to arrest dispersion of noise levels along the internal roads and port boundary Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Explored to the extent possible Change management process will be implemented to modify operation to address noise pollution if occurs Storm Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile development of 7.7 Ha area Rallway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. Port premises. Complying with. Speed is limited within the port premises. Complying with. Speed is limited within the port premises. Complying with. Complying with. Green belt is being developed in an area of 8.0 ha including periphery of the project boundary. Complying with. Green belt is being developed in an area of 8.0 ha including periphery of the project boundary. Complying with. Gromplying with. Gromplying with. Green belt is being developed in an area of 8.0 ha including periphery of the project boundary. Complying with. Gromplying with. Gromplying with. Gromplying with. Gromplying with. Gromplying with. Gromplying with. Gromplying with. Gromplying with. Gromplying with. Gromplying with. Gromplying with. Gromplying with. Gromplying with. Gromplying with. Gromplying with. Gromplying with. Gromplying with. Gromp		· ·	· ·
DG sets installed in open area will be provided with acoustic enclosure Compressors and Diesel generators and pump house will be installed in separate building provided with noise absorbing materials on the walls Movement of vehicles within the port will be restricted with speed control measures Wising silent exhaustion pipes for major diesel engine vehicles and heavy trucks operated inside the port Using silent exhaustion pipes for major diesel engine vehicles and heavy trucks operated inside the port Planting trees which acts as barrier to arrest dispersion of noise levels along the internal roads and port boundary Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Change management process will be implemented to modify operation to address, noise pollution if occurs Change management process will be implemented to modify operation to address, noise pollution if occurs Port operator will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile development of 7.7 Ha area Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. Solid 8 Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be collect the waste blown due to high		·	yet to be done.
Compressors and Diesel generators and pump house will be installed in separate building provided with noise absorbing materials on the walls Movement of vehicles within the port will be restricted with speed control measures Wising silent exhaustion pipes for major diesel engine vehicles and heavy trucks operated inside the port Planting trees which acts as barrier to arrest dispersion of noise levels along the internal roads and port boundary Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Using enanagement process will be implemented to modify operation to address noise pollution if occurs Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Reclamation of 23 Ha back up area Reclamator will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be collect the waste blown due to high			Complying with.
Compressors and Diesel generators and pump house will be installed in separate building provided with noise absorbing materials on the walls Movement of vehicles within the port will be restricted with speed control measures Using silent exhaustion pipes for major diesel engine vehicles and heavy trucks operated inside the port Planting trees which acts as barrier to arrest dispersion of noise levels along the internal roads and port boundary Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Echange management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution of 23 Ha back up area • Coal stock pile development of 7.7 Ha area • Reclamation of 23 Ha back up area • Coal stock pile development of 7.7 Ha area • Realiway siding area • The drainage water will be channeled through a series of sediment before discharging into the natural drains. 2.4 Solid & Hazardous Waste Management Plan Port operatior will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be collect the waste blown due to high		· · · · · · · · · · · · · · · · · · ·	
pump house will be installed in separate building provided with noise absorbing materials on the walls Movement of vehicles within the port will be restricted with speed control measures Wising silent exhaustion pipes for major diesel engine vehicles and heavy trucks operated inside the port Planting trees which acts as barrier to arrest dispersion of noise levels along the internal roads and port boundary Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Using management process will be implemented to modify operation to address noise pollution if occurs Storm Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile development of 7.7 Ha area e Realmay siding area Tour operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be collect the waste blown due to high			provided with acoustic enclosure
building provided with noise absorbing materials on the walls Movement of vehicles within the port will be restricted with speed control measures Using silent exhaustion pipes for major diesel engine vehicles and heavy trucks operated inside the port Planting trees which acts as barrier to arrest dispersion of noise levels along the internal roads and port boundary Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Change management process will be implemented to modify operation to address noise pollution if occurs Storm Water Management Plan Following areas will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. 2.4 Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be collect the waste blown due to high		•	, , ,
materials on the walls Movement of vehicles within the port will be restricted with speed control measures Novement of vehicles and heavy trucks operated inside the port inside the port premises. Using silent exhaustion pipes for major diesel engine vehicles and heavy trucks operated inside the port Planting trees which acts as barrier to arrest dispersion of noise levels along the internal roads and port boundary Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Change management process will be implemented to modify operation to address noise pollution if occurs Change management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile development of 7.7 Ha area Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations. A part of the plan, a scavenging boat will be collect the waste blown due to high		· · · ·	
Movement of vehicles within the port will be restricted with speed control measures Speed is limited within the port premises.		.	
restricted with speed control measures Using silent exhaustion pipes for major diesel engine vehicles and heavy trucks operated inside the port Planting trees which acts as barrier to arrest dispersion of noise levels along the internal roads and port boundary Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Change management process will be implemented to modify operation to address noise pollution if occurs Change management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Complying with. Coal stock pile and Railway siding area are provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile development of 7.7 Ha area Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. Port operator will prepare the robust waste management plan for the entire operations. A spart of the plan, a scavenging boat will be collect the waste blown due to high			,
Using silent exhaustion pipes for major diesel engine vehicles and heavy trucks operated inside the port Planting trees which acts as barrier to arrest dispersion of noise levels along the internal roads and port boundary Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Change management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs Storm Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile development of 7.7 Ha area Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be collect the waste blown due to high		· · · · · · · · · · · · · · · · · · ·	, , ,
Using silent exhaustion pipes for major diesel engine vehicles and heavy trucks operated inside the port Planting trees which acts as barrier to arrest dispersion of noise levels along the internal roads and port boundary Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Change management process will be implemented to modify operation to address noise pollution if occurs Change management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea • Reclamation of 23 Ha back up area • Realmay siding area • The drainage water will be channeled through a series of sediment traps to remove the majority of the entire operations, process carried out during operation. As part process on the plan, a scavenging boat will be collect the waste blown due to high		restricted with speed control measures	· ·
Using silent exhaustion pipes for major diesel engine vehicles and heavy trucks operated inside the port Planting trees which acts as barrier to arrest dispersion of noise levels along the internal roads and port boundary Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Explored to the extent possible Change management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs Change management process in place for any kind of deviation. However, there is no occurrence of noise level exceeding norms. 2.3 Storm Water Management Plan Following areas will be provided with storm water drainage. Reclamation of 23 Ha area is being done. • Reclamation of 23 Ha back up area • Coal stock pile and Railway siding area are provided with storm water drainage. Reclamation of 23 Ha area is being done. • Reclamation of 23 Ha back up area is being from the coal storage is being done. • Reclamation of 24 Ha area is being routed through dump pond where all the particles settled down. 2.4 Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire op			•
Using silent exhaustion pipes for major diesel engine vehicles and heavy trucks operated inside the port Planting trees which acts as barrier to arrest dispersion of noise levels along the internal roads and port boundary Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Explored to the extent possible Complying with. Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Explored to the extent possible Complying with. Complying with. Liebherr & Gottwald Crane, Stacking & Reclaiming Conveyor, BWSR equipment are using electricity powered instead of diesel powered inside the port. Change management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs Storm Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile development of 7.7 Ha area Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. Complying with.			, , ,
engine vehicles and heavy trucks operated inside the port Planting trees which acts as barrier to arrest dispersion of noise levels along the internal roads and port boundary Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Engine management process will be implemented to modify operation to address noise pollution if occurs Change management Plan Change management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the plan, a scavenging boat will be collect the waste blown due to high of the plan, a scavenging boat will be collect the waste blown due to high		Using silent exhaustion pipes for major diesel	·
Planting trees which acts as barrier to arrest dispersion of noise levels along the internal roads and port boundary Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Change management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs Storm Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile development of 7.7 Ha area Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the coal is provided to of the plan, a scavenging boat will be collect the waste blown due to high		• • • • • • • • • • • • • • • • • • • •	, , ,
Planting trees which acts as barrier to arrest dispersion of noise levels along the internal roads and port boundary Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Explored to the extent possible Change management process will be implemented to modify operation to address noise pollution if occurs Change management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile development of 7.7 Ha area Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the waste blown due to high		· · · · · · · · · · · · · · · · · · ·	,
dispersion of noise levels along the internal roads and port boundary Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Explored to the extent possible Change management process will be implemented to modify operation to address noise pollution if occurs Change management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile development of 7.7 Ha area Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be collect the waste blown due to high			port are with silent exhaust.
Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Change management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs Storm Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. 2.4 Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the paln, a scavenging boat will be collect the waste blown due to high			
Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Change management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs Complying with. Complying with. APDPPL is certified with the ISO 14001:2015. A proper change management process in place for any kind of deviation. However, there is no occurrence of noise level exceeding norms. Complying with.		•	
Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible Be explored to the extent possible Change management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs Change management process will be implemented to modify operation to address noise pollution if occurs APDPPL is certified with the ISO 14001:2015. A proper change management process in place for any kind of deviation. However, there is no occurrence of noise level exceeding norms. 2.3 Storm Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile and Railway siding area are provided with storm water drainage. Reclamation of 23 Ha area is being done. Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. 2.4 Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be		roads and port boundary	- , , ,
the port instead of diesel powered ones will be explored to the extent possible Be explored to the extent possible Reclaiming Conveyor, BWSR equipment are using electricity powered instead of diesel powered inside the port. Change management process will be implemented to modify operation to address noise pollution if occurs Complying with. APDPPL is certified with the ISO 14001:2015. A proper change management process in place for any kind of deviation. However, there is no occurrence of noise level exceeding norms. 2.3 Storm Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile development of 7.7 Ha area Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. 2.4 Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be collect the waste blown due to high		Using alastriaity asward aguisment inside	
be explored to the extent possible Be Reclaiming Conveyor, BWSR equipment are using electricity powered instead of diesel powered inside the port. Change management process will be implemented to modify operation to address noise pollution if occurs APDPPL is certified with the ISO 14001:2015. A proper change management process in place for any kind of deviation. However, there is no occurrence of noise level exceeding norms. Storm Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile and Railway siding area are provided with storm water drainage. Reclamation of 23 Ha area is being done. The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be collect the waste blown due to high		· · · · · · · · · · · · · · · · · · ·	, , ,
equipment are using electricity powered instead of diesel powered inside the port. Change management process will be implemented to modify operation to address noise pollution if occurs APDPPL is certified with the ISO 14001:2015. A proper change management process in place for any kind of deviation. However, there is no occurrence of noise level exceeding norms. 2.3 Storm Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. • Reclamation of 23 Ha back up area • Coal stock pile development of 7.7 Ha area • Railway siding area • The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. 2.4 Solid 8 Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be collect the waste blown due to high		·	~
Change management process will be implemented to modify operation to address noise pollution if occurs 2.3 Storm Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile development of 7.7 Ha area Railway siding area The drainage water will be channeled through a series of sediment before discharging into the natural drains. Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, of the plan, a scavenging boat will be collect the waste blown due to high		oc explored to the extent possible	• • •
Change management process will be implemented to modify operation to address noise pollution if occurs 2.3 Storm Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile development of 7.7 Ha area Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. 2.4 Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be complying with. Complying with. Complying with. Complying with. Coal stock pile and Railway siding area are provided with storm water drainage. Reclamation of 23 Ha area is being done. Complied with. Runoff from the coal storage is being routed through dump pond where all the particles settled down. Complying with. Complying with. Complying with. A waste management plan is in place and a boat is provided to collect the waste blown due to high			· · ·
implemented to modify operation to address noise pollution if occurs APDPPL is certified with the ISO 14001:2015. A proper change management process in place for any kind of deviation. However, there is no occurrence of noise level exceeding norms. Storm Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. • Reclamation of 23 Ha back up area • Coal stock pile development of 7.7 Ha area • Railway siding area • The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. 2.4 Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be collect the waste blown due to high			· ·
noise pollution if occurs 14001:2015. A proper change management process in place for any kind of deviation. However, there is no occurrence of noise level exceeding norms. 2.3 Storm Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile development of 7.7 Ha area Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. 2.4 Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be		- · · · · · · · · · · · · · · · · · · ·	
management process in place for any kind of deviation. However, there is no occurrence of noise level exceeding norms. 2.3 Storm Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile development of 7.7 Ha area Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. 2.4 Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be			
any kind of deviation. However, there is no occurrence of noise level exceeding norms. 2.3 Storm Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. • Reclamation of 23 Ha back up area • Coal stock pile development of 7.7 Ha area • Railway siding area • The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. 2.4 Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be		noise pollution if occurs	
there is no occurrence of noise level exceeding norms. 2.3 Storm Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. • Reclamation of 23 Ha back up area • Coal stock pile development of 7.7 Ha area • Railway siding area • The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. 2.4 Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be complying with the robust does not be plan, a scavenging boat will be collect the waste blown due to high			, ,
 Storm Water Management Plan Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile development of 7.7 Ha area Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be complying with waste blown due to high 			•
Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. Reclamation of 23 Ha back up area Coal stock pile development of 7.7 Ha area Railway siding area The drainage water will be channeled through a series of sediment before discharging into the natural drains. Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be complying with coal scollect the waste blown due to high			
Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. • Reclamation of 23 Ha back up area • Coal stock pile development of 7.7 Ha area • Railway siding area • The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. 2.4 Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be coal stock pile and Railway siding area are provided with storm water drainage. Reclamation of 23 Ha area is being done. Complied with. Runoff from the coal storage is being routed through dump pond where all the particles settled down. Complying with. A waste management plan is in place and a boat is provided to collect the waste blown due to high	2.3	Storm Water Management Plan	exceeding norms.
water drainage systems to prevent any surface run-off in to the sea. • Reclamation of 23 Ha back up area • Coal stock pile development of 7.7 Ha area • Railway siding area • The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. 2.4 Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be coal stock pile and Railway siding area are provided with storm water drainage. Reclamation of 23 Ha area is being done. Complied with. Runoff from the coal storage is being routed through dump pond where all the particles settled down. Complying with. A waste management plan is in place and a boat is provided to collect the waste blown due to high	_,_		Complying with.
 Reclamation of 23 Ha back up area Coal stock pile development of 7.7 Ha area Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be channeled complied with. Complied with. Runoff from the coal storage is being routed through dump pond where all the particles settled down. Complying with. A waste management plan is in place and a boat is provided to collect the waste blown due to high 		water drainage systems to prevent any	, , ,
 Coal stock pile development of 7.7 Ha area Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be complying with the coal storage is being routed through dump pond where all the particles settled down. 		surface run-off in to the sea.	area are provided with storm water
 Railway siding area The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be collect the waste blown due to high 		•	=
The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be collect the waste blown due to high		·	is being done.
through a series of sediment traps to remove the majority of the coal sediment before discharging into the natural drains. 2.4 Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be collect the waste blown due to high			
remove the majority of the coal sediment being routed through dump pond where discharging into the natural drains. 2.4 Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste management plan for the entire operations, process carried out during operation. As part of the plan, a scavenging boat will be collect the waste blown due to high		<u> </u>	•
before discharging into the natural drains. Where all the particles settled down. 2.4 Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste Complying with. A waste management plan is in process carried out during operation. As part of the plan, a scavenging boat will be collect the waste blown due to high		·	_
2.4 Solid & Hazardous Waste Management Plan Port operator will prepare the robust waste Complying with. management plan for the entire operations, A waste management plan is in process carried out during operation. As part of the plan, a scavenging boat will be collect the waste blown due to high		· · · · · · · · · · · · · · · · · · ·	- , ,
Port operator will prepare the robust waste Complying with. management plan for the entire operations, A waste management plan is in process carried out during operation. As part place and a boat is provided to of the plan, a scavenging boat will be collect the waste blown due to high	24		Where on the particles section down.
management plan for the entire operations, A waste management plan is in process carried out during operation. As part place and a boat is provided to of the plan, a scavenging boat will be collect the waste blown due to high		· · · · · · · · · · · · · · · · · · ·	Complying with.
process carried out during operation. As part place and a boat is provided to of the plan, a scavenging boat will be collect the waste blown due to high		·	. , •
of the plan, a scavenging boat will be collect the waste blown due to high		· · · · · · · · · · · · · · · · · · ·	• ,
wind into the sea.			-
			wind into the sea.

	anchored for collection of waste due to	
	windblown in to the sea. In addition to the plan, the wastes that are	Complying with
	expected to be generated will be disposed	
	accordingly. The hazardous waste generated	
	from the port operation will be disposed as	,
	per the HWM Rules 2008.	2016.
	Solid Waste generated during port operations	
	will be disposed as per Solid Waste	
	(Management & Handling) Rules 2000.	
	Wherever possible the recycle and reuse will	
	be explored for possibilities of recovery of any	
	useful material. Option for recycle/reuse if	
	not economical, then the waste will be	
	disposed as per the SWM Rules, 2000.	
2.5	'	
	It is proposed to develop nearly 6 ha. of green	
	cover all along the boundary of the port.	
	Green Buffer Zone is being implemented at	
	Eastern project site along the boundary.	
	Saplings of Casuarina and Pedilanthus are	1
	planted along the coal stacking yards and	
	periphery of port area. It is proposed to develop further three tier	
	greenbelt to increase efficiency of dust	
	-	
2.6	control.	
2.6	control. Community Development Plan	
2.6	control.	Complied.
2.6	control. Community Development Plan The proposed CSR programs are based on the	Complied. The CSR activities are executed at
2.6	control. Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of	Complied. The CSR activities are executed at group level by Adani Foundation.
2.6	control. Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of
2.6	control. Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can be initially implemented in the five villages of	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment
2.6	control. Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can be initially implemented in the five villages of the study area that is Lakhigam, Luvara, Jageshwar, Ambetha and Dahej. Based on the outcome of the CSR programs, it can be	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure – 8 .
2.6	control. Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can be initially implemented in the five villages of the study area that is Lakhigam, Luvara, Jageshwar, Ambetha and Dahej. Based on the outcome of the CSR programs, it can be expanded to the other villages apart from the	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure - 8 .
2.6	control. Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can be initially implemented in the five villages of the study area that is Lakhigam, Luvara, Jageshwar, Ambetha and Dahej. Based on the outcome of the CSR programs, it can be expanded to the other villages apart from the study area. The proposed CSR Programs can	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure - 8 .
2.6	control. Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can be initially implemented in the five villages of the study area that is Lakhigam, Luvara, Jageshwar, Ambetha and Dahej. Based on the outcome of the CSR programs, it can be expanded to the other villages apart from the study area. The proposed CSR Programs can be grouped into the following subheadings.	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure - 8 .
2.6	Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can be initially implemented in the five villages of the study area that is Lakhigam, Luvara, Jageshwar, Ambetha and Dahej. Based on the outcome of the CSR programs, it can be expanded to the other villages apart from the study area. The proposed CSR Programs can be grouped into the following subheadings. Health Promotions Programs	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure - 8 .
2.6	Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can be initially implemented in the five villages of the study area that is Lakhigam, Luvara, Jageshwar, Ambetha and Dahej. Based on the outcome of the CSR programs, it can be expanded to the other villages apart from the study area. The proposed CSR Programs can be grouped into the following subheadings. Health Promotions Programs Health Camps and Health Awareness	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure - 8 .
2.6	Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can be initially implemented in the five villages of the study area that is Lakhigam, Luvara, Jageshwar, Ambetha and Dahej. Based on the outcome of the CSR programs, it can be expanded to the other villages apart from the study area. The proposed CSR Programs can be grouped into the following subheadings. Health Promotions Programs ✓ Health Camps and Health Awareness programs on Institutional Births and	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure - 8 .
2.6	Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can be initially implemented in the five villages of the study area that is Lakhigam, Luvara, Jageshwar, Ambetha and Dahej. Based on the outcome of the CSR programs, it can be expanded to the other villages apart from the study area. The proposed CSR Programs can be grouped into the following subheadings. Health Promotions Programs Health Camps and Health Awareness programs on Institutional Births and Immunization programs	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure - 8 .
2.6	Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can be initially implemented in the five villages of the study area that is Lakhigam, Luvara, Jageshwar, Ambetha and Dahej. Based on the outcome of the CSR programs, it can be expanded to the other villages apart from the study area. The proposed CSR Programs can be grouped into the following subheadings. Health Promotions Programs ✓ Health Camps and Health Awareness programs on Institutional Births and Immunization programs ✓ Mobile Clinic	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure - 8 .
2.6	Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can be initially implemented in the five villages of the study area that is Lakhigam, Luvara, Jageshwar, Ambetha and Dahej. Based on the outcome of the CSR programs, it can be expanded to the other villages apart from the study area. The proposed CSR Programs can be grouped into the following subheadings. Health Promotions Programs ✓ Health Camps and Health Awareness programs on Institutional Births and Immunization programs ✓ Mobile Clinic Education Promotion Programs	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure - 8 .
2.6	Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can be initially implemented in the five villages of the study area that is Lakhigam, Luvara, Jageshwar, Ambetha and Dahej. Based on the outcome of the CSR programs, it can be expanded to the other villages apart from the study area. The proposed CSR Programs can be grouped into the following subheadings. Health Promotions Programs ✓ Health Camps and Health Awareness programs on Institutional Births and Immunization programs ✓ Mobile Clinic Education Promotion Programs ✓ Providing sustenance funds for	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure - 8 .
2.6	Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can be initially implemented in the five villages of the study area that is Lakhigam, Luvara, Jageshwar, Ambetha and Dahej. Based on the outcome of the CSR programs, it can be expanded to the other villages apart from the study area. The proposed CSR Programs can be grouped into the following subheadings. Health Promotions Programs ✓ Health Camps and Health Awareness programs on Institutional Births and Immunization programs ✓ Mobile Clinic Education Promotion Programs ✓ Providing sustenance funds for maintaining School Infrastructure like	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure - 8 .
2.6	Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can be initially implemented in the five villages of the study area that is Lakhigam, Luvara, Jageshwar, Ambetha and Dahej. Based on the outcome of the CSR programs, it can be expanded to the other villages apart from the study area. The proposed CSR Programs can be grouped into the following subheadings. Health Promotions Programs ✓ Health Camps and Health Awareness programs on Institutional Births and Immunization programs ✓ Mobile Clinic Education Promotion Programs ✓ Providing sustenance funds for maintaining School Infrastructure like Drinking water Facilities, Sanitation	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure - 8 .
2.6	Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can be initially implemented in the five villages of the study area that is Lakhigam, Luvara, Jageshwar, Ambetha and Dahej. Based on the outcome of the CSR programs, it can be expanded to the other villages apart from the study area. The proposed CSR Programs can be grouped into the following subheadings. Health Promotions Programs Health Camps and Health Awareness programs on Institutional Births and Immunization programs Mobile Clinic Education Promotion Programs Providing sustenance funds for maintaining School Infrastructure like Drinking water Facilities, Sanitation facilities and providing supplies etc	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure - 8 .
2.6	Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can be initially implemented in the five villages of the study area that is Lakhigam, Luvara, Jageshwar, Ambetha and Dahej. Based on the outcome of the CSR programs, it can be expanded to the other villages apart from the study area. The proposed CSR Programs can be grouped into the following subheadings. Health Promotions Programs ✓ Health Camps and Health Awareness programs on Institutional Births and Immunization programs ✓ Mobile Clinic Education Promotion Programs ✓ Providing sustenance funds for maintaining School Infrastructure like Drinking water Facilities, Sanitation facilities and providing supplies etc ✓ Providing scholarship programs	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure - 8 .
2.6	Community Development Plan The proposed CSR programs are based on the needs felt and socioeconomic indicators of the study. The proposed CSR programs can be initially implemented in the five villages of the study area that is Lakhigam, Luvara, Jageshwar, Ambetha and Dahej. Based on the outcome of the CSR programs, it can be expanded to the other villages apart from the study area. The proposed CSR Programs can be grouped into the following subheadings. Health Promotions Programs Health Camps and Health Awareness programs on Institutional Births and Immunization programs Mobile Clinic Education Promotion Programs Providing sustenance funds for maintaining School Infrastructure like Drinking water Facilities, Sanitation facilities and providing supplies etc	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure - 8 .

- ✓ Knowledge centre regarding various government schemes and latest technology
- √ Skill Development Training Programs

Women Empowerment

- ✓ Sanitation Promotion Programs
- ✓ Construction and Maintenance of Sanitation complex
- ✓ Awareness Programs

Infrastructure development Programs

- ✓ Developing internal roads of villages
- ✓ Developing drainage systems
- ✓ Solar Street Lights
- ✓ Construction / Maintenance of Community Halls
- ✓ Social Forestry

2.7 Village Specific Infrastructure Development Programs:

S. No.	Village	Programs
1.	Luvara	Developing proper drainage system in the village.
2.	Dahej	Providing Safe Drinking water Facilities in the schools
3.	Dahej	Developing medical facilities in the PHC such as facilities for storage of perishable medicines,
4.	Jageshwar	Developing Drainage System
5.	Lakhigam	Developing Drainage System
6.	Lakhigam Luvara Jageshwar	Developing Solar Street Light and Internal Village Roads
7.	Ambetha	Developing Drainage System
8.	Study Area Villages	Mobile Clinic providing medical facilities in the villages of the study area by having periodic visits and health camps.
9.	Study Area Villages	Developing Safe Drinking facilities at Schools in the study area.

	10. Jageshwar Providing training	
	programs on latest	
	technology of fishing, free	
	fishing equipments and	
	providing vocational	
	training programme for	
	alternate income source.	
2.8		
2.0		Complied.
	maintained an Environmental Management	· ·
	Cell (EMC) with Head of Department (EHS),	
	supported by field level executives and	
	horticulturist for implementation of the	
	compliance conditions as per Environmental	
	Clearance obtained and GPCB Consent	_
	Conditions. Periodical monitoring activities	
	are being undertaken by MoEF recognized	
	and NABL accredited environmental	
	laboratories. Environmental compliance	
	reports are regularly submitted to MoEF	
	regional office, Vadodara and New Delhi.	
	EMC will be further strengthened in view of	
	the proposed expansion by augmenting	
	resources such as manpower and field	
	equipments, for effective compliance of	
	environmental clearance conditions.	
	Environmental monitoring program will be	
	undertaken by MoEF recognized and NABL	
	accredited environmental laboratories as	
	part of compliance report preparation and its	
	submission to GPCB, MoEF Regional Office,	
	Vadodara and New Delhi.	
2.9	Cost Estimates for Environmental	
	Management Plan:	
	The estimated total cost of the proposed	Complied.
	project is Rs.464.32 Crores. Under the	,
	project, about Rs.173.35 Crores is allocated	_
	towards pollution control equipment,	
	implementation of environmental pollution	
	control measures and environmental	
	management programs.	Monitoring, STP's (O&M), Closed
		Conveyor System Maintenance
		and etc. The allocation of revenue
		budget for Environment Cell for
		the FY 2018-19 was approx. Rs.
		242.88 lacs. Details of the
		environmental budget and
		expenditure for the April'18 to
		September'18 is enclosed as
		Annexure - 5.

Annexure - 8 Corporate Social Responsibility Report

Half Yearly Report- Adani Port- Dahej (Apr - 2018 to Sep - 2018)

At Adani Foundation-Dahej, our CSR approach is guided by the four pillars of our CSR & Sustainability framework – Education, Community Health, Sustainable Livelihood Development and Rural Infrastructure Development. These pillars establish a clear vision of our critical area of focus and are aligned with the work we're doing to address the issues of highest importance to our internal and external stakeholders. In this report, we've dedicated individual chapters to sharing our progress under each pillar.

INTRODUCTION

The Adani Foundation is the Corporate Social Responsibility arm of Adani Group with a vision to "Accomplish passionate commitment to the social obligations towards communities, fostering sustainable and integrated development, thus improving quality of life". It's an integrated infrastructure conglomerate that is committed to inclusive growth and sustainable development in not only the communities it operates in, but also in contributing towards nation building.

The Adani Foundation - Dahej has been running several activities and catering to the needs of the local people residing in about 11 villages. Our target population is 31522 beneficiaries comprising of 7611 families of these 11 project villages. The main castes are *Koli Patel, Rajput, Ahir and other castes are SC/ST & minorities.*

The activities performed under the CSR initiatives of the Adani Foundation fall under four major domains. These include Education, Community Health, Sustainable Livelihood Development and Rural Infrastructure Development. In the Year 2018-19, Adani Foundation contributed largely towards the surrounding communities of Adani Dahej site in respect to its varied domains. Each domain has its set of objectives. All the objectives are fulfilled keeping in mind the vision of contributing towards framing a better society all around its catchment area. Till date several activities have been initiated and performed in lieu of these objectives. This half-year Report throws light on Adani Foundation's activities performed and initiatives taken in last six months at Dahej site are as under:

Domains of CSR Framework

population for promotion of education disadvantaged mass.

EDUCATION

School Enrolment Drive:

As every year, we have distributed 290 nos. educational kits comprising of school bag with necessary educational materials to 1st std. students of 9 schools of 7 project villages. The aim of this project is to support the govt. educational drive as well as to encourage our project area of their tiny tots especially of

Pragnya Material Support:

Pragnya book is basically towards providing quality education material up to 4th std. school children to ease their initial stage of linguistic learning. By use of this book, students can be a quick learner for reading, writing, tracing words and construction sentences. It is also experienced as helping hand for primary school teachers as per their opinions in the past. We covered all school children up to 4th std. of our

project villages. This year, we have provided more than 1100 books in 9 primary schools of 7 villages.

Learning Enrichment Programme:

The Learning Enrichment Program is specially designed to cater to the academic deficit and impart quality education to the students of Government Primary Schools.

- This unique, alternative and innovative program is efficient in building the capacity of weak students in academic and helped to pace with higher scores.
- > The program is easy to implement in the School Premises and within the school hours.
- > Fortnightly Evaluation and Tracking system of each and every student.
- > The program is designed to teach the students according to their learning level.
- ➤ The targeted student is to attend the special class for two hours a day as per the learning level.
- > The program is conducted in a 'play way method' so students are very interested to play the game.

The project is serving 308 weak students of 8 Govt. Primary Schools of 7 Project Villages. The project is implemented by dedicated teachers under Vidya Bharti Foundation, Ahmedbad based NGOs wokring towards education upliftment of children in need of special attention.

Community Health

In the villages nearby, the health care delivery is constrained by lack of health care infrastructure, lack of doctors, lack of supply chain and lack of appropriate monitoring of existing health care infrastructure.

Hence, the local communities residing in these villages are not able to access formal health care and many of them after having to travel long distances to consult untrained local private practitioners in case of any illness.

Recognising this need to strengthen the health care delivery system, AF- Dahej is engaged in promoting healthy communities by improving access to basic health care and by helping the local communities to fight against infectious diseases.

Mobile Health Care Unit:

We are providing mobile health car van unit in 11 villages nearby to our Dahej port. We are providing no cost medical services for the people in the area. From April 2018 to September 2018, total **10379 patients treated in which 1912 patients added** as a new patient to total beneficiaries.

Health Awareness Programs:

With MHCU Services, we are also educating and promoting preventive health behaviour and practices in surrounding community. It is very important to prevent the disease rather than cure. For that, general health awareness events has been carried out regularly on different health topics like H&H behaviour practices, prevention of water-borne, seasonal & communicable diseases and hereditary health risks at schools and community level.

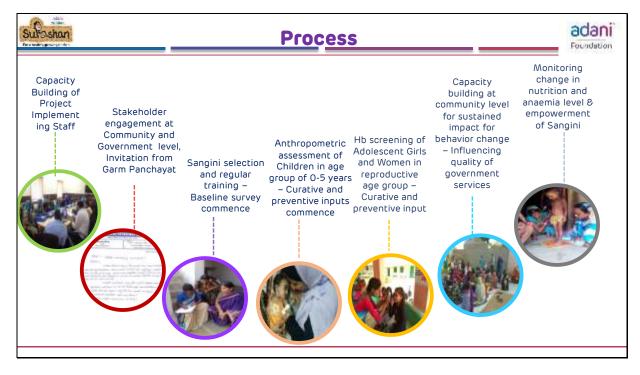
General Medical Camp:

We are arranging general medical diagnosis and treatment camp by MHCU staff in small pockets of populations where needs or requests have been raised out of regular MHCU services.

SuPoshan Project:

SuPoshan is taking life cycle approach for curbing malnutrition. One of the prime reason for malnutrition is poor health of mother during pregnancy and during lactation period.

SuPoshan works with all three important target groups Children though their mothers, adolescent girls and reproductive age women.


SuPoshan is working with Adolescent girls for making them healthy mothers in future and subsequently their children will be also healthy.

For doing effective and sustainable changes, the project is augmenting available IEC materials from various sources i.e. UNICEF, Government etc. The project is also creating location specific IEC materials.

The positive impact of SuPoshan will be on reduction of IMR and MMR.

Dahej Cluster is implementing SuPoshan Project in 7 Villages. In these seven villages, 8 Sanginis are combating malnourishment in their respective villages. They are empowered with knowledge, skills different aids by Adani and Foundation. We are conducting awareness, segregation of important health information and news to mothers, children, adolescent girls and women at large.

Sustainable Livelihood Development Programme

Adani Foundation partnering with BAIF institute for Sustainable Development (BISLD) is implementing CBC (Cattle Breeding Centre) i.e. Animal Husbandry Project and Moringa (Drumstick) Livelihood Project in 12 villages surrounding Adani Port, Dahej.

CBC Project:

The project is emphasized on livestock development with cattle holding families of surrounding villages nearby plant. As Dahej is an industrial area, people are engaged with contract employment and do not take scientific or systematic approach to their faming and animal caring. Keeping view of the account of this fact, it is need of the hour to train the families to create livestock as a profitable investment/business from traditional way. BAIF is a renowned national level NGO working towards animal husbandry and agriculture development. So this smart partnership will demonstrate long-term desirable results into better milking animals and happy livestock families through this unique project.

The salient activities undertaken of the project from April to September 2018 is as under:

1. Artificial Insemination:

Animal holding families are now ready to accept artificial breeding method towards production and reproduction of good animals through Artificial Insemination. It leads to better animals with milking and healthy condition. More than 200 animals covered so far in the first six months of financial year 2018-19.

2. Foot & Mouth Disease Vaccination:

Protection of animals against hazardous bacterial and viral diseases like Hemorrhagic Septicemia (HS), Black Quarter (BQ) and Foot & Mouth Disease (FMD) is far more important by the means of vaccination. These diseases creates heavy economic losses in terms of reduced production level and farmer has to

bear huge treatment cost as well as threat of animal loss in severely affected cases. After vaccination, not a single case of morbidity for FMD disease was reported.

3. Deworming:

Deworming is not practiced by local livestock families which is continued from last year. At present, 502 animals were taken benefits of this activity. Deworming leads to improved health condition of milking animals for increasing productivity. It also reduces calf mortality occurred due to heavy endoparasitic infestation.

4. Vermi compost Demo:

Vermi compost is a quality compost to be used as an organic amendment that contribute to improve soil fertility, promotion of natural farming with leaving dependency on chemical fertilizers ultimately reducing costing and better health benefits to end users. Selected prospective

beneficiaries provided material support for demonstration and projection to propagate these units to be envisaged at large scale as this manure is widely accepted by household as well industrial purpose for greenbelt in surrounding industries.

5. Kitchen Garden:

Kitchen garden concept is materialized not only to meet out nutritional requirement of beneficiaries' family members but also to support substantial income to marginalized families of the villages who had eagerly participated to nurture and develop kitchen gardens in the backyards of their houses. Total 250 beneficiaries covered in different villages of the area. This is a safe practice, which

does not cause toxic residues of pesticides in the vegetables produced as outside market vegetables. It also reduced traveling cost to purchase vegetables even for beneficiaries and their neighboring customers who can intake the vegetables with non-use of chemicals and pesticides.

6. Calf Rearing:

Sustainable Livelihood Development

Calf rearing Training & Awareness Program

To safeguard a calf from many diseases and for better immunity, Calf rearing Training & Awareness Program is conducted in the presence of Shri B. G. Gandhi, COO, APDPPL, HoDs of Dry Cargo & Security at Luvara Village.

In this program, we have adopted 3-4 months' aged 20 calves and buffs of 4 villages for 1 year to provide them cattle feed, vaccinations, deworming tablets throughout the year as per their daily requirement. It educates other animal holding families of project villages about noticeable growth of the livestock because of nutritious food intake and scientific approach towards animal care.

Calving of cows and buffaloes of Al Artificial Insemination (Al) activities has been carried out since November 2017. Now, it has been commencing birth of crossbreed and precious cattle population in project villages. Total 12 births of calves of cows and buffaloes has been happened in last 2 months. Nearly 100+ more births of calves will be taken up gradually in this year. The above picture is one of our Al Cow of 'Gir', the most valuable breed of cow in the world.

Moringa Project:

Moringa (Drumstick) plant has high nutritional values and beneficial in curing many diseases. Moringa Leaves and Drumstick Powder is processing to prepare many Ayurveda Medicine. Keeping view of this livelihood opportunity, the Moringa Project is implemented in surrounding villages of the plant. First of all, BAIF has developed a model nursery to grow Moringa

plants organically so that those can be distributed to the potential beneficiaries

later on. Presently, more than 2000 plants are grown in backyards of poor and entrepreneurial families who are well explained and trained about the Project. Later on they will be economically beneficial by market linkages of the Moringa leaves, once the plants will be grown enough for cultivation. Presently, they are encouraged to use of Moringa leaves in their daily preparation of their home made food ingredients to enhance nutritional level of their families by this miracle tree.

Shiv Shakti Sakhi Mandal - Bag Making Group:

On the occasion of Gujarat Foundation Day, Shri Vijay Rupani, Hon'ble Chief Minister of Gujarat State visited our SHG Trade Exhibition Stall and recognized the initiatives undertaken Adani Foundation for women selfhelp groups. He talked with SHG members and encouraged them for their splendid work. Shiv Shakti Sakhi Mandal, Jageshwar is bag making group specialized in school bags, laptop bags and jute was the bags. lt great achievement!

Shiv Shakti Sakhi Mandal (SSSM) had prepared 290 nos. School Bags for Shala Pravetsosav – 2018. We supported this educational govt. initiative in our 7 project villages where the school bags prepared by our SHG every year. It is smart partnership between Education and livelihood project.

Ban the Bag campaign

Considering this year World Environment Day Theme i.e. #Beat Plastic Pollution: Cotton Bags were distributed at two local vegetable markets Bharuch City in association with Gujarat Pollution Control Board, Bharuch on dated 17th June. 2018. The 500 nos. bags were prepared by SSSM funded by APDPPL. The campaign offered every citizen the opportunity to engage and act against the use and distribution of plastic bags

Rural Infrastructure Development

Rural infrastructure is vital to economic **growth** and poverty alleviation in the villages. ... It helped in improving the quality of lives for people living in respective villages covering the thrust areas of community mobilization, education intervention, vocational training, women empowerment, healthcare and sanitation.

With this pace, Adani Foundation is envisaged to link up missing development initiatives with our important stakeholders i.e. Village Panchayat, School, Community etc. In the first half of fiscal year, we have constructed 4 houses to BPL families of Lakhigam Village and 2 smart room activity class rooms at Primary School, Jageshwar. Sometimes, due to lack of govt. funding or lengthy process, beneficiaries remain to attend very badly. Corporate initiative like us supports this gaps to fulfil and canvass the village infrastructure in decent manner.

The project cost of already constructed Rural Infrastructure Development activities of first half year as mentioned above is crossed Rs. 25 Lakhs plus.

In next half year, we will invest significantly in improvement of Rural Habitant Development of surrounding villages as per consideration of their felt needs as per annual plan.