

Letter No.: APPPL-EHS/MOEF RO/EC Comp (ISII)

To

The Additional Principal Chief Conservator of Forests (C), Western Regional Office, Ministry of Environment, Forest & Climate Change E-5, Arera colony, Link Road-3, Ravishankar Nagar, Bhopal-462016 (M.P.) Email: rowz.bpl-mef@nic.in

Dear Sir,

Sub.:- Six Monthly Compliance Report of Environment and CRZ Clearance for the period from April 2017 to September 2017.

Ref.:- 1) Environmental and CRZ clearances granted to M/s. Adani Petronet (Dahej) Port Pvt. Ltd. for Phase-I and Phase-II vide letters dated 6th July, 2007 and 11th November, 2008 bearing F. No.: 11-37/2007-IA-III, respectively.

2) CRZ Clearance / Recommendation issued by Department of Environment & Forest, GoG vide letter dated 16th May, 2007 bearing No.: ENV-102006-71-P for Phase-I and letter dated 29th September, 2008 bearing No.: ENV-10-2007-2126-E for Phase-II.

Date: 28/11/2017

Please find enclosed herewith point wise compliance report (Hard copy as well as in a CD) of conditions stipulated in the above referred letters.

Thank you,

Yours Faithfully,

For M/s Adani Petronet (Dahei) Port Pvt Ltd.

(B.G. Gandhi)

Chief Operating Officer

Copy to:

- The Director (Monitoring-IA Division), Ministry of Environment, Forest & Climate Change, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi - 110003
- 2. The Director, Forest and Environment Department, Block-14, 8th Floor, Sachivalaya, Gandhinagar, Gujarat- 382010
- 3. The Zonal Officer, Central Pollution Control Board, Zonal OfficeVadodra, Pariyesh Bhawan, Opposite VMC Ward office No. 10, Subhanpura, Vadodra-390023
- 4. The Chairman, Gujarat Pollution Control Board, Parvayaran Bhawan, Sector 10A, Gandhinagar-382010(Gujarat).
- 5. The Regional Officer, Gujarat Pollution Control Board, Bharuch, Gujarat.

Adani Petronet (Dahej) Port Pvt Ltd At & PO Lakhigam Taluka Vagra, Via Dahej Bharuch 392 130 Guiarat, India

Tel +91 2641 285002 +91 2641 285019 info@adani.com www.adaniports.com

CIN: U63012GJ2003PTC041919

Half yearly Compliance report for Environment and CRZ Clearance for the development of
Solid Cargo Port Terminal Phase – I and Phase – II.

Solid Car	Solid Cargo Port Terminal Phase – I and Phase – II.	
Sr. No.	Specific Conditions	Compliance
P2(i)	All the conditions stipulated by Ministry of Environment and Forests, Regional Office, Western Region, Bhopal vide their letter No. 6-GJ060/2006-BH0/1508, dtd., 16.6.2008 shall be strictly adhered to	Complied. All the conditions mention by Ministry of Environment and Forests, Regional Office, Western Region, Bhopal vide their letter No. 6-GJ060/2006-BHO/1508, dtd., 16.6.2008 have been complied with. Copy of the compliance status is enclosed as Annex - 1 .
P2(ii)	All the conditions stipulated by Forest and Environment Department, Govt. of Gujarat vide their letter NoFCA-1006(10-9)SF-76-K, dated., 1.7.2008 dated 16.6.2008 shall be strictly adhered to	Complied. All the conditions mention by Forest and Environment Department, Govt. of Gujarat vide their letter NoFCA-1006(10-9)SF-76-K, dated., 1.7.2008 dated 16.6.2008 have been complied with. Copy of the compliance status is enclosed as Annex – 1 .
P2(iii)	No reclamation will be carried out for the activity	Complied. Project (Phase I & II) has been developed within existing land without any reclamation.
P2(iv)	All the conditions stipulated by the Gujarat Coastal Zone Management Authority including Ministry of Environment and Forests clearance dated 16.6.2008 under the Forest Conservation Act shall complied.	Complied. All the condition mentioned by the Gujarat Coastal Zone Management Authority including Ministry of Environment and Forests clearance dated 16.6.2008 have been complied with. Copy of the compliance status is enclosed as Annex – 1 .
P2(v), P1(i)	Sewage Treatment Plant should be included in the project	Complied. Sewage Treatment Plant of capacity 25 M^3 / day has been installed and is in operation.
P2(vi), P1(ii)	Afforestation in 200 ha. with mangroves should be undertaken under the project, as identified by the Gujarat Forest Department	Complied. Mangrove afforestation has been carried out in an area of 400 ha. Details are given below. 1. 100 ha near village Dandi, Dist Surat – 2011 2. 50 ha near village Jakhau, Dist Kutch – 2011 3. 50 ha near Padri bit, Dist Bhavnagar – 2011 4. 200 ha near Malpur, Dist Jambusar – 2013-14 Reports of Mangrove afforestation are enclosed as Annexure – 2A, 2B, 2C and 2D.
P2(vii)	Afforestation @1:3 shall be carried out in	Complied.

eport for Environment and CRZ Clearance for the development of

From : Apr., 2017

: Sep., 2017

	Half yearly Compliance report for Environment and CRZ Clearance for the development of	
	olid Cargo Port Terminal Phase – I and Phase – II.	
Sr.	Specific Conditions	Compliance
No.		200
	case of any trees to be cut.	 Afforestation on 38 ha. Land has been completed with the help of forest department during 2012-14. Land has been declared as reserve forest vide notification dated 23/12/2008. Copy enclosed as Annex- 3
P2(viii),	The recommendations of the Risk	Complied.
P1(iii)	Assessment Report should be incorporated	Risk Assessment Report was submitted along with compliance report dated 20/02/2008. The recommendation of risk assessment are incorporated and being followed during construction and operation phases.
P2(ix),	The materials for the filling and	Complied.
P1(v)	pavement construction should be made available from approved quarries.	Construction of the project (Phase I & II) was completed in February 2011.
P2(x), P1(vi)	Sufficient fixed and mobile firefighting system should be provided exclusively for the terminal in consultation with the local statutory bodies.	Complied. Adequate fixed and mobile firefighting systems are provided. Details of the same are enclosed as Annexure – 4 .
P2(xi), P1(x)	All development in the port should be carried out in accordance with the Coastal Regulation Zone Notification, 1991 and approved Coastal Zone Management Plan of Gujarat.	Complied. Construction of Phase I & II has been completed in February 2011 and same is carried out in accordance with CRZ Notification 1991.
P2(xii), P1(xi)	There shall be no withdrawal of ground water in CRZ area for this project. The proponent should ensure that as a result of the proposed constructions, ingress of saline water into ground water does not take place. Peizometers shall be installed for regular monitoring for this purpose at appropriate locations on the project site.	Complied. Ground water is not tapped in CRZ area for the project. Water requirement is being met through GIDC water supply. Two Piezometers has been installed at different locations inside port. Regular monitoring of ground water level & quality is being monitored through accredited laboratory M/s Pollucon Laboratories. Copies of reports are enclosed as Annex 5B.
P2(xiii), P1(xii)	The project shall not be commissioned till the requisite water supply and electricity to the project are provided by the PWD/Electricity Department.	Complied. Project is commissioned after obtaining permission from PWD and Electricity Department. 1. GIDC permission dtd 19.02.2013 2. Electricity Department approval dtd 18.02.2011
P2(xiv),	Specific arrangements for rain water	Complied.

report for Environment and CRZ Clearance for the development of

From : Apr., 2017

: Sep., 2017

Half year	Half yearly Compliance report for Environment and CRZ Clearance for the development of		
Solid Car			
Sr.	Specific Conditions	Compliance	
No.		The Consideration of the Constant	
P1(xiii)	harvesting shall be made in the project design and the rain water so harvested shall be optimally utilized. Details in this regard shall be furnished to this Ministry's Regional Office at Bhopal within 3 months	The feasibility study for rain water harvesting was conducted. Based on the report it may be concluded that rain water harvesting is not advisable as the area is next to the coast. Report was submitted along with the half-yearly compliance report dated 22.05.2015.	
P2(xv), P1(xv)	No land reclamation should be carried out for this project.	Complied. Project (Phase I & II) has been developed within existing land without any reclamation.	
P2(xvi) ,P1(xvi)	Green buffer zone should be provided all around the project area in consultation with local forest department and report submitted to this Ministry's Regional Office at Bhopal.	Complying with. Considering the expansion plan, Green belt is being developed on periphery of the project boundary. So far 8.0 ha of Green belt is developed which mainly includes casuarina, wasigtonia palm, cassia samiea, peltoforum, delonix regia, ficus sps. Copy of provided green belt area is enclosed as Annexure – 7.	
P2(xvii) ,P1(xiv)	The facilities to be constructed in the CRZ area as part of this project should be strictly in conformity with the provisions of the CRZ Notification, 1991 as amended subsequently.	Complied. Construction of the project (Phase I & II) was completed in February 2011 and same is in conformity with the provisions of the CRZ Notification 1991.	
P2(xviii), P1(xvii)	No product other than those permissible in the Coastal Regulation Zone Notification, 1991 should be stored in the Coastal Regulation Zone area.	Complied. APDPPL is handling dry cargo mainly coal and other bulk cargos at designated storage areas in compliance to the CRZ Notification 1991 and 2011 and as per approval received.	
P1(iv)	Location of general cargo berth should be taken in to considerations with regard to location of LNG terminal	General cargo berth (Solid Cargo Port Terminal jetty) is approx. 500 m away from the LNG jetty of Petronet LNG Ltd.	
P1(vii)	The wave tranquility study and the ship maneuvering studies carried out should be taken in to account while operating the Port.	Complied. Ship mooring study and wave tranquility studies were carried out to understand the wind wave and swell wave conditions. The recommendations are being regularly followed during port operations.	
P1(viii)	The project proponent should ensure that during construction and operation of the port there will be no impact on the livelihood of the fisherman. The	Complied. There is no commercial fishing in the area. Free access to the "Pagadiya" fishermen is available. They are continuing with their	

_	Half yearly Compliance report for Environment and CRZ Clearance for the development of Solid Cargo Port Terminal Phase – I and Phase – II.		
Sr. No.	Specific Conditions	Compliance	
	fisherman should be provided free access to carry out the fishing activity.	activities without any impact from project.	
P1(ix)	All necessary precaution while undertaking construction and operation of the port should be taken keeping in view the bathymetric changes caused due to cyclones.	Complied. Construction (Phase I & II) activities are completed in February, 2011. APDPPL has a well-defined DMP (covering natural disasters including cyclones) and regular mock drills are being conducted. DMP is also reviewed at regular interval. Mock drill is being conducted as per plan. Last Mock drill was conducted on 21.09.2017. Last revision in the DMP was done on 15.12.2016.	
	Conditions		
P2(i), P1(i)	Construction of proposed structures shall be undertaken meticulously conforming to the existing Central/local rules and regulations including Coastal Regulation Zone Notification 1991 & its amendments. All the construction designs/drawings relating to the proposed construction activities must have approvals of the concerned state Government Departments/Agencies.	 Complied. All the development activities are being taken up in accordance with the CRZ notification, 1991 & its subsequent amendments. The approval for the project has been obtained from concern government department that is GMB as per their NOC date 23/02/2006. Necessary approval has been obtained from GIDC for the setting of the project. 	
P2(ii), P1(ii)	Adequate provision for infrastructure facilities such as water supply, fuel, sanitation etc. should be ensured for construction workers during the construction phase of the project so as to avoid felling of trees/mangroves and pollution of water and the surrounding.	Complied. Construction of the project (Phase I & II) was completed on February 2011. During construction all facilities such as water supply, fuel, sanitation etc. was provided.	
P2(iii), P1(iii)	The project authorities must make necessary arrangements for disposal of solid waste and for the treatment of effluents by providing a proper wastewater treatment plant outside the CRZ area. The quality of treated effluents, solid wastes and noise level etc. must conform to the standards laid down by the competent authorities including the Central/State Pollution Control Board and the Union Ministry of	 Complied. The Project (Phase I & II) activities are not generating any trade effluent. Only domestic effluent is being generated which was treated in the STP outside CRZ area and used for horticulture within the premises. The noise monitoring results, are enclosed as Annexure - 5G Quality of treated domestic effluent is also being monitored by M/s Pollucon 	

Limited To : Sep., 2017

From : Apr., 2017

=	Half yearly Compliance report for Environment and CRZ Clearance for the development of Solid Cargo Port Terminal Phase – I and Phase – II.		
Sr. No.	Specific Conditions	Compliance	
	Environment and Forest under the Environmental (Protection) Act, 1986, whichever are more stringent.	Laboratories, a NABL accredited and MoEF recognised laboratory. Please refer Annexure – 5F . Both reports for confirm compliance with applicable standards.	
P2(iv), P1(iv)	The proponent shall obtain the requisite consents for discharge of effluents and emission under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (PreventioOn and Control of Pollution) Act, 1981 form the Gujarat State Pollution Control Board before commissioning of the project and a copy of each of these shall be sent to this Ministry.	Complied. APDPPL has obtained renewal of CC&A under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (PreventioOn and Control of Pollution) Act, 1981 form the Gujarat State Pollution Control Board AWH 73359 from GPCB which is valid up to 16/7/2020.	
P2(v), P1(v)	The proponent shall provide for a regular monitoring mechanism so as to ensure that the treated effluents conform to the prescribed standards. The record of analysis reports must be properly maintained and made available for inspection to the concerned State/Central officials during their visits.	 Domestic effluent is being treated in STPs. The treated water confirming to the norms is being used for horticulture purpose. The monitoring results of the treated wastewater from STP for the period from April 2017 – September 2017 are enclosed as Annexure – 5F. Reports are available at site for the inspection and APDPPL regularly submits report to GPCB. 	
P2(vi), P1(vi)	In order to carry out the environmental monitoring during the operational phase of the project, the project authorities should provide an environmental laboratory well equipped with standard equipment and facilities and qualified manpower to carry out the testing of various environmental parameters.	 APDPPL has engaged M/s Pollucon Laboratories, a NABL accredited and MoEF recognised laboratory for environmental monitoring. The monitoring results for the period from April 2017 – September 2017 are enclosed as Annexure – 5A to 5H. 	
P2(vii), P1(vii)	The sand dunes and mangroves, if any on the site should not be disturbed in any way.	 Complied. There are no sand dunes in project area. Free flow to the mangroves near the jetty approach is maintained. 	
P2(viii), P1(viii)	A copy of the clearance letter will be marked to the concern Panchayat/local NGO, if any, from whom any suggestion/representation has been received while processing the proposal.	Complied. Copy of the letter submitted to local panchayat is enclosed as Annexure -6 .	

=	Half yearly Compliance report for Environment and CRZ Clearance for the development of Solid Cargo Port Terminal Phase – I and Phase – II.		
Sr. No.	Specific Conditions	Compliance	
P2(ix), P1(ix)	The Gujarat State Pollution Control Board should display a copy of the clearance letter at the Regional Office, District Industries Centre and Collector's Office/Tehsildar's Office for 30 days.	This condition does not belong to the project proponent.	
P2(x), P1(x)	The fund earmarked for environment protection measures should be maintained in a separate account and there should be no diversion of these funds for any other purpose. A year-wise expenditure on environmental safeguards should be reported to this Ministry's Regional Office at Bhopal and the State Pollution Control Board.	Complied. Separate budget is allocated for Environmental Management. Key components of environment budget are environmental Monitoring, STP's (Operations and Maintenance), and Closed Conveyor System Maintenance etc. The allocation of revenue budget for Environment Cell for the FY 2017-18 was approx. Rs. 210.72 lacs. Details of the environmental budget and expenditure for the FY 2017-18 is enclosed as Annexure – 9 .	
P2(xi), P1(xi)	Full support should be extended to the officers of this Ministry's Regional Office at Bhopal and the officers of the Central and State Pollution Control Boards by the project proponents during their inspection for monitoring purposes, by furnishing full details and action plans including the action taken reports in respect of mitigative measures and other environmental protection activities.	Complying with. APDPPL is regularly submit six monthly compliance reports which comprises Compliance to the conditions stipulated in Environment and CRZ clearance environment monitoring reports etc. Whenever any authorities such as MoEF&CC, GPCB and GMB etc. visit the ADPPL full support is extended and ADPPL provides all additional information seek by them during the inspection Recent visit of Gujarat Pollution Control Board (Vigilance Team) was on 31.08.2017.	
P2(xii), P1(xii)	In case of deviation or alteration in the project including the implementing agency, a fresh reference should be made to this Ministry for modification in the clearance conditions or imposition of new ones for ensuring environmental protection.	Noted and complied with. There is no change in the Phase I & II development.	
P2(xiii), P1(xiii)	This Ministry reserves the right to revoke this clearance, if any of the conditions stipulated are not complied with to the satisfaction of the Ministry.	Noted & agreed.	

Half yearly Compliance report for Environment and CRZ Clearance for the development of
Solid Cargo Port Terminal Phase – I and Phase – II.

Solid Car	Solid Cargo Port Terminal Phase – I and Phase – II.	
Sr. No.	Specific Conditions	Compliance
P2(xiv), P1(xiv)	This Ministry or any other competent authority may stipulate any other additional conditions subsequently, if deemed necessary, for environmental protection, which shall be complied with.	Noted & Agreed
P2(xv), P1(xv)	The project proponent should advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned informing that the project has been accorded environmental clearance and copies of clearance letters are available with the State Pollution Control Board and may also be seen at Website of the Ministry of Environment & Forest at http://www.envfornic.in . The advertisement should be made within 7 days from the date of issue of the clearance letter and a copy of the same should be forwarded to the Regional Office of this Ministry at Bhopal.	 Advertisement of phase 1 approval was published in Gujarati language in "Sandesh" newspaper dated 01/09/2007 and in English language in "GUJARAT SAMACHAR" newspaper dated 11.9.2007. Advertisement of phase 2 approval was published in gujarati language in "Divya Bhaskar" newspaper and in English language in "The Times of India" dated 19/11/2008. Copies of the advertisements were submitted to MoEF&CC vide compliance report dated 27/11/2013.
P2(xvi), P1(xvi)	The Project proponents should inform the Regional Office at Bhopal as well as the Ministry the date of financial closure and final approval of the project by the concerned authorities and the date of start of Land Development Work.	 Complied. Financial closure date of Project was 31st July 2007. Existing Facility – construction started date July 2007. Land development work for phase II stared in Jan. 2009. The permission to construct of Solid Cargo Beth at Dahej port has been obtained from GMB vide letter dated 23 Feb 2006 bearing no GMB/N/PVT/264(10)/1910/11201
P2(xvii)	Any appeal against this environment clearance shall lie with the National Environment Appellate Authority, if preferred, within a period of 30 days as prescribed under Section 11 of the National Appellate Act, 1997	· ·

From : Apr., 2017 To : Sep., 2017

Compliance to the conditions stipulated in CRZ clearance/ recommendation for proposed cargo port terminal phase I, II

_	Half yearly Compliance report for CRZ Clearance/recommendation for development of Solid Cargo Port Terminal Phase – I and Phase – II		
Sr. no.	Conditions	Status/Action taken	
P2(1), P1(1)	The provisions of the CRZ notification of 1991 and subsequent amendments issued from time to time shall be strictly adhered to by the APPL. No activity in contradiction to the provisions of the CRZ Notification shall be carried out by the APPL.	Complied. All the activities are being complying with the provisions of the CRZ notification and subsequent amendments.	
P2(2), P1(2)	All necessary permissions from different Government Departments / agencies shall be obtained by the APPL before commencing the expansion activities.	 Complied. All the necessary permissions have been obtained by M/s. APDPPL. Environment Clearance for phase I & Phase II obtained vide letters dated 6th July, 2007 11th November 2008 and bearing F. No. 11-37/2007-IA-III respectively CC&A is obtained from Gujarat Pollution Control Board is obtained vide letter no AWH-73359 dated 28.10.2015 and valid up 16.07.2020. 	
P2(3), P1(5)	The APPL shall carry out the construction activities either in the CRZ area or into the sea / estuary only after having the detailed study with respect to chances of erosion / accretion due to the proposed activities conducted through the NIO and vetted through the CWPRS and shall implement all necessary steps / actions as may be suggested by these institutes for mitigating the potential negative impacts including the checking of erosion and/or accretion in the region. Further, the company shall have to have the construction drawings approved for this purpose through a competent agency before undertaking any construction and/or enabling activities at the site	Complied. Construction (Phase I & II) of the port was completed in February 2011.	
P2(4), P1(7)	The APPL shall have to face the consequences whatsoever due to implementation of the Kalpsar Project proposed by the Government of Gujarat and shall have to take all necessary actions as may be desired by the Government, from time to time.	Noted and agreed to comply.	
P2(5),	No dredging and/or reclamation activity	Complied.	

	Half yearly Compliance report for CRZ Clearance/recommendation for development of Solid Cargo Port Terminal Phase – I and Phase – II		
Sr. no.	Conditions	Status/Action taken	
P1(10)	shall be carried out in the CRZ area categorized as CRZ I (i) and it shall have to be ensured that the mangrove habitats and other ecologically important and significant areas are not affected due to any of the project activities.	 No dredging/reclamation have been done in CRZ I (i). There is no notified ecologically important and significant area present in the project vicinity. 	
P2(6), P1(11)	No effluent or sewage shall be discharged into the sea / creek or in the CRZ area and shall be treated to conform to the norms prescribed by the Gujarat Pollution Control Board and would be reused / recycled within the plant premises to the extract possible.	 Domestic effluent is being treated in STPs. The treated water confirming to the norms is being used for horticulture purpose. The monitoring results of the treated wastewater from STP for the period from April 2017 – September 2017 are enclosed as Annexure – 5F. Reports are available at site for the inspection and APDPPL regularly submits report to GPCB. 	
P2(7), P1(12)	All the recommendations and suggestions given by the NIO in the Comprehensive Environment Impact Assessment report for conservation / protection and betterment of environment shall be implemented strictly by the APPL.	Complying with. A Separate EIA has been prepared for phase III development, which includes EMP for the current scenario. All the recommendations and suggestions given by M/s Cholamandalam in the EMP are being complied. Copy of the status of EMP recommendations is enclosed as Annexure 8 .	
P2(8), P1(13)	The construction and operational activities shall be carried out in such a way that there is no negative impact on mangroves and other coastal/marine habitat. The construction activities shall be carried out only under the constant supervision of the NIO.	 Complied. Construction (Phase I & II) of the project was completed on February 2011. Free flow to the mangroves near the jetty approach is maintained. 	
P2(9), P1(14)	The APPL shall strictly ensure that no creeks are blocked due to any activity at port and the mangroves habitat are neither disturbed nor destroyed due to any activity.	 Complied. No creeks are blocked due to port activity. Free flow to the mangroves near the jetty approach is maintained. 	
P2(10), P1(15)	The APPL shall participate financially for any common facility that may be established or any common study that may be carried out for the Gulf of Khambhat	Noted and agreed to comply. APDPPL is committed for the environment protection.	

Sr. no.	ort Terminal Phase - I and Phase - II Conditions	Status/Action taken
<u> </u>	region for environmental protection and/or management purpose.	
P2(11), P1(16)	The construction debris and/or any other type of waste shall not be disposed into the sea, creek or in the CRZ areas. The debris shall be removed from the construction site immediately after the construction is over.	Complied. Construction of the project was completed on February 2011. All the debris has been removed.
P2(12), P1(17)	The construction camps shall be located outside the CRZ area and the construction labour shall be provided the necessary amenities, including sanitation, water supply and fuel and it shall be ensure that the environmental conditions are not deteriorated by the construction labours.	 Complied. Construction of the project was completed on February 2011. No labour camps were located in Coastal Regulation Zone area. Labours are managed through contractors and they are from surrounding villages and have been provided residential facilities in the surrounding villages.
P2(13), P1(18)	The APPL shall prepare and regularly update their Local Oil Spill Contingency and Disaster Management Plan in consonance with the National Oil Spill and Disaster Contingency plan and shall submit the same to this Department after having it vetted through the India Coast Guard.	 Oil Spill Contingency Plan is submitted to Coast Guard, Gandhinagar for verification vide letter dated. 10/10/2012. APDPPL has a well-defined DMP and regular mock drills are being conducted. DMP is also reviewed at regular interval Last Mock drill was conducted on 21.09.2017. Last revision in the DMP was done on 15.12.2016.
P2(14), P1(19)	The APPL shall bear the cost of the external agency that may be appointed by this Department for supervision/monitoring of proposed activities and the environmental impacts of the proposed activities.	Noted and agreed to comply.
P2 (15)	The mangrove plantation in 50 ha. of area on Gujarat cost line shall be carried out by the applicant in a phased manner in five years	Complied. Mangrove afforestation has been carried out in an area of 400 ha. Details are given below. 1. 100 ha near village Dandi, Dist Surat- 2011 2. 50 ha near village Jakhau, Dist Kutch - 2011 3. 50 ha near Padri bit,

Half yearly Compliance report for CRZ Clearance/recommendation for development of S	olid
Cargo Port Terminal Phase – I and Phase – II	

Cargo Port Terminal Phase – I and Phase – II			
Sr. no.	Conditions	Status/Action taken	
		Dist Bhavnagar – 2011 4. 200 ha near Malpur, Dist Jambusar – 2013-14 Reports of Mangrove afforestation are enclosed as Annexure – 2A to 2D .	
P2 (16)	The construction activities in the Forest land and the Gauchar land shall be carried out as per the permission accorded by the concerned Authority for the said purpose	Complied. Construction of the project was completed on February 2011 in compliance to the approvals.	
P1(3)	The APPL shall take up massive mangrove plantation in 200 ha of area in and around the project site or at an alternative site to be selected in consultation with this Department.	Complied. Mangrove afforestation has been carried out in an area of 400 ha. Details are given below. 1. 100 ha near village Dandi, Dist Surat – 2011 2. 50 ha near village Jakhau, Dist Kutch – 2011 3. 50 ha near Padri bit, Dist Bhavnagar – 2011 4. 200 ha near Malpur, Dist Jambusar – 2013-14 Reports of Mangrove afforestation are enclosed as Annexure – 2A to 2D.	
P1(4)	The approach road and trestle passing through the forestland shall be constructed only after obtaining necessary permissions under the relevant forest laws including the forest (Conservation) Act. further, no activity shall be carried out in the forestland or in the area having natural plantation / forest till all mandatory clearances under various Forest Acts including the Forests Conservation Act obtained.	 Complied. All the activities on forest land have been started only after obtaining forest land clearance. Clarence from MOEF was obtained vide letter no 6-GJC060/2006-BHO/1508 dated 16th June 2008. The same was communicated by State Forest Department vide letter no A-1006(10-9)SF-76-K dated 1st July 2008 from DOEF. 	
P1(6)	The project proponent shall have to make a separate application and shall have to obtain prior clearance under the CRZ Notification for any activities other than those proposed and got approved as part of this phase I activities.	Complied. APDPPL had obtained Environmental & CRZ Clearance on Nov 11, 2008 for phase 2.	
P1(8)	The project proponents shall ensure that the local people shall be provided with an alternative access to the sea in case the existing access to Rock-Bund could not be	Complied. Alternative access to the sea is available adjoining to the project site.	

	Half yearly Compliance report for CRZ Clearance/recommendation for development of Solid Cargo Port Terminal Phase – I and Phase – II			
Sr. no.	Conditions	Status/Action taken		
	made available to them.			
P1(9)	The project proponents shall ensure that the construction period shall be reduced by proper planning and executing the construction program in time-bound manner to avoid any time over-run.	· · · · · · · · · · · · · · · · · · ·		
P1(20)	The jetty and most of the approach would be supported on piles allowing adequate flow of water without significant obstruction.	Complied. The jetty and most of the approach of 1270 meter is supported on piles allowing adequate flow of water without significant obstruction.		
	General Conditions			
P2(17), P1(21)	The groundwater shall not be tapped by the APPPL to meet with the water requirements in any case.	Complied. No ground water is being tapped by APDPPL and water demand is met through GIDC.		
P2(18), P1(22)	The APPL shall take up massive green belt development activities in consultation with the Gujarat Institute of Desert Ecology/Forest Department. A comprehensive plan for this purpose has to be submitted to the Forests and Environment Department.	Complying with. Green belt is being developed in an area of 8.0 ha including periphery of the project boundary. Details of the green development is enclosed is Annexure – 7.		
P2(19), P1(23)	The APPL shall have to be contributing financially for taking up the socio-economic up-liftment activities in this region in consultation with the Forests and Environment Department and the District Collector/District Development Officer.	Complied. The CSR activities are executed at group level by Adani Foundation. Adani Foundation is taking care of Social-economic establishment activities and details of the same are enclosed as Annexure – 11 .		
P2(20), P1(24)	A separate budget shall be earmarked for environmental management and socio – economic activities and details thereof shall be furnished to this department as well as the MoEF, GOI. The details with respect to the expenditure from this budget head shall also be furnished.	Complied. Separate budget is allocated for Environmental Management and Socio Economic activities. • Key components of environment budget are environmental Monitoring, STP's (O&M), Closed Conveyor System Maintenance and etc. The allocation of revenue budget for Environment Cell for the FY 2017-18 was approx. Rs. 210.72 lacs. Details of the environmental budget and expenditure for the Apr 17 to Sept, 17 is enclosed as		

Half yearly Compliance report for CRZ Clearance/recommendation for development of Solid

From : Apr., 2017

: Sep., 2017

	Cargo Port Terminal Phase – I and Phase – II			
Sr. no.	Conditions	Status/Action taken		
		Annexure - 9. • Socio Economic activities funds are taken up in Education, Community Health and Sustainable livelihood development, Rural Infrastructure development etc. Details are enclosed as Annexure - 11.		
P2(21), P1(25)	A separate environmental management cell with qualified personnel shall be created for environmental monitoring and management during construction and operational phases of the project.	Complied. APDPPL has a well structured Environment Management Cell with qualified manpower for implementation of the Environment Management Plan. Detail of the Environment cell is enclosed as Annexure – 10.		
P2(22), P1(26)	Environmental Audit report indicating the changes, if any, with respect to the baseline environmental quality in the coastal and marine environment shall be submitted every year by the APPL to this Department as well as to the MoEF, GOI.	Complied. Sea water and sediment is being monitored through NABL accredited agency. Monitoring Report for the period April'17 to September'17 is enclosed in Annexure 5C and 5D. No significant changes observed.		
P2(23), P1(28)	A six monthly report on compliance of the condition mentioned in this letter shall have to be furnished by the APPL on regular basis to this Department.	Complying with APDPPL is regularly submitting six monthly compliance reports which comprises Compliance to the conditions stipulated in Environment and CRZ clearance, environment monitoring reports. Last compliance report was submitted vide letter dated 27.05.2017.		
P2(24), P1(29)	Any other condition that may be stipulated by this Department from time to time for environmental protection/management purpose shall also have to be complied by the APPL.	Noted and agreed to comply.		
P1(27)	The APPL shall have to contribute financially to support the National Green Corps scheme being implemented in Gujarat by GEER Foundation, Gandhinagar, in consultation with Forests and Environment Department.	Complied. A request in this regard for asking for the terms of Financial Contribution submitted to the GEER Foundation vide letter dated 17th April, 2009.		

Annexure – 1: Compliance status of the conditions by Forest and Environment Department, Govt. of Gujarat vide their latter No.-FCA-1006(10-9)SF-76-K, dated., 1.7.2008 and by Ministry of Environment and Forests, Regional Office, Western Region, Bhopal vide their latter No. 6-GJ060/2006-BHO/1508, dated 16.6.2008

Compliance: Both above mentioned letters have the same conditions; Compliance of the same is given in table below:

S. No.	Condition	Compliance	
1	The legal status of the forest land shall remain unchanged	Noted.	
2(a)	Compensatory afforestation shall be taken up by the forest department over 38.00 Ha non forest land (Survey No.2, Village-Pingot, Ta. Valiya, Dist. Bharuch at the cost of the project authority.	 APDPPL has transferred equivalent non forest land of 38 ha. Area of village Pingot, S.No. 2 paiki, Ta. Valiya, Dist. Bharuch in favour of Forest Department APDPPL has deposited Rs. 33,06,000/towards the cost of compensatory afforestation Compensatory plantation was taken up by Forest Department, Govt. of Gujarat. 	
2(b)	This CA land shall be notified as Reserved Forest.	Complied. The CA land has been notified as Reserved Forest vide notification dated 23/12/2008.	
2(c)	The copy of the Notification issued under section 4 of the Indian Forest Act, 1927 shall be sent to this office within six months from the date of handing over of this forest land to the project authority.	Copy of the notification is enclosed as Annexure 3.	
3	Penal compensatory afforestation shall be raised over 4.00 ha. Degraded forest land in (Survey No. – 572) Village mirapur, Ta. Valia, Dist. Bharuch	 Complied. APDPPL has deposited Rs. 3,48,000/- towards the cost of penal compensatory afforestation. Compensatory plantation was taken up by Forest Department, Govt. of Gujarat. 	
4	All the funds received from the user agency under the project shall be transferred to the Ad-hoc Compensatory Afforestation Fund management & planning Agency (CAMPA) in A/c No. CA-1583 of Corporation bank Block 11, CGO Complex, Phase – I, Lodhi Road, New Delhi – 110003.	Complied. • All the funds received from user agency under project have been transferred to CAMPA by Forest Department, Govt. of Gujarat.	
5	The forest land shall not be used for any purpose other than that specified in the project proposal.	Complied. Forest land is being used as per the proposal for which clearance has been obtained.	

Annexure 2A - Mangrove Plantation by GEC at Village Dandi, Gujarat

Gujarat Ecology Commission

Government of Gujarat

Block No.18, First Floor, Udyog Bhavan, Sector-11, Gandhinagar - 382011 Phone: 23257656-58-59, Fax: 079-23257657

No. GEC/Adani/T-4/1446/2011

Date: 30-06-2011

To Shri Kinnar Bhatt Project Manager, Adani Petronet (Dahej) Port Pvt. ltd. Plot No. 604, Nr. Lakhbaba Temple Lakhi Gam, Dahej

Sub: Progress report for the Mangrove Plantation Project in Dandi Village, Surat District for the year 2010-11.

Ref: MoU No. APPL/Mangrove Plantation/2222, dtd. 27.07.10

Dear Sir,

Kindly refer to above mentioned work order. In this regard, please find enclosed herewith, the progress report for Mangrove Plantation activity at Dandi village, Ta. Olpad, Dist. Surat for the year 2010-11.

It is requested to release the amount due at the earliest.

Thanking You,

Yours sincerely

Director
Gujarat Ecology Commission
Gandhinagar

- --- inof@rodiffmail.com

INITIATIVES FOR COASTAL ENVIRONMENTAL INTEGRITY BY ADANI PETRONET (DAHEJ) PORT PVT.LTD THROUGH PLANTATION, RESTORATION AND CONSERVATION OF MANGROVES

A Project carried out
Under
Public Private Partnership Model

ACHIEVEMENT REPORT TILL MARCH-11

PROJECT PARTNERS

ADANI PETRONET (DAHEJ) PORT PVT.LTD
(A Corporate Partner)

Gujarat Ecology Commission, Gandhinagar (A Govt. organisation)

> Dandi Kantha Tavar Vikas Samiti (A Village level CBO)

MANGROVE Plantation year-2010-11

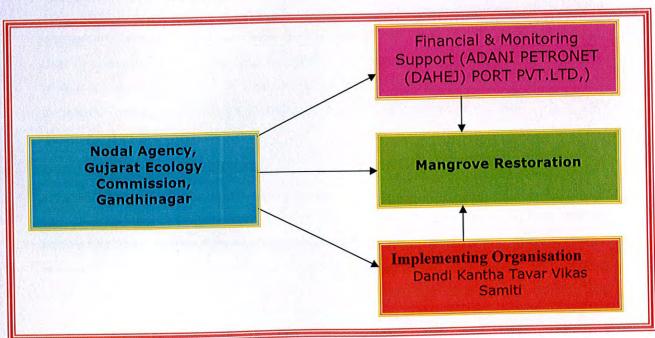
Project Background

Mangroves are salt tolerant plants growing on the coastal zone in the tidal area, and in estuaries of rivers. These plants occur in tropical and subtropical regions around the world. In India, mangroves are found in the States of West Bengal, Orissa, Andhra Pradesh, Tamil Nadu, Andaman and Nicobar Islands, Kerala, Goa, Maharashtra, and Gujarat. The mangroves in Gujarat are second only to the Mangroves in the West Bengal on the East Coast in terms of area, occurring in about 1046 sq. km (FSI 2009). Mangroves play a very significant role in maintaining the coastal environment, reducing the impact of wave action and erosion in the coastal areas, preventing salinity and seawater ingress into the inland agricultural areas, and also providing protection to the coastline from the impact of cyclones. Apart from these ecological functions, mangroves play a very significant economic role in the lives of the coastal village communities. The villagers are dependent on mangroves mainly for fodder, fuel-wood and fishing activities. There has been considerable degradation of the mangroves in Gujarat over the years. The reasons for this are many, like the dependency of the local and nomadic pastoralist communities on the mangroves for fodder, fuel, diversion of mangrove areas to industries, salt pans, and construction of ports, jetties, reduction in natural regeneration and dying off of the rich mangroves because of decreased influx of fresh water into the mangrove areas, due to construction of dams, both small and big in upstream areas.

Mangrove is one of the important ecosystems along the coast line of the Gujarat state. Considering importance of mangroves and its surrounding environment State Government has taken up mangrove plantation as one of the major activities in recent time. State Government has collaborated with various corporate houses under Public Private Partnership model to restore and conserve one of the important ecosystems in the state.

ADANI PETRONET (DAHEJ) PORT PVT.LTD, is located in the Dahej region of the state of Gujarat at a distance of about 80 km from Bharuch. ADANI PETRONET (DAHEJ) PORT PVT.LTD, project identified mangrove as a one of the key ecosystems, which leads to the better management of coastal zone. Considering all above factors the company has decided to take measures and initiatives for maintaining coastal environmental integrity and also to fulfill compensatory eco-restoration with coastal

community, a "time phased Mangrove plantation program" at Village Dandi, ta: Olpad, Dist: Surat.


Project Objectives

As a part of this agreement, Commission along with company representative selected area in Dandi village of Olpad taluka of Surat district with following objectives

Within the overall objective of mangrove plantation in the mudflats of ports and nearby area, the following activity-wise objectives are envisaged.

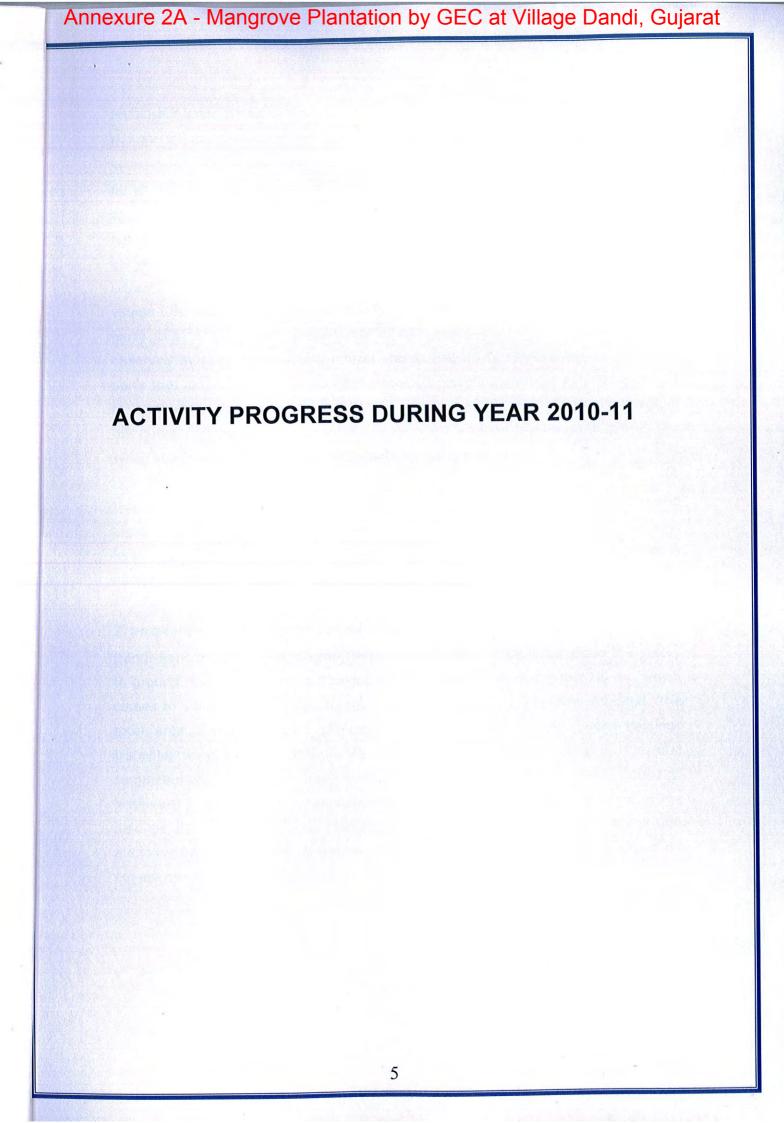
- > To assess the technical suitability of the proposed land for mangrove regeneration, including physico-chemical properties of soil and water and tidal pattern.
- > To Identify and select the potential native mangrove and associated species for plantation keeping in view the ecological suitability.
- > To formulate site specific plantation strategy and execute it with the active involvement of local CBO adopting appropriate techniques.
- > To prepare a plan for long term conservation and monitoring of the developed mangrove forests.

PROJECT PARTNERS

Progress

Description of Site

Based on the land availability and joint site visit, it was jointly decided that place located at intertidal area of Dandi Village of Olpad taluka, of Surat district should be selected to carry out plantation for an area of 100 ha. The village Dandi is located around 15 km away from Taluka headquarter while 26 km away from Surat. The selected site falls under the revenues boundary of Dandi village. The ecological status of the plantation site such as coastal vegetation, physico-chemical characteristics of water and soil, presence/absence of mangrove patch in the vicinity and its density was gathered through a rapid survey of area. This helped in understanding the general ecological situations of the plantation sites which played a crucial role to formulate the project implementation strategy. The area falls near the Tapi estuary and receives good amount of sedimentation, which increases the nutritional value of the soil. The average salinity is observed to be around 35 ppt at the selected site.


The Site was jointly selected by the representative of GEC along with Members of CBO- Dandi Kantha Tavar Vikas Samiti, before initiation of plantation activity.

Selection of Species

The present coastal environmental conditions and climatic factors like rainfall, annual ambient temperature range and aridity of the zone have clearly established that in coastal Gujarat, the best candidate mangrove species for plantation activity is *Avicennia marina* which is already present in the proposed site as scrubby and degraded formations, thus being selected for the plantations at the site.

Community Based Organization

Gujarat Ecology Commission has formed, Dandi Kantha Tavar Vikas Samiti, a Community based Organization in past to carryout mangrove plantation activity which has been selected for the execution of the said project. Group discussion and meetings were held with the community members for discussing the project objectives and outcomes. In order to strengthen the local organization GEC organized meetings every month during the execution of the project.

NURSERY DEVELOPMENT

Nursery Development activity was started in the month of September-10 to plant 50 ha area; with a total of 1,50,000 saplings being developed at the selected site for this project. The saplings of *Avicennia marina* were raised in the nursery by the village level CBO through deployment of local level village labour. In all, total 150 nursery beds of 10*1mt were prepared. An average 1000 plants were raised in each nursery bed. The Nursery operation was completed in the month of December-10, after which a regular joint monitoring of the same was carried out by village CBO representatives, GEC officials, ADANI PORT representatives and third party CEE. Growth and survival rate of the saplings was found satisfactory as observed by the CBO and GEC official and ADANI PORT representatives and third party through inspecting the plantation area. The sapling attained a height of 20-25 cm in nursery, which is considered to be a good growth. The plants were kept in the nursery for two and half months on-site and then later transplanted in soil. The seeds were collected from the nearby natural mangroves areas.

The entire nursery operation was carried out by the members of community based organisation. Majority of women members had worked to raise mangrove nursery. In all total more than 1500 man-days were generated to raise 1,50,000 plants in nursery.

Transplantation of Nursery Raised Saplings

Dandi Kantha Tavar Vikas Samiti Dandi transplanted all saplings raised in nursery to ground. The saplings were transplanted at the distance of 2.0 mt*2.0 mt, which comes to 3000 plants per ha. In all, 1,50,000 plants have been transplanted. The total area covered through plantation is 30 ha. The nursery raised saplings transplantation was initiated in the middle of the month of January -11 and completed within 50 days' time frame. More than 1,700 man days were utilized to achieve the task. After the transplantation 73% survival rate was recorded in the field by GEC officers, representatives of the CBO and third party company-CEE authorized by Adani. In all, more than 1,00,000 plants with an average height of 40 cm are surviving as per the observations.

Earthen Mound Plantation

As per the micro plan developed by village CBO in an area of 20 ha earthen mounds (a 1mt elevated mound of 1mt*1mt size) were created to increase plant density. In all total 8000 earthen mound were created at the selected site. The distance kept between two earthen mound is 1.5 mt*1.5mt. The result in this technique was remarkable which accounts 70% success rate of the prepared earthen mounds. Around 30% mounds do not show good results in terms of survival of plants The *Avicennia marina* was planted on earthen mounds, with around 100 seeds of *A. marina* planted in each mound.

Out of total 100 ha Mangrove plantation entrusted to Gujarat Ecology Commission, Gandhinagar during year 2010-11, 70 ha area has been brought under mangroves by January-2010. Remaining 30 ha area was completed during the April-May-2011 through propagules plantation of *Ceriops spp.* to increase biodiversity in the region.

Propagules Plantation

During the month of April-2011 a plantation of Ceriops tagal, a mangrove species were carried out in an area of 30 ha at selected site, by Dandi CBO. The site had been visited by company representative and a GEC official in the month of May-2011, after plantation had been completed. The survival rate had been verified by authorized persons of company and GEC had formed satisfactory. A total of more than 90,000 saplings were planted at site.

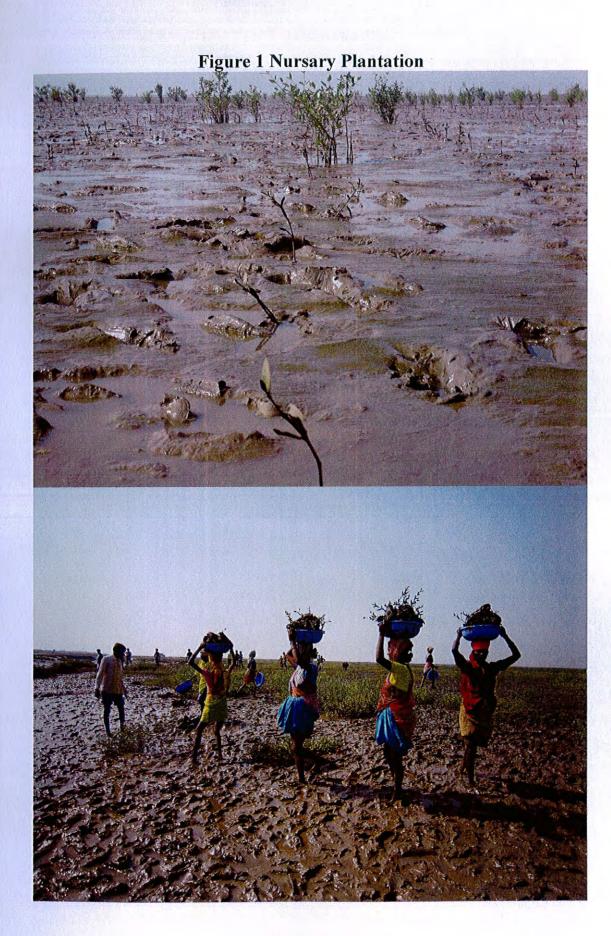


Figure 2 Nursary Plantation

Figure 3 Earthen Mound Techniques

Figure 4 Ceriops Plantation

Figure 5 Monitoring by Adani APPL & CEE Officers

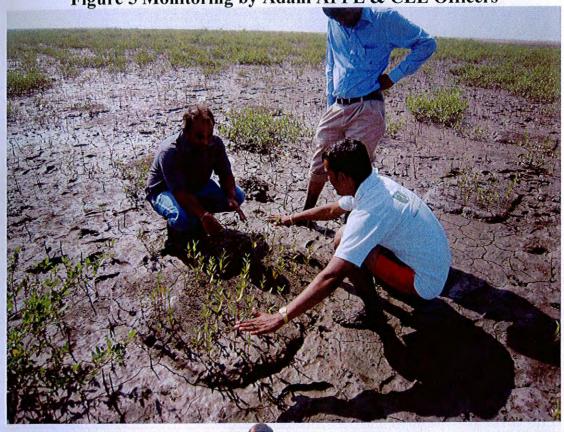
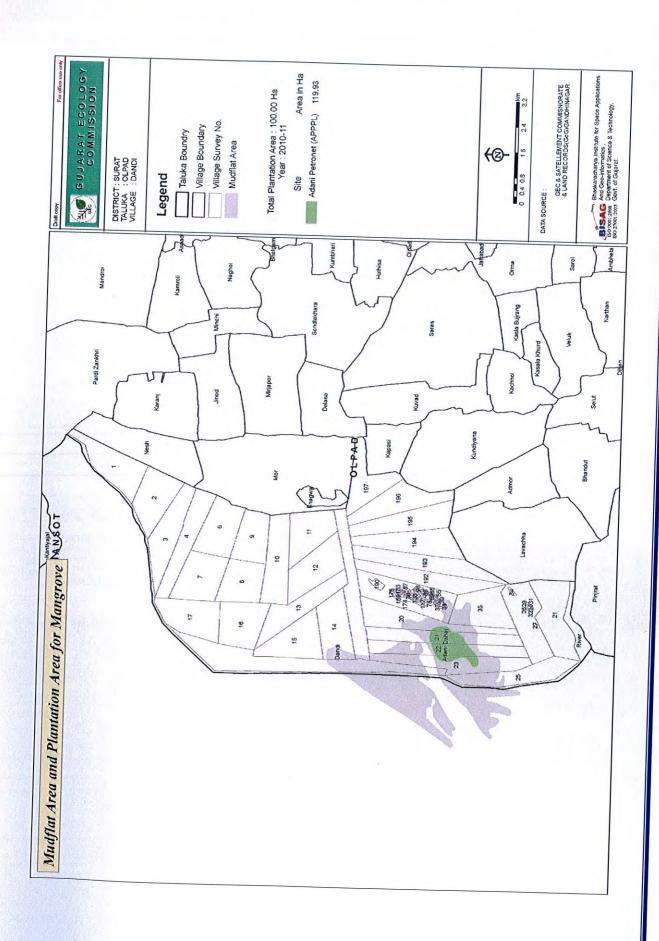



Figure 6 Monitoring by Adani APPL & CEE Officers



Adani Dahej APPLProject Dandi, Olpad, Surat Year 2010-11

Area: 100 ha. plantation

Area . 100 ha. plantation		
Sr. No.	GPS Location	
1	21 18 53.20	
1	72 36 14.79	
2	21 19 4.93	
2	72 36 25.07	
	21 19 25.45	
3	72 36 20.94	
	21 19 37.62	
4	72 36 42.63	
	0.1.10.00	
5	21 19 33.73	
	72 36 57.43	
6	21 19 20.55	
	72 36 59.46	
7	21 19 2.75	
7	72 36 48.27	
	21 19 46 05	
8	21 18 46.95 72 36 16.47	

Mrs. T. Jayanthi Thivakar

Staff quarters No.B-2 Gujarat Institute of Desert Ecology Mundra Road Bhuj-Kachchh-Gujarat-370001

5.03.2013

To Shri Dinesh Kanpara Adani Petronet (Dehej) Port Pvt.Ltd. PO: Lakhigam, Taluka: Vagra Via-Dahej District Bharuch- 392 130 Gujarat

Dear Sir,

Sub: Status of Jakhau Petronet Mangrove Plantation at Jakhau Bandar-Reg.

Ref: Your SO 5700046148 dated 13.10.2011

Kindly find attached the status report of the mangrove plantation carried out during 2012 for Adani Petronet Ltd., at Jakhau Bandar.

In case of query please contact me.

Thanking you, Sincerely yours,

(T. Jayanthi Thivakar)

MRS. T. JAYANTHI THIVAKAR Staff Quarters No. B-2, Gujarat Institute of Desert Ecology P8. No. 83, Mundra Road, BHUJ-KACHCHH-GUJARAT, 370001.

STATUS REPORT ON MANGROVE PLANTATION AT JAKHAU BANDER –ADANI PETRONET LTD., - DECEMBER 2012

1. Introduction

Adani Petronet Ltd., located at Dehej, south Gujarat has carried out mangrove plantation to the extent of 50 ha mangrove plantation during the monsoon months of 2011. Availability of suitable site at Jakhau has enabled Adani Petronet Ltd., to carry out this plantation. This plantation was part of the ongoing mangrove afforestation program of Adani group of companies. In addition, the plantation was created to meet the legal stipulation of Ministry of Environment and Forests (MoEF) and to maintain a viable and ecologically functional mangrove forests in Kachchh. In order to ascertain the present status and health of the mangrove plantation created during 2011, a survey was carried out with the following objectives.

- 1. Assess the survival, mortality, density of the mangrove plantation in the present condition.
- 2. Analyze the cause for mortality and suggest appropriate remedial measures.
- 3. Assess growth of planted mangrove saplings in terms of height gained during the post one year.
- 4. Record associated macrofaunal population dynamics as an indicator of the stand health through faunal density and diversity studies.
- 5. Study relevant chemical characteristics like salinity, nutrients in the soil in order to assess the growth prospects
- 6. Find out natural (algal encrustation, shift in substrate nature) and anthropogenic threats (cattle grazing, cutting) to the plantation and suggest measures to ward it off.

This report presents the finding of the monitoring study carried out at Jakhau mangrove plantation during December 2012.

2. Location of the Plantation

The plantation site is located in the northwestern part of Kachchh district at Jakhau Bander opposite to the Jakhau fishing harbor on the outer rim of Gulf of Kachchh. Jakhau is around 22 km west of Naliya, the head quarter of Abdasa taluka of Kachchh district. Jakhau Bander is a major fish landing centre in Kachchh. The chosen plantaton site is located on the Bubber Island which is opposite to Jakhau fishing landing centre separated by Sindhodi creek which is the main tidal source that

MRS. Y. JAYANTHI THIVAKAR Staff Quarters No. B-2, Gujarat Institute of Desert Ecology PB. No. 83, Mundra Road, BHUJ-KACHCHH-GUJARAT, 370001,

1

flushes the mangrove plantation. Tidal amplitude of Jakhau is around 4.5 m. Bubber Island where the present plantation was carried out has natural mangroves to the extent of 200 ha. The plantation site is located in the adjacent land mass of the natural mangrove formation. The land is gently sloping with muddy-clayey substratum suitable for mangrove plantation. The plantation site is around 300 m from the lowest low tide mark and tidal water flushes the site for about 15 days in a month. Jakhau experiences rainfall of ~350 mm and annual temperature fluctuation is wide, ranging from 3 to 48°C. Tides are mixed semi-diurnal type with large inequality. The present plantation sites on east and south is surrounded by earlier plantation carried out by Adani Port and Special Economic Zone Ltd., forming a continuous stretch of mangrove plantation.

Mangrove saplings of the species *Avicennia marina* was planted in the chosen site during rainy months of 2011. The total target was to plant around 1,25,000 saplings in an area of 50 ha which will have a final density of around 2500 mangrove saplings/hectare. Both nursery raised saplings and direct dibbling in raised mount (Vodla method) was used for plantation.

3. Survey method

In order to assess the present status of the plantation random surveys in the plantation were carried out wherein six random 10 x 10 m quadrates were taken for assessing the mangrove species density which was later pooled to density per hectare. Mangrove associated species was recorded both qualitatively and quantitatively through quadrate method. As the plantation is not yet fully grown, GBH measurement could not be recorded and only average height of the sapling was considered.

In case of faunal sampling, 1 X 1 m quadrates were laid randomly at plantation blocks and the macrofauna as in all and major groups were recorded.

Physico-chemical parameters were studied on site where ever possible and water and sediment samples were carried to laboratory for further evaluation.

4. Results

4.1 Plantation Status

Mangrove plantation was carried out in Jakhau Bundar during 2011 as a single stretch and all the 50 ha of plantation is present as a continuous stretch. The plantation site is shown in Fig. 1.

Plantation was carried out with only one species namely *Avicennia marina* in 50 ha. The total area covered was around 60 ha. Plantation density maintained for all the species was 2500 plants/ha and the distance maintained was 2x2 m.

MRS. T. AYANTHI THIVAKAR Maff Quarters No. B-2, Carjarat Institute of Desert Ecology PB. No. 83, Mundra Road, BHUJ-KACHCHH-GUJARAT. 370001

Saplings have now attained an average height of 60 cm with a range of 47 cm to 72 cm. The density in different quadrates ranges from minimum of 1657 saplings/ha to a maximum of 2435 saplings/ha with an average density of 1910 saplings/ha. Overall mean survival rate in terms of the studied quadrates indicates around 67% and a total area of around 50 ha have been covered. The survival rate recorded at the end of plantation activities was almost similar with 69% showing that no major mortality of planted saplings has taken place during this past one year. Density of the planted saplings recorded in 10 quadrates is presented in Table. 1.

Table 1. Density of mangrove plantation

S. No	Location	saplings/ha	Remarks
1	23°12'56.67"N; 68° 36' 42.77"E	1657	Low survival due to grazing and
		9	poor tidal flushing
2 .	23°12'56.79"N; 68° 36' 57.39"E	1490	Poor tidal flushing and grazing
3	23°12'52.80"N; 68° 37' 04.91"E	1820	Moderate tidal flushing
4	23°12'58.54"N; 68° 37' 02.32"E	2200	Good tidal flushing but high
			grazing
5	23°12'44.65"N; 68° 37' 10.03"E	1665	Low tidal flushing
6	23°12'53.49"N; 68° 37' 10.72"E	1450	Low tidal flushing
7	23°12'50.10"N; 68° 36' 42.14"E	1930	Moderate tidal flushing, lot of
1= -			associated species seen
8	23°13'06.25"N; 68° 36' 56.18"E	2435	Good tidal flushing, ideal sites
9	23°12'41.60"N; 68° 37' 09.98"E	2250	Good tidal flushing
10	23°12'41.60"N; 68° 37' 09.98"E	2200	Good tidal flushing
Average		1910/ha	4

4.2 Threats to the Plantation

Jakhau mangrove plantation including that created by Adani Petronet faces the following threats. Following are some of the probable reasons for mortality and low survival rate of the plantation;

- Heavy Livestock grazing High dependency of the local livestock on mangroves render i. mangroves of Jakhau highly vulnerable to grazing. The site showed high livestock grazing pressure by camel and other livestock which belong to local communities. These livestock usually feeds on the tender leaves and branches of the mangroves limiting their regular growth which leads to increased mortality and less survival.
- Poor tidal flushing during high tide Certain area of the plantation lacks proper tidal ii. flushing. Lack of proper site in other coastal stretch and nearby areas forced plantation in this area. The infrequent tidal flushing can be one of the causes of low survival rate.

MRS. T. JAYANTHI THIVAKAR Staff Quarters No. B-2, Gujarat Institute of Desert Ecology PB. No. 83, Mundra Road, BHUJ-KACHCHH-GUJARAT. 370001

- iii. Sediment texture: It is one of the governing factors of mangrove growth. High bulk density and tough basal ground deprives the stabilization and penetration of roots after certain level which in turn is reflected in stunted growth of plantation.
- iv. Other causatives: Apart from above mentioned lapses during plantation time, harsh temperature without long tidal flush etc. can have impact on the mangrove plantation.

4.3 Mangrove Associated Fauna

Associated fauna in mangrove ecosystem is a reliable indicator for its full ecological functioning, health and stability. During present study, evaluation of mangrove associated macorfauna was carried out by studying their diversity and density. A total of 4 species were recorded from the mangrove plantation site. The average density of each species is presented in Table 2. *Cerithidea sp.* was the dominant form seen utilizing the habitat followed by the crustacean, *Balanus* sp. Moreover, quadrates at defined locations were also taken for macrobenthic population which is presented in Table 3. The densities recorded were comparatively lower ranging from 11 to 31 individuals/m² indicating that the plantation is still young and in developing stage and has not reached the threshold level of providing ecosystem services and harboring its best diversity and density.

Table 2. Average associated species wise density in the mangrove plantation site.

S.No	Genera/Major Group	Density-No/m ²
1	Balanus - Crustacean	31
2	Cerithidia sp Gatropod	43
3	Solen kempi- Bivalve	11
4	Donax sp Bivalve	23

Table 3. Overall macrobenthos density at defined location in mangrove plantation

Call Care and Care an								
S.No.	G.P.S. Location	Population	Major Genera					
1	21°18'30.6"N;72° 36' 5.1"E	$11/m^2$	Molluses					
2	21°18'32.6"N;72°36'06.5"E	$18/\text{m}^2$	Molluscs, Crustaceans					
3	21°18'32.7"N;72°36'04.7"E	$12/\text{m}^2$	Bivalves					
4	21°18'36.1"N;72°36'11.2"E	$16/\text{m}^2$	Molluses					
5	21°19'01.9"N;72°36'28.9"E	Nil						
6	21°19'04.4"N;72°36'29.0"E	$13/\text{m}^2$	Gastropods, Crustaceans					

4.4 Physico-chemical parameters

Analysis of chemical studies of water and sediments was also carried out along with biotic parameters. Parameters like surface water salinity, sediment texture along with pore water salinity,

MRS. T. JAPANTHI THIVAKAR Staff Quarters No. B-2, Gujarat Institute of Desert Ecology PB. No. 83, Mundra Road, BHUJ-KACHCHH-GUJARAT. 370001. nitrate, nitrite and phosphate were carried out. Overall surface water salinity ranged from 39-41 ppt which is well within the tolerance range of *A. marina* and other planted mangroves. Temperature also showed a normal data with more or less same levels at different locations. The details of the same are presented in Table 4. Sediment composition showed higher proportion of sand while that of silt and clay was lesser. No significant change in composition was seen at any location.

Pore water analysis was an important aspect having an impact on mangroves. Levels of pH in most of the places were alkaline and in only one place pore water recorded acidic pH of 6.8 (Table 4). In general, range of pH was between 6.6 to 7.9 in all the locations. Pore water salinity in the studied locations ranged from 46 ppt to 50 ppt and as a rule pore water salinity was always higher than creek water salinity. Lower to moderate levels nutrients like Nirtate, nitrite and phosphate suggests lower nutrient supply to young and growing plantation. The details are presented in Table 4.

GPS Location pH Salinity **Phosphate** Nitrate **Nitrite** (ppt) (mg/L)(mg/L)(mg/L)21°18'30.6"N;72° 36' 5.1"E 6.6 46 .018 0.3 .02 21°18'32.6"N;72°36'06.5"E 7.6 48 .021 0.2 .01 21°18'32.7"N;72°36'04.7"E 7.7 50 .014 0.3 .03 21°18'36.1"N;72°36'11.2"E 7.7 49 .023 0.6 .06 21°19'01.9"N;72°36'28.9"E 7.9 49 .0210.4 .08 21°19'04.4"N;72°36'29.0"E 7.9 46 .011 0.4 .09

Table 4. Pore water Nature at sampling locations.

Overall a normal pattern of water and sediment parameters was seen in the plantation site and do not show any abnormal situations. The salinity fluctuation is normal in accordance with the Gulf of Kachchh waters and suitable for *A. marina* and associated mangrove species. Being a sturdy species *A. marina* can manage range of salinity levels and suits to the local sediment composition.

5 Summary

- Plantation was carried out in 50 ha in in a single block at Jakhau Bundar (Bubber Island).
- A. marina, was the candidate species and a total area covered was 50 ha. Density of 2500 plants/ha was followed with a gap of $2 \times 2 \text{ m}$.
- An overall survival rate of 67% was estimated in the present study. Present density in different plantation sites ranged from 1657 to 2435 saplings/ha with an average density of 1910 saplings/ha.
- As per the survey, saplings have attained an average height of 60 cm.

MRS. T. JAYANTHI THIVAKAR Staff Quarters No. B-2, Gujarat Institute of Desert Ecology PB. No. 83, Mundra Road, BHUJ-KACHCHH-GUJARAT. 378001.

Annexure 2B - Mangrove Plantation by GUIDE at Village Jakhau, Gujarat

- Gradual succession in macrobenthic community is observed which will serve as a good indicator of plantation success.
- Physico chemical parameters of water and sediment showed a normal nature with salinity ranging from 39 to 41 ppt.
- Apart from environmental factors for low survival, pressure from cattle grazing can be taken as causative of high mortality, low growth and stunted nature of planted mangroves.

MRS. T. JAYANTHI THIVAKAR

Saff Quarters No. B-2,

Shijarat Institute of Desert Ecology

PB. No. 83, Mundra Road,

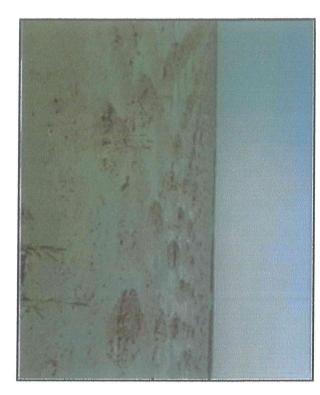
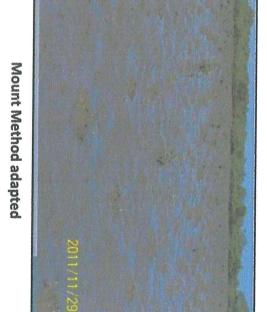

BHUJ-KACHCHH-GUJARAT. 370001.

Figure 1. Adani Petronet Mangrove Plantation site at Jakhau-Kachchh

MRSOT. JAYANTHI THIVAKAR
Staff Quarters No. B-2,
Gujarat Institute of Desert Ecology
P3. No. 83, Mundra Road,
BHUJ-KACHCHH-GUJARAT. 370001.

Nursery saplings to be transplanted

BHUJ-KACHCHH-GUJARAT, 370001.


('ijarat Institute of Desert Ecology

aff Quarters No. B-2,

1. 3. No. 83, Mundra Road,

00

ઃ વાવેતર આયોજન ઃઃ

સ્થળ

: પાદરી–૧

વર્કીગસર્કલ

ફેલીંગ સીરીઝ

કુપ નંબર

યોજના

: ચેર વાવેતર (અદાણી)

કુપનો કુલ વિસ્તાર :

મોડેલ

: ચેર વાવેતર

સર્વે નંબર

વાવેતર વિસ્તાર

: 50 હેકટર

સર્વે નંબર કુલ વિસ્તાર

વાવેતર વર્ષ

: 2011-12

વર્તુળ

: જુનાગઢ વન વર્તુળ જુનાગઢ

વિભાગ

: ભાવનગર વન વિભાગ ભાવનગર

રેંન્જ

ઃ નોર્મલ રેંન્જ,મહુવા

રાઉન્ડ

: તળાજા રાઉન્ડ તળાજા

બીટ

: પાદરી બીટ

<u>તૈયાર કરનાર</u>

<u>ચકાસજ્ઞી કરનાર</u>

રેન્જ ફોરેસ્ટ ઓફીસર નોર્મલ રેન્જ

મહુવા

મદદનીશ વૈન સંરક્ષક (મોબાઈલ સ્કવોડ) ભાવનગર વન વિભાગ,

ભાવનગર

<u>મંજુર કરનાર</u>

નાયબ વન સંરક્ષક ભાવનગર વન વિભાગ,

ભાવનગર

<u>ટ્રીટમેન્ટ મેપ</u>: નાયબ વન સંરક્ષક ભાવનગર વન વિભાગ,

ભાવનગર તરફ સાદર કર્યા પત્રક્રમાંક: અ/પવય/ ૬૭૩ /૨૦૧૧–૧૨ તા: ૨૫/ /১/ /૨૦૧૧

<u>ટ્રીટમેન્ટ મેપ</u>: નાયબ વન સંરક્ષક ભાવનગર વન વિભાગ,

ભાવનગર તરફથી મંજુર કર્યા પત્રક્રમાંક: બ/ર્પનિયીટે— 🕏 યુજર /૨૦૧૧–૧૨ ,તા:૧૪/૧૨/૨૦૧૧

(અ) ટ્રીટમેન્ટ મેપ [અલગથી નકશો સામેલ છે] (બ) પ્લોટની સામાન્ય માહીતી (૧) વકીંગ સર્કલ : (૨) ફેલીંગસીરીઝ : (૩) કુપ નંબર : (૪) વિસ્તારનો સરેરાશ વરસાદ : 425 MM (૫) વરસાદના સરેરાશ દિવસો: 44

(૬) જમીન પૃથ્થકરણની વિગત

: જમીનના નમુના એકત્ર કરી પૃથ્થકરણ માટેની કાર્યવાહી શરૂ કરેલ છે.

(૭) સર્વે નંબર વાઈઝ જંગલનો કુલ વિસ્તાર

સર્વેનંબર વિસ્તાર(હે.)

(૮) અન્યઃ (સ્થળને અનુરૂપ વકીંગ પ્લાનની જોગવાઈ મુજબ અન્ય કામગીરીઓ બાબતે ટુંકી વિગતઃ

સદરહુ સ્થળે જુના ચેરવાવેતરોના રોપાઓ હાલ હયાત છુટા છવાયા જીવંત સ્થિતિમાં સારા જોવા મળે છે.અને દરીયાઈ કાદવ કીચડ,મડવાળો વિસ્તાર હોય,જેથી આ પ્લાન્ટેશનમાં ચેર વાવેતરની કામગીરી લેવાથી સફળતા મળે તેમ છે.

બ્લોકવાર રોપવ	ાના થતા રોપાએ	ોની જાત,સીપીટી નંબ નક્કી કરવાના	ાર તથા સંખ્યા વકીંગપ્લાન ધોરણ	નની જોગવાઈ મુજબ
કુલ રોપવાના થ	તા રોપની સંખ્યાઃ	૫,૫૫,૫૦	• • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
(૧) સ્થાનીક પ્રતિ અ.નં.	નેધિત્વ ધરાવતા સ્થ જાત	ાનિક સીપીટીના વૃક્ષમાંથ સીપીટી નંબ ર	ી એકત્ર કરેલ બીજના ૯૦% રોપાની સંખ્યા	·
(a) (b) (c) (c) (c) (d) (c) (d)	ચેર વા વેતર	તાપાડા પંપર	૫,૫૫,૫૦	શેરો
(૨) સંશોધન વિભ અ.નં.	ાગમાંથી સ્થળને અનુ જાત	ાુરૂ૫(કુલ રોપાના ૫% ની સીપીટી નંબર	મર્યાદામાં) : રો પાની સંખ્યા	શેરો
(૧) (૨) (૩) (૪) (૫) (૬) (૭) (૮)				
:	. ગૌણ વન પેદાશ અ		ર કરેલ રોપની સંખ્યા(કુલ રો	ø
અ.નં. (૧) (૨) (૩) (૪) (૫) (૬) (૭)	જાત	સીપીટી નંબર	રોપાની સંખ્યા	શેરો

નોધઃ ઉપર મુજબના વાવેતરમાં લેવાના થતા રોપાઓ પૈકી સંશોધન,ઔષધીય અને ગૌણ વન પેદાશના રોપના બ્લોક સ્થળ સ્થિતિ–મુજબ એક જ બ્લોકમાં સમાવેશ કરવો તથા નકશામાં અલગ કલરથી બ્લોક દર્શાવવો.

(ક) બ્લોકવા૨ પ્લોટના તાંત્રીક માપદંડો

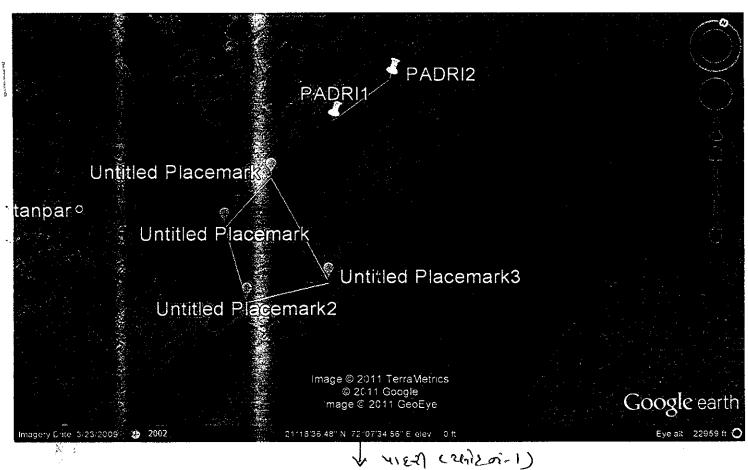
અ.નં.	તાંત્રીક માપદંડ	બ્લોક નં. ૧	બ્લોક નં. ૨	બ્લોક નં. ૩	બ્લોક નં. ૪	બ્લોક નં. પ	શેરો
૧	ર	3	8	ų	۶	૭	ć
(q)	જમીનનો પ્રકાર	દરિયાઈ કાદવ	દરિયાઈ કાદવ				
(٤)	માટીની ઉડાઈ	૧. મી. થી વધુ	૧. મી. થી વધુ				·
(3)	માટી ધોવાણની પરિસ્થિતિ	સંવેદનશીલ	સંવેદનશીલ				
(8)	જમીનનો ઢાળ	નહીવત	નહીવત				
(ų)	વનસ્પતિ / ઝાડની જાતો						
(5)	ઝાડીની ઘનતા	0	0				
(૭)	હાલની પરિસ્થિતિ	ખુલ્લો વિસ્તાર	ખુલ્લો વિસ્તાર				
(८)	ર ક્ષણની સમસ્યાઃ						
	(અ) ચરિ યાણ	સંવેદનશીલ	નથી				
	(બ) ગેર કાયદેસ૨ કપાણ	નથી	નથી				
•	(ક) ગેર કાયદેસ૨ ખેડાણ	નથી	નથી				
	(ડ) દવ	_					
	(ઈ) અન્ય	_	-				
(૯)	વિસ્તાર (હેકટર)	ર ૫/૦૦ હેકટર	ર ૫/૦૦ હેકટર				
(90)	બ્લોક વિભાજન સ્થળ	_					
(૧૧)	ખુલ્લો ભાગ	-					

નોંધ : સ્થળ સ્થિતિને ઘ્યાનમાં લઈ આખા પ્લોટમાં સર ખી ટ્રીટમેન્ટ શકય ન હોય તો પેટા બ્લોક પાડવા અને બ્લોકવાર માહીતી દર્શાવવી.

			ો ક												
	A.													1	
_															L
_	×	_									_	×			L
_ <u>X</u>												×	×		L
_ <u>X</u>	×	_										×	×		L
_ <u> X</u>	×	×							×	×	×	×	×		L
_ <u>X</u>	×	×				×			4	بضعا	×	×	×		
_ <u>×</u>	×	×				×			_	×	×	×			L
_ <u>×</u>	_						4.			×	×	×	×		
	×	×				×		_			×	×			_
_ <u>×</u>	×	×	2.5			×				×	×	×	×		L
_ 🔛	×	×				×			X	×	×	×	×		
X	×	×		==	_				×	_			×		L
×	×	×							×				×		L
	×	×			_		-		×		×	-			L
<u> </u>	×								×		×	×			
×	×	—							×		×	×	×		L
_ <u>×</u>	×	×	3	×	×	×	×	×	×	×	×				L
_			74.0												l

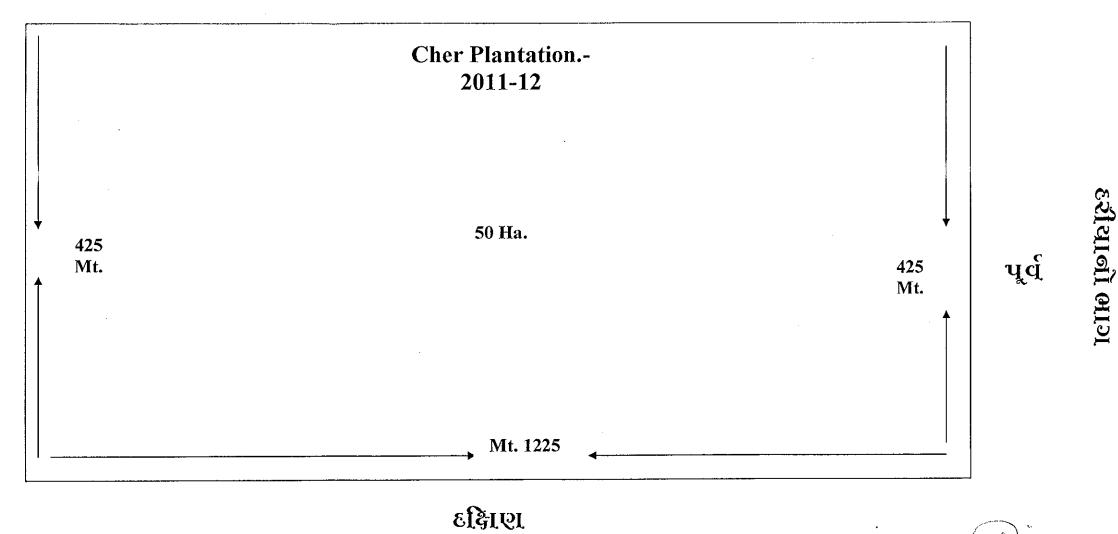
	2844		
અ.નં.	રોપાની જાત	સંખ્યા	સંજ્ઞા
	100 K.		
1	ચેર્ટ	55550	: 🗶

વાવેતરનું સ્થળઃ પાદરી (પ્લોટ–૧)


યોજનાઃ ચેર વવેતર (અદાણી)

મોડેલઃ Cher Plantation (Adani)

વાવેતર વિસ્તારઃ **50 HA.**


વાવેતર વર્ષઃ **201_-12**

	ચાર ખુશાના જી	.પી.એસ.રીડીગ	· · · · · · · · · · · · · · · · · · ·
9) J	. રેખાંશ	અક્ષાંશ	
11	21180584	72070328	
2	21191744	72071101	
3	21185879	72074845	
4	21184765	72074121	2.01

પાદરી-૧ દરીયા કિનારો ઉત્તર

શ્યીમ

રેલ્જ ફોરેસ્ટ ઓફીસર નોર્મલ રેલ્જ भृहृदा

Mangrove plantation project at Village Malpur, Taluka Jambusar, District Bharuch, Gujarat

Completion Report 2012 to 2015

Name of the Client Adani Petronet (Dahej) Port Private Limited (APPPL) At. Po. Lakhigam, Near Dahej, Taluka Vagra, District Bharuch

Implementing Agency Saline Area Vitalization Enterprise LTD. – SAVE

Ishavasyam, Opp. Lajpatnagar Society, Eeshita towers Road, Navrangpura, Ahmedabad Contact No. –079-26404263 <u>Email-saveltd1995@gmail.com</u> Website: www.divadandi.com

Content	
Executive Summary	. 1
Introduction	. 2
Mangroves in India	
Gujarat	
Gulf of Khambatt and Coastal Southern Gujarat	
Land-use pattern in Gujarat	
Mangroves in Gujarat	
Characteristics of Mangroves	
Importance of mangroves	
Threat to Mangroves in Gujarat	
Natural Hazards	
 Over exploitation of mangroves for fodder and fuel-wood by local communities 	es
 Reduced Natural Regeneration 	
 Diversion of mangrove land for other use like saltpans & industries 	
Background of the Project	10
Adani Group of Industries	
 SAVE – Saline Area Vitalisation Enterprise Limited 	
The Project	18
Identification of Sites	
Coordinates and Land Description	
Project Location	
Geographical Description	
Ecology of the Area	
Details of the Project Area	
Gram Panchayat Approval letter	
Community Based Organization	
Water and Soil Report	
• Coordinates	
• Selection of Species	
Details of Avicenna Marina	
Different Mangroves Activity	
Nursery Formation	
Direct Dibbling Plantation	
Earthen – Mound plantation	
Nursery Plantation	
Progress	29
Socio Economic Progress	
Ecological & Environmental Progress	
Mangrove associated Fauna	30
Status Report	30
Before and After Land Sat images	31
Photo Gallery	33

Tables

Table 1 Distribution of Mangroves in India (Area Sq. Km)

Table 2 District-wise Mangrove Coverage in Gujarat (Area in sq. km)

Table 3 Census data of Malpur village 2011

Table 4 Soil Report

Table 5 Families Working as Chakar and Panihari in Study Villages

Bibliography

Tomlinson, 1986

http://www.mangroves.godrej.com/Whyshouldweprotectmangroves.htm.

UNEP World Conservation Monitoring Centre and International Society for Mangrove Ecosystems NGM Maps

http://www.friendsofmangrove.org.my/index.cfm?&menuid=10.

FSI Report, 2011.

FSI Report, 2009.

FSI.

http://www.gec.gujarat.gov.in/showpage.aspx?contentid=140.

Gec-iczm%20-%20Know%20Our%20Coast.html.

Anonymous. 1984.

Botero, Cardona and. 1998.

"Census 211."

"Das ."

Ingole. 2009.

Komarpant, Jagtap &. 2003.

Komarpant, Jagtap &. 2003.

"Lopez- Hoffman." 2007.

Mandal, Naskar&. 1999.

palrecha, Ms. Alka. Revitalising Communities through Regenerating Mangroves.

Thangam, kathiresan and. 1990.

Wakushima. 1994.

Completion Report Mangrove Plantation Project, Malpur, Bharuch District, Gujarat Adani Petronet (Dahej) Port Private Limited

Executive Summary

Government of Gujarat has articulated and demonstrated its resolve in establishment and conservation of Mangroves along the coast of Gujarat. The government is encouraging industries and community based organisations to carry out large-scale plantation of mangroves in different parts of the coastal belt. The current project was carried out as part of the drive by the corporate aimed at contributing to the process.

Adani Petronet (Dahej) Port Private Limited assigned SAVE - Saline Area Vitalization enterprise Limited, a technical service organization to identifying suitable locations and carryout mangrove plantation in 200 hectares of coastal land.

The project initiated in 2012 and completed in 2015 was divided in three phases:

- 1. Identification of suitable sites along the coast of Gujarat.
- 2. Carry out mangrove plantation in selected location covering 100 hectares.
- 3. Carry out gap filling in already planted area and mangrove plantation in additional 100 hectares of land as well as set up community based maintenance system to ensure conservation and long-term sustainability.

This is a completion report on the project implemented in Malpur village of Jambusar taluka of Bharuch district.

The report contains complete journey of the project from identification of the project site, community mobilization and participation, setting up village level institution, participatory planning of the project, implementation of various activities and setting up of post project maintenance system. The project was extensively documented both through written as well as visual mediums.

The project on one hand has established and regenerated mangroves in 200 hectares and on the other provided wage employment, help build capabilities and skills of the local people and community based organisations in planning and implementation of large projects, created greater awareness about importance and need of mangroves for both livelihood and environmental reasons.

Following successful implementation of the project, livelihood initiative on shallow sea fishing has been initiated. An initiative of collecting and marketing of fish from shallow sea, a traditional livelihood activity was encouraged and scaled up by providing financial and non financial inputs. An activity initiated with 16 persons has grown to include 100 families from eight coastal villages.

Hence along with regenerating and revitalizing natural resource through mangrove plantation it has also created positive impacts on livelihoods of local marginalized communities.

The project has been a rewarding experience for the local people, members of Janshakti Parishad (local community based organization of rural poor) & SAVE.


Adani Petronet (Dahej) Port Private Limited

Introduction

The English Oxford Dictionary defines Mangrove as a tree or shrub, which grows in tidal, mainly tropical, coastal swamps, having numerous tangled roots that grow above ground and form dense thickets. Mangroves are salt-tolerant plants that mainly grow in tropical and subtropical intertidal regions of the world. The area in which these plants grow is called 'mangrove ecosystem'. Mangroves are considered to be very productive but at the same time these plants are extremely sensitive and fragile. The mangrove ecosystem also nurtures other plant and animal species.

Mangroves flourish where oceans, freshwater, and land realms meet. They are among the most productive and complex ecosystems on the planet, growing under environmental conditions that would kill ordinary plants very quickly.

Mangrove forests are particularly found in regions within 30° of the equator. These tidal areas, such as estuaries and marine shorelines, are frequently inundated with salt water. Strongly in decline, mangrove forests occupy about 15.2 million hectares of tropical coast worldwide: across Africa, Australia, Asia and America

(UNEht) Figure 1 Distribution of Mangroves in the world

The scientific community traces the origin of mangroves in the Indo-Malayan region. This is on account of the fact that this area has more mangrove species as compared to any other place in the world. Today, mangroves are observed in about 30 countries in tropical & subtropical regions covering an area of about 99,300 sq. km.

Despite increasing awareness regarding value and importance, the destruction of mangrove forest continues to take place in many parts of the world under a variety of economic as-well-as political motives.

Mangroves in India

Mangroves in India, as estimated by states, cover an area of 6,740 Sq. Km. or approximately 7% of the total mangrove area in the world. The actual coverage of mangroves, as per the Forest Survey of India (FSI), is much less, about 4,481 Sq. Km.

Adani Petronet (Dahej) Port Private Limited

(2001). The highest mangrove area is in West Bengal in Sundarbans (2,155 Sq. Km.), followed by Gujarat (1058 Sq. Km.), Andaman-Nicobar (617 Sq. Km.), Andhra Pradesh (352 Sq. Km.) and Orissa (222 Sq. Km.). About 12 states and union territories in the country have mangroves in their coastal regions.

Mangrove cover has been categorized into very dense (canopy density of more than 70%), moderately dense (canopy density between 40-70%) and open mangrove cover (canopy density between 10-40%). Distribution of mangroves along the Indian coast is presented in Table 1. Gradual topography along the east coast is said to have an extensive intertidal expanse, which favors major formation of mangroves in the deltaic regions. (Komarpant 2003)

The mangrove ecosystem is basically of three types, the first being the deltaic mangroves located along the mouth of major estuaries on east coast and Gulf of Kachchh and Khambatt Gulf on the west coast. These cover up to 53% of the total Indian mangroves out of which Sunderbans cover about 78%. Second types are the coastal mangroves which are found along the intertidal coastlines, minor river mouths, sheltered bays, and backwater areas of the west coast this constitute 12% of the mangrove area of India and lastly the island mangroves which are found along shallow protected intertidal zones of bay islands such as Lakshadweep and Andamans. They are approximately 16% of the total mangrove area. (Ingole 2009)

India with a long coastline of about 7516.6 km, including the island territories (Anonymous, 1984), has the fourth largest mangrove area in the world (Mandal 1999). These mangrove habitats (69°E-89.5°E longitude and 7°N-23°N latitude) comprise three distinct zones: East coast habitats having a coast line of about 2700 km, facing Bay of Bengal, West coast habitats with a coast line of about 3000 km, facing Arabian sea, and Island Territories. In India, the states like West Bengal, Orissa, Andhra Pradesh, Tamil Nadu, Andaman and Nicobar Islands, Kerala, Goa, Maharashtra, and Gujarat occupy vast area of Mangroves.

The area under mangroves in Gujarat is the second largest along the Indian coast, after Sunderbans.

Gujarat has about 23% of India's estimated mangrove cover of 4.88 lakh ha. Of the total mangrove cover in the state, the coastal district of Kachchh covers almost 74%.

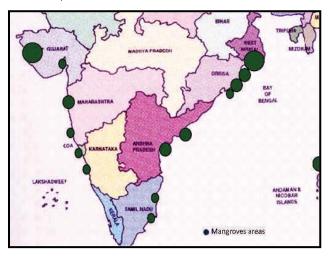


Figure 2 Distribution of Mangroves in India

Adani Petronet (Dahej) Port Private Limited

Table 1 Distribution of Mangroves in India (Area Sq. Km)

No	State/UT	Very Dense	Moderately	Open	Total
		mangrove	Dense mangrove	Mangrove	
1	Andhra Pradesh	0	126	226	352
2	Goa	0	20	2	22
3	Gujarat	0	182	876	1,058
4	Karnataka	0	3	0	3
5	Kerala	0	3	3	6
6	Maharashtra	0	69	117	186
7	Orissa	82	97	43	222
8	Tamil Nadu	0	16	23	39
9	West Bengal	1,038	881	236	2,155
10	Andaman &	283	261	73	617
	Nicobar islands				
11	Daman& Diu	0	0.12	1.44	1.56
12	Pondicherry	0	0	1	1
	Total	1,403	1,658.12	1,601.44	4,662.56

(FSI)

Gujarat

With 1600 km long coastline, Gujarat has the distinction of having highest coastline among all the maritime states of India. Gujarat coast lies between 20.00' – 24.45' N latitudes and 68.00' – 73.30' E longitudes. The Gujarat coast is having two gulfs, namely, Gulf of Kachchh and Gulf of Khambatt. Total seven estuaries exist in Gulf of Khambatt and delivering large amount of water and sediments, whereas in Gulf of Kachchh riverine inputs are very small. Gujarat coast provides a wide variety of coastal features due to its varied physiographic, geomorphology and coastal processes. It has distinct variation in the wetland landform categories due to climate substrate constituent and topography. Large industrial and infrastructure investment all along the coast is altering the coastal land use and land cover.

Gulf of Khambatt and Coastal Southern Gujarat

The coast around Gulf of Khambatt is indented by estuaries and consisting of extensive mudflats, dunes and sporadic presence of sandy beaches. All these landforms are the result of high-tidal range in the Gulf of Khambatt. The South Gujarat coast is comparatively uniform and broken by few indentions. Narrow sandy beach is present between Mindhola and Purna rivers and extends up to Daman. Heavy minerals, quartz and mica make up the beach sand. Along the estuaries of the Mindhola, the Purna, the Ambica, the Auranga and the Damanganga mudflats are with marsh and mangrove vegetation. Numerous small tidal creeks also occur along the coast. South of Auranga estuary, the coast is rocky.

Total area covered by Mudflat is 5504.41 sq km. Industrial development along the coast is very fast and it occupies 192.21 sq km. Gujarat is a major salt producer in India and salt pan occupies 1115.60 sq km. Below table provides the coastal land use pattern of Gujarat state.

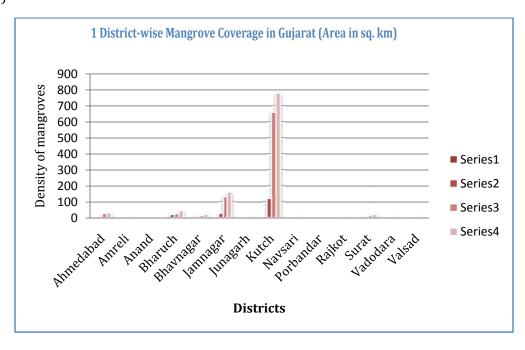
Completion Report Mangrove Plantation Project, Malpur, Bharuch District, Gujarat Adani Petronet (Dahej) Port Private Limited

Land-use pattern in Gujarat

No	Class	Area in	No	Class	Area in
1	Danga Manguaya	Sq. Km 732.20	26	Mining Areas/Dumps	Sq. Km 7.53
1	Dense Mangrove	732.20	26	Milling Areas/Dumps	7.33
2	Agricultural Land	13,906.08	27	Moderately Dense Salt-	234.20
				Marsh Vegetation	
3	Airport	9.68	28	Mud With Vegetation	164.43
4	Aquaculture Ponds	64.45	29	Oxbow Lake	0.01
5	Beach/Patch	85.87	30	Pond/Lake	104.71
6	Bridge	0.25	31	Port/Harbour/Jetty	1.54
7	Canal	13.73	32	Reservoir/Tank	150.14
8	Cooling Pond	2.88	33	River Sand	10.96
9	Creek	1,779.87	34	River/Stream	297.87
10	Degraded Mangrove	29.78	35	Rock Exposure	0.07
11	Degraded Scrub	563.52	36	Rock Outcrops/Gullied/Eroded /Barren Land	178.25
12	Dense Salt-Marsh Vegetation	18.25	37	Rocky Coast	8.09
13	Dense Scrub	588.95	38	Saline Area	1226.87
14	Dune With Vegetation	0.49	39	Salt Pans	1,115.6041
15	Dune Without Vegetation	69.70	40	Sand With Vegetation	8.66
16	Estuary	9.66	41	Sandy Area	40.60
17	Forest(Non- Tidal)/Plantation	816.39	42	Seawall/Embankment	0.21
18	Habitation	256.57	43	Sparse Mangrove	634.83
19	Habitation With Vegetation	316.72	44	Sparse Salt-Marsh Vegetation	111.86
20	High Tidal Mudflat	947.11	45	Sparse Scrub	2,214.89
21	High Tidal Mudflat With Salt Encrustation	235.85	46	Sub Tidal Mudflat	1,732.97
22	Industrial Area	192.21	47	Very Dense Mangrove	248.41
23	Inter Tidal Mudflat	2588.48	48	Water Treatment Plant	0.68
24	Island	2.12	49	Waterlogged	241.13
25	Lagoon	0.01	50	Total Area	32,593.1

Adani Petronet (Dahej) Port Private Limited

Mangroves in Gujarat


The State has mangroves spread over an area of 1,058 sq. km. Kachchh with mangroves spread over 778 sq. km has almost 74% of the State's mangrove spread. Beside Kachchh, mangroves are largely found in Jamnagar, Bharuch and Surat.

As the table shows, only about 20% of mangroves in the state are dense and the rest are sparse or degraded. Even in Kachchh and Jamnagar districts the percentage of dense mangroves ranges between 20% and 24.5 %

Table 2 District-wise Mangrove Coverage in Gujarat (Area in sq. km)

Sr.	District	Very	Moderately	Open	Total
No.		Dense Mangrove	Dense Mangrove	Mangrove	
1	Ahmedabad	0	1	29	30
2	Amreli	0	0	1	1
3	Anand	0	0	0	0
4	Bharuch	0	21	22	43
5	Bhavnagar	0	6	13	19
6	Jamnagar	0	28	131	159
7	Junagarh	0	0	1	1
8	Kachchh	0	118	660	778
9	Navsari	0	0	1	1
10	Porbandar	0	0	0	0
11	Rajkot	0	1	1	2
12	Surat	0	7	13	20
13	Vadodara	0	0	2	2
14	Valsad	0	0	2	2
	Total	0	182	876	1,058

(2011)

Completion Report Mangrove Plantation Project, Malpur, Bharuch District, Gujarat Adani Petronet (Dahej) Port Private Limited

Characteristics of Mangroves

Mangroves are notably different from other halophytic and mesophytic plant species, as they survive in a hostile environment, an interface between land and sea marked with fluctuations in salinity, storms and tidal surges and recently human induced biotic pressures like pollution. The biota exhibits a wide variety of adaptations in terms of morphology, anatomy, physiology, development of seed and seedlings, physiognomy and succession mechanisms. Prop roots, knee roots, plank buttresses and pneumatophores, sclerophyllous leaves with sunken stomata, and vivipary are some of the common adaptations. The roots possess pneumatopores or lenticels for the purpose of gaseous exchange. The control of tissue water potential through specialized leaves and stems, exclusion of salt through rhizo-filtration, excretion of salts through salt glands, and the ability to deposit salt in older leaves, barks and pneumatophores help the plants to acquire high level of salt tolerance ((Tomlinson n.d.)

Importance of mangroves

The mangrove ecosystem has important direct and indirect economic, ecological and social values to man. Mangrove ecosystems have consistently been undervalued, usually because only their direct goods and services have been included in economic calculations (e.g. forestry resources), but this represents only a minor part of the total value of mangroves. By undervaluing mangrove ecosystems, "development" has too often favoured their rapid conversion and loss. Mangrove conversion usually leads to short-term economic gain at the expense of greater, but longer-term, ecological benefits and off-site values. The non-market values, for example species biodiversity and off-site functions such as nutrient export are not easily quantified, but have been shown to be significant. The total economic value of mangroves must be calculated in order to provide decision-makers with the real cost of converting mangroves to other apparently more profitable uses. In particular, long-term ecological benefits and off-site values should be included in valuations for mangroves. Mangroves play an important role in the functioning of adjacent ecosystems, including terrestrial wetlands, peat swamps, salt marshes, sea grass beds and coral reefs. The beneficial effects mangroves have on the marine ecology are summarized as follows:

- Basis of a complex marine food chain.
- Creation of breeding habitat.
- Establishment of restrictive impounds that offer protection for maturing offspring.
- Filtering and assimilating pollutants from upland run-off.
- Stabilization of bottom sediments.
- Water quality improvements.
- Protection of shorelines from erosion.

Threat to Mangroves in Gujarat

Natural and anthropogenic factors pose severe threats to the marine ecosystems on the coast. However, the damage caused by human activities is much higher than the damage caused by natural calamities like cyclones, storms and earthquakes. Varied human activities like run offs and sedimentation from development activities, eutrophication from sewage and agriculture, physical impact of maritime activities, dredging,

Completion Report Mangrove Plantation Project, Malpur, Bharuch District, Gujarat Adani Petronet (Dahej) Port Private Limited

destructive fishing practices, pollution from industrial sources and oil refineries etc. are some of the major threats to the fragile marine environment.

Gujarat is one of the most industrialized states in India. The major industries located around the coast include cement, chemicals, petroleum and oil refineries, shipping, power plants, fertilizers, fishing, etc. The increasing untreated effluents waste discharged into the marine environment severely hamper the marine flora and fauna. Due to major refineries established on the coastline, ship and heavy vessel traffic has also increased. Accidental oil spills from various vessels ferrying is a matter of serious concern as it may also be a potential threat to the coastal flora and fauna. Destructive agricultural practices using chemicals and pesticides like DDT have caused a lot of damage to the marine ecosystem. Many of the state's rich fishing grounds, are directly or indirectly dependent on mangroves for their sustained yield. Degradation of mangroves poses a serious threat to this resource and to the dependent fishing community. It also leads to increased soil erosion in the coastal areas, as the protective barrier between the sea and the land is lost. The natural barrier to the salt laden winds is also lost due to destruction of mangroves leading to increased spread of soil salinity adversely affecting agricultural production. This leads to declining employment opportunities among agricultural laborers and marginal workers of villages.

The broad causes of degradation of mangroves can be described as below:

Natural Hazards

Natural calamities like cyclones, droughts, higher intertidal currents, and low rainfall affect mangroves. Algae affect the early stage growth of plants during certain periods of the year. Higher currents cause phenomena such as shifting sand and erosion, which uproot older trees. There is also degradation of mangroves in the Gulf of Khambatt by erosion of the shoreline due to violent sea actions.

Over exploitation of mangroves for fodder and fuel-wood by local communities

Over exploitation of mangroves for fodder and fuel wood by local communities and *Maldharis* is a complex problem with a variety of inter-related causes. Unproductive village commons with frequent droughts due to arid and semi arid character of the area accentuates the problem by increasing the pressures on mangroves for fodder and fuel-wood. Mangrove leaves are rich in protein and are usually preferred over other grasses as fodder and are collected and carried by the local people to feed their cattle. Migrating populations of *Maldharis*, with large hordes of cattle, including camels, also cause severe damage to the mangroves. Free grazing by camels in the mangrove areas causing trampling of seedlings and over-exploitation of seeds and twigs by the local communities also lead to the reduced natural regeneration of mangroves. The problem is aggravated by the repeated droughts. Lack of knowledge and awareness of the ecological functions of mangroves in the local communities is also often responsible for the indiscriminate exploitation of mangroves by these communities.

Completion Report Mangrove Plantation Project, Malpur, Bharuch District, Gujarat Adani Petronet (Dahej) Port Private Limited

Reduced Natural Regeneration

One of the factors for reduced natural regeneration of mangroves has been the reduction in fresh water inflow, which has led to increased salinity. No major rivers, except Indus with its reduced annual flows, pour fresh water in the Gulf of Kachchh. As a result, only hardy species like Avicennia Marina, with high salt tolerance, have survived. Similarly, in the Gulf of Khambatt, fresh water inflows from some of the major rivers like Sabarmati and Mahi have reduced due to construction of dams for irrigation in the upstream areas.

Diversion of mangrove land for other use like saltpans & industries:

Another important reason for the degradation of mangroves in the state is the diversion of mangrove lands for construction of saltpans, industries, ports, etc. Insufficient understanding of the ecological functions of the mangroves is largely responsible for such diversions. Location of ports and industries in the vicinity of mangrove areas also cause damage to the mangroves due to dredging and bunding activities as well as construction of roads and other infrastructure. Often, it also brings in a large population of migrant laborers, increasing the anthropogenic pressures on the existing mangroves.

Adani Petronet (Dahej) Port Private Limited

Background of the Project

Over the last few years, Government of Gujarat has made concerted efforts to restore the fragile mangrove ecosystem in the state. The Government initiated the Community Based Mangrove Plantations (A Joint Mangrove Management) concept for the first time in which, the local communities were involved as active partner in mangrove conservation and management.

From 2002 to 2007, GoG actively took up mangrove plantations along the Gulf of Kachchh and Gulf of Khambatt with financial assistance from the India Canada Environment Facility. In order to achieve the goal of covering 5,000 hectares of area government collaborated with civil society organisations and community based groups. SAVE, its sister organizations VIKAS Centre for Development & Janshakti Parishad were pioneer in facilitating this plantation. Almost 700 hectares of mangroves were planted along the coast of south Gujarat by VIKAS.

In fact, in a first of its kind initiative, in the country, the state succeeded in involving both the corporate and public sector in mangrove plantation through a unique Public Private Partnership (PPP) model.

Corporate funds were mobilized and they were given the responsibility for the conservation of this fragile ecosystem. Under this partnership, native as well as newly introduced species of Mangroves have been planted on more than 5,000 hectares till date on the State's coastline; all this with the active participation of the local coastal communities. Through this unique PPP model over the last four years as many as 5090 hectares have been restored. (htt4)

As part of the above initiative, Adani Petronet (Dahej) port private Limited- APPPL assigned the project of mangrove plantation covering 200 hectares.

Figure 3 Panoramic view of Mangrove plantation at Malpur village

Completion Report Mangrove Plantation Project, Malpur, Bharuch District, Gujarat Adani Petronet (Dahej) Port Private Limited

Adani Group of Industries:

Adani Group is an Indian multinational conglomerate company headquartered in Ahmedabad, Gujarat, India. Its diversified businesses include resources, logistics, agribusiness and energy sectors. [1] The Group is the largest port developer and operator in India with Mundra being the country's largest commercial port. It owns Fortune, India's largest edible oil brand through a joint venture with Willmar in Singapore. [2] The Flagship Company of the Adani group is Adani Enterprises Limited. In April 2014, it added the 4th units of 660 MW at its Tiroda power plant, making Adani power the largest private power producer of the country.

The company was founded in 1988 as a commodity trading business. First generation entrepreneur Mr. Gautam Adani is the founder & chairman of Adani Group. According to Mr. Gautam Adani, The Group was created with a vision of 'Nation Building' by developing assets of national economic significance. This reflects in the choice of businesses the group has entered and developed over the years. [3][4] The corporate headquarters of the company is situated in the city of Ahmedabad.

SAVE - Saline Area Vitalisation Enterprise Limited

SAVE is a technical service organization working since last 20 years. It has been working with the coastal community of Gujarat for natural resource management, livelihood enhancement, mainly with primary producers like small & marginal farmers, salt pan workers, fishermen etc and agricultural laborers. SAVE has worked extensively on mangrove plantation, wasteland development, to arrest the issues of soil erosion, soil salinity. It has worked to improve the lives of all coastal communities like fishermen, farmers, salt pan workers, charcoal workers bonded laborers. Over a period of last one decade, SAVE along with VIKAS (NGO) has carried out mangrove plantation in 1180 hectares of area.

SAVE carried out the project in following three phases

- I. Identification of suitable sites for mangrove plantation.
- II. Plantation & Maintenance in 100 hectares of coastal land in Malpur, Jambusar Bharuch district.
- III. Carry out mangrove Plantation & Maintenance in additional 100 hectares of coastal land in the same location.

Identification of probable sites for mangrove plantation

During this phase – March to May 2012, SAVE identified fourteen sites along the coast of southern Gujarat.

Procedure followed

- Identification and Mapping of fourteen (14) locations along South Gujarat coast.
- Meeting with local communities and representatives of village Panchayati Raj Institutions.
- Collection and processing of soil samples.
- Preparation of Report.

Adani Petronet (Dahej) Port Private Limited

Identification of Sites

Sites were identified considering their suitability in terms of

- Available area for plantation
- Soil quality
- Cooperation of local communities
- Proximity to Dahej, location of APPPL

The coastal locations in Jambusar, Amod, and Vagra, Hansot taluka of Bharuch district and Olpad taluka of Surat district of Gujarat were studied.

Phase -1 Identification of suitable sites for mangrove plantation.

Following are the details of all fourteen (14) locations

1. Nada-Devla site:

This site is 02 kilometers from Nada village of Jambusar taluka. There are mudflats making this region perfect for mangrove plantation. Estimated land is about 100 hectares suitable for mangrove plantation. This site is near Jambusar town. It is well connected by road and hence will be easily commutable. Below are the coordinates taken for the same site.

No	Taluka	Village	Location	Coordinates	Remarks
1	Jambusar	Nada	Entering point	N-21° 56'18.7"	There is an approximate
			at the site	E-72°30.2′ 7.7"	100 hectares of area for
2	Jambusar	Nada	End Point	N-21°56'15.7"	mangrove plantation.
			towards coast	E -72°23.0'16.1"	

2. Malpur Site:

This site is on the coast connecting Malpur and Zamdi/Isanpur villages of Jambusar taluka in Bharuch district. There is a long stretch of coastline with mangrove patches. The area suitable for mangrove plantation is estimated at 100 ha. Out of this 50% of the area has naturally grown mangroves. The remaining area can be utilized for plantation. There are three CBOs who can be involved in the plantation process.

No	Taluka	Village	Location	Coordinates	Remarks
1	Jambusar	Malpur	Entry point	N 22°025'5.5"	The area is having
				E 072°47'35.3'	mangrove growth
2	Jambusar	Malpur	Near the coast	N 22°045'3.1"	and also
				E 072°31'40.5"	approximate of 100
3	Jambusar	Malpur	Maximum point	N 22°045'3.1"	hectares of land for
				E 072°31'37.7"	future plantation
4	Jambusar	Malpur	Maximum point	N 22°0.34'3.3"	
				E 072°313'7.3"	

Adani Petronet (Dahej) Port Private Limited

3. Isanpur site:

Approximately 100 hectaes of mangrove favorable land is found near Isanpur.It is almost three kilometers from Jhmadi village towards malpur.The locals are also supportive and will help in mangrove plantation.

No	Taluka	Village	Location	Coordinates	Remarks
1	Jambusar	Zamdi/	Entering	N- 22°065'0.4"	There is an
		Isanpur	point at	E-072°23.2'14.7"	approximate 100
			the site		hectares of area for
					mangrove plantation.

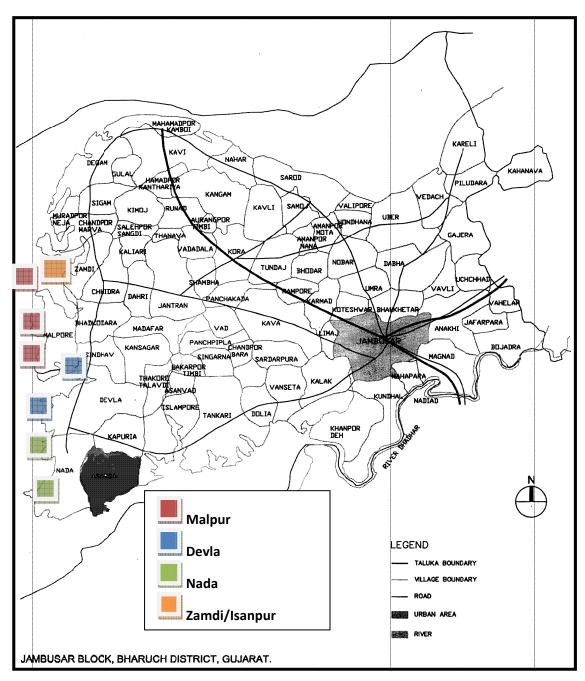


Figure 4 Proposed Sites in Jambusar Taluka

Adani Petronet (Dahej) Port Private Limited

4. Denva-Gandhar Site:

Denva and Gandhar villages are located on the mouth of river Dhadhar. The river has changed its course leaving a long stretch of mudflats suitable for mangrove plantation.

No	Taluka	Village	Location	Coordinates	Remarks
1	Amod	Denva	Entering point at	N-21°56′13.0″	There is an
			the site	E-072°42'31.2"	approximate 100
					hectares of area for
					mangrove plantation.

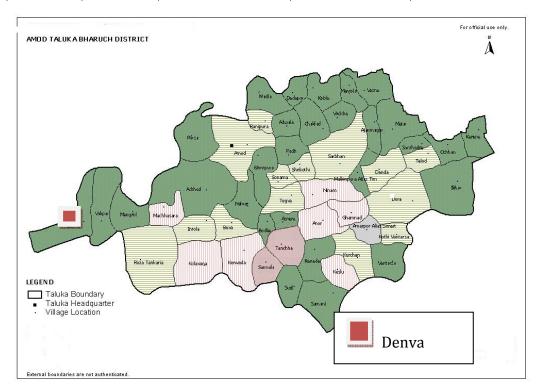


Figure 5 Proposed site in Amod Taluka, in Bharuch district

5. Gandhar (Vagra Taluka) Site:

Gandhar is on the opposite side of Nada village of Jambusar taluka. Gandhar is also on mouth of river Dhadhar. There is approximately 100 hectares of land area suitable for mangrove plantation. The area has necessary mudflats.

No	Taluka	Village	Location	Coordinates	Remarks		
1	Vagra	Gandhar	Towards the	N-21°5.54'6.4"	There is an		
			coast	E-072°36.5'2.4"	approximate 100		
2	Vagra	Gandhar	Possible site	N21° 55.5′55.1"	hectares of area for		
				E 072°37.2'2.4"	mangrove		
3	Vagra	Gandhar	Possible site	N 21°55.5'6.3"	plantation.		
				E 072°37.4 7.7"			
4	Vagra	Gandhar	Possible site	N21°55.5'44.6"			
				E 072°38.0'4.8"			
5	Vagra	Paniyadra	Possible site	N21°55.5'44.6"			
				E 072°38.0'4.8"			

Adani Petronet (Dahej) Port Private Limited

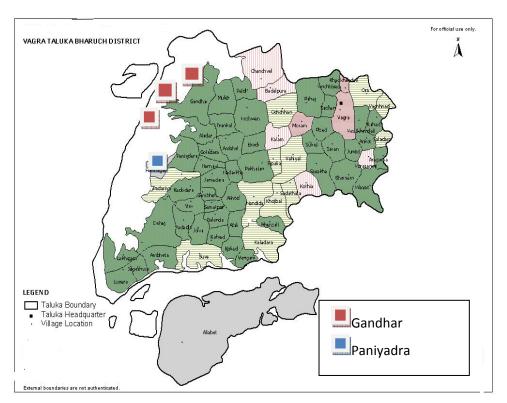


Figure 6 Proposed site at Vagra Taluka, Bharuch District

4. Kanthiyajal (Hansot taluka) Site:

Kanthiyajal is in Hansot Taluka of Bharuch district. Mangroves grow in abundance here. At present GEC is working in certain parts. There is a possibility of 150 hectares of land for mangrove plantation.

No	Taluka	Village	Location	Coordinates	Remarks
1	Hansot	Kanthiyajal	Entering point	N-220650.4	There is an
			at the site		approximate 100
				E-07314.6	hectares of area for
					mangrove plantation.

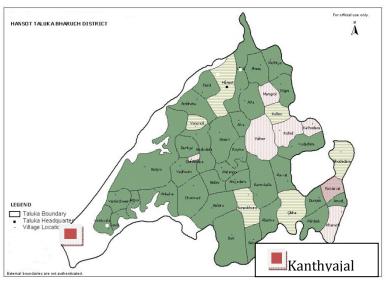


Figure 7 Proposed site at Hansot Taluka, Kanthyajal

Adani Petronet (Dahej) Port Private Limited

5 Surat -Mor, Bhagva, Olpad Site:

An area of almost 100 hectares is found around Surat in Olpad, Bhagva and Mor villages. There is a patch of existing mangroves suggesting a favorable condition for future mangrove plantation.

No	Taluka	Village	Location	Coordinates	Remarks	
1	Dandi	Mor	Entering point at	N-22°06.50'0.4'	There is an	n
			the site		approximate 100	0
					hectares of area fo	r
					mangrove plantation	۱.

Figure 8 Proposed Site at Olpad taluka

Completion Report Mangrove Plantation Project, Malpur, Bharuch District, Gujarat Adani Petronet (Dahej) Port Private Limited

Coordinates and Land Description

No.	Taluka	Village	Coordinates	Approximate Hectares		
1	Jambusar	Nada	N-21° 56'18.7"	100 hectares		
			E-72°30.2′ 7.7″			
2	Jambusar	Nada	N-21°56′15.7″			
			E- 72°23.0'16.1"			
3	Jambusar	Malpur	N 22°25′5.5″	100 hectares		
			E -0.72°47.3'5.3"			
4	Jambusar	Malpur	N 22°45'3.1"			
			E 072°31'40.5"			
5	Jambusar	Malpur	N 22°045'3.1"			
			E 072°31'37.7"			
6	Jambusar	Malpur	N 22°0.34'3.3"			
			E 072°313'7.3"			
7	Jambusar	Zamdi/Isanpur	N-22°0.65'0.4"	100 hectares		
			E - 072°23.2'14.7"			
8	Amod	Denva	N-21°56′13.0″	100 hectares		
			E-0.72°42'31.2"			
9	Vagra	Gandhar	N 21°56.5′2.5″	100 hectares		
			E-072°36.5'2.4"			
10	Vagra	Gandhar	N21° 55.5′55.1″			
			E 072°37.2'2.4"			
11	Vagra	Gandhar	N 21°55.5′6.3″			
			E 072°37.4 7.7"			
12	Vagra	Gandhar	N21°55.5'44.6"			
			E 072°38.0'4.8"			
13	Hansot	Kantiyajal	N-22°0.65'0.4"	150 hectares		
			E-073°14′.6″			
14	Dandi	Mor	N-22°06.50'0.4'	100 hectares		
			E-072°23.2'14.7"			

Out of the above- mentioned sites suitable for mangrove plantation coastal belt of Village Malpur at taluka Jambusar district Bharuch was finalized in consultation with officials of APPPL (Dahej).

Adani Petronet (Dahej) Port Private Limited

The Project

The Project Location

Malpur is a small coastal village in taluka Jambusar of Bharuch district. The population is mainly fisher folk, small and marginal farmers and saltpan workers.

As per the Census 2011 India, Malpur has total population of 2,642 persons of which 1,399 are males while 1,243 are females. The village has total of 527 families.



Figure 9 Map showing Village Malpur Mangrove Plantation site

Table 3 Census data of Malpur village 2011

Village	Total No.ofHHs	Total Population	BPL Population	% BPL Population	Total Male Population	Total Female Population	Male Female Ratio	Population Age < 6 Years	Population SC	Population ST	Population Literate	% Literacy	Total Working Population	% Working Population
Mal pur	325	1777	537	30.2 2	617	560	0.9 1	NA	4	25 8	12 00	68	643	36

Completion Report Mangrove Plantation Project, Malpur, Bharuch District, Gujarat Adani Petronet (Dahej) Port Private Limited

Geographical Description

Malpur is located along the Gulf of Khambatt. The Gulf of Khambattis a south to north penetration of the Arabian Sea on the western shelf of India between the Saurashtra peninsula and mainland Gujarat. It is located approximately between 20°30' to 22°20' N latitude and 71°45' to 72°53' E longitude.

At its northern end between the Sabarmati and Mahi mouths, the Gulf is barely 5 km wide and it opens out southwards like a funnel, reaching its maximum width south of Gopnath point. Its north-south length is approximately 115 km. It covers an extent of about 3120 Sq.km mainly of mudflats with some rocky (sandstone) intertidal area and a volume of 62400 cubic million. The rocky beaches are common from Mahuva to Gopnath, reducing towards Ghogha and Bhavnagar. A few sandy patches are also observed intermittently.

The Gulf is intercepted by several inlets of sea and creeks formed by confluence of major rivers such as Narmada, Tapi, Mahi, Sabarmati and many minor rivers. All the major rivers form estuaries and their inflow carries heavy load of suspended sediments into the Gulf. A medium sized delta is present near Shetrunji between Gopnath and Ghogha. The ecosystems of the Gulf comprising mangroves, estuaries, creeks and vast intertidal mud flats are known to have rich biodiversity and a number of endemic flora and fauna.

The Gulf receives rains during the southwest monsoon (from June to September), the average annual rainfall varies from 600 mm on the western side to 800 mm on the eastern side. The Gulf has a positive water balance, mainly due to the high volume of river runoff. The relative humidity ranges between 65% and 86% thus offering semi-arid to sub-humid climatic conditions. Temperature in the Gulf is extreme, the lowest being 8.4 °C during January and highest of 43.7 °C during May.

Ecology of the Area

This site is at the confluence of the Sabarmati and Mahi rivers at the Arabian Sea, at the very end of the Gulf of Khambatt. Because of the confluence of these two mighty rivers and heavy sedimentation, a large area of dynamic mudflats has been formed. The climate is dry, and there is sparse terrestrial vegetation, dominated by grass and thorn scrub. The most important edaphic factor influencing the region is the high tidal amplitude. The monospecific mangrove and the salt-tolerant marsh vegetation are the important floral components, and the foraging wetland birds, food-supplying molluscs and crustaceans, Bonellia and fishes are the significant fauna of this habitat. Fishing and salt production are the main socio-economic activities around this region. However, croplands are being maintained for seasonal production, but many of these are defunct because of salt ingress. There is no direct access to this site, and it is not possible to reach some parts near the waterfront.

The dynamic mudflats restrict the exploitation, and thus there is no need for protection measures. The entire site has not been afforded any legal protection, but the mangrove plantations are monitored by the local people. As mentioned previously, access to certain areas of this candidate site is impossible because of the tidal influence and soft, murky mudflats. Occasional bird hunting has been locally reported, but this is not routine. The site is almost free of threats except for point source pollutants from the river discharge. The large flocks of foraging wetland birds, mudskippers and commercially important molluscs of this mudflat habitat are the important fauna of

Completion Report Mangrove Plantation Project, Malpur, Bharuch District, Gujarat Adani Petronet (Dahej) Port Private Limited

conservation significance. The vast mudflat is an ecological asset to this region, serving as aquifers. The site has been designated a community reserve involving the local people dependent on seasonal agriculture, with monitoring by the forest department

In the Gulf of Khambatt, the area has suffered severe degradation in a short span of 25-30 years, with a rapid rate of 32.3 sq. km per decade at places (Ashwini Kumar, 1996). Mangroves were present even 30 years ago near villages Sigam, Zamdi, Malpur and Nada. Presently, only Nada has some sparse and scrubby mangroves. The patchy records of mangrove cover by various agencies during the period from 1875 to 1983 show that there was a marked decline in the mangrove cover from 438 sq. km. in 1970 to 13 sq. km. in 1983 in most parts of the Gulf of Khambatt.

This mangrove plantation sites are located in Gulf of Khambatt of the Arabian Sea. The Gulf is characterized by a number of large and small estuaries. Many rivers, like Sabarmati, Mahi, Narmada and Tapti, have their mouth in the Gulf of Khambatt.

The Golden Chemical Corridor of Gujarat is located along the Gulf of Khambatt and thus poses environmental hazards. Over the past three decades the Gulf ecosystem has been conspicuously influenced by developmental activities, therefore, this area was selected to evaluate the pollution status of mangrove ecosystem.

Details of the Project Area

Location	Village Malpur, Taluka Jambusar, District Bharuch
Coordinates	21°56′57.62″N 72°35′34.75″ E
Area	200 hectares
Topography	Mudflats
Soil Ph	8.4
Average rainfall	605.42 mm
Salinity	Alkaline
Land elevation	Flat plain 6 Mt
Sedimentation	5-7 cm/annum
Dominant species	Avicenna marina
Source of propagules	Available within 05 km of mangrove plantation site
Available propagules	Avicenna marina
Project Period	2012-2015
Community Based Organization	JSP - Jan Shakti Parishad
Implementing agency	Saline Area Vitalization enterprise limited

Gram Panchayat Approval letter

After finalizing the site, SAVE conducted a meeting with the village Sarpanch and the panchayat members of Malpur. SAVE and its sister organization an NGO VIKAS Centre for Development have been working with this coastal community since past 38 years. Hence the organization has good community support and share cordial relationship with them. VIKAS & SAVE have extensively worked on mangrove plantation and its importance to the coast with this community in the past years because of which it became a lot easier to implement the project.

Adani Petronet (Dahej) Port Private Limited

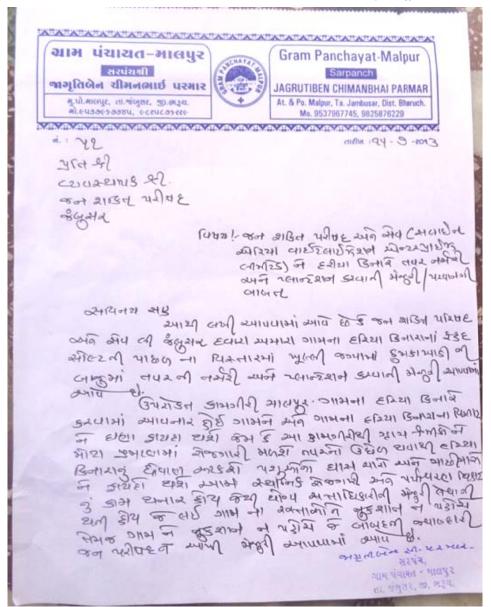
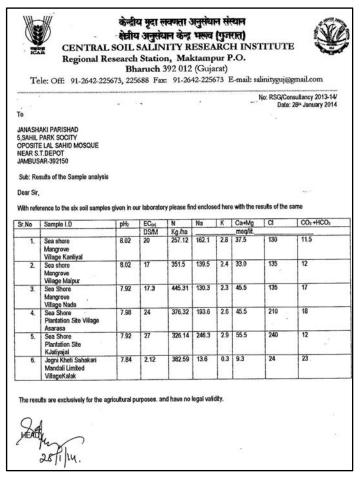


Figure 10 Letter from the Panchayat - Malpur Village

Community Based Organization

SAVE & VIKAS have been working with an understanding to bring primary producers, agriculture laborers, salt pan workers, fishermen etc. in to the mainstream of the economy by alleviating their economic condition through aggregation and linking communities with technology, credit and markets.

For accomplishing this, we use different mode of organizations such as NGO, CBO, for profit organization, Enterprise etc. One such organization is Janshakti Parishad, which is a membership-based organization of *Rathod* community in Jambusar taluka, Bharuch district. This organization works for entitlements, advocacy and employment generation for its members. This community is one of the most backward and underprivileged schedule tribe in this area. All Natural Resource development related activities are carried out in association with this organization. The members are trained and educated to carry out the plantation.


Adani Petronet (Dahej) Port Private Limited

Water and Soil Report

Water and soil samples were taken of the mudflats to ensure good plantation growth. Soil properties have a major impact on mangrove nutrition and growth. Soil composition and grain size determines porosity of the soil, which ultimately influences soil salinity, water content and amount of nutrients contained in the soil. Mangroves tend to grow well in mud and very fine sand. (Botero 1998) High Salinity decreases the rate of photosynthesis. So with lower salinity and more light the net photosynthesis per unit area increases and growth rate of the mangrove increases (Lopez- Hoffman 2007)

Sulfide is a characteristic feature of mangrove sediments that influences mangrove distributions. High sulfide levels can damage mangrove seedlings, causing stomatal closure, reduced gas exchange, reduced growth and high mortality (Wakushima 1994)It has been found that mangroves achieve maximum root growth at an acidic pH of 6 and maximum shoot growth at an alkaline pH of 10. Anything lower than 6 retards mangrove seedling growth and is a cause of mangrove death (Thangam 1990) Nutrients such as Nitrogen, Phosphorous and Potassium are important in mangrove growth.

Mudflats at village Malpur show pH of 8.2, which is favorable for mangrove growth. Nitrogen, Phosphorous and Potassium are present in good numbers, favoring mangrove growth.

Table 4 Soil Report

Coordinates

	Malpur Coordinates Year 2012-13						
No.	Longitude	Latitude	No.	Longitude	Latitude		
1	22° 4'16.10"N	72°31'45.30"E	14	22° 4'21.50"N	72°31'33.50"E		
2	22° 3'57.40"N	72°31'41.20"E	15	22° 4'28.50"N	72°31'34.80"E		
3	22° 3'47.30"N	72°31'41.30"E	16	22° 4'40.20"N	72°31'37.30"E		
4	22° 3'35.20"N	72°31'39.90"E	17	22° 4'46.80"N	72°31'38.90"E		
5	22° 3'27.30"N	72°31'36.50"E	18	22° 4'45.70"N	72°31'47.10"E		
6	22° 3'15.20"N	72°31'35.30"E	19	22° 4'36.67"N	72°31'48.50"E		
7	22° 3'17.40"N	72°31'32.10"E	20	22° 4'23.90"N	72°31'46.80"E		
8	22° 3'17.20"N	72°31'24.40"E	21	22° 4'20.60"N	72°31'46.40"E		
9	22° 3'20.80"N	72°31'24.80"E	22	22° 4'55.33"N	72°31'41.65"E		
10	22° 3'29.30"N	72°31'26.00"E	23	22° 4'54.76"N	72°31'51.71"E		
11	22° 3'39.00"N	72°31'27.90"E	24	22° 3'10.98"N	72°31'31.98"E		
12	22° 3'45.20"N	72°31'29.10"E	25	22° 3'10.57"N	72°31'23.44"E		
13	22° 3'57.70"N	72°31'31.80"E	26	22° 3'10.96"N	72°31'34.21"E		
			27	22° 3'10.59"N	72°31'25.14"E		

Figure 11 Google Image showing 100 hectares 2012-13

Malp	Malpur Coordinates Year 2013-14						
No.	Longitude	Latitude	No.	Longitude	Latitude		
1	22° 03'00.5"N	72°31'20.9"E	14	22° 02'16.1"N	72°31'26.7"E		
2	22° 02'53.2"N	72°31'19.2"E	15	22° 02'20.1"N	72°31'25.80"E		
3	22° 2'41.8"N	72°31'17.2"E	16	22° 2'32.4"N	72°31'25.6"E		
4	22° 2'33.7"N	72°31'14.9"E	17	22° 02'54.3"N	72°31'29.2"E		
5	22° 2'27.2"N	72°31'11.6"E	18	22° 03'03.8"N	72°31'31.0"E		
6	22° 02'13.7"N	72°31'06.4"E	19	22° 03'13.8"N	72°31'36.50"E		
7	22° 01'52.7"N	72°31'02.2"E	20	22° 03'16.8"N	72°31'32.5"E		
8	22° 01'30.0"N	72°30'56.6"E	21	22° 03'17.9"N	72°31'24.0"E		
9	22° 01'28.6"N	72°31'01.1"E					
10	22° 01'32.5"N	72°31'12.3"E					
11	22° 01'45.8"N	72°31'20.0"E					
12	22° 01'49.5"N	72°31'23.8"E					
13	22° 01'52.2"N	72°31'19.5"E					



Figure 12 Google Image showing 100 hectares 2013-14

Selection of Species

Village Malpur had naturally grown mangroves along the coast. The species are Avicenna marina. Hence it was a natural decision to plant these species at the site.

Efforts were made to add some biodiversity by planting other mangrove species like Rizophora, which did not, give desired results.

Details of Avicenna marina

- Scientific Nomenclature: Avicenna marina.
- **Common name:** Grey mangrove.
- **Status:** Sparse growth along the coast line of village Malpur.
- **Description**: An evergreen shrub or tree 2 to 10 m tall with pencilsized peg type aboveground which are commonly roots. called as pneumatophores or breathing roots. Bark is whitish to greyish or yellow-green in colour, smooth, often powdery and scaly. Leaves are single, arrangement, opposite in leathery, yellowish-green and hairless above and silver-grev with pointed below Underside of the leaf has special glands for secreting excess salt. Flowers are small, 0.3 to 0.5 cm across, sessile, fragrant, paleyellow in colour in condensed terminal flower head. Fruit is

heart shaped, rounded or sometimes shortly beaked; outer skin is grayish with fine hairs and inside is radiant green or russet brown or dark green.

- **Uses:** Leaves are considered as one of the best fodder for camel and other bovines. Cattle also feed on shoots and leaves during the rainy season when the salt content is low in the leaves. Wood is considered as excellent firewood. Roots and bark are used as stimulant.
- **Ecology, propagation and management:** Avicenna marina grows luxuriantly in any position in the intertidal regions of estuaries, lagoons backwater etc. Though it is capable of growing in sandy soils and rocks it prefers fine clay and Mudflats for better performance. It is highly saline tolerant and tolerates widest range of soil salinity. Its tolerance to aridity is also high. It can be easily propagated by propagules and the position where it should be planted can be decided on the basis of the distribution of species (zonation pattern). Propagules of Avicenna

Adani Petronet (Dahej) Port Private Limited

marina do not look like typical spindle-shaped propagules of some other mangrove species because embryonic axis (hypocotyl) of the developing embryo does not penetrate the seed coat. Hence, propagules of grey mangrove look more or less like normal seeds in appearance and they are called crypto viviparous propagules. It is produced in large numbers and matured propagules float freely in water and can be easily collected by hand or by a scoop net. They can also be collected from trees. Collected propagules are soaked in brackish water for a day to facilitate shedding of outer coat. These naked propagules are used for plantation. While sowing, radical (the part of plant embryo that develops into a root) side of the propagules is lightly pushed into wet soil. Nursery raised seedlings of about 30 cm can also be used for out planting.

Different Mangroves Activity

After the site selection and finalizing the mangrove species for plantation, remaining mangrove activities were planned and carried out in sequence as follows:

- 1. Forming a mangrove committee TAVAR VIKAS COMMITTEE
- 2. Mapping and Bordering the site
- 3. Seed Collection
- 4. Planning of Nursery and Direct Dibbling Areas.
- 5. Nursery formation & Direct Dibbling
- 6. Nursery Plantation.
- 7. Gap filling & maintenance

1. Forming a mangrove committee – tavar vikas committee

While SAVE works with a local Community Based Organization Jan Shakti Parishad, we also formed a local mangrove restoration and protection committee for every site, which ensures smooth plantation and restoration activity throughout the period of the project.

Number of meetings were organised with the members of the committee. The subject ranged from creating awareness about the mangrove ecosystem, training for nursery formation, plantation, direct dibbling and to other plantation related activities.

2. Mapping and Bordering the site

The site was than mapped and bordered. The mapping was done with the help of GPS – Gramin Trex, Initially in the first year 100 hectares were mapped and bordered and planted. These 100 hectares were distributed in to nursery plantation and direct dibbling plantation.

Similar exercise was carried out for another 100 hectares in the next mangrove season.

3. Planning of Nursery and Direct Dibbling Areas

While planning for nursery plantation and direct dibbling number of factors like available water flow, soil condition, mean tide level etc were considered. A standard plan for both the sites was prepared. Nursery plantation was planned in 70 ha. and direct dibbling in 30 ha. for each site.

Seventy hectares in nursery plantation was planned to ensure maximum survival at the site.

Adani Petronet (Dahej) Port Private Limited

4. Seed Collection

Seed collection is a major activity and important to the plantation procedure. Care is taken as to how to pluck seeds. The quantity of seeds required is planned and then plucked accordingly. For both the sites seeds for Avicenna marina were gathered from neighboring mangrove plantation site.

• Process Followed

The whole activity was planned during the implementation stage each year. The committee members were trained into systematic gathering of the seeds, their protection and storage.

Statistics for seed collection:

No	Seed per Kg in No	Seeds required per hectare in kg	For 100 hectare in kg
1	250-300	25	2500

Mortality rate: 10 %

These seeds were stored in a pond of brackish water till they propagated and then used in to nursery formation and direct dibbling.

5. Nursery formation & Direct Dibbling

After a systematic and planned seed collection activity next procedure was to plan for nursery formation, plantation of nursery based saplings and direct dibbling.

• Nursery Formation

Initially blocks are formed for nursery plantation. Every hectare has individual blocks of definite calculated nursery beds.

The procedure started with procurement of plastic bags for filling of the earth. These bags were then punched at the bottom and filled with earth.

Bag required per hectare:

No	Bags per kg	Bags required per hectare
1	300-315	12 kg

While filling the bags, simultaneously beds were formed in each block per hectare. Depressions were formed in the earth measuring 1mt X 6 mt. Each bed consists of 1000 bags. Every block had 3750 bags. Germinated seeds of Avicenna marina were sowed in to these bags. Sometimes this activity was carried out number of times, as the tide water washes off the planted seeds.

No	No of bags per hectare	Number of plants per hectare
1	3,750	3,000

Mortality rate per Nursery: 10 %

Every year same procedure is followed to form nurseries at the site.

During the initial year, seventy hectares were planted through nursery plantation and thirty hectares through direct dibbling. In the next year same procedure was followed.

Annexure 2D - Mangrove Plantation by SAVE at Village Malpur, Gujarat

Completion Report Mangrove Plantation Project, Malpur, Bharuch District, Gujarat Adani Petronet (Dahej) Port Private Limited

• Direct Dibbling Plantation

Each year almost 30 to 40 hectares of area was planted through direct dibbling. The seeds were first germinated in brackish water and then sowed directly in to the earth. Before sowing of these seeds blocks were formed per hectare. Blocks measuring 1 mt X 1 mt horizontally and 1 mt X 2 mt vertically were measured and seeds planted with the help of a measuring tape. These seeds were then covered with a net, to protect them from sea water. In spite of this protective measure gap filling was carried out number of times as Gulf of Khambatt experiences violent sea action.

• Earthen - Mound plantation

Direct dibbling was also carried out through earthen mound plantation in the first year. Bed of earth was raised to a height so as to protect the seeds from tidal water. This system did not work due to violent sea action in Gulf of Khambhatt.

6. Nursery Plantation:

The beds were prepared during the monsoon season, when the seeds were available in good quantity & quality. These beds were then nurtured through winter. During the winter months when the saplings reached a certain height of $1\frac{1}{2}$ to 2 feet, they were planted at the site. The plants were transported and planted at the site by forming blocks of 1 mt X 1 mt horizontally and 1 mt X 2 mt vertically. This is the standard measurement accepted for mangrove plantation across Gujarat. Hence number of plants per hectare are 3,000.

7. Gap filling & maintenance

Gap filling was a continuous process throughout the project period. During each season the area was mapped and measured, and remaining area was then planted through nursery plantation. These nurseries were formed separately, from the planned nursery The saplings were planted during the winter. Maintenance of the site was a daily activity carried out by two supervisors who were retained through the length of the project.

Progress:

The project served as a catalyst in changing the socio economic status of the local community as well as bringing ecological and environmental changes to the coastal ecosystem of the area.

1. Socio Economic progress

As natural conditions of these coastal areas are hostile and they have low water availability for agriculture with erratic rainfall, the returns from agriculture are very small. With more than 50 percent of workforce engaged in agriculture and related labour work, the availability of work is also less. The landowners usually engage them at very low wages and labour is easily available. The wages used to be much lower than minimum wages prescribed by the State. This had forced them to borrow, and the inability to pay back the debts forced them to work on annual contract as a bonded labour known as 'Chakar', wherein the meager wage is paid annually. A Chakar is paid about Rs. 1000 to Rs. 1500/- per month on a yearly basis. Also, in such circumstances, their wives are forced to become 'Panihari' – maidservant with the family of the employer, who is supposed to work for the family from six in the morning till late night. Most of the Panihari women are not paid at all or are paid a meager amount of Rs. 50 to Rs.100/- per month. Chakars and Paniharis are not granted any days off, paid on the basis of 'no work no pay'. Thus, the net amount received by them is reduced from their meager wages. This debt and thus, bondages passes on to next generation.

A survey carried out by VIKAS in 1978 mentions that Jambusar taluka had 15,000 such families working as bonded labourers. A recent survey points that their number stands at 1,485 families. The situation in village Malpur is as shown in the year 2012. (palrecha n.d.)

Table 5: Families Working as Chakar and Panihari in Study Villages

No.	Village	Total No. of HHs	Total Population	Chakar	Panihari
1	Malpur	325	1777	12	1

Source: Survey done by SAVE and VIKAS, 2012

SAVE along with the local CBO Janshakti Parishad generated sustainable employment through mangrove plantation and maintenance. Almost 80 % of the project amount went in to labor amounting to Rs. 5, 260,800/-

Because of the infusion of such a large amount in this small coastal village, the community was able to pay off its debt and also invest in to house, marriage, live stock etc. we can proudly say that this activity was instrumental in reducing number of Chakar and Paniharis to 04 and 00 respectively.

Further because of increase in aqua life the same community benefited from marketing of fish. SAVE and JSP (Jan Shakti Parisahd) formed a fishermen organization called Sagar Khedu which aggregated these fishermen and created direct market linkages for

Adani Petronet (Dahej) Port Private Limited

their catch. These fishermen generated business of approximately Rs. 20,00,000/- in the past three years.

Wealth generation and inclusion in to mainstream also helped this community socially and they are able to ascertain their rights with more confidence.

2. Ecological & Environmental Progress

Apart from the above mentioned major changes this plantation is also instrumental in addressing ecological and environmental issues like arresting land erosion, retention of soil, protection to agriculture from Impacts of Saline Winds and Wind Speed, providing Fodder and Fuel with systematic management, Protection from Storm Surge, Tsunami and Cyclones, Protection and Propagation of Biodiversity, Carbon Sequestration.

Mangrove associated Fauna

Mangroves provide nursery grounds for fish, prawns and crabs, different types of mollusks and support fisheries production in coastal waters. Young fish, shrimp, crabs and other aquatic fauna—requires a protected environment to grow and breed, away from large predators. Only those young aquatic life forms that find refuge, survive to grow to full size. Mangroves are good nurseries because they provide hiding places for young aquatic organisms. Finger-like roots of mangroves act as protection from these predators allowing them to grow and survive. Mangroves provide sufficient food to these organisms encouraging healthy and rapid growth.

Mangroves once mature also provide shelter for migratory birds and serve as roosting and foraging grounds. Thus, they have the potential of serving as recreational ground for bird watching and observation of other wildlife.

Village Malpur experienced increase in existing fauna and also inclusion of increase in other aquatic species like crab & Bombay duck (Bumla). Mudskippers which were available only during winter are now fished all year round. Mangrove roots roots trap fine particles, creating soft soils ideal for mudskippers, crabs and different species of mollusks and crustaceans to burrow in.

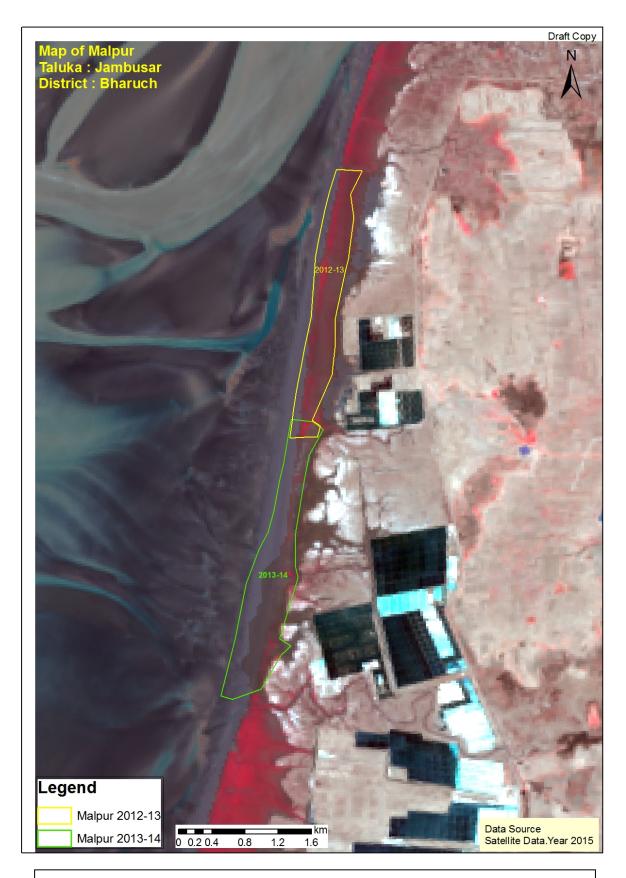
Sr. No.	Name of Village	Earlier Catch of Fishes	Current Catch of Fishes
1	Malpur	Mudskipper, Boi	Mudskipper,
			Prawn, Boi,
			Crab, Bumla

Source: Discussions with Key People, 2015

Status Report

At the completion of the project, the plantation has grown in to dense forest, specially the plantation carried out during the first year i.e. 2012-13. The Mangroves have grown vertically to the height of almost 2.5 to 3.5 feet and diametrically almost 3 to 6 feet.

The mangrove plantation, which started in February 2012 through September 2015 saw a range of activities, right from identification of site to the last plantation. Both the sites have prospered as seen in the satellite images.


Adani Petronet (Dahej) Port Private Limited

Before and After Land Sat images

Land sat images of the site - 2010

Adani Petronet (Dahej) Port Private Limited

Land sat images of the site - 2015

PHOTO GALLERY

<u>Joint site visit by APPPL & SAVE representatives - June 21012</u>

Seed collection, Nursery formation, Direct dibbling

Seed collection, Nursery formation, Direct dibbling

Mangrove day celebration

Nursery Plantation

Mangrove Plantation

Mangrove Plantation

Annexure 3 - Notification of CA land as Reserved Forest Land

વન અને પર્યાવરણ વિભાગ સચિવા<mark>લય, ગાંધીનગર</mark>.

તા રીખ

12 3 DEC 2008

- જાફેરનામુ -

સને ૧૯૨૭ ના ભારતના જંગલો બાબતના (સને ૧૯૨૭ નો ૧૬ માં) અધિનિયમ અન્વયે. કમાં કઃ ગવન-૨૦૦૮-(દુ૭) જજમ-૧૦૦૮-એસએફ-૪૪-એફ ગુજરાત રાજયને લાગું હ્યેય એટલે સુધી સને ૧૯૨૭ ના ભારતના જંગલો બાબતના (સને ૧૯૨૭ ના ૧૬ માં) અધિનિયમ જેનો આમા હવે પછી " ઉકત અધિનિયમ " તરીકે ઉલ્લેખ કર્યો છે. તેની કલમો (૪) અને (૧૭) એ મળેલા અધિકારો અન્વયે ગુજરાત સરકાર આથી ……

- (૧)(અ)જાહેર કરે છે કે, આ સાથે જોડેલી અનુસૂચિમાં નિર્દિષ્ટ કરેલ ભરૂચ જિલ્લાના વાલિયા તાલુકાના મોજે પીગોટ ગામની જમીનને અનાંમત જંગલ તરીકે ઠરાવવાનું નકકી કરવામાં આવ્યું છે, અને.....
 - (બ) જંગલ નિયામક અધિકારી (ફોરેસ્ટ સેટલમેન્ટ ઓફિસર) સુરતને જેનો આમા હવે પછી ઉકત ફોરેસ્ટ સેટલમેન્ટ ઓફિસર તરીકે ઉલ્લેખ કર્યો છે તેની કલમ-૪ ની પેટા કલમ-૧ ની કલમ - ક ના હેતુઓ સારૂ અધિકારી તરીકે નિયુકત કરવામાં આવે છે.
- ર. ઉકત અધિનિયમની કલમો ૧૧, ૧૨, ૧૫ અને ૧૬ અન્વચે ઉકત ફોરેસ્ટ સેટલમેન્ટ ઓફિસરે પસાર કરેલ કોઈ પણ આદેશો પર અપીલ સાંભળવા રાજકોટ જિલ્લાના કલેકટરશ્રીને નિયુકત કરવામાં આવે છે.

<u>અનુસ્</u>ચિ

<u>તાલુકોઃ</u> વાલીયા <u>જિલ્લો</u>ઃ ભરૂચ

٩	ગામનું નામ	સર્વે	વિસ્તાર		યતું સીમા
		નંબર	ફે.આર ચો.મી		
٩	પીગોટ	ર પૈકી	36-00-00	ઉત્તર	સ.નં. ૨ પૈકી, ૯, ૧૬, ૧૭ તથા મૌજે
			ia		માંડવીનો સિમાડો
				પૂર્વ	સર્વે નં. ૨ પૈકી, ૯, ૧૨ ૧૩, ૧૫. ૧૬,
					99, 96, 20, 30, 39
-				દક્ષિણ	સર્વે નં. ૨ પૈકી, ૮, ૯, ૧૨, ૧૪ અને
					99
- Carr	1			પશ્ચિમ	સર્વે નં. ૨ પૈકી, ૮, ૯, ૧૦, ૧૨, ૧૪,
					૧૬ તથા મોજે મોઝાનો સીમાડો

ગુજરાતના રાજયપાલશ્રીના ફકમદી અને તેના નામે,

(સી. બી. લગત)

ઉપ સચિવ

વન અને પર્યાવરણ વિભાગ

2/1109

Annexure 3 - Notification of CA land as Reserved Forest Land

ગામ∕મોજે:

ર્પીંગોટ

ખાતા નંબરઃ ૧૭૭ કબ્જેદ જેનાં નામઃ જીલ્લો: તાલુકો: ભરૂચ વાલીયા

YOK - 016 .

નમુના હનો નોંધ નંબ <i>ર</i>	બ્લો ક/મર્ને નંબર તથા કિસ્સો	ક્ષેત્રફળ ફે. આરે. ચોમી.	આકાર જુ ડી લોકલ બી. ખે. વિ સેસ		અન્ય વિગત
616	ૄ .બ	36-00-00	0.00		જંગલ
5(1	1	36-00-00	0.00		

Annexure 3 - Notification of CAlandas Reserved Forest Land

લોક/સરવે નંબર: ૨-બ

મત્તા પ્રકાર : સરકારી પડતર

મોજે : પીંગોટ

.

તાલુકો : વાલીયા

410

જીલ્લો :

લો: ભરુચ

લાયક જમીન		ફળ આર્ટ, થોમી.	ખાતા નંબર/ક્ષેત્રફળ/આ ફે. આરે. ચોમી.	કાર નોંધ નંબરો અને	કબ્જેદારો ના નામ
પો,ખ. અ		36 00 00		9€9,933,८€€,€ 9 9•, €9८,	•
					•••••
per ri ibu		36 00-00	୧૭૭ ୪୦-୦୦-୦୦ ୦.୦୦	અનામત જંગલ(૯૧૮)	
MISIC 3.		0.00			6
४ डी तथा विषेशधाः	રો રૂ	0.00			
પાણીભાગ 3.		0.00			14
ગણોતિયાની વિગ	ાતો		બીજા ફકો અને બોજાની વિ	ગતો	
			८७७,७९८,		
			નવી અને અવિભાજય અને વિક્ર	ીયાદિત નિયત્રીત શરતે વનીકરણ	માટે ફાળવી.<૮૯૯>
			તા.૧૦/૦૪/૦૮ થી નાયબ વન	સંરક્ષકશ્રી (પશ્વિમ) રાજપીપલાને	<८७७>
			ફે.૩૮-૦૦-૦૦ આરે જમીન મે.ક ે	તેકટર સાફેબ ભરુચનાં ફુકમ ક્રમાંક	:ભુમી/વશી/૨૫૯૭<
		5	ગામ નમુનો નંબર ૧૨	4.4	
বর্ষ	ખેડૂતનું નામ	ા મોસમ	પાંઠ ક્ષેત્રફળ ખે	ડળી રીત સિંચાઇનાં	વુક્ષો અને
			. યારે. ચોમી.	સ્ત્રોત/સાધનો	તેની સંખ્યા
२०१०-२०११ मा	હિતી નથી.		****		
૨૦૦૯-૨૦૧૦ મા	હિતી નથી.				
૧૦૦૮-૨૦૦૯ મા	ફેતી નથી.				

Annexure 3 - Notification of CA land as Reserved Forest Land

ગામ નમુનો નંબર ૬ - ફક્રપત્રક

ભરુચ

જીલ્લો:

તાલુકોઃ વાલીયા

મોજે: પીંગોટ

નોંધ નં : તારીખ : ફેરફાર નો પ્રકાર:	નોંધની વિગત	ફેરફારને સંબંધિત સરવે/બ્લોક નંબર અને પેટા ફિસ્સો તથા તેનો ખાતા નંબર	અગાઉની નામંજુર નોંધનો ક્રમાંક/તારીખ	તપાસણી કરનાર અધિકારી નો શેરો અને સફી/તારીખ તથા નામ/ ફોદો
૯૧૬ 13/11/2009 ફકમથી	કોલમ નં.3 માં જણાવેલ જમીનો ભારત સરકારશ્રીના જંગલો બાબતના અધિનિયમ૧૯૧૭થી કલમ-૪ ફેઠળ સરકારશ્રીના જાદેરનામા ક્રમાંક ગવન ૧૦૦૮ (૬૭) જજઝ૧૦૦૮એસ.એક.૪૪-એફ તા.૧૩-૧૨-૦૮ તથા સુધારા ફુકમ નં.૨ ગવન-૧૦૦૮ (૧૭) જજઝ૧૦૦૮એસ.એક.૪૪.એફ તા.૧૩-૦૫-૦૯ થી અવર્ગીકૃત જંગલ તરીકે જાહેર કરેલ છે.જે અંગેનાયબવન સંરક્ષકશ્રીની કચેરી રાજપીપયા પશ્ચિમ વિભાગના પત્ર ક્રમાંક બ-સર્વે.૧૮૮૧૭૧/૦૯-૧૦તા.૧૪-૧૦-૦૯ આધારે નોંધ કરી.	२(१५८),		રદ કુકમ પ્રમાણે નોંધ નઘી. જેથી "રદ" સામેલ મુસદા પ્રમાણે નવી નોંધ પાડવી "રદ" (એચ.એસ.મોંઢ) મામલતદાર વાલીયા

Annexure-4: Details of the Fixed and Mobile Fire Fighting System:

Fire Fighting Systems	Details
Fire Hydrant	135 Nos.
Fire Monitor	65 Nos.
Risers	15 Nos.
Total Fire Extinguisher	306 Nos.
Smoke Detector	53 Nos.
Fire Bucket	60 Nos.
Emergency Siren	3 Nos.
Port Water Reservoir Pump House	5110 KL
Silo Water Reservoir Pump House	1905 KL
Fire Vehicles Deta	ail
Multi-Purpose Fire Tender - Water	10 KL
Multi-Purpose Fire Tender - Foam	1.5 KL
Dry Chemical Powder @ 50 Kgs. (MFT)	2 Nos.
CO ₂ @ 4.5 Kgs. (MFT)	2 Nos.
Fire Tender (01 No.)	12 KL
Fire Water Bowser (01 No.)	7.5 KL
Trailer Pump (01 No.)	1800 LPM

Environment Monitoring Report for the period from Apr-17 to Sep-17

5A. AMBIENT AIR QUALITY MONITORING: -

Table No.: 1.1 - Ambient Air Quality Monitoring Results At Near Marine Building

				Lo	cation-	-1: Nea	r Marine	Buildir	ıg			
Date of Sampling	PM ₁₀	PM _{2.5}	Pb	BaP	As	Ni	СО	C ₆ H ₆	NH ₃	SO ₂	NOx	O ₃
Samping	μg/m³	µg/m³	µg/m³	ng/m³	ng/m³	ng/m³	mg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³
04-04-2017	88.24	44.32	BDL*	BDL*	BDL*	BDL*	1.05	BDL*	50.06	19.14	42.15	18.21
07-04-2017	77.87	38.89	BDL*	BDL*	BDL*	BDL*	1.37	BDL*	32.60	19.31	35.24	24.25
11-04-2017	91.42	45.58	BDL*	BDL*	BDL*	BDL*	0.76	BDL*	49.77	29.38	49.36	29.01
14-04-2017	52.36	26.34	BDL*	BDL*	BDL*	BDL*	0.98	BDL*	28.81	8.82	26.35	18.81
18-04-2017	87.87	47.49	0.60	BDL*	BDL*	BDL*	1.10	BDL*	36.38	26.45	41.24	17.45
21-04-2017	64.74	32.49	BDL*	BDL*	BDL*	BDL*	1.17	BDL*	34.05	15.11	28.99	26.29
25-04-2017	59.36	27.49	BDL*	BDL*	BDL*	BDL*	0.78	BDL*	45.11	8.40	26.34	23.57
28-04-2017	86.33	44.16	BDL*	BDL*	BDL*	BDL*	0.86	BDL*	37.25	18.05	27.14	19.26
02-05-2017	91.42	45.58	BDL*	BDL*	BDL*	BDL*	1.10	BDL*	54.13	28.53	43.24	17.42
05-05-2017	76.55	38.47	BDL*	BDL*	2.50	13.17	1.72	BDL*	30.56	17.10	41.26	21.68
09-05-2017	96.36	48.08	BDL*	BDL*	2.30	13.20	0.70	BDL*	47.15	30.86	47.19	32.40
12-05-2017	48.96	24.67	BDL*	BDL*	BDL*	BDL*	0.94	BDL*	25.32	5.84	23.48	19.17
16-05-2017	87.96	43.32	0.60	BDL*	BDL*	BDL*	1.05	BDL*	34.34	21.69	40.82	19.62
19-05-2017	72.36	34.99	BDL*	BDL*	BDL*	BDL*	1.32	BDL*	29.39	13.76	24.36	26.47
23-05-2017	55.24	28.33	BDL*	BDL*	BDL*	BDL*	0.72	BDL*	45.40	8.34	23.37	22.36
26-05-2017	82.36	42.07	BDL*	BDL*	BDL*	BDL*	0.81	BDL*	43.07	20.44	27.98	17.57
30-05-2017	66.37	30.52	BDL*	BDL*	BDL*	BDL*	1.07	BDL*	21.83	9.51	37.97	21.55
02-06-2017	78.11	48.08	BDL*	BDL*	BDL*	BDL*	0.86	BDL*	51.20	28.60	41.10	16.28
06-06-2017	86.47	35.12	BDL*	BDL*	2.05	13.57	1.20	BDL*	33.75	18.82	39.42	19.58
09-06-2017	92.44	52.68	0.52	BDL*	2.10	12.23	0.71	BDL*	42.04	30.11	46.93	25.43
13-06-2017	48.11	21.32	BDL*	BDL*	BDL*	BDL*	0.84	BDL*	26.89	11.29	26.66	16.21
16-06-2017	64.11	37.08	BDL*	BDL*	BDL*	BDL*	1.26	BDL*	35.18	19.65,	33.26	20.26
20-06-2017	72.36	29.99	BDL*	BDL*	BDL*	BDL*	1.13	BDL*	32.61	14.22	25.65	. 28.81
23-06-2017	54.17	26.24	BDL*	BDL*	BDL*	BDL*	1.24	BDL*	49.48	11.29	26.99	18.91
27-06-2017	42.15	21.25	BDL*	BDL*	BDL*	BDL*	0.74	BDL*	48.91	23.42	29.68	18.68
30-06-2017	60.26	38.47	BDL*	BDL*	BDL*	BDL*	0.81	BDL*	24.03	19.07	38.98	22.61
04-07-2017	94.70	52.43	0.76	BDL*	2.45	11.00	0.93	BDL*	34.85	15.60	35.57	21.61
07-07-2017	79.61	24.55	BDL*	BDL*	BDL*	BDL*	0.98	BDL*	29.61	23.38	30.15	22.59
11-07-2017	84.92	41.61	BDL*	BDL*	BDL*	BDL*	0.64	BDL*	27.45	19.62	33.45	18.31
14-07-2017	70.22	29.54	BDL*	BDL*	BDL*	BDL*	0.48	BDL*	30.54	9.72	27.78	23.60
18-07-2017	56.68	20.48	BDL*	BDL*	BDL*	BDL*	0.40	BDL*	13.57	11.38	23.56	28.58

Authorized Signatory

Page 1 of 42

ulletFSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor

● ISO 14001

OHSAS 18001

● ISO 9001

												A	
21-07-2017	95.32	50.35	0.86	BDL*	2.56	10.88	1.03	BDL*	35.47	26.47	42.40	20.59	
25-07-2017	71.47	36.62	BDL*	BDL*	2.34	BDL*	0.56	BDL*	26.83	12.48	37.34	30.54	
28-07-2017	64.30	31.63	BDL*	BDL*	BDL*	BDL*	0.57	BDL*	20.67	16.40	34.59	25.60	
02-08-2017	69.44	29.13	BDL*	BDL*	BDL*	BDL*	0.71	BDL*	32.54	19.36	32.40	17.76	-
04-08-2017	81.24	37.87	BDL*	BDL*	BDL*	BDL*	0.81	BDL*	34.27	22.50	41.44	22.36	
08-08-2017	86.96	43.28	BDL*	BDL*	BDL*	BDL*	0.65	BDL*	48.67	28.44	45.22	26.46	
11-08-2017	64.12	33.71	BDL*	BDL*	BDL*	BDL*	0.93	BDL*	37.15	8.91	28.96	19.85	
15-08-2017	52.14	26.24	BDL*	BDL*	BDL*	BDL*	0.54	BDL*	29.37	15.28	34.80	19.39	
18-08-2017	93.41	46.66	0.56	BDL*	2.40	12.19	1.17	BDL*	49.24	22.50	47.74	27.37	-
22-08-2017	73.84	36.24	BDL*	BDL*	BDL*	BDL*	1.10	BDL*	45.79	14.01	28.96	18.71	
25-08-2017	61.11	30.41	BDL*	BDL*	BDL*	BDL*	0.55	BDL*	32.54	7.22	31.14	19.62	
29-08-2017	48.77	24.97	BDL*	BDL*	BDL*	BDL*	· 0.60	BDL*	29.08	9.68	41.21	16.84	
01-09-2017	51.27	24.14	BDL*	BDL*	BDL*	BDL*	0.33	BDL*	28.59	9.68 /	33.69	18.46	
05-09-2017	66.34	29.54	BDL*	BDL*	BDL*	BDL*	0.71	BDL*	31.42	15.71	38.46	21.51	
08-09-2017	94.44	55.34	BDL*	BDL*	2.20	13.15	1.18	BDL*	51.24	28.02	48.78	20.58	
12-09-2017	78.96	32.46	BDL*	BDL*	BDL*	BDL*	0.47	BDL*	40.20	14.86	32.45	18.73	
15-09-2017	50.16	26.24	BDL*	BDL*	BDL*	BDL*	0.41	BDL*	24.06	9.34	37.89	21.51	
19-09-2017	45.24	21.66	0.56	BDL*	BDL*	BDL*	1.09	BDL*	33.69	11.46	41.18	25.20	:
22-09-2017	72.36	33.74	BDL*	BDL*	BDL*	BDL*	0.96	BDL*	40.20	12.31	34.60	19.42	
26-09-2017	68.97	30.41	BDL*	BDL*	BDL*	BDL*	0.56	BDL*	28.87	13.59	35.28	22.66	
29-09-2017	56.93	27.88	BDL*	BDL*	BDL*	BDL*	0.63	BDL*	26.33	9.68	27.91	22.15	

Observation: Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-I Dt: 18/11/2009 National Ambient Air Quality Standards, New Delhi , for 24 hourly or 8 hourly or 1 hourly monitored values

BDL*: Below Detection Limit: Ozone as O₃ (µg/m³): 10

BDL*: Below Detection Limit - Lead as Pb (µg/m³): 0.5.

BDL*: Below Detection Limit - Carbon Monoxide as CO (mg/m³): 0.01

BDL*: Below Detection Limit - Ammonia NH₃ (µg/m³): 10 BDL*: Below Detection Limit - Benzene as C_6H_6 (µg/m³): 2

BDL*: Below Detection Limit - Benzo (a) Pyrene (BaP) - Particulate Phase only (ng/m³): 0.5

BDL*: Below Detection Limit - Arsenic as As (ng/m³): 2 BDL*: Below Detection Limit - Nickel as Ni (ng/m³): 10

 Recognised by MoEF, New Delhi Under Authorized Signatory

Authorized Signatory

Act-1986

GPCB approach schedule II auditor ● ISO 14001

OHSAS 18001

● ISO 9001

Page 2 of 42

Table No.: 1.2 - Ambient Air Quality Monitoring Results At Near PMC Building

				. 1	ocatio.	1-2: Ne	ar PMC	Buildin	9			
Date of	PM ₁₀	PM _{2.5}	Pb	BaP	As	Ni	СО	C ₆ H ₆	NH ₃	SO ₂	NOx	O ₃
Sampling		μg/m³	μg/m³	ng/m³	ng/m³	ng/m³	mg/m³	μg/m³	µg/m³	µg/m³	µg/m³	µg/m³
04-04-2017	71.42	35.67	BDL*	BDL*	BDL*	BDL*	1.15	BDL*	37:41	20.36	34.16	20.19
07-04-2017	51.24	25.48	BDL*	BDL*	BDL*	BDL*	1.90	BDL*	30.45	15.37	27.10	21.09
11-04-2017	76.35	37.37	BDL*	BDL*	BDL*	BDL*	0.84	BDL*	29.58	24,10	36.84	24.45
14-04-2017	94.11	47.13	BDL*	BDL*	BDL*	BDL*	1.07	BDL*	43.21	25.35	39.63	25.35
18-04-2017	64.18	32.49	BDL*	BDL*	BDL*	BDL*	1.25	BDL*	41.18	19.53	28.96	22.43
21-04-2017	86.35	44.57	BDL*	BDL*	BDL*	BDL*	0.80	BDL*	25.52	26.59	36.24	30.28
25-04-2017	80.41	42.07	BDL*	BDL*	BDL*	BDL*	0.92	BDL*	29.29	23.27	44.58	16.37
28-04-2017	60.12	31.24	BDL*	BDL*	BDL*	BDL*	1.03	BDL*	23.78	7.89	30.21	24.45
02-05-2017	70.11	35.24	BDL*	BDL*	BDL*	BDL*	1.29	BDL*	36.54	18.99	34.44	18.07
05-05-2017	56.34	28.02	BDL*	BDL*	BDL*	BDL*	1.84	BDL*	27.55	13.21	24.93	24.39
09-05-2017	76.24	38.21	BDL*	BDL*	BDL*	BDL*	1.00	BDL*	29.00	22.71	38.71	21.00
12-05-2017	89.22	45.43	BDL*	BDL*	BDL*	BDL*	1.15	BDL*	50.75	23.53	40.24	25.07
16-05-2017	67.24	31.24	BDL*	BDL*	BDL*	BDL*	0.85	BDL*	37.12	19.40	23.18	22.36
19-05-2017	90.14	44.99	BDL*	BDL*	BDL*	BDL* ~	0.80	BDL*	26.39	29.31	36.41	27.33
23-05-2017	76.41	39.99	BDL*	BDL*	BDL*	BDL*	0.92	BDL*	30.45	20.23	43.19	17.62
26-05-2017	60.41	35.41	BDL*	BDL*	BDL*	BDL*	1.03	BDL*	26.10	9.50	31.38	24.39
30-05-2017	84.24	42.23	BDL*	BDL*	BDL*	BDL*	1.40	BDL*	32.30	22.52	45.65	26.01
02-06-2017	49.41	19.96	BDL*	BDL*	BDL*	BDL*	1.15	BDL*	35.34	19.87	38.95	19.16
06-06-2017	71.77	29.72	BDL*	BDL*	BDL*	BDL*	0.94	BDL*	29.07	14.07	28.79	23.39
09-06-2017	83.22	38.21	BDL*	BDL*	BDL*	BDL*	0.70	BDL*	31.35	23.59	26.00	24.06
13-06-2017	78.96	32.69	BDL*	BDL*	BDL*	BDL*	1.00	BDL*	48.16	26.49	40.29	20.72
16-06-2017	58.44	27.91	BDL*	BDL*	BDL*	BDL*	0.90	BDL*	41.32	24.01	27.01	17.60
20-06-2017	93.24	55.41	0.58	BDL*	2.30	11.41	0.96	BDL*	29.64	27.73	32.14	30.08
23-06-2017	65.21	31.66	BDL*	BDL*	BDL*	BDL*	1.07	BDL*	32.77	21.52	44.31	16.49
27-06-2017	53.11	24.58	BDL*	BDL*	BDL*	BDL*	1.49	BDL*	32.49	7.86	32.70	27.40
30-06-2017	88.85	45.99	BDL*	BDL*	BDL*	BDL*	1.16	BDL*	36.32	21.33	42.11	29.04
04-07-2017	77.59	39.25	BDL*	BDL*	BDL*	BDL*	0.66	BDL*	24.27	12.35	26.30	24.63
07-07-2017	69.49	33.40	BDL*	BDL*	BDL*	BDL*	0.47	BDL*	35.80	19.74	23.75	19.21
11-07-2017	56.70	30.48	BDL*	BDL*	BDL*	BDL* ⋅	0.85	BDL*	17.90	14.78	36.61	27.67
14-07-2017	63.40	24.63	BDL*	BDL*	BDL*	BDL*	0.97	BDL*	21.54	6.56	28.62	30.45
18-07-2017	73.41	29.64	BDL*	BDL*	BDL*	BDL*	0.15	BDL*	27.91	17.66	38.46	18.48
21-07-2017	89.17	48.43	0.72	BDL*	BDL*	10.59	0.74	BDL*	37.62	20.49	25.26	26.15
25-07-2017	95.60	53.44	BDL*	BDL*	BDL*	10.95	0.87	BDL*	23.66	23.64	29.54	25.51
28-07-2017	86.30	45.51	0.58	BDL*	2.46	BDL*	0.70	BDL*	31.25	18.41	37.65	29.33
02-08-2017	68.13	34.65	BDL*	BDL*	BDL*	BDL*	1.00	BDL*	37.39	20.26	26.35	21.33
04-08-2017	71.14	28.81	BDL*	BDL*	BDL*	BDL*	0.82	BDL*	30.31	18.61	29.39	24.22
08-08-2017	57.78	24.22	BDL*	BDL*	BDL*	BDL*	0.58	BDL*	26.34	9.51	26.91	21.77
11-08-2017	77.69	40.08	BDL*	BDL*	BDL*	BDL*	0.76	BDL*	50.42	23.98	37.38	22.66
15-08-2017	64.41	28.74	BDL*	BDL*	BDL*	BDL*	0.70	BDL*	32.57	21.09	28.94	21.77
18-08-2017	46.87	23.75	BDL*	BDL*	BDL*	BDL*	0.66	BDL*	25.49	17.37	31.42	17.77

FSSAI Approved Lab

Recognised by MoEF, New Delhi Under

 GPCB apprved schedule II auditor

● ISO 14001

OHSAS 18001

● ISO 9001

Authorized Signatory

Sec. 12 of Environmental (Protection) Act-1986

Page 3 of 42

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

22-08-2017	92.41	47.91	BDL*	BDL*	BDL*	BDL*	0.90	BDL*	33.99	27.29	47.63	29.55
25-08-2017	82.45	42.07	BDL*	BDL*	BDL*	BDL*	1.15	BDL*	40.22	20.26	46.39	28.44
29-08-2017	94.27	50.10	0.58	BDL*	2.20	11.51	1.26	BDL*	49.57	25.63	49.66	23.55
01-09-2017	42.11	19.21	BDL*	BDL*	BDL*	BDL*	0.46	BDL*	31.19	20.26	29.35	19.59
05-09-2017	78.74	37.99	BDL*	BDL*	BDL*	BDL*	0.78	BDL*	29.79	19.02	36.60	25.45
08-09-2017	80.11	36.74	BDL*	BDL*	BDL*	BDL*	0.50	BDL*	32.58	18.61	35.82	18.92
12-09-2017	67.41	29.64	BDL*	BDL*	BDL*	BDL*	0.81	BDL*	34.53	16.54	41.29	20.72
15-09-2017	73.66	40.41	BDL*	BDL*	BDL*	BDL*	0.84	BDL*	35.36	20.68	24.77	22.97
19-09-2017	51.77	28.74	BDL*	BDL*	BDL*	BDL*	0.31	BDL*	28.68	17.78	35.26	18.69
22-09-2017	53.87	24.58	BDL*	BDL*	BDL*	BDL*	0.65	BDL*	31.19	8.68	36.38	30.40
26-09-2017	95.24	51.24	BDL*	BDL*	2.10	12.52	1.37	BDL*	53,18	24.81	43.74	21.62
29-09-2017	88.37	42.17	0.58	BDL*	BDL*	BDL*	1.25	BDL*	37.87	23.57	37.72	25.90

Observation: Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-I Dt: 18/11/2009 National Ambient Air Quality Standards, New Delhi , for 24 hourly or 8 hourly or 1 hourly monitored values

BDL*: Below Detection Limit: Ozone as O₃ (µg/m³): 10 BDL*: Below Detection Limit - Lead as Pb (µg/m³): 0.5

BDL*: Below Detection Limit - Carbon Monoxide as CO (mg/m³): 0.01

BDL*: Below Detection Limit - Ammonia NH₃ (µg/m³): 10 BDL*: Below Detection Limit - Benzene as C₆H₆ (µg/m³): 2

BDL*: Below Detection Limit - Benzo (a) Pyrene (BaP) - Particulate Phase only (ng/m³): 0.5

BDL*: Below Detection Limit - Arsenic as As (ng/m³): 2 BDL*: Below Detection Limit - Nickel as Ni (ng/m³): 10

FSSAI Approved Lab

Recognised by MoEF, New Delhi Under

 GPCB apprved schedule II auditor ISO 14001

OHSAS 18001

● ISO 9001

Page 4 of 42

Table No.: 1.3 - Ambient Air Quality Monitoring Results At Sub-Station-7B Building

20% L		,		Loc	ation-3	: Sub-S	tation-2	7B Build	ling	······································		
Date of	PM ₁₀	PM _{2.5}	Pb	ВаР	As	Ni	СО	C ₆ H ₆	NH ₃	SO ₂	NOx	O ₃
Sampling	µg/m³	µg/m³	µg/m³	ng/m³	ng/m³	ng/m³	mg/m³	µg/m³	μg/m³	µg/m³	µg/m³	µg/m³
04-04-2017	49.66	24.96	BDL*	BDL*	BDL*	BDL*	0.89	BDL*	29.32	19.09	30.51	24.05
07-04-2017	84.22	42.44	BDL*	BDL*	BDL*	BDL*	0.97	BDL*	42.22	24.61	43.21	19.70
11-04-2017	57.41	28.71	BDL*	BDL*	BDL*	BDL*	0.55	BDL*	45.15	17.40	32.41	21.76
14-04-2017	72.63	35.36	BDL*	BDL*	BDL*	BDL*	0.71	BDL*	36.36	20.79	41.24	21.76
18-04-2017	94.66	51.24	BDL*	BDL*	2.20	13.55	0.69	BDL*	50.14	23.34	36.44	19.47
21-04-2017	66.42	30.83	BDL*	BDL*	BDL*	10.56	0.95	BDL*	38.11	21.21	43.14	17.87
25-04-2017	83.66	39.16	BDL*	BDL*	BDL*	BDL*	1.32	BDL*	34.01	26.31	48.72	19.24
28-04-2017	75.26	37.08	BDL*	BDL*	BDL*	BDL*	1.79	BDL*	29.03	23.76	34.16	21.76
02-05-2017	49.24	24.55	BDL*	BDL*	BDL*	BDL*	0.98	BDL*	26.39	13.07	36.37	23.52
05-05-2017	89.41	44.52	BDL*	BDL*	BDL*	BDL*	. 1.41	BDL*	40.17	20.24	46.21	18.68
09-05-2017	61.24	30.79	BDL*	BDL*	BDL*	BDL*	0.57	BDL*	43.10	18.13	26.42	20.29
12-05-2017	67.14	31.62	BDL*	BDL*	BDL*	·BDL*	0.70	BDL*	31.37	21.08	38.58	21.45
16-05-2017	93.11	45.82	BDL*	BDL*	BDL*	11.21	0.73	BDL*	54.83	27.82	32.39	16.37
19-05-2017	68.25	35.41	BDL*	BDL*	BDL*	BDL*	1.02	BDL*	40.17	22.76	45.22	18.68
23-05-2017	85.24	45.41	BDL*	BDL*	BDL*	BDL*	1.21	BDL*	32.54	31.20	38.36	17.30
26-05-2017	79.55	39.58	BDL*	BDL*	BDL*	BDL*	1.95	BDL*	30.78	17.28	29.41	20.29
30-05-2017	58.69	29.27	BDL*	BDL*	BDL*	BDL*	0.48	BDL*	35.21	20.02	27.11	15.29
02-06-2017	86.21	34.53	BDL*	BDL*	BDL*	BDL*	0.82	BDL*	29.10	15.22	32.50	22.07
06-06-2017	90.74	51.17	BDL*	BDL*	BDL*	BDL*	0.79	BDL*	41.20	22.82	43.21	20.25
09-06-2017	74.22	32.04	BDL*	BDL*	BDL*	BDL*	0.58	BDL*	44.37	20.29	34.41	19.57
13-06-2017	67.52	29.96	BDL*	BDL*	BDL*	BDL*	0.77	BDL*	30.25	24.09	35.43	25.25
16-06-2017	80.44	40.41	BDL*	BDL*	BDL*	11.21	0.80	BDL*	27.08	24.94	30.13	15.24
20-06-2017	58,99	28.74	BDL*	BDL*	BDL*	BDL*	1.05	BDL*	42.07	19.44	44.00	21.39
23-06-2017	70.12	36.24	BDL*	BDL*	BDL*	BDL*	1.11	BDL*	36.88	26.21	39.60	18.43
27-06-2017	74.44	42.07	BDL*	BDL*	BDL*	BDL*.	1.09	BDL*	40.34	15.64	35.32	19.57
30-06-2017	51.24	24.25	BDL*	BDL*	BDL*	BDL*	0.68	BDL*	40.04	23.84	29.01	16.88
04-07-2017	89.13	51.56	0.65	BDL*	2.16	10.34	0.50	BDL*	31.59	19.43	40.16	29.55
07-07-2017	65.40	30.45	BDL*	BDL*	BDL*	BDL*	0.53	BDL*	23.00	21.74	27.62	26.33
11-07-2017	50.77	21.75	0.56	BDL*	BDL*	10.79	0.72	BDL*	19.32	10.38	21.52	24.35
14-07-2017	42.61	16.35	BDL*	BDL*	BDL*	BDL*	0.80	BDL*	26.37	13,41	33.61	17.43
18-07-2017	76.56	25.58	BDL*	BDL*	BDL*	BDL*	0.33	BDL*	29.44	22.59	35.25	20.56
21-07-2017	81.61	52.42	0.61	BDL*	2.34	10.46	0.63	BDL*	38.33	17.40	30.06	30.67
25-07-2017	64.19	31.76	BDL*	BDL*	BDL*	BDL*	0.42	BDL*	35.27	15.74	42.62	23.12
28-07-2017	59.17	29.58	BDL*	BDL*	BDL*	BDL*	0.46	BDL*	42.62	20.58	26.40	18.43
02-08-2017	90.41	45.09	BDL*	BDL*	BDL*	BDL*	0.48	BDL*	51,25	31.55	34.71	28.93
04-08-2017	63.44	28.81	BDL*	BDL*	BDL*	BDL*	0.72	BDL*	29.49	11.36	44.16	19.67
08-08-2017	71.45	32.57	BDL*	BDL*	BDL*	BDL*	0.69	BDL*	43.23	26.50	39.61	17.86
11-08-2017	48.79	25.47	BDL*	BDL*	BDL*	BDL*	0.56	BDL*	34.07	14.30	33.46	23.74
15-08-2017	78.63	39.58	BDL*	BDL*	BDL*	BDL*	0.84	BDL*	46.95	21.45	31.41	24.64
18-08-2017	80.41	42.07	BDL*	BDL*	BDL*	BDL*	0.98	BDL*	49.82	26.50	48.94	24.19

●FSSAI Approved Lab

Approved Lab • Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

Authorized Signatory

 GPCB apprved schedule II auditor ● ISO 14001

● OHSAS 18001

● ISO 9001

Page 5 of 42

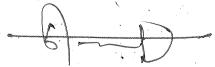
"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

22-08-2017	69.87	33.33	BDL*	BDL*	BDL*	BDL*	0.61	BDL*	40.37	19.77	34.15	20.80
25-08-2017	49.36	26.24	BDL*	BDL*	BDL*	BDL*	0.78	BDL*	24.62	13.46	32.67	16.73
29-08-2017	53.41	29.65	BDL*	BDL*	BDL*	BDL*	0.89	BDL*	27.77	16.35	36.76	17,80
01-09-2017	67.57	28.81	BDL*	BDL*	BDL*	BDL*	0.57	BDL*	42.50	11.36	34.51	24.06
05-09-2017	83.41	45.09	BDL*	BDL*	BDL*	BDL*	. 0.82	BDL*	28.43	21.46	45.23	23.60
08-09-2017	73.69	31.32	BDL*	BDL*	BDL*	BDL*	0.79	BDL*	38.84	14.31	29.66	16.27
12-09-2017	55.36	25.47	BDL*	BDL*	BDL*	·BDL*	0.62	BDL*	29.55	8.41	27.75	22.23
15-09-2017	64.75	31.24	BDL*	BDL*	BDL*	BDL*	0.70	BDL*	31.52	15.57	35.64	18.33
19-09-2017	70.41	34.16	BDL*	BDL*	BDL*	BDL*	0.80	BDL*	42.50	23.56	51.21	23.83
22-09-2017	84.26	43.32	BDL*	BDL*	BDL*	BDL*	1.20	BDL*	42.78	21.88	42.64	27.96
26-09-2017	73.87	35.41	BDL*	BDL*	BDL*	BDL*	0.85	BDL*	36.87	12.62	28.20	18.79
29-09-2017	93.23	49.27	BDL*	BDL*	BDL*	11.65	1.43	BDL*	49.82	25.58	43.31	18.73

Observation: Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-I Dt: 18/11/2009 National Ambient Air Quality Standards, New Delhi , for 24 hourly or 8 hourly or 1 hourly monitored values

BDL*: Below Detection Limit: Ozone as O_3 ($\mu g/m^3$): 10

BDL*: Below Detection Limit - Lead as Pb ($\mu g/m^3$): 0.5


BDL*: Below Detection Limit - Carbon Monoxide as CO (mg/m³): 0.01

BDL*: Below Detection Limit - Ammonia NH₃ (µg/m³): 10

BDL*: Below Detection Limit - Benzene as C_6H_6 (µg/m³): 2

BDL*: Below Detection Limit - Benzo (a) Pyrene (BaP) - Particulate Phase only (ng/m³): 0.5

BDL*: Below Detection Limit - Arsenic as As (ng/m³): 2 BDL*: Below Detection Limit - Nickel as Ni (ng/m³): 10

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Authorized Signatory Sec. 12 of Environmental (Protection) Act-1986

 GPCB apprved schedule II auditor ● ISO 14001

OHSAS 18001

Page 6 of 42

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

Table No.: 1.4 - Ambient Air Quality Monitoring Results At GCPTL Gate

					Loca	ition-4:	GCPTL	Gate		,		
Date of	PM ₁₀	PM _{2.5}	Pb	BaP	As	Ni	CO	C ₆ H ₆	NH ₃	SO ₂	NOx	03
Sampling	µg/m³	µg/m³	µg/m³	ng/m³	ng/m³	ng/m³	mg/m³	µg/m³	μg/m³	µg/m³	µg/m³	µg/m³
04-04-2017	85.24	42.72	BDL*	BDL*	BDL*	BDL*	1.40	BDL*	28.34	23.92	46.33	19.14
07-04-2017	79.36	39.37	BDL*	BDL*	BDL*	BDL*	0.90	BDL*	38.96	23.34	36.99	18.33
11-04-2017	63.44	31.83	BDL*	BDL*	BDL*	BDL*	1.21	BDL*	36.90	13.15	44.36	22.45
14-04-2017	89.34	44.82	BDL*	BDL*	BDL*	BDL*	0.93	BDL*	42.50	25.46	32.51	26.34
18-04-2017	58.41	29.16	BDL*	BDL*	BDL*	BDL*	1.41	BDL*	31.29	16.23	32.78	22.37
21-04-2017	92.36	46.24	BDL*	BDL*	BDL*	BDL*	0.73	BDL*	49.88	28.53	45.32	16.78
25-04-2017	68.74	35.41	BDL*	BDL*	BDL*	BDL*	1.24	BDL*	26.27	15.33	32.66	21.38
28-04-2017	91.22	46.24	BDL*	BDL*	BDL*	10.20	1.48	BDL*	36,31	31.18	50.24	25.37
02-05-2017	85.63	42.72	BDL*	BDL*	BDL*	BDL*	1.42	BDL*	23.91	25.47	52.98	17.18
05-05-2017	75.24	37.70	BDL*	BDL*	BDL*	BDL*	0.88	BDL*	38.96	23.19	32.39	13.38
09-05-2017	67.11	33.93	BDL*	BDL*	BDL*	BDL*	1.16	BDL*	36.01	11.38	41.18	19.37
12-05-2017	83.21	42.72	BDL*	BDL*	BDL*	BDL*	0.94	BDL*	38.96	31.62	29.38	23.06
16-05-2017	58.24	30.41	BDL*	BDL*	BDL*	BDL*	1.57	BDL*	29.81	13.16	26.38	19.50
19-05-2017	73.26	37.91	BDL*	BDL*	BDL*	10.09	0.72	BDL*	50.18	31.30	41.40	13.42
23-05-2017	60.36	31.24	BDL*	BDL*	BDL*	BDL*	1.53	BDL*	26.27	18.19	32.05	19.90
26-05-2017	92.14	46.24	BDL*	BDL*	BDL*	10.65	1.31	BDL*	37.49	35.23	45.41	22.06
30-05-2017	70.15	34.29	BDL*	BDL*	BDL*	BDL*	0.78	BDL*	29.69	21.27	41.37	18.94
02-06-2017	53.16	32.25	BDL*	BDL*	BDL*	BDL*	1.01	BDL*	24.08	28.94	48.96	18.09
06-06-2017	79.12	49.84	BDL*	BDL*	BDL*	BDL*	0.93	BDL*	35.10	25.36	33.85	18.66
09-06-2017	65.24	28.06	BDL*	BDL*	BDL*	BDL*	1.72	BDL*	38.87	12.68	43.62	24.12
13-06-2017	88.24	38.53	BDL*	BDL*	BDL*	BDL*	. 0.55	BDL*	29.30	32.13	30.90	27.08
16-06-2017	71.52	37.49	BDL*	BDL*	BDL*	BDL*	1.03	BDL*	26.69	14.47	25.67	22.45
20-06-2017	82.74	37.08	BDL*	BDL*	BDL*	10.09	0.65	BDL*	49.02	25.45	39.99	18.95
23-06-2017	59.24	29.16	BDL*	BDL*	BDL*	BDL*	1.48	BDL*	27.27	19.51	37.37	21.69
27-06-2017	48.22	21.66	BDL*	BDL*	BDL*	BDL*	0.92	BDL*	39.74	26.38	42.14	23.13
30-06-2017	76.99	42.23	BDL*	BDL*	BDL*	BDL*	0.78	BDL*	34.32	25.09	35.06	19.36
04-07-2017	81.94	46.72	BDL*	BDL*	BDL*	BDL*	0.45	BDL*	27.42	17.48	29.43	28.68
07-07-2017	76.17	39.38	BDL*	BDL*	BDL*	BDL*	0.82	BDL*	17.67	12.70	21.49	24.10
11-07-2017	62.42	37.54	BDL*	BDL*	BDL*	BDL*	0.94	BDL*	10.66	16.55	30.64	21.68
14-07-2017	58.67	26.70	BDL*	BDL*	BDL*	BDL*	0.61	BDL*	14.62	19.74	36.48	26.52
18-07-2017	66.57	22.52	BDL*	BDL*	BDL*	BDL*	0.18	BDL*	23.46	15.66	32.40	30.28
21-07-2017	71.51	42.55	BDL*	BDL*	BDL*	BDL*	0.38	BDL*	32.60	10.45	44.32	23.49
25-07-2017	86.33	50.69	BDL*	BDL*	BDL*	10.39	0.74	BDL*	40.21	21.64	34.17	18.49
28-07-2017	79.30	36.71	BDL*	BDL*	BDL*	BDL*	0.30	BDL*	28.33	14.33	23.59	20.63
02-08-2017	85.26	41.30	BDL*	BDL*	BDL*	BDL*	1.02	BDL*	42.10	29.67	45,12	18.64
04-08-2017	79.88	36.71	BDL*	BDL*	BDL*	BDL*.	0.50	BDL*	36.98	27.82	31.21	23.65
08-08-2017	65.47	31.28	BDL*	BDL*	BDL*	BDL*	1.20	BDL*	41.24	11.62	40.14	19.63
11-08-2017	51.24	28.78	BDL*	BDL*	BDL*	.BDL*	0.64	BDL*	29.01	22.42	28.72	18.52
15-08-2017	60.79	30.41	BDL*	BDL*	BDL*	BDL*	0.97	BDL*	27:59	19.64	26.91	20.89
18-08-2017	73.24	35.41	BDL*	BDL*	BDL*	BDL*	0.77	BDL*	42.38	16.66	44.44	22.61

FSSAI Approved Lab

Approved Lab Recognised by MoEF, New Delhi Under
Sec. 12 of Environmental (Protection) Act-1986

Authorized Signatory

 GPCB apprved schedule II auditor ● ISO 14001

OHSAS 18001

● ISO 9001

Page 7 of 42

						` %						
22-08-2017	70.33	38.74	BDL*	BDL*	BDL*	BDL*	0.52	BDL*	31.29	21.24	39.01	23.95
25-08-2017	55.89	29.58	BDL*	BDL*	BDL*	BDL*	0.85	BDL*	25.60	15.46 [°]	36.97	24.70
29-08-2017	81.14	-38.38	BDL*	BDL*	BDL*	BDL*	0.94	BDL*	36.41	23.74	32.57	21.49
01-09-2017	56.32	26.28	BDL*	BDL*	BDL*	BDL*	1.02	BDL*	35.23	9.61	29.58	20.26
05-09-2017	72.41	27.95	BDL*	BDL*	BDL*	BDL*	0.45	BDL*	30.48	19.93	31.38	21.94
08-09-2017	62.41	30.03	BDL*	BDL*	BDL*	BDL*	0.39	BDL*	29.64	9.55	34.74	19.90
12-09-2017	42.15	21.27	BDL*	BDL*	BDL*	BDL*	0.69	BDL*	24.88	7.89	26.44	17.87
15-09-2017	78.41	41.24	BDL*	BDL*	BDL*	BDL*	0.94	BDL*	29.08	21.32	40.12	19.58
19-09-2017	63.57	28.74	BDL*	BDL*	BDL*	BDL*	0.66	BDL*	48.93	12.50	29.92	20.42
22-09-2017	47.77	25.41	BDL*	BDL*	BDL*	BDL*	0.36	BDL*	28.80	8.33	28.91	26.32
26-09-2017	88.39	46.24	BDL*	BDL*	BDL*	BDL*	0.61	BDL*	27.68	16.30	34.18	18.89
29-09-2017	69.34	31.70	BDL*	BDL*	BDL*	BDL*	1.00	BDL*	29.36	15.00	30.37	25.19

Observation: Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-I Dt: 18/11/2009 National Ambient Air Quality Standards, New Delhi , for 24 hourly or 8 hourly or 1 hourly monitored values

BDL*: Below Detection Limit: Ozone as O₃ (µg/m³): 10

BDL*: Below Detection Limit - Lead as Pb (µg/m³): 0.5

BDL*: Below Detection Limit - Carbon Monoxide as CO (mg/m³): 0.01

BDL*: Below Detection Limit - Ammonia NH₃ (µg/m³): 10 BDL*: Below Detection Limit - Benzene as C_6H_6 (µg/m³): 2

BDL*: Below Detection Limit - Benzo (a) Pyrene (BaP) - Particulate Phase only (ng/m³): 0.5

BDL*: Below Detection Limit - Arsenic as As (ng/m³): 2 BDL*: Below Detection Limit - Nickel as Ni (ng/m³): 10

FSSAI Approved Lab

 Recögnised by MoEF, New Delhi Under Authorized Signatory GPCB apprved schedule II auditor ● ISO 14001

OHSAS 18001

● ISO 9001

Page 8 of 42

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

Table No.: 1.5 - Ambient Air Quality Monitoring Results At Near Silo Porta Cabin

04-04-2017 07-04-2017 11-04-2017 14-04-2017 18-04-2017 21-04-2017 25-04-2017 28-04-2017 02-05-2017	PM ₁₀ μg/m³ 63.41 93.24 83.14 76.24 46.34 73.21	PM _{2.5} μg/m ³ 31.50 47.25 42.14 39.59	Pb µg/m³ BDL* BDL*	ВаР	As	Ni	r Silo Po - CO	C ₆ H ₆	NH ₃	SO ₂	NO _X	O ₃
04-04-2017 07-04-2017 11-04-2017 14-04-2017 18-04-2017 21-04-2017 25-04-2017 28-04-2017 02-05-2017	μg/m ³ 63.41 93.24 83.14 76.24 46.34	µg/m³ 31.50 47.25 42.14	BDL*		na/m³	. 3	}					
04-04-2017 07-04-2017 11-04-2017 14-04-2017 18-04-2017 21-04-2017 25-04-2017 28-04-2017 02-05-2017	63.41 93.24 83.14 76.24 46.34	31.50 .47.25 42.14	BDL*		7.391	ng/m³	mg/m³	µg/m³	µg/m³	μg/m³	µg/m³	
11-04-2017 14-04-2017 18-04-2017 21-04-2017 25-04-2017 28-04-2017 02-05-2017 05-05-2017	83.14 76.24 46.34	42.14	BDL*		BDL*	BDL*	1.08	BDL*	33.25	9.81	28.52	22.61
14-04-2017 18-04-2017 21-04-2017 25-04-2017 28-04-2017 02-05-2017 05-05-2017	76.24 46.34			BDL*	2.10	11.20	· 0.50	BDL*	42.67	28.81	32.51	22.52
18-04-2017 21-04-2017 25-04-2017 28-04-2017 02-05-2017 05-05-2017	46.34	30 E0	BDL*	BDL*	BDL*	BDL*	0.82	BDL*	31.49	28.38	50.21	19.73
21-04-2017 25-04-2017 28-04-2017 02-05-2017 05-05-2017		טש.סש	BDL*	BDL*	BDL*	BDL*	0.85	BDL*	39.73	16.34	28.66	17.41
25-04-2017 28-04-2017 02-05-2017 05-05-2017	73.21	22.91	BDL*	BDL*	BDL*	BDL*	0.94	BDL*	28.55	9.46	29.75	16.25
28-04-2017 02-05-2017 05-05-2017		35.41	BDL*	BDL*	BDL*	BDL*	0.48	BDL*	38.55	16.34	36.96	20.20
02-05-2017 05-05-2017	52.41	26.24	BDL*	BDL*	BDL*	BDL*	1.13	BDL*	23.54	12.47	27.41	24.15
05-05-2017	65.24	32.49	BDL*	BDL*	BDL*	BDL*	0.46	BDL*	31.49	18.49	36.66	17.88
	63.24	31.50	BDL*	BDL*	BDL*	BDL*	1.05	BDL*	28.55	9.74	28.41	19.51
09-05-2017	92.33	45.97	BDL*	BDL*	BDL*	BDL*	0.49	BDL*	43.26	25.21	36.40	18.47
	84.25	44.27	BDL*	BDL*	BDL*	BDL*	0.90	BDL*	40.32	26.49	50.27	25.25
12-05-2017	74.24	38.31	BDL*	BDL*	BDL*	BDL*	0.84	BDL*	42.08	13.25	32.62	17.30
16-05-2017	43.21	22.50	BDL*	BDL*	BDL*	BDL*	0.87	BDL*	32.37	8.55	34.84	17.30
19-05-2017	66.41	29.99	BDL*	BDL*	BDL*	BDL*	0.50	BDL*	32.37	17.95	29.41	17.30
23-05-2017	55.78	29.16	BDL*	BDL*	BDL*	BDL*	1.04	BDL*	20.31	10.26	26.41	16.83
26-05-2017	72.16	34.99	BDL*	BDL*	BDL*	BDL*	0.52	BDL*	29.13	16.67	36.29	17.53
30-05-2017	84.21	43.32	BDL*	BDL*	BDL*	BDL*∿	1.18	BDL*	38.42	30.86	48.94	21.45
02-06-2017	67.18	29.37	BDL*	BDL*	BDL*	BDL*	1.04	BDL*	27.19	9.77	29.67	20.16
06-06-2017	54.22	32.78	BDL*	BDL*	BDL*	BDL*	0.54	BDL*	48.88	26.56	40.20	19.60
09-06-2017	80.74	33.63	BDL*	BDL*	BDL*	BDL*	0.76	BDL*	42.22	29.13	38.73	17.76
13-06-2017	60.34	29.80	BDL*	BDL*	BDL*	BDL*	0.87	BDL*	43.38	15.42	34.20	18.91
16-06-2017	89.34	41.24	BDL*	BDL*	BDL*	BDL*	1.37	BDL*	37.31	10.28	39.64	19.37
20-06-2017	76.39	36.66	BDL*	BDL*	BDL*	BDL*	0.46	BDL*	34.99	18.85	31.37	16.37
23-06-2017	49.22	32.08	BDL*	BDL*	BDL*	BDL*	1.02	BDL*	29.50	12.42	29.33	20.29
	70.41	28.33	BDL*	BDL*	BDL*	BDL*	0.60	BDL*	30.08	16.28	40.09	16.37
30-06-2017	71.45	34.16	BDL*	BDL*	BDL*	BDL*	0.57	BDL*	37.75	28.44	43.23	22.28
	64.09	33.65	BDL*	BDL*	BDL*	BDL*	0.29	BDL*	41.53	22.74	34.50	26.38
07-07-2017	93.50	42.37	0.68	BDL*	2.54	10.53	1.08	BDL*	30.76	8.38	38.53	20.28
11-07-2017	69.58	36.55	BDL*	BDL*	BDL*	BDL*	0.86	BDL*	13.84	5.71	16.47	28.46
	76.32	30.74	BDL*	BDL*	BDL*	BDL*	0.44	BDL*	18.15	11.48	20.56	25.50
18-07-2017	55.37	18.69	BDL*	BDL*	BDL*	BDL*	0.36	BDL*	40.61	9.67	25.37	21.58
21-07-2017	62.41	34.48	BDL*	BDL*	BDL*	BDL*	0.22	BDL*	23.38	13.71	36.73	19.65
25-07-2017	79.52	45.69	BDL*	BDL*	BDL*	BDL*	0.31	BDL*	28.30	16.47	27.27	27.38
	82.40	48.60	BDL*	BDL*	2.31	BDL*	0.68	BDL*	35.38	24.73	21.15	24.59
	57.88	29.91	BDL*	BDL*	BDL*	BDL*	0.45	BDL*	26.42	19.43	31.74	22.45
	95.24	46.52	BDL*	BDL*	2.10	11.23	1.37	BDL*	51.12	29.83	35.17	20.38
	75.27	37.80	BDL*	BDL*	BDL*	BDL*	0.42	BDL*	46.24	23.44	36.08	18.32
	84.11	40.71	BDL*	BDL*	BDL*	BDL*	0.80	BDL*	44.23	31.11	36.88	19.70
	72.42	35.41	BDL*	BDL*	BDL*	BDL*	1.08	BDL*	40.21	24.72	45.22	23.59
	65.89	32.91	BDL*	BDL*	BDL*	BDL*	0.44	BDL*	33.32	8.52	26.38	18.32

FSSAI Approved Lab

Approved Lab Recognised by MoEF, New Delhi Under
Sec. 12 of Environmental (Protection) Act-1986

Authorized Signatory

 GPCB apprved schedule II auditor ● ISO 14001

OHSAS 18001 ● ISO 9001.

Page 9 of 42

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

22-08-2017	76.38	43.32	BDL*	BDL*	BDL*	BDL*	0.73	BDL*	44.52	16.62	25.46	26.79
25-08-2017	89.52	51.24	BDL*	BDL*	BDL*	BDL*	0.74	BDL*	45.67	23.87	42.13	29.54
29-08-2017	60.27	29.99	BDL*	BDL*	BDL*	BDL*	0.57	BDL*	26.71	10.52	44.30	20.12
01-09-2017	63.21	32.40	BDL*	BDL*	·BDL*	BDL*	0.32	BDL*	24.85	19.44	38.70	21.37
05-09-2017	60.23	30.32	BDL*	BDL*	BDL*	BDL*	0.76	BDL*	35.29	8.52	35.87	17.88
08-09-2017	86.41	48.18	BDL*	BDL*	BDL*	BDL*	1.01	BDL*	41.22	17.90	31.12	23.68
12-09-2017	72.74	35.31	BDL*	BDL*	BDL*	BDL*	0.87	BDL*	43.76	19.61	34.74	18.34
15-09-2017	57.87	29.58	BDL*	BDL*	BDL*	BDL*	0.54	BDL*	36.70	12.79	38.92	23.68
19-09-2017	75.82	34.99	BDL*	BDL*	BDL*	BDL*	0.92	BDL*	25.69	9.80	22.63	19.27
22-09-2017	67.87	31.66	BDL*	BDL*	BDL*	BDL*	. 0.60	BDL*	48.28	13.64	29.87	17.41
26-09-2017	90.24	39.58	BDL*	BDL*	BDL*	10.97	1.24	BDL*	43.20	26.85	49.56	25.77
29-09-2017	71.63	37.08	BDL*	BDL*	BDL*	BDL*	0.48	BDL*	36.14	11.78	45.26	20.16

Observation: Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-I Dt: 18/11/2009 National Ambient Air Quality Standards, New Delhi, for 24 hourly or 8 hourly or 1 hourly monitored values

Note:

BDL*: Below Detection Limit: Ozone as O_3 ($\mu g/m_3^3$): 10

BDL*: Below Detection Limit - Lead as Pb (μ g/m³): 0.5

BDL*: Below Detection Limit - Carbon Monoxide as CO (mg/m³): 0.01

BDL*: Below Detection Limit - Ammonia NH₃ (μ g/m³): 10 BDL*: Below Detection Limit - Benzene as C₆H₆ (μ g/m³): 2

BDL*: Below Detection Limit - Benzo (a) Pyrene (BaP) - Particulate Phase only (ng/m³): 0.5

BDL*: Below Detection Limit - Arsenic as As (ng/m³): 2 BDL*: Below Detection Limit - Nickel as Ni (ng/m³): 10

FSSAI Approved Lab

Recognised by MoEF, New Delhi Under

GPCB apprved schedule II auditor

● ISO 14001

OHSAS 18001

● ISO 9001

Page 10 of 42

Table No.: 1.6 - Ambient Air Quality Monitoring Results At S&S Entry Gate

					Locati	on-6: S	&S Entr	y Gate				* .
Date of	PM ₁₀	PM _{2.5}	Pb	BaP	As	Ni	CO	C ₆ H ₆	NH ₃	SO ₂	NOx	O ₃
Sampling -	μg/m³		µg/m³	ng/m³	ng/m³	ng/m³	mg/m³	µg/m³	µg/m³	µg/m³	μg/m³	μg/m³
04-04-2017	59.63	29.70	BDL*	BDL*	BDL*	BDL*	0.70	BDL*	32.23	9.67	23.66	19.64
07-04-2017	66.54	33.04	BDL*	BDL*	BDL*	BDL*	1.20	BDL*	29.01	19.51	38.95	25.41
11-04-2017	87.24	45.17	BDL*	BDL*	BDL*	BDL*	1.49	BDL*	44.25	31.38	54.11	20.38
14-04-2017	82.36	43.08	BDL*	BDL*	BDL*	BDL*	0.63	BDL*	32.53	26.29	34.51	24.04
18-04-2017	79.66	39.99	BDL*	BDL*	BDL*	BDL*	0.56	BDL*	43.08	11.45	35.21	24.50
21-04-2017	52.22	29.16	0.62	BDL*	BDL*	BDL*	0.61	BDL*	30.18	6.79	30.27	23.58
25-04-2017	71.26	41.24	BDL*	BDL*	BDL*	BDL*	0.96	BDL*	43.37	25.44	33.69	22.44
28-04-2017	79.42	36.66	BDL*	BDL*	BDL*	BDL*	0.57	BDL*	44.54	21.63	42.12	23.81
02-05-2017	59.41	29.70	BDL*	BDL*	BDL*	BDL*	0.69	BDL*	33.41	9.61	19.12	18.86
05-05-2017	67.12	33.46	BDL*	BDL*	BDL*	BDL*	1.27	BDL*	24.91	17.28	29.06	25.36
09-05-2017	92.11	46.43	BDL*	BDL*	2.00	11.21	1.39	BDL*	38.97	34.55	48.29	26.28
12-05-2017	80.42	40.15	BDL*	BDL*	BDL*	BDL*	0.66	BDL*	35.17	26.12	34.25	28.58
16-05-2017	73.24	35.41	BDL*	BDL*	BDL*	BDL*	0.55	BDL*	47.18	11.38	40.55	26.51
19-05-2017	43.26	24.16	0.62	BDL*	BDL*	BDL*	0.60	BDL*	36.34	6.32	34.70	22.13
23-05-2017	90.24	42.49	BDL*	BDL*	BDL*	BDL*	[~] 0.89	BDL*	46.89	24.44	30.17	23.51
26-05-2017	79.36	40.41	BDL*	BDL*	BDL*	BDL*	0.61	BDL*	43.37	18.54	40.22	16.37
30-05-2017	94.22	47.49	BDL*	BDL*	2.30	11.28	1.00	BDL*	49.48	34.20	55.31	24.41
02-06-2017	70.42	31.37	BDL*	BDL*	BDL*	BDL*	0.56	BDL*	30.24	9.63	21.43	19.51
06-06-2017	66.24	30.11	BDL*	BDL*	BDL*	BDL*	0.97	BDL*	28.22	16.48	31.58	21.15
09-06-2017	85.44	35.97	BDL*	BDL*	BDL*	11.21	0.88	BDL*	34.27	32.11	50.18	23.65
13-06-2017	74.88	38.90	BDL*	BDL*	BDL*	BDL*	0.66	BDL*	38.59	27.04	41.16	25.69
16-06-2017	51.25	25.83	BDL*	BDL*	BDL*	BDL*	0.63	BDL*	42.62	12.25	42.18	24.79
20-06-2017	80.42	41.24	0.62	BDL*	BDL*	BDL*	0.64	BDL*	40.32	10.14	29.32	24.10
23-06-2017	43.33	26.24	BDL*	BDL*	BDL*	BDL*	0.85	BDL*	50.11	25.77	31.24	25.69
27-06-2017	60.42	33.33	BDL*	BDL*	BDL*	BDL*	0.89	BDL*	43.20	20.28	36.20	20.47
30-06-2017	90.42	49.99	BDL*	BDL*	BDL*	BDL*	0.98	BDL*	46.33	30.11	50.29	25.21
04-07-2017	71.53	37.64	BDL*	BDL*	BDL*	BDL*	0.71	BDL*	36.50	14.46	23.42	30.27
07-07-2017	57.69	27.60	BDL*	BDL*	BDL*	BDL*	0.41	BDL*	25.76	10.43	34.55	28.51
11-07-2017	78.49	44.74	BDL*	BDL*	BDL*	10.54	0.49	BDL*	21.47	8.72	19.64	22.70
14-07-2017	67.40	32.62	BDL*	BDL*	BDL*	BDL*	. 0.57	BDL*	34.64	17.42	25.65	20.45
18-07-2017	49.08	15.47	BDL*	BDL*	BDL*	BDL*	0.24	BDL*	18.45	13.74	27.52	27.51
21-07-2017	76.42	40.56	BDL*	BDL*	BDL*	BDL*	0.52	BDL*	29.44	23.72	33.26	25.84
25-07-2017	81.19	39.73	0.63	BDL*	2.45	10.79	0.69	BDL*	31.59	19.50	24.19	29.41
28-07-2017	90.49	52.69	BDL*	BDL*	2.64	10.49	0.39	BDL*	39.26	26.38	42.05	26.81
	78.96	29.88	BDL*	BDL*	BDL*	BDL*	0.62	BDL*	42.38	19.19	22.43	16.34
	53.44	25.73	BDL*	BDL*	BDL*	BDL*	0.79	BDL*	29.21	16.41	30.74	25.32
	61.27	30.30	BDL*	BDL*	BDL*	BDL*	0.41	BDL*	29.78	8.84	42.35	20.12
	90.27	49.81	BDL*	BDL*	BDL*	10.44	0.63	BDL*	52.40	33.24	42.46	26.45
	47.25	23.33	BDL*	BDL*	BDL*	BDL*	0.47	BDL*	28.64	13.46	36.20	18.54
	70.24	34.16	BDL*	BDL*	BDL*	BDL*	0.49	BDL*	40.38	11.36	30.40	25.55

FSSAI Approved Lab

Approved Lab Recognised by MoEF, New Delhi Under

Authorized Signatory

Authorized Recognised by MoEF, New Delhi Under

Authorized Signatory

• GPCB apprved schedule II auditor

OHSAS 18001 ● ISO 14001

● ISO 9001

Page 11 of 42

											·	-
22-08-2017	84.27	42.07	BDL*	BDL*	BDL*	BDL*	0.40	BDL*	45.24	27.35	32.44	20.80
25-08-2017	66.87	34.99	BDL*	BDL*	BDL*	BDL*	0.86	BDL*	32.36	17.67	34.15	18.77
29-08-2017	76.82	39.99	BDL*	BDL*	BDL*	BDL*	1.01	BDL*	41.24	14.68	40.19	23.44
01-09-2017	73.21	40.26	BDL*	BDL*	BDL*	BDL*	0.58	BDL*	40.25	19.19	34.52	17.02
05-09-2017	91.24	51.05	BDL*	BDL*	BDL*	10.08	1.15	BDL*	42.23	23.99	45.92	23.61
08-09-2017	57.41	26.98	BDL*	BDL*	BDL*	BDL*	0.42	BDL*	27.02	10.10	28.77	25.44
12-09-2017	61.42	32.79	BDL*	BDL*	BDL*	BDL*	0.53	BDL*	30.40	7.15	30.23	24.07
15-09-2017	81.24	36.66	BDL*	BDL*	BDL*	BDL*	0.38	BDL*	32.37	25.25	45.58	19.71
19-09-2017	59.27	29.16	BDL*	BDL*	BDL*	BDL*	0.64	BDL*	35.19	10.94	31.47	24.75
22-09-2017	88.74	45.82	BDL*	BDL*	BDL*	BDL*	0.34	BDL*	50.11	24.83	43.21	21.31
26-09-2017	78.57	31.66	BDL*	BDL*	BDL*	BDL* "	° 0.68	BDL*	31.25	19.36	36.89	17.19
29-09-2017	48.75	29.16	BDL*	BDL*	BDL*	BDL*	0.72	BDL*	24.49	6.29 ′	27.98	26.27

Observation: Above given Result are within the norms Specified Limit as per CPCB Notification NoB-29016/20/90/PCI-I Dt: 18/11/2009 National Ambient Air Quality Standards, New Delhi , for 24 hourly or 8 hourly or 1 hourly monitored values

BDL*: Below Detection Limit: Ozone as O_3 ($\mu g/m^3$): 10 BDL*: Below Detection Limit - Lead as Pb (µg/m³): 0.5

BDL*: Below Detection Limit - Carbon Monoxide as CO (mg/m³): 0.01

BDL*: Below Detection Limit - Ammonia NH₃ (µg/m³): 10 BDL*: Below Detection Limit - Benzene as C_6H_6 ($\mu g/m^3$): 2

BDL*: Below Detection Limit - Benzo (a) Pyrene (BaP) - Particulate Phase only (ng/m³): 0.5

BDL*: Below Detection Limit - Arsenic as As (ng/m³): 2 BDL*: Below Detection Limit - Nickel as Ni (ng/m³): 10

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Authorized Signatory

Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor

● ISO 14001

OHSAS 18001

● ISO 9001

Page 12 of 42

5B. GROUND WATER LEVEL & QUALITY ANALYSIS (PIEZOMETERS) MONITORING: -Table - 1 Ground Water Level & Quality Analysis (Piezometers) Results for the period: April-2017 to September-2017:-

5B.1 Near Sub Station-7B

S. No.	Parameter	Unit	Near Sub Station-78	Near Sub Station-7B	Near Sub Station-78	Near Sub Station-7B	Near Sub Station-78	Near Sub Station-78
			Apr-17	May-17	Jun-17	Jul-17	Aug-17	Sep-17
1	Temperature	°C	29	29	30	29	28	28
2	рН	15 TV	8.03	7.26	7.93	8.52	7.88	8.17
3	Total Dissolved Solids	mg/L	1282	1212	1596	1018	1032	1206
4	Salinity	ppt	0.50	0.259	0.478	0.40	0.235	0.374
5	Chloride as Cl	mg/L	282	143	264	224	127	206
6 .	Depth of Water Level from Ground Level	meter	2.60	2.80	3.2	3.2	2.4	2.1
7	Status of Tide**	A04 IPM	Low Tide	Low Tide	Low Tide	High Tide	High Tide	Low Tide

5B.2 Near QHSE Office

S. No.	Parameter	Unit	Near QHSE Office					
			Apr-17	May-17	Jun-17	Jul-17	Aug-17	Sep-17
1	Temperature	°C	30	30	30	28	29	29
2	рН		7.91	7.62	7.62	7.64	8.55	7.77
3	Total Dissolved Solids	mg/L	1120	1054	1054	1246	1036	1086
4	Salinity	ppt	0.44	0.507	0.511	0.383	0.327	0.475
5	Chloride as Cl	mg/L	246	281	278	212	177	264
6	Depth of Water Level from Ground Level	meter	2.40	2.2	2.2	3.0	2.6	2.3
7	Status of Tide**		Low Tide	Low Tide	Low Tide	High Tide	High Tide	Low Tide

FSSAI Approved Lab

Approved Lab Recognised by MoEF, New Delhi Under
Sec. 12 of Environmental (Protection) Act-1986

Authorized Signatory

• GPCB apprved schedule II auditor

● ISO 14001

OHSAS 18001

● ISO 9001

Page 13 of 42

5C. SEA WATER (SURFACE & BOTTOM) QUALITY ANALYSIS MONITORING:-

Table No.: 5C.1 - Sea Water (Surface & Bottom) Quality Analysis Results of sea water south side for the period: April 2017 to September 2017:-

			~~****	RESULTS OF SEA WATER QUALITY ANALYSIS SEA WATER SOUTH SIDE										
S.	TEST	UNIT	APF	R-17	r	Y-17	T	1-17		17	T	G-17	SEP	T-17
NO.	PARAMETERS		Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom
1	pH		7.81	8.01	8.12	8.18	8.35	8.43	7.22	8.25	8.17	8.23	8.26	8.36
- 2	Temperature	°C	29	28	29	28	28	, 27	29	28	29	28	28	30
3	Total Suspended Solids	mg/L	270	350	226	282	430	258	278	362	308	/ 400	378	472
4	BOD (3 Days @ 27 °C)	mg/L	6	4	6	4	6	3	7	6	8	4	8	4
5	Dissolved Oxygen	mg/L	5.3	4.7	5.2	4.8	6	5.4	5.7	4.5	5.3	4.6	5.78	4.68
6	Salinity	ppt	36.8	37.8	37.6	38.4	35.5	35.8	35.6	36.6	32.8	33.4	38.8	39.4
7	Oil & Grease	mg/L	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	8DL*	BDL*	BDL*	BDL*	BDL*
8	Nitrate as NO ₃	µmole /L	0.426	0.6	0.433	0.6	0.28	. 0.36	0.3	0.54	0.27	0.31	0.53	0.7
9	Nitrite as NO₂	mg/L	0.024	0.013	0.027	0.013	0.019	0.03	0.036	0.017	0.03	0.018	0.028	0.048
10	Ammonical Nitrogenas NH ₃	mg/L	0.581	0.487	0.56	0.72	0.33	0.42	0.632	0.408	0.49	0.63	0.29	0.62
11	Phosphates as	mg/L	0.404	0.497	0.094	0.116	0.118	0.156	0.462	0.43	0.06	0.065	0.59	0.64
12	Total Nitrogen	mg/L	1.031	1.1	1.02	1.335	0.629	0.81	0.968	0.965	0.792	0,958	0.868	1.345
13	Petroleum Hydrocarbon	μg/L	BDL*	BDL*	10.5	BDL*	12.2	BDL*	BDL*	BDL*	11.8	BDL*	10.8	BDL*
14	Total Dissolved Solids	mg/L	37840	39180	43820	44620	42910	43440	38360	38960	48370	39110	34460	35040
15	COD	mg/L	22	18	22	12	18	10	20	16.7	24	14	24	18
16	Oxidisable Particular	%	0.55	0.24	0.52	0.16	0.42	0.18	0.45	0.14	0.23	0.13	0.46	0.16
A	Organic Carbon Flora and Faun	ia						٠,						
	Primary	mgC/					T	~ ~	2.40			T	4. ==	0.54
17.1	Productivity	L/day	1.08	0.09	1.8	0.54	0.98	0.64	2.68	1.16	0.23	0.09	1.57	0.54
В	Phytoplankton													
8.1	Chlorophyll	mg/m	1.2	0.454	. 2.22	0.398	2.1	0.5	1.4	0.08	1.2	0.454	1.2	0.18
8.2	Phaeophytin	mg/m	0.74	1.38	BDL*	1.52	0.6	1.3	0.7	1.4	0.74	1.38	0.66	1.64
8.3	Cell Count	Unit x 10 ³ /L	162	11	170	30	152	, 62	186	22_	162	11	125	8
18.4	Name of Group Number and name of group species of each group		Bacillari ophyce ae Asterio nella sp. Biddulp hia sp. Navicul a sp. Nitzschi a sp. Thailasi osira sp. Surirell a sp. Cymbell a sp. Coscino discus sp. Melosir a sp. Melosir a sp.	Bacillari ophyce ae Asterio nella sp. Biddulp hia sp. Chea Bacillari ophyce ae Rhizoso lenia sp. Amphor a sp. Navicul a sp. tocerou s sp. Pleurosi gma sp. Pinnula ria sp.	Bacillari ophyce ae Coscino discus sp. Synedr a sp. Cymbell a sp. Rhizoso lenia sp. Navicul a sp.	Bacillari ophyce ae Melosir a sp. Pinnula ria sp. Fragillar ia sp.	Bacillari ophyce ae Navicul a sp. Coscino discus sp. Rhizoso lenia sp. Synedr a sp. Thallasi onema sp Cymbeli a sp. Asterio nella sp Melosir a sp. Pinnula ria sp. Melosir	Bacillari ophyce ae Melosir a sp. Fragillar ia sp. Gyrosig ma sp. Amphip rora sp.	Bacillari ophyce ae Nitzschi a sp Thallasi osira sp. Biddulp hia sp. Navicul a sp. Asterio nella sp. Coscino discus sp. Surirell a sp. Melosir a sp. cymbeli	Bacillari ophyce ae Amphip rora sp. Navicul a sp Rhizoso lenia sp. 	Bacillari ophyce ae Asterio nella sp. Biddulp hia sp. Navicul a sp. Nitzschi a sp. Thallasi osira sp. Skeleto nema sp. Cyclotel la sp. Coscino discus sp. Melosir a sp.	Bacillari ophyce ae Fragillar ia sp. Melosir a sp. Nitzschi a sp. 	Bacillari ophyce ae Navicul a sp. Thallasi osira sp Nitzschi a sp. Coscino discus sp. Rhizoso lenia sp. Cyclotel la sp. Pinnula ria sp.	Bacillai ophyco ae Navicu a sp. Melosi a sp.

FSSAI Approved Las

Approved Las Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

Authorized Signatory

GPCB apprved

● ISO 14001 OHSAS 18001

● ISO .9001

schedule II auditor

Page 14 of 42

				lenia sp. Synedr a sp. 'Cyclotel la sp. Fragillar ia sp.			Cyanop hyceae Microcy stis sp.				onema sp. Amphip rora sp.			
<u>C</u>	Zooplanktons	·····		r	·					<u></u>			T	r
19.1	Abundance (Population)	no/m²	120	17	210	74	156	65	160	27	140	25	100	21
19.2	Name of Group Number and name of group species of each group		Copepo ds Ostraco ds Nemato des Forami niferans Bivalve s	Gastrop ods 	Polycha ete worms Mysids Bivalves	Bivalve s Gastrop ods 	Copepo ds Gastrop ods Crustac eans Bivalves Ostraco ds	Polycha etes Gastrop ods	Nemato des Copepo ds Bivalve s Ostraco ds Forami niferans	Gastrop ods 	Polycha etes Worms Nemato des Crustac eans Mysids Gastrop ods	Gastrop ods 	Polycha etes Worms Nemato des Crustac eans Gastrop ods	Polycha etes
19.3	Total Biomass	ml/10 0 m ³	143	1.24	159	20.6	194	√ 32.4	183	2.64	153	2.34	132	1.29
D	Microbiologica		neters						·			, /		
20.1	Total Bacterial Count	CFU/ ml	1430	1130	1580	1370	1480	1290	1560	1236	1450	1770	1820	1460
20.2	Total Coliform	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
20.3	E.coli	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
20.4	Enterococcus species	/mi	Absent	Absent	Ábsent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
20.5	Salmonella species	-/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
20.6	Shigella species	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
20.7	Vibrio species	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

BDL* - Below Detection Limit

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Water.

●FSSAI Approved Lab

• Recognised by MoEF, New Delhi Under Authorized Signatory

Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor ● ISO 14001

OHSAS 18001

● ISO 9001

Page 15 of 42

Table No.: 5C.2 - Sea Water (Surface & Bottom) Quality Analysis Results of Sea Water North Side for the period: April 2017 to September 2017:-

~	AND THE REAL PROPERTY.				RESULTS OF SEA WATER QUALITY ANALYSIS NORTH SIDE									
S. NO.	TEST PARAMETERS	UNIT	APF	R-17	MA	Y-17		V-17		L-17	7	G-17	SEPT-17	
10.	PARAMETERS		Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom
1	pH		8.41	8,48	8.22	8.37	8.21	8.45	8.24	8.32	8.12	8.23	8.14	8.6
2	Temperature	°C	28	27	30	29	28	<u>→ 27</u>	29	28	30	29	32	30
3	Total Suspended Solids	mg/L	410	480	378	478	312	348	228	292	290	340	228	286
4	BOD (3 Days @ 27 °C)	mg/L	. 5	3	6	4	8	5	6.6	4.2	6	3	8	6
5	Dissolved Oxygen	mg/L	5.5	4.8	. 5.8	4.6	5.6	4.2	5	4.62	5.6	4.8	5.6	4.8
6 7	Salinity Oil & Grease	ppt ma/f	37.4 BDL*	38.7	38.6	39.4	38.1	39.3	38	39.08	34.2	35.4	37.4	38.5
		mg/L µmole		BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*
8	Nitrate as NO ₃	/L	0.382	0.459	0.51	0.696	0.275	0.336	0.606	0.506	0.55	0.74	0.43	0.79
9	Nitrite as NO ₂	mg/L	0.035	0.021	0.044	0.026	0.016	0.021	0.02	0.014	0.036	0.023	0.028	0.013
0	Ammonical Nitrogenas NH ₃	mg/L	0.317	0.392	0.299	0.616	0.298	0.355	0.084	0.614	0.42	0.47	0.58	0.73
11	Phosphates as PO ₄	mg/L	0.479	0.556	0.592	0.642	0.108	.0.117	1.071	0.102	0.3	0.33	0.098	0.117
2	Total Nitrogen Petroleum	mg/L	0.734	0.872	0.836	1.356	0.598	0.712	0.71	1.134	1.038	1.233	1.039	1.532
	Hydrocarbon Total Dissolved	µg/L	12.4	BDL*	10.2	BDL*	BDL*	BDL*	12.7	BDL*	10.8	BDL*	10.6	BDL*
14	Solids	mg/L	43800	45610	44510	45130	48400	49600	43560	44430	36910	38420	33720	34520
5	COD	mg/L	21.4	13	22	14	21	13	24.8	16	22	12	22	16
6	Oxidisable Particular Organic Carbon	%	0.26	0.12	0.47	0.18	0.44	., 0.563	0.5	0.19	0.44	0.21	0.52	0.16
A	Flora and Faun	a ·	L				l	***************************************		L	<u> </u>	. /	L	
7.1	Primary Productivity	mgC/ L/day	1.82	0.9	1.71	0.675	1.71	0.563	1.16	0.168	1.2	0.22	1.4	0.67
<u>B</u>	Phytoplankton	ma/m	1									· · · · · · · · · · · · · · · · · · ·	r	
1.1		mg/m	1.89	0.668	1.49	0.561	1.73	0.561	1.8	0.66	1.3	0.74	1.22	. 0.2
		mg/m Unit x	0.05	1.16	0.45	1.27	0.19	1.38	0.64	1.1	0.62	1.2	0.7.	1.65
.3	Cell Count	10 ³ /L	176 Bacillari	42	190	80	169	· 35	164	10	174	8	132	6
.4	Name of Group Number and name of group species of each group		ophyce ae Navicul a sp. Coscino discus sp. Rhizoso lenia sp. Synedr a sp. Thallasi osira sp. Cymbell a sp. Asterio nella sp. Melosir a sp. Pinnula ria sp. Cyanop hyceae Microcy	Bacillari ophyce ae Melosir a sp. Fragillar ia sp. Gyrosig ma sp. Amphor a sp.	Bacillari ophyce ae Nitzschi a sp. Rhizoso lenia sp. Cheatoc erous sp. Fragillar ia sp. Synedr a sp.	Bacillari ophyce ae Navicul a sp. Melosir a sp. Nitzschi a sp.	Bacillari ophyce ae Asterio nella sp. Biddulp hia sp. Cheatoc erous sp. Pleurosi gma sp. Pinnula ria sp. Rhizoso lenia sp. Synedr a sp. Cyclotel la sp. Fragillar ia sp.	Bacillari ophyce ae Navicul a sp. Melosir a sp. Nitzschi a sp. Fragillar ia sp.	Bacillari ophyce ae Melosir a sp. Biddulp hia sp. Navicul a sp. Asterio nella sp. Pinnula ria sp. Amphip rora sp. Cyclotel la sp. Skeleto nema sp.	Bacillari ophyce ae Biddulp hia sp. Navicul a sp. 	Bacillari ophyce ae Nitzschi a sp. Navicul a sp. Melosir a sp. Skeleto nema sp. Cyclotel la sp. Pinnula ria sp. Coscino discus sp. Rhizoso lenia sp.	Bacillari ophyce ae Melosir a sp. Nitzschi a sp. 	Bacillari ophyce ae Nitzschi a sp. Thailasi onema sp. Cyclotel la sp. Navicul a sp. Skeleto nema sp. Synedr a sp. Coscino discus sp.	Melosir a sp. Fragillar ia sp.

Recognised by MoEF, New Delhi Under

GPCB apprved

● ISO 14001 OHSAS 18001

● ISO 9001

Authorized Signatory

Authorized Signatory

Authorized Signatory schedule II auditor

Page **16** of **42**

	T											~~~		
C	A)	7		γ			Zooplai	nktons	~	Tp-7-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-		· ·		
19.1	Abundance (Population)	no/m²	230	40	225	50	190	. 20	166	82	150	10	107	7
19.2	Name of Group Number and name of group species of each group	13.00	Copepo ds Gastrop ods Crustac eans Bivalve s Ostraco ds Mysids	Polycha ete worms Gastrop ods	Isopods Crustac eans Decapo ds	Polycha ete worms	190 Nemato des Crustac eans Polycha ete worms Bivalves Isopods Decapo ds	Bivalve s Nemato des	Gastrop ods Blvalve s Nemato desN Forami niferans Polycha etes	Crustac eans 	Copepo ds Bivalve s Nemato des Crustac eans	Nemato des 	Copepo ds Polycha etes Nemato des Isopods Crustac eans	Copepo ds
19.3	Total Biomass	ml/10 0 m ³	. 173	23.6	163	21.1	162	159	185	1.84	156	124	126	1.32
D	Microbiologic	al Para	meters						I		***************************************			
20.1	Total Bacterial Count	CFU/ ml	1530	1390	1820	1460	1780	1510	1720	1880	1670	1240	1,580	1340
20.2	Total Coliform	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
20.3	E.coli	/ml [*]	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
20.4	Enterococcus species	/mi	Absent	Absent	Åbsent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
781 5 I	Salmonella species	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
20.6	Shigella species	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
20.7	Vibrio species	/ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

BDL* - Below Detection Limit

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Water.

●FSSAI Approved Lab

Approved Lab Recognised by MoEF, New Delhi Under

Authorized Signatory

Recognised by MoEF, New Delhi Under

Authorized Signatory

• GPCB apprved schedule II auditor ● ISO 14001

OHSAS 18001

● ISO 9001

Page 17 of 42

5D. SEA SEDIMENT QUALITY ANALYSIS MONITORING: -

Table - Sea Sediment Quality Analysis (South Side) Results for the period: April, 2017 to September, 2017:-

S.			Sea Water	Sea Water	Sea Water	Sea Water	Sea Water	Sea Water
No	PARAMETERS	UNIT	South Side	South Side	South Side	South Side	South Side	South Side
•			28-04-17	12-05-17	06-06-17	04-07-17	30-08-17	29-09-17
1	Organic Matter	. %	0.595	0.76	0.563	0.674	0.55	0.62
2	Phosphorus as P	mg/kg	172	194	184	195	184	176
3	Texture		Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	Sandy	Sandysilt
4	Petroleum Hydrocarbon	mg/kg	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*
5,	Heavy Metals							
5.1	Aluminum as Al	%	5.31	5.52	5.09	5.16	5	5.1
5.2	Total Chromium as Cr ⁺³	mg/kg	105	108	97.99	117	105	98
5.3	Manganese as Mn	mg/kg	757	622	639	671	683	632
5.4	Iron as Fe	%	2.04	2.42	2.39	2.15	2.02	2.4
5.5	Nickel as Ni	mg/kg	44.59	48.52	32.78	52.6	49	58
5.6	Copper as Cu	mg/kg	50.9	42.94	56.16	54.85	51	48.4
5.7	Zinc as Zn	mg/kg	197	152	217	206	174	240
5.8	Lead as Pb	mg/kg	1.59	1.92	1.79	1.57	2	1.32
5.9	Mercury as Hg	mg/kg	BDL*	BDL*	. BDL*	BDL*	BDL*	BDL*
6	Benthic Organisms	;		-				
6.1	Macrobenthos (No and name of groups present, No and name of species of each group present)	-	Sea anemones Decapods Anthozoan s	Polychaete worms Krill Anthozoan s	Bivalves Isopods Echinoder ms	Polychaete s Mysids 	Bivalves Isopods Echinoder ms	Polychaete worms Mysids
	MeioBenthos (No and name of groups present, No and name of species of each group present)		Nematode s Foraminife rans 	Nematode s Cpoepods	Nematode s Hydrozoa	Nematode s Foraminife rns	Nematode s Hydrozoa	Nematode s Foraminife rans
6.3	Population	no/m²	385	443	317	385	317	348

BDL* - Below Detection Limit

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Sediment.

●FSSAI Approved Lab

Recognised by MoEF, New Delhi Under

 GPCB apprved schedule II auditor ● ISO 14001

● OHSAS 18001

● ISO 9001

Page **18** of **42**

Authorized Signatory

Sec. 12 of Environmental (Protection) Act-1986

5D. SEA SEDIMENT QUALITY ANALYSIS MONITORING: -

Table - Sea Sediment Quality Analysis Results (North Side) for the period: April, 2017 to September, 2017:-

S.		,	Sea Water	Sea Water	Sea Water	Sea Water	Sea Water	Sea Water
No.	PARAMETERS	UNIT	North Side	North Side	North Side	North Side	North Side	North Side
. 1,400			28-04-17	12-05-17	06-06-17	04-07-17	30-08-17	29-09-17
1	Organic Matter	%	0.714	0.627	0.518	0.535	0.52	0.67
2	Phosphorus as P	mg/kg	192	174	178	159	210	356
3	Texture		Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	Sandy	Sandy
4	Petroleum Hydrocarbon	mg/kg	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*
5	Heavy Metals							
5.1	Aluminum as Al	%	5.54	5.33	5.11	5.22	5.43	3.59
5.2	Total Chromium as Cr+3	mg/kg	109	. 106	116	121	172	127
5.3	Manganese as Mn	mg/kg	627	757	708	664	839	688
5.4	Iron as Fe	- %	2.41	2.12	2.62	2.32	2.74	1.98
5.5	Nickel as Ni	mg/kg	48.3	44.58	. 56.37	44.37	61.77	32.44
5.6	Copper as Cu	mg/kg	42.89	52.87	31.15	48.53	42.54	49
5.7	Zinc as Zn	mg/kg	153	191	207	182	184	148
5.8	Lead as Pb	mg/kg	1.91	1.78	1.52	1.6	1.52	1.68
5.9	Mercury as Hg	mg/kg	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*
6	Benthic Organisms				•			
6.1	Macrobenthos (No and name of groups present, No and name of species of each group present)	-	Polychaete worms Mysids Krill	Decapods Anthozoans 	Bivalves Echinoderms Isopods	Polychaete worms Decapods Anthozoans	Polychate worms Isopods Echinoderms Bivalves	Polychaete worms Isoponds Decapods
6.2	MeioBenthos (No and name of groups present, No and name of species of each group present)		Nematodes Gastropods	Foraminifera ns Nematodes 	Foraminifera ns Nematodes	Hydrozoans Copepods	Nematodes Foraminifera ns	Copepods Hydrozoans
6.3	Population	no/m²	357	385	357	443	- 357	443

BDL* - Below Detection Limit

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Sea Sediment.

Page 19 of 42

FSSAI Approved Lab

Approved Lab Recognised by MoEF, New Delhi Under
Sec. 12 of Environmental (Protection) Act-1986

Authorized Signatory

GPCB approach schedule II auditor

[●] ISO 14001

OHSAS 18001

[●] ISO 9001

5E. DUMP POND WATER QUALITY ANALYSIS MONITORING: -

Table - Dump Pond Water Quality Analysis Results for the period: April - 2017 to Sept. - 2017:-

	Location: - Dump Po	nd - Near R. Gandhi Statu	Je ,
S. No	Test Parameters	Unit	Results
1.	рН	Lar ea	7.67
2.	Total Suspended Solids	mg/L	188
3.	Total Dissolved Solids	mg/L	38
4.	Turbidity	NTU	5.8
5.	BOD (3 Days @ 27 °C)	mg/L	9
6.	COD	mg/L	32
7.	Dissolved Oxygen	mg/L	4.4
8.	Salinity	ppt	0.041
9.	Oil & Grease	mg/L	BDL*
10.	Zinc as Zn	mg/L	0.06
11.	Cadmium as Cd	mg/L	BDL*
12.	Lead as Pb	mg/L	22.6
13.	Mercury as Hg	mg/L	0.06
14.	Total Hardness as CaCO ₃	mg/L	BDL*
15.	Fluoride as F	mg/L	0.034
16.	Chloride as Cl	mg/L	BDL*

BDL*: Below Detection Limit, Minimum Detection Limit, Mercury as Hg: 0.00025 mg/L, Oil & Grease: 1.0 mg/L, BOD: 1.0 mg/L, Cadmium as Cd: 0.001 mg/L, Lead as Pb: 0.005 mg/L

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of Dump Pond Discharge Water.

FSSAI Approved Lab

Recognised by MoEF, New Delhi Under Authorized Signatory

Sec. 12 of Environmental (Protection) Act-1986

 GPCB apprved schedule II auditor ● ISO 14001

OHSAS 18001

● ISO 9001

Page **20** of **42**

5F. STP TREATED WATER QUALITY ANALYSIS MONITORING: -

Table - STP Treated Water Quality Analysis Results for the period: April - 2017 to Sept. - 2017:-

S. No. STP Treated Water Quality Analysis Result Parameters Unit								
			Apr-17	May-17	Jun-17	Jul-17	Aug-17	Sep-17
1.	pH		7.53	7.18	7.46	7.35	7.68	7.83
2.	Total Suspended Solids	mg/L	24	24	24	22	24	26
3.	BOD (3 Days @ 27 °C)	mg/L	12	19	16	14	18	17
4.	Residual Free Chlorine	mg/L	0.7	0.8	0.6	0.7	0.5	0.7

Observation: From the above results it is concluded that there is No Significant Changes in the Quality of STP Treated Water.

●FSSAI Approved Lab

Recognised by MoEF, New Delhi Under

• GPCB apprved schedule II auditor

● ISO 14001 ● OHSAS 18001

● ISO 9001

Authorized Signatory

Sec. 12 of Environmental (Protection) Act-1986

Page 21 of 42

5G. AMBIENT NOISE LEVEL MONITORING: -

Tables - 1 - Behind QHSE OfficeAmbient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

		-	1 - Behind (QHSE Office		
Sampling Location		Dur	ing Day Time	- Unit in dB (A)#	
Date of Monitoring	03/04/2017	01/05/2017	02/06/2017	03/07/2017	01/08/2017	04/09/2017
6:00-7:00	43.4	46.4	48.1	42.8	44.3	45.3
7:00-8:00	55.6	54.3	44.6	57.7	52.1	49.2
8:00-9:00	52.5	45.9	47.3	50.3	46.2	44.3
9:00-10:00	41.5	42.2	50.2	46.4	43.5	47.6
10:00-11:00	54.4	56.3	57.6	55.6	53.6	48.8
11:00-12:00	56.2	55.2	60.3	58.6	64.4	61.2
12:00-13:00	50.2	53.1	62.1	54.7	57.3	56.8
13:00-14:00	51.1	47.6	63.9	53.2	48.9	50.3
14:00-15:00	53.4	52.2	66.4	51.4	55.6	59.1
15:00-16:00	57.2	58.5	65.4	56.1	59.6	52.1
16:00-17:00	40.3	41.2	67.2	48.6	45.1	43.2
17:00-18:00	49.9	40.5	59.4	41.1	38.5	39.5
18:00-19:00	69.2	68.5	61.2	67.8	63.7	65.2
19:00-20:00	63.5	50.8	64.5	52.1	51.8	60.7
20:00-21:00	62.3	65.3	58.9	61.2	67.1 . ,	63.1
21:00-22:00	59.2	57.5	56.8	44.1	58.3	53.1

	, , , , , , , , , , , , , , , , , , ,		1 - Behind (QHSE Office		
Sampling Location		Duri	ng Night Time	e - Unit in dB	(A)#	
Date of Monitoring	03& 04/04/2017	01& 02/05/2017	02 &03/06/201 7	03 & 04/07/2017	01 & 02/08/2017	04& 05/09/2017
22:00-23:00	54.8	52.6	58.7	50.8	57.1	56.1
23:00-00:00	39.8	40.8	53.5	42.3	51.9	44.8
00:00-01:00	49.1	42.7	51.9	53.8	47.8	46.2
01:00-02:00	47.2	46.2	49.9	54.6	44.3	42.1
02:00-03:00	46.2	47.1	48.4	56.9	49.2	45.6
03:00-04:00	45.4	44.4	47.8	41.2	43.2	51.5
04:00-05:00	50.2	49.7	44.9	43.4	46.7	47.9
05:00-06:00	44.2	41.1	43.8	45.9	39.8	40.1

[#]dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Observation: Above given Results are within the specified norms as per The Noise Pollution (Regulation and Control) Rules 2000.

FSSAI Approved Lab

Recognised by MoEF, New Delhi Under Authorized Signatory

Sec. 12 of Environmental (Protection) Act-1986

● ISO 14001 OHSAS 18001 ● ISO 9001.

Page 22 of 42

Tables - 2 - PMC Office Back SideAmbient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

			2 - PMC Offi	ce Back Side		
Sampling Location		Dur	ing Day Time	- Unit in dB (A)#	
Date of Monitoring	04/04/2017	02/05/2017	03/06/2017	04/07/2017	02/08/2017	05/09/2017
6:00-7:00	51.8	44.2	43.2	47.7	46.8	58.8
7:00-8:00	57.4	54.1	42.8	51.5	50.5	45.3
8:00-9:00	47.1	49.4	48.1	43.9	45.1	42.2
9:00-10:00	58.3	56.1	52.3	57.5	59.8	60.2
10:00-11:00	55.5	52.2	61.1	54.8	53.9	62.3
11:00-12:00	52.3	50.9	56.5	53.1	55.8	57.2
12:00-13:00	45.5	47.4	62.9	46.2	41.8	43.2
13:00-14:00	59.4	55.6	66.2	58.9	54.8	53.7
14:00-15:00	49.8	46.6	60.1	45.6	48.8	50.3
15:00-16:00	40.9	41.6	63.2	48.7	42.6	44.9
16:00-17:00	41.8	43.5	58.9	44.4	56.2	46.5
17:00-18:00	48.6	51.4	57.2	55.6	52.4	54.5
18:00-19:00	56.1	53.7	64.8	60.5	58.3	59.2
19:00-20:00	50.2	48.7	55.9	49.5	57.8	56.7
20:00-21:00	54.8	62.7	59.4	52.6	51.4	55,1
21:00-22:00	46.2	45.6	49.6	42.2	47.7	52.3

Sampling Location			2 - PMC Offi	ce Back Side							
Sampling Location	During Night Time - Unit in dB (A)#										
Date of Monitoring	04& 05/04/2017	02 & 03/05/2017	04&05/06/2 017	04 & 05/07/2017	02 & 03/08/2017	05&06/09/2 017					
22:00-23:00	39.5	40.5	51.2	41.3	43.5	47.7					
23:00-00:00	45.3	48.9	49.5	50.6	42.3	44.2					
00:00-01:00	50.1	41.3	44.2	48.5	47.8	45.2					
01:00-02:00	48.9	47.4	39.5	58.6	41.1	43.1					
02:00-03:00	42.3	39.6	41.6	54.9	50.4	48.6					
03:00-04:00	43.6	42.4	45.7	44.1	49.6	46.2					
04:00-05:00	47.6	45.4	42.8	46.1	44.1	41.2					
05:00-06:00	41.5	44.8	40.8	43.1	45.1	42.3					

[#]dB(A) Leg. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

FSSAI Approved Lab

Recognised by MoEF, New Delhi Under

 GPCB apprved schedule II auditor ● ISO 14001

OHSAS 18001

● ISO 9001

Page 23 of 42

Authorized Signatory

Sec. 12 of Environmental (Protection) Act-1986

Tables - 3 - Sub Station - 6 Back SideAmbient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

						*			
	3 - Sub Station - 6 Back Side								
Sampling Location	During Day Time - Unit in dB (A)#								
Date of Monitoring	05/04/2017	03/05/2017	05/06/2017	05/07/2017	03/08/2017	06/09/2017			
6:00-7:00	47.4	46.2	43.9	50.5	56.6	54.4			
7:00-8:00	52.3	44.5	46.8	48.8	41.1	43.3			
8:00-9:00	61.2	58.7	48.3	60.1	62.3	55.5			
9:00-10:00	54.7	55.4	49.9	47.7	50.5	42.3			
10:00-11:00	57.4	56.3	53.4	58.9	46.6	50.2			
11:00-12:00	51.3	52.1	58.1	45.5	60.2	57.4			
12:00-13:00	42.1	45.8	61.2	44.6	47.8	48.5			
13:00-14:00	60.1	59.9	63.1	56.1	58.9	49.9			
14:00-15:00	55.6	61.8	66.4	53.6	54.8	67.7			
15:00-16:00	56.7	53.2	64.6	55.6	52.9	51.2			
16:00-17:00	59.4	60.5	62.1	49.9	64.5	52.1			
17:00-18:00	63.4	47.7	60.1	57.8	48.3	41.2			
18:00-19:00	49.9	54.1	55.9	46.2	53.8	45.6			
19:00-20:00	46.5	57.2	56.7	54.6	44.8	53.6			
20:00-21:00	53.1	51.6	54.1	52.4	59.4	62.6			
21:00-22:00	58.6	50.8	52.8	51.2	55.1	65.7			

		3 - Sub Station - 6 Back Side								
Sampling Location		During Night Time - Unit in dB (A)#								
Date of Monitoring	05 & 06/04/2017									
22:00-23:00	40.2	42.9	51.9	39.1	37.9	38.5				
23:00-00:00	46.8	50.2	53.7	47.3	43.5	48.4				
00:00-01:00	37.5	44.6	39.9	38.6	35.2	36.2				
01:00-02:00	42.5	49.7	50.2 ~	44.2	45.8	46.3				
02:00-03:00	41.2	43.3	47.6	36.9	42.8	40.2				
03:00-04:00	47.2	45.6	49.7	46.4	54.6	44.7				
04:00-05:00	44.6	47.3	52.1	48.7	46.1	42.2				
05:00-06:00	43.8	41.7	46.9	50.4	47.8	45.6				

^{*}dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

FSSAI Approved Lab

Approved Lab • Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

Authorized Signatory

GPCB apprved schedule II auditor

● ISO 14001

OHSAS 18001

● ISO 9001

Page 24 of 42

Tables - 4 -Sub Station - 8 (Marine Building) Ambient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

		А С.	ıb Station - 8	/Marina Duile	dison l				
Sampling Location									
Date of Monitoring	06/04/2017	During Day Time - Unit in dB (A)# 6/04/2017 04/05/2017 06/06/2017 06/07/2017 04/08/2017 07/09							
6:00-7:00	45.5	46.8	42.1	49.3	44.2	47.9			
7:00-8:00	56.6	53.9	44.1	54.8	59.9	51.2			
8:00-9:00	64.4	54.4	45.5	51.1	52.3	58.9			
9:00-10:00	53.3	63.5	49.3	60.2	61.3	56.4			
10:00-11:00	61.2	64.7	50.2	62.1	65.5	68.5			
11:00-12:00	57.8	50.8	55.8	48.5	56.4	49.7			
12:00-13:00	40.2	41.3	59.4	43.2	57.2	44.6			
13:00-14:00	46.8	47.1	43.3	52.3	49.3	50.3			
14:00-15:00	50.2	51.1	47.5	46.5	58.1	55.3			
15:00-16:00	58.4	56.0	62.8	47.5	55.1	54.3			
16:00-17:00	51.8	60.4	63.7	55.4	54.2	61.3			
17:00-18:00	63.4	65.5	61.2	58.9	67.7	66.7			
18:00-19:00	41.2	43.3	58.7	45.6	42.5	53.6			
19:00-20:00	60.7	55.6	57.3	64.4	62.1	63.2			
20:00-21:00	55.8	59.6	64.4	53.6	50.6	52.6			
21:00-22:00	62.5	58.4	56.1	59.6	60.3	64.5			

	4 -Sub Station - 8 (Marine Building)							
Sampling Location		Duri	ng Night Time	e - Unit in dB	(A)#			
Date of Monitoring	06& 07/04/2017	04 & 05/05/2017	06&07/06/2 017	06 & 07/07/2017	04 & 05/08/2017	07&08/09/2 017		
22:00-23:00	49.8	41.3	54.8	39.4	37.5	36.2		
23:00-00:00	41.4	40.9	39.8	45.7	43.3	54.2		
00:00-01:00	51.2	50.3	53.1	43.1	48.7	46.5		
01:00-02:00	38.9	44.5	52.6	47.7	39.6	40.1		
02:00-03:00	52.3	47.4	41.2	48.3	45.6	44.2		
03:00-04:00	54.5	53.2	46.7	55.4	51.9	52.3		
04:00-05:00	48.5	52.7	45.3	54.1	49.6	51.3		
05:00-06:00	50.9	51.8	42.1.	49.7	52.9	53.2		

[#]dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

FSSAI Approved Lab

Recognised by MoEF, New Delhi Under Authorized Signatory

Sec. 12 of Environmental (Protection) Act-1986

 GPCB apprved schedule II auditor ● ISO 14001

OHSAS 18001

● ISO 9001

Page 25 of 42

Tables - 5 - Near Sub Station-7BAmbient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

	and the second second				•	
	-		5 - Near Sul	Station-7B		
Sampling Location		Dur	ing Day Time	- Unit in dB (A)#	
Date of Monitoring	07/04/2017	05/05/2017	07/06/2017	07/07/2017	05/08/2017	08/09/2017
6:00-7:00	39.2	41.9	49.9	44.1	42.2	43.2
7:00-8:00	49.4	51.9	46.1	57.7	55.7	59.9
8:00-9:00	43.8	60.1	45.9	62.5	61.8	58.1
9:00-10:00	53.3	57.8	48.7	52.5	56.4	50.3
10:00-11:00	68.2	62.4	51.3	69.7	60.9	66.4
11:00-12:00	59.9	55.4	60.1	56.1	43.3	47.5
12:00-13:00	70.1	69.9	57.4	66.4	59.7 🕜	65.7
13:00-14:00	51.7	50.4	70.2	53.4	. 58.5	60.2
14:00-15:00	41.8	47.8	59.4	48.6	50.8	45.2
15:00-16:00	50.1	52.6	64.4	49.1	62.3	48.2
16:00-17:00	45.5	54.7	66.7	46.1	48.2	49.7
17:00-18:00	56.1	59.6	68.9	54.1	49.9	61.2
18:00-19:00	60.2	58.9	63.2	55.2	57.8	56.2
19:00-20:00	54.3	53.7	62.2	58.7	51.3	52.8
20:00-21:00	47.1	49.6	61.2	50.1	53.6	46.6
21:00-22:00	48.2	46.7	58.8	47.5	54.2	53.5

Sampling Location	5 - Near Sub Station-7B During Night Time - Unit in dB (A)#							
Date of Monitoring	07& 08/04/2017	06& 07/05/2017	07&08/05/2 017	07 & 08/07/2017	05& 06/08/2017	08&09/08/2 017		
22:00-23:00	52.6	44.2	56.9	45.8	37.5	48.7		
23:00-00:00	43.7	45.8	55.4	42.8	48.1	49.7		
00:00-01:00	44.2	56.1	53.6	50.3	42.5	45.9		
01:00-02:00	55.6	54.9	57.6	65.3	39.6	58.2		
02:00-03:00	51.1	53.8	52.3	56.3	45.6	50.4		
03:00-04:00	45.2	42.7	48.6	44.4	51.9	43.6		
04:00-05:00	35.1	36.2	47.1	39.6	50.1	37.2		
05:00-06:00	41.2	40.9	45.6	54.4	52.9	46.3		

^{*}dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

●FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Authorized Signatory

Sec. 12 of Environmental (Protection) Act-1986 GPCB apprved schedule II auditor ISO 14001

OHSAS 18001

● ISO 9001

Page 26 of 42

Tables -6 - JS - 1 (Nr. Lakhigam)Ambient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

** · · · · · · · · · · · · · · · · · ·			^,,						
om 8° 8 2.9	6 - JS - 1 (Nr. Lakhigam)								
Sampling Location	During Day Time - Unit in dB (A)#								
Date of Monitoring	10/04/2017	08/05/2017	08/06/2017	10/07/2017	07/08/2017	11/09/2017			
6:00-7:00	56.3	49.0	41.3	58.5	55.8	47.5			
7:00-8:00	52.9	51.8	41.9	54.1	50.4	59.4			
8:00-9:00	51.1	48.0	43.1	44.8	45.3	42.3			
9:00-10:00	51.6	50.9	48.2	55.9	52.4	56.8			
10:00-11:00	46.5	52.0	48.9	54.1	53.1	49.7			
11:00-12:00	60.3	59.8	52.4	66.6	62.4	63.4			
12:00-13:00	54.6	62.2	60.1	58.7	63.4	65.4			
13:00-14:00	57.6	53.3	59.6	54.6	55.9	52.6			
14:00-15:00	60.2	59.8	64.8	62.3	58.1	61.2			
15:00-16:00	50.4	48.5	63.4	52.1	49.2	53.7			
16:00-17:00	57.1	55.2	66.6	54.5	56.4	58.7			
17:00-18:00	56.1	49.8	64.8	51.6	55.4	54.3			
18:00-19:00	40.2	41.3	63.2	53.6	43.6	42.3			
19:00-20:00	49.8	50.6	62.8	55.4	52.4	53.6			
20:00-21:00	52.4	51.2	62.1	53.8	50.6	55.1			
21:00-22:00	53.9	55.6	60.2	54.1	52.4	58.2			

Sampling Location	6 - JS - 1 (Nr. Lakhigam)							
Jampinig Location		Duri	ng Night Tim	e - Unit in dB	(A)#			
Date of Monitoring	10 & 11/04/2017	08 & 09/05/2017	10 & 12/06/2017	10& 11/07/2017	07 & 08/08/2017	11&12/09/2 017		
22:00-23:00	51.9	53.8	58.8	56.7	49.5	50.1		
23:00-00:00	46.2	43.3	56.2	41.2	47.6	44.5		
00:00-01:00	44.5	45.6	54.8	51.6	42.2	41.2		
01:00-02:00	50.8	49.3	52.9	54.8	48.4	51.1		
02:00-03:00	45.6	39.3	50.2	42.5	44.5	43.2		
03:00-04:00	37.2	38.6	46.8	39.2	34.2	35.6		
04:00-05:00	42.6	41.3	44.8	43.6	45.1	39.5		
05:00-06:00	59.1	56.2	42.6	58.1	54.3	55.7		

^{*}dB(A) Leg. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Authorized Signatory

Sec. 12 of Environmental (Protection) Act-1986

 GPCB apprved schedule II auditor ● ISO 14001

OHSAS 18001

● ISO 9001

Page 27 of 42

Tables - 7 - Behind S.S. - 11 (Silo)Ambient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

	· ·							
			7 - Behind S	<u>.S 11 (Silo)</u>				
Sampling Location	During Day Time - Unit in dB (A)#							
Date of Monitoring	11/04/2017	1/04/2017 09/05/2017 09/06/2017 11/07/2017 08/08						
6:00-7:00	55.2	57.8	41.0	54.8	51.2	56.3		
7:00-8:00	48.8	44.1	42.3° √	47.6	46.3	45.6		
8:00-9:00	46.8	43.7	45.4	41.3	50.7	44.4		
9:00-10:00	57.4	56.8	50.2	55.1	54.7	53.6		
10:00-11:00	65.5	62.7	49.7	67.7	59.3	63.2		
11:00-12:00	54.4	64.4	55.2	60.4	56.2	58.7		
12:00-13:00	62.3	61.5	57.6	58.6	66.3	60.2		
13:00-14:00	66.1	63.8	60.5	61.2	67.4	55.1		
14:00-15:00	56.1	55.3	64.1	65.9	63.9	62.3		
15:00-16:00	50.3	70.3	68.4	63.3	60.1	52.3		
16:00-17:00	67.7	59.8	66.7	69.1	62.1	61.3		
17:00-18:00	74.2	73.3	62.5	68.5	71.8	70.8		
18:00-19:00	61.2	60.1	63.1	64.6	58.9	59.2		
19:00-20:00	42.2	47.7	61.1	48.9	45.2	46.2		
20:00-21:00	44.2	48.6	59.7	49.5	42.9	41.2		
21:00-22:00	60.1	52.3	58.7 ~	59.4	55.1	57.6		

	7 - Behind S.S 11 (Silo)								
Sampling Location		During Night Time - Unit in dB (A)#							
Date of Monitoring	11 &12/04/201 7	09&10/05/2 017	12&13/06/2 017	11& 12/07/2017	08 & 09/08/2017	12&13/09/2 017			
22:00-23:00	36.2	40.3	58.1	39.1	43.6	37.5			
23:00-00:00	43.5	45.2	49.1	47.1	40.3	46.3			
00:00-01:00	38.5	42.6	48.3	56.3	41.5	39.4			
01:00-02:00	39.5	41.6	53.7	44.8	42.9	43.6			
02:00-03:00	48.9	52.3	54.2	57.3	50.8	42.6			
03:00-04:00	42.5	43.1	52.1	46.2	48.3	45.6			
04:00-05:00	47.5	48.4	50.2	49.4	44.4	40.0			
05:00-06:00	53.1	50.4	47.4	54.1	49.8	51.2			

[#]dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

●FSSAI Approved Lab

• Recognised by MoEF, New Delhi Under Authorized Signatory

Authorized Signatory

GPCB apprved schedule II auditor ● ISO 14001

OHSAS 18001

● ISO 9001

Page 28 of 42

Tables - 8 - Near S & S Entry Gate (Dahej Road)Ambient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

Sampling Location	8 - Near S & S Entry Gate (Dahej Road)								
Janping Location	During Day Time - Unit in dB (A)#								
Date of Monitoring	12/04/2017	.2/04/2017 10/05/2017 10/06/2017 12/07/2017 09/08/20							
6:00-7:00	58.3	51.8	49.9	55.2	53.7	52.6			
7:00-8:00	55.1	56.7	42.1	51.4	57.3	59.9			
8:00-9:00	60.7	53.6	43.8	57.7	58.9	50.3			
9:00-10:00	45.3	54.2	48.7	50.1	47.8	43.2			
10:00-11:00	47.1	55.2	50.9	46.3	43.7	44.6			
11:00-12:00	54.2	59.4	52.3	60.6	51.8	58.5			
12:00-13:00	63.1	49.5	47.3	61.8	54.4	64.5			
13:00-14:00	53.7	52.6	51.2	54.1	. 50.6	55.3			
14:00-15:00	51.3	48.1	55.9	53.2	61.5	49.6			
15:00-16:00	61.2	60.8	63.7	65.1	56.3	62.2			
16:00-17:00	62.7	61.7	59.6	63.9	60.4	53.9			
17:00-18:00	44.1	43.7	58.7 ["]	47.3	45.2	46.3			
18:00-19:00	49.2	50.1	57.6	52.3	48.5	47.9			
19:00-20:00	59.7	62.1	56.8	64.8	63.7	60.7			
20:00-21:00	56.1	57.4	54.2	58.9	55.4	51.1			
21:00-22:00	57.8	58.5	53.4	56.4	52.1	54.8			

Sampling Location	8 - Near S & S Entry Gate (Dahej Road)							
Sampling Location		Dur	ing Night Tim	e - Unit in dB	(A)#			
Date of Monitoring	12& 13/04/2017							
22:00-23:00	46.2	56.3	53.4	58.1	48.5	49.5		
23:00-00:00	45.1	54.9	52.1	55.5	50.5	51.5		
00:00-01:00	55.6	47.6	51.2	56.9	44.6	43.2		
01:00-02:00	47.9	59.4	50.4	57.2	52.1	53.6		
02:00-03:00	49.6	46.1	47.9	50.6	45.4	44.2		
03:00-04:00	51.3	50.3	46.7	53.4	56.3	48.3		
04:00-05:00	39.8	42.9	44.8	54.8	40.7	47.1		
05:00-06:00	48.4	43.8	42.9	38.9	41.2	45.2		

[#]dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-198 GPCB apprved schedule II auditor ● ISO 14001

OHSAS 18001

● ISO 9001

Page **29** of **42**

Authorized Signatory Sec. 12 of Environmental (Protection) Act-1986

Tables -9 - GCPTL GateAmbient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

			* .						
	9 - GCPTL Gate								
Sampling Location	During Day Time - Unit in dB (A)#								
Date of Monitoring	13/04/2017	11/05/2017	12/06/2017	13/07/2017	10/08/2017	14/09/2017			
6:00-7:00	49.1	47.5	41.9	60.2	42.6	43.6			
7:00-8:00	50.1	60.8	43.4	61.3	41.5	58.7			
8:00-9:00	47.1	55.1	46.7	63.4	45.2	49.7			
9:00-10:00	48.9	44.9	49.1	46.1	50.8	45.1			
10:00-11:00	52.7	63.4	54.3	65.7	62.9	66.8			
11:00-12:00	63.4	65.7	56.1	66.3	64.7	50.5			
12:00-13:00	43.7	52.4	58.7	42.9	49.5	41.1			
13:00-14:00	55.1	54.4	59.4	57.5	53.5	52.1			
14:00-15:00	. 65.7	62.3	66.9	69.7	68.2	64.7			
15:00-16:00	59.8	56.3	67.3	58.5	61.5	68.1			
16:00-17:00	51.2	50.4	63.1	55.4	48.6	53.2			
17:00-18:00	46.8	45.9	61.9	47.3	43. 2	44.2			
18:00-19:00	57.1	58.1	47.7	51.7	44.1	54.2			
19:00-20:00	56.4	51.4	45.3	52.8	63.7	59.4			
20:00-21:00	58.7	59.6	62.3	54.4	52.8	48.8			
21:00-22:00	62.7	57.2	60.9	59.4	56.3	55.4			

C!	9 - GCPTL Gate							
Sampling Location		Dur	ing Night Tim	e - Unit in dB	(A)#			
Date of Monitoring	13& 14/04/2017	11& 12/05/2017	14&15/06/2 017	13& 14/07/2017	10 & 11/08/2017	14&15/09/2 017		
22:00-23:00	42.7	37.9	45.5	49.6	39.5	38.2		
23:00-00:00	43.6	36.6	54.7	40.6	37.7	35.4		
00:00-01:00	36.2	39.2	53.4	42.1	38.5	40.3		
01:00-02:00	40.7	69.7	52.1	45.1	46.5	42.8		
02:00-03:00	41.2	38.7	51.6	48.8	40.5	44.5		
03:00-04:00	44.3	47.3	50.2	59.5	48.7	39.4		
04:00-05:00	39.6	44.1	46.7	54.0	42.8	41.4		
05:00-06:00	46.8	41.5	44.6	47.1	45.8	49.8		

[#]dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-198 GPCB apprved schedule II auditor ● ISO 14001

OHSAS 18001

● ISO 9001

Page 30 of 42

Authorized Signatory Sec. 12 of Environmental (Protection) Act-1986

Tables - 10 - Lakhi Village (Primary School)Ambient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

was Na. a Pr	,	10 - Lakhi Village (Primary School)								
Sampling Location	During Day Time - Unit in dB (A)#									
Date of Monitoring	14/04/2017	12/05/2017	13/06/2017	14/07/2017	11/08/2017	15/09/2017				
6:00-7:00	57.1	50.4	41.5	47.7	49.5	48.3				
7:00-8:00	61.3	58.7	42.3	64.3	51.7	54.3				
8:00-9:00	68.4	67.5	45.1 °	63.7	66.4	65.9				
9:00-10:00	60.3	54.6	48.2	61.1	59.4	46.2				
10:00-11:00	64.5	60.7	65.4	62.7	61.8	69.1				
11:00-12:00	59.1	46.3	55.8	57.4	53.7	58.2				
12:00-13:00	55.1	52.3	62.9	53.3	50.9	56.5				
13:00-14:00	65.8	70.3	68.4	66.3	63.9	62.8				
14:00-15:00	67.9	53.7	58.3	51.9	57.7	60.3				
15:00-16:00	48.1	49.3	57.1	55.5	56.3	47.6				
16:00-17:00	53.1	51.3	60.2	58.1	68.3	50.1				
17:00-18:00	58.3	61.7	56.6	52.6	48.1	59.6				
18:00-19:00	56.1	57.5	50.9	59.5	54.7	55.2				
19:00-20:00	63.9	68.7	53.8	69.7	67.8	66.6				
20:00-21:00	66.1	64.1	52.9	65.1	60.1	63.2				
21:00-22:00	54.1	55.1	51.9- ,	56.1	52.2	53.5				

Compline Leastion	10 - Lakhi Village (Primary School)							
Sampling Location		Dur	ing Night Tim	e - Unit in dB	(A)#			
Date of Monitoring	14& 15/04/2017	12& 13/05/2017	15&16/06/2 017	14& 15/07/2017	11 & 12/08/2017	15&16/09/2 017		
22:00-23:00	43.1	40.1	57.6	45.8	38.5	37.5		
23:00-00:00	47.9	43.8	55.4	49.3	46.4	45.6		
00:00-01:00	51.2	55.1	54.8	47.5	50.3	52.8		
01:00-02:00	59.5	56.1	51.9	58.4	57.9	50.9		
02:00-03:00	44.6	36.2	52.3	42.6	39.4	40.3		
03:00-04:00	39.8	38.1	49.8	44.8	42.8	41.4		
04:00-05:00	46.2	49.3	50.7	48.2	45.4	43.5		
05:00-06:00	49.1	51.3	47.2	50.4	55.5	56.2		

[#]dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

FSSAI Approved Lab

Authorized Signatory Sec. 12 of Environmental (Protection) Act-1986

Page 31 of 42

Recognised by MoEF, New Delhi Under

GPCB apprved schedule II auditor

[●] ISO 14001

OHSAS 18001

[●] ISO 9001

Tables -11 - ERMS WorkshopAmbient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

Sampling Location	11 - ERMS Workshop							
	During Day Time - Unit in dB (A)#							
Date of Monitoring	17/04/2017	16/05/2017	16/06/2017	17/07/2017	13/08/2017	18/09/2017		
6:00-7:00	46.5	47.6	42.1	56.2	48.3	40.9		
7:00-8:00	55.3	60.4	47.6	59.4	56.4	57.4		
8:00-9:00	49.9	39.2	46.2	43.6	42.5	47.1		
9:00-10:00	54.1	53.1	48.7	57.1	60.8	49.2		
10:00-11:00	50.0	49.3	53.6	55.4	46.4	45.4		
11:00-12:00	51.9	55.1	52.9	63.9	53.6	50.3		
12:00-13:00	41.7	40.6	57.4	50.2	45.7	44.3		
13:00-14:00	56.3	62.3	58.6	54.1	50.1	55.7		
14:00-15:00	47.2	44.1	59.6	42.3	51.3	43.4		
15:00-16:00	57.8	50.2	63.4	51.4	49.7	58.9		
16:00-17:00	59.3	57.2	64.8	49.6	61.8	54.8		
17:00-18:00	44.5	46.3	68.8	45.4	43.2	48.2		
18:00-19:00	45.6	51.3	62.4	48.6	47.5	41.5		
19:00-20:00	53.5	54.4	56.1	47.7	55.3	52.6		
20:00-21:00	58.4	48.3	60.8	52.8	59.5	56.2		
21:00-22:00	52.7	56.3	55.6	58.7	54.7	53.6		

Campling Lagration	11 - ERMS Workshop							
Sampling Location	**	Dur	ing Night Tim	e - Unit in dB	(A)#			
Date of Monitoring	17& 18/04/2017	15 & 16/05/2017	16&17/06/2 017	17 &18/07/201 7	13 & 14/08/2017	18&19/09/2 017		
22:00-23:00	45.5	47.9	57.8	49.8	44.8	43.7		
23:00-00:00	56.7	52.7	55.6	53.6	54.1	49.5		
00:00-01:00	53.1	45.5	54.3	44.4	55.2	41.3		
01:00-02:00	49.6	44.2	43.9	47.6	41.3	46.3		
02:00-03:00	46.2	50.3	42.6	48.2	52.5	53.2		
03:00-04:00	47.7	43.7	49.9	56.7	42.2	44.3		
04:00-05:00	42.8	46.5	47.6	54.8	45.8	50.1		
05:00-06:00	50.0	49.2	45.9	55.0	51.1	52.1		

^{*}dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

FSSAI Approved Lab

Approved Lab Recognised by MoEF, New Delhi Under

Authorized Signatory

Authorized Signatory

GPCB apprved

● ISO 14001 OHSAS 18001 ● ISO 9001

schedule II auditor

Page 32 of 42

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

Phone: 0261-2635750, 0261-2635751, 0261-2635775, 07016605174, WEB: www.polluconlab.com, E. mail: pollucon@gmail.com, info@polluconlab.com

Tables - 12 - Behind Pump HouseAmbient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

Commissed antique	12 - Behind Pump House							
Sampling Location	During Day Time - Unit in dB (A)#							
Date of Monitoring	18/04/2017	16/05/2017	17/06/2017	18/07/2017	14/08/2017	19/09/2017		
6:00-7:00	46.8	47.3	41.9	50.1	44.5	43.5		
7:00-8:00	44.1	41.6	43.7	48.3	45.4	47.6		
8:00-9:00	51.6	42.7	47.5	52.6	41.3	57.2		
9:00-10:00	54.2	51.2	48.6	60.1	42.9	59.3		
10:00-11:00	55.3	49.1	52.7	45.1	47.6	48.9		
11:00-12:00	61.3	43.8	63.9	62.2	46.6	51.3		
12:00-13:00	63.4	59.3	56.8	65.3	60.2	62.3		
13:00-14:00	53.7	60.3	59.8	58.7	48.3	52.9		
14:00-15:00	50.4	44.9	51.9	57.8	52.2	53.4		
15:00-16:00	62.4	45.1	64.2	56.4	50.6	46.1		
16:00-17:00	64.5	56.3	66.9	63.4	58.4	60.3		
17:00-18:00	65.6	46.2	62.1	53.1	51.9	54.2		
18:00-19:00	52.1	54.8	61.1.	55.1	53.2	56.4		
19:00-20:00	56.3	48.3	60.3	46.3	49.8	44.8		
20:00-21:00	59.1	57.2	58.7	64.8	55.3	49.6		
21:00-22:00	60.3	58.9	57.2	61.5	56.4	55.7		

Sampling Location		12 - Behind Pump House							
Sumpling Location		Dur	ing Night Tim	e - Unit in dB	(A)#				
Date of Monitoring	18 & 19/04/2017	16 & 17/05/2017	17&19/06/2 017	18&19/07/2 017	14 & 15/08/2017	19&20/09/2 017			
22:00-23:00	42.7	39.5	56.8	44.1	40.6	41.9			
23:00-00:00	49.3	56.1	53.1	58.3	51.2	47.8			
00:00-01:00	39.5	42.3	54.1	38.3	49.5	50.1			
01:00-02:00	43.2	45.5	55.7	47.2	50.3	44.8			
02:00-03:00	46.6	47.8	52.1	54.2	45.3	48.2			
03:00-04:00	45.1	41.2	51.3.	53.1	46.2	43.2			
04:00-05:00	41.9	46.3	47.1	43.5	44.9	40.0			
05:00-06:00	54.7	52.1	44.6	57.5	41.6	53.5			

^{*}dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

FSSAI Approved Lab

Recognised by MoEF, New Delhi Under

GPCB apprved

● ISO 14001 ● OHSAS 18001

● ISO 9001

Sec. 12 of Environmental (Protection) Act-1986

Authorized Signatory schedule II auditor Page 33 of 42

Tables - 13 - Rock Bond Approach (Jetty) Ambient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

	13 - Rock Bond Approach (Jetty)								
Sampling Location	During Day Time - Unit in dB (A)#								
Date of Monitoring	19/04/2017	17/05/2017	19/06/2017	19/07/2017	15/08/2017	20/09/2017			
6:00-7:00	59.4	60.3	40.2	69.4	57.4	56.4			
7:00-8:00	57.1	53.1	41.3	54.3	51.3	42.4			
8:00-9:00	50.2	48.3	43.5	57.6	44.9	45.5			
9:00-10:00	47.4	58.1	45.7.	41.6	48.1	49.5			
10:00-11:00	61.1	64.9	47.6	42.7	53.7	59.6			
11:00-12:00	46.6	50.7	51.4	43.8	45.8	58.9			
12:00-13:00	67.3	69.6	57.6	44.9	61.9	63.7			
13:00-14:00	58.6	57.2	42.4	56.2	63.9	54.3			
14:00-15:00	53.7	49.3	59.5	60.1	67.4	65.3			
15:00-16:00	55.9	51.2	60.1	59.5	47.2	48.5			
16:00-17:00	56.3	52.3	62.5	45.3	54.3	47.2			
17:00-18:00	60.2	59.3	58.8	68.1	62.4	57.3			
18:00-19:00	54.7	55.3	56.9	58.2	52.8	53.2			
19:00-20:00	49.7	61.8	55.8	53.9	56.7	52.3			
20:00-21:00	64.2	63.1	54.8	66.2	65.3	60.7			
21:00-22:00	51.3	54.7	53.4	52.8	58.4	55.3			

Campling Landing	13 - Rock Bond Approach (Jetty)							
Sampling Location	During Night Time - Unit in dB (A)#							
Date of Monitoring	19 & 20/04/2017	17&18/05/2 017	19&20/06/2 017	19&20/07/2 017	15 & 16/08/2017	20&21/09/2 017		
22:00-23:00	50.4	49.8	52.8	58.1	41.3	44.3		
23:00-00:00	48.7	55.7	46.9	53.7	52.7	49.4		
00:00-01:00	64.4	60.9	51.0	61.5	63.5	62.3		
01:00-02:00	38.4	43.2	50.6	37.9	35.3	36.5		
02:00-03:00	47.7	48.3	39.6	43.5	45.2	42.1		
03:00-04:00	44.1	40.3	47.9	52.3	46.3	45.4		
04:00-05:00	45.1	51.3	44.6	54.4	47.5	48.1		
05:00-06:00	51.4	50.7	43.1	57.5	53.3	54.5		

[#]dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

FSSAI Approved Lab

• Recognised by MoEF, New Delhi Under Authorized Signatory Sec. 12 of Environmental (Protection) Act-1986

 GPCB apprved schedule II auditor ● ISO 14001 OHSAS 18001

● ISO 9001

Page **34** of **42**

Tables -14 - New GateAmbient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

*			· ',						
Sampling	14 - New Gate								
Location	During Day Time - Unit in dB (A)#								
Date of Monitoring	20/04/2017	18/05/2017	20/06/2017	20/07/2017	16/08/2017	21/09/2017			
6:00-7:00	50.1	44.1	42.9	45.7	43.2	41.3			
7:00-8:00	48.1	51.3	44.3	52.8	41.1	49.6			
8:00-9:00	41.2	43.2	45.6	47.5	48.5	42.6			
9:00-10:00	46.8	41.2	47.3	55.7	45.6	43.3			
10:00-11:00	64.2	58.4	49.8	66.9	60.2	65.4			
11:00-12:00	51.5	56.3	53.7	63.1	54.6	44.9			
12:00-13:00	56.6	53.1	57.9	65.1	55.3	54.8			
13:00-14:00	55.8	52.1	65.6	50.2	42.7	48.5			
14:00-15:00	70.6	69.1	50.7	73.6	72.4	66.7			
15:00-16:00	49.9	59.3	64.8	60.6	51.4	61.3			
16:00-17:00	54.6	57.3	63.4	56.3	52.6	58.2			
17:00-18:00	63.2	64.2	51.3	53.5	61.4	62.3			
18:00-19:00	57.1	60.1	62.4	58.1	56.1	55.7			
19:00-20:00	44.6	40.8	60.7	54.6	53.7	63.3			
20:00-21:00	59.9	54.9	61.2	51.9	50.2	52.4			
21:00-22:00	47.2	55.6	58.8	49.8	46.5	57.8			

Sampling		14 - New Gate							
Location	During Night Time - Unit in dB (A)#								
Date of Monitoring	20&21/04/2017	18&19/05/2017	20&21/06/2017	20& 21/07/2017	16 & 17/08/2017	21&22/09/2017			
22:00-23:00	46.1	49.2	57.6	58.1	47.1	44.5			
23:00-00:00	35.1	38.2	55.7	41.6	36.9	37.9			
00:00-01:00	48.6	47.2	54.8	44.3	46.8	45.3			
01:00-02:00	39.5	44.3	53.4	40.6	45.3	42.5			
02:00-03:00	45.7	50.1	49.3	43.2	52.1	53.5			
03:00-04:00	50.4	46.1	51.4	59.4	53.1	49.5			
04:00-05:00	42.5	41.2	50.3	47.5	44.2	43.3			
05:00-06:00	38.5	39.6	47.2	45.4	42.4	41.1			

[#]dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

FSSAI Approved Lab

Recognised by MoEF, New Delhi Under

 GPCB approved schedule II auditor ISO 14001 OHSAS 18001

● ISO 9001

Page **35** of **42**

Tables - 15 - Security Barrier GateAmbient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

	·			*					
	15 - Security Barrier Gate								
Sampling Location	During Day Time - Unit in dB (A)#								
Date of Monitoring	21/04/2017	19/05/2017	21/06/2017	21/07/2017	17/08/2017	22/09/2017			
6:00-7:00	52.8	53.6	41.5	47.1	57.8	51.8			
7:00-8:00	53.5	56.7	42.1	44.7	58.3	54.8			
8:00-9:00	54.5	52.3	44.9	43.5	64.2	58.7			
9:00-10:00	56.1	54.2	49.2	67.9	61.7	66.4			
10:00-11:00	66.1	62.1	48.9	68.7	63.4	59.6			
11:00-12:00	60.1	50.3	52.2	58.9	65.6	47.6			
12:00-13:00	63.2	64.8	58.7	65.1	50.1	67.1			
13:00-14:00	73.3	74.3	59.8	71.5	72.5	70.2			
14:00-15:00	48.9	47.2	61.8	55.8	51.4	52.3			
15:00-16:00	61.6	58.3	63.5	60.1	53.3	69.2			
16:00-17:00	49.0	68.5	66.3	52.1	56.8	48.8			
17:00-18:00	58.4	65.1	53.4	63.2	59.4	60.4			
18:00-19:00	59.3	57.4	64.3	56.3	54.8	55.6			
19:00-20:00	51.1	55.6	62.8	54.1	52.1	53.5			
20:00-21:00	46.6	49.3	65.3	48.6	45.6	61.7			
21:00-22:00	55.4	51.0	60.1	57.5	48.7	45.2			

Sampling Location	15 - Security Barrier Gate During Night Time - Unit in dB (A)#							
· · · · · · · · · · · · · · · · · · ·	21&22/04/2		21&22/06/2	21&	(A)# 17 &	22&23/09/2		
Date of Monitoring	017	017	017	22/07/2017	18/08/2017	017		
22:00-23:00	43.1	49.9	51.6	58.8	41.8	46.6		
23:00-00:00	47.3	43.1	56.8	42.9	45.6	44.6		
00:00-01:00	45.4	44.1	54.6	43.1	48.2	42.3		
01:00-02:00	46.5	45.2	52.9	48.5	47.8	49.4		
02:00-03:00	48.8	50.1	55.2	45.7	46.7	47.6		
03:00-04:00	41.8	37.2	42.9	55.5	44.3	50.3		
04:00-05:00	44.5	39.6	46.7	49.5	43.1	45.4		
05:00-06:00	49.1	46.2	44.8	54.7	42.5	43.7		

[#]dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

FSSAI Approved Lab

Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

Authorized Signatory GPCB apprved schedule II auditor ● ISO 14001

OHSAS 18001

Page 36 of 42

Tables - 16 - JS-2Ambient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

Sampling Location	16 - JS-2								
Samping Location	During Day Time - Unit in dB (A)#								
Date of Monitoring	24/04/2017	22/05/2017	22/06/2017	24/07/2017	19/02/2017	25/09/2017			
6:00-7:00	49.9	42.7	41.9	50.7	43.4	44.1			
7:00-8:00	48.6	44.6	43.6	52.2	51.2	50.2			
8:00-9:00	61.7	47.3	46.1	55.6	44.8	. 58.7			
9:00-10:00	56.4	52.3	49.1	60.7	45.9	40.9			
10:00-11:00	44.1	58.7	51.2	61.2	53.2	41.2			
11:00-12:00	54.7	55.6	57.3	53.6	50.3	52.5			
12:00-13:00	58.2	40.2	32.1	57.7	48.1	42.3			
13:00-14:00	43.8	59.6	64.5	62.3	46.8	45.3			
14:00-15:00	59.3	50.2	66.7	56.6	57.3	51.2			
15:00-16:00	55.6	56.6	69.1	68.9	58.7	57.3			
16:00-17:00	53.5	61.5	63.9	64.5	67.6	56.1			
17:00-18:00	60.3	45.5	70.3	48.9	55.2	46.3			
18:00-19:00	47.2	51.6	72.3	66.3	60.3	43.7			
19:00-20:00	45.7	46.7	62.4	54.7	59.4	47.8			
20:00-21:00	51.4	49.3	60.5	59.0	41.5	48.7			
21:00-22:00	46.7	48.7	59.1	58.3	47.8	54.5			

		16 - JS-2								
Sampling Location		During Night Time - Unit in dB (A)#								
Date of Monitoring	24& 25/04/2017	22&23/05/2 017	22 & 23/06/2017	24&25/07/2 017	19&20/08/2 017	25&26/09/2 017				
22:00-23:00	49.0	47.2	56.5	58.0	48.4	46.1				
23:00-00:00	48.1	50.2	46.3	59.1	55.6	54.8				
00:00-01:00	39.5	35.7	53.8	45.6	44.9	47.5				
01:00-02:00	42.9	48.5	52.9	55.9	. 36.7	35.1				
02:00-03:00	40.4	36.3	51.4	49.4	47.5	37.1				
03:00-04:00	38.6	42.3	49.1	57.4	46.5	48.7				
04:00-05:00	54.0	51.2	47.5	53.0	45.8	44.2				
05:00-06:00	41.7	57.4	54.3	44.7	50.7	51.2				

[#]dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

FSSAI Approved Lab

 Recognised by MoEF, New Delhi Under Authorized Signatory

Sec. 12 of Environmental (Protection) Act-1986 GPCB approach schedule II auditor ISO 14001

OHSAS 18001

● ISO 9001

Page 37 of 42

Tables - 17 - Railway Dead EndAmbient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

4 ^m - 200 vo 12 ² 1 - 2 1 - 2	17 - Railway Dead End							
Sampling Location	During Day Time - Unit in dB (A)#							
Date of Monitoring	25/04/2017	23/05/2017	23/06/2017	25/07/2017	20/08/2017	26/09/2017		
6:00-7:00	69.1	62.8	40.9	68.7	41.6	50.1		
7:00-8:00	68.2	48.9	42.8	64.4	43.6	46.3		
8:00-9:00	67.3	56.1	45.2	50.1	51.9	53.2		
9:00-10:00	66.2	50.2	47.8	51.3	56.3	54.3		
10:00-11:00	63.8	43.2	51.6	52.6	42.5	57.4		
11:00-12:00	52.6	58.6	53.4	54.6	50.7	59.4		
12:00-13:00	41.3	42.9	52.3	43.6	46.5	47.2		
13:00-14:00	44.9	41.7	59.1	56.7	47.8	49.8		
14:00-15:00	45.6	44.6	60.9	69.5	57.1	62.5		
15:00-16:00	65.7	53.8	63.1	62.5	44.3	61.7		
16:00-17:00	64.2	51.7	61.8	55.7	60.9	52.8		
17:00-18:00	58.3	60.3	49.5	61.2	48.9	56.7		
18:00-19:00	59.3	61.9	58.1	70.1	63.4	64.3		
19:00-20:00	62.1	52.0	57.2.	59.2	53.3	51.2		
20:00-21:00	48.7	46.7	39.6	57.5	45.8	44.3		
21:00-22:00	53.1	59.4	56.4	65.1	54.2	55.4		

Sampling Location		17 - Railway Dead End								
Sampling Location		During Night Time - Unit in dB (A)#								
Date of Monitoring	25 & 26/04/2017									
22:00-23:00	51.0	49.2	54.9	50.7	45.6	44.2				
23:00-00:00	43.1	44.6	51.2	53.6	54.3	56.5				
00:00-01:00	42.1	41.3	52.1	54.1	39.7	38.6				
01:00-02:00	48.3	52.1	56.1	55.3	46.4	47.3				
02:00-03:00	39.4	35.2	49.6	48.4	40.3	41.3				
03:00-04:00	44.4	42.6	39.6	57.4	43.6	46.6				
04:00-05:00	49.4	48.3	46.1	39.4	44.8	45.6				
05:00-06:00	38.9	45.2	43.5	42.0	52.7	53.9				

[#]dB(A) Leg. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

● FSSAI Approved Lab

Approved Lab • Recognised by MoEF, New Delhi Under
Sec. 12 of Environmental (Protection) Act-1986

Authorized Signatory

 GPCB apprved schedule II auditor ● ISO 14001

OHSAS 18001

● ISO .9001

Page 38 of 42

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart,

Tables - 18 - S and S Yard (South)Ambient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

Camalina Lagarian	18 - S and S Yard (South)							
Sampling Location	During Day Time - Unit in dB (A)#							
Date of Monitoring	27/04/2017	24/05/2017	24/06/2017	26/07/2017	21/08/2017	27/09/2017		
6:00-7:00	63.3	61.5	42.6	66.9	52.1	60.2		
7:00-8:00	61.2	49.5	45.7	67.2	46.3	47.1		
8:00-9:00	49.7	52.6	55.6	46.6	45.1	44.2		
9:00-10:00	59.1	57.4	49.7	69.4	60.7	42.4		
10:00-11:00	56.1	60.5	54.3	57.3	55.4	46.2		
11:00-12:00	62.3	63.6	57.3.,	59.7	43.2	61.7		
12:00-13:00	47.6	45.6	61.4	50.1	44.5	43.6		
13:00-14:00	52.1	54.1	63.7	55.1	58.3	62.7		
14:00-15:00	51.2	46.5	66.2	58.5	47.5	48.5		
15:00-16:00	50.9	65.4	64.5	54.4	51.8	53.6		
16:00-17:00	57.5	64.4	62.1	56.7	53.2	50.1		
17:00-18:00	55.3	62.3	59.2	64.3	50.1	63.0		
18:00-19:00	58.4	53.1	65.8	52.4	54.5	55.3		
19:00-20:00	54.9	59.6	56.3	62.9	61.3	58.6		
20:00-21:00	60.4	58.4	53.1	68.7	57.8	56.9		
21:00-22:00	53.7	55.7	52.9	65.7	56.2	54.2		

Camaliantania	18 - S and S Yard (South)									
Sampling Location		During Night Time - Unit in dB (A)#								
Date of Monitoring	26 & 27/04/2017	24 & 25/05/2017	25 & . 26-06-2017	26 & 27/07/2017	21 & 22/08/2017	27 & 28/09/2017				
22:00-23:00	60.8	63.3	47.3	66.6	58.6	48.2				
23:00-00:00	38.4	41.2	50.9	44.1	52.2	53.7				
00:00-01:00	45.4	42.2	51.7	54.4	63.2	62.3				
01:00-02:00	39.7	43.2	49.4	51.7	36.4	37.2				
02:00-03:00	53.5	47.1	48.4	62.3	50.2	63.2				
03:00-04:00	43.6	49.6	41.8	57.4	46.5	44.2				
04:00-05:00	44.4	53.4	45.1	43.4	48.7	49.6				
05:00-06:00	47.4	55.7	44.1	52.9	51.6	50.4				

[#]dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

Page 39 of 42

FSSAI Approved Lab

Recognised by MoEF, New Delhi Under Authorized Signatory

Sec. 12 of Environmental (Protection) Act-1986

GPCB approved schedule II auditor

[●] ISO 14001

OHSAS 18001

[●] ISO 9001

Tables - 19 - S and S Yard (North) Boundary WallAmbient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

Sampling Location	19 - S and S Yard (North) Boundary Wall During Day Time - Unit in dB (A)#								
Date of Monitoring									
	27/04/2017	25/05/2017	26/06/2017	27/07/2017	22/08/2017	28/09/2017			
6:00-7:00	44.9	58.1	40.1	50.1	43.9	42.3			
7:00-8:00	49.9	63.2	44.8	56.8	51.5	50.3			
8:00-9:00	61.1	64.4	48.2	62.4	52.6	51.1			
9:00-10:00	62.2	65.6	51.3	52.4	59.7	56.2			
10:00-11:00	64.4	56.5	50.1	55.4	53.7	57.3			
11:00-12:00	47.9	48.9	60.2	51.3	44.7	61.9			
12:00-13:00	57.1	55.1	63.1	60.1	54.1	53.2			
13:00-14:00	59.5	61.5	57.6	63.5	60.8	62.5			
14:00-15:00	63.6	62.6	54.7	66.9	68.6	59.3			
15:00-16:00	56.1	57.1	61.4	58.1	55.3	63.4			
16:00-17:00	55.1	66.7	67.8	49.2	56.2	58.1			
17:00-18:00	43.1	45.1	56.4	48.1	47.6	46.3			
18:00-19:00	52.5	51.5	55.4	65.5	40.3	54.3			
19:00-20:00	51.3	50.3	53.1	54.5	46.5	49.8			
20:00-21:00	54.9	52.9	58.1	53.6	57.7	47.3			
21:00-22:00	60.3	53.1	52.4	57.1	50.1	55.1			

		19 - S and S Yard (North) Boundary Wall							
Sampling Location	3	Dur	ing Night Tim	e - Unit in dB	(A)#				
Date of Monitoring	27& 28/04/2017	25&26/05/2 017	26 & 27/06/2017	27&28/07/2 017	22 & 23/08/2017	28 & 29/09/2017			
22:00-23:00	46.5	40.3	52.6	56.3	48.5	47.3			
23:00-00:00	43.6	47.3	50.1	54.6	40.3	41.6			
00:00-01:00	42.1	41.2	51.7	53.1	44.8	45.3			
01:00-02:00	49.2	45.2	48.1	50.3	42.5	43.2			
02:00-03:00	54.4	50.2	46.1	55.1	51.5	52.3			
03:00-04:00	44.7	46.7	47.3	57.4	50.3	49.7			
04:00-05:00	53.6	59.4	43.9	62.3	46.6	55.2			
05:00-06:00	40.2	44.3	45.6	43.3	41.4	42.3			

[#]dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

•FSSAI Approved Lab

Approved Lab • Recognised by MoEF, New Delhi Under Sec., 12 of Environmental (Protection) Act-1986

Authorized Signatory

GPCB apprved schedule II auditor

● ISO 14001 ●

OHSAS 18001

● ISO 9001

Page 40 of 42

Tables - 20 - Lakhi Village (Below Conveyer Belt)Ambient Noise Level Monitoring Results during the Day Time and Night Time in Leq. dB (A) for the period: April 2017 to September 2017:

Sampling Location		20 - Lakhi Village (Below Conveyer Belt)								
Janipiniy Location	During Day Time - Unit in dB (A)#									
Date of Monitoring	28/04/2017	26/05/2017	27/06/2017	28/07/2017	23/08/2017	29/09/2017				
6:00-7:00	49.9	44.1	42.1	50.1	43.5	47.5				
7:00-8:00	54.7	56.7	43.5	51.3	41.2	53.6				
8:00-9:00	53.4	42.6	52.7	55.3	46.6	41.6				
9:00-10:00	48.8	53.8	56.8	59.9	42.6	43.7				
10:00-11:00	67.0	66.0	57.1	62.4	65.6	64.5				
11:00-12:00	63.9	64.9	60.1	65.0	62.8	48.3				
12:00-13:00	56.7	65.4	59.9	61.7	44.9	63.4				
13:00-14:00	60.3	61.9	68.9	69.9	57.6	58.9				
14:00-15:00	65.8	58.7	66.1	68.9	60.2	59.4				
15:00-16:00	58.6	52.2	67.2	66.3	51.5	55.4				
16:00-17:00	62.2	60.2	70.2	63.1	45.3	61.2				
17:00-18:00	57.5	59.5	63.4	60.5	58.3	52.4				
18:00-19:00	51.2	55.4	71.3	57.5	59.4	60.2				
19:00-20:00	55.8	57.8	61.2	58.9	53.6	56.6				
20:00-21:00	50.3	48.3	58.6	52.1	47.3	49.5				
21:00-22:00	47.4	45.4	53.6 _{.,}	54.4	48.5	46.4				

Compliant continu	20 - Lakhi Village (Below Conveyer Belt)							
Sampling Location		Dur	ing Night Tim	e - Unit in dB	(A)#			
Date of Monitoring	28& 29/04/2017							
22:00-23:00	45.6	42.2	56.1	51.7	52.6	49.8		
23:00-00:00	43.4	44.1	54.1	49.5	41.6	45.3		
00:00-01:00	47.3	45.3	51.8	53.3	46.3	44.2		
01:00-02:00	44.3	48.2	50.1	63.4	42.5	43.1		
02:00-03:00	46.2	41.2	48.8	54.2	51.2	47.6		
03:00-04:00	42.6	46.9	45.7	48.9	49.7	41.5		
04:00-05:00	50.0	49.3	47.4	42.5	45.2	46.3		
05:00-06:00	54.9	57.2	43.8	58.9	40.4	48.2		

^{*}dB(A) Leq. denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Day Time shall mean from 6:00 am to 10:00 pm and Night Time shall mean from 10:00 pm to 06:00 am.

FSSAI Approved Lab

Approved Lab • Recognised by MoEF, New Delhi Under

Authorized Signatory (Protection) Act-1986

 GPCB apprved schedule II auditor ● ISO 14001 . ● OHSAS 18001

● ISO 9001

Page **41** of **42**

5H. DG SETS STACK EMISSION AND NOISE LEVEL MONITORING: -

Table No.: 5H.1 - DG Sets Stack Emission Monitoring Results for the period: April 2017 to September 2017:-

Sr. No.	Parameters	Unit	DG Set # 1MRSS (SS5)		DG Set # 2 SS7B		DG Set # 3Marine (SS8)		DG Set # 4Silo (SS11)	
		OIIIL	APRIL-17	AUG-17	APRIL-17	AUG-17	APRIL-17	AUG-17	APRIL-17	AUG-17
1	Particulate Matter	mg/Nm³	24.57	28.21	19.55	21.49	21.83	19.83	17.55	25.74
2	Sulphur Dioxide	ppm	8.41	7.37	5.58	6.63	7.54	5.3	6.76	7.76
3	Oxide of Nitrogen	ppm	42.23	41.2	39.23	44.26	34.48	34.98	37.88	38.45
4	Non Methyl Hydro Carbon (NMHC)	mg/m³	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*	BDL*
5	Carbon Monoxide (CO)	mg/m³	5.15	3.44	3.27	4.58	7.63	6.87	8.38	8.02

Table No.: 5H.2 - DG Sets Noise Level Monitoring Results for the period: April 2017 to September 2017:-

Sr. No.	DG Set Average Noise Level In Leq. dB(A)						
	Sampling Location	At 1 m from the enclose outside					
	Sampling Date	APRIL-17	AUG-17				
1.	DG Set # 1MRSS (SS5)	71.4	70.4				
2.	DG Set # 2 SS7B	72.5	69.3				
3.	DG Set # 3Marine (SS8)	70.1	71.2				
4.	DG Set # 4Silo (SS11)	68.4	72.2				

Page 42 of 42

Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

Authorized Signatory

GPCB apprved schedule II auditor

OHSAS 18001 ● ISO 14001

[●] ISO 9001

Annexure 6: Acknowledgement & RPAD receipt of EC letter submission to Local Panchayat dani Petronet (Dahej) Port Private Limited

CIIDH: 3/6/2005

Regd

46, 212 421 21

सरपंश श,

GW) 2114,

भाषतः पर्यावर्धीय महूरी जाजन

अग्रिक विषयना कार्मधानमां भगाववानु है कार्माकी अग्रिक धार्म पीर्ट कार्न रमीनित प्रोहेंदर आहे पर्यावद्धा कार्न वनमंत्रात्य तरहश पुष्ठमार्च, २००९ ना क्षेत्र प्रमान -११-39/2009 - अगर्धकी/मा मार्ट्स पर्यावट्टाहीय मेंद्री भेगवो नी.

रा राजीकी पर्यावरण कार्न वनगंगायणकी स्वामा शुक्राकी निमान की.

र्वालाक सहर रिहाली पेट्रांकेट (टाह्क) पार्ट था. भार्मिंड वर्ती

बीमा नही NOT INSURED	क्रमांक + 94
लगाये गये डाक टिकटों का मूल्य रु. पे.	No.
Amount of Stamps affixed Rs. 30 P.	
एक रजिस्ट्री" प्राप्त किया	Care to
Received a Registered पानेवाल का नाम	तारीय मोहर
Addressed to Cathing and	Date Stamp
(-0-) पानवाले	अधिकारी के हरताक्षर
Signature of F	Receiving Officer

Annexure 6: Acknowledgement & RPAD receipt of EC letter submission to Local Panchayat

Adani Petronet (Dahej) Port Private Limited

HL: 19/22/2006

21/12, 2122121 012, CWO 21121, til. CU2121, 03: M321.

रिष्या: यापायहारिय गेथूरी ट्यापार स्वाइक्स अरी,

211m12 215,

212192 CEESON 2012' 341. PH.

Plot No. 02, Next to Panchvatti Apartment, Opp. Sarveshwarnagar Society, Zadeshwar Road, Bharuch - 392 011. Tel.: +91-2642-230537 Telefax: +91-2642-230468 Email: jk.shah@adanipetronet.com

Annexure - 7

Green Zone Details

Adani petronet (Dahej) port pvt.ltd. Green Zone Details

Sr. No.	Location	Area in (Hect.)	Tree (No.)	Shrubs (Sq. Mt.)	Green Carpet (Sq.Mt.)	Palm	Remarks
1	PMC office area Landscape	0.264	500	400	1000	60	Implemented
2	Gcptcl boudry wall site plantation	1.455	4500	800	3750	250	Implemented
3	APPPL office area (SS 7 B)	0.16	260	200	800	20	Implemented
5	LNG Site Boundry wall site plantation	0.885	5000	2500	0	450	Implemented
6	Stack yard	0.56	5000	0	0	150	Implemented
7	Road site Avenue tree plantation	1.1	4000	0	2000	500	Implemented
8	Main gate Area	0.572	450	2000	2500	80	Implemented
9	Railway yard area Phase 1	1.091	5000	310	0	150	Implemented
10	Railway yard area Phase 2	1.12	5000	600	0	150	Implemented
11	EHS Ofiice building	0.46	250	1500	2000	150	Implemented
13	SS 7 A Office	0.099	80	250	500	20	Implemented
14	Workshop building	0.21	500	0	500	150	Implemented
15	WB -6 area	0.024	120	0	0	0	Implemented
To	otal Green Zone Area	8	30660	8560	13050	2130	

<u>Annexure-8</u>: Compliance Status of EMP as mentioned in the EIA study For Phase-III Expansion of Adani Petronet (Dahej) Port Pvt. Ltd., March, 2015:

S. No.	EMP Conditions	Compliance Status					
A.	ENVIRONMENTAL MANAGEMENT PLAN (CONSTRUCTION PHASE)						
1.1	Air Quality Management Plan						
	Dust suppression systems will be installed for fugitive dust emission control while undertaking civil works.						
	Regular wetting of roads will be undertaken on the paved and unpaved artillery roads.	Complying with. Regular wetting of roads is undertaken on the paved and unpaved artillery roads					
	Vehicle tyre washing facilities will be provided at the entrance to prevent spillover of dust sticking on tyre outside the facility. Construction materials kept in open area will	been provided.					
	be provided with barrier in order to prevent wind carryover of dust.	in a secure area.					
	Construction materials transportation in and outside the port will be appropriately covered to prevent fugitive dust emissions.						
	Civil and Mechanical fabrication works will be carried out within the port facility at an appropriate location to avoid impact on the local air quality at project construction site.	Civil and Mechanical fabrication is being done within the port premises.					
	minimize the vehicle exhaust.	All vehicles are being checked for PUC.					
	All trucks deployed at site will be a provided with fitness and pollution under control certificate.	All vehicles are being checked for PUC.					
	DG set with appropriate stack height as per CPCB guidelines for effective dispersion of pollutants shall be provided.	, , -					
1.2	Noise Quality Management Plan						
	DG set with acoustic enclosure will be installed for power supply to construction activities.	All DG sets (standby source) are provided with acoustic enclosures.					
	All high decibel noise generating equipments should be repaired to meet the compliance noise level. No activity involving with high intensity and	Noise generating equipments are provided with acoustic enclosures.					
	magnitude of operation should be deployed. Silencers will be provided in Vehicle exhaust.	 Complying with. All construction and operation activities are in compliance with the Noise level Norms. Monitoring of noise level is being done by M/s Pollucon 					

_		,
	Onsite fabrication activities will be undertaken at a designated location, which should be located away from the office	l '
	buildings and any other working areas.	yord has been provided.
	In case noise emissions from the fabrication activities exceed a level of 85 dB(A) at the fence-line of the fabrication yard, temporary noise barrier will be installed.	 There is no occasion till date for exceeding the noise level at the port boundary. Persons working in the fabrication yard are provided with PPEs.
	Portable diesel engine generators and diesel	
	engine driven compressors, if any, will be covered with acoustic enclosures.	All noise generating equipments are provided with acoustic enclosures.
1.3	Sewage Management Plan	
	Sewage generated from the construction site will be treated in existing STP of 27 m ³ capacity. Treated water will be used for green belt	Domestic effluent is being treated in STPs. The treated water
	development / landscaping after achieving GPCB prescribed standards.	used for horticulture purpose. The monitoring results of the treated wastewater from STP for the period from October 2016 – March 2017 are enclosed as Annexure – 5F
1.4	y	
	Solid waste generated will be segregated at source for biodegradable and non-biodegradable with an option of reuse or recycle before disposal	 All solid waste is being segregated for biodegradable and non-biodegradable. Biodegradable waste is being decomposed in Bioneer and other waste is being disposed in compliance to the Solid Waste Management Rules - 2016.
	categorized as per Hazardous Waste Management Rules, 2008.	Complying with. Hazardous waste is being managed in compliance to the Hazardous Waste Management Rules 2016.
	Recycle/Reuse waste will be sold to authorized recyclers	Complying with. Recyclable waste such as used oil etc. is being sold to authorize recyclers only.
1.5	Construction Phase Storm Water Runoff	
	Existing storm water drainage network will be further strengthened and developed near the project site to prevent surface runoff to the sea.	Storm water drainage system has

B.	ENVIRONMENTAL MANAGEMENT PLAN (OPE	ERATION PHASE)				
2.1	·					
	Appropriate stack height will be provided to					
	DG sets to disperse the gases into the	, , ,				
	atmosphere as per the guidelines suggested					
	by Central Pollution Control Board.	compliance to the CPCB standards.				
	Existing Port has installed robust dry fog	•				
	dust suppression system (DFDS) at the Jetty,					
	conveyor belt, transfer tower, and discharge	The state of the s				
	point at coal stack yard area. Various types	, -				
	of water spray nozzles have been installed					
	and the water spray is carried out through					
	atomized water spray over the sources using					
	compressors thereby controlling the fugitive					
	dust effectively. Total number of nozzles					
	installed in the port is 350 nos. It is					
	recommended to maintain the same systems					
	for the proposed project activities					
	At coal stack yard, 100 sprinklers have been	Complied.				
		Storage area for the additional				
	emissions. At a time 4 sprinklers will be					
	operated and consumes water around 3600	,				
	LPM. Similarly for the proposed expansion of	•				
	port from 11.7 to 23 MMTPA such a robust					
	DFDS and Sprinklers will be installed and					
	maintained with maximum efficiency.					
	To prevent wind carryover of dust from coal	Partial complied.				
	stack yard, wind barrier have been erected	· ·				
	around the coal stock pile area at a height of					
	14m from the ground level. The wind barrier	· ·				
	is of galvanized sheet with perforated holes	completed.				
	to withstand high velocity wind has been	·				
	fitted in the structural beams and erected in					
	solid foundation thereby effectively control					
	the wind carryover of dust from the stock					
	piles.					
	Road sweeping of dust is being undertaken	Complying with.				
	using mobile van thereby preventing settled	Two dust sweeping machines				
	dust gets airborne due to movement of	(mobile van) are working at site.				
	vehicles and high wind velocity and the					
	same is recommended					
	High capacity vacuum cleaning machine					
	installed at mobile truck is deployed for					
	removal of dust settled on roads and the					
	same practices will be implemented in the					
	proposed project.					
	Regular wetting of the roads is undertaken					
	through dedicated truck mounted spray					
	arrangement with least water consumption.					
	The same will be implemented in the					
	proposed activities.					
2.2	Noise Control Management Plan					

	 The drainage water will be channeled through a series of sediment traps to remove the majority of the coal sediment 		
	 Coal stock pile development of 7.7 Ha area Railway siding area 	area is yet to be done.	
	Following areas will be provided with storm water drainage systems to prevent any surface run-off in to the sea. • Reclamation of 23 Ha back up area	Coal stock pile and Railway siding area are provided with storm water drainage. Reclamation of 23 Ha	
2.3	<u> </u>		
	Change management process will be implemented to modify operation to address noise pollution if occurs	Complying with. APDPPL is certified with the ISO 14001:2015. A proper change management process in place for any kind of deviation. However, there is no occurrence of noise level exceeding norms.	
	Using electricity powered equipment inside the port instead of diesel powered ones will be explored to the extent possible	Shall be complied.	
	Planting trees which acts as barrier to arrest dispersion of noise levels along the internal roads and port boundary	Complying with.	
	Using silent exhaustion pipes for major diesel engine vehicles and heavy trucks operated inside the port		
	restricted with speed control measures	 Speed is limited within the port premises. Proper signage also provided with the premises. 	
	pump house will be installed in separate building provided with noise absorbing materials on the walls Movement of vehicles within the port will be	Compressor and DG sets are installed in separate building and provided with acoustic enclosures. Complying with.	
	DG sets installed in open area will be provided with acoustic enclosure Compressors and Diesel generators and	Complying with. DG sets installed in open area will be provided with acoustic enclosure. Complying with	
	High speed rotating equipments such as gantry cranes motors, hydraulic systems will be installed within-built acoustic systems to maintain the noise decibel as per the manufacturer specifications	Mechanization of the south jetty is	

anchored for collection of waste due to windblown in to the sea. In addition to the plan, the wastes that are Complying with. expected to be generated will be disposed All the wastes are being managed in accordingly. The hazardous waste generated compliance to the respective waste from the port operation will be disposed as management rules as amended in per the HWM Rules 2008. 2016. Waste generated durina port operations will be disposed as per Solid Waste (Management & Handling) Rules 2000. Wherever possible the recycle and reuse will be explored for possibilities of recovery of any useful material. Option for recycle/reuse if not economical, then the waste will be disposed as per the SWM Rules, 2000. 2.5 Green Belt Development Plan: It is proposed to develop nearly 6 ha. of Complying with. green cover all along the boundary of the Three tier Green belt is being being developed in an area of 8.0 ha Green Buffer Zone is implemented at Eastern project site along including periphery of the project the boundary. Saplings of Casuarina and boundary. Pedilanthus are planted along the coal stacking yards and periphery of port area. It is proposed to develop further three tier greenbelt to increase efficiency of dust control. 2.6 Community Development Plan The proposed CSR programs are based on Complied. the needs felt and socioeconomic indicators The CSR activities are executed at of the study. The proposed CSR programs group level by Adani Foundation. can be initially implemented in the five Adani Foundation is taking care of villages of the study area that is Lakhigam, Social-economic establishment Luvara, Jageshwar, Ambetha and Dahej activities and details of the same Based on the outcome of the CSR programs, are enclosed as Annexure - 9 it can be expanded to the other villages apart from the study area. The proposed CSR Programs can be grouped into the following subheadings. Health Promotions Programs ✓ Health Camps and Health Awareness programs on Institutional Births and Immunization programs ✓ Mobile Clinic **Education Promotion Programs** ✓ Providing sustenance funds maintaining School Infrastructure like Drinking water Facilities, Sanitation facilities and providing supplies etc ✓ Providing scholarship programs ✓ Sport Coaching centre **Economic Development Programs**

- ✓ Knowledge centre regarding various government schemes and latest technology
- ✓ Skill Development Training Programs

Women Empowerment

- ✓ Sanitation Promotion Programs
- ✓ Construction and Maintenance of Sanitation complex
- ✓ Awareness Programs

Infrastructure development Programs

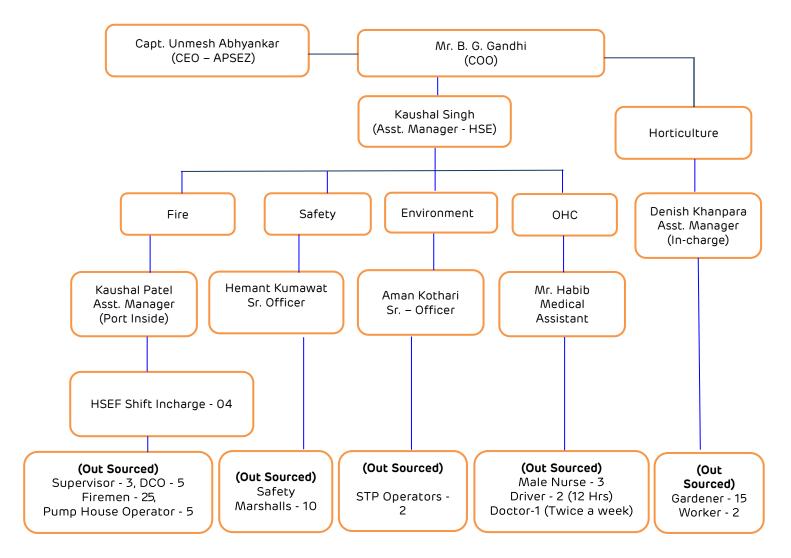
- ✓ Developing internal roads of villages
- ✓ Developing drainage systems
- ✓ Solar Street Lights
- ✓ Construction / Maintenance of Community Halls
- ✓ Social Forestry

2.7 Village Specific Infrastructure Development Programs:

S. No.	Village	Programs		
1.	Luvara	Developing proper drainage system in the village.		
2.	Dahej	Providing Safe Drinking water Facilities in the schools		
3.	Dahej	Developing medical facilities in the PHC such as facilities for storage of perishable medicines,		
4.	Jageshwar	Developing Drainage System		
5.	Lakhigam	Developing Drainage System		
6.	Lakhigam Luvara Jageshwar	Developing Solar Street Light and Internal Village Roads		
7.	Ambetha	Developing Drainage System		
8.	Study Area Villages	Mobile Clinic providing medical facilities in the villages of the study area by having periodic visits and health camps.		
9.	Study Area Villages	Developing Safe Drinking facilities at Schools in the study area.		

			I		
	10.	Jageshwar	_	training	
			programs	on latest	
			technology o	f fishing, free	
			fishing equi	ipments and	
			providing	vocational	
				gramme for	
			alternate inco	_	
28	Fovic	onmental M	lanagement C		
2.0	APPF				Complied.
					APDPPL has a well structured
		•	•		Environment Management Cell with
		•		xecutives and	·
			•		implementation of the Environment
			•		Management Plan. Detail of the
					Environment cell is enclosed as
				_	Annexure – 10
			•	EF recognized	
	and	NABL	accredited	environmental	
	labor	atories. l	Environmental	l compliance	
	repo	rts are reg	gularly submi	tted to MoEF	
	regio	nal office, \	/adodara and	New Delhi.	
	EMC	will be furt	her strengthe	ened in view of	
				y augmenting	
				ver and field	
				compliance of	
		onmental	clearance	conditions.	
				ogram will be	
				zed and NABL	
		•	-	aboratories as	
				paration and its	
	•	•		legional Office,	
		idara and N		egioriai Orrice,	
				5	
2.9	Cost	Estimat		Environmental	
		gement Pla			
				the proposed	· ·
				s. Under the	Separate budget is allocated for
				es is allocated	Environmental Management and
	towa	•	tion contro		Socio Economic activities.
	•			ental pollution	• Key components of environment
	cont	rol meası	ures and	environmental	budget are environmental
	management programs.		Monitoring, STP's (O&M), Closed		
					Conveyor System Maintenance
					and etc. The allocation of
					revenue budget for Environment
					Cell for the FY 2017-18 was
					approx. Rs. 210.72 lacs. Details
					· ·
					of the environmental budget
					and expenditure for the FY
					2017-18 is enclosed as
					Annexure – 7.

Annexure-9: Environment Budget and Expenditure for the FY: 2017-18


S. NO.	ACTIVITY/ CATEGORY	BUDGET (IN LAC)	EXPENDITURE (IN LAC)
1.	EHS Manpower	15.5	7.75
2.	Legal & Statutory Expenses	1.50	0.05
3.	Environmental Monitoring Services	19.0	9.50
4.	Water Consumption	75.5	21.69
5.	Hazardous Waste Management & Disposal	0.80	0.39
6.	Greenbelt Development and Plantation	22.70	11.35
7.	O&M of Pollution control measures	6.40	3.20
8.	Environment Day Celebration	0.25	0.25
9.	Treatment and Disposal of Bio-Medical Waste	2.16	1.08
10.	Operation and Maintenance of Road Cleaning equipment and manpower	17.41	10.97
11.	Operation and Maintenance of Fire staff	49.50	24.75
	TOTAL AMOUNT (IN LACS)	210.72	90.98

CAPITAL EXPENDITURE				
S. NO.	ACTIVITY/ CATEGORY	BUDGET (IN LAC)	EXPENDITURE (IN LAC)	
1.	Horticulture Development	26.36	13.18	
2.	EHS Display Board	5.0	5.0	
	TOTAL AMOUNT (IN LACS)	31.36	18.18	

Annexure-10: Organogram of APPPL - Environment Management Cell

ADANI PETRONET (DAHEJ) PORT PVT. LTD.

Dept.: QHSE Management Cell

	Details of Environment Cell					
S. No.	Name	Designation	Qualification	Work Experience		
1.	Kaushal Singh	Asst. Manager -HSE	Dip-Mech, PGDFS, NEBOSH	10 Years		
2.	Denish Khanpara	enish Khanpara Asst. Manager B.Sc. Horticulture, Post Diploma In Environment Technology (PDIEMT)		10 Years		
3.	Kaushal Patel	Asst. Manager	B.Sc. Fire, Post Diploma In Environment Technology (PDIEMT) pursuing	12 Years		
4.	Hemant Kumawat	Sr Officer	Dip – Mech, Dip. In Fire & Safety, NEBOSH	8 Year		
5.	Aman Kothari	Sr Officer	M.Sc. Environment Science & Technology, PDIS	6 Years		

Annexure - 11

Corporate Social Responsibility Report

2017 – 18 Corporate Social Responsibility Report

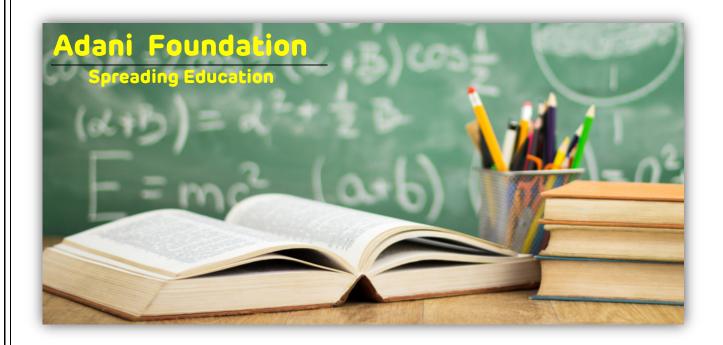
Adani Foundation - Dahej

At Adani Foundation-Dahej, our CSR approach is guided by the four pillars of our CSR & Sustainability framework — Education, Community Health, Sustainable Livelihood Development and Rural Infrastructure Development. These pillars establish a clear vision of our focus area and are aligned with our efforts to address the issues of highest importance to our internal and external stakeholders. In this report, we've dedicated individual sections highlighting our progress under each pillar.

Adani Foundation is the Corporate Social Responsibility arm of the Adani Group with a vision to "Accomplish passionate commitment to the social obligations towards communities, fostering sustainable and integrated development, thus improving quality of life". Adani Group is an integrated infrastructure conglomerate that is committed to an inclusive growth and sustainable development of not only the regions that it operates in, but also in contributing towards nation building.

The Adani Foundation - Dahej has been running several activities and catering to the needs of the local people residing in about 11 villages. The activities performed under the CSR initiatives of the Adani Foundation broadly fall under four major domains. These include Education, Community Health, Sustainable Livelihood Development and Rural Infrastructure Development. In the Year 2016-17, Adani Foundation contributed largely towards the development of surrounding communities of Adani Dahej site in respect to its varied domains. Each domain has its specific set of objectives. All the objectives are fulfilled keeping in mind the vision of contributing towards creating a better society. Till date several activities have been initiated and performed consonant to these objectives.

This Annual Report throws light on Adani Foundation's activities performed and initiatives taken for the year 2017-2018 at Dahej site.



2.0 Domains of CSR Framework

2.01 EDUCATION

Adani Foundation- Dahej, has maintained its focus on below parameters: -

- Efforts to improve the quality of education
- Encourage education of girl child
- Encourage community participation through meetings and seminars
- ❖ Maximize (100%) the enrollment of children in school and their retention

In rural India today, 4% of our children never attend school, 58% do not go beyond primary level, and 90% of them who go beyond drop out of school, according to a survey. AF- Dahej acknowledges the fact that lack of education is one of the several challenges rooted in the local economy. Most families in and around the port region are poverty-stricken and do not have sufficient means to avail better education.

<u>Children Aren't Accountable to their Education</u> - Parents spend the off-season time searching for miscellaneous jobs, leaving their children at home to fend for themselves. This creates irregularities in the children attending the school.

<u>Available Education Proves Inadequate</u> – Some major concerns in these schools are fewer committed teachers, lack of learning materials and basic infrastructure such as toilets.

<u>Children Aren't Motivated to Learn</u> - When students arrive home from school, they are not encouraged to study, hence whatever is taught at the school does not become a learning for them. The primary reason for this issue is, parents themselves do not understand the importance of education.

<u>Families Lack Resources for a Proper Education</u> - Many families in these rural villages have to toil hard to just make their ends meet. They do not have enough resources to afford school supplies and tuition fees.

AF- Dahej, after due discussions with school authorities and local leaders from these villages took several initiatives for improving school enrolment and continuance ratio in these villages.

[a] Pragna Material Support:

Under this initiative, AF engages with the schools located in these villages by providing necessary amenities/supplies that aid in education.

This project directly **benefited 3600** students spread across **eight schools** that received support from AF under this project.

This year we have provided Pragna Books to all the students, this book is really helpful when it comes to learning new things as it covers lot of important elements of primary learning for the students.

[b] Learning Enrichment Programme.

- This is a programme launched this year, where the focus has been to help academically weak students. Mathematics and Gujarati (medium of language) are the basic subjects to learn the other subjects and the proficiency in language and math support us in our day to day activity till the life end. The students of Govt. School are very poor in language and math. So, they do not cope up with their curriculum.
- We have a specially designed Learning Enrichment Program which aims to improve their learnings in Mathematics and Gujarati language. A team of 7 Teachers and 1 Coordinator for seven Schools from grade 5th, 6th, 7th, 8th is formed. A total 225 students are identified as "Priya Student".
- In the month of July, total 123 Students were under level 0 and now 104 students are under Level 0. In the month of August 19 students got upgraded to Level 1. In July, 9 students were under level 2, whereas by August the count of students at Level 2 reached 16, an increase of 7 students.

[C] Praveshotsav (New Academic Year) Programme:

Under this programme, this time we have provided school kits to all the children. This not only motivates the children to come to school but also reduces financial burden on parents to some extent. This project has benefited 321 children from eight schools of Dahej Cluster.

2.02 Community Health

In the villages and nearby regions, proper medical attention is constrained by lack of proper health care infrastructure, untrained medical staff, inexperienced doctors, and standard medical procedures.

Hence, the local communities residing in these villages are not able to get access to formal healthcare and many of them have to travel long distances to consult local practitioners in case of minor illness.

Recognising this need to strengthen the health care delivery system, AF- Dahej is engaged in developing healthy communities by improving accessibility to basic health care.

[a] Mobile Health Care Unit (MHCU):

AF- Dahej has deployed MHCU which is scheduled to visit villages in close vicinity of the port, for providing basic health care & medical services to the patients. This facility has directly been **benefitting 21,677 people** residing in these **12 villages**.

[b] Multi- Disciplinary Health care camps: Mega Health Camp

AF-Dahej, also conducted multi-disciplinary standalone special health care camps to meet the immediate heath care needs of local communities. The uniqueness of this model lies in its comprehensive approach where health promotion and prevention are given equal importance. These camps offer curative care that has directly benefitted 368 patients. To continue our efforts, this year we are going to organize a second camp in the month of December.

[c] Health and Sanitation Awareness Campaign

AF-Dahej frequently conducts Health and Sanitation awareness campaigns among adolescent girls and other children, in schools and Aanganwadis with an aim to teach the local communities of the benefits associated with personal hygiene and cleanliness.

This has directly benefitted 4000 students spread across all 11 schools and 13 Aanganwadis.

[d] Project SuPoshan (Project Nourishment)

Malnutrition and Anaemia are two major health issues prevalent among adolescent girls and children. Communities residing in vicinity of APDPPL. AF- Dahej took it as an objective to reduce malnutrition amongst children by 95% and anaemia amongst adolescent girls & women by 70% in nearby villages during the next three years. The project has a three pronged strategy i.e. promoting awareness, building institutional capacity and knowledge-base in form of Sanginis (representatives) and working in tandem with existing government schemes. Post commencement of the project in May 2016, Suposhan has incorporated 8 Sanginis and trained them on the subject. The project is now focusing on treatment of SAM (Severely Acute Malnourished) children to convert them to MAM (Moderately Acute Malnourished) child and eventually to a healthy child.

Project had identified a total of **199** malnourished children in nearby 12 villages/locations. Through this project, APDPPL was successful in converting **84** children from SAM to MAM and **115** children from MAM to perfectly healthy children.

2.03 Sustainable Livelihood and Community Engagement Programme

One major issue that local communities residing near APDPPL face is securing sustainable livelihood opportunities. With increasing population and decreasing land holdings, the dependency on primary livelihoods, which is agriculture, is at risk. In the absence of adequate employment opportunities, the rural people are unable to generate enough wages to sustain their families. Therefore, it is all the more imperative to find suitable sustainable livelihood models and strategies for achieving inclusive growth.

Increasing livelihood opportunities for local communities and fostering a sustainable growth of the community members, is one of the core responsibility and priority of AF- Dahej.

We are continuously investing in building social capital, promoting collective strength through self-help groups, supporting initiatives towards preservation of traditional art and organizing skill development training for the youth and women artisans thus ensuring impact is created directly on the local communities.

[a] Skill Development Training - SHG Group

Under the skill development initiative of Adani Foundation, Dahej used to conduct several training programs on sewing, running a beauty parlour etc for rural women. Since it was conducted solely with the intention to impart

training, now we proposed to convert this model into sustainable model that would livelihood opportunities. Based on the needs of the communities and women specific employment requirements, we have developed a SHG group named "Shiv Shakti Sakhi Mandal". This women are making school bags,

Jute Bags, Travel Bags, which are marketed to generate income.

2.04 Rural Infrastructure Development

Majority of community members of the villages in the vicinity of APDPPL comprise of Fishermen and daily wage labourers. Hence providing some good infrastructure support such as construction of a check dam, a tube well will go a long way in supporting their day to day activities. We at AF- Dahej have made effort to provide infrastructure support to the community with an aim to alleviate their day to day problems. This year, we provided infrastructure support in constructing schools, panchayat, etc. which helped in making the lives of people relatively easy.

These villages have been facing issues of water logging during monsoon every year. Due to unplanned drainage system, every year during the monsoon season, the villages get inundated. Roads stay blocked, pedestrians have to wade through flooded streets and there is damage to the property and homes of the people due to the rain water seepage.

APDPPL took significant steps to build and/or improve the rural infrastructure, thereby alleviating critical issues faced by the local communities, for the purpose of rural development.

[a] Construction and Repair of Houses in these villages:

AF-Dahej took the initiative of building/repairing housing of the economically backward communities that could withstand heavy rains and other similar harsh climatic conditions thus enabling them to focus on their routine livelihood. This year we have constructed 9 New Houses and Repaired 6 Houses.in all benefiting This has benefitted **57** residing in these habitats.

[b] Construction of E- Toilet at Bharuch Railway Station.

Considering a special project, this time we got request from Western Railway authorities, to construct toilet at Bharuch railway station. In accordance to their request, we constructed an E-Toilet at Bharuch Railway station, which proved to be really beneficial for the passengers.

[c] Construction of Bus Stand at Dahej Village.

We took this initiative to construct a bus stand at the Dahej village, as Dahej being one of an important transit point for most travelers coming from surrounding villages. This bus stand proved to be very helpful for commuters.

[d] Construction of Road at Lakhigam:

It was observed that a road in Lakhigam that goes to the crematorium was not in the proper condition and villagers used to face a lot of issues. So we took the initiative and are in the process of constructing the road which would ease the travel woes of the villagers.

[e] Miscellaneous civil work:

AF- Dahej has built as a part of its effort in developing rural infrastructure, has built a bus stand as an amenity to the commuters; toilet blocks; underground water tank equipped with washing Area (Manual Launderette), water ATM. etc thus, **benefitting 9900 inhabitants of Lakhigam village**.

ભરૂચ રેલવે સ્ટેશનનાં પ્લેટફોર્મ નંબર 4/5 ઉપર અદાણી ફાઉન્ડેશન દ્વારા અંદાજીત રૂપિયા 6.5 લાખના ખર્ચે આ મોડયુલર રાજપ શેદલેશની અવિધા કેલ યાત્રીઓ માટે બનાવવામાં આવી છે.

At a Glance - Utilization of fund - up to Oct 2017

Sr. No	IRLIAGET Areas		Budget Utilized up to Oct 2017
1.	Education	17.00	9.00
2.	Community Health	25.50	17.33
13.	Sustainable Livelihood Development	48.00	4.28
4.	Rural infrastructure development	176.58	38.29